UNIVERSITY OF CAMBRIDGE
Faculty - Biology B

BDepartment of Experimental Psychology

THE HUMAN ADAPTIVE CCNTROLLER

A thesis presented for the Degree of
Doctor of Philosophy by

Brian Ronald Gaines

| Trinity College

July 1971



CONTENTS

Section 0.1
Section 0.2
Section 0.3
Section 0.4

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Section

Appendix
Appendix
Appendix
Appendix
Appendix

Q e B NS IR CA R VI

(S R OV

THE HUMAN ADAPTIVE CONTROLLER

Summary

Acknowledgements
Section Contents
List of Figures

Introduction

Axiomatic Foundations of Learning and Training
Training as a Control Problem

A Feedback Trainer for a Tracking Skill
Experimental Evaluation of Feedback Training .
Experiments with Learning lMachines

Summary, Conclusions and Recommendations

References

Adaptive and Learning Controllers
The Algebraic Theory of Semigroups
From Behaviour to Structure

The Human Controller

Experimental Results



The scops of thi tudy is human learniy viour,
particularliy in percep,JdTmAuba ckills, and igbles
vileh influvence it, including the ngture of thﬁ environmenty
in which lesyning tzkes place and {the eifect of verbal
instructions. The study vanges from a general theory of

edaptive behaviour based on the aTOva°¢c theory of semigrours,
to specific experiments on the optimum control of leaxnluo
behaviour in & perceptual-mcter skill, and inecludes comparative

studiles of human and machine learning.

The first objective of the study has heen to develop a
rorous and systewatic account of the relations between
aviour, SiTlCL””C and purpose in arbitrary systems
including men and machines. The second objective has been to
use this account to develey an integrated aprroach to the
problien of training, in which o knﬂwledgu of the pﬂt+ﬂrng of
behaviour, +the &Lrvc ture and the desgired poals
may bhe usva to formulate an OUb;ﬂ'l training sty
final cbjective has been to demonsirate the appl
the thecry 4o a reslistic situation, and compare
theoretical predictions with crperimental results.

In the theoreticali studies a taxonony of adapt‘va behavicw
is established which enables operdilonaT and purely behavioural
sfinitions to be provided of terms such as 'adap?ive‘ and

aap The taxoncny is given a mauneuatloal 1orm04a lon

alg Dvalc hcory Of se 4 sroups by deriving am

. and obpprvﬁb 2 a“eoéato1

cyberne tloﬁljy COUlVaJ Ab to & sysuen kmown only throughn its
observed behaviour. Further information aboubt the structure of
such eutomata for adaptive systems is obtainsd by analysing the
influence of purpose on behavicur, in terms of the epistemological
problens incduced by the dusl-controel situation of chfﬂkﬁ goout
g systen whilst trying to contirol 1t. These developmentis Leaa To
the stud 3 of training as a control problem, and adaption as ihe
stability of & hierarchical systen.

In the experimental studies a high-~order compensatory
ask is teken as the enVchM;ent and a feeaback
. ; ed on the basis of the theoretica
viability of thias system in terms of its
j is evaluated theoretically andé exper (wenfu
th human operators and automatic controllers. L“v
system is investigaved by an cxperiment with 72
0 wnich various modes of training are compared, ,nd
¢ntara0u¢o 18 with the ”orm of ingiructions given are also
eveluvated. Thess experiments are repegteld with artificiasl
adaptive ccntrollers &s subjects, in order 1o enablc =
comparative wt@uJ to be nmzde of humen and machine learning.
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CHAPTER 1 : INTRODUCTICHN

1.1. Motivation and Aims of Investigation

The work described originated as an investigation of ‘adaptive
training techniques' for human operators attempting to learn a complex
perceptual-motor skill such as driving a car or flying an aircraft.

The major objective has been to investigate in depth a situation in which
the 'difficulty' of a task is automatically adjusted to maintain a
constant level of performance for an operator learning the task. Since
the automatic adjustment system acts as an 'adaptive trainer’, increasing
the difficulty of the task as the operator learns at a rate dependent on
his learning, it is pausible that it may provide a 'teaching-machine’

for perceptual-motor skills and speed learning.

Because the automatic training system is éoupled through
feedback to the performance of the trainee, the possibility of overall
instability arises and requires both theoretical and experimental
investigation. Given that an 'adaptive trainer' can be made to operate
stably under reasonable conditions, its effectiveness as a teaching
system and the variables that determine that effectiveness are also open
to investigation.

In any experimental study involving human learning the degree of
generality of the results obtained must come into question. In

particular, in a study of training where 'feedback' is involved it is
reasonable to expect that the 'sensitivity' of the results cbtained will
be reduced, not only to variations in the trainees but also to variations
in the type of task used in training and to the exact.nature of the
training strategy itself. In the present study the sensitivity of

the results to the trainees has been investigated by including automatic
'learning machines' as experimental subjects.

The sensitivity to task and training strategy raises deeper issues
concerning the system~-theoretical nature of the results chtained,
example, whether general results on the stability and efficacy of adaptive
training can be derived for abstract systems which include the particular
system investigated experimentally as a special cass. In the present
study this problem is investigated at a fundamental level through the
formal definition of an 'adaptive' or 'learning' system, and hoth
‘theoretical and experimental results are presented for systewms of varying

degrees of generality.
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Thus the study has ranged from system-theoretical investigations
of adaption and learning, through theoretical analyses of the problem
of training, to actual laboratory and simulation experiments on the
training ¢f human beings and learning machines. Such a range seemed
essential at the time of the study since there was neither adequate
theoretical material on the mature cf learning available on which to base
experimental studies of training, nor a sufficient range of results on
adaptive training to act as proving ground for a purely theoretical
inQestigafion. In this thesis an attempt has been made to present
both theoretical and experimental studies in a unified form, and to

link tnem together wherever possible,

1.2 Background to the Objectives

One of the most remarkable features of human behaviour is its wide
range of possible variation in response to the different characteristics
of the environment in which it takes place. Man, out of all the animals,
has developed in the course of evolution the greatest capacity for
changing his mode of behaviour to that which best achieves his goals in
any new environment. Some form of adaption to circumstances is found
in even the lowliest micro-organisms, however, and this capability has
sometimes been taken to characterize life itself.

The characterization of life by its adaptive capability has been
made less tenable in recent years by the success of control engineers
in designing automatic controllers with a similar ability to modify +their
control policies in the event of unpredictable changes in the controlled
plant. This development makes it reasonable to consider the possibility
of a unified approach to the study of adaption and learning, in both
animals and machines.

A unified approach to some aspects of psychology and control
engineering is attractive on a number of grounds. Firstly, the well-
defined and known structures of automatic controllers enable the implic-
ations of theoretical constructs linking structure and behaviour to be
clarified very rapidly. Secondly, such terms as 'purpose' have to be
defined clearly and operationally if they are also to be applied to
machines. Thirdly, automatic adaptive controllers provide a source of
identical 'subjects' for experiments on factors affecting learning.
Fourthly, engineers are responsible for many systems studies and

-associated mathematical developments which have direct applications in
psychology. And finally, it is possible that the automatic controller
of the future will be a general-purpose adaptive system, simple to

fabricate because of its homogeneity of structure, which will be ‘'trained!
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to implement a specific control policy. Current investigations of this
possibility are just as likely to produce results relevant to psychology

as they are to contribute to control engineering.

1.2.1 Behaviour, Structure and Purpose

The chief problem in formalizing such concepts as ‘'adaption’ and
'learning' is to establish and maintain a clear distinction between
the structural, behavioural and teleological connotations of these
terms. The structure, behaviour and purpose of any system are intimately
related and everyday language makes little distinction between them.
However, in psychology it is this relationship which is to be investigated,
and its individual components must be clearly separated.

For example, if a system is assumed to have a purpose such that its
behaviour is directed to some goal, then it is possible to observe its
behaviour and determine to what extent that goal 1s attained. Thus, the
Yadaptivity' of a system may be defined in purely behavioural terms, given
a teleological assumption. Equally, however, it is possible to observe

""" "behaviour without any pre-suppositions as to its purpose, and examine it
for evidence of goal-seeking. The goals then become a property of, or
a way of describing the behaviour. For example, an event may be termed
'reinforcing' if it increases the tendency for behaviour preceeding it
to occur, and the 'géal' of any adapting system becomes the seeking of
reinforcement.

Either approach to the analysis of adaptive behaviour is valid,
evaluatién of the fulfilment of an assumed goal, or determination of the
goal from the behaviour.  Superficially, the former is more relevant to
control engineering and human operator training, and the latter to
animal studies. The problem does not lie in the existence of these
differing approaches, however, but in the ease with which a tacit change
may be made between them. An examination of pure observations of
behaviour, not influenced by any assumptions about its purpose, is biassed
by the tendency of normal descriptions of behaviour to be also evaluative;
acts are described by their terminal effects rather than the motions
which produce them.  Both aspects of an act are part of an unwieldy
'total behavioural description', from which everyday language eliminates
irrelevant components. In so doing, however, the language introduces the
very assumptions which are the subject matter of psychological theory and

experiment.
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A different type of problem arises from the relationship between
the structural and behavioural connotations of the term ‘adaptive'.

Given full information abcut the structure of an adaptive system it is
possible to predict what its behaviour will be in various environments.
Equally, given full information about the range of possible behaviour of
a system it is possible to limit its structure to some sub-set of all
possible structures. The relation between the physical structure and

. the sub-set of behaviourally determined structures is that the former must
"be contained in the latter. In practice, for large, complex and
irreversible systems, such as the human organism, the full details of
the structure, and the full range of possible behaviour, of the system
are inherently unobservable, and the structure will be limited to some
sub-set by direct observations of its physical nature, and the behaviour
will also limit the structure to some sub-set as before. The actual
structure must lie in the intersection of these sub-sets, and hence, in
this sensé, behaviour can givsﬁ/evidence as to structure not obtained

by direct observation of the structure.

Further complications arise if the gaps in observed behaviour, which
are essentially unfillable by observation, are in fact filled by
assumptions about the behaviour. For example, an event shown to be
'reinforcing' for some aspect of behaviour may be assumed 'reinforcing'
for all other aspects. Assumptions are clearly part of any process of
scientific induction, but have a peculiar status in psychology because
they are inherently necessitated by the irreversible, non-replicable
systems studied. The justification for particular assumptions about
behaviour may come from either structural or teleological considerations -
the behaviour of each of an ensemble of rats may be treated as if were
the range of behaviours of a single individual, either because the rats
had must the same goals in satisfying hunger, or because they have much
the same physiological structure.

A good example of the interplay between structural, behavioural
and teleological connotations of the term 'adaptive' lies in the
justification for the use of automatic adaptive controllers in experiments
designed to test the efficacy of different training techniques for human
operators. The adaptive controllers are known to have been built for
the purpose of attaining certain goals.  Thus purpose will constrain
the controllers' beshaviour, and any controller with the same purpose,
~such as a human operator, will be under the same constraints. Thus,

it is possible to use an adaptive controller as a 'subject' in an
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experiment on training with reasonable grounds for supposing that its
behaviour will be similar to that of human operators.

The considerations put forward in this section made it reasonable
to suppose that a rigorous and systematic study of learning in any animal,
and indeed in arbitrary systems, might be based on a formalization of the
concepts of behaviour, structure and purpose in adaptive systems and of
the relations between these three. The initial objective was tc analyse
the way in which the adaptivity of the system might he evaluated from
its behaviour, since this was a pre-requisite to the analysis of other
aspects of adaption. For example, the determination of goals from
behaviour Séems to depend on criteria such as, 'the assumed goals for
which the system is most adaptive'. The next objective was to establish
the relation between the adaptive behaviour of a system and its structure,
and the final theoretical objective was to establish the influence of the
purpose of a system on its behaviour, independently of information about

its structure.

~1.2:2 “Application to the Problem of Training

The normal proving ground for a theoretical analysis of adaption
and learning is in a study of the lower animals, such as rats, cats and
octopi. However, there is an aspect of adaption which, although
present to some degree in communities of lower animals, only manifests
}ﬂ%elf fully in human society, and that is the process of education
or training whereby a positive effort is made by some outside agency to
direct the course of learning. Application of theoretical results to
the problem of training is particularly attracti?e because an integrated !
approach to all aspects of adaption is required. -

The problem of training may be regarded as that of varying the
learning environment in such a way that the trainee is faken as rapidly
as possible from his initial, naive state to one where he is competent
to perform the required task. Viewed in this way, training is itself a
control problem, albeit at a high level of abstraction and involving
systems of great complexity. The statement of, and the solution of,
this control problem requires knowledge of the structure which underlies
the behaviour of the trainee. This knowledge itself may come from
information about the structure, behaviour or purpose of the trainee, In
practice, none of these alone is éufficient, and the diverse sources have
to be integrated into a coherent basis for optimal solutjon, of the training
problen.

One advantage cof taking training as the proving ground for a theory
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of learning is that it gives a rationale for decisions which would
otherwise be arbitrary. In any study of adaption there are abitrary,
but necessary, methodological decisions which must be taken, but are not
determined by the theory. For example, the decision to shut a rat in a
Skinner box and only cbserve its behaviour as a succession of bar pressings,
is arbitrary and yet necessitated, not only by the practical impossibility
of observing the animal's behaviour in complete detail, but also by the
theoretical impossibility of utilizing such detailed observations which
make every observed behaviour an isolated event unrelated to other
observations. Since the objectives of a study of training are not to
provide a complete account of all aspects of learning, but rather to
synthesize and evaluate training techniques for particular purposes,
there is an independent basis for the arbitrary decisions which have to
be made in a study of adaption.

These considerations, and others of a more mundane nature made it
attractive to apply the theory developed to the problem of training
humans to perform skilled tasks. Hence the study of behaviour, structure
and purpose in adaptive systems was directed towards establishing a formal
theory of training and a basis for the synthesis of optimal training

programs.

1.2.3 Experimental Studies of 'Adaptive Training'

Since the theory of adaption was intended to be a unified approach
to any system, it was desirable in the experimental studies to choose
environments in which both human and machine learning might be investigated.
The problem-solving, decision-making and linguistic skills of the human
operator, whilst stimulating much research in 'artificial intelligence’,
are far from being emulated by machines at present, whilst the continuous
control skills involved in flying, driving and tracking are closely paralleled
by such devices as adaptive auto-pilots and 'model-reference' process
controllers. Hence, training human operators in perceptual-motor skills
was taken as a suitable situation for experimental evaluation of the
theory.

One particulerly interesting situation which has been investigated
by several workers in'recent years, and which has proved troublesome both
theoretically and experimentally, is 'adaptive training'. A 'self-
adjusting simulator', or 'adaptive training system' for a perceptual-
motor skill is a device which autonmtiéally adjusts the difficulty of a
control task according to the operator's performance in an attempt to

maximize his rate of learning. Such devices have been proposed by varicus
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agencies and individuals concefned with the training of human operators
in control skills, such as manoeuvring an aircraft, missile or sub-
marine, but no rigorous studies of their efficacy, or general effects
on learning, have taken place.

It is a reasonable hypothesis that for any cperator with a given level
of skill there is an optimum level of task difficulty which maximizes his
rate of learning. When the task is too difficult he generates a large
amount of error and is unable to perceive the effect of his control
movements, and when the task is too easy he is able to perform it well,
and has no requirement for a better control strategy. Thus one might
‘expect two distinct effects - if the required task is easy for an
operator then he will learn more rapidly with training at a higher level
of difficulty - whilst if the required task is very difficult for an
operator then he will learn more rapidly with an easier task. Further-
more, the relative ease or difficulty of a task is a function of the
operator's basic ability and state of learning, and the optimum level
of difficulty would be expected to increase as the operator's skill
improves. The optimal training technique should, therefore, involve
feedback from the operator's state of learning to the level of difficulty
of the task.

The theoretical studies already outlined from the basis for a formal
treatment of the proposed advantages of adaptive training and for the
design of adaptive training systems (which are called feedback trainers
in this report, in order to avoid over-use of the term 'adaptive').
Hence, an experimental study of a feedback trainer,‘designed according
to these considerations, was undertaken. This involved comparison of
feedback training with other training techniques using both human
operators and automatic adaptive controllers as trainees. Some auxiliary
problems were discovered and investigated in this study, including the
stability of adaptive trainers and the interaction of the effect of

instructions with those of different training techniques.

1.3  Structure of Thesis

It has been noted in Section 1.1 that the studies reported in this
thesis cover a very wide range firom the theoretical to the experimental,
and an attempt has been made in its organization and presentation to
show the balance of the contributions to the different areas. Theoretical
developments which are essential to the logical development of the results
but do not contribute to their main content have been placed in appendices.

Survey material which 1is essential background materizl to the arguments
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developed is also placed in appendices - however, material critically
surveyed in order to develop a main line of reasoning is placed in the
main text. Detailed experimental results are also given as an
appendix but discussed in the main text. This organization has enabled
the presentation to be complete whilst allowing stress to be placed on

the main part of the investigatioms.

1.3.1 Contents of Chapters

In the following sections the main results of each chapter are

outlined - -

1.3.2 Axiomatic Foundations of Learning and Training

Chapter 2 commences with a critical review of previous work on
behavioural definitions of adaption both in psychology and control
engineering. An explicatum of the term 'adaptive' is prcposed which
enables many aspects of adaptive dynamics, not previously made clear,
~-to be formalized. This is based on the concept of a 'task' as the
unit of adaptive behaviour, and consideration of the variation of the
satisfactoriness of the interaction between controller and environment
over sequences of tasks leads to the definition of various modes of
adaption. Finally the results of Appendix 3 are used to define a
minimal observable structure underlying the behaviour, an ‘adaption

automaton', and the definitions of adaption are framed in terms of this.

1.3.3 Training as a Control Problem

In Chapter 3 the approach to learning behaviour developed in
Chapter 2 is extended to provide a rigorous foundation for the analysis
of training és a control and stability problem in the state-space of
the adaption automaton of the trainee. The technique for selecting
sequences of tasks to bring the state of the automaton intc a desired
region enables various modes of training to be distinguished. Before
the problem of training can be 'solved' it is necessary to have some
information about the.structure of the adaption automaton, and two
theorems on training establish the minimal and practical levels of
information required for an effective trainer to be designed. Possible
_sources of such information are then investigated through consideration
of the epistemological problems of the trainee in attempting to solve
the 'dual-control' problem of controlling an environment whilst 2t the

same time learning about it. An automata-theoretic statement of this
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problem is given, in which it is shown that any control policy restricts
the environment to some sub-environment, and that the sub-envircnment
generated by a naive controller may be unsuitable for learning. The
basic training strategy is then formulated as maintenance of a sub-
environment similar to that encountered by a controller which has learnt

the problem.

1.3.4 A FPeedback Trainer for a Tracking Skill

In Chapter 4 the selection of a suitable problem for the evaluation
of a feedback trainer is discussed, and the results of previous chapters
are applied-fo the design of a feedback training system for a task
involving compensatory tracking through high-order dynamics. The
behaviour of the training system is analysed theoretically, particularly
its stability, and experimental results are given to verify this analysis

for non-adapting automatic controllers and human operators.

1.3.5 Experimental Evaluation of Feedback Training

In Chapter 5 an experiment designed to test the practical utility
of feedback trainers is described, which involved training 72 RAF
pilots in a novel tracking task under six different training regimes. The
methodolégy of an exgerimental comparison between different training
techniques is discussed, and means for overcoming effects of fatigue,
and auxiliary variables such as verbalization, and so on, are described.
An experimental design for evaluating not only the various modes of
training proposed in Chapter 3, but also the interacting effects of
different forms of verbal instruction and the relative effects of stress
on performance, is proposed. The results obtained with this design

are analysed and the significant effects obtained are discussed in detail.

1.3.6 Experiments with.Learning Machines

In Chapter 6 a range of experiments on the adaptive behavicur, and
the training, of automatic controllers based on adaptive threshold logic
elements are described. The first experiments involve a very simple
pattern-classification problem, and illustrate the various modes of
adaption and training defined previously. Other experiments involve the
use of adaptive controllers in the same situation as the human operators
-in the experiments of Chapter s, and a comparison is made between the
effects of different training techniques and verbal instructions on

human and automatic adaptive controllers.
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1.3.7 Summary, Conclusions,and Recommendations

Chapter 7 centains a summary of the theoretical and experimental
results, and brings together the main conclusions. The objectives of
the study, and the extent ¢€c which they have been attained, are reviewed,
and, finally, recommendations are made for the directions of further
research on adaptive training and the theoretical foundations for the

study of learning behaviour.

1.3.8 Appendices

Appendix 1 on Adaptive and Learning Controllers contains the back-
ground and reference material relevant to the studies of Chapters 3 and 6.
After introducing the concepts of open-loop and closed-loop adaption, the
“appendix is mainly concerned with adaptive threshold logic elements
(ATLEs) and their properties both as pattern-recognizers and as controllers.

Appendix 2 on the Algebraic Theory of Semigroups contains basic
definitions and results relevant to Appendix 3 and Chapters 2 and 3.

Appendix 3 on the transition from Behaviour to Structure is an
original study in its own right, but has been placed as an appendix since
it contains mainly mathematical results'bridging the gap between the
behavioural approach to adaption of Chapter 2 and the structural basis
for traiﬂing of Chapter 3. In Appendix 3 the problem is analysed of
deriving a structure for a system from its behaviour which is minimal,
in that it has only sufficient complexity to account for the observed
behaviour, and which is observable in that it is possible to determine
the 'state' of the structure from a sufficiently long sequence of past
behaviour. A procedure for determining such a étructure from a complete
description of all possible behaviours is derived.

Appendix 4 on the Human Controller contains a review of experimental
studies of the human operator in control systems, with particular
emphasis on adaptive behaviour and techniques of training. Linear and
nonlinear models of the human operator are examined to determine the
basic constraints upon the possible control strategies available to him.
Recent studies of the adaptive capabilities of the human operator in
response to changes in the controlled system are then reviewed. Finally,
experiments on training the human operator, and in particular the few
experiments on adaptive tréining, are critically examined.

Appendix 5 contains Experimental Results in detail for the study

of training described in Chapter 5.
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Chapter 2 : AXIOMATIC FOUIDATIONS OF LEARNING AJdD TRAINING

2.1 Introduction

It is an essential feature of the training situation, that the
trainer is attempting to exert some control over the learning
processes of the trainee. Teaching and training by human teachers
involves both the concept of changing the state of the student to
one in which particular behaviour may be elicited, and also the
concept of feedback from the behaviour of the student to the behaviour
of the teacher. These allusions to the fundamental concepts of
modern control engineering suggest that a formal apprcach to the
problemns of training might be made through modern control theory, and,
in the following chapter, this possibility is explored and a control-
theoretical approach to training is developed.

Before any rigorous approach to the control of human learning
through training can be taken, however, 1t is necessary to make a

formal analysis of the nature of 'learning'

and 'adaptive behaviour'

in their own right. These terms are ones which originally arose in the
biological sciences to denote the plasticity of behavicur shovm by an
organism in its struggle to survive in a novel or changeable environment.
The same terms have been carried over into psychology to denote the
goal-seeking nature of animal behaviour, and have also been applied in
the engineering sciences to systems designed to-optimize their performance
through interaction with their environment. Since these terms, or
similar ones, form an essentilal part of the statement of objectives of
major areas of research into human behaviour, adaptive control and
artificial intelligence, it is reasonable to expect them to be capable
of fairly exact definition. This is not so, however, and the terms

are used very loosely with tacit switches of connotation, particularly

1

between 'structural' and 'behavioural' aspects of adaption.

Stanier, at a symposium on "Adaptation in Micro-organisms'" (1953),

defined the term 'adaptive'

as,

'the totality of the various processes of change which confer
on an organism fitness to its enviromment'.
"This definition contains all the elemeﬁts essential to a taxcnomy of
adaptive behaviour. There is firstly the organism, which in the present

t
discussion will be called a controller since both natural and artificial



systems are being considered. There is secondly an environment,
which term has entered the vocabularies of both psychology and
engineering. There is thirdly the evaluative concept of 'fitness'
to the environment, which reflects a description of the organism's

behaviour in terms of goal-seeking, and entails a performance measure

for the interaction between controller and en?ironment. Finally
there i$ the concept of 'change', in that an organism is not initially
fitted for its environment but becomes so through a dynamic process

of adaption.

Adaption, defined in this way, may be treated as a purely
behavioural concept, since there is no necessity to introduce notions
of how the organism adapts to its environment, or to argue a priori
what factors will cause adaption to take place. Stanier's definition
is informal, and non-operational in that it does not contain a decision
procedure to determine when, or what form of, adaption takes place.
Most attempts to treat learning and adaption more formally have goné
beyond the observed behaviour and introduced structural or epistemo-
logical considerations, generally because their aims have been to
model or predict behaviour. It is possible, however, to formalize
the purely behavioural concept of adaption, into a rigerous framework
on which to build a-theory of training.

Section 2 of this Chapter is a review of the few previcus attempts
to establish operational definitions of adaptive, or goal-seeking,
behaviour. Sections 3 and 4 present a new formulation of these
definitions through an gxiomatic approach to the description of learning-

behaviour.

2.1.1 The 'Analytical 3lologv' of Sommerhof
y 3

An early attempt to give a rigorous behavioural definiticn of the
concepts of purpose and goal-seeking in bhiology and psychology was
made by Sommerhof in his book 'Analytical Biology' (195C). = Sommerhof
considers an environment which has a number of states, a regulator
{(controller) whiéh also has a number of states, and a =zet oFf outcomes
which are determined by a combination of the environment's state and

the controller's state. Some of these outcomes are satisfactory and

Ll

satisfy a 'focal condition', wirtilst others are not. Somrerhof preposes
that goal-seeking may be said to occur when there is 'directed

correlation' Letween the states of the controller and those of the
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environment such that the outcome is satisfactory. He further
proposes a 'degree of goal-directedness' in terms of the set of
states of the environment for which the outcome is satisfactory.

Sommerhof gualifies his definition with scme constraints
designed to ensure non-triviality of the goal-directedness..The
state of controller must not, in itself, ensure the satisfactoriness
of the interaction - that is, the controliler must, in scme Sense,

'teke note' of the environment. The state of the controller and
that of the environment must be 'epistemically independent'— that is,
there must not be a natural physical connection between them such
that the interaction is bound to be satisfactory. Finally, single
occurrences of satisfactory interactions do not show goal-directed
behaviour, but the directed correlation must exist between a number
of environment and controller states.

Although Sommerhof introduces the term 'state' of the controller,
this. is irrelevant to his criterion for goal-directedness, which
depends only upon the satisfactoriness of the interaction between
controller and environment, and hence is purely behavioural. In
control-theoretical terms, what he proposes is a 'sensitivity analysis'
(Radanovic 1966) of the interaction betwesen controller and environment,
with goal-directedness being evinced by insensitivity of the satisfactor-
iness to disturbances of the environment.

. Sommerhof's definition clearly applies to a simple sefvo—’
mechanism, and he gives a gun-aiming servo as an example of a goal-
directed system. The constraints which he places upon the nature
of the behaviour in order to distinguish between the 'goal—directedness‘f
of the simple servo, and the 'non-goal-directedness' of, for example,

a pendulum, do not appear to be essential, and detract from the main
argument. The 'physical law' relating position and acceleration of a
pendulum is due to its constrained motion in a gravitational field, and
is thus a function of the structure of the pendulum and its relationship
to its environment. Similarly, the corresponding law between the
position and acceleration of the armature of a servo motor is a
conseqguence of the structure of the servo system and its connections

to a load. Any behaviour of‘any system, no matter how complex, is

physically determined. Before the advent of Wewtcnian dynamics, the

- behaviour of pendulums was equally as mysterious as that of living

pl

creatures. It is true that lack of understanding of the mechanism



of a phenomenom may Jead us to give it undue weight end Importance,
but this cannot form the basis of a logical distinction.

The main criticism of Sommerhof's approach is that it does not

o]

take into account the dynanmics of adaptive behaviour. A controller
does not generally change its state instantaneously according to the
state of the environment, and the manner in which it changes state

is a function not only of the immediate environment but also of its
previous states. It is this sequential dependence, or memnory,
inherent in the behaviour of most adaptive systemé, which gives rise

to transfer effects in training, and, indeed, to most of the complexity

of adaptive benaviour.

2.1.2 Asuby's Formulation of 'Directed Correlation’

Ashby (1982) has given a set-theoretic formulation of Sommerhof's
definition of goal-seeking behaviour, which is itself an advance in
the theory of adaptive behaviour. Ashby considers a set of disturbances,
D, which cause some changes in the environment. He defines these
changes by mapping, &, from D into the set of possible values of the
parameters of the environment, E. A disturbance, d € D, at time to’

produces’an effect in the environment, e ¢ E, at time t such that -

l)

e’ = 9 (d) L?.i]
The parameters of the goal-seeking system are similarly specified by
a set, F, and its behaviour is a response to d, which may be
represenfed by a mapping, u, from D into F, such thet £, the system
response, satisfies -

£ = u(d). @23

When the disturbance has evoked responses in the environment and

goal-seeking system, %(d) and u(d) respectively, then thess two
values interact to give some final outcome at time t2. This
corresponds tc a mapping, n , from the preduct set, £ x F, into 7,

where 7 is the set of all possible outcomes when & and

Fr
s
o
3
©

uncorrelatedly over all their valuss. Within Z is a sub-set, G,

of outcomes that satisfy the focal condition and are satisfactory.
Sormerhof's 'directed correlation' is now defined as being shown

¥i e o, n(e(d), u(@)) e G [2.3)

that is, for any disturbance the outcome 1s satisfactory.

by u, in respect of D ®, uw and G, 1If and only if -

Ashby manipulates this result into a neater, and nore intuitively

satisfying, form, using his development of the set-theorstic terminclogics

s &
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notation a functiion,

e
“

I

~+

of Bourbaki and Riguet {Ashby 1862). In
such as ¢, standing on its own denotes the sub-set of the product
set between its domain and range such that the functional relationship
is satisfied. The inverse, @—l, denotes the corresponding sub-set
of the product set between its range and domain. The composition of
two such sets, A<l x J and B<J x X, is denoted by A.B, and is a
sub-set of the product set I x K, such that -

V(i) e AB, I3 : (1,9) e A, (3,k) e B 2.9
~ the set J is eliminated by this composition.

Using éhis notation, Ashby remarks that the expression, [}.i] )
for directed correlation can be simplified algebraically by ncting
that the set specified by -

Wd e, @@),ua))] -3
- is identical with the set u.@_l, with D eliminated by composition.

The criterion for directed correlation may be written -

Vd e, (o (d), u(d) e n (6 2.3
='which is thus equivalent to -
vot e n e .3
- which in its turn may be re-written -
‘ b o0 e 2.7

,

This is an elegant formulation of Sommerhof's definition of goal-
directedness, in which the essential features stand out clearly and
unnecessary use cf the symbolism of differential calculus and continuous
variables is avoided. In particular, although Ashby introduces times,

to’ 1, and t copied from Sommerhof's original argument, they are
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completely irrelevant and do not appear in the final result. The
'directed correlation' defining goal-seeking is presented in a
completely abstract form as an inclusion relationship between sets
forming the domains and ranges of certain mappings.

Stripped of the time-dependencies, the definition appears so
simple as to be almost trivial. Indeed, if one labels the
parameters of the environment by the disturbances that cause them

(or consider the parameter cf the controller to reflect that of

the envirconment rather than that of the disturbance), then & becomes

o]

n ldentity mapping, and the criterion is merely: that -

| va e O, n(u(d)) e G . @@
- which states that the evaluation of the controller'’s nolicy is
uniformly satisfactory. However, the simple and clear notation is

in itself an invitation to introduce & state variable into the
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controller's parameter mapping. For exzample -
- 1 5 DG
£ - u(f d ) 2-,.;
n+l n’ n [

-~ which extends equation 11.2) to take account of an important aspect

of the behaviour of the controller in time, previously obscured by
thekWrelevant introduction of to etc., that an adaptive comtroller
becomes satisfactory through its experience of the environment, and

may possibly become unsatisfactory again ~ adaption is a dynamic process.

In summary, Sommerhof's analysis is a considerable step towards

a rigorous definition of goal-directed behaviour, but does not take

into account the dynamics of adaption.  Ashby's set-theoretic
formulation of this analysis is a further advance in clarity of
~exposition, and enables the defects, and possible extensions, of the

original definition to be clearly seen.

2.1.3 pBehavioural Definitions of Adaption in Control Engineering

In the 1930's, about ten years after Watson laid the foundaticns
of benaviourism is psychology, engineers such as Bode (1360, review)
and Hyquist (1832) were establishing techniques for the analysis of
the structure and behaviour of automatic control systems. Regquirenents
for such systems to onerate with plant whose characteristics were not
known in advance, e.g. drives with varving frictional lecads, led
engineers in the 1950s to develop self-optimizing controllers which
changed their parameters to maximize their performance. These controllers
were termed ‘'adaptive', since many of the concepts in both standard
control systems and self-optimizing controllers were derived by analogy
with biclogical systems.

