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Abstract: Three distinct explicata of uncertaIn system 

behaviour are developed and it Is shown that they each give 

rise to different phenomena that are confounded If only 

1 

probabi 1 ity theory is used to represent them. It is also shown 

that a conventional binary representation of possible 

t rans I t Ions in non-determi n i st i c automata 'c~nnot 'support 

certain legitimate argumpnts about the resultant behavIour. A 

weakened logic of probabil Ity is developed as a preciSe 

expl icatum of all that may be inferreo about 

non-determInistic, but also non-probabil1stic, behav'our. This 

is extended to cover all three forms of uncertain behaviour, 

and their combinations, leading to a rigorous calculus of 
. :yll,-A ""'. 4.. vv:-hv ,e/A~.4!-

possibility, eventuality and probabilttA . ('/""~'o 

1 INTRODUCTION 

The commonly used tools for analYsing systems whose 

behaviour is uncertain are those of probability theory. 

However, the assi~n~ent of a non-zero, non-unity, probabtl ity 

(a proper probahility) to an event has more connotations than 

that the occurrence of the event t s unce rta f n (t.e. it may, or 

may not, occur). It Implies that in a sufficiently long 
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sequence of events this one is eventually bound to occur. It 

also impl ies the even stron~er result that the relative 

frequency of such events in a sequence will tend to conver~e 

to the given probability with increastng length of sequence. 

Either, or both, of these additional connotations may be too 

strong in practtcal situations where the concepts of 

probability theory are being used to express the effects of 

uncertain behaviour. 

For example, in the analysis of system stability or 

reliability we are often faced with situations where an event, 

E, may occur, but there Is no guarantee that E actually will 

occur, no matter how long we wait. If we ascribe some 

arbttrary, non-zero probabil ity to E then we certaInly express 

that it Is a possible event. However we are then tn a positIon 

to derive totally unjustified results based on the certainty 

of some eventual occurrence of E, or meaningless numeric 

results based on the actual 'probability' of occurrence of E. 

The danger of deriving profound results that have no 

justification other than an unwarranted strength in the theory 

Is a real one. For example, Galnes (1971,1974) has shown that 

a two-state stochastic automaton can solve a class of control 

problems otherwise requirIng a recursive automaton (Gold 1971) 

and not soluble by any finite automaton (Gaines 1971, Gold 

,1971). This significant result is dependent on a source of 

uncertain behaviour that is properly probabiltstic, but whose 

probability does not have to be known. It cannot be derived If 

. the behaviour is merely possibiltstic. There is no way, 

however, of preventing the consequences of this result 

appearing in the analysis of a system in whIch uncertainties 
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have been represented by probabilities rather than 

possibilities. 

A stmllar problem arIses in the practical aplication of 

linear systems theory. There are many results which may be 

derived from the assumption of 1 inearity (such as the complete 

extension of knowledge of local behaviour to that of global 

behaviour) which are false tn most practical systems. The 

engineer resolves these problems in practice through a set of 

'rules-of-thumb' based on commonsense and experience which 

constrain the deductions he is prepared to assume valid. Such 

a resolution is however extremely difficult to implement in an 

automated, or computer-aided, design system, and becomes 

increasingly difficult to apply as the system involved becomes 

more complex. 

This paper analyses the problem of describing precisely 

and quantitativelY the structure of systems whose behaviour is 

uncertain. A formal calculus is developed for the three 

connotations of uncertainty outlined above, allowing 

possibtlistic, eventual1stic and probabillstic behaviour, and 

any mIxture of these three, to be taken tnto account and only 

legitimate deductions to be drawn. 

2 POSSIBLE, EVENTUAL, AND PROBABLE EVENTS 

It appears that there are three distinct explfcata of 

uncertainty, each of which has its own conse~uences that 

require clear separation:-

(t) Possible Event E Is possible - no reliance may be placed 



upon the occurrence or the non-occurrence of E. This 

corresponds to an interpretation of E as an event whose 

negative consequences must be taken into account, but whose 

positive consequences cannot be relied upon. The modal 

operator of 'possibility', M, in alethlc modal logic (Hughes 

and Creswell 1968, Snyder 1971) represents this concePt, but 

conventional probability theory provides no expl icatum for ft. 

