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Abstfacti Three distinct explicata of uncertaln system
behaviour are developed and it Is shown that they each give
rise to different phenomena that are confounded {f only
probability theory is used to represent them. It is also sﬁown
that a conventnonal blnary representation of possible
transiilens in non- determ;nistic automata cannot support
certain legitimate arguments about the resultant behaviour. A
weakened logic of probability Is developed as a precise
explicatum of all that may be inferred about

non-deterministic, but also non-probabilistic, behavliour. This
is extended to cover all three forms of uncertain behaviour,
and their combinations, leading to a rigorous calculus of
possibility, eventuality and probabili%ﬁfhmqi oo ek e/”&:figfi
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1 INTRODUCTION

The commonly used tools for analysing systems whose
behaviour is uncertain are those of probability theory,
«Herver, the assignment of a non-zero, non-unity, probabllity
(a proper probabilityi to an event has more connotations than
that the occurrence of the event is uncertaln (i.e. it may, or

~ may not, occur)., it Implies that In a sufficiently long



sequence of events this one is eventually bound to occur., It
also implies the even stronger result that the relative
frequency of such events in a sequence will tend to converge
to the given probabllity with increasing length of sequence.
Either, or both, of these additional connotations may be too
strong in practical situations where the concepts of
probability theory are being used to express the effects of

uncertain behaviour,

For example, in the analysis of system stability or
reliability we are often faced with situations where an event,
E, may occur, but there Is no guarantee that £ actually will
occur, no matter how long we wait. |If we ascribe some
arbifrary, non-zero probability to E then we certalnly express
that it is a possible event. However we are then In a position
to derive totally unjustified results based on the certainty
of some eventual occurrence of E, or meaningless numeric

results based on the actual 'probabilfty' of occurrence of E,

The danger of Aertving profound results that have no
3ustificétion other than an unwarranted strength in the theory
is a real one. For example, Galnes (1971,1974) has shown that
a two-state stochastic automaton can solve a class of control
problems otherwise requiring a recursive automaton (Gold 1971)

and not soluble by any finite automaton (Gaines 1971, Gold
 ﬁ197i); This significant result is dependent on a source of
bn;ertaInAbehaviour that is properly probabilistic, but whose

probability does not have to be known, It cannot be derived If

- . the behaviour is merely possibilistic. There is no way,

howéver, of preventing the consequences of this result

~appearing in the analysis of a system in which uncertalntles



have been represented by probabilities rather than

possibilities.

A similar problem arises in the practical aplication of
}inear systems theory, There are many results which may be
derived from the assumption of linearity (such as the complete
extension of knowledge of local behaviour to that of global
behaviour) which are false in most practical systems. The
engineer resolves these problems in practice through a set of
'rules-of-thumb' based on commonsense and experience which
constrain the deductions he is prepared to assume valid, Such
a resolution is however extremely difficult to implement in an
automated, or computer-aided, design systém, and becomes
Increasingfy.difffcult to apply as the system involved becomes

more complex.

This paper analyses the problem of describing precisely
and quantitatively the structure of systems whose behaviour is
uncertain, A formal calculus is developed for the three
connotations of uncertainty outlined above, allowing
possibtliétic, eventualistic and probabilistic behaviour, and
any mixture of these three, to be taken Into account and only

legftimate deductions to be drawn,

.2 POSSIBLE, EVENTUAL, AND PROBABLE EVENTS

It appears that there are three distinct explicata of
| uncertainty, each of which has its own conseauences that

require clear separation:-

(i) Possible Event E is possible = no reliance may be placed

i



upon the occurrence or the non-occurrence of E. This
corresponds to an interpretation of E as an event whose
negative consequences must be taken:into account, but whose
positive consequences cannot be relied upon. The modal
operator of ‘possibility', M, in alethic modal logic (Hughes
and Creswell 1968, Snyder 1971) represents this concept, but

conventional probability theory provides no explicatum for It,

(ii) Eventual Event E will eventually occur In that it

frequent In the sense of the theory of infinite sequences, i.e
in a series of events E(i), for any n, there exists md>n, such
that E(m)=e. This corresponds to the interpretation of E as an
event whose eventual occurrence may be relied upon, but whose
relative frequency of occurrence is not necessarily stable or
known. A suitable explicatum in probabf%lty theory is that<

p(E)>0, the event has a non-zero probability of occurrence.