It is interesting to note that control engineers reached

sinilar disagreements over the definition and apnlication of the term
'adaptive' as have hehavioural psychclogists. In a panel discussion

on

ke

among many of the eminent pioneers of adaptive contrecl, the posit
was summarized by the statement (Frecman 1963),

'the best way we can define an adaptive system today is to
ask 500 people and we'll get 500 different answers and perhaps
if we ask the same people the next day we'll get 500 additional

It is clzar on reviewins t

()

0

controversy that, although enginesr

i1

~

-

[
(1

tie
were trying to achieve adaptive behaviour, in the sense of a chang

control policy dependent upon the environment, the criticisms as te

]

whether a contrcller was, or was not, adaptive were made largely on

B
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structural grounds. Thus, Raible (1983) claims that the lMoe and
Murphy (1962) 'self-adaptive' controlier is not adaptive because
it only identifies plant parameters con-line, whilst 'search and hill- -
' are necessary for true adaption; Since control engineers
are primarily involved in the design and fabrication of control
systems, it was natural for the engineer to term a controller
‘adantive' if its structure had been designed to be so, even if its
actual behaviour was extrem 1ely mal-adaptive. »

Occasionally a distinction between behavioural and structural
definitions is noted, but not carried to its logical conclusion.

For example, Clark (1963) remarks that most attempts to define
adaptive systems -

'seem to be of an anatomical nature... in terms of the physical
features of the control system itself... I feel that the definition
might better be based on a functional definition' |
He goes on to suggest -

'where we have & plant whose dynamic characteristics vary in
time... if we can design a controller that will solve our problenm
to the satisfaction of all who are concerned with the problem, might
it not be a functional definition of an adaptive control system'’

However, althqugh such functional, cr behavioural, approaches
were proposed and distinguished from structural ccnnotations of the
term 'adaptive', the vagueness in the general use of the term
continued and came to be accepted. Truxal (1963), in reviewing
the field of adaptive control for a major Congress, re-iterated that
an adaptive control system was one -~

'designed from an adaptive viewpoint',
and stated that -

'"While the literature of control theory is replete with
argunents re the definition, progress in adaptive control theory
has not been impeeded by the failure of purists to reach universal
agreement on an appropriate definition’.

The attitude engendered by failure to distinguish between structural
and behavioural conmotations is summaed up by Florentin's (13862)
wry remark at the end of & paper on an adaptive control systenm that,

. L. .
vieved In & ceriailn vdy, his S'J’S":Ofx anpears -
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"to he ordinary nonlinear feedback, It seens that any
systematic formulation of the adaptive control problen leads to

a meta-problen which is not adaptive.

2.1.4 Zadeh's Definition of 'Adaptivity'

The distinction between structural and behavioural ccanctations

! £3

was rirst made, in a control e

. .
ngineering

of the term 'adaptive
context, by Zadeh (1%63) in a short paper entitled, 'On the definition
of adaptivity', which proposed a formal and completely behavioural
intension of the term. He notes that -

'Most of the vagueness surrounding the notion of adaptivity is
attirbutable to the lack of clear differentiation between the external
manifestations of adaptive behaviour on the one hand and the lnternal
mechanisms by wiich it is achieved on the other'

He goes on o propose a ciaracterization of adaptive behaviour, stating
that, -

'our premise is that all systems are adaptive, and that the real
question is what they are adaptive to, and to what exteunt'.

Zadeh frames his definition, as does Sommerhof, in terms of
continuoﬁs functions’and functionals. He considers a system subject
to one of a set of specified input time functions, u(t), defined on
the semi-open interval, t> 0. A family of such inpufs, which may
have a probability measure defined over it, he defines as a source,

Sy. For each source, he assumes that there is a performance criterion
such that the behaviour of the system when conneéfed to the source
(that is, when receiving an input belonging to the family of inputs
which defines the source) is, or is not, acceptable. Zadeh then
defines 'adaptive'in these terms, -

'A system is adaptive with respect to a family of sources, (Sy),
and a criterion of acceptability, if it performs acceptably well with
every source in the family (Sy).'

Thnis definition is very close indeed tc that of Sommerhof, and
lack of reference to the latter illustrates the neglect of his work
whose pubiication proceeded that of Zadeh by some thirteen years.
Zadech does not attempt to give the term 'adaptive'! an absolute meaning

and exclude trivial cases, but states quite explicitly, -
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"Under this definition every system 1s adaptive with respect to
some set of sources and parformance criterion. Thus what matters
is not whether the system is adaptive, or not, but what are the
sources and.performance eriteria to which it is adaptive.'

The same criticism may be leveled at Zadeh's definition as at
Sommerhof's, that he does not take account of the dynamics of
adaptive behaviour. Indeed, this possibility is excluded by defining
inputs on the interval, t> O, rather than some finite interval. Zadeh
takes into account the time variation of performance with learning only
through the suggestion that, -

'it is appropriate to use a performance function which assigns
low weight to the performance in the initial stages of the learning
process.'

It is interesting to note that Donalson and Kishi (1965) dn a
textbook on automatic control, give a version of Zadeh's definition
of ‘'acceptability' in which they modify the input sources to be defined
over a finite time interval. The reason for this Is not stated but
is inherent in their discussion, for they require an adaptive controller
to medify its control action in an attempt to become an acceptably
performing system. The acceptability of performance, in their structural
definition, bLecomes gomething monitored by the controller, and hence
regularly evaluated. This change of meaning, from an overall evaluation
of the controller's ability to cope with its environmént, to a local
evaluation of whether it is, or is not, yet coping, it very important
in the context of adaptive dynamics.  Whilst their modification was
necessary to the formulation of a structural definition, it could
equally form the basis of a behavioural definition in which performance
is monitored not by the controller, but rather by some outside observer.

Both Zadeh's and Donalson and Kishi's definitions of 'acceptability’
are Important and necessary to a theory of adaption, but a distinction
must be made between them. In this thesis, the term'’acceptable’ is
applied to the interaction between controller and environment in a
global sense, similar to that of Zadeh. Whilst the term 'satisfactory'
is used in a local sense equivalent to Donalson and Kishi's ‘accepnt-

ability'.

- L N - NP, TN o S ¥ SN
2.1.5 The Dynamlcs of Auantive Hehaviour

The adaptive control systems studied in engineering have not Leen

very complex, and, typically, they have had the property that either
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they ére able to adjust their parameters to a level suitable to their
environment and maintain them there, or they are not, and the ones
which are not able to do so tend not to be reported. Any further
complexity of behaviour, such as sometimes adapting suc;essfuliy and
at other times not, or becoming satisfactory for a while and then
becoming unsatisfactory again, weuld be regarded as a defect and
removed if possible. Equally, complex behaviour based on inter-
‘actions between environments, such as success in adapting to one
environment ‘only after having adapted to another, would not be
noticed since the parameters of the controller would usually be
reset upon changing the environment. Thus Zadeh's definition in
terms of total success or total failure of adaption, for all time,
is comprehensible in the light of engineering experience with
adaptive systems. .

In psychology, on the other hand, experience has been.of.
systems whose level of complexity engineers are still many years from
synthesizing. The human operator most certainly does not have a
dichotomous capability in most tasks, and his performance of one is
greatly affected by his experience of others. All animals show a
similar complexity of behaviour, and it is interesting to compare
some definitions of 'learning' by behavioural psychologists with those
more formal definitions discussed so far.

Guthrie (1952) gives a very simple definition =

'"These changes in behaviour which follow behaviour we call
learning’'. .

Hunter (1934) attempts to exclude some behaviour, which is due to
changes in peripheral structures, from the definition -

'We may say that learning is taking place whenever behaviour shows
a progressive change or trend with a repetition of the same stimulating
situation and when the change cannot be accounted for on the basis of
fatigue of receptor and effector changes'.

McGeoch and Irion (1952) require a change in the evaluation of the
behaviour, rather thaﬂ merely a change in the behaviour itself -

'Learning, as we measure it, is a change in performance which
occurs under ccnditions of practice’,

“Thorpe (19$36) requires these changes to be adaptive -
'"We can define learning as that process which manifests itself

by adaptive changes in individual behaviour as a result of experience’.



Whilst Bush and Mosteller {(1955) deliberately exclude
requirement -

'Je consider any systematic change in behaviour to be learning
whether or not the change is adaptive, desirable for certain purposes,
or in accordance with any such criteria’

There ig one important aspect of adaptive»behaviour, commen to
these diverse definitions, which does not appear in Sommerhof's or
Zadeh's formulations, zad that is the nature of learning as a change
in behaviour with practice or experience. There is one engineering
paper where “the essential nature of the dynamics of sdaption is cleerly
stated. Martens (1959) has proposed a definition of 'machine learning'
which is intended to provide a test to determine whether learning
really does occur. He requires that a machine be able to adapt to tuwc
mutually incompatible criteria. Thus, in terms of Zadeh's definition,
the controller would have to have an acceptable performance with each
of two scurce/performance-criterion pairs, such that it is physically
impossible for a system with a fixed control strategy to have an
acceptable performance with both.

This distinction is not as fundamental as it might appear, since
it is clear that the machine must have some means of distinguishing
between the two sourge/performance-criterion pairs, and if this
information is considered as part of the source t I
once again trivial on llarten's critericon.  More impertant, howevar,

.

is the rationale behl xd the situation which !lartens requires to bz
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established as a criterion of real learning. Tk
controller cannot be adapted tc both objectives at the sam
must become adapted to one after being adapted to the oth

versa. This connotation of adaptive dynamics is clear snoug

structural definitions of adaptive controllers, and in the

e

of learning by behavioural psychologists, but it seems to have been
omittad in more formal analyses of adeptive behaviour.

The objective of the theoretical studies described in the

renainder of this chapter has been to extend the purely behavicural

<

apprecach to the dcflni ton of adaption proposed by Sommerhof and

to a taxonomy of adaptive heiaavioun which takes full account of the
dynanics of adaption, and in particular those astecis of “he i
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2.2 An Axionmatic Basis for a Theory of Adaptive Behaviour

Given a situation which is to be regarded as that of a controller
interacting with an enviromment, tihere are a number of decislons to
be taken before a discussion of the adaptivity of the controller can
begin. Within the theorvy of adaption these decisions have to satisfy
certain logical comstraints, but thcy.are otherwise arbitrary. Within
the context of human or animal behaviour, and its function, or of
adaptive control practice, these decisicns will certainly not be
arbitrary, for the utility of adaptive concepts in specific situations
will dependton them. Some of the decisions will be obvious and
unmentioned, and others will be made explicit. Much of the early
controversy over conflicting usage of the term 'adaptive' in engineering
arose because the 'obvious', tacit decisions of one engineer were not
those of another, or because disagreement over specific decisions was
wrongly ascribed to the definition of adaption itself.

In attempting to quantify and formalize the application of the
term 'adaptive' in psychology, it is reasonable to expect that confusion
is likely to arise over similar issues, and particular emphasis is
placed in the following discussion on a clear exposition of those
aspects of adaption which are arbitrary and depend on agreed definitions.
In the development pfoposed here, the arbitrary decisions are localized
at the point where the interaction between controller and enviroument
is divided into 'tasks', but in practice such extreme localization is
unlikely to be apparent and the arbitrariness is spread more thinly.

Although the terminclogy used, of controller and environment,
applies particularly well to perceptual-motor skills,.the theory
applies, and is interided to be applied, to all aspects of human
behaviour involving purposeful interaction with some other system;
the illustrative examples are chosen to emphasize this. It also applies
to the analysis of any form of adaptive behaviour by animal or machine,

and represents a unified approach to the study of adaption and learning.

2.2.1 The Adaptive Control Situation

The three elements of a control situation are a controller inter-

acting with en environ - for a purpose. In bicdlogical systems none

—

of these may be well-defined, and the reascnable assignment of roles

and purpcses is the subject of experimental study and theoretical

analysis (Gaines 1966 p.339). Even man-made systems do not necessarily



split into controller and environmen

when the whole system i synt
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control looms. In the case of the human operator, a similar consider-
ation applies, on the motor side, to such systems as the spinal
reflexes controlling muscle contrac tion, and, on the perceptual side,
to the dark/light adapticn of the eye. In considering learning
within the central nervous system, these peripheral systems are often
better thought of as part cf the 'environment'.

However, the separation hetween controller and envircnment can
generally be agreed upon, and they are, for the purposes of the
theory, defined as black boxzes with dnput and output such that the

inputs of one are the outputs of the

" of environments for human controllers

other. The following examples

illustrate this concept together

with the possible associated problems -

(1)
outputs clearly depend on whether it
For a driver, the inputs to the envi
wheel, clutch, etc., and the outputs
the road ahead,
forces, etc.

(ii)

The environment 1s a line

The environment is a vehicle on a road.

speedoneter, and so on, together with acceleration

Its inputs and
is being driven or being serviced.
ronment will be through the steering
from it will be visual images of
figure in two dimensions sublect

Its

to the transformations of EBuclidean geometry.

regarded as mathematical operators transforming the

inputs are usually

figure, and its

output as a mathematical description of the transformed figure.

ation of input/output at this

neglecting peripheral dynam

mode of presentation is

picteorially may have an ent

one presented as a set of 1

drawing a transformed figure is regarded as part of the enviren

of the human controller, or

arbitrary decision, but i

the learning
(iii)

language communicatios
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process in
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form of servo-mechanism with similar characteristics to the human
operator. The second is a typical environment for Newell, Shaw
and Simon's (1959) General Problem Sclver, and the third is within
the scope of Weizenbaun's (1966) ELIZA, although the level of
conversation so far has been fairly mundane.

The purpose of each of the controllers in the enviromments
above may be defined intensively, as moticn from one location to
another, or a proof that two angles are equal, or persuasion tec
perform some act. However, from the point of view of system behaviour,
it is not necessary to define the purpose but only to give some prescrip-
tion for saying when it has been achieved -~ that is, some performance
measure is required. Sommerhof and Zadeh both define performance
measures in numerical terms, and often they will be in that form,
but, in fact, the only feature they use of the measures is a dichotic
one - is the controller's performance un to the required standard or
not. Thus the minimum requirement for the definition of a controller's
purpose is a decision procedure which determines, at least occasionally,
whether some segment of the interaction between controller and environ-

ment has been satisfactory or not.

.

2.2.2 Segmentation of the Interaction into 'Tasks'

For purposes of the behavioural definition of adaption, we are
concerned with the manner in which the evaluation of a controlier's
interaction with its environment changes as a function of that inter-
action. The expected behaviour of an adaptive controller when coupled
to an environment is that, if its control poicy is not satisfactory
for the environment, then it will eventually become so. Thus it must
be pdssible to segment the interaction between controller and environ-
ment into at least two phases, in the first of which it is not satisfactory
and in the second of which it has become so.

This segmentation of the interaction between controller and
environment 1s inherent in the concept that an adantive contrcller
'becones satisfactory', rather than just 'is satisfactory', and is
fundemental to the analysis of adaptive dynamics. A further dynamic
feature of the behaviour is that the controller should rsnain
satisfactory once it has become so; that 1s, it should reach & stable
condition of satisfactoriness.

The sermentation is clearly precent in Sommerhcf's concept of



a 'focal condition! which must be attained, but he is only concerned

with whether it is attained and not with what happens before or after-
viarde. This omission probably occurs because his theory develops

from a cosnideration of such problems as firing a gun at a target,
where the line of sight has to satisfy a terminal, or 'fccal',
condition only at the moment of firing. Zadeh, on the other hand,
although his definition strongly reseribles that of Sdmmerhof, defines
satisfactoriness over a semi-~infinite interval rather than as a
terminal condition, and makes some concession tc the dynamics of
adaption by sugzesting that the performance criterion should attach
less weight to the early stages of learning. These two, taken

. together, imply that the controller is expected to become adapted,
and is not ‘acceptable' unless it remains so.

In order to consider controllers which become satisfactory and
the relapse, or to consider the effect of learning in one environment
on later learning in another, it is necessary to extend the basic
segmentation of the interaction which is inherent in the concept of
becoming adapted, and analyse the changing evaluation of the controller's
performance in greater detail. Donalson and Kishi, in their unmarked
variation of Zadeh's semi-infinite interval to a finite interval, do

.
just this, primarily because they are considering the structure of a
controller which is monitoring its own behaviour. The introduction
of a defined time interval as a criterion for segmenting the inter-
action is unnecessarily restrictive, however, and the following
definition of a 'task' is a weak extension of the segmentation which

is sufficient to form the basis of a taxonomy of adaptive behaviour.

2.2.3 Definition of a 'Task'

A task 1is a segment of the interaction between controller and
environment for which it is possible to say whether or not the
controller has performed satisfactorily. Equivalence relations between
tasks (so that it is possible to say, for instance, that an interaction

consists of the same task repeated several times) are arbitrary, but

will generally follow the natural relationships between different types

rh

of controlled system. A task will typically consist of some specif
of plant parameters, initial conditions and period of interaction,
together with & tolerable performance level above which a coantrol

policy is considered satisfactory.
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Vithin the theory of adaption a 'task' is restricted only by
the necessity for some procedure to determine whether a particular
interaction between controller and environment which constitutes a
task is, or is not, satisfactory. In practice, it is convenient
to choose the set of tasks in such a way that the segmentation of
the intecraction into tasks is tunique. Any interaction may then be
regarded‘as the performance by the controller of a set of well-defined
tasks. Since the theory of adaption deals only with these tasks and
the satisfactoriness of the controller in performing them, it is
obviously of practical importance that they should be chosen tc give
adequate information about those aspects of the adaptive behaviour
which are of interest. These are meta-theoretic considerations,
however, and there is no postulate that any system behaviour can be
mapped uniquely onto some member of the free semi-group generated
by a set of tasks. The utility of the theory in any problems of
practical interest is an empirical finding, and hence the informal
justification given for the steps taken so far and the examples
given later.

The segmentation of an interaction into tasks may be performed
in many ways - the time of interaction between controller and
environment may be fixed - a criterion for the termination in terms
of the behaviour itself may be given - the interaction may be
terminated as soon as a decision can be made about the satisfactoriness
of the controller. The 'termination' itself may be purely conceptual,
a convenient division of a continuous sequence of behaviour into
separate sub-sequences, or it may have a physical reality in that the
nlant is modified at the termination of a interaction.

The following sections contein two examples of the segmentation
of an interaction into tasks, and the second example includes a
description of a simple adaptive system whose behaviour is used later

to illustrate the definitions.

2.2.4 A Set of Tasks for a Single-Input, Single-Output System

o

Consider the stable, noiseless, second-order plant shown in

My e

Figure 221 , consisting of two integrators in cascade with

eed-

-

back from the output. I1ts perameters are the gain, undamped natural

-

frequency and damping ratio. Let a task be definad by ascribing values

to these three parameters and to the initial values of the intesrators,
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together with a time~varying demand signal, £(t) for 0 <t < T,
and a decision procedure such that an interaction is satisfactory

if, and only if, -

[a¥)
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+ T
° E(t—to) - x(1)]
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where t_ is the time at which the interaction starts, x(t) is the

~—

output of the plent, and E >) is some tolerance on the r.m.s. error.

To test the adaptivity of & contrcller to the plant and demand

Iy

conditions specified by such & task, it is connected to the plant and

he demand signal cycled with pericd T. After avery cycle the task
is complete, and the r.m.s. error during that cycle determines whether
‘or nct the controller has performed satisfactorily. If the controller
is adaptive the r.m.s. error in each cycle might be expected to
decrease, and hence (by suitable choice of E) the controller will be
unsatisfactory initially, but after a number of repetitions of the

task it will become satisfactory and remain so.

¢ .

Many other forms of adaptive behaviour might arise, however - the

controller could be always satisfactory or always unsatisfactory - it

~

could start by being satisfactory and become unsatisfactory, never
settling at one or the other. If other tasks with different values
f the plant parameters or demand signals were interpolated, then the
range of possible behaviour would become far greater still. It is
the description of this variety of possible behaviours which concerns

_the behavioural theory of adaption.

2.2.5 Example of a Set of Tasks for an Adaptive Pattern-Classifiler

The two iIntegrator environment described in Section 2.2.4 is a
typical continuous control system for both the human operator and
automatic control systems. The analysis of adaption through segment-
ation of the interaction between controller and environment into
'tasks', however, applies equally well to discrete, problem-solving
environments, such as those iInvolved in pattern-recognition. The

following example of a si imple, perceptron-iike pattern-classifier,
learning to dichotomize patterns represented by binary vectors, not
only exemplifies an alternative form of task, but also demomstrates
‘sufficient variety and complexity of aéaptive pehaviour to illustrate
later definitions of modes of adaption.

The problen of the pattern-classifier Is to assign each of the

patterns in an inpuf stream to one of two categories. During the
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leerning phase, it is supplied with information {reward/punishment)

as to whether each of its assignments is correct, and uses this to
change its categorization policy. Thus the environment of the machine,
as shown in Figure 2-2 , consists of a generator of patterns at its
input, an acceptor of assignments at its output, and a source of
performance feedback at its reward/punisiment iInput. The performance
neasure for a period of interaction will normally be based on the
correctness of its decisions, e.g. the proportion correct.

A typical 'task' for the pattern-classifier wmay be defined by a

set of input patterns, such as pattern, followed by patternB, which

A
may be written - Tl = (B,A), together with a performance criterion.
There are four possible, non-trivial, performance criteria, that the

‘performance for T. is satisfactory if - the category to which A is

1
assigned is correct - that to which B is assigned is correct - either
is correct - or both are correct. Given a sufficient set of pattern
sequences defining tasks, any stream of input patterns may be split
up into segments corresponding to these tasks, and hence the interaction
between the pattern-classifier and its environment may be segmented as
previously described. |

This form of pattern-classifier bhas been used in the present
study to elucidate some of the phenomena of adaptive behaviour, whilst
the more continuous control task described in Section 2.2.4 typifies
another experimental situation used in the study to investigate human
and machine learning under various training regimes.

N

2.2.6 Probability and Indeterminacy in the Definition of a Task

It has been tacitly assumed in the Section 2.2.4 that the
initial conditons of the plant may be dropped from the definition of
a task, even though this makes the satisfactoriness of the interaction
inc¢eterminate. It is often the case that certain potential parameters

of a task ma

3

be regarded as irrelevant to its description, hecause
they do not appreciably affect the outcome of the decision procedure
for evaluating the performance cf the controller in the task. In

the last example, if T is long compared with the pericd of the plant,

on

o

performance integral of inequality [2.15) . In any practical applicat

e

‘there will always be an effect of experimental error on the decisiou
procedure, and indeterminacies having effects comparable with this may

be neglected.



* may, however, be deegireble to regsrd as lrrelevant pacameiers

which do affect the outcome of the decision proc
a task might be defined, in a similar way to Zaden's 'source', as

a set of fixed plant paraneters together with & class of possible

-

demand signals, perhaps with & probability measure. The decicion

actoriness then bacomes indeterminate or

"‘l 1

as to a controller's catisi
may be bésed on an ensemble measure of its performance -~ for example,
the maximum or expected I'.m.S. €ITOT. Indeterminacy may lLie accepted
as a third fo n of evaluaticn, or may be removed by decidinmg that any

unsatisfactory evaluation in an ensemble gives rise to an overall

unsatisfactory evaluation. Any ensemble evaluation,'although
“acceptable in theory, leads to acute experimental problems in the
evaluation of adaptive behaviour, however, because it is impossibis,
in general, to reset the state of an adaptive system and repeat the
same experiment a number of times.  Attempis are made to overcome
these problems in practice by the use of popslaticns censisting of
different adaptive systems assumed to be exemplars of a single
system. This has obvious dangers in itself, but is again a meta-
theoretic procedure.

Thus, the concept of a 'task' encompasses specific descriptions
of the possible range of controlled systems, based on distributions
over plant parameters, demand signals, disturbances and so on, and,

enables the behaviour of

+

through the segmentation of interactions,

i
a controller coupled to an environment to b

0]

regarded as the performance

i

actory..

of a sequence of tasks, for each of which it is, or Is not, satis

A calculus of adaptive behaviour based on these ccncepts may be used
to evaluate the relative adaptivity of various controllers only in

terns of their ultimate satisfactoriness for given tasks, and the
path-length (number of tasks) before this is achieved. More comnlex
cost~functions for trajectories of adaptive behaviour could readily
be defined, but at our present state of knowledge they are not
justified

»

2.3 The Definition of Modes of Adantion

-

The basic concept of a "task”" iIntroduced in tlie previcus sections

-3

may be used as the foundation for definitions of different modesz of

-
P
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o
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adaptive Lehaviour and relationships betwsen them.

situation with which an adaptive controliler is expected to cope is
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1

to be coupled to a fixed environment and learn to control it

ot}

satisfactorily. The interaction 1s equivalent to the controller

performing a sequence of tasks consisting of the same task repeated

indefinitely. Such repetetive task sequences play a special role
in the theory of adaptive behaviour because they correspond to the

characterization of an adaptive system by its changing response to the
same situation. The repetetrive task sequence takes the place of

the static 'source', or environment, in Zadeh's definition of adaptivity,
but is exactly equivalemt to it with the addition of segmentation. The
importance of this sagmentation in the study of adaptive dynamics

begins to become apparer.t in the following version of Zadeh's definition

of ‘acceptability'.

2.3.1 Definition of an Acceptakle Interaction

An interaction between controller and environment consisting of
the repetition of a single task is acceptable if it is eventually
always satisfactory.

Thus, in an acceptable interaction, the initial performance of
the controller does not matter, and for a number of repetitions of
the task it may be satisfactory, unsatisfactory, or waver between

.
the two. However, it must eventually beccme satisfactory and remain
so - an acceptable interaction is one which reaches a stable conditicn
of satisfactoriness.  In this condition we may say that the centroller

has become 'adapted' to the task.

2.3.2 Definition of a Controller Adanted to a Task

An interaction between controller and environment consisting

(=N

<
pe3

of the repetition of a single task is iImmedistely acceptable if it

always satisfactory - an immediately acceptable interaction is

obviously scceptable. A controller in such a condition that it

[N

would have an immediately acceptable interaction with a task is

adapted to that task.

2.3.3 Dynamics of Adaption

The concents of accen

performance by the controller of a 1
of the controller is generally advantageous because the particular

task it nmust perfornm is incompletely specificd or may
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pogsible varieties of adaptive behaviour in a control situation:
performance cf any one of & nurber of tasks are many, but
there are three modes of adaption of particular interest waich are
defined in the following sections.

Very often an adaptive controller will be.required to perforn
a single task which will not change, but whose characteristics cannot
be specified in advance. It must be capable of having an acceptable
interaction with any of a range of tasks, but need not necessarily
be capable of adapting to a sequence of different tasks. This mode

of behaviour is characterized in the following definition.

'2.3.4 Definition of a Potentiallv Adaptive Controller

A controller in such a condition that it will have an acceptable

interaction with any one of a set of tasks is potentially adaptive

to that set of tasks.

A potentially adaptive controller fulfils one function of an
adaptive system in compensating for ignorance about the nature of
its environment. It will not necessarily fulfil another major
function by performing satisfactorily in a changing situation, since
there is nc implicat%on that, having adapted to one task, it remains
potentially adaptive to others. Potential adaption is implied in
statments like, 'a shoe adapts itself to the shape of a foot', and is
the weakest form of goal-attainment to merit the designation 'adaptive'.

A controller which has to perform satisfactorily in a changing
situation must not only adapt to its immediate tésk, but must also
remain potentially adaptive to the other tasks it may meet. This
mode of behaviour is characterized in the following definitions of

_compatible adaptivity.

2.3.5 Definition of a Compatibly Adanted Controller

A controller is compatibly adapted to one task with respect to

set of tasks if, in an interaction consisting of the repetition of
that task, it is not 6nly always satisfactory but also potentially
adaptive to the set of tasks.

A controller which 1z compatibly adanted to one task with
‘respect to a set of tasks is clearly 'adapted' to the first task,
and, whilst performing it, never loses its capability for adapting
to any of the set of tasks. If the controller is te function in a

changing enviromment, it wmust always, when adanting to one task,
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beccue compatibly adapted with respect to the remaining tasks it
may meet - that is, it must be potentially adaptive to all its

possible tasks no matter which of them it has previously performed.

2.3.6 Definition of a Compatibly Adaptive Controller

A controller is compatibly adaptive to a set of tasks if, given

T any sequence of tasks from that set, it remains potentially adaptive
to the set of tasks.

Thus, a controller which is compatibly adaptive to a set of tasks
will have an acceptahle interaction with any one of them, and, no
matter how it becomes adapted to one of them, it will be compatibly
adapted with respect to the remainder.

The phenomenom of potential, but not compatible, adaptivity is
very interesting and quite common in biological adaption, both
phylogenic and ontogenic, and in animel, even human behaviour. A
nicrobe may adapt to a new culture to such an extent that it becomes
dependent on it and dies when returned to its former environment. A
species may evolve under the influence of a climatic change but come
to an evolutionary dead end such that it cannot reverse the process
when the climate returns to its original form. A human subject nay
be able to learn to $olve either of two problem types equally well,
but, after having learnt one and performed it for some time, he
acquires a 'set' towards the processes involved in its solution and,
when given the other, cannot discover how to solve it.

A controller which is compatibly adaptive to a set of tasks
is not necessarily able to become adapted simultaneously to all of
them. It is, however, cuite possible for two tasks to be so similar
that a contrdller which is adapted to one may also~be‘adapted to the
other. This mode of behaviour is characterized in the following

definitions of joint adaptivity.

2.3.7 Definition of a Jointly Adapted Controller

A controller is jointly adapted to a set of tasks if, given any

sequence of tasks from that set, it remains adapted to every member of
the set.

Thus, a controller wihich is jointly adapted to a set of tasks will
be always satisfactory given any sequence of those tasks. This is a

cn, and an even stronger one is that when a controlle

2

very strong condit

adapts to eny one of a set of tasks it should eventually become
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jointly adapted to all of them.

2.3.8 Definition of a Jointly Adaptive Controller

A controller iz Jjointly adaptive to a set of tasks if it is both
compatibly adaptive to the set and, during an acceptable interaction
with any task in the set, it eventually becomes jointly adapted to
the whole set.

Joint adaptivity would cbviously be expected to be far rarer than
compatible adaptivity, since it requires either that the same control
policy be aﬁpropriate to two different environments, or that a very
rapid chenge of policy be made when the environment changes. The
former phenomenom arises, fairly trivially, when the environments are
themselves very similar - for example, riding a scooter and then a
motor-bike - and the latter is of greater interest. The occurrence of
joint adaption when it is logically impossible for the same control
policy to be satisfactory in both environments - for example, when
the -joy-stick in a tracking task is reversed in sense - implies that
the learning of one skill does not greatly interfere with the skill

already acquired.

2.3.9 Inter-relatiofiships Between Different Modes of Adaption

The preceeding definitions of different modes of adaptive

behaviour have been given in order of increasing strensth, for if

a controller is jointly adaptive to a set of tasks it is also

e

compatibly adaptive to them, and if a controller is compatibly

adaptive to a set of tasks it is also potentially adaptive to them -

Jointly Adaptive = Compatibly Adaptive - Potentially Adaptive.

These three modes of adaption are by no means exhaustive, and many
variations are possible, defining other modes of adaptive behaviour.
However, many of these would be regarded as pathological, serving ne
useful function and having no correspondence to a well defined type of
adaptive behaviour. Other, more interesting varieties of adaptive
behaviour may be described in terms of the modes already defined. The

questions which are usually of interest are whether a controller is

potentially adaptive to a set of tasws,
Jin which it is compatibLly or Jointly ad

of adaption which have been defined formn

sterecotypes of adaptive behavioun,



2.3.10 Inter-relationshing Batween Tasks

The definitions of adapted, compatibly adapted, jointly adanted,

and potentially, compatibly and jointly adantive, nay be used to

~
o]

Hh
ct

define binary relations on the set asks relative to a given

controller - for example, task, is related to task2 if, and only if,

the controller is compatibly adapted to task. with respect to task,.
e " '| o ?

All six relations are reflexive, and only that induced by 'compatibly
adapted' is not symmetric. However, only 'adapted' and 'potentially
adaptive' induce relations which are also transitive (and hence are
equivalence relations). For instance, a controller may be jointly Y
adapted to taskl and task,, and also jeintly adapted to task2 and

taska, but given a sequence containing both taskl and task3 there is

no reason why even its potential adaptivity to both tasks should not
disappear. It is this lack of equivalence relations which gives
adaptive behaviour ité extraordinary richness. A controller which
showed no 'pathological' behaviour would be very rare, although the
more drastic forms would not be expected to occur. For example, the
relation induced by 'compatibly adaptive' ought to be one of equivalence,
because no sequence of normal tasks should be able to destroy a
controller's ability to adapt to one of them.

| The binary relations over tasks, generated by consideration of

a controller's adaptive behaviour, may be used as the basis for a
taxonomy of environments according to the problems involved in adapting
to them. = TFor example, if a family of controllers, in adapting to one
task, became jointly adapted to another, then it would be reasonable

tc suppose that the two tasks were very similar in the ccntrol strategy
required. If it were found that this was not so, but that potential
adaption to one task implied potential adaption to the other, then it
would be reasonable to suppose that the two tasks were related in the
adaptive capabilities which they required - this is the basis of some

'intelligence tests'.

