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Abstract
Experts may be modeled as managing the inductive dynamics of knowledge acquisition in the
knowledge processes of society. Who becomes an expert may be modeled as a random process
under the influence of strong positive feedback loops in the social mechanisms giving access to
knowledge. These models have implications for the design of expert systems.

1 The Nature of Expertise
Expert systems add a new element to knowledge acquisition and transfer processes in human
society. However, the nature and formation of expertise is not well understood. In taking part of
the social process of knowledge transfer and embedding it in technology, it is desirable to have a
more overt understanding of what an expert is and does. Use of the technology also raises
questions about the possibly changing role of experts—what will experts do once their expertise
is captured—are they accountable for the advice given by expert systems based on their
expertise?

Hawkins (1983) has abstracted from industrial experience in developing mineral exploration
expert systems and proposed a model of human expertise relevant to expert systems. His model
is summarized in figure 1:
• The expert first elicits data about the problem from the client;
• He or she develops a minimal model that accounts for the data provided;
• He or she generates advice based on the model and feeds this back to the client;
• The client may accept the advice, or query it and, possibly, the model;
• The queries lead to further data elicitation, and repeat of the modeling/advice/query cycle.

Thus, in Hawkins’ model, the client plays an active role in further developing the model by
providing more data until he or she is satisfied with the model and consequent advice. Expert
advice giving and taking is part of a cycle of negotiation around a process of model formation.

This model of the expert-client interaction as the negotiation of a mutually acceptable model may
be given formal foundations in mathematical modeling theory. Figure 2 shows a general
hierarchical modeling process (Gaines 1987) based on Klir’s (1985) analysis of model formation:
• At level one, constructs are those distinctions that the particular modeling system makes, a

language for describing of the world;
• At level two, data are descriptions of actual case histories in terms of the constructs, an

account of experiences of the world;
• At level three, hypotheses are the means of regenerating particular case histories from

generalized accounts, rationalizations of the world (often called models);
• At level four, analogies are similarities between differently generated generalized accounts,

correspondences between models;
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• At level five, abstractions are accounts of a wide range of models, underlying foundations of
analogies;

• At level six, principles are systemic foundations for abstraction, accounts of abstractions.
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Rasmussen (1985) has noted the importance, and analyzed the roles, of such hierarchical
knowledge representation in individual and organizational decision making.

Modeling may be evaluated by the degree to which a level accounts for the information flowing
through it. This may be measured as the surprise at an actual event in relation to one predicted,
and the expected surprise is a form of entropy (Gaines 1977). The formal theory of modeling is
one in which selections are made at each level down the hierarchy to minimize the rate at which
surprise is passing up the hierarchy. The criteria for selection independent of the data are
generally thought of as being ones of simplicity/complexity: of two models which fit the data
equally well choose the simplest. The simplicity/complexity ordering is arbitrary and in its most
general form is just one of preference. Hence the general modeling schema is one in which
surprise flows up the hierarchy and preference flows down.

It should be noted that the modeling is an active process also—constructs are not just static
partitions of experience. They may be operations: actions in psychological terms; processes in
computational terms. Whether a system finds a distinction in the world, imposes it passively as a
view of the world, or imposes it actively as a change in the world, is irrelevant to the basic
modeling theory. The model of figure 2 encompasses both the expert’s model-formation and
model-application processes. There is neurological and behavioral evidence of the existence
within the brain of the two channels of communication shown in figure 2 (Tucker & Williamson
1984). The arousal system passes surprise up to the cortex from the limbic region as unexpected
events occur. The activation system passes preferences down from the cortex to the motor
regions. The contextual interpretation of surprise according to its implications also provides a
model for a wide range of human emotions (McCoy 1981, Gaines & Shaw 1984).

Hawkins’ studies exemplify the roles of each of these levels in expert behavior and in the
negotiation between expert and seeker of advice. In particular, he illustrates the significance of
shared constructs between expert and user, and the potential for ‘data’ from falsely constructed
events to invalidate expertise. The basic modeling theory, however, does not account for these
types of social interaction, the relation between experts and users, the assumptions that an expert
makes about the problem situation, the relation between experts and society. Indeed, it does not
account for the concept of an ‘expert’ except as a particularly well-validated modeling system,
leaving open the question as to how one system becomes better validated than another.

The following section extends the basic modeling theory to encompass social processes and the
formation of expertise.