‘(ii1) Probable Event E is frequent and its relative freauency
of occurrence in a sequence of events converges to a definite
value, p(E), Its probability of occurrence, This is the type
of event with which we are most used to dealing using the

methods of probability theory.

Gailnes and Kohout (1975) have shown that it is possible
to take these three types of event and add to them two further
7j.’types, necessary and impossible events (alwavs or never occur,
| respéct?vely), to form a muiti-valued loglc. The losic is
"~ mixed discrete-continuous since probable events are
répresented by a number in the semi-open interval (0,1].
“: Without probable events the logic (in terms of conjunction and

disjunction) is a bk-value Post algebra and may also be



regarded as a fuzzy logic (fadeh 19@%,Lakoff 1973). With
probable event types include empotency falls and even the
generalization of fuzzy logic to a distributive lattice (Brown

1971) is Inadequate iliustrating the need for more genera!l

truth sets discussed by Goguen (1974},

The muitivalued logic proposed by Gaines and Kohout
(1975) provides an improved account of possibility and
prohability, and their mixtures, in that it does not allow
false conclusions to be drawn about possibilistic events, and
vet It contains a full account of truly probabitlistic events.
However, it suffers from what appears to be a fundamental
defect of all attempts to acecount for possibilistic, or
non~deterministic, behaviour Iin terms of a flnite~- valued
logic; It Is unable to sustain certain forms of deduction
1eading to deterministic conclusions about non-deterministic
behaviour., This problem is analysed through an example in the
next section and a new logic of possibility is developed that
is similar to that of probability and supports all the
legitimate, but only the legitimate, derivations of results

about possibilistic behaviour.
3 THE PROBLEM OF POSSIBILITY NORMALIZATION

The problem of drawing conclusions about possible events

.is best seen in terms of an example. Consider the gﬁk;ﬁ

indeterministic automaton of Flgure 1 - starting in S0, its

. future states are indeterminate. However, even if we know only

'that the transitions are possible, It Is clear that }h@ state &
ISQ'wIII certainly be entered at some time. If we know also

that the transitions are eventual then it is also certaln that



the uitimaté state will be ?é. If, in addition, the transitlion
probabilities are well-defined then we may also derive the
expected time for this state to be reached, This last
conclusion is a numeric result readily represented in
probabilistic terms, but what of the weaker results ? They are
not In themselves quantitative but they do seem to be based on
an underlying quantitative argument - when the state will be

%é s uncertain but the 'total uncertainty' about that state

i

sums to a certalinty that It will occur.

The normal representation (Santos and Wee 1968 p.7) of a
possihle, or non-deterministic, transitipn by a binary logical
variable taking the values 0 (Impossible) and 1 (possible)
cannot be used to support this form of reasoning. For exampje,
Table 1 shows the possibility of each state of the automaton
of Figlat successive clock times. It can be seen that the
patte:; of behaviour for 52 is Identical to that for §g and
vet we can see that/ﬁé mdst occur whilst Sé may only possibly
occur. Clearly an exhautive enumeration’;f all possible p?ths
from 36 to SS will show that 52 is on all of them whilst 83 s
not, but such combinatorial searches become difficult when the

system ls complex and contains loops (leading to an Inifinite

number of possible paths),

If the transitions were probabilistic the afgument could
be based on a simple numeric calcu1ation of the total
probability of each of the states, 82 and 83 What appears to
- be lacking in the binary representation of possible
transltions Is the normalization possible wlith probabilities

that expresses that the automaton is gctually in one, and only



one, state; ‘As discussed in Gaines and Kohout (1975) the
norméi!zation of the columns of Table 1 is appropriate to a
non-deterministic automaton in that at least one of the states
has the value 1, but theré is also the auxiliary rule that if
only one of the states has the value 1 then the automaton s

definitely in that state;

It is in the form of this auxiliary rule that the
weakness of expressing possibillity in a finfte-valued logle
seems to lie. To find out If the automaton is definitely in a
state we have to examine the possibilities of all other states
and show that they are zero, This globaf_argument contrasts
sharply with the local reasoning in the p%obabtllstic case
that-the automaton is definitely in a state because the
probability of that state is 1; There seems no -reason,
However, why we should hot retaln thils ‘'conservation law' so
readily expressed in probabilities without giving the actual
numeric probahilities anything more than a possibilistic

interpretation, f.e.:=

p(E)=0 E is Impossible
0<p(E)L1 E is possible
p(E)=1 E is necessary.