2.3.11 Arbitrariness and Triviality in the Definitions of 'Adantive'

-

The behavicural definitions of 'adapted' and 'adaptive' contain

alt

£

e

an arbitrary element because the classification of 'tasks' is .
undefined, and the segmentation of the interaction hetween controller
and encironment is at will within the (very weak) constraints of

Section 2.2.3. This arbitrariness need not cause difficulty in the

analysis of adaptive behaviour, provided it is accepted that at some



stage in the discussion of an adaptive controller and its behaviour
this classification must be agreed. Yuch of the early controversy
over the application of the term 'adaptive' arose hecause the 'obvious',
tacit classification of one psychologist, or engineer, was not that

of another, or becauss disagreement over such a classification was

Even when the arbitrariness in the definitions is accepted,
there remains the possibility that some types of adaptive behaviour
may be 'trivial'. For example, 'jointly adaptive' is an apparently
very strongtconditon which may be quite trivial in reality - for
example, the tasks to which a controller becomes jointly adapted may

“be completely equivalent and need not be distinguished. 'Potentially
adaptive' is a very weak condition which may often be regarded as
trivial, because it is shown by systems undergoing an irreversible
descent to equilibrium. "Compatibly adaptive' adds the requirement
of reversibility, and is closest to what is commonly regarded as being
'really' adaptive. However, although a compatibly adaptive controlier
shows all the behaviour which one would expect of a 'really' adapted
to all of its tasks all the time, and hence show no adaptive dynamics -
it is just a very good, but static, controller!

In testing the Dehaviour of an animal, or automatic controller,
for 'adaption' or 'learning' it may be desirable to eliminate this
'trivial' adaption. It is meaningful, for example, to ask whether
an animal performs well in two different situations because it has a
policy suited to both, or because it changes its policy accordiag to
the situation. To force a controller to show adaptive dynamics, one
might say that it is 'really adaptive' to a task if it was an acceptable,
but not immediately acceptable, interaction consisting of the repetifion
of that task. The controller cannot then be a static system which
happens to have a suitatle control policy.

Sommerhof (Section 2.1.1) formulates this non-triviality require-
ment by requiring that tihe state of the controller must not, in itself,
ensure the satisfactoriness of the interaction. A particularly neat,
and operational, formulation of the same requirement ig given by

- Martens (195S) in his definition of 'machine learning'. He requires
that the controller have acceptsble interactions judged bv two

incompatible performance criteria. It cannot then have a policy which
satisfiés both criteria at once, and hence it is not immediately acceptalble
for one task when it is adapted to the other, This may be re-phrased

to

that a controller is 'really adantive! if it is compatibly adaptive
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a pair of tasks such that it is impossible for any controller tc be

jointly adapted to them both. However, it will be noted that all

these specific formulations are enconpassed in the present one.

2.4. An Automata-Theoretic Formulation of Adaptive Behaviour

In Sections 2.2 and 2.3 an axiomatic formulation of the nature
of"adaptive behaviour has been given in terms of tasks and the
satisfactoriness of their performance. This formulation has been
deliberately maintained in non-mathematical form, partly for purposes
of presentafion, but also because premature mathematization obscures
the basic logical nature of the definitions which are independent of
the notation used in their expression. However, to take the approach
established in these sections a stage further and build on it a theory
of training, some conciseness of notation is necessary, and this best
comes from an automatic-theoretic definition of the minimum-state,
observable structure which is cybernetically equivalent to the system
showing adaptive behaviour (using the terminology and results established
in Appendix 3). It is important to emphasize that the results of
Appendix 3 justify the remark that the analysis is still purely
behavioural, in that the automation used is one derived purely from
descriptions of behaVviour and acts only as a convenient basis for

discussing these behaviours.

2.4.1 Adantion Automata

From Section 2.3, the adaptive behaviour of a system is completely
described, in terms of this analysis, by a sequence of descriptions of
the task given and the satisfactoriness of the controller in performing
the task. Thus, a mininun sufficient set of descriptors for adaptive

behaviour is the set -
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- where t is a task belonging to the set of all tasks which may be

given, T, and p, D, are the two possible outcomes, 'satisfactory', and
'unsatisfactory', respectivelv.

e free semigroup » generated by this set of descripters,
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guences of tasks, together with all npossible
= I

~outcomes in terms of the satisfactoriness ¢f the intaraction. The
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ehaviour

Yoyt

a
clearly satisfies nostulates (1) and (1i)
~

of Section A3.3 - any real behaviour is necessarily
finite and the derived automaton an approximation (Secticn A3.3.6).
A 2

the construction of Section A3.3, an automaton may be

derived which is cybernetically equivalent to thie observed system -

aton of the adaptive system

defined by its behaviour.  The adaption-autonmaton will give rise to
the same seéuence of satisfactoriness as the adaptive system when it
performs the same sequence of tasks. In general, it will be an
indeterminate automaton, and even if its state is known its next state
cannot necessarily be predicted from the task given, but it is always
observable, in that its present state can be determined provided
suggicient of its past behaviour has been observed,

An adaption~automaton is a state-restricted automaton with a
possibly infinite set of states, S, probably a finite set of inputs,

.y + - . . .
T, and two possible outputs, P={p',p } . If the automaton is in

t

m

state, s £ S8, is given the task, t € T, then its next state, s' g S,

and its output, p € P, belong to the transition, and output, sets,

4

respectively:-

g! e o(s,t)

=

31 J.\Jl
L
,Q_\f r\)'

p e wl(s,t)

Since it is the effect of sequernices of tasks, especially those

generated by the repetition of a single task, which are of interest,

$e

t is important to have a clear notation distinguishing between tasks,
sets of tasks, sequences of tasks, and sets of sequences of tasks. 4

sequence consisting of the task t, followed by the task t2 will be

1
written tlt2 (with the obvicus extension to longer sequences) a
sequence consisting of the task, t, repeated n times will be written
n

t . A typical set of tasks will be repressnted by the letter,

T(T1, T,, etcl; a tyn ical sequence of tasks will be represented by the

2)

letter, u (ul, Uy etc). The set of sequences generated by the set
of tasks, T, as free gencrators will be written U(T) ~ that is, the

set of all possible sequences of tasks which may be fermed using
‘members of T. The function, o, has an obvious extension from tasks

—~

to task sequences ~ if u = tu', then:-
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ols, = {o(s',u'): s'e ols,t) } (2. 18]
Having established this structure, it is pessible to give set-

thecretic definitions of all the various modes of adaption defined
in Chapter 2.  These may now be characterized by the sets of states

of the automaton in which the behavicur can arise which satisfies

the constraints of the previous definitions.

2.4.,2 . Adaption Sets

Let W(T)

t

Vie 1, w(s,t) =) 2.15)

that is, W(T) is the set of states in which the controller will have

a satisfactory interaction given any task from the set, T.

Let MY = {s: ¥, o(s,t™) e 9} G.18

that is, A(T) is the set of states in wnich the controller is adapted
to the task, t, because, given a sequence of task consisting of t

repeated, the interaction is always satisfactory.

Let P(T) = {s : V/te T, EJDI: o(s,tN) < A(t)}

that is, P(T) is the set of states in which the controller is pot

~

adantive to the set of tasks, T,because, given any seguence of tasks
A TAAS

-

consisting of a member of T repeated, the interacticn is eventually

Il

always satisfactory.

Let CMtJﬁ = {s:#tsﬁ,n, dsﬁ?)cﬁ&)ﬂ?@)ﬂ?&@
that is, C,(t,T) is the set of states in which the controller is

A
compatibly adapted tc the task, t, with respect to the set of tasks, T

because, given a sequence of tasks consisting of t repeated, the inter-
action is alweys satisfactory and the state remains with the sub-set

£

which is potentially adaptive to the set of tasks, T.

Let c(T) = {s: \/u el(T), o(s,u)&P{T}} i§~l§

that is, C(T) is the set of states in which the controller is

compatibly adaptive to ths set of tasks, T, because, given any sequonce

of tasks consisting of members of 7, its state remains in the sub-zex

vhich is potentially adaptive to the set of tasks, T.

Let JA(T) = {s: W te T, ueil(T), ols,u)e&Aa(t)}

tates in which the controller is

state remains in the sub-set which is

adapted teo each menber of 7.
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N , -
Let J{T) = ({s: 33 i, V’th, uell(T), o(s,ut‘)CJA(l)} [:?19

that is, J(T) is the set of states in which the controller is jointly

EQEEEEXE to the set of tasks, T, because, given any sequence cf tasks
consisting of members of T, in further adapting to any one of these
tasks it becomes jointly adapted to them all.

The definitions of this section include all the modes of adaption
previousiy described in Section 2.3. The inter-relationships between
the various modes, briefly discussed in Section 2.3.9, now appear as

inclusion relations between the adaption sets. The most important of

these are:-

W(T, UT,)) = W(T)) e H(T,) ’ | G.23

P(T, WT,) = B(T))a B(T,) | 2.23
C(T,v 1T,) < c‘(frl) n c(T,) .23
(T Ty & J(T) e J(T,) 2.2g

A(t) C H(t) N P(t) IZ.2§

¢, (t,T) = A(t) N P(T) - ‘E.zﬂ
P(ty u t,) DAt A A(L) 2 J,(t, L)) ‘. C.23
P(T) = ¢(T) 23(T) 2.29

2.4.3 Trajectories in the State-Space of an Adaption-Autcmaton

These relations, and the process of adaption itself, appear most
clearly in diagrams of the adaption sets as sub-sets in the state-space
of the adaption~automaton. In the same diagram, the dynamic behaviour
of the adaptive system may be shown as the trajectory of states through
which it passes in adapting to a sequence of tasks. The set of all
states of adaption-automaton is shown as a rectangular region in
Figure 2-3. From an intial state, such as Y, repetition of a task,

t, generates a trajectory of states within this region - the states
are assumed to be assigned to pecints in the region such that, without

loss of generality for a single task, the trajectory appears as a

connected path. Within the region are delimited those states, W(T),
for which the controller is satisfactory when given the task, t. The

states, A(t), for which the controller is adanted to the task, t, from
‘a sub~set of thess, since a trajectory starting in the adapted region.
must always remain satisfactory. The states, P(t), for which the

controller is potentiallv adaptive to the task, t, form a third regicn,

5 the one in which it is adanted to t. Tigure 2-3 includes all

.
enclosing ;
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the adaption sets relevant to a controller adapting to a single task.
A trajectory through the state-space, generated by giving the
controller the task, t, many times in succession, tn, will show the
fellowing behaviour: -
started outside the potentially adaptive region, at Y, it
may enter the region of satisfactory interaction, but must
eventually always leave 1it; -
started within the potentially adaptive region, at X, it will
emain that region, perhaps oscillating between bLeing satis-
factory, and being unsatisfactory, for a while, but eventually
entering the adapted region, where it is always satisfactory,
and never leaving it.
Some of the relations between potential, compatible, and joint
adaption for two tasks, t nid t,, are illustrated in Figure 2-4.
The space of all states has been split into the regions, A(tl), A(t2),

R o - I'e 1 R - 3 TyaT »a 7 S
P(tl\)Lz), C(tlt)tz): J{t \Jt2) and JA(tlL)t2), and inclusion relations,

1
[?.2%] and l§.29 are clearly illustrated. Since two tasks are involved,
trajectories in the state-space may show a more complex variety of
behaviour than for a single task. For examnle, since the state, XC’

is within the potentially adaptive region for both tasks, P(tltjto),

but outside the compgtibly adaptive region, C(tlu t2), trajectories
generated by the task sequences, ti or t2,
adapted regions, A(tl) or A(tz), respectively, but, in so doing, they

will eventually enter the

nmust also eventually leave P(tlt)tq). This loss of potential
adaptivity to one task may not take place immediately on first adapting

to the other (as in the trajectory from XO to Xl)’ but may be dependent

on adaption taking place to both taks. For example, the trajectory
from XO to X2 under t2 enters z(tﬂ) within P t t,), and hence is
=

5

within Cg(twk3t2)' JOn taking advantage cf the reoicual adaptivity to
RN =N

t,, howsver, the trajectory proceeds to X3 which is not within P(tjkltz),
.

l)
so that the controller cannot agaln become adapted to t

; from Y. within the compatibly adaptive region,

C(t‘\)to) cannot leave the region of potential adaption to both tasks,

e

A trajectory atart

o

X

102
P(tl'UtQ), no matter what sequence of tasks of the form, (t +t2)*, ara

should remain within the region A(t,)NA(L,), so that the controller is

always adapted to both tasks, then they are within the region of jeint
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adaption, J (%
£

Ut ), and may have orizinated in the region of joint
5 s iy a3 o

1
adaptivity, J(tl\Jt2). They need not necessarily have done so,
since, whilst all trajectories generated by sequences of the form

- o F T e 3 wust evant: 3 =) ‘«) D
(tl+12) from within J(tlu t2) must eventually enter JA(tl t,), there

2
this

are states outside J(tlU t2) from vhich gome trajectories of
type will enter J,(t W t,.). ‘
AT 4L 2

For-a given adaption-automaton, certain of the adaption sub-sets
will generally be empty, and the definitions do not imply that the
corresponding states exist, but merely classify them should they be
present. The two Figures, 2~3 and 2-4, are drawn as if the state-space
had a convenient topclogy under the action of tl or t2, such that the
transitions occur to neighbouring points (In the Euclidean topolog
"of the plane). A plot of trajectories in an arbitrary state-space
will not show this convenient form in general, and tne individual adéption
sets may be partitioned into disjoint sub-sets, subject to the various
inclusion relations: Neither do these figures illustrate the possible
indeterminacy of the adaption-automaton - trajectories may fork in

practice.

2.5 Summary and Conclusions

In this Chapter, a critical discussionvof the nature of adaptive
behaviour has led to an axiomatic formulation of a theory of this
behaviour based on the concept of a 'task". Upon this concept has
been built a calculus of adaptive behaviour, initially in terms of
logical definitions, but finally in terms of semigroup-thecretic
definitions based on the derived concept of an adaption-automaton.

The possible modes of adeption are many, and only the most important
in the analysis of a system's adaptive behaviour have been singled out
for definition, However, any form of adaptive behaviour may now be
treated as a trajectory in the state-space of the adaption-automaten,
and ‘this is both a convenilent and intuitively satisfying representation.
In the following Chapter the problem of training is analysed in terms
of the trajectories in state-space induced by the sequences of tasks

»

used for training purposes.
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CHAPTER 3: TRAINING AS A CONTROL PROBLEH

3.1 Introduction

In this Chapter the approach tc learning behaviour developed in
Chapter 2 is extended to provide a rigourous foundation for the analysis
of training as a control problem, and to enable different modes of
training‘to be defined In this way it is possible to .regard training
as a problem of control and stability in the state-space of the
adaption-automaton of the trainee. Before problems can be 'solved' in
any sense, However, it is necessary to have some information about the
adaption-automaton.

It is not reasonable to suppose that the adaption automaton is
completely known in advance, and neither is it reasonable (because the
problem would be insoluble) to suppose that no information is available.
Hence, the latter part of this Chapter is concerned with factors
influencing the structure of the adaption automaton, and with the
minimal forms of information about its structure which make the training

control problem soluble.

3.2 Training as Control of the Adaption-Automaton

.

The formal analysis of learning behaviour in Chapter 2 (together
with the results of Appendix 3) show that it is possible to associate
with any learning system a structure, an 'adaption-automaton', which
is cybernetically equivalent in its behaviour to the adaptive behaviour
of the learning system. In particular it has been shown (Section 2.4.,3):
that any learning sequence of behaviour involving an interaction .
between the learning system and its environment may be represented as a
trajectory in the state space of the adaption automaton. By considering
the effects of one form of interaction, or 'task sequence', upon the
adaptivity of the learning system to particular 'tasks' it is possible
to formalize the concept of training and associated concepts such as,
'negative and positive transfer'.

Consider again Figure 2-~3 which shows the regions of satisfactory
interaction, W(t), adaption, A(t), and potential adaption, P(t), within
the state space of the adaption automaton for a particular learning
system. If the objective of training is satisfactory performance of
the task, t, then it is required that the state of the adaption automaton

should finally lie within the region A(t). However, it is adequate for
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training purposes that the state of the adaption automaton should lie
within the region P(t), since trajectories generated by the task, t,
from within this region always eventually enter, and remain in, A(t);
that is, the learning system will itself adapt to the required task
when the state of its adaption-automaton is initially within P(t).

Thus the training control problem only becomes non-trivial when
the imtial state of the adaption-automaton is outside the region P(t),
and the objective of any training strategy must be to bring the state
of thé adapticn-automaton within this region. When the initial state
of a controller's adaption-automaton is outside the region of potential
adaption to a task, then successful learning will not take place if it
is given that task alone. Given some other sequence of tasks, however,
the controller will adapt-to them, and may, in so doing, become
potentially adaptive to the original task - the sequence of tasks may
be said to have trained it for the original task.

In Figure 3-1, for example, the point A is outside the region of
potential adaption to the task, t, and repetition of the task does not
" lead to stable satisfactory performance. The sequence of tasks, u,
however, gives rise to a trajectory in the stafe*space which terminates
at Al’ within the region of potential adaption - hence, from A, a sequence
of tasks of the form, ut, causes the controller to become adapted to t,
whereas a sequence of the form, t", does not. If the training sequence,
u, consisted of another task, t', repeated many times, then it would be

said that there had been transfer of training from t' to t.

The training sequence, u, will not necessarily be suitable for all
initial conditions of the controller, and, for example, the trajectory
induced by u from the point B in Figure 3-1 terminates at Bl which is
still outside the region of potential adaption. It is possible that
the training sequence, u, may not only be ineffective in this way, but
may also be detrimental in certain circumstances - for example, the
point C is within the region of potential adaption, and yet the

trajectory induced by u from C terminates at C, which is outside that

region. In this case, if u = (t')n, then it iould be said that there
had been negative transfer from t' to t.

Even when u is ineffective as a training sequence it may be possible
to find an alternative sequence with the desired effect - for example,
in Figure 3-1 the sequence, v, induces a trajectory from the point, B,
»which does terminate in the region of potential adaption. In the case

of point C, it is clear that no training sequence is required, and the

task, t, itself induces a trajectory within the region of potential



o
Y
oy

COMPLETEZ T30y
TRANSFER| @y N

'<) ;
M .:'r"lﬁj'-..ﬁ.

PARTIAL u
 TRANSFER

Figure 3-2 Qupen-Loon Training Spaces

56



57
adaption. Thus, even when the centroller is not potentially adaptive
to its required task, it may be possible to cause it to become so by
giving it an appropriate training sequence. To chose between training
sequences, however, and to decide whether one is required, it is
necessary to have some information about the initial state of the
adaption-automaton.

Hence, training may be analysed as the control problem:-
given an adaption-automaton structure, TePresenting the possible
adaptive behaviour of the traihee, generate a sequence of tasks to
serve as an .input to the automaton, such that its state terminates in
a region where the controller is potentially adaptive to the required
task. In general, the initial state of the automaton will be
unknown, and information about the past behaviour of the trainee must
be used in order to determine it. Since the adapticn-automaton may
be indeterminate in its state-transitions, an open-loop training
sequence will not necessarily be adequate, and continuous feedback
from observations of the behaviour and performance of the trainee may
be necessary. In the following sections, different strategies for

training are distinguished according to these considerations.

3.2.1 Fixed Training

It is convenient to distinguish one strategy for 'training' in which
no attempt is made to solve the control problem described in the last
section. In Section 2.4, it is stated that 'the fundamental situation
with which a controller is expected to cope is to be coupled to a fixed
environment and learn to centrol it satisfactorily'. This is, in a
weak sense, a training situation, in that the trainee is given an
opportunity to learn, and the seqience of tasks corresponding to it, a

repetition of a single task, will be called a fixed training sequence

for the environment corresponding to that task.

The success of fixed training depends on the trainee being at least
potentially adaptive toc the task he has to perforh, or, more strongly,
compatibly adaptive to the set of tasks he may have to perform. The
selection of tasks by the trainer involves no observation of the
condition of the trainee'’s adaption-automaton, and he is given only

those tasks which he is required to perform satisfactorily.

3.2.2 Open-loop Training

In open-loop training, the trainer still does not observe the state
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of the adaption~automaton of the trainee, but prepares him for

adaption to the main task by giving an initial sequence of auxiliary,

or training, tasks for which the *trainee is not necessarily required
to be satisfactory. For example, the sequence u frem point A of

Figure 3-1, or the sequence v from peint B, both induce trajectories
which bring the state of the adaption-automaton within the region

of potential adaption to the task, t. Fixed training on the task t
alone is inadequate if the initial condition of the trainee corresponds
to A or B, but the initial training sequences, u or v, respectively,
enable adaption to take place, given further fixed training.

In open-loop training, however, there is no information available
as to the state of the adaption-automaton, and, if u were chosen to be
the training sequéncé, then it would be given under all conditions.
From Figure 3-1, it is clear that u would not be an effective training
sequence from B or C, and it becomes important to determine those
regions of state-space in which u has the desired effect. In Figure
3-2 are delimited those states from which training with an initial
sequence, u, causes the trainee to become adapted, or potentially
adaptive to the task, t. If u were itself a single task, t', repeated,
then the first region might be called one of ‘complete transfer' from
t' to t, and the second region one of 'partial transfer'. It.is
interesting to note ;hat neither the region where the controller is
potentially adaptive, nor that where it is adapted, need be contained
in the region of partial transfer - the region of potential adaptivity,
but no transfer from u, may be called one of 'negative transfer’.
Clearly, the utility of u as a training sequencé depends on maximizing

the region of partial transfer, and minimizing that of negative transfer.

3.2.3 Conditional Adaption Sets

The behaviour of a controller relative to training by a given task
sequence, and the various phenomena of transfer, may be defined by sets
of the form shown in Figure 3-2, and set-theoretic definitions of
trainability may be given similar to those for adaptivity. There is
obviously a far greater variety of possible behaviour in training,
where adaption is conditional upon previous learning in a tréining
sequence which may itself have definable structure, and many phenomena
‘are best analysed directly in terms of trajectories in state-space. A
few conditional adaption sets are of sufficient general importance to

be formally defined.



Let A(tiu) = f:§ c(s,u)CA(tﬂ Bi]

that is, A(t:u) is the set of states in which the training sequence, u,
causes the controller to become adapted to the task, t. This is the
gset forming the region of ‘complete transfer' in Figure 3-2, and the

trainee may be said to be completely open-loop trainable by the task

sequence, u, for the task, t, when the state of his adaption-automaton

is in A(t:u).
Let P(T:u) = [s: ofs,u) < P(T)] G.2

that is, P(T:u) is the set of states in which the training seguence, u,
causes the controller to become potentially adaptive to the set of
tasks, T. A trainee whose adaption-automaton is in one of these states
may not adapt to a task, teT, when given the fixed training sequence,
tn, but will do so when given the open~loop training sequence, utn;

a trainee in such a condition may be said to be potentially open-loop

trainable by the task sequence, u, for the set of tasks, T.
Similar conditional-adaption sets may be defined for compatibly

open-locp trainable -

c(t:u) = [Br o(s,u) € c(T)] 3.3

and for jointly open-loop trainable -

J(T:u) = [é o(s,u)CJ(Tﬂ BQ

Apart from the greater variety of the conditional adaption sets
themselves, there is also a far wider range of inclusion relations
possible, and these will not be described in detail. The interesting
inclusion relations are not _hose logically entailed, as are {5.22
through [é.2@ » but those which are a function of the controller and
tasks. For example,'the region of negative transfer has already been
defined as those states in which the contrcller is potentially adaptive
to t, but not potentially open-lcop trainable by u. For u to induce

no negative transfer, we must have:-
P(t:u) = P(t) Egﬂ

Another region of interest is that part of A(t) which is outside A(t:u) -
in this region the controller is adapted to t, and this adaption is
destroyed by giving it u. However, provided -

plt:uy = alt) ' k.d

the controller is able to re-adapt to t, and u has acted only as a

transient distrubance to its performance. In this event we might say
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that the learning of the task, t, was robust to the influence of the
sequence u.

Clearly consideration of the robustness of learning leads to an
even more complex structure of adaption sets ~ A(t) may be split into
disjoint parts, Al(t), A2(t), with correspcending potential adaption
sets, Pl(t), P2(t), such that it shows robustness to u in Al(t) but
not in A2(t), and we may consider the problem of training a controller
to, "adapt to t robustly with respect to u". Thus, the conditional
adaption sets provide not only the means for evaluating various open-
loop trainiﬁg sequences, but also a calculus for defining the effects
of performing one task, or task sequence, when the controller is in

various stages of adaption to another; the conditional adaption sets

enable the stability of adaption to be evaluated.

3.2.4 Feedback Training

An open-loop training sequence would be chosen to make the
conditional~adaption sets as large as possible, and clearly the optimum
sequence would be such that at least P(t:u) includes all possible initial
states of the adaption-automaton. If this is not possible, some
general restrictions, such as P(t:u) D P(t), may be applied to ensure
that training does nét destroy adaptivity which is already present.
However, it may not be possible to find a single training sequence which
has all the desired properties, and hence it may be necessary to apply
different training sequences dependent on the condition of the trainee.

So far, the traihing sequences have been taken as fixed sequences
of tasks, but, since the adaption-automaton may be indeterminate in
- its behaviour, it is possible that an effective training sequence
cannot be determined in advance even when the initial state of the auto-
maton is known. For example, from D in Figure 3-1, the training
sequence, u, might induce a trajectory which terminates either at D

1
within the region of potential adaption, or at D, which is outside the

2
region; a further examination of the condition of the controller after
having been given u is necessary to determine whether the training has
been successful.
Even if the adaption-automaton is determinate, it's initial state
‘will generally be unknown, and observations of the controller's
interaction with some environment will have to be made in order to

determine the state of the asutomaton. The task sequence corresponding

to this initial interaction clearly need not be a training sequence,
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and might rather be a testing sequence designed solely to obtain
information about the controller prior to training. Such a testing
sequence, or 'probe', differs from a training sequence only in that
it is designed for rapid observation, rather than to change the state
of the adaption-automaton appreciably, and testing may be analysed
within the same theoretical, and conceptual, framework as training.

Both when the adaption-automaton is indeterminate, and when it is
to be determined by observation, the training sequence is contingent
upon feedback from observations of the interactionketween trainee-
and environment, and a system for implementing this feedback will be

called a feedback trainer. For the feedback trainer, training has

itself become a control problem: there is an 'environment', physically
the controller, conceptually its adaption-automaton, whose inputs are
‘tasks and one of whose outputs is the satisfactoriness of the previous
interaction; the control problem is to take the automaton from an
initial state in which the controller (trainee) is not adapted to the
task, to a final state in which it has become adapted to the task (or
potentially, compatibly, or jointly, adapted to a_set of tasks); the
performance measure for this control problem may be based on the number
of tasks given before the controller becomes adapted, or it may be a
more complex cost function based on the cost of giving irrelevant tasks,
and so on. In the following section the "solution' of the feedback

training control problem is analysed in more detail.

3.3 The Nature of the Training Control Problem

The derivation of open-loop training sequences and feedback training
algorithms, given the structure of the adaption-automaton, is amenable to
'solution' by some of the techniques of modern control theory, such as
'dynamic programming' (Bellman 1957). However, it is totally unrealistic
to consider the application of such optimal control algorithms to training
in any real situation since the adaption-automaton will never ke known in
sufficient detail. It is noted in Appendix 3 (A3.3.6) that the derivation
of structure from behaviour as there described is a solution to the
problem of complete induction. In practice, however, due to the
irreversibility of moét learning systems it is not possible to collect
descriptions of all possible behaviour and only partial information is
available. Essentially the adaption-automaton will be onliy partially

‘known, an approximate model of the adaptive behaviour.
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Thus the training control problem is comparable with the majority
of real control problems where there is only partial information about
the plant and controllers are designed to perform reasonably well with
a range of possible plants rather than optimally with a particular
plant. In these circumstances feedback control is essential (because
the state-transitions of the partially-known piant cannot be completely
predicted in advance), and the prime initial problem is to ensure
stability in control - that is, that the controller should bring the
plant to (global stability), and maintain it in (local stability), a
prescribed region of its state-space. In the following sections some
weak conditions on the adaption-automaton will be established which

ensure the existence of globally stable feedback trainers.

3.3.1 First Training Theorem

A necessary requirement for training to be possible is that there
should be available training sequences to transfer the state of the
adaption-automaton from any state it might reach during training into
at least the potentially-adaptive region. Since an adaption-automaton
is generally indeterminate it is also necessary to ensure that these
sequences do actually cause the required transition, if not always at
least 'frequently' (in the mathematical sense). Given these postulates
it is at least feasible to cause the learning system to adapt through
training. '

However, the training algorithm itself is not trivial given that
the only feedback available is the performance of the learning system.
A suitable (necessarily weak) training strategy would .be to give the
required task, t, only once the state of the adapfion-automaton is
within the potentially adaptive region, P(t), and to chose a training
sequence at random if the state is outside P(t). The random choice
ensures that there is a finite probability of entering P(t) and, since
there is zero probability of leaving P(t), entails convergence of the
state to within A(t). Unfortunately, whether the state of the automaton
is within P(t) is not known since its performance may be unsatisfactory
within P(t) and it may be satisfactory outside it (within W(t) - P(t)).

A suitable training procedure given only performance feedback is
to give the task t until the performance is unsatisfactory, and then to

select either t or one of the possible training sequences at random,
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then give the task t again until the performance is unsatisfactory,
and so on. Clearly if t is given outside P(t) but within W(t) then,
by the definitions of these sets (Section 2.4.2), the performance
must eventually become unsatisfactory and some training sequence will
be given with a finite probability of causing the state to enter the
region P(t). Equally if the state is within P(t) but cutside W(t)
there is -a finite probability of t being given long enough for the
state to enter A(t). Convergence under this 'training strategy' is
clearly a weak result, but the postulates are so weak that no stronger
result can be expected - the weakest possible conditions that will ensure
the existence of a convergent feedback training algorithm, and hence a
globally stable feedback trainer, are an important starting point from
which to discuss stronger results based on stronger postulates.

For purposes of the theorems on training, the adaption-automaton
will be taken to be finite-state. This is unnecessarily restrictive

but makes the proof more transparent and meaningful in practical terms.

- Theorem 3-1 Given a finite-state adaption-automaton and associated

sets as defined in Section 2.4%.1, a specified task Tt ¢ T, and a set of

task sequences,V<U(T), satisfying the conditions specified below, then
dhere is a feedback training strategy (based on the performance feedback
of equation [ﬁ.é] orfly) such that the probability of the output of the

adaption-automaton being satisfactory tends to unity.

Conditions on task sequences

If X is the state semigroup (Appendix 3 - Section A3.4) generated
by the following constraints on the adaption-automaton :-

a) initial state belongs to some subset Soc; S

b) the sequence of tasks input to the automaton is constructed

of segments of the form:-

(i) initial segment is Tt
(4i) if the output of the automaton was p+ at the end of the
previous segment then next segment is T
(iii) otherwise'next segment is v¥, where v is any task szquence
such that v € Vy=r
then -

,,V seiZnsSy dveVv: n(s,v) e Plr) frequently
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where 'frequently' implies that the sequence of events in which the
state s occurs and the input sequence v is given either terminates
after a finite number of occurrences, or after any occurence of the
pair (s,v) there always exists some future occurrence of the condition
n(s,v)e P(1). This ensures that training is always possible taking

into account the possible indeterminacy of the adaption automaton.

Proof The proof is constructive - consider the training strategy
defined by the use of the task segments described in condition (b),
subject to the constraint that when a sequence is selected from Vv 1
the selection is probabilistic with uniform probability of selecting
any possible sequence. It is sufficient to show that the state set,
A(1), is the only trapping set and that there is a finite probability
-of reaching a state within it at any point in the state trajectory.
A(t) is trapping since by equation [2.1§ for any state s ¢ A(1),
o (s,T ) & W(t) so that from equation [2.15] n(s, 7)=p’ and hence from
condition (b)(ii) the next task will be and from equation [2.16] the

state will remain within A(<).

No other state sets ocutside A(1) can be trapping since for states
outside W(t) there is a finite probability that a sequence v ¢ V will
be used for input that will take the state within P(g) and that a
sequence containing only 1 will be used thereafter taking the state
into A(1). Whereas for states within W(t) - A(t), a sequence con-
sisting only of ¢ cannot be maintained since the state must eventually
leave W(t) (py definition of A(1)) and there is then a finite probability

of not selecting rt.

3.3.2 Second Training Theorem

The first training theorem is clearly a weak result. However,
it is worth noting that the training sequence had to be carefully
constructed to avoid the problems caused by W(t) and P(t) not coinciding.
It is also of interest that an essential random element was necessarily
introduced into the training strategy to allow for the lack of knowledge
of the 'correct' training sequence for a given state. The training
strategy is simple and deces not involve identification of the state of
the adaption~automaton or detailed knowledge of its structure.

Stronger results on training can only result from stronger constraints,

“that is,greater knowledge of the structure of the adaption automaton.
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There are clearly infinitely meny possible sets of constraints to
ensure the existence of convergent training strategies with additional
desirable properites such as rapid convergence.  Only one further
case will be ccnsidered since 1t corresponds to the type of trsining
problem considered in Chapters #, 5 and 6, The assumption wiil be
made that a sequence of tasks is known such that performance of one
task leads to improved performance of the next task in the sequenca.
The training strategy is then to give the tasks in either forward or

reverse sequence according to the performance.

