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Analogical reasoning is one of the most important 
techniques used by people, yet it has proved very 
difficult to represent the process in formal terms 
amenable to operational implementation in computer 
algorithms. In this paper we analyse the concept 
of an analogy and its application to reasoning 
processes. An analogy is seen to be a partial 
correspondence between two sYstems. In 
representing it in map-theoretic terms a third 
system naturally arises which may be injected into 
each of the others to represent the part lal 
correspondence. This system may be called an 
'analogy' system capturing the particular analogy 
under consideration. We then go on to consider 
multiple analogies between two systems and their 
inter-relationships and show that these form a 
semi-lattice with a truth-system as the minimal 
element. Because analogies are between systems 
with structure they have to capture the 
transformations that define the structure rather 
than just the elements of the systems. Hence the 
systems themselves are most simply represented as 
categories and the mappings as faithful fun(".tors 
between them. In this paper we give not only the 
formal theory but a number of systemic and 
programming examples to illustrate our analysis. 

INTRODUCT ION 

Analogical reasoning is a po~rful technique 
for problem solving in human thinking yet 
considered "weilk" logica lly because it is 
non-deductive. There have been attempts to define 
its rule in science. notably the studies of Hesse 
(1970) and Leatherdale (1974). However. in the 
study of formal reasoning using logic and 
mathematics it has been i~ one sense deliberately 
expurgated from the formal structure even though 
it plays a major part in the creative thought that 
lies behind that structure; yet in another sense 
analogy is the very essence of logical and 
mathematic;!l formal iSIll. 

This is a multi-faceted paradox which thruws 
light on the nature of analogical r~asoni~g 

itself. From Plato thrllugh Aristotle to Aquinas 
analogical reasoning has been a major topic of 
enquiry at the centre of attempts by philosophers 
to comprehend and generalize the processes of 
inference in human reasoning (Burrell 1973). In 
the modern philosophy of science it has been 
neglected or treated as a peculiar tool to be used 
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as scaffolding but carefully dismantled and all 
vestiges removed when the edifice created is made 
public. 

This relooval of analogic:al reasoning from the 
legitimation of inference may be seen as a major 
distinguishiag feature in the rise of positivism. 
At the end of the last century Frege in his 
Grundlagen der Arithmetik refined mathematical 
reasoning into a purely logical axiomatic system. 
Husserl was initially critical of Frege's work but 
later accepted the framework of it in developing 
his own formal approach in his Philosophie der 
Arithrnetik which- led to his system of 
phenomenology. Between them Frege with formal 
logic and Husserl with formal phenomenology 
provided the ontological and epistemol~ic:al 
foundations for modern positivist science and its 
formalization in such works as Carnap's Der 
Logische Aufbau der Welt. --

The common factor underlying the positivist 
movement has been anti-psychologism in removing 
all aspects of science peculiar to human reasoning 
as processing in the hu~an mind. This is not to 
say that acts of cre<ltive thought. individual 
genius and intuition, and so on, are denied, but 
that it this the procedures thereafter for 
explicating and legitimating 1n a public. 
verifiable form the results of these acts and so 
on which have become to be regarded as the proper 
subject for the philosophy of science. In 
retrospect one suspects that this emphasis, 
although presented as fundamental, is instead just 
technological. Tools existed to fonlalize the 
ontology of science based on mathematics and to 
forma Hze the e pistemol'=>gy of the processes of 
confirmation and falsification. Tools did not 
exist until recently with which one could begin to 
formalize the processes of innovation and 
creation. Thus it is timely to re-appraise the 
foundations of scien~e and examine the possibility 
of formalizing some of the processes which come 
before the more routine activities already 
stud ied. 

We noted above that there was a paradox in 
the eradication of the notion of reasoning by 
analogy in the axiomatic approach to scien~e. This 
stems from the fact that by basing science on 
mathematics and logic: the use of an~llogy became 
implicit in all aspects of scientific activity. 
These ultimate formal abstractions have only a 
remote relation "ith the ac:tual world of the 
sc:ientist and he is taught to use analogical 



reasoning to map every 'real-world' experlen~e 
into an analogi~al experien~e In the 'world' of 
mathematics. In creating the analogy the scientist 
is allowed to neglect features of the real world: 

"The expHcatulll is to be similar to the 
explicandum in such a way that, in most ~ases in 
which the explicandum has so far been used, the 
explicatum can be used; however, close 
similarity is not required, and considerable 
differences are perimtted." (Carnap 1962 p.7) 

Thus the scientist is mapping part of the real 
world "explicandum" into part of the formal 
"explicatum" system. It is this type of 
partial-partial mapping which we shall formally 
characteri~e in this paper as an analosr. 