(If) Eventual Event E will eventually occur in that it 

frequent In the sense of the theory of infinite sequences, i.e 

tn a series of events ECI), for any n, there exists m>n, such 

that E(m)=e. This corresponds to the interpretation of E as an 

event whose eventual occurrence may be relied upon, but whose 

relative frequencY of occurrence Is not necessarily stable or 

known. A suitable expl icatum in probahillty theory is that 

p(E»O, the event has a non-zero probahility of occurrence. 

'(iit) Probable Event E is frequent and its relative frequency 

of occurrence in a sequence of events converges to a definite 

value, pCE), its probability of occurrence. This is the type 

of event with which we are most used to dealing using the 

methods of probability theory. 

Gatnes and Kohout (1975) have shown that it is possible 

to take these three types of event and add to them two further 

. types, necessary and impossible events (always or never occur, 

respectively), to form a multi-valued logic. The lo~ic Is 

mtxed discrete-continuous since probable events are 

represented by a number in the semi-open interval (0,1]. 

Without probable events the logic (in terms of conjunction and 

disjunction) Is a 4-value Post algehra and may also be 
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regarded as a fuzzy logic (f;deh 197~,Lakoff 1973). With 

probable event types include~tpnCY fatls and even the 

generalization of fuzzy logic to a distributive lattice (Brown 

1971) is Inadequate illustrating the need for more general 

truth sets discussed by Goguen (1974). 

The multivalued logic proposed by Gaines and Kohout 

(1975) provides an improved account of possibility and 

prohabillty, and their mixtures, in that it does not allow 

false conclusions to be drawn about possibillstic events, and 

yet it contains a full account of truly probabtlistic events. 

However, it suffers from what appears to be a fundamental 

defect of all attempts to account for possibilistic, or 

non-deterministic, behaviour in terms of a finite- valued 

logic. It Is unable to sustain certain forms of deduction 

leading to deterministic conclusions about non-deterministic 

behaviour. This problem is analysed through an example in the 

next section and a new logic of possibility is developed that 

is similar to that of probability and supports all the 

legitimate, but only the legitimate, derivatIons of results 

about possibilistic behaviour. 

3 THE PROBLEM OF POSSIBILITY NORMALIZATION 

The problem of drawing conclusions about possible events 

. is best seen In terms of an example. Consider the $t.Ji A 

indeterministlc automaton of Figure 1 - starting in~: its 

future states are indeterminate. However, even if we know only 

that the transItions are possIble, It Is clear that ~e state B 
{ 

S·2"wtl1 certainly be entered at some tIme. If we know also 

that the transitions are eventual then it Is also certain that 



the ultimate state will be Is. 
f 

If, in andition, the transTtton 

pronabil ities are well-defined then we may also derive the 

expected time for this state to be reached. This last 

conclusion is a numeric result readily represented in 

probabilistlc terms, but what of the weaker results? They are 

not In themselves quantitative but they do seem to be based on 

an underlYing quantitative argument - when the state wtll be 

s~ is uncertain but the 'total uncertainty' abnut that state 
f 
sumS to a certainty thrt It will occur. 

The normal representation (Santos an~ Wee 1968 p.7) of a 

possible, or non-deterministic, transition by a bInary logfcal 

variable taking the values 0 (tmpossible) and 1 (possibl~) 

cannot be used to support this form of reasoning. For example, 

Table 1 shows the possibtl Ity of each state of the automaton 

of Ftg\at successtve clock times. It can be seen that the 

p.tte~ of behaviour for ~, Is Irlentlcal t~ that for ~. and 

yet we can see that ~ mJ~t occur whilst 0 may only possibly 
l' l 

occur. Clearly an exhautive enumeration of'all possible paths 
t,~, ;' 

from s.6 to SS! will show tba t s,~ is on a 11 of them wh i1 st S/3 t s I . . 
I . / .. ' 

not, but su~h comb i natod a 1 sea rches become d i ff I cul t w"'~n the 

system Is complex and contains loops (leadfn~ to an Inifinite 

number of possible paths). 