(oW

3 >
ratce

Theorem 3.2 Given a finite-state adaption-automaton and assoz

sets as defined in Sect.on 2.4.1, a specified task 1 ¢ T, and a finite
sequence of tasks -

T, ty 5t s t. s ees s T

o 1l 2 3 i
satisfying the following conditions -
(i ty T

i)Y n:0<n <N, A(tn“J) C:P(tn)
(iii) P(to) D I nS

where @ is the state semigroup generated by applying any sequence of

t, through tN from an initial set of states Soc: S,

then there is a feedhback training strategy (based on the performance
feedback of equation ‘E;@] only) such that the probability of the output

of the adaption-automaton being satisfactory tends to unity.

Proof The proof is again constructive - consider the strategy in which -

(a) the initial task given is t,

(b) if the previous task was t, and the cutput of the automatcn
1

+ . ; ‘g
was p , the next task is chosen from t_ and t (t, if
n nyl TN

t does not exist) with finite probability of chosing each.
(c) if the previous task was tn and the output of the automaton

was p the next task is chosen from t_and t (t if ¢
n n-1 o n-

a

1
does not exist) with finite probability of chosing each.
As shown in the proof of the first training theorem, the conditicn
in which the task t is being given when the state of the autcmaton is
within A(1) is trapping, since the output will always be p+ and by

condition (b) above no change will be made in the tasx given.



Suppose that the task tn is being given and the state of the

automaton is within P(tn—l)’ tien there is a finite probability that

t will continue to be given until the state comes within A(tn~l) and
that the task will then be changed to t . Since, by condition (ii)

of the theorem, A(tn_l)CIP(tn), there is thus a finite probability of

)

changing from the condition in which tn is béing given within P(tn

to the state in which t is being given iithin P(tn). Hence there ii
a finite probability of reaching the condition in which t=T is being
given when the state is within A(T).

Suppose that t, is being given and the state of the automaton is
outside P(tn), then, by the definition of A(tn), there is a finite
probability of t continuing to be given until the state is outside
'W(tn) and hence the output of the automaton is p . Hence by condition
(c) above, there is a finite probability of the task being changed to

t Then either the state will be within P(tn_l) in which case the

pieieeding paragraph applies, or if not the argument of the present
paragraph applies. Thus eventually a condition must arise in which
the state of the automaton is within the potentially adaptive region
for the task being given, or the task must come to be to but by
condition (iii), P(to):b I n S, and the previous paragraph applies.
Thus the only tyapping condition is T being given within A(71)
with output always satisfactory, and there is a finite probability of

reaching this from any other state.

3.3.3 Extension to a Lattice of Tasks

An immediate corollary to Theorem [3-21 is to consider a semi-
lattice (Clifford and Freston (19€l) p.24) of tasks, L, ordered by a
relationship, < , such that T is an upper bound, condition (ii) of
Theorem [3-2) is satisfied by any pair of directly connected tasks
in the lattice, and there is a set of tasks, Lo’ each of which satisfies
condition (iii). That is if:-

(DVte L , t<rt

(ii) V/t,t' € L': t < t', but there is no t* ¢ L :

t < t*<t'; A(t) < P(t")
GiDVte LeL, P s
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then it is clear that any directly connected chain of tasks starting
within L_ and terminating at t satisfies the conditions of Theorem B-21.
Hence the result of Theorem [3-2] can be generalized to strategies

based on probabilistic movement along connected chains in a semi-

lattice of tasks, with movement towards ¢ when the output of the autématon
is satisfactory, and movement towards Lo when it is not.

This corollary is important in the context of the situation chosen
for studies of human learning, and is discussed further in Section 4.4.2
in relationship to the movement of the stability boundary of an operator
learning a second-order tracking task. However, the result is also of
interest in its abstract form in that it gives more meaning to the
concept of relationships between tasks discussed in Section 2.3.10.

It is also of interest to comsider the extension in more qualitative
terms. One may picture the task given as tending to travel upwards
through the lattice as learning progresses and the automaton's output
becomes satisfactory for tasks of increasing difficulty, and downwards
through the lattice if the automaton's output becomes unsatisfactory
and it is suspected that the task is too difficult. If the path
length from entering P(t) to entering A(t) is long, then a high probability
of changing the task will tend to take the task up to too high a level
on the one hand, and-down to a level for which the automaton 1s already
adapted on the other. Hence the level of difficulty will tend to
oscillate with increasing rapidity as the probability of changes goes
towards one. Equally, however, if the probability of change is very
low, the transition to a more difficult task will be made later than is
necessary but the automaton will be well adapted to the current task
and hence within the region of potential adaption for the next - there
will be little fluctuation of the task but steady progress towards 71 .

It is possible to equate the probatility of changing the task with
the 'loop-gain' of the feedback training by equating p+ to +1 units of
performance, p- to -1 units of performance, calling the difficulty of
t , 8 = n/N, and the probability of changing the task, p. Then we have

n
from (a) and (b) of Theoren -2 -

expected change in & = p times current performance.

Hence, the argument of the last paragraph may be interpreted as showing

. that too high a loop~gain will lead to-slow learning through oscillating
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task difficulty, whereas too low a level will lead to slow but steady
learning and increase of task difficulty. This is the type of dynamic
behaviour which would be expected of a simple servo system, and it is
interesting to note that it is possible to derive it from an abstract
and fairly general feedback trainer without considerations of continuity,
linearity, etc. It also leads to the expectafion, taken up again in
Section 4.5, that an actual feedback trainer although clearly highly

nonlinear may Le reasonably analysed as a simple servo system.

3.4 Epistemological Constraints upon the Adaption Automaton

The problem of ideatifying the structure of the adaption-automaton
of a learning system in complete detail has been circumvented to some
extent by the two training theorems which demonstrate that training is
possible without detailed knowledge of the adaption-automaton provided
certain constraints on it exist. The weakness of the necessary constraints
is demonstrated by Theorem 1, whilst Theorem 2 indicates a more practically
-useful level of constraint.

It is clearly of interest to consider whether there is any way
other than by direct observation of the learning system in which the
contraints can be inferred. In particular, starting from the assumption
that the learning sy&tem can solve a certain class of problems and hence
has a particular approach to, or hypotheses about, its environment, is
it possible to infer probable (weak) constraints upon its adaption automaton.
One particular epistemological problem which seems a universal source of
difficulty in learning is the interaction between the acquisition of
knowledge about environment and the degree of control exerted over it.
In recent years this has been analysed system~-theoretically as the

"dual-control problem!,.

3.4.1 The 'Dual Control Problem!

In the development of adaptive control theory, one of the early
steps in simplifying the overall problem was to split it into iwo parts -
that of determining the characteristics of the system to be controlled,

or system identification, and that of determining the best controller,

relative to some performaiice criterion, for a known controlled element,

or controller optimization. This separation has enabled powerful theories

‘of identification and optimizaticn to be developed separately from one
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another. However, in any real adaptive control situation, such a
separation is impossible and if, from the total activity, 'identification'
and 'optimization' are separated out, then the interaction between them
makes nonsense of any theories holding for each individually; for
example, even in the control of a simple linear system, Sworder (1966)
has shown that the optimum identification technique coupled to the
optimal control algorithm does not lead to the optimum controller. In
more complex systems, it is clear that there may be a conflict between
the two requirements that in order to control a system the controller
must have information about its relevant characteristics, and in order
to obtain information about system characteristics relevant to control
the controller must cause the system to operate in the relevant region,
-that is, control it.

This conflict has been extensively analysed by Feldbaum (1960, 1960%,
1961, 1961%, 1963) who calls it 'the dual control problem', the dual
aspects being 'investigating' and 'directing'. He states, 'in dual
control system, there is a conflict between the two sides of the controlling
process, the investigational and the directional. An efficient control
can only be effected by a well-timed action on the object. A delayed
action weakens the control process. But the control can only be effective
when the properties of the object are sufficiently well known; one needs,
however, more time té become familiar with them’'. In his theoretical
studies, Feldbaum considers the dual control problem from a statistical
decision theoretic point of view under restricted conditions, and derives
some algorithms for optimal control relative to an overall performance
criterion which combine both identification and optimization.

Both Sworder and Feldbaum are more concerned with optimizing an
overall performance criterion using an integrated strategy, rather than
determining the effects of combining independent identification and
optimization algorithms into a single learning control algorithm. In
general, it is clear that overall optimization is not poséible, and there
will always be a conflict between strategies designed to learn about an
environment, and strategies designed to control it; for example, even
at the level of the simple maze, initial exploration may show that a
path which approaches close to the goal is blocked - at some time later
it may become unblocked and offer a very much more rapid route, but the
possible advantages to be gained by knowing this must be balanced against

the loss in time taken by continuous exploration.
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3.4.2 The Sub-Environment Phenomenom

The funamental structure of all forms of adaptive controller is
a two-level hierachy in whick the lower level implements one of a
class of control policies, whilst the upper level selects the class
to be implemented, Figure 3-3. This definition emphasizes the relativity
of the term 'adaptive' from a structural point of view, since any
particular controller may be split up in many ways according to the
definition of a class of possible control policies; a similar relativity
in the behavioural definition of 'adaptive' has been noted in Section
2.3.11 due to the variety of possible ways in which an interaction may be
split up into 'tasks'. The relativity of adaptive control structures
emphasizes the progressive nature or our understanding of them - as control
science progresses, we may expect the adaptive controllers of one era to
become the control policies of the next.

To select a control policy approriate to the environment and its
goal in controlling it, the upper level of an adaptive controller
requires informatim about the nature of the environment and its inter-
action with it. There are two distinct classes of information relevant
to the selection of a control policy: the nature of the environment
itself, that is, identificaticn of the input/state/output relationship
for the envirénment;.and performance measures for various possible
control policies operating upon the environment. Figure 3-3 shows both
these types of information being féd teo the upper level of the adaptive
controller, and clearly either source is capable of forming the basis
for the selection of a control policy: if the controller is able to
identify the environment completely and correctly, and has access
to a mapping from environments to optimum policies, then it can implement
the best policy available; equally, if the controller is able to
establish performance measures for all possible control policies by
implementing each in turn, then it can, finally, select the best available.

It is when identification and performance evaluation are not
exhaustive, and are combined with the necessity to exert some control over
the enviromment, that difficulties in learning arise. These occur because
any given control policy will generate some sub-environment, that is, it
will restrict the states and state-transitions of the environment to some
sub-set of the total possible behaviour. This effect is analysed in

Appendix A3.2.4, where it is noted that the behaviour of the sub-environment
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generated by a control policy defines a system structure which varies
with the control policy. The sub-environment generated by arn initial
control policy may be entirely different from that generated by an
optimum or satisfactory control policy, and learning in the initial sub-
environment may then be irrelevant or even deleterious to performance
in the desired sub-environment. Alternatively, and especially if the
adaptive controller adopts a deliberate search policy, the initial
environment may be so extensive that learning about it would take an
unacceptably long time.

The sub-environment phenomenom will have different effects on
controllers using identification, and controllers using performance
.evaluation, in order to vary their control policy. In identification,
the measured parameteré of the environment will generally not characterize
it completely, but only determine some particular properties. In normal
. circumstances, in the desired or expected sub-enwironment, many other
properties will be correlated with these and may be deduced from them.
If the initial control policy generates an abnormal, or unexpected,
sub~environment, then the measured parameters may carry no inference
about other characteristics of the environment, and the control policy
~ selected through them might be invalid. If this policy also generated
an abnormal sub-environment then mal-adaption would continue, so that
a normal sub-environment and am optimal control policy would never be
attained.

if é controller adapting through performance-evaluation measured
the performance of every possible control policy, then the sub-
environment phenomenom would cause no difficulty. In practice, hcwever,
the environment cannot be assumed to be stationary over periods long
enough to do this, and the time taken would be unacceptable. Hence,
controllers using performance as a guide to adaption assume that there
is some topology on their control policies such that, given the
evaluations of a number of different policies, they are able to select
a new policy 'near' to the best and 'away' from the worst; that is,
they modify their policies incrementally in a 'hill-climbing' mode.
Incremental changes in policy will generally cause incremental changes
in the sub-environment, and these changes may be such that the total
environment fragments into a set of disconnected sub-environments. If
the initial sub-environment is not connected to the desired one then
the system will be trapped and the contrcller will never attain cptimal

control; this phenomenom is shown particularly clearly by the 'evolution-



ary' controllers of Bremermann referenced in Appendix 1.

The fragmentation of the environment resulting from difficulties
in learning may be treated theoretically in terms of the concepts
developed in Section A3.4, by examining the O-minimal ideals of the
combined controller/environment in terms of the state-semigroup of the
environment. If the O-minimal ideal in which the system eventually
resides éontains state-sequences outside the free semigroup generated
by the states in which the encironment shows the desired behaviour,
which the adaptive controller is attempting to enforce, then the

controller is clearly unsuccessful.

3.4.3 Overcoming the Sub-Environment Phenomenom Through Training

The obvious training strategy to alleviate the difficulties caused
by the sub-environment phenomenom is to force the initial sub-environment
of the controller to be the desired sub-encironment. This is clearly
only possible if there are additional inputs to the environment, and,
possibly, additional outputs from which to determine how these inputs
should be driven. The additional loop between these inputs and outputs
necessary to produce the desired sub-environment may be represented, as

shown in Figure 3-%, as the addition of a training controller to the

environment. The concept of a training controller may be applied in
a variety of learning situations - in teaching Euclidean geometry, the
training controller might draw in a suitable construction to enable
a problem to be solved by elementary procedures; 1in conversation, the
training controller might repeat parts of a statement so that material
relevant to the comprehension of later phrases is not missed; in
manoeuvring a simulated vehicle, the training controller might apply
auxiliary feedback to maintain the overall control loop marginally stable.
Since the trainee in Figure 3-4 is assumed to be adaptive, the
training controller need exert less and less control to maintain the
desired environment as time passes. If its control policy remains the
same, then it is probable that the actual sub-environment will become
only a small part of the desired one, which may have just as deleterious-
effects on the learning of the trainee as the generation of a sub-
environment disconnected from the desired one; it is also necessary for
‘the trainee to learn to control the environment independently of the
co-operation of the training controller. Hence, there may be a training
controller which selects a suitable training controller either as a

function of time (open-lcop training, Section 342.2), or according to
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information about the state of the trainee (feedback training, Section
3.2.4).

In- particular, a sequence of tasks such that performance of a
task is a certain region of the state space of the adaption automaton
leads to a suitable sub-environment for learning relevant to the next
task in the sequence will lead to conditions satisfying the requirements
of the second training theorem (Section 3.3). Thus consideration of
the relationship between controlling a system and learning about it
without reference to any particular learning system may lead to probable
constraints upon the adaption automaton relevant learning systems. Such
an approach clearly cannot demonstrate that any particular system can
actﬁally learn a task, but many lead to optimal conditions for learning

should system be capable of doing so.

3.4.4 Training and Communication

It may be noted that the structure of the training system shown in
Figure 3-4 is an exact image of the structure of the trainee, regarded
as an adaptive controller shown in Figure 3-3. The upper level of the
training system adjusts the control policies of the lower level so as
to maximize the effectiveness with which the upper level of the trainee
varies the control policies of its lower level. Thus, the trainer

communicates with the adaptive level of the trainee through a very

complex system in which two controllers interact with a common environment.
With the human controller, and with recent learning machines, direct
verbal communication may be possible between the. two higher levels, so
that the trainer may short-cut the complex communication channel through f
the environment and prime the trainee with information relevant to its
control problem.

The nature of verbal communication is not sufficiently well understood,
especially in its effects on perceptual-motor skills, to enable a thorough
analysis of the use of a direct channel of communication between trainer
and trainee. In the context of identification and performance evaluation,
however, it is clear that it may be possible for the trainer to pass
information about the true nature of the environment or the optimality
of various control policies to the trainee, and hence eliminate the
sources of difficulty in the dual control problem. Discussion of possible
forms of instruction for human operatofs is given in Section 5.1.8, and
experiments with learning machines are described in Section 6.3.4.

The advantages of direct communication are great, but the conditions

under which it is possible are very stringent - the trainer must not only
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have the information about the nature of the environment, or the
optimality of control policies, available, but must alsc be able to
communicate this as a form assimilable by the trainee. In practice,
the trainer's knowledge about the environment will be incomplete, and
his channel of communication with the trainee will be imperfect. He
will be able to prime the trainee to scme exteﬁt, and select training
controllérs in a reasonabie way - the optimum training system will
combine verbal instruction with feedback training, and the experiments
reported in Chapter 5 investigate the interaction between these two

techniques. ~

3.5 From Theory to Practice

This section concludes the description of work on the abstract,
axiomatic study of learning and training, and is a natural point at
which to review the implications and utility of the theory. The overall
logic of the theoretical development is -

(i) Critically analyse the meanings of the terms 'learning',

'adaptive' and their derivatives (Section 2.1).

(ii) Give purely behavioural explicata for the concepts under-
lying these terms (Section 2.2) - this introduces the

fundamental concept of a 'task'.

(iii) Use these as an axiom set for a calculus of adaptive
‘behaviour (Section 2.3) - this introduces 'potential!,

'compatible' and 'joint' adaption.

(iv) Derive a mathematical structure in which to express concisely
the definitions of adaptive behavicur (Appendix 3) - this
introduces the concept of an observable, non-determinate
automaton, cybernetically equivalent to a system defined by

its behaviour.

(v) Express the previous discussion of adaptive behaviour in
terms of the equivalent 'adaption-automaton' (Section 2.4) -
this enables- learning behaviour to be described as a tra-

jectory in the state-space of the adaption-automaton.

(vi) Analyse training as a probelm of control in the state-space
of the adaption-automaton (Section 3.2) - this enables
three modes of training to be distinguished, 'fixed', ‘open-

loop' and 'feedback'.
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(vii) Note the fundamental impossibility of identifying
the detailed structure of the adaption-automaton in
most real systems, and investigate the feasibility
of training when only weak overall properties of the
automaton are available (Section 3.3) - this leads to
_two theorems on training, one showing that the very
weak conditions necessary for training to be possible
are also sufficient to derive an actual trainer, and
the other demonstrating the improved results possible
if more information is available about the adaption-

automaton.

(viii) Consider other sources of information indicating the
probable structure of the adaption-automaton apart from
observation of the learning behaviour (Section 3.u4) -
this introduces the 'dual-control' problem and the
associated 'sub-environment' phenomenom, and their

epistemologi¢al influence.

The most important practical outcome of this chain of reasoning
is that it gives a unified theoretical foundation to the two extreme
approaches to training - the 'stimulus-response' approach on the one
hand, typified by most 'programmed-learning' material (MacDonald Ross
1969), and the 'learning-environment' approach on the other, typified
by the 'adaptive trainer' (Pask 1960) and certain 'computer-assisted-
instruction' programs (Wexler 1970). The stimulus-response' approach,
in which it is intended that each item given to a student be a function
of his specific responses to previous items, may be seen as an attempt
at optimum control in the state-space of the adaption-automaton. Its
application suffers from the same problems that have beset control
engineers attemtping to apply 'optimum control' theory: that far more
detailed information about the controlled system (adaption-automaton of
trainee) is required than is ever realistically available; and that
the control strategy itself is very complex, so that both its design
and implementation are major problems.

The Nearning-environment' approach, in which a situation is created
‘and maintained which is expected tc be conducive to learning, may be seen

as an attempt to take advantage of the expected region of local stability
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irn the state-space of the adapticn-~automaton (potential adaption in which
learning takes place without specific 'training') and extend this to give
global stability throughout the state-space. This is the approach

taken in the design of linear feedback servomechanisms which are able to
stabilize a wide variety of plants without being optimal for any one,

but equally without requiring detailed information about the plant
parametefs. In many cases in control engineering (for example, Fuller
1967) the simple linear servo may be shown to have a performance only
neglibly worse than a very much more complex and specific optimal control
suitable fof only one of the plants to be controlled.

In practice neither one approachor the other may be taken as the
.best mode of training - in general, stabilization through a controlled
environment, provides the means to extend the trainee's capability to
learn without the trainer having to pay specific attention to particular
attributes of the trainee. However, it is unreasonable to suppose that
it will be possible to extend the capability of all possible trainees
(that is, ensure global stability throughout the state-space of all
adaption-automata), and for the residual trainees a specific training
program designed throughgobservation of their individual behaviour and
problems will be necessary - in practice, the observation will show up
specific defects of some trainees, e.g. dislexia, lack of spatial
ability, etc. What is important in practice is that the approach
taken is that appropriate to the training situation - in particular
that a ‘étimulus-response' approach is not attempted on a broad front,
but used rather to overcome specific, well-defined problems.

In the following chapters the generality of discussion is greatly
reduced, and a specific feedback training system for a perceptual-motor
skill is examined. The training situation exemplifies the conditions
necessary for Theorem 3-2 to be applied, and the reasons for this may be
traced to a sub-environment phenomenom caused by instability in performing
the skilled task. Clearly, with an axiomatic approach to the theory of
training, experimental validation is not concerned with whether the
results are ‘'correct', but whether the theory may be applied to any real
situations. The experimental results of the following chapters indicate
this is so in at least one practical situation, and hence make it more

plausible that it is so in others.



CHAPTER 4 A FEEDBACK TRAINER FOR A TRACKING SKILL

4.1 Introduction

The theoretical developments of Chapters 2 and 3 provide a
rationale for the application of feedback training techiiques to
aid the learning of &n adaptive system. The theory is, however,
to-a large extent neutral in its application to real situations -
it classifies adaptive behaviour but does not imply that the behaviour

-

will occur in any particular situation. The possibility of mainteining
the desired sub-environment is argued to be a suitable basis for feed-
back training, but it cannot be proved in general that the "training"
will give rise to improved learning. Thus, empirical teste cf the
applicability of the theory to real situations are required, @nd, in
particular, the viability and utility of feedback training techniques
are in question. Hudson's (1964) results (Section A4.5.2 ) suggest
that a feedback trainer may be useful, even if his particular form of
automated feedback trainer did not prove to be viable, and Keily
(1967) has reported success with a different form of automated system,
but has applied it largely to testing and not to training.

Since previous studies had rot demonstrated the utility of fec
back training, and indeed doubts had been expressed about this (Leomard
1962), the first objective of the experimental studies to he das
was to determine a situation in which feedback training would
definitely improved learning compared with alternative techniques. The
theoretical analysis predicts that such situations should exist, sven
with moderately complex adaptive systems, and demonstrating their
existence for the human controller is a necessary step in the study of
human learning behavicur and its control through trzining. Thus the
questions at issue were whether autcmated feedback training was in
itself viable, for example, in terms of the trainer's stability, and,
secondly, whether feedback training is useful in any circumstances.
rather than is it applicable to a particular training preblem - the null

hypothesis was that feedback training of the human cperator never

improved learning, in some sense, over the best open-loop cr fixed
training.

The detailed design of a training situation in which feedback trainis

might be expected to have definite advantages is discussed in Chepier &,
where the problems in evaluating human learning are analysed and the

experiments on training human operators are described. The present
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chapter is concerned with the viability of a particular form of feed-
back trainer, its behaviour and stability, and also with its applications

to the testing of the ability to perform perceptual-motor skills.

L, 2 Choice of Skilled Task

The choice of a skilled task for the experimental studies was
largely arbitrary, the only formal constraint being that the skill.
should be one which coild be learnt by a normal operator to a
reasoﬁably stable level of performance, without artifacts of fatigue,
task-induced stress, and so on. For the experiments on training, it
was also necessary that appreciable learning be possible, so that
differences between initial and final performances would bermeasurable
and an indication of the relative merits of different training techniques.
It was also desirable that learning take place over a reasonable time-
period, say thirty minutes to three hours, for experimental convenience,
and that initial performance and ease of learning show little spread
through the experimental population, so that statistically significant
results might be obtained from a reasonably small sample of operators.
The satisfaction of these training constraints is discussed in Chapter 5.

Informal influences on the selection of a skill were that it should
be related to those studied by other workers, so that the general
literature could be drawn upon in interpreting the results, and that
the skill should be related to a practical situation where the training
techniques might be applied. In their experiments with feedback testing
or training, Chernikoff (1962), Hudson (1964), Jex et al (1966) and
Kelly (1967) have used compensatory tracking tasks with continuous
manual control and visual indication of error, and the psychological
literature on compensatory tracking is vast, as is the corresponding
control-engineering literature on single input, single output,

regulatory controllers.

A compehsatory tracking task, which is of great practical importance
and involves training to a high level of skill, is the regulation of
the attitude of an aircraft through the use of eXevator control. The
Strategy used by a pilot in controlling the attitude, and the effect
upon this strategy of changes in the longitudinsl dynamics of the aircraft
have been extensively investigated by many workers (Appendix 4), largely
in the aircraft industry, who have also monitored other variables of
interest, such as the pilot's opinion of the simulated craft (Hall 1963).
Hence, the regulation of the short-pericd motion in the longitudinal

dynamics of an aircraft was taken as the basis for a model tracking skill.
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4,2.1 Dynamics of the Tracking Task

The longitudinal dynamics of an aircraft (Xolk 1961, Blakelock
1965) are those between the elevator control (the pilot's joystick)
and the attitude, or pitch, of the aircraft. Because a constant angle
of the elevators creates a turning moment to change the attitude, there
is a pure integration between the joystick position and the attitude.
Because of the interplay of aerodynamic forces, there are also two
second-order, oscillatery transfer~functions in cascade between the
joystick and pitch. One of these, causing the 'phugoid' motion of the
aireraft, is of very long period (several minutes), and is generally
neglected in studies of the pilot's control policy. The other, short-
period, dynamics have a natural frequency in the region of 0.3 Hz, and
are most relevant to the 'feel' of the longitudinal dynamics.

In his studies, described in Section A4.2.1, Hall (1963) took
the longitudinal dynamics to have the form given in Equation A4.l1. 1In
the present studies, the lead term in the numerator, (1 + 0.6s), has

been omitted and the overall transfer function has been taken to be:-
- 2 2 .
G(s) = L/s(wn + 2kwns 1 s‘) Et]]

The term wﬁ has been multiplied through the equation (so that the new
value of 'L' is wﬁ times the previous value), because k and W, are taken
as variables to be changed in training. If W is varied using Hall's
form of the equation, then the concomitant change in gain gives a system
which feels reascnable at one value of Wos sluggish at lower values, and
over-sensitive at higher values. It was found in initial informal
experiments that variation of W over a wide range, for a constant value
of L, gave an acceptable system to control using the dynamics of

Equation 4.1. The range of variation of the two parameters was, setting

Fn = wn/2 T
0 < k < 1 &.2]

0 < F_ < 0.8Hz 5.3

A block diagram of the compensatory tracking task with these
dynamics is shown in Figure 4-1: three integrators in cascade prove
the overall, third-order dynamics between the manual control and the
visual display; negative feedback from the output of the second
-integrator to the inputs of both first and second integrators sets up
the oscillatory second-order transfer-functien, followed by a pure
integration; a disturbing signal is fed in at the same point as the

operator's input. Oscillatory dynamics have been little studied in
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psychological experiments on the acquisition of skill, but, apart from
their practical importance, they have characteristics, in particular a
non-monotonic respense, which create distinct and interesting difficulties
in learning to compensate for them. Furthermore, the cascaded exponential
lags, so often used in psychological studies, are a special case of this
transfer-function with the damping-ratic, k, set to unity. Thus, the

~ dynamics. offer more scope Hr study than the lags utilized by Chernikoff
(19862) and Kelley (1967); Hudson (1964) included oscillatory dynamics in
his study.

4,2.2 Parameters of Difficulty for the Tracking Task

The implementation of a feedback trainer for the particular third-
order tracking task selected clearly involves using some information
about the learning behaviour of the human operator fer this form of
tracking skill. In previous chapters it has been emphasized that this
information is available from diverse sources:- from observation of
actual adaptive behaviour to determine the adaption-automaton; from a
knowledge of the purpose of the controller and the desired sub-environ-
ment for learning; and from a knowledge of the behaviour of other
controllers with similar objectives to those of the human operator. In
practice, all these gources contribute some partial information about
suitable structures for a feedback trainer, and the actual trainer is
a synthesis from all three.

The advantage of a tracking task in designing a trainer is that the
performance of the trainee may be continuously assessed in terms of the
error which is displayed to him, Hence, it is possible to consider the

use of a simple performance-feedback trainer, whose sole information

about the trainee is derived from measurements of his performance. The
justification of performance-feedback training in terms of maintaining
the desired sub-environment is discussed in Section 4.4. In this section
the dependence of performance on parameters of the tracking task is
analysed, and it is convenient to suppose, informally, that these
parameters affect the’difficultz of the task for the operator.

From Figure A4-2(ii) which is Hall's plot of the contours of constant
mean tracking error in the natural-frequency/damping-ratio plane, it may
be seen that the operator's performance decreases monotonically with
“decrease in naturai-frequency. FigurevAu-Q(iv), showing the pilot's
opinion of the tracking task, also indicates that the difficulty
increases with ’decreasing k and Fn (or wn), for Fn less than about

0.8 Hz. In fact, decreasing k causes the system to become more oscillatory,
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and decreasing W leads to longer time lags, so that these results are
are to be expected; the disparity between the contours of Figures AL-2
(ii) and (iv) is probably because too high a frequency of oscillation
is visually annoying when the system is under-damped.

A third parameter affecting the difficulty of the tracking task
is the amplitude and nature of the disturbance at the input. Clearly,
the greafer the amplitude of disturbance the greater will be the error,
and generally the greater the high-frequency content of the disturbance
the greater the error. In the initial informal experiments many forms
of disturbaﬁée were used, including Gaussian noise, sine waves and
square waves of different periods. Because the disturbance passes
“through the complete controlled system, which acts as a low-pass filter,
much of its high-frequency content is smoothed out and there was little
difference in effect between these various forms of disturbance.
Throughout the formal experiments a square-wave of twenty seconds period
was used as a disturbance - a repetetive waveform was used to enhance
the possibilities for learning in the training experiments, and it was
filtered through the controlled element to avoid the visual fatigue
associated with a rapidly-changing display.

Although it may be showa that the error due to a disturbance in a
linear control system is proportional to the amplitude of the disturbance,
the exact effects of variations in the natural-frequency and damping-
ratio of the controlled element are less readily determined. In control
engineerihg, it is known that a regulator for the transfer-function
described has a more 'difficult' task as Fn and k are decreased, in
the sense that the acceleration and velocity terms in the controller
transfer function have to increase in relative magnitude to maintain
the same stability margin. In the following section the quantitative
relationship between the tracking task parameters and controller
performance is analysed in detail for a simple relay controller, in order
to provide data for a theoretical analysis of the behaviour and stability

of ‘a performance-feedback trainer,

4.3 Performance of a Relay Controller for the Tracking Task

In choosing a form of automatic controller for a theoretical
‘analysis of the tracking task, and for later trials of the feedback

trainer, a controller with similar ouput characteristics to the human
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operator was desired. In Appendix 4 and from Figure A4-3 in particular,
it is shown that the human operator's output for high-order controlled
elements is discontinuous and far more similar to that of a switching,
or 'relay', controller, than that of & linear servomechanism. In

the theoretical and experimental analysis of the feedback trainer

also, it was found that the behaviour of the trainer with a linear

servo as"operator' was very different from that with a human operator,
whilst that with a relay controller was similar. Hence, the theoretical
analysis is based on the behaviour of a relay controller performing the

tracking task.

'4.3.1 Theoretical Derivation of Mean Error of Relay Controller

A 'bang-bang' or relay controller (Gibson 1963 p.3u42) is the
simplest possible form of regulator for a single-input, single-output -
system. The controller's output takes one of two values, + M say, and
the sign of the output is the opposite of that of the error, so that
the controller makes the minimum decision necessary to apply some form
of nsgative feedback. In systems containing lag, the simple relay is
an inadequate controller and a predictive, or lead, element must be
placed befcre the re%ay in order to compensate for the lag and cause it
to switch before the error passes through zero. A block diagram of a
relay controller coupled to the tracking task of Figure 4-~1 is shown in
Figure 4-2, consisting of plant dynamics, clipping element, lead network,
relay and summer: the error, e(t), is fed through the lead network,
P(s), to give an output, f(t), which drives the felay element, R; the
relay drives a binary signal, m(t), into the controlled element, G(s),
and there is added in the disturbance, a(t); since the loop may go
wnstable and the output of G(s), e'(t), become large, a ¢clipping element
C, is shown before the error signal, e(t); an averaging network, A, forms
the time-average of e(t), e , in order to measure the effectiveness of
the controller.

The lead network P(s), was taken to have the simple first-order form:-
P(s) = 1+ ups .5
and the relay itself obeys the equation:-

m(t) = -sgn(£(t)) .5
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If the disturbing input, &(t), is taken to be zero, and the affect of
the clipping element, C, on the loop behaviour is neglected (it may
clearly be neglected if u=0), then the behaviour of the control system
may be analysed using the describing function technique (Gibson 1963
Section 9.3). A limit signal oscillation is set up in the loop such that

the input to the relay has the form:-
£(t) = £t [:.6]

and satisfies the basic equation of describing function analysis:-

PGIWICEW) = /K k. 7]
where Keq is the equivalent gain of the relay. This is given by:-
Kg = M/nf Ik.g

so that the 'gain' of the relay is inversely proportional to the
amplitude of the signal at its input.