A calculus of possibility based on these definitions is quite
'siﬁply developed and In fact gives non-deterministic automata
thekstructure of probabilistic automata with the weakened
semantics that, apart from 0 and 1, the values of
‘probability' have no greater signiflcance than that an event

is possible.



L A LOGIC OF POSSIBILITY AND EVENTUALITY

Rescher (1969 section 27) has given a set of postulates
for what he calls a 'probabllity logic' over a domaln of
statements., The logic is deflned in terms of a valuation over
the lattice of conjunction and disjunction of statements that
assigns some real value, P(A), to every member, A, of the
universe of statements., This assignment has to satisfy the

postulates:~
(P1) 0 £ P(A), for any statement, A,

(P2) P(AvA)

i
ey

(P3) P(Av B) P(A) + P(B), provided A and B are mutually

exclusive

(PL) P(AY = P(B), If A Is loglcally equivalent to B

(17"\/) f’{A A J\ - /"{,4/ -f/'ff/) /’/AJ,g,) c/z%»g w?jué"

(P&% P(A::B) = P(Aa B), deflning Implication
,(PQ) P(A=B) = P(ADB ARBRDA), defining equivalence

These are the nofmal basic requirements for a
probability measuré, but they may also be regarded}as a Set of
postulates for an infinite-valued logic. The logic is not |
truth-functional but if the value 1 only Is designated then
the truth tables for the operations of negatlon, conjunction

and disjunction are those of the classical propositional



calculus (PC), Conversely, the axioms that define PC may be
shown to be tautologies of probabllity logic (Rescher 1969
9.187); Hence the system coincldes completely with PC In its

tautologies.

Rescher (1969 section 28;2) introduces modalities into
the logic by the stipulations:

(i*) Necessity: LA = 1 or 0 according as P(A') Is, or Is not,

uniformly 1 for every substitution instance, A', of A.
4

L4

(i}) Possibility: MA = 0 or 1 ccording as P(A') is, or is not,
unlféfmly 0 for every substitution instance, A', of A.

The use of the concept of substitution instances Is necessary
because the logic is not itself truth-functionai; Rescher

(1963) has demonstrated that the logic with these modalities

is characteristic of Lewis' system S5 of modal logic‘(Hugheé.ﬁ?

and Creswell 1968) in that its tautologies are precisely thése

of S5, and vice versa. Thus, whilst there is no finite-va1dédf7

logic that represents precisely the alethic modal logic of
necessity and possibility, this (infinite-valued) ‘probébitity

logic' does so.

If we consider only mutually exclusive events, such as
an automaton being in one or another of its states, then it
may be seen from P3 that the logic becomes fruth—functionaié
Valuations are then jugé additive over the disjunction of

5
events. Hence also‘yé may be Interpreted as, "an event is

possible if and only if its valuation is non-zero', which may



be seen as a binary evaluation simllar to the 0/1 .
representation of impossibllity/possible In non-deterministic
automata. However we also have the new rule based on/}i ghat,
Yan event 1s necessary If Its valuation Is unity", This
corresponds to our previous additional rule that If the
disjunction of a set of mutually exclusive events lIs

necessary, and only one of the events ls possible, then that
event must be necessary. This is now derivable from the purely
arithmetic effect of the additivity of posit!ve-valuét!ons,
i.e. 1If the sum of a set of numbers is 1, and all but one of

those numbers is zero, then that number must be 1.

It Is Interesting to compare this with the corresponding
rule of the modal logic S5 (728 in Hughes and Creswell 1968
p.51) that:

L{AvB) > (LAv MB)

which clearly extends to multiple events:

CLAVBVCVY ...) D (LAVMBUMC v ...)

fee. If it is necessaéy that at least one of a set of events' \
-occur then either one of the events is necéssary or some of

the others are possible. Hence, from the Impossibility of all
but one event we can Infer the necessity for that event. It
can be seen that what the 'probability logic' of S5 does is -
replace a process of !ogicalrdeduction with one of arithmei?c.
The fallure of a binary representation of possibility to do B
this may ltself be seen as a demonstration of ﬁhe

impossibility of characterizing S5 with a finite-valued logic



(Dugundji 1940).