If the transitions wer~ probabil fsttc the argument cou,d 

be base" on a simple numeric calculation of the total 
I 

probahllity of each of the states, S2 and $3. What apppars to 

be lacking in the binary representa~fon Off possible 

transitions ts the normalization possible with probabilttles 

that expr~sses that the automaton is actually in one, and only 
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one, state. As dIscussed tn Gaines and Kohout (1975) the 

normalization of the columns of Table 1 is appropriate to a 

non-deterministic automaton in that at least one of the states 

has the value 1, but there is also the auxiliary rule that if 

only one of the states has the value 1 then the automaton is 

definitely in that state. 

It Is in the form of thts auxiliary rule that the 

weakness of expressing posslbilfty in a finite-valued logic 

seems to lie. To find out If the automaton Is definitely in a 

state we have to examIne the possIbilities of all other states 

and show that they are zero. This global argument contrasts 

sharply with the local reasoning in the probabtllstic case 

that the automaton is defInitely in a state because the 

probability of that state is 1. There ~eems no reason, 

however, why we should not retatn this 'conservation law' so 

readilY expressed tn probabilities without glving the actual 

numeric probahilities anything more than a posstbilfstic 

interpretation, i.e.:-

p(E)=O E is Impossible 

O<p(E)i1 E is possible 

p(E)=1 E Is necessary. 

·A calculus of possibil Ity based on these definitions is quite 

simply developed and In fact gives non-deterministic automata 

the structure of probablllstic automata with the weakened 

semantics that, apart from 0 and 1, the values of 

'probability' have no greater signifIcance than that an event 

is possihle. 
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4 A lOGIC OF POSSIBILITY ANfI EVENTUALITY 

Rescher (1969 section 27) has given a set of postulates 

for what he calls a 'probabl1 ity logic' over a dOMain of 

statements. The lo~ic is deftned in terms of a valuation over 

the lattice of conjunction and dIsjunction of statements that 

assigns some real value, peA), to every member, A, of the 

universe of statements. This assl~nment has to satisfy the 

postulates:-

(PI) 0 ~ peA), for any statement, A. 

(P2) P(A"A') = 1 

(P3) PCAv B) = peA) + P(B), provided A and B are mutually 

exclusive 

(P4) peA) = P(B), If A Is logically equivalent to B 

(f~) P (It /\ 0) ;; f {If) t- f' (e) .- t (;If ,/ 6)/ ,I e.+~ ""'-I A /---I _ ~u~ 

(PSi) PCA:;)B) :I peAA B), defining implication 

(Pih peA: B) = P(A:::;.B AlS:>A), defining equivalence , 

These are the normal basic requirements for a 

.. ,'. , 

probabil ity measure, but they may also be regarded as a set of 

postulates for an infinite-valued logic. The logic is not 

truth-functional but If the value 1 only is designated then 

the truth tables for the operations of negation, conjunction 

and disjunction are those of the classical propositional 
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calculus (PC). Conversely, the axioms that define PC may be 

shown to be tautologies of probabIlity logic (Rescher 1969 

p.187). Hence the system coincides completely with PC in its 

tautologies. 

Rescher (1969 section 28.2) introduces modallties into 

the logic by the stipulations: 

et 
<:}) Nece~sity: LA • 1 or 0 according as PIA') Is, or Is not, 

uniformly 1 for every substitution instance, A', of A. 

q 
<P) Possibility: MA • 0 or 1 ccording as PIA') is, or Is not, 

untformly 0 for every substitution instance, A', of A. 