Substituting in Equation 4.7 from Equation 4.1 and 4.8, we obtain:-

. - . 2 . 2
UML(1+juw)/af = -;)w(wn + 2]kwwl_1 -~ W) EE}
and, separating real and imaginary components:-
2 - 2
w =W/ (1 - 2kuw) @.19]
- - 3
£ = 2ML(1-2kyM )/ ft.13]

Continuing to neglect the clipping element, C, we have that:-
e = £/ Q01+ 112w2)l/2 : ,E;.lé]
and, substituting in Equation 8.12 from Equations 8.10 and 8.11:-
. _ 3/2 3., 2 .2,1/2
e = 2ML(1-2kpw ) / Crk” (L-2kuw_+uw’ )™ %) l.13]

In obtaining the mean error, e , from e, it is convenient to take into
account the effect of clipping in C, which is assumed to limit the

signal in amplitude to tc, so that:-

2e/7 0< e <c

e =

(

( k.14
i 1)

E 2 [kf(e2-c2)l/2+c(cos l(c/e))]/n e> ¢

Equations #%.13 and 4.1% together enable the mean error to be calculated

for a range of values of the plant and controller parameters.
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The relationship between e y XK Wos and u is not clear from the
analytic form of the equations, but certain characteristics may be
established from special cases. Firstly, the dependence of e on e

may be made clearer by writing Equation #.1% in implicit form:-

let e = ¢ (cosec(0)) e>c Elsj
then & = ¢ (1 - 2(0-tan(6/2))/7) e > ¢ (§.16]

When e is large, © is small and e=axc/€, so that:-
ez c (1L-c/me) e>>c E.17

and e is asymptotic to c. A table of values relating e/c to e/c is

given in Table 4-1 - the relationship is linear for e < c and then

"&/c increases less rapidly than e/c.

e/c €/ec e/c B/c

0 0 1-540 0-785-
X 0-63Tx 1-701 0807
1 0-637 1-914 0+830
1-052  0-663 | 2.202  0-853
1:122 G+690 2°613 0877
1173 0+707 3152 0-901
1+236 0.724 4.284 0-925
1+315 0+743 6393 0-950
1414 0-764 ' 12745 0-975

1-540 G785 oY 1

Table 4~1 Input Amplitude and Mean Qutput for a Limiter

Secondly, for the particular case when there is no velocity feed-

back and u=0, from 4.13 we have:-

3

kwrl = 2ML/me E 1]

Hence, the lines of constant mean error in the natural-frequency/damping-
ratio plane are such that k is inversely proportional to W cubed. Also,
subject to limiting,the mean error is inversely proportional to wi cubed
also. From Equation” 4.13, it is apparent that this cubic relationship
dominates even when u is non~zero, although other terms in k and W then

appear. In order to establish the relationship between the mean error,

e , and parameters of difficulty, such as W experimental trials of the

system shown in Figure 4-2 were carried out, and the results compared

with the theoretical results predicted from Equation %.13 and 4.14; these
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are reported in the following section.

4,3.2 Experimental Results on the Behaviour of a Relay Controller

The system shown in Figure 4-2 was set up on an analogue computer
using chopper-stabilized amplifiers, and an integrator was used to measure
the mean. error, e , over a four minute interval. The values of the

parameters used in the experiments were:-

Disturbance - a(t) = O
Relay Output - M = 0.0216
Open-loop Gain - L = 1,000
. Limiting Level - = 0.95
Damping Ratio ' - = 0.5
Natural Frequency - OXw 2§ radians/second
Velocity Feedback - 0<u < 2.5

Table 4-2 shows the experimentally determined values of e for various
values of y and W whilst Tablé 4-3 shows the theoretical values from

Equations 4.13 and 4.14.

M= 0.000 0.087 0.150 G.225 0.325 0.500 0.750 1.250 2.500

W =

“n

0.000 .966  .964 .95T7 .952 .947 .940 .934 .920 .950
0.625 S.526 0 L9201 .8T9  .883 .857 .815 .T759 .542 .059
1.250 .00 .838 .818 .790 .759 .674 .272 .013 .000
1.E75 L85 U753 L7128 687 .569  .109  .005 .000 .000
2,500 706 .665 .584 .40l .134 .015 .000 ,000 .00Q
2.125 564 418 .272 .116 .025 ..000 .00O .0Q00 .000
5.750 .329  .202 L.107 .028 .000 .00O .000 .0OCO .000
4.375 .23 .1l4 .043 006 .000 .0CO0 .COO0 .000 .000
5.0C0 .27 .051 .0G4 .COO .0CO  .000 .000 .000 .0CO

Table 4~2 Experimentally Determined Values of Mean Error

W= W= 0.000 0.087 0.150 0.225 0.325 0.5G0 0.750 1.250 2.500
0.000 .950 .950 © .950 .950 .950 .950 .950 .950 |
g.ggg .247 2947 2947 947 .947 .947 .944 .927
1.250 929 .927 .924 .20 ,911 .872 .144 .000
1.675 .88C 866 -848 811 686 .042 .000 .00
3.125 .ch 724 .627 .373 . 039 000 L0000 .000
3-12 .;74 297 .256 104 0G0 .000 .0U0 .00
3,75 232207 L1100 .022 000 .000 000 .000
4.%75 209 .116 047 .GOG  .000 L0000 .000 000
5.000 .140 ,068 .019 .00C .000 .QUO. .00G  .000
Table 43 Theoreticully Derived Values of lMean Error

<950
.000
. OOO
. 000
. 000
.000
.00
000"
° OOO
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It is apparent from the tables that the agreement between theoretical
and experimental values of the mean errcr is very close fop the lower
values of e at which limiting does not occur (e< 0.6), and any discrepancy
may be ascribed to the experimental inaccurancies in establishing W
(of order 2.5 per cent). However, for higher values of e at which
limiting plays a major role, the theoretical values rise more rapidly than
the expefimental ones. This may be explained in terms of the approximation
made by neglecting the effects of limiting on the loop behaviour, and only
calculating its effects on the measured mean error. The limiting clearly
reduces the error signal circulating in the control loop rather than
just the measured signal, and this gives rise to the disparity between
experiment and theory. However, in the heavily limited region, the
controller has effectively‘lost control of the loop and the behavicur
is not of major importance in the theory of training.

Figure 4-3 shows the experimental values of e plotted as a function
of W for different values of p , making apparent the variation of performance
with difficulty. The curves are sigmoidal limiting at high error
amplitudes approximately according to Equation 4.14, and being asymptotic
to zero according to the cubic relationship of Equation 4.13. It will
be noted that the sensitivity of e to changes in W defined by the

slopes of the curves; varies as a function L but that maximum slope

occurs at much the same value of e in each case. This is the major
characteristic which makes a simple feedback training system possible,
and makes it attractive to use a constant-error criterion for testing

a controller.

4.4 Teedback training Strategy

The three parameters of difficulty for the controlled element shown
in Figure u4-1, selected for variation in training, are the undamped
natural frequency, W the damping-ratio, k, and the amplitude of the
disturbance, a. There is an alternative viewpoint from which these
parameters may be examined which relates the variation of difficulty to
that of a 'training controller', discussed in Chapter 3. If the
required control skill is taken to be that of regulating a pure third-
order system, consisting of three pure integrators in cascade with the
dynamics - L/ss, subject to a disturbing signal, then a suitable training
controller might place negative feedback loops around the integrators
and inject a disturbance-cancelling input. If the negative feedback

loops are such as to feed the velocity of the output back to the
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acceleration of rate of change of acceleration, then the overall
transfer function will be that of the longitudinal 'aircraft' dynamics
described in Section 4.2.1. In Figure 4-4, the controlled element of
Figure 4-1 has been re-drawn to separate out the training controller
from the pure third-order system on which the trainee is ultimately
required to operate.

The feedback trainer has to give the naive trainee an easy task
and then gradually increase its difficulty as the trainee'’s skill, as
measured by his performance, improves. This was achieved in practice
by driving the parameters of the training controller from the output of
an integrator, such that one extreme of the output gave the easiest
_task, whilst the other extreme gave the most difficult task. The
modulus of the error at the output of the controlled element was fed
to the input of the integrator minus a tolerated level of the mean
error, eo,in such a sense that if the mean error is above tolerance
then the difficulty of the tracking task is reduced, whilst if it is
below tolerance then the difficulty is increased. The overall effect
is clearly such that if there is a stable value of the integrator output
then the mean error is equal to the tolerated level. Hence, in Hudson's
terms (1964), the absolute difficulty of the tracking task is varied by
the training controlier to maintain its difficulty for the trainee constant.

There are two alternative interpretations of the training strategy
in terms of the results of Chapter 3 which relate the practical trainer
to the theoretical studies. These lead to alternative justifications

of the training strategy which are discussed in the following sections.

4.,4.1 The Training Strategy as Maintenance of a Desired Sub-Environment

The third-order controlled element of Figure 4-4 is a linear system
with three state-variables, the position, velocity and acceleration of
the output. The desired sub-environment of a regulatory controller is
a region about zero in this state-space. Provided this region does not
impinge on the boundaries of the state-space (the position, velocity and
acceleration are each-bounded in magnitude in any physical realization
of the transfer-function of the controlled element), the system will
behave within it in a linear manner. The desired sub-environment will
.be of finite size because of the disturbance which, even if perfectly
predicted, cannot be cancelled instantaneously. The maximum value of
the disturbance in all the experiments was in fact chosen so that a skilled

operator could maintain the system in its linear region.
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The control policy of a naive cperatcr attempting to control the
third-order system gives rise to an unstable loop, and the state-
trajectory of the system tends to follow the boundaries of the state-
space. Thus, the initial sub-envircnment may lie entirely outside the
desired sub-environment and will correspond to a nonlinear, rather than
a linear, system. A suitable training controller will be one which
attempts to maintain a linear sub-environment by cancelling the disturbance
and stabilizing the cohtrol-loop; this is the effect of training
controller shown in Figure u-u,.

Since the desired sub-environment is a region about zero in the
state-spéce of the controlled element, it is possible for the trainer to
detect by direct measurement whether or not this is being maintained.
Under the experimental conditions the bounds on the error itself were
very much more stringent, than those on its rate or acceleration, and
hence the value of the output of the controlled element was a sufficient
indication of the effective sub-environment. A tolerated magnitude of
error was fixed to define the boundary of the desired sub-environment,
and the strategy of the trainer was such as to increase the difficulty
of the task when the error was within tolerance and decrease it other-
wise. This was achieved by the integrator in the training loop, shcwn
in Figure 4~u4 and described in Section 4.4. However, this may now be
seen as acting continuously to maintain a sub-enyironment, rather than
as a device for keeping the mean error constant; in this particular
situation the two viewpoints are equivalent, but generalization to other
situations follows from the sub-enviromment rather than the error-based

approach.

4.4,2 The Training Strategy and the Second Training Theorem

The sub-envircnment interpretation of the training strategy givén
to the previous section leads to a further analysis of the trainer if it
is noted that the desired sub-environment is obtained with plant
parameters that lie on the stable side of thé controller's stability
boundary in the natural—freéuency/damping-ratio plane (where a stability
boundary is a line of constant mean-error in the plane). Equation 4,18
indicates that the mean error is a very rapidly increasing function of
the natural frequency, W, SO that the stability boundary is well-defined
with respect to wp, and Figure Au4-2(ii) shows boundaries for different
mean-errors for human operators. Since the feedback trainer is

‘attempting to keep the mean-error constant, it may also be seen as

attempting to keep the trainee on,or within, its current stability boundary-
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Learning may then be seen as a movement of the stability boundary
towards lower values of k and W This interpretation is of particular
interest because the trainee is effectively being described in terms of
the set of tasks for which it is satisfactory. Informally one may say
that the stability boundary is expected to move outwards provided the
current plant parameters are on the stable side of it, and the movement
will be most rapid if the parameters are near to the boundary - the
rationale for this being the sub+environment argument of the previous
section. However, this may now be re-phrased in terms of the adaption-
automaton of the trainee, with the sub-environment phencmenom being the
epistemological basis for constraints on the adaption automaton as
discussed in Section 3.4.

Consider the terms of the Second Training Theorem (Section 3.3.2)
and its extension to a lattice of tasks (Section 3.3.3). Let a task be
defined as a fixed period of interaction with a plant of certain values
of natural-frequency, W and damping-ratio, k. Consider the order

relationship on the two-parameter family of tasks t(wn,k) such that -
t(wn,k)< t(wﬁ ,k')<=> either wn> w& or k> k' or both [E.lé]

that is, from Equation 4.13 or 4.18, one task is higher than another in
the order if the mean error for a relay controller (and, from Hall's
results in A4.2.1, for a human operator) is greater for that task than
for the other. Hence the order on the tasks corresponds to the order
of the mean error and stability boundaries.

It is now possible to re-phrase the concept of learning as movement
of the stability boundary - because, for at least some range of values of
v and k, we expect the stability boundary for a task; if it is originally
near the task, to move away from it and hence encompass other tasks with
higher w or k, we have -

given the ordering of tasks of Equation 4.19, there exists a range
of tasks from ta to tb’ such that -

Vt:taf_tf_‘cb ]t' Tt <t , A(D) CP(tY)

that is, performing the task t (within the regicn P(t)) causes the
trainee to become potentially adaptive to a task, t'. This interpretation
gives a form of condition (ii) of Theorem 3.2 - condition (i) may be

satisfied is t <1< t - whilst condition (iii) effectively requires that
“there is some task (value of W and k) in the range ta through ty for
which the trainee is able to exert stable control at any stage of training.
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The main differences between the training strategy used in the
proof of Theorem 3.2 and the feedback trainer described in this
Chapter is that the actual trainer is continuous rather than discrete
and has no inbuilt random behaviour. In practice these differences

are small because the human operator himself injects an effsctive random

n

component, the 'remnant' (A4.2.1), and also because since the trainer i
integrating the modulus of an oscillating error signal it is actually
changing the difficulty in a 'd iscrete-plus-jitter' type of mode.

Thus the feedback trainer used in the experimental studies may be
regarded as a teaching-machine varying the 'difficulty' of a task
according to the performance of the trainee; as an attempt to maintain
.the optimum 'sub~environment' for learning the required task; or as a
realization of a training strategy based on fairly general constraints
upon the adaption-automaton of the trainee. In the current training
situation all three interpretations are clearly closely related -
however, each offers a different basis for generalization in the inter=~

pretation of the results obtained.

4.4,3 Implementation of Feedback Trainer

The feedback traginer of Figure 4-4 was realized on an analog cowputer,
using chopper-stabilized cperational amplifiers and 1 per cent accuracy
components. The time constant of integration in the training locop, and
the tolerated mean error were both adjustable, and reasonable values of
these variables were established during the initial informal trials.

These parameters, and the effects of changing them, are analysed in more
detail in the following section cn the trainer's stability.

The output of the feedback training integrator could be ccupled o

any combination of the three servos adjusting the parameters of diffic

o

[l

t
e

of the task. In practice, one or two of the servos were locked in fixed
positions and the remainder were coupled to the integrator. The space of
all possible training environments, defining 'tasks', is three-dimensional,
since the difficulty increases as:~
(i) The disturbance is increased from zero to its maximum value.
(ii) The undamped natural frequency is decreased from its maximum
value to zero.

. (iii) The damping ratio is decreased from its maximum value to zero.
The trajectories of the training environment through this three-dimensional
space were reduced, by locking or co-varying the serves, to single

dimensional paths along lines either parallel to one of the axes or dia
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to a pair. In the informal experiments on testing only the natural-
frequency varied (for a range of fixed values of the damping ratio
and a single value of the disturbance), and in the experiments on
training the natural frequency was locked and the amplitude of the
disturbance and the damping ratio co-~varied. These particular restrictions
had the advantage of making the theoretical analysis simpler, but were
otherwise arbitrary choices.

This particular form of feedback trainer is similar in its strategy
for variation of the task difficulty &o the feedback testing systems of
Jex, McDonnel and Phatak (1966) and Kelley (1967) (the same strategy was

suggested by Hudson (1964) in his recommendations for future work).

4.5 Stability and Dynamics of the Automated Feedback Trainer

The expected behaviour of the feedback trainer is that it will
maintain the desired sub-environment by variation of the parameters of
the training controller, or, more precisely, that it will adjust the
difficulty of the task to cause the mean error to come to a certain level
and maintain it at that level. With a non-adaptive controller, the only
stable value of difficulty will obviously be uniquely determined by the
ability of the controller to regulate the control system. It is not
obvious, however, that the feedback training loop is stable, and indeed
it may be shown® that with certain forms of controller instability may
occur. Analysis of the loop stability is complicated by the number of
feedback loops operative and the nonlinearities in both human operator
and automatic trainer, but a simple analysis may be based on linearization
of the outer, parameter-adjusting, loop. |

However, in Section 3.3.3 it has been shown that even at a highly
abstract level a feedback trainer of the type under discussion may be
expected to show behaviour similar to that of a linear servomechanism,
and hence an analysis of the trainer basdd on linearization may be use-
ful. In the following section a stability analysis of the feedback trainer
based on linearization of the training loop is described, and the loop
dynamics are derived for a relay controller acting as operator. In later’

sections the analysishis confirmed by experimental studies of human and

automatic controllers.

4.5.1 Derivation of the Dynamics of the Training Loop

Consider first the variation of the mean error modulus with change

of difficulty, that is, the natural-frequency, damping-ratio, or
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disturbance in the main loop. For an operator with a fixed control
policy, at zero disturbance, there will be both an amplitude-dependence
and a time-dependence in this variation. If his control policy is
nonlinear so that a limit~cycle forms, then, under the experimental
conditions, the mean error modulus, é, increasgs monotonically in
amplitude for decreasing natural-frequency and damping-ratio; the
theoretical results of Section 4.3.1, and the graphs of Figure 4-3,
illustrate this dependence for a nonlinear, 'relay' controller. The
limit cycle takes time to build up and decay as the task difficulty
changes, and this time dependence may be approximated by an exponential
lag with a time contant of the same order as the period of the limit
cycle. If the control policy is linear, however, there is no stable
limit cycle, and the error modulus rises exponentially in time to its
maximum possible value on one side of the stability boundary, and decays
exponentially to zero on the other.

The relation to be expressed approximately in linear terms is that
the mean error modulus and its rate of change are together linearly
dependent on the difficulty of the task for the operator. Since the
error modulus cannot be less than zero, for the linearization it must
be expressed as a deviation from some positive value, and this is
conveniently taken as the tolerated level, e It is clear that the
error must increase with the difficulty of the task and decrease with
the operator's ability, but of these only the task difficulty is independ-
ently measurable and it is convenient to relate the operator's ability
to this. Let the task difficulty increase monotonically with the
increase of some parameter, 6§ , and let the operator's ability be defined-5
in related units as a, such that when 5=§ the mean error modulus, é, is
at the tolerated level, e,

The behaviour of the mean error modulus may now be approximated by

the equation:-

)

fle - eo) + g2sé 5 § - a fi.20]

where s is the time differentiation operator. The constant, f, will be
large relative to g for switching mode controllers, whilst f will be a
function of the disturbance and b large for linear controllers. It is
clear from Equation 4.10 through 4.14, that f and g are functions of e,
6 and o« - however, for small deviations from a possible stable point,

Equation 4.20 will be wvalid.
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The relationship between task difficulty and the mean modulus error,

realized by the integrator in the training loop, is:-

2.~ .
s8 = -h"(e - e ) .21}

where l/h2 is the time constant of the integrator. Combining Equations

4,20 and 4.21, we obtain:-
§ + (£/n%) s6 o+ (g2/h2) s26 = a (& .22]

This is the overall equation for the training loop dynamics, and it may
be seen that §follows & through a second-order transfer-function with
undamped natural frequency of h/g radians/second, and a damping ratio of
£/2hg.

If there is no true limit cycle and f is zero then so is the damping
ratio and the training loop becomes oscillatory. It was found experimentally
that this did occur when a linear controller was used as the 'operator',
and the difficulty oscillated widely. However, this has no practical
effect since the human operator's control policy is sufficiently nonlinear
to cause the value of f to dominate over that of g2. When this is so,

and g2 can be neglected, Equation 4.22 reduces to:-
5 + (£/n°) ss = a [t.23

so that again § follows a , but this time through a simple exponential
lag of time-constant, f/h2.

These equations give the transient behaviour of § in response to
changes in o j but do not allow for the error signal itself having an
oscillatory form. The effect of this on the steady~-state value of §
may be approximated by assuming that, under steady-state conditions,

the error signal has the form:
e = (1+ sin(wt))e0 [4.21)

that is, anvoscillatory signal, always positive, with a mean equal to
e, and a frequency equal to that of the oscillations in the lower control
loop (given by Equation 4.10 for the relay controller). Equations 4.21
and 4.22 then give the steady-state solution for § as:-

§ = o o+ (h2/w)eocos(Wt) @:25]

Equations 4.22 and 4.25 indicate that, if the time-constant of the
training loop integrator is sufficiently long so that h is small, then
-the difficulty adjustment is weil-damped and little of the oscillation

in the tracking task control loop appears in the difficulty variation.
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The linearization of the training loop is a very strong approximation

and requires empirical checks of its validity. In the following

section a quantitative check is given using the analysis of the relay
controller described in Section 4.3.1, whilst in Section 4.5.3 qualitative

checks of the predicted loop behaviour with human operators are described.

4.5.2 Behaviour of the Training Loop with a Relay Controller

In the experiments on the behaviour of the training loop with non-
adaptive controllers, only W was varied, with k at some fixed value,
and the amplitude of the disturbance, a, either zero (for relay controller)
or at a small fixed value (for human studies). It is convenient to have
‘the difficulty, 6, vary from zero (easiest) to unity (most difficult),

and set:-

8

n

1-w/S | J.26]
The tolerated level of mean error modulus, e was set at <175, because
this was found to give a demanding but comfortable control task for
human operators when the difficulty reached its steady state. This
gives an error oscillation whose amplitude is well below the limiting
value, and hence the mean error modulus may be determined from Equation

4.13; it is convenient to write this in the form:-

/ 2w2)l/2
n

) [¥.27]

Substituting e = e in this equation enables the value of W and hence

& = (uML/nAK) (1-2kuw )Y 2/ (2 (1-2kuw_+u
n n n
8§, to be derived for which o = §.
The constant, f, may be seen from Equation 4.20 to be the steady-
state rate of change of §with e for e = e, and may be derived in a

convenient form by logarithmic differentiation of Equation 4.27:-
f = l/(Se(l}/wn + 3]qJ/(l'2kUWn) - (l-kuwn)/(wn(l—2kuwn +
U‘2wr2l)))) [&.28]

If Equation 4.20 were truly linear, g2/f would be the time constant
from the moduls error to change in response to changes in §. It is a
difficult term to éstimate, however, because it is so dependent on the
mode of behaviour of the nonlinear relay servomechanism. When g,
and hence Wos is changed, the relay servo tends to enter a 'chatter'
mode (Gibson 1963 p.445) in which the trajectory in the (e,é) phase-~
2,1/2

plane spirals around the origin with a natural frequency of wn(l-k s

oscillating about this trajectory with a natural freguency of w. The

period of one spiral was taken to be a reasonable value at which to set
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g2/f to provide some quantitative comparison of theoretical and measured

B

0.000
0.087
0.150
0.225
0.325
0.500
0.750
1.250
2.500

Table

loop dynamics. Hence: -

2

g =~ 21rf/(wn(l—k2)l/2

) .29

The constant, h2, was set at the value, h2=0.057; and was such

that, when e = 0, to rise from zero to maximum_difficulty took about

100 seconds.
a a . damping
{theor)(expt) £ g train-~loop

0.072 0.08 1.77 1.65 2.24
0.215 0.22 1.17 1.46  1.67
0.318 0.32 0.852 1.%34 1.33
0.425 0.42 0.558 1.18 0.988
0.531 0.53 0.33%3 1.011 0.691
0.653 0.64 0.150 0.788 0.398
0.752 0.74 0.055 0.592 0.194
0.844 0.84 0.0162 0.386 0.0878
0.921 0.91 0.00216 0.198 0.0209

4-4 Training Loop Dynamics

Values of the training loop dynamic parameters derived from the
theoretical equations are given in Table u4~-4, together with the experi=-
mentally measured values of o , the 'ability' of the relay controller
in terms of the difficulty of the task. It may be seen that there is
very close agreement'between the theoretical and measured values of a ,
showing that the describing function analysis of the relay control loop
is adequate, and that the training loop sets up the correct steady-state
conditions. The degree of agreement between the theoretically-derived
dynamics of the training loop and the measured results may be determined .
from Figure u4-5. This shows the variation of 6§ with time in the experi-
mental system for different values of a. The range of damping ratios
predicted by the theory is similar to that found experimentally, and a
damping ratio of 0.7 for a = 0.5 ties in closely with the measured value.

A more detailed examination of the relationship between measured and
predicted dynamics, however, shows up major discrepancies. For the low
damping ratios in the training loop, the period of oscillation should be
2ng/h % 26g seconds, and this leads to theoretical values which are very
much lower than those measured. From the form of the oscillations in
the graphs for low damping ratios, it is clear that the time constant

in increasing 6§ is very much less than in decreasing it, and that

Equation 4.20 is a very coarse approximation. The rise time of the
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graphs for various levels of g also cannot be predicted from the steady-
state, and the actual rises are rate-limited by the limiting of the
error signal.

These results represent the limit to which a quasi-linear analysis
of the behaviour of the feedback trainer may usefully be taken - it
accounts for the steady-state behaviour and important characteristics
of the dynamic behaviour, but does not accurately predict the detailed
dynamics. In the following section the implication that the training
loop will be stable and responsive for relay-like controllers, as is the
human operator in this situation, is confirmed by experimental studies

with human cbntrollers.

4.5.3 Behaviour of the Training Loop with Human Controllers

In the experiments with human operators, the control was a rolling-
ball joystick of diameter 9 inches, which gave an output of 0.55 units
for 1 degree rotation and a maximum output of + 3.8 units. The error
was displayed on a 5 inch diameéter oscilloécope as a horizontal deviation
from a central vertical line with a sensitivity of 0.38 units for 1 inch
of movement. The sense of the control was such that a movement to the
left sent the spot to the left, and the joystick itself was centralized
by light springs. A} 0.5 inches on either side of the central display
marker were two other vertical markers, and the operator was instructed
to move the control so as to keep the spot on the oscilloscope within
the outer markers. The experiments took place in a soundproof room,
9'x9', dimly but comfortably 1lit and free of experimental apparatus except
for some tables, a typists' chair for the operator, and the oscilloscopef
mounted 3 feet from the ground about 3" from the chair. “
The parameter of difficulty varied by the feedback trainer was the
undamped natural frequency of the third-order transfer function, W
according to Equation 4.26 as for the experiments with relay controllers.
The damping ratio, k, was set at one of a range of fixed values, for
example 0.25, 0.75, 1.0, so that the minimum natural-frequency at which
the controller was stable for a given damping ratio was obtained. It was -
found desirable to havé some small disturbance injected in the loop, since
otherwide the human operator's tended to adopt a control mode in which »
they brought the position and velocity of the error almost to zero, centred

the joystick, and then ceased to make control movements until the error had
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become large again. This conditional-ceontrol mode enabled the difficulty
to increase whilst the controller was ineffective until the tracking

loop was potentially unstable, but, since it had effectively been

opened, there was no effect on the error. When the loop was closed
again, however, oscillations rapidly built up, forcing the difficulty to
decrease. A small disturbance prevented the operator from adopting this
mode of control, and an amplitude of 0.0033 units was found to be
adequéte. This was added to the output of the joystick, so that the
total input was -

input to tracking system = joystick ouput + 0.0033sgn(sin( t/10))

Figure 4-6 shows the variation of difficulty as a function of time
.for various human operators under various conditions. Graph A is that
of an operator new to the task with the integrator constant in the training
loop set to h2 = 0.057 - it can be seen that the difficulty rises slowly
and irregularly to an asymptotic value, but oscillates somewhat about
this. Graph B is the second trial for the same operator, and it may be
seen that the rise to the asymptote is faster - when this final range
of values was approached, the value of h2 was decreased by a factor of
four to h2 = 0.0143, and this smooths out the final value of difficulty.
This procedure of changing the integrator time-constant in the training
loop to obtain a fast rise to the asymtote but then a smooth reading of
it was adopted in all the experiments on the use of the feedback trainer
to test human perceptual-motor skills; with RAF pilots, who found the
tracking task with rolling-ball and oscilloscope simple and natural, it
was found that between one and two minutes of tracking were adequate for
a near-final value to be reached. Graphs C and D were generated by
highly-skilled flying instructors, and it may be seen that the ultimate
level of difficulty is rapidly reached and closely maintained.

It was found that the tracking task was very fatiguing, and that
between four and ten minutes operation was all that could be reasonably
demanded, even from pilots and well-practiced operators. After the
first trial, no appreciable learning was noticeable, although there was
a clear separation between individuals in ability. No very long series .
of fifty or more spaced trials was carried out, however, since learning
over long periods was not of interest in the context of the present

experimental studies, and this might have shown definite evidence of

learning; Hudson (1964), using similar task dynamics, gave ten hours
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training in total to each of his subjects. The relevance of these
findings on fatigue and learning to the study of the utility of a

feedback trainer is discussed in Chapter 5.

4.6 Use of Feedback 'Trainer' for Testing

It has been suggested by a number of workers, particularly Kelley
(1967, and Prosin 1968), that an important application of feedback
"training' systems is not to training itself, but rather to the accurate
measurement of perceptual-motor skills. By measuring, for a given operator,
the difficulty at constant error, rather than the error at constant
difficulty, a performance-feedback system can greatly increase the
sensitivity of tests for evaluating an operator's capabilities. As
vPoulton (1965) has noted, tests at constant difficulty lack discrimination
at the upper and lower end of the range of abilities., if the level of
performance extends into regions where it is physically limited. This
is clear from Figure 4-3, showing mean-error for various controllers as
a function of difficulty (variation of undamped natural frequency). A
test at constant difficulty corresponds to a vertical line in this figure,
and it may be seen that such a line, at any value of difficulty, effectively
dichotomizes the controllers into those whose mean error is low, and those
for whom it is high;  the controller's capability is given one of two values
instead of being set out on a continuum. A test at constant error
corresponds to a horizontal line in Figure 4~3, and that for e = 0.175,
the value used in the experiments, is shown as a dashed line; it can be
seen that this intercepts the curves for different controllers at approxi-
mately equal increments of difficulty, and discriminates well between
their capabilities.

No validation studies of the feedback trainer described has been
carried out in order to test its utility in measuring some aspect of
percgtual-motor ability. The 72 RAF pilots who took part in the training
experiments described in Chapter 5 were tested, as described in Section
4.5.3, at three values of the damping ratio. Each test lasted five minutes
and they were given in the order - k=0.50,0.25,1.00, to combat the effects
of possible learning.’ For purposes of experiments on differences due '
to training, the population tested has been selected for their homogeneity,
established through RAF selection procedures, and hence were unsuitable
for the validation of tests of individﬁal differences. However, the
correlation coefficients between the values of « measured for each value

of k are an indication of the replicability of this type of test; these
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are given in table 4-5, and it can be seen that they indicate a high
degree of replication, given the homogeneous nature of the population;

a itself ranged from 0.00 to 0.53.

k= 0.25 0.50 1.00
0.25 1.00 0.63 0.74
0.50 0.63 1.00 0.70
1.00 0.74 0.70 1.00

Table 4-5 Test Correlations

The measurement of difficulty, in terms of W for constant error at
various values of k, enables the stability boundary of a controller to
be plotted out automatically. Figure 4-7 shows measured boundaries for
three human operators (A,B,C), obtained in this way, and those of two
relay controllers (D,E). These may be compared with contours of

constant mean error obtained by Hall (1963), and shown in Figure Au4-2(ii).

4,7 Conclusions

The theoretical and experimental studies of this chapter demonstrate
that the particular automated feedback trainer developed, based on a
third-order tracking task and a constant mean-error feedback criterion,
is a viable system, %ree of artifacts such as might be caused by its
- instability. The close agreement between experimental and theoretical
results with relay controllers shows that the equipmént itself, used in
the experiments described in Chapter 5, is reliable and capable of high-
accuracy measurements. The theoretical foundations developed indicate
directions for the extension of the trainer to other skills, and the
type of problem that will be encountered.

The experimental situations described in this chapter have been
such that the controller cannot, or does not, learn the control skill.
In the following two chapters, experiments are described in which both
human operators and adaptive controllers learn the skill under a variety

of training regimes, in order to evaluate the utility of feedback training.

-



CHAPTER 5 EXPERIMENTAL EVALUATION OF FEEDBACK TRAINING

5.1 Considerations in Experimental Design

Previous chapters have laid the theoretical foundations for the
study of training, and have lead to the development of the particular
form of feedback trainer for a tracking skill described in Chapter 4 .
This has been shown, both by theoretical analysis and through experi-
mental tfials, to be a viable system, free of artifacts such as might
be caused by instability. The 'difficulty' of the tracking task
follows the ‘'ability' of th'operator in a stable manner and in a
reasonable fime, so that the 'trainer' may certainly be used to test
the ability to perform the tracking skill. It remains to be shoyn that
its concomitant maintenance of the desired sub-environment has the |
expected effect of maximizing the rate of learning of the skill, and,
‘hence, that the trainer is a useful device.