When one criticizes the positivist movement 
in science one must not discount its actual 
achievements. The progress in science and 
technology of the last 100 years owes much to the 
drive to present the subject matter in formal, 
simple and universal terms. In doing this we have 
generated tools for analysis rather than design. 
We cannot show where the explieata, the theories, 
the laws, and so on, come from. We can show only 
what to do with them when they are available: how 
to evaluate them; how to aanipulate them; and how 
to use them. We rely on the unformalized 
activities of people to generate the new ideas 
that will then be subje~t to the formal scientific 
process. 

This lack of formal foundations for major 
areas of scientific activity has mattered little 
in the past because these areas were peculiarly 
human and could be left outside the technological 
infrastructure of science. Now that the computer 
has become a tool operating at the level of man's 
mind, an engine for the e~ploration of Popper's 
(1968) l~odd :3 of knowledge (Gaines 1979), it has 
become import;nt to understand and formalize as 
wide a domain as possible of the scientific 
process so that man and machine may tackle it 1n a 
symbiotic relationship. 

We have noted elsewhere (Shaw & Gaines 1979) 
that the interactive computer can provide means 
for: 

(1) Modelling of data within a given framework 
(confirmation); 

(l) Indication of search strategy for data most 
likely to cause a change of model 
(falsification); 

(3) Indication of the effect of actions on the 
state of the model (simulation); 

(4) Indication of actions most likely to lead to 
desired model or state of model (decision); 

(5) Indication of presuppositions underlying the 
above four proeesses (paradigm); 
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and have emphasized the importance of adding to 
this list a further process: 

(6) Indication of a change in presuppositions that 
would i,nprove applications (1) through (5) 
(paradigm shift). 

The first four progralns are straightforward 
applications of computer technology and the fifth 
is covered by programs which elicit construct 
structures (Shaw 1980). Recently we have described 
computer programs (Shaw & Gaines 1980) that act as 
truly dialectical partn'ers in a conversational 
process of critical discussion that encourages the 
paradigm shifts of (6). Currently such programs 
embody a simple model of analogical processes and 
this paper represents a further step in the 
development of more refined models. 

WHAT IS AN ANALOGY? 