The use of the concept of substitution instances Is necessary 

because the logic is not Itself truth-functional. Rescher 

(1963) has demonstrated that the logic with these modalitfes 

is characteristic of lewis' system SS of modal logic (Hughes' 

and Creswel1 1968) in that its tautologies are precisely those 

of S5, and vice versa. Thus, whilst there Is no finite-valued" 

logic that represents precisely the alethlc modal logic of 

necessity and possibil ity, this (infinite-valued) 'probability 

logic' does so. 

If we consider only mutually exclusive events, such as 

an automaton being in one or another of its states, then it 

may be seen from P3 that the logic becomes truth-functional. 

Valuatlons are then just additive over the disjunctIon of 
,-.1. I,q 

events. Hence also ~ may be Interpret:.ed as, "an event is 

possIble if and only if its valuation is non-zero", which may 

, .:' 

. , .' 



be seen as a binary evaluation similar to the 0/1 

representation of impossibtlity/possible In non-deterministic 
>£s f<1 

automata. However we also have the new rule based on;,~ that, 

"an event is necessary If its valuation is unityll. This 

corresponds to our previous additional rule that If the 

disjunction of a set of mutually exclusive events Is 

necessary, and only one of the events Is possible, then that 

event must be necessary. This Is now derivable from the purely 

arithmetic effect of the additivity of positive valuations, 

i. e. 1 f the sum of a set of numbers is 1, and a 11 but one of 

those numbers is zero, then that number must be 1. 

It Is Interesting to compare this with the corresponding 

rule of the modal logic SS (T28 in Hughes and Creswell 1968 

p.Sl) that: 

l(AVB) :::> (lAvMB) 

Which clearlY extends to multiple events: 

l (A v B vC l/ ••• ) :::> (LA v MS v MC v ••• ) 

i.e. if it Is necessary that at least one of a set of events·· 

. occur then either one of the events is necessary or some of 

the others are possihle. Hence, from the impossibility of all 

but one event we can infer the necess i ty for that event. It 

can be seen that what the 'probability logic' of SS does Is 

replace a process of logical deduction with one of arithmetic. 

The failure of a binary representation of possibility to do 

this may Itself be seen as a demonstration of the 

impossibil ity of characterizing SS with a finite-valued logic 

. ,:' . 
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COugundji 1940). 

Let us now apply this lo~ic to the previous problem of 

modelling a non-deterministic automaton. Consider the set of 

all posssib1e statements of the form, "the automaton was In a 

particular state, x, after the n'th transition", where XEX, 

the state set of the automaton. For each n, these statements 

are mutually exclusive and clearly a set of numbers may be 

assIgned to them which sum to 1 to express that the automaton 

Is necessarIly In some state, and are such that zero Is 

assIgned to an Impossible state. Such an assignment of a value 

xCn) to state x. Is consistent with postulates PI through ~ P1 
and satisfies the weaker tnteroretatton of 'probabilities' 

given at the end of the previous section. It will be called a 

'normalized' distrIbution and satisftes:-

x(n) = 1 

xE.X 

c 0 if state x is impossible after transl~lon n 

xCn) > 0 if state x is possible after transition n 

=1 if state x is necessary after transItion n· 

A state transition now correspon~s to a transform~tton 

of one normaltzed distribution Into another, and to make the 

semantIcs correct It is necessary only to enSUre that a state 

Is possible after a transition if and only if there is a 

possible path to it from a state that was possible before the 
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transition. The normal representation (Arbfb 1969 Ch.9) of 

probabilistic transitions by a "stochastlc matrix" 

transforming a state distribution "vector" by matrix/vector 

multiplication has precisely this property. It Is not unique 

t~ this for the weaker cases of possibility and eventuality, 

but there is no reason to prefer any other choice. Thus a 

transition from x to y may be represented by a number, T(x,y), 

such that: 

T(x,y) 2 0 

= 0 if the transition Is Impossible 

T(x,y) > 0 if the transition is possible 

= 1 Tf the transition 1s necessary 

~ T(x,y) = 1 

ye. X 

so that T(x,y) is a normal ized distribution over ye. x. 
The next state distribution is then given by: 

x(n+1) = 2. T(x,y)y(n) 

yE. X. 