2 Social Processes in the Formation of Expertise
The weakness of the analysis of the previous section is that it accounts for only a minor part of
the knowledge acquisition processes of an individual. Most of our knowledge does not come
from forming models of events in the world, but rather from the social transfer of others’
knowledge by a variety of cultural processes, some formalized in education but many very
informal. However, the account can be extended to encompass such cultural knowledge
acquisition if one notes that human civilization as a whole is representable as a general modeling
system having no sources of knowledge other than its combined, cumulative experience of the
world (Gaines 1987).
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The modeling schema of figure 2 applies as much to groups of people, companies and societies
as it does to the roles of a person. The modeling processes of an individual may be viewed as a
cross-section of those of the civilization of which they are part. The modeling processes of
society may be viewed as carried out by a distributed system of sub-processes in individuals.
Cultural processes of knowledge transfer are then just various modes of communication between
such sub-processes. The distributed system analogy nicely accounts for a variety of
psychological and social phenomena: one person may assume many psychological roles (process
switching), whereas a group of people working together may act as a single modeling entity and
hence behave as one process (distributed processing).

These concepts may be formalized by considering the inductive inference process underlying
knowledge acquisition. Deduction guarantees to take us from valid data to valid inferences, but
the inferences are thereby part of the data—no new knowledge is generated. Induction takes us
from valid data to models of that data that go beyond it—by predicting data we have not yet
observed, and by giving explanations of the data in terms of concepts that are unobservable.
Induction generates new knowledge but, as Hume (1739) pointed out over 200 years ago, the
process is not deductively valid and it is a circular argument to claim that it is inductively valid.
Goodman (1973) proposed that we accept the circularity but note that it involves a dynamic
equilibrium between data and inference rules:

“A rule is amended if it yields an inference we are unwilling to accept; an inference is
rejected if it violates a rule we are unwilling to amend.”

Rawls (1971) in his theory of formal justice as induction from informal moral behavior terms
this a reflective equilibrium.

Stich and Nisbett (1984) noted flaws in Goodman’s argument in that individuals do not
necessarily behave rationally in their own behavior relative to known good practice. They
repaired them by proposing that the equilibrium is social not individual:

“a rule of inference is justified if it captures the reflective practice not of the person using
it but of the appropriate experts in our society.”

This gives an operational definition of the role of experts within an overall knowledge
acquisition system as referential sub-systems managing a domain of the knowledge acquisition
process. It also leads to an concept of the role of expert systems in society, as making the
referential process more overt and widely available. It is noteworthy that professional
development books concerned with good practice emphasize the importance of balancing
experts’ authoritarian roles as referential sub-systems with their entrepreneurial roles as
knowledge acquirers (Schön 1983).

Thus the pragmatic model of expertise developed by Hawkins can be brought into the formal
framework of modeling theory by taking society to be a distributed modeling system in which
experts are those with responsibility for managing the inductive process in particular domains.
However, even this extension does not specifically account for the formation of expertise—how
does a particular individual become an expert. The following section shows that positive
feedback processes in the management of the various levels of knowledge transmission driven by
random processes in society is adequate to account for expertise formation.
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3 Expertise Formation by Positive Feedback Processes
An expert in Stich and Nisbett’s account is a modeling system that has particular authority to
decide on changes when events violate rules—in terms of figure 2, are new constructs needed,
should the data be rejected, should the hypothesis be changed, and so on. However, this authority
is a social construct, not usually one of right in present society, and the ascription of such
authority to an individual is part of the larger modeling system’s processes in determining which
of its sub-processes is effective. Now, to become effective in modeling is, from figure 2,
dependent on many factors: having access to knowledge at the upper levels such as principles,
abstractions, analogies and classes of hypothesis; having access to knowledge at the lower level
such as adequate construct systems and relevant data from case histories. Such access is itself a
social resource, not generally available to all, and there are social mechanisms for allocating such
access to individuals. It is the interaction between the criteria for access and the acquisition of
knowledge that leads to the formation of expertise.

Sociologists have noted the very strong positive feedback processes in the dynamics of the
scientific community (Hagstrom 1965). Merton (1973) coined the term the “Matthew effect” for
those features of the reward system in research that were biased towards allocating greater credit
for the same discovery to those with an already established reputation. The qualitative effect of
such positive feedback processes is to amplify random differences within a population, creating
strong distinctions which have no other basis than the feedback process itself. That is, even if all
scientists were created equal in their capabilities, some would become experts relative to others
because random differences in early performance generated credit that affected resource
allocation and gave them greater opportunities to acquire knowledge.