The following formulation of analogy derives 
from a an attempt to put software engineering on a 
sound footing by formalizing concepts of virtual 
~~~=7 and structured programming (Gaines 1975). 

not 6f analogy used in that work was first 
put forward In another paper which gave a for~al 
model for what we mean by analos computing (Gaines 
1968). In this paper we have extracted the theory 
from the application to computing in order to 
present it as a basis for general-purpose tools. 

What is an analogy? When we speak of there 
being one between two situations, things, systems, 
and so on, we mean that there is some 
correspondence between them, some similarity. This 
similarity is not an identity, that the two are 
exactly alike, because we would then say they are 
the same rather than similar (note that the term 
Hthe same" is often used colloquially to mean 
analogous - identities do not exist out in the 
real 'NOrld). Nel!her is the similarity usually 
such that one sltu~tlon subsumes another so that 
we can say "forgetting some aspects of it. this 
situation Is the same as the other", In general 
for an analogy to be established we have to forget 
aspects of both of the analogous situations in 
order to see the similarity that relnains. Thus, as 
we noted previously, the formal basis for 
analysing analogy is some theory of partial 
correspondences. 

Before establishing a formal theory of 
analogy it .is worth examining some concrete 
examples. If we just have two arbi trary sets, )[ 
and Y. then any partial correspondence between 
non-overlapping sub-sets of them might be thought 
of as an analogy as illustrated in Figure 1. There 
are two obvious difficulties with such an 
extremely weak concept of analogy. Firstly. that 
we are usually eoncerned with the preservation of 
structure In examining analogies. Figure 2 shows 
how an analogy might arise between two automata 
which puts the states into partial correspondence 
such that regardless of the input sequence when 
one automata is in a particular state the other 
one is in a corresponding state. This analogy 
preserves the connectivity structure of the 
automata under inputs In some way. 



Figure I An analogy between sets is a correspondence between non-overlapping sub-sets 
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Figure 2 A structure-prese~ving analogy between automata 

Figure 3 shows a similar phenomenon fo~ the 
analysis of an analogy between two BASIC programs, 
both of which extract the ~oots of a quadratic 
equation. The input and output behaviours of the 
programs are ve~y similar but what goes on inside 
is qui te different for the two. The inte ~med ia te 
va~iables used and calculations made need have no 
detailed correspondence. In fact in this example 
both calculations do reach a similar step so there 
is one point of internal correspondence as noted 
in Figure 3. It is also worth point ins out in 
~elation to this example that there is an implied 
correpondence not shown between the arithmetic 
systems in use by both p~og~ams. 
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The second problem with the weak form of 
analogy depicted in Figure 1 is that, if we place 
no further eonstraints on the notion of analogy, 
then the partial correspondences can be trivial or 
meaningless. How can we express what is meant by 
"meaningful". "significant". "relevant". and so 
on., analogies. Not only do we expect to preserve 
structure under an analogy but we also expect to 
that particular st~ucture which for us is 
essential to the situations between which an 
analogy is being discussed. We will develop a 
theory of analogy that takes into account both 
these requirements. 



1 INPUT A. B, C 1 INPUT A, B. C 
2 LET X=B*B-4*A*C _ 2 LET Y=B*B 
3 IF X<Q THEN 10 - 3 LET V2V-4*A*C 
4 LET X=SQR(X) 4 LET XI-SQR(Y)/(2*A) 
5 PRINT (X+B)/(2*A),(X-B)/(2*A) ~ 5 LET X2--B!(2*A) 

10 PRINT .. NO REAL ROOTS" --- 6 PRINT X2+X 1, X2-XI 

Figure 3 An analogy between BASIC programs for roots of quadratic 

Figure 4 Represent ing the correspondence by mappings introduces an "anal.:>gy set" 

It is convenient to continue with our 
set-theoretic example of Figure 1 initially and 
develop the argument further in relation to this. 
The correspondence shown in this figure is not a 
mapping but it may be represented by a pair of 
mappings, f and g. from an additional set, A, as 
shown in Figure 4. The additional set is 
introduced solely to carry the mappings and we 
call it the analogy set. This construction 
generates a definite entity which somehow the 
analogy and this seems to correspond to the way in 
which we thing of an analogy as something which 
exists in its own right. 
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Now consider a further analogy which extends 
that given by A: Figure 5 shows a se~ond analogy 
set, A', preserving the analogy of A, but 
extending it to other sub-sets in X and Y. The 
preservation is such that there exists a mapping, 
a. from A into A' which factors the maps, f and g, 
from A into X and Y through the maps, ft and g', 
from A' into X and Y, respectively. That is we 
have a commutative diagram such that: 

f '" f'a, g = g' a (1) 



Figure 5 Extension of analogy gives a commutative diagram (f=f'a,g=g'a) 

Thus the analogy represented by the maps from A' 
is an extension of that represented by the maps 
from A in that it preserves all the 
correspondences of A and adds additional ones. 
Clearly there could be a number of different 
extensions of the analogy A which might, or might 
not, themselves be extensions of one another. ~e 
shall note ia the more general formulation, and it 
is obvious in the set-theoretic case, that the 
extensions to an analogy form a semi-lattice 
ordered by the factor rnappings of which the 
original analogy is the supremum. 

If we now return to our discussion of the 
"relevance" or "signifi<:ance" of an analogy then 
we shall assume that this is always accounted for 
in terms of a element in the semi-lattice of 
analogies which forms a supremurn for all those 
analogies we are prepared to consider relevant or 
significant. This element gives a correspondence 
between the two sets which preserves the minimal 
amount of structure in both of them that we 
require for a non-trivial analogy: in a previous 
paper (Gaines 1975) it was termed a "truth" 
element for the analogy and corresponds to what we 
regard as the essential truth underlying the 
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correspondence - for example, in the analogy 
between a scientific theory and the real world. 

The truth-automaton for the example of Figure 
Z is shown in Figure 6: it is a simple three-state 
automaton that prserves the structure represented 
by the analogy. The truth-program for the example 
of Figure 3 is shown 1'n Figure 7: it is a simple 
program that preserves the essential property of 
the two programs in extracting the roots of the 
quadratic. NOte that it does not preserve the full 
analogy shown in Figure 3 since the intermediate 