A re-analysts of the automaton of Flg.1 shows that the 
-c y;; 

difference between states r4 and ~3 that was previously 

obscured is now apparent. Table' I Is the new version of Table 

I - to show the generality of the result symbols have been 



used rather than numbers - a, b, c, etc. are any numbers in 

the open Interval, (0,1). The final column gives the sums of 

the elements I n each row. For ~6 th rough S~, s t nce the 
! t ;-

automaton being, for example, in S,2 at time 1 and at time 2 
/ 

I 

are mutually exclusive possibilities, the sum properly 

represents the total possibility of the automaton being in the 
/ 

state. It ~an be seen that S,l and S3 are only possibly entered 

but that 5'2, for which the total Is 1, will be necessarily 
/ 

entered. The sums for S4 and SS are not meaningful bec~use the 
i 

loops In the state diagram rule out mutual exclusion and hence 

the additivity of possibilities. 

The penultimate column of Table 11 shows the final 

possibility of the automaton being in each of tts state~. 

" Whilst that for S\ is asymptotic to 0 and that for S5 is , 
,I 

asymptotic to 1, both are essentially non-zero for all time 

and hence, if the transitions are possiblltstic, the most we 

can say is that both states are ultimately possible. This . 

serves to Illustrate the essential distinction between the 

analysis of possible and eventual behaviour since, if the 

transitions are eventual, we may show that an asymptotic 

approach of the possibility of an event to unity indicates 

that that event must ultimately necessarily occur. 

To give thts statement a rigorous interpretation we may 

say that an event is ultimately necessary tf, no matter what 

the actual values of the transition possibIlities provided 

that they are eventual and conform to the semanttcs of 

impossibility/possibility/necessity given previously (I.e. the 

distinction between zero and non-zero possibilitIes is 



preserved), the possibility of that event Is asymptotic to 

unity. The idea behind this deflnition is that we are dealing 

wIth a probabil istic situation in which the actual values of 

probabilities are vague and may fluctuate provided the 

possibilistlc logic of the situation is preserved. Any numeric 

result which is indepedent of the actual values is significant 

In the eventual case, whilst only exact summation (rather than 

asYmptotic approach) to unity is significant in the possibile 

case 0 __ ------------------"----"-

Thus, In summary, one can taye a model of automaton 

structure and behaviour which is identical to that for the 

conventional probabilistic automaton and by weakening the 

Interpretation of the numeric 'probabilities' to that of 

'possibilities' one can obtain precise accounts of the 

behaviour of automata with either possible, or eventual, 

transit tons and state dlstributionso This result is a function 

of the equivalence between the modal logIc, SS, anrl 

fprobabtl ity logic', an equivalence in which the frequentist 

Interpretation of numeric 'probabilities' plays no part. 

5 UNIFICATION OF POSSIBILITY, EVENTUALITY, AND PROBABILITY 

It has been shown that a 'probability logic' with one of 

two weaker interpretations than usual of the numeric results 

gives an adequate and complete explicatum of possible and 

eventual behaviour in non-deterministic automata. HO\,/ever only 

the pure cases have been treated so far and It has already 

been ar~ued that the treatment of a mixed case of more than 

one type of behaviour as a uniform example of a pure case will 

lead to derluctions which are either too strong or too weak. In 
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practice the extension to the mixed case may be made quite 

simply by considering generalized possibfitty to be a 

3-vector, and the resultant calculus has some interesting 

further properties. 