In many areas of expertise where expert systems are expected to play a major role these positive
feedback processes are exceptionally strong. In medicine, for example, the key learning resource
is access to medical problems, and the ‘owner’ of such a problem has a keen personal interest in
only allowing someone of very good reputation to handle it. The system, including
considerations of legal liability, strongly funnels problems to those who are regarded as experts.
It is, however, precisely these problems from which new knowledge is generated. Hence the data
at level two in Figure 2 is made available primarily to those with already established reputations
for having capabilities at level three and above to deal with it. Similar considerations apply to the
award of scholarships, invitations to scientific congresses, and so on (Blume 1974). They also
apply not only to individuals but also to social units such as a company subject to government
procurement procedures that are heavily biassed to contractors with ‘prior experience’ and with
whom the government agency has ‘prior experience.’

It is obvious and expected that there should be many processes in society that seek out expertise
to use or develop it. What is less obvious, however, is that the positive feedback involved in
these processes is completely adequate in its own right to create ‘experts’ within a pool of
initially undifferentiated people.

Simple simulation experiments of a competetive environment for two experts can illustrate the
strength of these phenomena. For example, let the rules of a basic phenomenological simulation
each problem requires certain knowledge; if the expert does not have the knowledge necessary it
guesses with a probability of success, learning if it succeeds; the community chooses the expert
for a problem with equal probability initially, gradually biasing the choice according to success
or failure; there is no communication of knowledge between experts. Figure 3 plots: the
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probability that one expert will be always preferred and shows that this rapidly approaches
1.0—a best expert is determined; the expected knowledge of the better expert and that of the
rival—one goes to 100% rapidly and the other is asymptotic to about 36%—there is objective
evidence of the superior ability of the chosen expert. Which of the two individuals becomes the
‘best expert’ is, of course, completely chance.
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Figure 3 Simulation of the effects of positive feedback on the formation of expertise

The simulation shown is not Monte Carlo but based on the calculation of the exact probability
distributions involved. It can easily be adjusted to take into account differences between the
experts: that one starts with greater knowledge; that one learns faster; that one is favored initially
(the prima facie credibility or ‘well-dressed consultant’ phenomenon). Similar simulations have
been made of different positive feedback mechanisms; for example, if both experts are given the
same problem but the problem difficulty is adjusted upwards if either gets it right—the situation
of keeping up in the scientific ‘rat race.’ Effects have been introduced of the loss of knowledge
through inadequate opportunities for its application, the growth of scientific knowledge so that
there is always more to be acquired, and differential access to cultural knowledge transfer. All
the simulations bear out the expected qualitative result, that a variety of different positive
feedback mechanisms in society are adequate to account for differential expertise in a sample
with initially equal knowledge and capabilities.

These results are not intended to suggest that individual differences are insignificant, or be a
basis for egalitarian ethics. They do demonstrate, however, that the process of expertise
formation is a natural systemic phenomenon in a learning society. It is functional because it
distributes the processors available to different tasks through global mechanisms with no
localized control. The random mechanism is efficient because it does not matter to the overall
system which processors are allocated to particular tasks, and it will tend to pick out individual
differences in capabilities if they exist. It puts experts into the role of traders who must offer their
services to solve problems in order to gain access to those problems in order to increase their
knowledge.

In practice, the professional and scientific communities also have strong mechanisms set up to
reduce the effects of positive feedback in exaggerating differences, such as the ethical pressure to
disseminate knowledge as widely as possible, and mechanisms for doing this through
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publications and seminars (Whitley 1984). However, much knowledge underlying skilled
performance cannot be shared in this way (Nisbett & Wilson 1977) and the positive feedback
mechanisms will always exert a strong effect.

4 Some Practical Consequences
The popular stereotype of an expert is a fount of knowledge in some domain. If that fount can be
captured in an expert system then the role of the person who previously embodied is called into
account. Those outside the expert systems industry often ask the question, “why should experts
put themselves out of their jobs by allowing their knowledge to be transferred to an expert
system.” The reply is usually that experts complain about the number of phone calls they have to
answer to give advice on trivial problems. They would prefer to have the time to read journals,
attend professional meetings, and think more about what they are doing. The model of expertise
put forward in this paper gives theoretical foundations for this informal empirical result. The
expert is not a static fount of knowledge but a dynamic process for continuously maintaining that
fount by managing the acquisition of new knowledge.