Let us now apply this logic to the previous problem of
modelling a non-deterministic automaton. Conslder the set of
all posssible statements of the form, '"the automaton was in a
particular state, x, after the n'th transition", where x&X,
the state set of the automaton, For each n, these statements
are mutually exclusive and clearly a set of numbers may be
assigned to them which sum to 1 to express that the automaton
is necessarily In some state, and are such that zero Is
assigned to an Impossible state. Such an assignment of a value
x{n) to state x.is consistent with postulates Pl through P ,fﬁ?
and satisfies the weaker Interpretation of 'probabilities'

given at the end of the previous section, It will be called a

'normalized' distribution and satisfles:~

;25 x(n) =1

xEX

= 0 If state x is Impossible after traﬁsfffon n
x{n) >0 if state x is possible after transition n

=1° If state x is necessary after transition no

A state tragsition now corresponds to a transformatlon
of one normalized distribution Into another; and to make the
semantics correct It Is necessary only to ensure that a state}
Is possible after a transition If and only if there is a

possible path to it from a state that was possible before the



transition; The normal representation (Arbib 1969 Ch.9) of
probabilistic transitions by a "stochastic matrix"
transforming a state distribution "vector'" by matrix/vector
multiplication has precisely this property, It Is not unique
in this for the weaker cases of possibility and eventuality,
but there is no reason to prefer any other choice. Thus a
transition from x to y may be represented by a number, T{(x,vy),

such that:
T(x,y) 2 0

= 0 {if the transition ls Impossible
T{x,y)s > 0 if the transition Is possible

= 1 1If the transition Is necessary

;22 T(x,y) = 1

vEX

so that T(x,y) Is a normalized distribution over y& X,

The next state distribution is then given by:

xel) = S Tx,ydvin)

yEX.

A re~analysls of the automaton of Fig.1 shows that the R
r C .
di fference between states ?é and Si that was previously
obscured is now apparent. Table || Is the new version of Table

| - to show the generality of the result symbols have been



used rather than numbers - a, b, ¢, etc. are any numbers in
the open interval, (0,1); The final column glves the sums of
the elements In each row. For §é through 33} since the
automaton being, for example, ig §2fat time 1 and at time 2

are mutually exclusive possib!]itées, the sum properly
represents the total possibility of the automaton being in the
state. It can be seen that Sl and 83 are only possibly entered
but that SQ for which the total Is 1, will be necessarily
entered. The sums for Sh and SS are not meaningful because the

loops in the state diagram ruie out mutual exclusion and hence

the additivity of possibilities.

The penultimate column of Table 1| shows the final
possibility of the automaton being in each of Its states.
Whilst that for Sh is asymptotic to 0 and that for SS is
asymptotic to 1 both are essentially non-zero for all time
and hence, if the transitions are possibilistic, the most we c
can say is that both states are ultimately possibie; This -
serves to illustrate the essential distinction between the‘ 
analysis of possible and eventual behaviour since, if the
tranéitions are eventual, we may show that an asymptotic
approach of the possibility of an event to unity indicates

‘that that event must ultimately necessarily occur.

To give thls staiement a rigorous Interpretation we may
say that an event;is ultimately necessary {f, no matter what
the actual values of the trahéition possibilities prcvided'
that they are eventual and conform to the semantics of
impossibility/possibility/necessity given previously (i.e. the

distinction between zero and non-zero possibilities is



preserved), the possibility of that event Is asymptotic to
unity; The idea behind this definition is that we are dealing
with a probabilistic situation In which the actual values of
probabilitlies are vague and may fluctuate provided the
possibilisticv10gic of the situatlon Is preserved. Any numeric
result which is Indepedent of the actual values is significant
in the eventual case, whilst only exact summation (rather than

asymptotic approach) to unity is significant In the possibile

Thus, In summary, one can take a model of automaton

i e

case,
I

g

structure and behaviour which is identical to that for the
conventional probabilistic automaton and by weakening the
interpretatfon of the‘numerfc 'probablilitles' to that of
‘possibilities' one can obtain precise accounts of the
behaviour of automata with efther possible, or eventual, |
transitions and state distributions. This result is a functtdn _
of the equivalence between the modal loglc, S5, and | |
'‘probability logic'!, an equivalence in which the freqﬁentiét:gf

interpretation of numeric 'probabilities' plays no part.
5 UNIFICATION OF POSSIBILITY, EVENTUALITY, AND PROBABILITY

It has been shown that a 'probabilit& logic! witﬁ’one of
two weaker interpretations than usual of the numeric results
gives an adequate and complete explicatum of possible and
eventual behavfou&‘in non-deterministic automata. HaweVeEIOnly
the pure cases have been treated so far and it has already |
been arrued that the treatment of a mixed case of more than
one type of behaviour as a uniform example of a pure case will

lead to deductions which are either too strong or too weak. In



practice the extension to the mixed case may be made quite
simply by considering generalized possibiiity to be a
3-vector, and the resultant calculus has some interesting

further properties.