ConsIder the possibility of an event x now to be 

represented by a 3-vector of positive numbers, (xl,x2,x3), 

whose components are: xl, probability; x2, eventuality; x3, 

possIbility. this Is to Interpreted that: the true probability 

of the event Is at least xl (exactly xl If x2+x3=O)i that the 

event will eventually occur if xl+x2)Oi and that the event Is 

possible If xl+x2+x3)O. This last term will be defined as a 

norm on the three vector: 

xO = xl + x2 + x3 

and It will be postulated that this norm conforms to PI 
l7 

thrOUgh,s for a probability logic. Hence it is clear that the. 

uniform restriction of two of the components of the 3-vectors 

to zero gives rise to exactly the pure cases so far di~cus~ed.· 

For the mixed case one must ensure that the rules of 

combinatIon are consistent with the semantics that probabll fty· 

can never be generated .from eventuality and neither may be 

generated from possibll ity. For the arldttion of vector 

possibilities normal vector addition sufffces- if x and yare 

mutually exclusive events whose joint occurrence is called z, 

then: 

(zl,z2,z3) = (xl+yl,x2+y2,x3+y3) 

so that also: 

zO = xO+yO. 
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Thus the minimum probabil ity of z is the sum of those of x and 

y, and z Is possible (eventual) if ann only if either of x and 

y is possible (eventual). 

Multiplication of the 3-vectors is more complex because 

It corresponds to Interactions between the different types of 

possibtllty, e.g. a state is possible if It arises from a 

state which was probable through a possible transition. The 

definition that, if x is a vector possibility corresponding to 

a state and y that corresponding to a transition, then the 

resultant is z such that: 

(zl,z2,z3) = (x1y1,x2y2+x2yl+xly2,x3y3+x3yl+x3y2+xly3+x2y3) 

has the correct semantics and preserves the norm so that: 

zO = xOyO. 

If the result for z is written In the form: 

(z1,z2,z3) (xlyl,(xl+x2)(y1+y2)-xlyl,xOyO-(xl+x2)(yl+y2» 

It is more clearly apparent that powers of a 3-vector,x, by 

this definition of multiplicatton are of the simple form, if.' 

z=x1l..: 

(z1,z2,z3) I\, '" ""..,., '" (xl ,(xl+x2) -xl ,xO -(xl+x2) ) 

zO -- xO'" 

so that for any function, f, which may be expressed as a power 

series with these definitions of addition and multipl Icatton 

we have, if z=f(x): 

(z1,z2,z3) (f(xl),fexl+x2)-f(xl),f(xO)-f(xl+x2» 

zO -- f(xO) 

< .~. 
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The mixed calculus of probabil ity, eventual ity and 

posstbtl ity thus appears the same as any of the pure cases 

with possibility represented as a 3-vector and addition and 

multipl ication defIned as above. The new properties of 

Interest show up when we consider functionals of distributions 

since the eventualistic and possibilistic components of, for 

example, the entropy of a distribution have no obvious 

interpretation. It Is meaningful however to consider the 

minimum and maximum of the norm of a functional for all 

assignments of the second and third components of the vectors 

in a distribution which preserve the semantics, i.e. are such 

that the overall norm of the distribution is constant. Thts 

corresponds to treating the eventual and possible components 

as being a residual probabil istic distribution to be assigned 

for best possible, or worst possible, effect. Thus such 

functionals as the entropy of a possibilistic dtstri~ution do. 

not have a unique value but rather a range of v~lues defined 

by tts maximum and minimum. 

6 CONCLUSIONS 

The concepts advanced In this paper may be seen as a 

. straightforward extension of probabil ity theory to cope with 

richer forms of uncertain behaviour found in practical 

systems. The fact that the pure cases of possibilistic and 

eventuallsttc behaviour may be treated computatJonally wlth·a 

normal probability logic whose semantic interpretation is 

weakened is itself a formal justtftcatton tn engineering 

studies for treating all types of uncertainty as probabllisttc 

but tak1ng no notIce of some of the computed results. Thts is 



not effective however in the mixed case where a system 

exhibits more than one type 0' non-deterministic behaviour, 

and the simple extension given to a vector of possibility with 

appropriate rules of addition and multiplication Is necessary 

to cope with th I s case. I t has the advantage that the 

technIques developed for the analysts of probabtl Istic 

automata may be carried over directly to the mixed case. 
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