There are many experimental and methodélogical problems in the
comparative study of various training technigues, and conclusions drawn
from experimental studies which neglect these problems may be completely
invalid. In the following section these problems are outlined briefly
together with the approach taken in the present studies to overcome them;
results of some informal experiments to estimate the magnitude of certain

problems are also outlined.

5.1.1 The Nature of .'Good' Performance

-

To determine whether one training technique is better than another,
it is necessary to have some measure of the goodness of the end-product,
that is, the trained human operator. Usually training is considered to -
be required for some reasonably well-defined task, and the performance of
the operator on this task is evaluated by transferring him to it after
training. However, questions arise as to what inferences may be made
from this about his performance in the range of task situations he is
likely to meet in practice; whether his skill is robust and a reasonable
standard of performance can be maintained under stress; whether the
performance can be maintained for a period of time; and whether he
retains the skill after a period of time without use. Obviously, in
practice, one does not want to train so specifically that slight changes
in the task cause great deterioration in performance, and neither should
some degree of 'stress' cause such a deterioration. Equally, one
requires the standard of performance to be maintained over a reasonable

interval, and expects the skill to be remembered even though it has not
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been performed for a while.

These various approaches to the evaluation of training are to
some extent, independent, and may be treated in the context of the
taxonomy for adaptive behaviour developed in Chapter 2. The
operator should become adapted to the task, so that his performance
not only attains a high standard but remains stably so. He should be
jointly adapted to all variants of the task, of interest, including

vthése_corresponding to differing degrees of stress. He should be
compatibly adapted to the main task with respect to all the 'tasks'
which may fill the intervals between performance of the main task,
including periods of 'inactivity'. The criteria for evaluation may

be rigorously defined in these terms, but the problem remains of deter-
mining whether the criteria are satisfied from observation of behaviour
in appropriate experimental circumstances.

In the present studies neither the maintenance of performance over
extended periods of time, nor the retention of the skill, were measured.
For various reasons, the performance on each of several different
tasks was évaluated at the end of the training phase, so that over-
specificity of training could be evaluated; by the nature of the task,
it was unlikely to occur.

I

5.1.2 Push-button Controls and Fatigue

It has been noted in Sections A4.3.5 and 4%.5.3. that the use of the
rolling ball joystick in a continuous tracking task produces complaints
of fatigue after a few minutes, whereas the us of discrete push-button
controls produces no complaints of fatigue even after extended periods
of tracking. A decrement in the performance of a continuous tracking
task after as little as one minute has been noted by other workers
(Ornstein 1963), and improved performance with push-button controls has
been explained as an effect of the reduced computational loading on the
operator (Young and Meiry 1965). A further important advantage of the
push-buttons in the present context is that they offered the possibility
of withdrawing completely from any interaction with the system. With a
joystick control, such withdrawal is liable to cause large errors, unless
the control is very light and accurately self-centering at zero output,
whereas the push-buttons give zero output immediately when they are not
depressed. '

The effects of fatigue are a minor nuisance in studies of human



106

control strategies where short tracking runs may be used, but in the
study of learning they present a major problem. Even breaking the
tracking sessions up into short intervals is nofzrealistic way of
overcoming fatigue, since continuous control tasks causing acute

fatigue are not met, for obvious reasons, in the systems which a human
operator is normally required to control. In order to estimate the
magnitude of the difference between types of control and determine
whether a push-button system would be reasonable, an initial informal
experiment was carried out comparing the time for which operators were
prepared to xrack, in a fairly free situation, with each form of control.

The continuous joystick was that described in Section 8.5.3. The
push~button controls consisted of two microswitches with half inch flat
‘buttons, mounted in the arms of a typists' chair at such a position that
they were comfortable for all operators. The output of either push-
button was a pulse of 10 milliseconds width, + 0.12 units in amplitude,
which may be regarded as an impulse of 0.0012 units times the Dirac
delta function. Either control fed into the third-order system described
in Section 4.2.1, and the experimental environment, controls, and so on,
were as described in Section 4.5.3.

Visitors to the laboratory and other subjects were given the
opportunity to try out the tracking system and to track as long as they
wished; the interval of voluntary tracking was noted. These experiments
were informal in that the tracking task varied from person to person, and
the majority of operators tracked under uncontrolled conditions. Also,
some performed both tasks, othersonly one - This effect was 'balanced'

- by always using a further operator under than dondition. The discrepancy
between the times is, however, so great that it is considered worthy of
note; no more formal study was made because the effect is not central to
.the objectives of the present work.

Table 5-1 shows the duration, in minutes, for which operators tracked
voluntarily with the rolling ball control and with the push-buttons. The
results are given in chronological order, with the operators and conditions
arbitrarily labelled so that the extent of balance in the experimental
'design', and possiblg auxiliary effects, may be seen. The mean time
with the push-buttons is 20.0 minutes, compared with 6.1 minutes for the
joystick; this difference is significant at the p = 0.001 level using
the two-sided Mann-Witney U-test (Siegel 1956). This result bears ocut
‘the verbal comments of operators, and even if one ascribes it, for
example,.to an increased interest in the push-buttons, it indicates that

sustained tracking with the push-buttons was more acceptable to the
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operators. Hence, the push-button controls were used throughout the

experiments on training.

OperatorﬂConditionﬂJoystickﬂP.B. OperatorﬁConditionﬂJoystickﬂP.B.
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Tabel 5-1 Voluntary Tracking Times with Different Controls

5.1.3 Use of Complex Controls to Give Scope for Learning

In the evaluation of different training techniques, if the skill to
be learnt is either such that little learning is possible in the time of
the experiment, or learning is a function of time -rather than environmental
conditions, then clearly the effects of different training techniques will
be indistinguishable. In a practical situation this implies that
training is irrelevant, but, since the objective of the present study was
to demonstrate a difference between training techniques, it was considered
desirable to develop a task which gdve adequate scope for learning.

It was also desirable that the task could be learned by a naive
operator to a level of performance approaching that which was ultimately
possible in a reasonable time - 30 minutes say, both to avoid problems
in obtaining trainees, and to avoid artifacts due to differential rates
of initial and final learning under different training regimes. If, in
comparing two training techniques, the performance under one regime is
uniformly better than that under another, then there is no problem in
determining which is best. If however, the relative performances inter-
change their relationship at some time in the training period, then this
might be missed if the experimental period is too short. This phencmenom
might be expected in open-loop training at low and high levels of difficulty,
where the low level of difficulty might give rapid initial acquisition,

but be inadequate for later learning.
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Previous workers on feedback training have used simple tracking
skills as tasks for which training is required (Chernikoff1962, Hudson
1964), similar to that used in the experiments described in Chapter 4.
However, the skills involved in performing the task have very little
structure and only involve the acquisition of a certain control policy,
so that the scope for learning is limited. Since there are few sub-
skills and there are no strong interactions between them which makes
satisfacfory performance of one necessary to the learning of another, then,
as discussed by Pask (1965), it is unlikely that feedback training will
give wery great advantages.

The redpirement for tasks with interactions and scope for learning
is not entirely methodological - in reality, tasks involving the
performance of a single skill at a very high level of performance are
very rare. For example, the task of flying an aircraft is difficult, not
because any individual tracking task has anywhere near the difficulty of
fhose commonly used in the laboratory, but because a large number of
different activities have to be integrated together, and poor performance
of one creates an undesirable sub-environment for learning another - an
aircraft diving after a stall is not a suitable environment for learning
the finer points of rudder control. In the majority of real-life
perceptual-motor skills, such as flying, driving and typing. the skill
to be acquired is a complex of many minor sub-skills, and the problem
of learning is to integrate them into a cohesive whole.

There are many possibilities for tracking tasks involving interacting
sub-skills to be set up in the laboratory. For example, the cross-
couplings between the various axes in an aircraft might be simulated in
a two-dimensional tracking task, with differing dynamics in the two axes ’
and strong cross-couplings between them. In the present study, for
purposes of simplicity and ease of interpretation of the results, it was
considered desirable to use a single-dimensional tracking task, and an
interaction was introduced by use of umnatural controls, the push-buttons
which reverse their sense at each push, described in Section AH4.3.5.

The function of these controls is difficult to determine when the system
is not under control, but, equally, the system is virtually impossible |
to bring under control until the function of the push-buttons has been,

at least partially determined.
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5.1.4 Choice of Feedback, and Comparative, Training Situations

Given the use of the reversing push-buttons as controls, the
parameters of task difficulty to be adjusted by the training loop were
chosen +to be those, which from theoretical considerations and initial
informal experdiments,most varied the difficulty of learning to use the
controls. Since a prime requirement for performance feedback when
using the push-buttons is to be able to note the direction of motion
induced in the CRT spot, both damping-ratio and amplitude of disturbance
were expected to have major effects on speed of learning - when the
operator presses a button, an unexpected zero-crossing of the disturbance
may cause the spot to move in the 'wrong' direction, and, equally, a low
damping-ratio leads to oscillations which make it difficult to determine

-the net direction of motion. Hence, in the dynamics of Equation y.1,
the undamped natural frequency was set at the mid-range of the values
used previously - w, = 2.5 radians/second; the damping ratio was varied
from k=0 to k=0.5, and the amplitude of the disturbance was varied from
0.0033 units to zero, as the parameter of difficulty,§ , varied from
unity to zero:

When the difficulty was near zero, so that the disturbance was low,
it was possible for the error to become zero and remain near zero whilst
the operator took no control action - the difficulty would then rise
slowly until the disturbance became appreciable, and then fall back to
ZEero. To remove this artifact, a small constant term was added to the.
output of the push-buttons and the disturbance to form the total input
to the system. This had an amplitude of 0.00033 units, and was sufficient
to cause the spot to drift over the right-hand side of the screen when
the difficulty was zero and there was no control input. If the output
of the push~button controls is written as 0.0012u, where u is plus or
minus the Dirac delta function, then the overall equation for the loop

dynamics is :-
s(s2 + 2.5(1- §)s + 6.25)e = 1.2u + 0.33 + 3.3sgn(sin(wt/10))6 E:i]

It may be seen from the coefficients of the push-button input,
drift and disturbance, that the operator only has to push the buttons ‘
three times a segond to neutralize the disturbance, whilst one push every
four seconds is sufficient to overcome the drift term. t was found that
the error tolerance used in the training locp of the system described in
‘MChapterku was unreasonably stringent when tracking with push-buttons, and
that a mean error tolerance of 0.34 units gave a comfortable, and

acceptable, level of performance when the training loop was in a steady-
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state, The time-constant of the training integrator was set at the
higher of the two values used in testing since this gave the best
compromise between speed of following the operator's learning curve,

and superimposed noise. The equation of the training loop is then:-

sé = 0.0143(0.3% - MOD(e)) - 5.7
where MOD(e) is the amplitude of the error. Since this is bounded
below by zero, and above by 0.95 units, the minimum time for § to fall
from wnity to zero is about two minutes, and to rise from zero to unity
is about four minutes.

The choice of alternative training situations for comparison with
feedback training is clearly very great - if one particular value of
-difficulty is taken to define the task for which training is required,

then fixed training at that same level is one obvious possibility -

training at some other value of difficulty and then transferring to a
test at the required level is the simplest form of open-loop training -
a time-varying trajectory of difficulty is a more general open-loop
training séquence. Clearly, only a limited number of alternative
training techniques could be evaluated, and with the limited information
gained in the initial informal experiments on the relative merits of
different training techniques it was decided to use training at a
constant level of difficulty as the open-loop technique for comparison
with feedback training.

In order to provide an adequate evaluation of the operators'
capabilities after training it was necessary to test their performance at
several levels of difficulty (Section A4.4.1), and it was convenient to
choose these also as the levels for open-loop training, since the same
experimental results could then be used as a basis for the evaluation of
fixed training and of open-loop training at higher, or lower, levels of
difficulty than the required task. Three levels of difficulty were
selected as a result both of the initial experiments with human operators,
and of tre computer-simulation experiments with learning machines described
in Chapter 6. These levels were 6 = 0.25, 0.50, 0.70, and their relative
levels can be appreciated from approximate descriptions of the appearance

of the system to the operator:-
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820.25 (L-low difficulty) Very easy for the skilled operator, and spot
can be kept within plus or minus five per cent of CRT centre. With
naive operators, the spot moves lackadaisically, traversing the full

width of the screen slowly and regularly.

8=0.50 (H~high difficulty) More demanding for the skilled operator, but
it is still within his capability to keep the spot within plus or
minus twenty five per cent of CRT centre, never letting it reach the
edge_of the screen. With a naive operator, the spot moves rapidly
from one side of the screen to the other, and remains for a while at

each edge.

8=0.70 (V-very high difficulty) Approaching the limit of the highly skilled
operator's control - he finds it difficult to prevent the spot reach-
ing the edge of the screen occasionally. With a naive operator, thé
spot races about, both the system oscillation and the disturbance

affecting its movement.

In the initial experiments it was clear that learning was virtually
impossible at the very high difficulty level, and that training at 6=0.50
was the highest which would give useful results. The difference in
situations between the low and high difficulty conditions was so great,
however, that both wére considered of interest. Hence, three separate
training regimes were established:

(i) High Difficulty - H - the 16 operators trained under this
condition had the level of difficulty set at 6=0.5 (H)
throughout the training period. From the informal‘experiments,
it was predicted that this group would show little learning
and perform badly at all test levels of difficulty.

(ii) Low Difficulty - L - the 24 operators trained under this
condition had the level of difficulty set at §=0.25 (L)
throughout the training period. It was predicted that some
members of this group would learn to a high standard, but
that others would not.

(iii) Feedback - F.- the 32 operators trained under this condition
started with 6=0 and had the feedback training loop operative
throughout the training period. It was predicted that all

members of this group would learn to a high standard.
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The numbers trained in each group were chosen to maximize the informaticn
from training conditions of most interest, and to provide an adequate

separation between the groups expected to be most similar.

The integrated error under each of the three test conditions,
6=0.50, 6=0.25, 6=0.70, was measured at the end of the training period.
It was possible to regard any of these three lévels as that for which
training was required, and hence it was possible to compare fixed
training (2 combinations), open-loop training at a higher level of
difficulty (1 combination) open-loop training at a lower level of

difficulty (2 useful combinations), and feedback training (3 combinatioms).

5.1.5 Effects of Individual Differences

The obvious way to evaluate the relative merits of different training
techniques is to take an individual, train him under one regime and
measure his performance on the required task, and then erase his
learning, train him under another regime and again measure his performance.
Unfortunately, as discussed previously, the adaption-automaton of the
human operator is generally irreversible, and learning cannot be ‘erased’.
Hence, it is not possible to compare the effects of different training
regimes on an individual, and, indeed, the same operator, before and
after training, will ‘probably show far larger differences in behaviour
than are apparent between different operators before training.

Thus, it is necessary to compare the effect of different training
regimes on populations of operators rather than individuals, and to take
a large enough sample to ensure that the probability of assigning a
disproportionate number of individuals of one type to.one training
condition is very low. The size of the group reqhired to give a certain
sensitivity to differences in the effects of training regimes reduces
as the overall population becomes homogeneous, containing individuals
similar in their characteristics and abilities. In the present study,
RAF pilots at an advanced stage of training and selection formed the
experimental population. They were a middle-stream group, who had passed
through all the selection procedures testing general flying and navigation
skills and personal qualities, but had failed to graduate to the more
demanding aircraft. Thus the population was inherently homogeneous,
and also very well documented, so that any effects of individual

"differences could be examined.



113

The use of non-human operators such as learning machines enables
the identical individual to be trained under two or more different
regimes. Clearly, experiments with learning machines cannot replace
those with human operators in a study whose objective is the evaluation
of training techniques for human beings. However, since the arguments
of Chapter 3 suggest that the effectsof different training techniques
are, to some extent, independent of the nature of the trainee, studies
with learning machines, although they cannot eliminate those with human
operators, are an aid both to establishing experimental conditions, and
to interpolating between results obtained for human operators. The
experiments with humans described in this Chapter have also been carried

out- With learning machines, and the results are described in Chapter 6.

5.1.6 The Induction of 'Stress'

Some measure of the effect of 'stress' on performance was considered
desirable in order to determine the robustness of the acquired skill to
the performance of non-related activities. 'Stress' is a term covering
a variety of ﬁhenomena (Section AL4.4.2), and, in the present studies, it
was taken to mean merely the potential cause of a deterioration in the
operator's performance of the main task, not induced by the performance
of other physical or‘mental skills. It was noted in the initial informal
experiments that telling the operator that his performance was being tested
caused a different approach to the task, for example, a dif ferent posture,
a look of concentration, deeper breathing, and general indications of
anxiety. It was, therefore, assumed that knowledge of the occurrence of
performance evaluation was in itself stressful, and might be detrimental -
to performance. This assumption was brone out by the comments of the RAF
pilots in the main trials, who were very concerﬁed to know when they were
under test, and commented on the 'fairness' of the stated test procedures.

In order to induce this particular form of stress in a uniform and
controlled manner, the operators were given explicit instructions stating
when the performance evaluation would take place; it was, in fact,
continuous, but this is irrelevant to the stress induced. The overall
experimental techniqué was to allow the operator a 'learning' phase in
which he was unaware that his performance was being monitored, and then
to give him instructions stating that he was to be tested, and evaluate
"his performance again. Any difference in performance immediately before
and after the instructions is clearly due to activities in the intervening
period, none of which was performing the task and one of which was

assimilating the stress-—inducing instructions. Althoughthis procedure
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was designed to measure the effects of a form of 'stress', this is
clearly not necessarily related to any other form of stress- however,
the results of the operational procedure described are an indication

of the robustness of the acquired skill.

5.1.7 Verbalization and Instructions

~ Verbalization and asscciated thought processes play an important

part in the learning of skilled tasks, even though the final control
policy may be essentially non-verbalizable. Even when tracking with the
conventional joystick control, many operators gave a running commentary

on what they were doing, why they were doing it, and especially about what
the spot of light on the CRT screen 'intended' to do next. This
verbalization was even more apparent with the reversing push-buttons where
there 1is clearly a cognitive, or problem-solving, element in determining
the relationship between control actions and their effects on the display.
It is probable that such a component necessarily plays a part in any
'structured skill' (Pask 1965), since the inter-relationship between
sub-skills is a higher -order function, or 'meta-language' (Pask 1965%),
tha;/the relationships between variables within a single skill.

" In order to evaluate the effects and importance of verbalization,
informal experiments were carried out with a variety of operators using
the reversing push-buttons and adaptive trainer described in Section 5.1.4.
They were asked to comment on their control strategy as they attempted to
learn the tracking task, and their comments were noted. In these experiments,
a large-screen (12 inch) oscilloscope was used as a display, and the levels
of difficulty attained are not comparable with those in the formal
experiments described later. Unless otherwise noted, the operators in
the formal experiments were not told anything about the push-buttons, but
were asked to use them to hold the spot on the oscilloscope in a region
centred on a marked mid-line. The following is a brief description of

some of the results which most influenced the main experimental design.

Operator A (Electronic Engineer) Curve Al of Pigure 5-1 shows the
variation of difficulty with time for an operator who learnt the
skill rapidly, aﬂd to a high level. He remarked after the
experiment, 'After about five minutes I suddently managed to stop
pushing the opposite switch when the one I pressed was wrong'; a
sudden change in ability at this time is apparent from the curve
Al' A2 is a trajectory fcr the same operator several hours later,

with no intervening practice. It may be seen that it rises rapidly

to the previous maximum level, showing retention of the skill.
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Operator B (Psychologist) Curve B of Figure 5-1 is most noticeable
for the lack of any real learning, although it shows a definite
rise in the first few minutes. After the experiment, the
operator remarked that he had first formulated the hypothesis that
pressing one button gave alternate steps, whilst pressing one
after another gave steps in the same direction: this is correct,
and. explains the initial rise. However, he said that this hypothesis
had proved to be incorrect, and he had not been able to determine
how the push-buttons operated. From further discussion, it became
apparent that he was unaware that there was a disturbance that moved
the spot independently of the controls. This is zero initially,
and only becomes sufficient to overcome the draft when § is about
0.2. When the disturbance became sufficient to reverse the
expected direction of motion when he pushed the controls, this

'refuted' his hypothesis.

Operator C (Mathematician) Curve C of Figure 5-1 provides one of the
most fascinating insights into the cognitive aspects of learning
the skili. The operator immediately pushed both push-buttons
at a very high rate and very wildly. After some 5 minutes he
graduated to a strategy in which he pushed the buttons rapidly and
at 'random' until the spot was in the centre region, and then left
them alone. This approach produces scme degree of control, and
took him up to 6=0.35, thence slowly declinings the change in-
the smoothing of the trajectory after seven minutes is due to an
increase in the time-constant of the training loop. After fifteen
minutes, the operator rested and stated that he had the impression
that the push-buttons did one thing when the spot was in one place
on the screen, and another when it was in a different place. He
had tried various hypotheses as to the nature of this positional

relationship, but none had proved correct.

The operator then asked the experimenter what the push-buttons did,
and he replied, 'watch me tracking', and gave the buttons ten pushes,
keeping the spot.in the centre. The operator immediately took over'
the buttons, and within three minutes had attained a difficulty level
of §=0.5. After a further fifteen minute tracking session, during
vwhich the level 6>0.5 was maintained, the operator rested for five

minutes and then tracked for a further thirty-six minutes. The
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level of difficulty was set at 6=0.5 at the start of this final

run, and an immediate rise to §=0.77 is apparent. After eleven
minutes (total time on graph forty-one minutes), a rise to §=0.87
may be seen - on seeing the charts afterwards, the operator remarked
that this was when he realized that the 'pendulum' had to be moved
in the mean (that is, the centre of oscillation of the spot was

what he was controlling), and that the energy of oscillation was
increased by pulsing at the end of a swing, and decreased by pulsing
at the other. At the end of this very long training period, the

operatér was still keen to continue tracking.

Operator D (RAF Trainer) As shown in curve D of Figure 5-1, this _
operator was trained at the level, §=0.5, for six minutes initially.
At the end of this period he was asked what the buttons do, and
replied that the right-hand button stops the spot when coming from
the right and the left-hand button stops the spot when it is
coming from the left, but neither has any effect in the centre of
the screen. The operator then tracked for thirty seven minutes
with the feedback trainer operative, attaining a maximum level of
§=0.4. During the rest period it became clear that he was now
aware of the manner of operation of the reversing push-buttons,
but he still taiked of the capability of stopping the spot rather
than being able to return it to the centre. After a further
fifteen minutes tracking, during which the level of difficulty rose
to a maximum of 6=0.62, he said that it was possible to control the
spot very easily when it was in the centre, but the best strategy
when it went to the edge was to leave it until it returned; this
policy probably accounts for the jagged nature of his difficulty

trajectory.

Operator E (Electronic Engineer) This operator trained for twenty-

five minutes at 6=0.5, as shown in curve E of Figure 5-1, and at
the end of this period had no idea at all of how the push-buttons
operated, professing complete ignorance. Without any information
about the push-buttons, he tracked for a further forty-two minutes
under feedback training conditions, taking seven minutes even to
move the spet into the centre region, and never reaching a level of

difficulty above §=0.32. He was still unable to state what the
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push-buttons did, and this was explained to him by the experimenter,
after which, in a further fifteen minutes tracking, he performed the

task reasonably well and attained a level of difficulty, &=0.5.

Discussion From these informal experiments, and many others of the same
nature, it was clear that the third-order tracking task with reversing
push-button controls had the required features for use in the experimental
comparison of feedback and other training techniques. Operators were
able to track for periods of twenty-five minutes or more without experience,.
or coﬁplaint, of fatigue. All operators started with a total inability
to perform what was a new and strange task for everyone, but it was
possible torattain a high level of ability after as short a period as

five minutes of feedback training, but more typically after twenty minutes.
| Training for extended periods at high levels of difficulty produced little
or no learning - from the results with operators D and E, it might even
produce negative transfer, possibly because of the type of behaviour
shown by operator B - and yet these levels of difficulty were readily

attainable under feedback conditions.

Most interestingly, from these initial experiments it was clear that
verbal instructions could exert a strong influence over the learning of
an operator, and that verbalization was a major effect in the learning.
It was decided to inyestigate possible interactions between the effects
on learning of the form of instructions given and the training technique
used, by giving two different forms of instruction, one of which gave no
information about how the push-buttons worked, and the other of which
gave a great deal if information; these are described.in the following
section. It was also decided to attempt to evaluate the operator's
knowledge of the task and his degree of verbalization.by giving appropriate

questionnaires after training; these are described in Section 5.1.G.

5.1.8 Forms of Instruction

There appear to be three basic forms of instruction which might be
used to help the operator: firstly, those which describe to him the
nature of the system he is to control - that is, if you do this then this
will happen; secondl§, those which advise him on a suitable control
policy -that is, if this happens then do this; and thirdly, those which
inform him of sub-goals to be attained - if you are able to achieve this
“then it will be useful in performing tﬁe task. It is assumed, of course,
that instructions as to the main objectives and the 'rules of the game'

are always necessary. It was not possible to include all these
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variations, and the first type was chosen because the form of the
instructions is simple and obvious, being purely descriptive of the
system and not requiring any knowledge of human control strategies.
Hence, only two forms of instruction were used in the experiment:
the weak instructions, telling the operator nothing about the task he
is-to perform, except the performance criterion and the controls to be
used; and the strong Instructions, telling him, in addition, the
nature of the coding of the push-button controls. The instructions
were given to the operator on one side of a foolscap page at the start
of the expefiment, and he was asked to read them throughly. The actual

form of the instructions was as follows:

R.A.F,, &dddi " Medical Psychology
1966

Introduction - In order to investigate training techniques for various

skills it is necessary to use both a range of subjects, from those
professionally involved in similar skills to those who may never have
attempted them before, and also a range of skills, some of which must
be novel for all subjects. The tasks to be performed will be presented
to different subjects in different ways as part of the investigation.
The particular skills you will be asked to perform all involve keeping
‘a spot of light in the centre region of a display, using either a rolling
ball joystick or a pair of push-buttons. '

This is the background to this study. For the results to be valid
we have to rely on your co-operation both in performing the tasks as

well as possible, and in answering questions about them.

TASK I The spot of light on the display moves from side to side only,
and your task to to maintain it in the centre of the display (marked by
the centre black line), not deviating outside the black lines on either
side of the centre line. If the spot comes to the edge of the screen

it will not disappear, but should rest there so that you can see it.
(The following paragraph was used only in the weak instructions)

The red push-buttons on the arms of your chair are to be used as
controls. You maybfind their effect puzzling at first, but part of your

task is to learn what they de and this is not very complicated.
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(The following paragraph was used only in the strong instructions)

The red push-buttons on the arms of your chair are to be used as
controls. Depressing either push-button imparts an impulsive movement
to the spot of light. At any instant one of the push-buttons is
capable of knocking the spot to the left, and the other one is capable
of knocking it to the right. HNeither button cénsistently gives a left
or right impulse, however, but instead they alternate in their effects
each time you press one. The effects of the push-buttons may be

puzzling at first, but part of your task is to learn how to use them.
(The remaining three paragraphs terminated both)

If it is not possible to maintain the spot of light always within
the black markers then you should try and control it so that its average
position is in the centre - that is, so that the spot deviates equally
to right and left without any tendency to be more one way than the cther.
The red light will come on to indicate that an mxperiment is in
progress. If at any time whilst the light is on you wish to stop tracking
please inform .the operator (who can hear you through the intercom). He
will lock the apparatus until you are ready to continue and there will
be no need to repeat the earlier stage.

Please read through again if you wish.

I P S S R S St A N M)
G T TR QU UL G J I

Each of the three main experimental groups, H,L. and I (Section 5.1.%),
was subdivided into two groups with weak or strong instructions , labelled
w and s respectively. Thus there were sir experimental groups altogether,
with eight operators in each of the groups Hw and Hs, twelve in each of
the groups Lw and Ls, and sixteen operators in each of the groups Fw and

Fs.

5.1.9 Form of Questionnaires

For all operators, the training periocd was divided into two sessions
of twenty-five minutes, after each of which the operator was reguired to
fill in a questicnnaire. The prime objective of these was to provide
some measure of the individual operator's attitude to the experimental
situation, and some measure of his verbal reaction to the control problem.

Auxiliary objectives were to require the operator to read the instructions
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again at the end of the first training period, and to give an interesting
but relaxing task in between experimental trials. The questionnaires
vwere based on the types of comment, and topics of interest, which had
become apparent during the informal training sessions outlined in

Section 5.1.7, and, wherever possible, obtained data in a quantitative
rather than gqualitative form. No time limit was placed on the filling

in of questionnaires, and this varied widely between operators.

Figures 5-2 and 5-3 show the questionnaire which was administered
at the end of the first 25 minute training session. The first question
asks for the experimental instructions to be read through again, and
requests comments on them to ensure that this is done. When these
instructions were first read, the operator had no experience of the
tracking task, and was unable to gain any whilst reading them since the
equipment was inactive. Hence, it was felt that the instructions might
have little effect, and that it was desirable to give them to the operator
again; 1in the present experimental design, it is not possible to
separate out the effect of instructions before, and after, the initial
training séssion, but this is a very interesting possibility for future
experiments.

The second question in Figure 5-2 requests an estimate of the
initial training period - it was felt that this might reflect the level
of stress, or involvément, of the operator in the task. In further
questions, the operator is required to respond by marking a position on
a line, ten centimetres in length, the two ends of which correspond to
different extremal responses. All operators marked the lines without
query and without apparent difficulty, so that this form of answer
appears to be acceptable. The various questions seek to evaluate interest
in the task, its apparent difficulty, the operator's estimate of his
present performance, and of his potential future performance.

The first question in Figure 5-3 attempts to evaluate the operator's
estimate of his own ultimate potential, and of the possibility of ever
performing the task according to the instructions. It is interesting
to note at this point, that this question was badly filled in, with many
operators omitting one figure. This contrasts with the 1Ocm lines, which
were completed by all 72 operators, showing the advantage of requiring
questions to be answered in this way. The final questions on Figure 5-3
~attempt to evaluate the extent to which the operator is able to solve the
control problem in verbal form.

Figure 5-4% shows the questionnaire administered after the second

training period. The first three questions attempt to discover the degree
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This questionaire is to help us in evaluating the
training situation. Please add any comments necessary if the
given answers to questions are not adequate.

Please read through the instructions given to you at
the start of this task. Were they adequate or should further
instructions have been given ? '

ANY COMMENTS: |

Please estimate how manyvmihutes you have been pefforming
the task veeeees JMINS. |

Was the task itself interesting or boring % please indicate
‘by marking an app:opriate position on this line between the two
extremes:

Very . _ ’ _, Very
Boring i : Interesting
ANY COMMENTS: |

Was the task itself too difficult or too easy to learn
and perform ? L ' ’

Far too — ’ . s Far t00
Difficult ‘ . Easy
Just Right v
ANY COMMENTS:

How well do you feel you were performing thevtask finally 7

Complete : -
Failure — Perfectly

At the end of another practice run of the same length how
. well do you estimate you could perform the task ?

Complete . :
- Failure * . —sPerfectly

Figure 5=2 First Questionnaire - Part I




123

How many further practice runs would you need to perform

the task - adequately f veveennss perfectly?;......;.

ANY COMMENTS:

‘What effect do the push-buttoné have on the display 7

The spot is stationary as shown:

which push-~button would you press ? IEFT — RIGHT

ANY COMMENTS:

Having pushed the button the spot moves as shown;

how would you press the push-buttons to bring it back to the
centre 7

ANY FINAL COMMENTS:

Figure 5=3 First Questionnaire - Part II




You have now received twotraining runs on this task.
Were they too long or too short® LONG JUST RIGHT  SHORT

Please mark the length of time which would be most suitable for
these practice runs:

—
-Present length

Is the experimental set-up itself in any way uncomfortable
or fatiguing, and if so what improvements might be made ?

How many further training runs would you require tc perform

the task " adequately ? seeven perfectly ? ...oce.

Have you any further comments about the effects of the
push-buttons on the display ?

i

The spot is stationary as shown:'

* which push-button would you press ? LEFT RIGHT
ANY COMMENTS:

|

When you push the button the spot moves as shown:

how would you press the push-buttons to bring it back
to the centre ?

ANY FINAL COMMENTS:

Figure 5-4 Second Questionnaire
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of stress, or discomfort to the operator resulting from performance
of the task. The remaining questions are similar to those on the
first questionnaire, and investigate estimation of ultimate performance

and knowledge of the control policy.

5.1.10 Summary of Experimental Design

Seventy-two RAF pilots were trained in the push-button tracking
task described in Section 5.1.4, using the reversing push-button controls
described in Section A4.3.5 and the display and experimental environment
described in Section 4.5.3. Three forms of training regime were used,
as described in Section 5.1.4, and two forms of instructions, as described
in Section 5.1.8, giving six experimental groups whose constitution is

summarized in Table 5-2.

Training Regime _ Instructions
w - Weak s -~ Strong
uninformative informative
H - High Difficulty Hw - 8 ’ Hs - 8
§=0.5 (H)
L - Low Difficulty Lw - 12 Ls - 12
6=0.25 (L)
F - Feedback ‘ Fw ~ 16 Fs - 16

§ variable to maintain
performance constant

Table 5-2 Numbers of Operators in Experimental Groups

All operators had the same schedule of training, testing,answering

questionnaires, and so on, and this is summarized in Table 5-3.