Conslider the possibility of an event x now to be
represented by a 3-vector of positive numbers, (x1,x2,x3),
whose components are: x1, probability; x2, eventuallty; x3,
péssibility. thfs Is to Interpreted that: the true probability
of the event Is at least x1 (exactly x1 If x2+x3=0); that the
event will eventually occur if x1+x2>0; and that the event lIs
possible If x1+x2+x3>0, This last term will be defined as a

norm on the three vector:

- x0 = x1 + x2 + x3

and 1t will be postulated that this norm conforms to Pl

, 71 , .
through ?é for a probability logic., Hence it is clear that the

uniform restriction of two of the components of the 3-vectors

to zero gives rise to exactly the pure cases so far diSCusSedQ‘

For the mixed case one must ensure that the rules of
combination are consistent with the semantics that probabllft&ﬁfﬁ
can never be generated from eventuality and neither may be
generated from possibility. For the additfon of vector
possibilities normal vector addition suffices - If x and vy are
mutually exclusive eveﬁts whose joint occurrence is called 2z,

then:

(21,22,23) = (x1+vl,x2+y2,x3+y3)

so that also:

zO =  xQ+y0, —



Thus the minimum probability of z is the sum of those of x and
y, and z Is possible (eventual) if and only if elther of x and

y is possible (eventual),

Multiplication of the 3-vectors is more complex because
it corresponds to Interactions between the different types of
possibility, e.g; a state is possible If it arfses from a
state which was probable through a possible transition. The
definition that,'if X is a vector possibility corresponding to
a state and v that corresponding to a transition, then the

resultant {s z such that:

(21,22,23) = (x1yl,x2y2+x2yl+xly2,x3y3+x3yl+x3y2+x1y3+x2y3)

has the correct semantics and preserves the norm so that:

20 = x0y0.

I1f the result for z ls written In the form:

(z1,22,23) = (xlyl,(x1+x2)(yl*yZ)-xlyl,x0y0~(xl+x2)(y1+yi))
it Is more clearly apparent that powers of a 3~vector,~x;.by‘« |
this definition of multiplication are of the simple form, ff;‘~

z=x™:

(z1,22,23) = (xla', (x1+x2)” -xlm,xow_-(xléxzfv)

20 = x0%

so that for any functibn, f, which may be expressed as a power
series with these definitions of addition and multipllcation

we have, if z=f(x):
(21,22,23) = (f(x1),f{x1+x2)=F(x1),Ff(x0)-F(x1+x2))

f(x0)

i

20



The mixed calculus of probability, eventua1ify and
possiblility thus appears the same as any of the pure cases
with possibility represented as a 3-vector and addition and
multiplication defined as above. The new properties of
interest show up when we consider functionals of distributions
since the eventualistic and possibilistic components of, for
example, the entropy of a distribution have no obvious
interpretation, 'It Is meaningful however to consider the
minimum and maximum of the norm of a functional for all
assignments of the second and third components of the vectors
in a distribution which preserve the semantics, l.e. are such
that the overall norm of the distribution iIs constant., This
corresponds to treating the eventual and possible components
as being a residual probabilistic distribution to be assigned

for best possible, or worst possible, effect. Thus such

functionals as the entropy of a possibilistic distribution do . c

not have a unique value but rather a range of values defined

by 1ts maximum and minimum. o WWM”“T\QN
. T m\w<“‘\’: Ia\'i ?Z,éyer{; : ‘,/'/‘
6 CONCLUS‘ONS o L

The concepts advanced In this paper may be seen as a
-straightforward extension of probability theory to cope with
richer forms of uncertain behaviour found in practical
systems, The fact thaf the pure cases of possibilistic and
eventualistic behéviour may be treated computationally with a
normal probabillty logic whose semantic interpretatlon is
weakened is Itself a formal justification In engineering |
studles for treating all types of uncertainty as probabilistic

but takling no notlce of some of the computed results, This is



not effective however In the mixed case where a system
exhibits more than one type of non-detérministlc behaviour,
and the simple extension given to a vector of possibility with
appropriate rules of addition and multiplication Is necessary
to cope with thlis case, It has the advantage that the
technlques developed for the analysis of probabilistic

automata may be carried over directly to the mixed case.
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