correspondence is inessential. In a previous paper 
(Gaines 1968) it is argued that it is the 
existence of sueh intermediate correspondences 
that gives us the abstract notion of an analog 
computer. The advantage of such computers is that 
when we want to modify the computation we find it 
easier to do so because of the rich correspondence 
to the problem being solved - there is more than 
just a behavioral analogy. 

In the next section we generalize the theory 
of analogy developed above to include arbitrary 
structural correspondences. 



Figure I) -Truth-automaton" for example of Figure 2 

1 INPUT A, B, C 
2 PRINT -(B+SQR(B*B-4*A*C))!(2*A),-(B-SQR(B*B-4*A*C)!(Z*A) 

Figure 7 "Truth-program" for example of Figure 3 

A CATEGORY-THEORETIC FORMULATION OF ANALOGY 

To take into account the structure-preserving 
properties required of an analogy we have to go 
beyond our set-theoretic example. If we had 
attempted to formulate the concept of an analogy 
relation a decade ago we would have been forced to 
frame it in terms of particular algebraic or 
topological structures. There would be a theory of 
analogies between sets, between automata. between 
programs, between topologies, and so on. A 
category-theoretic framework far a theory of 
analogy avoids these problems. A category can be 
highly specifiC, e.g. a single discrete set, or 
highly general. e.g. a class of algebras, and it 
can express constraints upon both objects and 
mappings. 

How may we compare two categories for an 
analogy between them? The notion of an 
isomorphism, or any kind of morphtsm, between the 
categories is not useful because in general we 
expect each to have a structure ~ reflected in 
the other. As we have already noted. an analogy is 
a partial correspondence. It is a simple matter to 
extend the set-constructions we have already 
developed and introduce a "correspondence" 
category that maps into each of the categories 
between which we are analysing an analogy. To 
ensure that the mappings from the correspondence 
category are non-trivial we require them to 
preserve the structure 1n each category, that is 
to preserve commutative diagrams in each category. 
Such a structure-preserving mapping is termed a 
Qfalthful" functor between the categories (MacLane 
1971) • 

The weakness that we noted in relation to 
set-theoretic correspondences still applies to the 
more general case and we need to introduce the 
notion of a "truth" element again in order to 
ensure that a correspondence is meaningful. A 
"truth" category for an analogy l113y be thought of 
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as a category with the minimal structure 
sufficient to express the esasnee of what we want 
to preserve in the categories between which there 
is an analogy. The equivalent of Figure 5 is now 
the commutative diagram of Figure 8 in which the 
mappings are now faithful functors but the 
equations in (1) above still hold. Note that we 
have termed one of the categories between which 
the analogy bolds a model. This is a deliberately 
suggestive terminology since we feel, as discussed 
in section 1. that models are usually not just 
abstractions from the modelled system but also 
have characteristics of their own which do not 
derive from the modelled system. Figure 8 gives a 
more accurate representation of the modelling 
process than does a diagram in which a model is 
shown mapping directly into the modelled system, 
or viee versa. 

There can clearly be many analogy categories 
for a given category/truth/model triple (CTM). The 
direction and faithfulness of the funetors ensures 
that the analogy categories are all "smaller" than 
both the category and its model. Figure 9 shows a 
set of four analogies each of which has 
necessarily a triple of arrows to the CTM triple. 
However. there may also be faithful functors 
between the analogies themselves and these define 
an important relation on the set of possible 
analogies. Because the existence of faithful 
functers is reflexive, asymmetric and transitive 
the relation induced by them is a partial order. 
Because least upper bounds, if they exist are 
unique and greatest lower bounds always exist 
(the t;uth category is a universal lower bound) 
and are unique. the order corresponds to that of a 
lower semi-lattice. 

This semi-lattice structure is very important 
in representing various other features of our 
usual analyses of analogy. It gives a rigorous 
basis for the concept that one structure is more 
analogous to another than a third. It ensures that 



Re:r;resentlng the 
8?senco of the 
category modelled 
e.g. overall. input/ 
output transform 

ANALOGY 
CATEGORY 

reuresenting 
the analogy 
relation 
between system 
and model 

Figure 8 Category-theoretic representation of general analogy by faithful functors 

Figure 9 Semi-lattiee of analogies (~necessary, --~ possible) 
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two analogies between the same systems cannot 
compared dir~ctly then there ia a unique common 

analogy (tbeir gr~atest lower bound) that 
expresses their maximum mutual ~ontent. The 
semi-lattice ordering of analogies seems to 
correspond to what we mean by one analogy being 
"more comprehensive", "closer", or "more 
detailed", than another. 

The role of the truth category can be seen as 
that of a constraint ensuring the relevance of an 
analogy. The non-existence of a maximal element 
making the semi-lattice into a lattice corresponds 
to the possibility of forming different and 
incomparable analogies between two systems. Two 
analogies being incomparable corresponds to people 
having different "points of view": you may form an 
analogy which helps you and I may form a very 
different one one that helps me, but providing 
they are both adequate for the task in hand (have 
the truth, at least, in common) the theory 
presented here does not judge between them. 

It is important to note that, given a CTM 
triple, it is possible to compute the complete 
semi-lattice of possible analogies between them. 
Clearly it is also feasible to select out only the 
maximal elements to provide the set of the 
largest, incomparable analogies. 

CONCLUS IONS 

We have shown how the notion of an analogy 
between two systems can be formalized as a eartial 
correseondence between two categories. We have 
shown that this partial ~orr2spondence is 
naturallY represented by the introdlic:tion of an 
analogy category from whi~h their is a faLthful 
functor into each of the corresponding categories. 
We have introduced the notion of a truth-category 
as corresponding to what we mean by a relevant 
analogy. We have shown how all the possible 
analogies between two systems form a semi-lattice 
with the truth-category as the minimal element and 
with the order relation corresponding to the 
comprehensiveness of the analogy. In conclusion we 
would claim that the formal approach adopted here 
is adequate to provide complete foundations for 
the analysis of analogy. 
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