Activity Duration Description

Read Instructions Variable Instructions reproduced in Section
(7-18 min.) 5.1.8 - weak and strong forms.

Trainl 20 min. Track under one of three conditions,

H,L,F; the feedback group started
with 6=0.00.

Test, §=0.5(H) - 5 min. Continue tracking without interruptio
and without knowledge of change, but
with 6=0.5, and performance measured.

Questionnair'el Variable ; Fill in Questionnaire shown in Figure:
(18~53 min.) 5-2 and 5-3; this involves reading
instructions again.
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Train 20 min. Track under same conditions as
Trainy; the feedback group started
with § at the same level as it

was at end of Trainj.

Test2 8=0.5(H) 5 min. As for Testl.
Questionnaire2 Variable Fill in Questionnaire of Figure 5-4;
(12-31 min.) informed that there will be three

tests, each of five minutes.

Test, §=0.5(H) 5 min. Measure performance over last 4
minutes of test; this is at same
level of difficulty as previous,
unannounced test.

Testl+ §=0.25(L) 5 min., Same as Testg but at level of
difficulty as that at which L group
trained.

Tests' 8=0.70(V) 5 min. Same as Testz but at higher level

of difficulty than that met by any
operators, except a few of F group,
during training.

Table 5~3 Experimental Schedule

5.2 Experimental Results

An experiment of this size and nature generates a great deal of data
which may have within it not only the answers to the questions originally
posed, but also indications of new phenomena, possibly more important
than those which it was intended to examine. Hence it is desirable to
present the results in as detailed a form as possible, without losing
track of overall trends in a mass of data. This has been attempted
by giving the raw data in numerical form in Appendix 5, displaying it in
graphical form in this chapter, and giving statistics'of the data in the
appendix - the major effects are then clearly visible, and any peculiarities
of distribution may be seen, whilst their magnitude may be checked either

from the (parametric) statistics given, or by manipulation of the raw data.

5.2.1 Learning Behaviour

The interaction between the feedback trainer and the trainee is
itself of interest for the 32 operators under the Feedback condition,
and a complete set of trajectories of difficulty against time for these
operaters is given in Appendix 5. For convenience, these results are
plotted in pairs, but the pairing is based on clarity of presentation
only and does not reflect any properties of the data. Graphs 1 through
16 are those of the Fs group, and 17 through 32 are those of the Fw group;
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these results can be linked to the raw data through the last column of
this data.

A wide variety of possible behaviour is apparent in these graphs,
from the steady climb to a high level of 13, through the rapid climb to
a plateau of 7, the two-plateau characteristics of 8, the oscillatory
uncertainty of learning of 30, and the rise and fall of 18 and 22. Some
effects can be related to the experimental situation ~ the central
discontinuities in 4 and 8 are related to the pause given for f£illing
in the questionnaire, and, possibly, to the re-reading of the instructions -
but many of .the differences between the curves, particularly in relative
smoothness and timing of rises and falls, appear to be data of a
significant nature apparent only in the trajectories, and suggest that
profile-matching could be applied to obtain more information from

feedback 'trainers' used as tests.

5.2.2 Performance on the Tests

Figures 5-5 and 5-6 show bar graphs in which the performance of each
of the72 operétors on a particular test is shown as a horizontal line at
the appropriate ordinate. The bars are grouped in six columns corresponding
to the wvarious training conditions, and these charts illustrate the
performance differences between groups induced by different training
conditions. The significance of these differences may be determined
from Table A5-2 of Appendix 5, which gives the mean and variance for
eéch_group on each test, together with t-statistics and variance ratios
for the comparisons of means and distributions of the various groups;
values which attain a one per cent level of significance are bracketed
for ease of interpfetation.

Figure 5-5(a) shows that, on a test at the high level of difficulty
(H: 6=0.5) session, the Hw, Hs, and Lw groups show a uniformly low level
of performance, whilst the Ls, Fw and Fs groups show a spread of performance
ranging from the very low to very highj; only the Fs group is significantly
better than the first three groups, however. The spread of the two groups,
Hw and Hs is significantly less than all the other groups, and this may
be related to the sigﬁoidal nature of plots of performance against
difficulty.

From Figure 5-5(b) it appears that, at the end of the second training

“session, these differences have been ehhanced, and all three groups, Ls,
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Fw and Fs, are now better than Hw, Hs, and Lw, but there are no
significant differences within each set of three groups. However, the
graph is suggestive of an overall difference between groups with strong
and groups with weak instructions. Figure 5-5(c), which shows the
performance on a test at the same level of difficulty after the
operators were informed of the test, has the same interpretation as
Figure 5-5(b). However, the variable of greatest interest is the
relationship between these figures and the effect of instructions on
perfofmance - this is shown by the plot of performance differences in
Figure 5-6(b) and analysed in Section 5.2.4.

Figure B—S(d) shows the performances on a test of lower difficulty
(L: 6=0.25), and in this the Hw, Hs, and Lw groups again appear as not
significantly different, the Ls and Fw groups are significantly better
than these three, and the Fs group is significantly better than the other
five. It is interesting to note the wide spread in learning of the Hw,
Hs and Lw groups, particularly since the Lw group is being tested at
the same level as that at which it trained. The high performance of
some members of the H group on this test is due, in some part, to learning
during the five-minute test period. The test results at a higher level
of difficulty (v: 6=0.7), shown in Figure 5-6(a), demonstrate the spread
in abilities which still exists in the better groups.

’,

5.2.3 Effect of Instructions

The effect of giving informative (strong) instructions, containing
a description of the operation of the complex controls, compared with
that of giving uninformative (weak) instructions, was a pronounced
improvement in performance, significant in all but the high-difficulty
(H) group. The effect is by far the most pronounced in the group, L,
trained at a low level of difficulty, in which there is a clear dichotomy
of performance according to the instructions given. It is reasonable to
suppose that, at this level of difficulty, a control policy sufficient
to maintain the desired sub-environment could be set up and applied

verbally - the operator had time to think. The effect is less apparent

in the group trained at a high level of difficulty, H, who learnt
uniformly badly, and the group trained under feedback conditions, F,
who learnt uniformly well.

Another interesting feature of the effect of instructions is that

it is more pronounced in the group undergoing feedback training, F, at
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the end of the second training session than at the end of the first.

It had seemed reasonable to predict that the instructions would be of

most benefit tothe naive operator, and it is clear that the effect

cannot be explained, for this group, by the sigmoidal nature of performance
curves. It appears, however, from the comments of the operators, that
many of them could not comprehend the instructions at first reading,
whereas, after some experience in tracking, the instructions were very

k Béipful;  This may be partially due to poor instructions but is also

an indication that an optimum interplay between direct communication

and feedback training is required, and suggests that best results will

be obtainedrwith a system in which the instructions are under the control
of the training system and can themselves be made contingent on performance

feedback.

5.2.4 The Effect of Instruction-Induced 'Stress'

Figure 5-6(b) shows, for each operator, the error on the third
test minus that on the second, and hence a positive 'error difference’
corresponds to an improvement of performance. Since the third test
is at the same level of difficulty as the second test (H: 6=0.5), and
follows it after an interval with no practice at the tracking task, any
error difference must be due to the effect of events in the intervening
interval. - During this interval the operator filled in the second
questionnaire, and was then informed that his proficiency was to be tested.
As discussed in Section 5.1.6, this information was expected to be
stress-inducing, and hence, possibly, to cause a deterioration in the
operator's performance. Alone, however, the interval of other activity
might be expected to lead to an improvement in perforﬁance.

From Figure 5~6(b), it may be seen that the effect of the instructions
varies widely over the three groups: out of the sixteen operators trained
at a high level of difficulty, twelve show a deterioration in performance:
the group trained at a low level of difficulty split equally into twelve
who get worse and twelve who improve; out of the thirty~two operators
trained under feedback conditions, only four show any deterioration, and
the general perfdrmanée improvement is very marked. From Table A5-2,
only the improved performance of the F group over the H and L groups is
significant at the 1% level; no effects of the main instructions are

.apparent.
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As noted in Section 5.1.6, the effect of the information that the
operator is to be tested is not necessarily one of ‘'stress' and: it is in
any event too superficial a conclusion to state that the performance
of the operators trained under feedback cocnditions improved with 'stress',
whilst that of operators trained under open-loop conditions deteriorated
or remained unchanged.For example,the mean level of performance of each
of the groups differs widely, and the nonlinearity of the performance
scale magnifies changes at the mid-level of performance and minimizes the
apparent extent of those at very high, or very low, levels. However,
taking account of this effect only increases the contrast between the
three groups; since the detericration of the H group would be more
pronounced, as would the improvement of the F group.

The most reasonable explanation of the overall effect of instructioh-
induced 'stress' is that the feedback group had spare capacity in test
two, or had become fatigued through controlling at the high level of
difficulty many of them had attained, and were able, after the instructions
or a rest, to produce a higher standard of performance; the group trained
at a high level of difficulty had learnt little and became highly stressed
when asked to apply this learnings and the group trained at a low level
of difficulty either show a mixture of both types of behaviour, or a
random spread in performance. The circumstances of test two are anomalous
for this last group, l, because it was probably apparent to them at the
end of the training interval that the task had become more difficult.

This might have induced them to use all their available capacity in the,
supposedly unknown, test, and hence show no improvement in performance

when informed of the test. '

5.2.5 Responses to the Questionnaires

The marking of the ten-centimetre lines of the questionnaires was
carried out by all operators without question or comment, whereas the
response to questions requiring a written answer was poor, answers often
being completely omitted. Because of the variety, both in quantity and
nature, or the written responses, comparisons between the groups at a
semantic level are not possible. However, the total number of words written
by each operator on the questionnaires was evaluated to give an indication
of the degree of verbalization, if not its nature. The time estimate was
uniformly filled in, and this was recorded.

There is no significant difference between the groups in their
estimates of the actual time of the training sessions, which is about five

minutes less than the true time. However, the estimated optimal training



133

time varies widely between the groups, espscially in the degree of
within-group agreement. The Hs group, trained at a high level of
difficulty with informative instructions, request a rather shorter
training session, and are the only group in which the optimal length
is less than the estimated actual length; the high variances of the
Hw and Lw groups are largely due to single individuals putting down
very -high values. ‘

The interest in the tracking task which is indicated does not
vary widely between the groups, although that of the Ls group is greatest
and significantly more than that of the Lw and Hs groups. This
uniformity of interest suggests that the differences in performance
which were obtained were not a function of the relative motivations, or
degree of boredom, of the groups under different conditions. Performance
estimates again do not vary/ﬁés widely between the groups as might be v
expected. Those of the Hw and Hs groups are lower, than the cthers, but
by no means in proportion to actual performances; this reflects the
'adaption level' effect in performance evaluation, since no absolute
standard is given to each operater.

The estimates of task difficulty show interesting differences
between the groups, apparent in Figure 5-6(d) -~ as expected, the Hw, Hs
and Lw groups, all of whom performed badly, find the task too difficult,
but there is a remarKable consensus of opinion in the Ls group, emphasized
by the availability on this particular scale of a centre point marked
'Just right'. The total number of words written on the questionnaires
also brings out an interesting difference between the groups, in that the
Hs group wrote over twice as many words as the Hw group. It may be
noted from Figure 5-6(c) that the Hs group has no individual writing
less than about ninety words, which is very much higher than the minima
of the other groups. This seems to reflect the unique status of the
Hs group, who were told how to do the task and then found they could not
in practice - a situation apparently creating much verbal behaviour.

The results obtained with the questionnaires are interesting and
throw some light on the effects of the different training situations cn
the motivation, comfort and verbalization of the operators. Much more
precise information could have been obtained if an automated questionnaire
system with data~logging facilities for response times, such as that

described by Gedye and Miller (1969), had been available. Such & system

would also be valuable in enabling the instructions to be presented to a



controlled level of comprehension.

5.2.6 Differences Between the Experimental Groups

The group, H, trained at a high level of difficulty (H:¢§ =0.5),
show virtually zero learning compared with the other groups. At
the end of the second training session, the sub-group, Hs, with
informative instructions show better performance than Hw (significant
at 5 per cent level). The level of difficulty, H:6=0.5, is not in
itself too high for successful learning and performance, however, since
65 per cent bf the feedback group attained it, or much higher levels,
during training. The Hs group, in particular, show interesting verbal
‘behaviour, both in requesting significantly shorter training sessions,
and writing significantly more on the questionnaire than the Hw group,
presumably because they find the tracking task unexpectedly impossible,
using the verbal instructions alone. In the easiest test, Tes*ti+
(L: 6=0.25), the H group show a very wide spread of performance; those
who did well showed appreciable learning during the test.

The group, L, trained at a low level of difficulty, L: ¢=0.25, split
clearly according to the instructions given - those with the weak, non-
informative instructions do not show appreciably better performance than
the group trained at g high level of difficulty, whereas those with
strong, informative instructions show a spread in performance from very
high to very low throughout the tests, but are comparable in performance
to the group under feedback training.  The Ls group stand out as
expressing the greatest interest in the task and estimating that its
difficulty was 'just right'.

The group, F, trained under feedback conditions in which § was
adjusted to maintain their mean error constant, again split according
to the instructions given, but not in nearly so dramatic a manner as
the L group. Both Fw and Fs groups learn to a high level of performance,
and are significantly better than the Hw, Hs and Fw groups on all tests.

. The Fs group is significantly better than the Ls group on the fourth

test (L: §=0.25), which is particularly interesting since this is the
level at which the Ls group trained. There is no significant difference
between the Fw and Ls groups on any of the tests, and indeed the Ls group
is slightly better in three out of the five. However, under instruction-
induced stress, both the F groups show significantly better results than

the Ls group, and, of course, all other groups.
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5.3 Implications of Experimental Results

The interpretation of the results in terms of transfer from a
training condition to an easier, or more difficult, test condition is
very interesting. The Hs group shows little learning, and hence
little transfer, to tasks either easier or more difficult, whereas the
Ls group-shows good transfer to more difficult tasks. In particular,
the results of the fifth test,V: £ =0.7, show that training on an easier
task leads to poor transfer, whereas training on a very much easier task
leads to good transfer - no theory in terms of relative difficulty can
account for this result. As noted in Section A4.5.1, Gibbs (1951)
expresses his conclusions on transfer of training in terms of learning,
'carried on until the total possible skill is approached in both tasks’.
This was not done in the present experiment, and it is possible that |
ultimately the H group might have learnt the task. - However, it is
clear that they would take very much longer to do so, and that no
practical importance attaches to laws of training expressed in these
terms unless predictions are also made about the rates of léarning.

The utility of feedback training is best examined by considering
separately the groups under w and s conditions of instruction. With
the non-informative instructions, w, the interaction between learning
how to control the system and learning how the system operates, the
dual control problem (Chapter 3), is predominant and the sub-environment
phenomenom may be expected to strongly influence learning. This is
strongly borne out by the experimental results in that the Fw group,
under feedback training, show overwhelmingly better performance at all
test levels of difficulty, than either of the Hw and Lw groups under
open-loop training. Thus, in a situation where the task is complex
and poorly defined, and where interactions between performance and
gaining knowledge may be expected, the experimental results clearly
demonstrate the predicted advantages of feedback training.

With the informative instructions, s, the operator has the possibility
of overcoming the sub-environment phenomenom by setting up a control
policy 'verbally', and initially taking a cognitive approach to the
perceptual-motor tracking skill. This will only be possible if the level
of performance required of him is not too high. Comparison of the results
for the Hs, Ls and Fs groups gain shows a significant advantage to feed-
back training, but now the L group is more similar to the F group than to
the H group. This interaction between the effects of verbal instructicn

and the level of difficulty in training is, perhaps, the most important
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outcome of the present series of experiments. It not only provides
experimental evidence of the meaning fulness and applicability of

the approach to problems in learning advanced in Chapter 3, but is
also relevant to the practical instruction situation in flying and
driving, where verbal instruction and variation in task difficulty are
closely combined. '

The demonstration of an interaction between verbal instruction and
the various modes of training, and its relationship to the sub-environ-
ment phenomenom, is , in particular, a vindication of the approach taken
to the study of learning and training by Pask (1960,1961,1364,
1965,1965%), who has emphasized the importance of language in learning,
and the linguistic nature of all processes in the learning hierarchy.
'The theoretical developments in the first half of this thesis indicate
that feedback training will be most effective when there are complex
interactions between the 'sub-skills' required for the learning of a
particular task, and it is these interactions which are most amenable
to description through language -~ thus, it is no coincidence that both
feedback training and verbal instructions exert a profound influence on
learning in the experimental situation chosen.

The experiméntal situation is itself of interest in that the use
of reversing push-buttons #o control a high-order system provides a task
new to all operators, and which is learnt in about thirty minutes by
operators under one training regime but not learnt at all by those under
another, Although the task is clearly artificial, it involves an
interaction between learning to use the controls and learning tc control
the system which is found, from one cause or another, in most skilled
tasks for which training is required. Thus, the task provides an
interesting and useful addition to the repertoire of laboratory situations
for the investigation of human skills, their learning and training.

In the following chapter, experiments with adaptive-threshold-
logic .controllers, paralleling those with human operators, show that the
results obtained are not unique to human learning, but are found with
other forms of learning system, and, hence, are a function of the learning
situation. In Chaptér 7, possible extensions of the present experiments
tocther situations are discussed, togetﬁer with the relevance of the

results to practical training problems.



CHAPTER 6 : EXPERIMENTS WITH LEARNING MACHINES

6.1 Introduction

It has been noted several times that automatic adaptive controllers
may be used as 'subjects' in experiments on learning and training, and
that the results may not only illustrate fundamental phenomena of learning,
but also be of direct relevance to the learning behaviour of human
operators in similar situations. The advantages of using automatic
contrdllers in this way, apart from the obvious ones of availability
and experimental convenience, are that an ensemble of identical machines
may be used to compare the effects of different training regimes, and
that the reasons for particular behaviour shown by a machine may be
investigated in detail by examination of the internal behaviour of the
machine.

The choice of adaptive controllers is already wide and grOws with
the increasing number of machines being described in the literature.At
one extreme are the linear controllers with parameters varied by cross-
correlation (Donalson and Kishi 1965), whose behaviour is amenable to
detailed theoretical analysis but which show only a limited repertoire
of adaptive phenomena, and at the other extreme are multi-strategy,
hierarchical learning systems, such as STeLLA (Andreae and Cashin 1969),
whose behaviour defies prediction and shows a complex variety of adaptive
reactions to the environment. Between these two extremes are pattern-
classifiers and adaptive controllers based on adaptive theshold logic
elements (ATLEs), whose basic structure is simple and amenable to analysis
(Appendix l), but whose behaviour can range over the full repertoire of
adaptive phenomena described in previous chapters.

Two studies of computer-simulated learning systems are reported in
this chapter: the first demonstrates the richness of behaviour possible
for even a very simple adaptive system, and exemplifies the modes of
adaption and phenomena of training discussed in Chapters 2 and 3; the
second utilizes an ATLE controller as a range of subjects for the feed-
back trainer discussed in Chapters 4 and 5, and compares the learning

behaviour with that of human operators.

6.2 Adaptive Behaviour of an ATLE Pattern-Classifier

In the theoretical discussion much emphasis has been placed upon
the inherent complexity or ‘richness' of adaptive behaviour, and it is
useful to chose as an experimental system with which to illustrate some

modes of adaptive behavicur and training a very simple adaptive-~threshold
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logic pattern-classifier {ATLE). The nature and behaviour of ATLEs
is discussed in detail in Appendix 1, where it is shown (Al.3.3) that
an ATLE with bounded weights does not necessarily converge to a solution
of a pattern-classification problem, even when the Novikoff conditions
are satisfied. Its convergence is dependent upon the initial values
of the weights, that is its initial state,and, in terms of the discussion
of Section A3.5, there is more than one O-minimal ideal in which its
state may ultimately reside. In Section 2.2.5, a pattern-classifier of
this type has been used to examplify the concept of a task, and in this
section the example is developed in more detail through experimental
studies.

Using the notation of Section Al.3.3, consider the ATLE with five
weights, wi 1 <1 <5, which are bounded in the range from -4 to +i,

so that:

G P T T 1€ 1°<5 [6.1]

and consider the set of stimulus vectors:

A = (1, 1,1, 1, -1) A' = (-1,-1,-1,-1, 1)
B = (l,~1,-1,-1, 1) B' = (-1, 1, 1, 1,-1)
c = (-1, 1,-1,-1, 1) c' = (1,-1, 1, 1,-1)
D = (-1,-1, 1,-1, 1) D' = (1, 1,-1, 1,-1)
E = (-1,-1,-1, 1, 1) E' = (1,1, 1,-1,~1)

The left-hand set of vectors may be separated from the right-hand set
by the weight vector, W = (1,1,1,1,3), since -
W.A = W.B = W.C = W.D = W.E = 1 > +1/2 :
W.A'" = W.B' W.C' = W.D' = W.E'=-1 < -1/2 [ 6.2]

1

Consider now an ATLE pattern-classifier using the decision and
adaptive procedures of Section Al.3. Because A=-A', B=-B', and so. on,
it is unnecessary to take the two sets of patterns separately, and
training sequences may be regarded as made up of A,B,C,D and E, only.
In terms of the definition of Section 2.2.5, let the sequence of patterns,
t = (E,A,D,C,A,B), be a 'task' for which it is required to train the
pattern-classifier. The effect of giving the classifier this task once,
starting with a weigh%-vector (0,0,0,0,0), may be calculated as in
Section Al.3.3:



Wl W2 W3 wq W5 Correct
Initial® W9 5 © 0 0 0 0 No
W) o, 1 -1 -1 -1 1 Yo
W2) , 2 0 0 0 0 Yo
HE3) o1 1 -1 -1 1 Yo
W(w) , 0 0 -2 2 Yo
W(s) ;1 1 -1 1 X
ooy 5 W(B) 0 0 0 2

Hence, giving the pattern-classifier the task, t, changes its

state from the initial weight-vector, (0,0,0,0,0)<to the final weight-
-vector, (0,0,0,0,2), This is still not a solution to the problem, but
it may be shown that repeating the task another two times leads to
convergehce to the solution, (1,1,1,1,2). Hence, the pattern-classifier
is potentially adaptive to the task, t, when its state is given by the
weight-vector, (0,0,0,0,0). However, given a different initial weight-
vector, such as (0,0,0,1,0), the pattern-classifier does not necessarily
converge, and shows limit-cycle behaviour, as in the example of Section
Al.3.3.

By plotting out the state-sequences of the pattern-classifier, given
the task, t, in éver§ possible state, its adaption-automaton may be
completely identified, and experiments may be carried out on compatible
adaption, open-loop training, and so on. However, even this very simple
adaptive system has 95 = 59,049 states, which makes it a major cdmputational
problem to examine the structure of the complete adaption-automaton in
practice, and only particular parts of the transition diagram can be
mapped out. It is convenient in doing this to simplify the nomenclature
for states of the automaton by adding 4 to each component of the weight~-
vector and writing the result as a string of digits - thus, (0,0,0,0,0)=
yuuuy . and (-1, -2, 4,44,0) = 32804,

6.2.1 Adaption-Automaton of the Pattern-Classifier

Figure 6-1 shows some trajectories induced by the task, t, in the
state-space of the adaption-automaton of the ATLE. There are five
possible states in which the classifier has attained a solution to the
- problem,. 55557, 55568, 55658, 56558, 65558, and the first, second and
fourth of these are shown in the figure marked in heavy rings. By the

nature of the error-correcting adaptive procedure, once these states
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Figure 6-1 State~Transitions of Adaption-Automaton
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are attained the weights are not changed, and these states are invariant
under the task, t. The centre part of the figure ' shows part of the
tree of states converging in to the final state, 55557. This is clearly
an ideal of the state-semigroup of the automaton, and the monogenic sub-
semigroup generated by the state, 55557, is the only O-minimal ideal
contained within it. The states 56558 and 55568, shown in the lower
part of the figure, also generate O-minimal ideals, and the centre and
lower ﬁarts of the figure clearly contain states which are within the
region of potential adaption of the automaton.
In the upper part of the figure, are shown state sequences which
do not lead to solutions, such as that terminating in the state, 46478,
which, although it is invariant and generates a O-minimal ideal, is not
a solution to the pattern-classifiecation problem. Because it is
possible for weight~vectors which are not solutions to change under t,
the interesting behaviour shown in the topmost part of the figure is possibde-
states 47558 and 45558 together form a cycle, and the automaton altermates ;

between them.

6.2.2 Modes of Adaption

The transitions in state-space of Figure 6-1 are for the single
task, t, only - by considering also the state-transitions introduced by
other tasks, illustrations may be given of all the modes of adaption
defined in Chapter 2 and 3. For example, consider the set of vectors
obtained by interchinging the first and last components of the vectors,

A, B, C, D, E, A', and so on, defined in Section 6.2 - let these be

Al, Bl’ Cl’ and so one, so that, for example, Al = (~1, 2, 1, 1, 1) and

E, = (-1, 1, 1, -1, 1). The new sets of vectors can clearly be separated
1

by the weight vector, W, = (3,1,1,1,1), since -~

1

Wl.Al = Wl.Bl = Wl.Cl = Wl.Dl = Wl.El = 1> +1/2

(6.3
W..A! = W .B! = W .C! =W .D!=W.E+-
1-A} = W .BY = W .CH o= W D! =W LED+ -l< $1/2

The training sequence, .s E(El,Al,Dl,Al,Bl), bears the same relationship
to the new sets of vectors as the sequence, t, to the old ones, and hence
the effect of performing s on the adaption-automaton of the pattern-
qlassifier may be derived from Figure 6-1 by interchainging the first and
last digits of each state label.

Figure 6~2 shows a fragment of the state-space of the automaton,

generated by taking the sequence in Figure 6-1 commencing with 11111 and
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terminating in 55557, and drawing in also the transitions induced
by the task, s. Initially the tasks both induce the same transitionms,
but then the state sequences diverge, and a task sequence of the form t
leads to convergence, for that task, in the state, 55557, whereas a task
sequence of the form s leads to convergence, for that task , in the
state, 75555. The state diagram of Figure 6—2 has many interesting
features, particularly the interchange relationships between 44446 and
pu4uy, 73355 and 53357, and 55557 and 755555. The last two states are
those corresponding to solutions, and there is a single-step transition
from one solution to another, showing that the automaton is compatibly
adapted to t with respect to s in 55557, and vice versa in 75555.

It is clear that all the states shown in Figure 6~2 are within the .

compatibly adaptive region for the set of tasks, (s,t), in that any

sequence from the free semigroup generated by s and t leads to a state
from which 55557 can be reached under the action of tn, and 75555 éan
be reached under the action of s".  The similarity in action of s and
t is due to the selection of tasks both requiring positive weight vectors -
if instead the exact opposite dichotomy to that required by t were selected,
so that A, B, C, D and E were assigned to the negative class, then the

solution weight vector would be W, = (-1, -1, -1, -1, -3) = 33331, It

may be seen from Figure 6-1 that ihere is a sequence under t leading from
33331 to 75557, and vice versa, so that the automaton is compatibly
adapted with respect to t in the state, 33331. In this case, however,
the two tasks will clearly tend to induce state transitions in opposite

directions.

The phenomenom of joint adaption may be invéstigated by considering
the effect of a different sequence of the tasks constituting t - letr:=
(E,D,C,B,A), so that whenever the automaton is adapted to t it is also
adapted to r, and hence jointly adapted to the set of tasks, (r,t). Even
though r is similar to t, however, and only has one stimulus less, learning
with r takes many more task performances than learning with t - for

example, starting from 11111 the sequence induced by r’ is:-
11111 » 21111 » 12202 + 21113 » 32222 » 30224 - 12224
-+ 23315 - 23335 -+ 34226 » 54226 - 43337 -+ yu446 » 55337

-+ 444u8 » 55557 , a fifteen-step, rather than a seven-step, learning

- sequence.

6.2.3 Training

In Figure 6-2, sD may be regarded as an open-loop training sequence
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for the pattern-classifier learaning to perform the task, t. Since

s never induces a.transition directly into 55557, none of the states
shown is within the conditional adaption set, A(t: u), where u=s say,
defined in Section 6.2.3 as one of complete open-loop trainability.
However, all the states shown are within P(t:u), the set of potential
open-loop trainability. It is interesting to note that from some states
s" gives more rapid training than £ - for example, from, 55353 th is
better than t*. It is also interesting that, whilst s® and t" are both
effective training sequences, (ts)™ or (st)” are not, both leading to
trapping in 44uhLb ;:Z'BHHHH. One might say that training under one
regime lays the foundations for further training under that regime, and
that, although the ultimate goals are similar, the routes taken under
the two regimes are different.

In Figure 6-2, the use of " as a training sequence for t is interest-
ing but not important since the classifier is always potentially adaptive
to t anyway. Figure 6-3 shows a sequence of transitions under t starting
from the state 55357 which is outside the region of potential adaptivity
to t, so that,; given t" the classifier does not converge but instead
becomes trapped in the state 55578. The open-loop training sequence
considered is that generated by giving the stimulus, D, alone, so that
the task d = (D). Fr'-om the first two states in the sequence, 55357 and
46468, d" induces trajectories into the potentially adaptive region for t.
From the final state, 55578, the trajectory induced by d" terminates at
44668 which is not within the potentially adaptive region for t. One might

- say that training on the task sequence d" is necessary for learning, but
it must be given early in the learning of the main task, tn, if it is to :

be effective.

6.2.4 Conclusions to be Drawn from Pattern-Classifier Experiments

It is clear that experiments with simple learning systems, such as
ATLE classifiers may be used to illustrate the various phenomena of
learning and training previously defined, but it is not cléar whether
such experiments have any significance in studying learning behaviour and
establishing new 'laws' of learning. One obvious conclusion is that
very simple systems, such as a device cperating upon five 'weights' each
taking nine values can have very complex behaviour, so complex in fact
‘that it is impossible to study it in detail completely.

Secondly, approaches to the analysis of behaviour which seem plausible
and reasonable for the human operator should also appear plausible and .

reascnable for simple learning systems. In Section 6.2.3, at the end of
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each paragraph, the results obtained have been re-stated in broader,
behavioural terms. Each operational definition of a phenomenom of
human behaviour may be applied to artificial learning systems, and each
statement of a 'law' of behaviour in terms of these definitions can be
evaluated in experiments with artificial systems, for example, the
possible 'law' of relative transfer between easy and difficult tasks.
Not only does such an evaluation check that the definitions are truly

- operational, but also it may lead to a greater understanding of the basis

for the proposed 'law'.

6.3 Adaptive Behaviour of an ATLE Controller

It was desired to parallel the experiments on the utility of the
feedback trainer for a tracking task, described in Chapters y and s,
with similar experiments using adaptive controllers as trainees rather
than human operators. Such experiments were expected to aid in the
design of experimental situations for the human subjects, to enable the
most sensitive evaluation of the utility of feedback training, and to
provide an interesting comparison between human and machine learning.

An ATLE controller was chosen as the learning system since it could be
simply and rapidly simulated on a digital computer.

The experiments with this controller were carried out cduring the
'design stage of the éxperimental system for human operators {Section 5.1}
and provided the data on which the levels of difficulty in the informal
design experiments were based. In the following sections the ATL
controller is described and the experimental results with it are analysed
in relation to their influence on the main experimental design and in

comparison with the results of the human operator studies.

6.3.1 Description of ATLE Controller

An ATLE controller with the structure shown in Figure Al~2 and
analysed in Section Al.4 was designed to act as the trainee 'learning
machine' for the feedback trainer shown in Figure u-4; the equations
of the particular trainer used are given in Section 5.1.4. The inputs
and outputs of the ATLE controller were constrained to accuracies and
information rates roughly equivalent to those of the human operator in
the same situation. The position and velocity of the spot on the
.oscilloscope were coarsely quantized, encoded into a binary pattern, and
sampled at 200 milli-second intervals. A positive or negativé impulse,
u (Equation 5.1), was given at the output of the ATLE controller 100

milliseconds after the corresponding binary input was received.
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A fifteen-bit binary pattern, Yi = +1 0 %1 <14, was generated at ¥
the input of the ATLE by thresholding the position and velocity, e and e -
respectively, each at seven levels; the remaining bit was permanently
set. The threshold levels were chosen to cover the ranges of position
and velocity, nominally + 1.0, with maximum discrimination in the region
about zeroj; they were, + 0.6, + 0.35, + 1, and.0.0. The sign of the

impulse at the output of the ATLE was determined in the usual way -

sgn(u) = sga(ug¥y + WY, + WY, + .ou + W), ¥ ,) 6.4

where Wi are the weights of the ATLE;in the particular case when the right
hand side of the equation was zero, the sign of u was taken to be positive.
Performance feedback to'the ATLE to adjust the weights and hence
adapt the control policy was the source of much difficulty, as described
in Section Al.4.1. Various trials were carried out with possible performance
feedback strategies, such as, for example, averaging the error over an |
interval and applying positive or negative bootstrapping over that interval
according to whether the mean error was less than, or greater than, the
mean error over the preecéeding interval. The majbrity of strategies
investigated did not lead to adaption to a reasonable control policy.
Out of the remainder, the following was selected as a reasonable and
successful procedure.
At any sampling-instant, n, the input pattern, Yi(n) and the output
100 milliseconds later, u(n), were stored, together with the error at
that sampling instant, e(n). k sampling instants later, this data was
examined and if the érror modulus had decreased the decision giving rise
to u(n) was taken to be successful and the weights adjusted accordingly,
otherwise the decision was taken to be unsuccessful and the weights weref

adjusted in the opposite direction. Thus if -

#(n) = sgn(MOD(e(n)) - MOD(e(n+k))) E.5]
then W (n#k) = (1-m)W (n+k-1) + |
n?,(n)sgn(u(n))(1-8 +pe¢(n)) [6.8

which is a standard ATLE convergence procedure for continuous, bounded
weights, in which 1/n is the approximate time-constant of convergence -
set at about 3,000 sampling instants in the experiments, and B determines
the relative effects of reward and punishment - (28 ~1) is the ratio of
~ the magnitude of the weight change made when a decision is unsuccessful

to that made when it is successful.
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k and B are parameters of the ATLE controller which were adjusted
in the experiment to give a family of controllers with different
'personalities'.  Although this particular form of controller has a
problem-determined performance feedback loop, and is not such a general
form of controller as was originally hoped for, this is irrelevant to
the results of the exepriments, in that these are concerned with tpe
relative effects of different training regimes on the learning of given

controller.