The model of the expert’s relation to those seeking advice as one of trading it for access to
problem-solving, and hence learning, opportunities is also consistent with the actual behavior
patterns of experts in relation to expert systems. Divesting the unprofitable trading to focus on
the profitable is a sensible strategy, that is, passing to an expert system those standard problems
where little learning opportunity is expected. However, the uncertainties about the classification
of any problem situation suggest there may be dangers in this approach which could be avoided
by adequate design and application of expert systems. The advice giving system should contain
rules which indicate problem-solving situations that are beyond the boundaries of its capabilities
and refer these to a human expert (in the same way that human experts refer difficult problems to
others). It should log actual case histories of advice giving for later review by human experts so
that these rules can be validated. It should make provision for feedback as to the results of advice
so that learning opportunities are not lost.

The continuity between the modeling role adopted by the expert in Hawkin’s model of expert-
client negotiation, and the expert’s wider modeling role in managing Goodman’s reflective
equilibrium, suggests that the performance and knowledge acquisition phases of expert systems
should not be separated as they are currently. It would be better to think in terms of knowledge
support systems that integrate knowledge acquisition and advisory roles (Gaines & Shaw 1987).
In particular, the model of system-user relations as mutual negotiation rather than authoritarian
advice giving is a good model for expert system.

All these considerations are also relevant to questions about the accountability of expert, expert
system, and user for the advice. However, that is a side-effect of the social pressures on the
inductive process—accountability, and the resultant rewards and punishments, are cultural
mechanisms to encourage learning and the appropriate use of expertise. Well designed expert
systems will make provision for the clear presentation of the quality of advice, reference to
human experts, audit trails, logging, and case history review, because these are necessary to an
effective technology—the possible legal consequences of not doing this are just a reminder of
what is an effective technology in the domain of knowledge acquisition and transfer.

There are implications for the detailed technical design of expert systems also. As an example
consider the form of rule often induced from case data which states that if the value of an
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attribute is unknown it is reasonable to fill in it with a default value based on the value of other
attributes; for example, if the induction algorithm relates the value of attribute C to that of
attribute A:

If (A Equal B) And (C Equal Unknown) Then (Set C Equal D)

This rule uses known data (facts) and induced relations (hypotheses) to make suppositions
(expected consequences). It is also reasonable, but unusual, to add a meta-rule based on the same
relation:

If (A Equal B) And (C Not-Equal D) Then (Set Surprise Equal True)

This meta-rule uses known data and induced relations to highlight anomalies (unexpected facts).
The new attribute ‘Surprise’ picks up that the value of C is anomalous compared with previous
data used in inductive inference. It can be used to trigger query or alarm reports, and the normal
explanation mechanism based on back-tracking will trace the surprise to its source. It can be used
to indicate that the problem under consideration is unusual and should be referred to a human
expert or, at least, be recorded and flagged of interest.

In this example, the surprise variable corresponds exactly to the upward flow of modeling
information in figure 2, and the conflict between the rule and the data is exactly the reflective
equilibrium managed by experts discussed in the second section. It is was noted in the first
section that human emotion can be modeled as contextual interpretation of surprise, and it is
possible to regard meta-rules based on surprise as incorporating some of the attention-directing
aspects of human emotion. The meta-attributes generated through anomaly-detection rules may
be used as a basis for machine learning, as Lenat (Davis & Lenat 1982) has done in AM (terming
surprise ‘interesting’). However, they are also a basis for effective integration between expert
and expert system, with the human expert continuing to have the role of managing the inductive
process.

5 Conclusions
The role of the expert in the knowledge processes of society has been analyzed and shown to be
that of managing the inductive dynamics of knowledge acquisition. Experts trade the skills based
on their knowledge for access to problems providing them with new material for the inductive
process. The formation of expertise is functional in general because it leads to division of labor
in the management of knowledge acquisition. The development of an individual expert is a
random process brought about by strong positive feedback loops in the social process; for
example, that a proto-expert with superior performance is brought more problems and hence has
a greater opportunity to learn and improve that performance. A diversity of such positive
feedback processes operate in the professions and sciences with little relation between them
except their overall effect in promoting the formation of expertise. Sociological evidence for the
existence of these effects has been discussed, and simulation studies illustrating the quantitative
phenomena have been described.

This model of the nature of expertise provides foundations for knowledge acquisition and
transfer processes in expert systems and associated knowledge acquisition tools. It places expert
systems technology within a social context and provides a basis on which social and legal
aspects of their use and its implications may be analyzed. It has implications for the design and
application of expert systems.
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