6.3.2 Control Policies of the ATLE Controller

The control polsies implemented by the ATLE controller are best
described in a figure givdng the locations within the (quantized)
position/velocity phase plane in which positive or negative impulses
will be emitted. If position is located on the horizontal axis,
and velocity along the vertical axis, with the normal senses, then each
axis is ddvided up into eight regions, and there are sixty-four cells
in the.phase ﬁlane. Representing a positive output by an asterisk,®,
and a negative output by a dash, ', a control
policy in which the output is entirely position

dependent is - ‘

stk ske e ok K
sk ke ste st ek
etk sk
kb skt o ok

A control policy with predictive velocity feedback would have more
dashes in the upper left hand quadrant, and more asterisks in the lower
right hand quadrant.

Every one hundred sampling instant (20 seccnds tracking) the
computer-simulated ATLE controller printed out its conirol policy in
the form shown, sothat its progress in learning could be evaluated not
only in terms of its performance, level of difficulty attained and
stabilization of the weight values, but also in terms of the type cf
policy it was implementing. A number of these policies were taken as
fixed, non-adaptive éontrollers, and the value of a, the maximum level
of difficulty at which they were able to maintain the mean error at the

tolerated level of 0.34% units, was measured using the feedback trainer

" as described for relay controllers in Section 4.5.2; the mean error for
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each fixed controller at the standard test levels of difficulty,
8=0.25(L), 6=0.50(H) and 6=0.70(V) (Section 5.1.%), was also measured.
Table 6-1 sﬁows the control policies, values of o, and values of
e for the three levels of difficulty, for eighteen different policies
having varying degrees of velocity feedback. P-0Ol corresponds to
positional control only and leads to very poor .performance - o is virtually
zero. A minimal amount of velocity feedback in P-03 causes an increase
in a to C.33. A wide variety of other control policies, P-05 through
P~13, including the maximal velocity Feedback of P-13, lead to a
between 0.5 and 0.6, whilst the maximum value of o found for this type
of controllé} was o = 0.65 for P-18.
To some extent the quadruples of (a,L,H,V) may be compared with
the corresponding quadruples for human operators in Appendix 5, Table
A5-1 (subjects 41-72 on a

2
noting that the decimal point before the figures in A5-1 has been omitted).

,» test results 4, 3 and 5, respectively -

However, for a given value of any of the quadruple, comparisonsvwithin
the human or machine groups reveal a wide range of possible values for
the ‘'other members of the quadruple, as does a cross-comparison between
humans and machines. It is certainly not possible to infer what types
of control strategy the human operators were using, and the ATLE
controller was not intended to be a model of the human controller at
the contral policy level, but rather a possible model at the comparitive
difficulty of learning level; this is discussed further in Section
6.3.5

6.3.3 Experiments with the ATLE Controller

It has been noted in Section 6.3.1 that the majority of performance -
feedback strategies investigated for the ATLE controller did not lead to
the learning of a reasonable control policy. Some lead to definite mal-
adaption, and others to virtually positional control with a slight varying
velocity component. In the latter case it was found that under adaptive
training , took up a value between 0.2 and 0.3 (compared with mal-adaption
where o oscillated between 0.0 and 0.05). The gradient of task difficulty
with o in the range 0:0 to 0.25 seemed to be so slight that a minimal
level of accomplishment corresponded to o about 0.25.

By adjusting k and B8 (Section 6.3.1) a range of values was found
for which the ATLE controller learned under adaptive conditions to

substantially higher values of o. Again the learning appeared dichotomcus
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if a stable value of a was reached at the higher level it was in the
range 0.55 to 0.65, and no controllers stabilized at levels of q
between 0.3 and 0.5. The upper bound on ¢ corresponded to a maximal
velocity feedback policy such as P-18. It was found that this bound
could be increased to about «=0.7 by increasing the number of levels
at which the position and velocity were quantized for the ATLE. It
could be increased substantially beyond this only by reducing the sampling
“interval from 200 milliseconds. However, the 7 levels of guantization
on position and velocity and the 5 per second sampling rate has been
chosen to be plausibly related to those of the human operator and were
retained. |
It was found that all the ATLE controllers which could learn to a
high level of o had two stable final states of learning, one of which
corresponded to a value of a about 0.25 and the other of which corresponded
to a value of o about 0.6. Which of these two final states was attained
was a function of the learning conditionsi This was clearly what was
required if the machines were to be used as indicators of the probable
effect of different training strategies on the human operator - machines
which never leérnt or machines which always learnt were both useless
for purposes of ascertaining the relative merits of training strategies.
As might be expected the learning behaviours of the ATLE controllers
was considerably more stereotyped than that of the human operators shown
in Appendix 5 (Figure A5-1). Figure 6-4 shows the three main forms of
behaviour obtained with the feedback trainer plotted as task difficulty,
§ (which from Equation 4.20 provides a lagging measure of a), against
time. Machine A (k=4, R=0.625) learns rapidly to a high level, §=0.63,
and remains stably there implementing the control policy P-16; an
extended experiment showed that this policy remains stable for at least

another 30 minutes with no indication of any potential relapse. Machine
B (k=4,8=0.6) rises to 6=0.3 but no further and finally stabilizes '

with 6=0.25 implementing a policy similar to P-03. Machine C shows
a hybrid between the two behaviours, rapidly rising to §=0.58
implementing P-15, but then gradually declining to 6=0.25 with a policy
similar to P-03.

From these experiments and informal ones with human operators
(Section 5.1.4) the levels of 6=0.25 and 6=0.5 were chosen as suitable
for non-feedback, open-loop training at fixed difficulty. The lower

~level was chosen because it seemed relatively easy for controllers to
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attain a contrcl policy at &0.25 which lead. to good performance and
hence the desired sub-envivonment. The higher level was chosen because
it was possible for human and machine controllers to learn to that

level under adaptive conditicns and maintain a consistently good lewvel
of performance there. The two levels were well separated and provided
quite distinct training and test conditions. For testing, a third level
&0,70 was also used to provide a difficult task for even the best
perfornars - however, it adds very little to the results of Chapter 5
and none of the learning systems investigated was capable of learning at
this level of difficulty.

The ATLE controllers were tested inder open-loop training conditions
in which they learned at a fixed level of difficulty for the equivalent
.of 30 minutes and then were tested ou the adaptive trainer. Machine A
(k=u4,6=0,625) was trained under open-loop conditions at fixed difficulties

of 620,25 and 6=0.5 - in both cases it learnt quickly to a high level with

a final policy MR
s » LI L ,Ef’
which is similar to P-08. However, training A P
14 e

: s . . ¥ s

on the feedback trainer starting at maximum level FEAE

of difficulty caused it to stabilize with policy
P-02 and a low level of performance. Another
machine, D (k=5, B=0.6), had a virtually identical
trajectory to A on the feedback trainer and attained a final level of
difficulty, 6=0.63 with the control policy P-16. However, machine D
was unable to learn to a high level under open-lcop training conditions
with ©20.5, and stabilized at -

a policy similar to P-03. At $=0.25, however, D

learnt the policy P-08, which leads to & high level

PO
ar oy at B i o

of pesrformance. Further experiments with [ showed
that the level, 0=0.3, was a critical cne for its

learning, and at this level it learnt the velocity

feedback policy -

which kept the error-rate low but exerted no posit-

ional control. It was clear that D must have two
stable final policies.under feedback conditions, cone
of which was P-16 ~ by trial and error the other policy was found to
be that shown on the left, one similar to that learned undsr oren~loop
training at &=20.5. Machine C
under feedbzck voq iiticns, als

§=0.25, but nor at $=0.5; in

.t sty b o
- e .
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machine could maintain at 3=0.25 a stable policy which would enable it
to perform well at §=0.5, when ths diffieculty reached the higher level
this poliicy deteriorated into cne which would give satisfactory
performance only at the lower level of difficulty

There results with ATLE adaptive contrcllers are summarized in
Section 6.3.5 where they are compared with those with human operatcrs.
For comparison purposes, however, some equivalent of the effect of
instructions on human cperators was desired and this is discussed in the

following section.

6.3.4 Llﬂgulstlc Interaction with ATLE Controllers

The major influence of the type of instructions given to huren
operators on their learning of the tracking task, and the interacticn of
this effect with that of the training regime, described in Chapter $, nads
it desirable to investigate the possibility of such effects with the
ATLE controllers. The main probliem was clearly to decide what would
constitute verbal instructien in their case, and how they might bz sxpocted
to take note of 1it.

One approach to language which ssems most fruitful in ceontrol situat:
is to consider the linguistic structure that must be sgt up to replace an
existing, or hypothetlcal, phyvsical link. For example, consider z
controller which uses a 'fast model' of its envirenment to ssarch: fnr au

~optimum control sequence, such that the norrmal link between model and
controller is broken and replaced by commuunication in & 'naturzl langusge’.
The controller must be able to poses questions of the form, *If the
environment is in state ¥ p% and I use control action * 4%, what will

the next state be.', and the model must be able to reply, 'The next ztats
will be # y%,!

This is language at a simple and apparently trivial lewel, but

the similar, but more realistic, situatioa in which a controller axizis,

some form of model exists, and it is desired to ha
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the other. Assuming that some mechan

to enable it to use knowl edge about the effects of control

problem will be that the representation of the seuvironmant
is very different from that in the medel ~ for examnlz, that it is unable
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to specify a state, ¥ p¥, but only an cutput, and that 33 an analogus

variable rather than a digital pattern. Alternatively, the model iy

incomplete and the controlier must be zble to use replies of ths forn, ‘It
ate ofa ot ot s 4 ot 3 " Ll

may be = ¥, ¥ 4% op ¥ 3%, ', or 'I do not know.' These oxamplas
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llustrate the need for assumptions and typical vagueness of linguistic

po

communication between unmatched, ill-assorted structures (such as human
beings).

There is no obvious mechanism for causing the instructions given
to human operators (Section 5.1.8) to affect the ATLE controllers. It
would be adequate for the purposes of this chapter to assume that the
instructions would cause the ATLE's to start with a useful control
policy, such &s P-03, and check whether learning takes place starting from
this policy when it does rnot starting with the normal useless policy
(which,from Section 6.3, is a policy consisting of all asterisks). How-~
ever, some ékperiments were carried out with a simple mechanism for
'verbal'! communication with the ATLE's, not identical to that with human
operators (of the second type described in Section 5.1.8, rather than
the first), which demonstrate that the concept of such communication can
be made meaningful and operational.

The ATLE contrcller previously described was given the capability
of accepting statements like, 'When the position of the spot on the
oscilloscope is x and its velocity is v, then a sensible sign of control
signal is c.', and using them to adjust its control policy accordingly.
The controller 'imagines' the input-pattern it would receive resulting
ffom % and v, considers that it has emitted the output ¢, and rewards
itself for so doing. * This simple structure is readily extended to take
account of non-quantitative specifications, 'When the spot is on the far
left moving fast to the right...', and other qualifiers, 'It is very
sensible....'. The overall effect of a message is to modify the ATLE
controller's policy, or, initially, to prime it with a control policy.

In the context of the experiments with human operators, it was of
interest to discover whether this priming through instructions would
enable a controller previously unable to learn a suitable policy to
establish an initial sub-environment in which it could do so.

The weight changes of the ATLE are equivalent to adding in the stimulus
vector if it shculd cause a positive output, and subtracting it if the
ocutput should be negative.  Hence, given the instruction, f1f the spot
is on the left, press’the right-~hand button', the ATLE would generate the
stimulus vector - (-1, -1, -1, 1, 1, 1, 1, O, O, O, 0, O, O, 0, 1), '
where the first seven components are positional information, assuming
that e=0.1, the next seven components represent a lack of velocity information

‘and the last component is always set. The cutput required is positive

w

and hence this stimulus vector becomes the weight vector. The corres-



ponds to the control policy -

This is purely positional policy with no velocity

O ]
-t . -
P

feedback, as might be expected from the instructions,
and is sensible, even though, from P-01 of Table 6-1,
it is ineffective. '

A variety of sets of initial instructions were experimented with,
some of which gave rise to very powerful control policies - for example,
the set: when the position is x and the velocity is v, the sign of the
output should be ¢, for:-

(x,v,c) = (-0.4,0.3,~1), (-0.2,-0.3,1), (0.2,0.2,-1), (-0.5,-0.2,1)
generates the weight vector, (0,0,-2,-2,-2,0,0,0,0,-4,-4,-4,0,0,0), which

corresponds to the control policy -

This is P-07 of Table 6-1 and corresponds to good

- - .-

performance at 6=0.562, a very high level, and one

K3

PRy

adequate to ensure learning to a stable policy at ik
this level of performance for machine D under open-

loop training at 6=0.5, a level at which it was previously unable to
learn.

Thus, instructions may be used with the ATLE controller to overcome
their problems in ledrning. One outcome of the experiments on various
sets of instructions, such as those in the last paragraph, was to
demonstrate that the effect of instructions could not be determined in
advance - there is no particular reason why the instructions given above
should have such a good effect, and, indeed, on detailed examination
they seem rather odd. In practice it was found that. instructions could
be used effectively by giving one, examining its effect on performahce,
and then selecting ancther - that is, 'telling' was ineffective (Lewis
and Cook 1969), but instructions based on feedback as to their effect

could be used to control behaviour.

6.3.5 Comparison of Human and ATLE Experiments

In comparing the. experiments with human operators and ATLE controllers
learning the tracking task of Chapters 4 and 5 it is important to make
clear on what grounds the comparison is based, in particular at what level
the ATLEs might be expected 'model' the human behaviour. The starting
point for the study of learning controllers was -

given an arbitrarily chosen class of adaptive controllers with

similar timing/accuracy constraints to the human operator (that is, in
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the sense of Section 2.2.1, the peripheral system of the human being
was regarded as part of the environment), and the design problem of
finding controllers in the class which would learn to perform well

the tracking task given to human operators, do,the controllers found,
show more than one stable state of édaption and is the relative effect
of different training strategies on the state of adaption similar to
that for human operators.

This position may be further clarified by considering some of the
possibilities that might have arisen -

(i) No machines learn - bad choice of adaptive controllers -

chose another or drop experiment.

(1i) Some machines learn and do so to much the same standard
under all training conditions -~ bad choice of adaptive
controller for modelling human learning behaviour - if
at early stage of study might also have lead to change
in tracking task or training conditions - at later
stage, when human differential learning had been establ-
ished, would have been of interest in showing that
learning differences were not inherent in the task.

(iii) Machines learn at $=0.25 (L) but not under feedback
conditions, or, worse, learn at §=0.5 (H) but not under
feedback cénditions - at an early stage this would have
been taken as an indication of a bad feedback trainer-
after the studies with human operators, it would be a
difficult result for which to account.

None cof these possibilities actually occurred, and the range of
parameters covered in the experiments is such as to rule them out for
the class of ATLE controllers investigated. Possibility (ii) might
well occur with some classes of controllers - however, the ATLE with
sampled, quantized inputs and a global learning strategy based on
incremental weight changes and generalization were chosen to have those
features of human learning most likely to be affected by the type of
problem posed by the tracking task (system identification and predictive.
control with time delays in feedback). It is interesting to note that /
range of o with the ATLE controllers, 0.2 ~ 0.65, compares well with the
range of values for human operators after 20 minutes tracking (al of
Table A5-1), 0.20 - 0.74; neither humans nor machines did markedly better

or worse than one ancther in terms of absolute levels, indicating that
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the sampling and quantization constraints were reasonable.

If one were comparing two groups of human subjects it would be
appropriate to make statistical comparisons between the results for
the two populations. However, the composition of the 'population' of
ATLE controllers under consideration i$§ completely arbitrary and can
be chosen at will. The four types of behaviour shown by machines A, B,

c and D, described in Section 6.3.3 (together with that of complete mal-
adaption) exhaust the range elicited from the ATLE controllers. However,
A through D, are not just four 'subjects' but rather representatives of
whole populations (obtained by variation of k and g) with closely
similar behaviour. Hence, the question: under consideration is whether
each type of human learning behaviour is shownly one of A through D, and
each type of behaviour shown by A through D is also shown by some human
operators.

Machine A learnt well under the three training conditions (F,L,H)
even though it had a stable state of poor performance (Section 6.3.3).
This contrasts with the human operators in that none learnt under the H
condition, so that at least one learning system showed a better learning
capability thén any of the human operators. Machine D better typified
the human operators in that it learnt under the better conditions, F and
L but not under H. Machine B learnt to a comparatively low level under
all conditions which‘corresponds to a few of the human operators.

Machine C could attain an unstable state of learning under L and T,
but always eventually sank back to a lower state. The only comparable
results with human operators are Graphs 18 and 22 of Figure A2-1,
although a rise to a high level and then a smooth progressive decline was
found with one operator in the preliminary, informal experiments. It :
was ascribed at the time to fatigue, boredom, or some other such con-
venient psychological variable. In retrospect, because it is not so easy
to dismiss a machine's behaviour in this way, such negative learning, or
mal-adaption, appears of great importance. The learning machine did not
suffer from muscular fatigue, neither did it become bored or lose con-
centration. One may only suppose that the changes in the sub-environment
brought about by adaption of the control policy were such as to induce
mal-adaption. 1In the’human operator this phenomenom may be accompanied
by compiaints of boredom or fatigue, but these do not explain the mal-
adaption.

Thus, machine D was the most apprépriate to form the basis of an
'ensenble of identical machines' to evaluate the differential effects of

training regimes (Section 6.1), and it was used in the experiments to

determine the critical level of § at which learning just failed to take
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place ( 6=0.3, Section 6.3.3) and in the experiments on the effect of
instructions (Section 6.3.4). In summary, the studies with ATLE
controllers were of benefit in the design of the experimental system

for human operators. They also gave rise to an adequate set of patterns
of learning behaviour to account for the human operators who could learn
the task under F and L conditions not being able to do so under H condi-
tions. The overall results suggest that, since similar patterns were

- shown by humans and machines, the results obtained derived from the
epistemological problems posed by the tracking task not from any
particular human peculiarities in learning it. The 'fatigue' or
‘boredom' of machine C, and the effect of 'instructions' on the learning
of machine D, are of less weight, but illustrate possible extensions of
_ the studies with learning systems to the modelling of other aspects of

learning behaviour.



CHAPTER 7: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Review of Objectives

The aims of the investigation and background to the objectives have
been outlined in Sections 1.1 and 1.2. It is appropriate at this stage
to review the objectives in the order in which the relevant results have
been presented. The first objective has been to provide a rigorous
foundation for studies of learning and training by developing a systematic
account of the relations between behaviour, structure and purpose in
arbitrary systems including men and machines. In Chapter 2 an axiomatic
approach to the definition of adaptive behaviour has been established
which enables operational and purely behavioural definitions to be
provided of terms such as 'adaptive', and 'adapted’. In Appendix 3
the problem of deriving a structure which could give rise to observed
behaviour has been analysed, and an algorithm established for constructing
a minimal and observable structure cybernetically equivalent to an
observed system. In the latter part of Chapter 2 these results have been
used to define the 'adaption automaton' of a learning system, and to base
a taxonomy of(adaptive behaviour upon the properties of this automaton.

Thus, the first objective has been attained, and, in particular, the
definitions of modes of adaption, the derivation of structure from
behaviour in which all 'intervening variables' are measurable, and the
analysis of problems in learning in terms of the 'sub-environment phenomenom'
appear to break new ground and clarify difficult issues, both in animal
psychology and in systems theory. The residual problems stem largely
from the vést range of possible behavioural sequences generated by even
a small set of descriptors, and the impossibility of empirical cbservation
of all possible behaviours of any single adaptive system - a difficulty
resulting not only from the amount of data and time taken to collect it,
but also from the logical impossibility of causing an irreversible
system to show all its possible behaviours. The complete resolution of
these difficulties is impossible, but a practical resolution will result |
from the development of theories of approximation and incremental
identification of general systems, and their application to adaptive
systems. ' |

The second objective has been to use these results to develop an
integrated approach to the problems of training, in which a knowledge of

“the patterns of behaviour, structure and desired goals of a system may be
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used to formulate an optimal training strategy. In the first part of
Chapter 3, the problem of training was formulated as one of controlling
the adaption automaton of the trainee, and hence linked to the axiomatic
system developed in Chapter 2. A theorem was then established which
demonstrated that the necessary constraints on the adaption automaton to
make training possible were also sufficient for the contruction of an
effective feedback trainer. A second training theorem demonstrated that
further constraints on the adaption automaton could lead to a more
structured feedback trainer. In neither case did the training system
require detailed knowledge of the structure of the adaption automaton of
the trainee, and the trainer was seen to act as a stabilization system
providing a suitable 'learning environment' rather than a detailed stimulus/
response?based controller. This was also demonstrated in more abstract
form in the latter part of Appendix 3 where the theory of adaption was
related to that of the stability of general systems. ‘

In the latter part of Chapter 3 the determination of constraints
upon the adaption automaton of the trainee which will enable the training
theorems to be applied has been related to an analysis of the epistemological
problems of the trainee in attempting to control an environment whilst at
the same time learning about it. An automata~theoretic statement of this
problem was given, iff which it was shown that any control policy restricts
the environment to some sub-environment, and that the sub-environment
generated by a naive controller may be unsuitable for learning. The basic
training strategy was then formulated as maintenance of the sub-environment
similar to that encountered by a controller which has learnt the problem.
Hence, the second objective was attained in that various formulations
for effective feedback trainers have been established based on the range
of possible information about the trainee and the training problem.

The third objective has been to demonstrate the application of the
theory to a realistic situation, and compare some of the theoretical
predictions with experimental results. A high-order compensatory tracking
task, related to the control of the lengitudinal dynamics of aireraft, was
chosen as an environm?nt for the experiments on learning. In Chapter 4,
a feedback training system was developed for this task using the
hierafchical training structure of Chapter 3, and a theoretical and
experimental analysis of its viability, in terms of overall behaviour and
‘stability, was described. In Chapter~5, an experiment with human
operators to determine the utility of this trainer-described, in which

various modes of training, fixed open-loop, and feedback, were compared,



160

and the interaction of the mode of training with the form of instruction
given was also evqluated. In Chapter 6, the same experiments were
repeated with articial adaptive controllers in order to enable a comparative
study to be made of human a nd machine learning.

The theoretically predicted advantages of feedback training were
found, both with human operators and automatic -controllers, and the
effects of differing instructions were consistent with the hypothesized
sub-environment phenomenom. Apart from replications of this type of
experiment with other forms of task, the main directions for further
research are the incorporation of the instructions within the feedback
training loop, and the investigation of the applicability of feedback to
real training situations, such as those of flight simulators. The
.present studies and experiments have not attempted to demonstrate that
the concepts of adaption and training developed have application to the
general range of human learning behaviour, cognitive as well as perceptual-
motor skills, although the theoretical discussion has been carried out at
a level of abstraction which suggests that this is so, and there is scope
for major studies of the application of feedback training to cognitive

skills.

7.2 Summary of Theoretical Results

’

An operational and purely behavioural approach to the study of
adaption and learning may be established by considering the interaction
between controller and environment to be segmented into a sequence of
'tasks', for each of which it is possible to say whether the interaction
has, or has not, been satisfactoxy. The fundamental situation of an
adaptive controller, to be coupled to a fixed environment and learn to
control it satisfactorily, is then equivalent to the controller performing
a sequence of tasks consisting of the same task repeated indefinitely, and,
if its behaviour eventually becomes satisfactory and remains so, then it
is said to be acceptable for the task. When the cocntroller has reached
this stable state of satisfactoriness, it is said to be adapted to the
task.

Given these>fundémental concepts, a variety of different modes of
adaption may be distinguished when the controller may become involved in
any of a set of tasks. If it is able to have an acceptable interaction

-with any one of the set, then it is said to be potentially adaptive to

the set. In adapting to one, however, it may become unable to adapt to

the others, and, hence, if this does not occur it is said to be compatibly
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adaptive to the set. If in adapting to one of the tasks the controller
actually becomes adapted to all of them, then it is said to be jointly
adaptive to the set.

In training a controller for a particular task, it may be given
other tasks for which it is not required to be satisfactory, but which
cause it to become adapted, or potentially adaptive, to the main task.
According to the way in which the subsidiary tasks are selected, three

modes of training may be distinguished: in fixed training, the controller

is given only the main task, and reliance is placed on its being potentially -

adaptive to this task; in open-loop training, the trainee 1is given some

training sequence of tasks before adapting to the main task, but this
sequence is not varied for differences in trainees or states of learning;

and, in feedback training, the trainee is given a sequence of tasks

‘selected according to observations about its state, particularly those
obtained from its performance.

In feedback training, the trainer has a control problem in taking
the trainee from a state in which it is not potentially adaptive to the :
required task to one in which it is. These 'state! of adaption may be
formally, and 'I*igor'ously, defined by considering the observed inter-
actions between controller and environment to be sequences of 'descriptors'’
each of which is defined by the task given and the satisfactoriness of the
interaction. From the set of all possible sequences of descriptors, which
may be said to define the adaptive system extensively through its behaviour,

an automaton structure may be derived, the adaption-automaton, which

shows the same behaviour. In particular, this structure may be chosen

to be observabls, in that a sufficient segment of past behaviour defines ‘
its present state, and to have a minimum number of states consistent

with observability. The various modes of adaption correspond to differing
forms of stability of the automaton, and training is a control-problem

in the state-space of the automaton.

Although the adaption-automaton structure can, in theory, be derived
from a complete set of descriptions of behaviour, in practice such a set
cannot be observed for an irreversible system, and non-behavioural scurces
of information must be examined in order to identify the structure of
the adaption-automatoﬂ. One source of such information comes from the
examination of the epistemoclogical problems of learning which are, to a
large extent, independent of the nature of the learning system, and have

to be faced by all controllers in the same environment with similar
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purposes. One major source of problems in learning is the interaction
between the requirement to know how to control the environment in order
to learn about it, and the requirement to know about an environment in
order to control it. This interaction arises because each control
policy of the learning systems restricts the environment to some sub-set

of its states and state-transitions, or sub-environment, and the sub-

environment generated by naive controller may be very different from that
of “a controller with a satisfactory policy, and learning in it may be
irrelevant or even deletrious. Thus, one objective of a feedback training

strategy may be to maintain the desired sub-environment.

7.3 Summary of Experimental Results

A feedback training system was developed for a third-order compensétory
tracking task with dynamics consisting of an integration in cascade with
a stable second-order transfer function. The damping-ratio of this latter,
and the amplitude of the disturbing signal, determined the difficulty of
the tracking task, and these were co-varied automatically to maintain the
operator's mean error constant. The behaviour of this system, particularly
its stability and speed of response, was analysed both theoretically and
experimentally for non-adaptive relay controllers, and the results shown
to be similar and acceptable, in that the loop behaviour was free of
artifacts such as miéht occur from instability.

A modified version of this system, in which impulsive push-button
controls which reversed polarity each time they were depressed were
used to induce interactions between learning about the system and controlling
it, was used in experiments to investigate the utility of feedback training.
72 operators, from a homogeneous population comprising RAF pilots at an
advanted stage of selection and training, were trained under three
condifions of difficulty, High, Low, or Feedback, and two forms of
instruction, Weak or Strong. The High and Low difficulty groupé wers
trained at fixed levels of difficulty and the Feedback group with the
trainer. The Weak instructions gave no information about the operation
of the controls, whilst the Strong instructions explainéd their nature.

All operators were tested finally at three levels of diffigulty , High
‘Low, and Very High, and the High test was given twice in succession, the
first time without the operators being informed, in order to test the
’ effect of instruction-induced stress. . All operators fiiled in question-
naires to evaluate their attitude to, and knowledge of, the task, and
their degree of verbalizaticn. Similar experiments were carried out

with computer-simulated learning machines in order to determine whether
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the results were independent of the learning system, as theoretically

predicted.

(a)

(b)

(c)

(a)

(e)

(£)

The main results of the experiments are as follows:-—

The operators trained at a High level of difficulty show little
or no learning and do badly on all the tests. The Strong
instructions have a significant effect in. improving learning,

but do not overcome the operator's basic difficulties. The

" High level of difficulty is nét in itself unattainable, however,

since over 65 per cent of the Feedback group reach it, or &

much higher level, during training.

The operators trained at the Low level of difficulty split

clearly according to the instructions given -~ those with

Weak instructions show little learning, whilst those with

Strong instructions show a spread in performance from very

good to very poor throughout the tests.

The operators trained under Feedback conditions all learn
to a high standard. Those with Weak instructions do not

differ significantly from the group trained at a Low level
with Strong instructions. The Feedback group with Strong

instructions are significantly better than all other groups.

The overall effect cf Strong, or informative, instructions

is to improve learning in all groups, but less markedly in the
groups trained under the best or worst conditions. The clear-
cut split in the group trained at Low difficulty demonstrates
that good instructions may compensate, to some extent, for poor

training conditions.

The effect of instruction-induced stress is that operators trained
at a High level of difficulty get worse, operators trained as a
Low level do not vary appreciably, whereas operators trained |
under Feedback conditions get significantly better. This is the
only difference in performance which differen tiates the group
trained at a Low level with Strong instructions, from those

trained under Feedback with Weak instructicns.

The results with computer-simulated learning machines parallel
those with human operators, in that the rank order of training
conditions was the same for both, some machines could learn at
Low difficulty or under Feedback, but not at High difficulty,

and the effect of instructions could be to give an initial policy
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sufficient for learning to take place at High difficulty.

(g) Feedback training was significantly better than open-loop
training for a given set of instructions. Its advantages
were most pronounced when the instructions given were unin-
formative, and this is consistent with the supposition that
the instructions aided the operators in establishing the

desired sub-environment.

7.4 Conclusions, Practical Implications and Suggestions for Further
E Research

No single experimental study of human behaviour can give rise to
definitive results, but arising out of the present studies it is
reasonable to present the following broad conclusions and recommendations

for further study:

(a) A feedback trainer of the type deyeloped for these studies
is most likely to be an effective training device for perceptual-motor
skills which have several components, each of which is fairly difficult
to perform in its own right, and which interact with one another such
that poor performance of one creates a difficult situation in which to
learn the other.

In the laboratoéy this situation was created by giving theioperators
unusual controls and high-order dynamics in a one~dimensicnal tracking task.
In practice the situation is more likely to arise in the control of multi-
dimensional systems in which the dynamics in each axis are different
with strong cross-couplings between them.

It is predicted, therefore, that feedback trainirng will be of
value in situations where a number of skills have to be learnt and there
are interactions between the performance of one and the learning of
another. It is less likely to be of value in single-dimensional tasks,
although they may be difficult, for example, high-order tracking in one
axis; in multi-dimensional tasks where there is little interaction, for
example, three-dimensional tracking with compatible controls/displays
and the same dynamics.in each axis with no cross-coupling; in multi-
dimensional tasks where there is strong interaction but little opportunity
for learning one of the interfering tasks, for example, tracking with the

displayed signal immersed in random noise.

It_is recommended that these prediétions benﬁaiidafédfb§mfdr;héf

experiments, and, in particular, that the efficacy of feedback trainine
. o



165

be investigated in a multi-axis system with compatible controls/
dispiays but differing dynamics in each axis and strong cross-

coupling between them.

(b} The feedback trainer forms the basis for a sensitive test
of an operator's ability to stabilize a control system. The level of
difficulty at which the operator can attain a given error criterion is a
measure of his ability. The homogeneous group of operators‘chosen for
the present study was well-suited to the sﬁfdy of the effects of different
training regimes, but unsuitable for the validation of the 'trainer'
as a test.

It is recommended that a small feedback training system be constructed
specifically as a test device, and evaluated in a population having a

normal range of abilities.

(c) The strong interaction between the effects of instructions and
those of different training regimes, obtained in the present study,
emphasize the importance of verbal instructions in teaching a perceptual-
motor skill, and of controlling verbal effects in laboratory studies of
the learning of such skills.

It is quite feasible, at the current state of technology, to
incorporate an audio/visual teaching machine device in the simulator
under control of the feedback training system. This device could be used
to give the operator his initial instructions, evaluate his understanding
of them, ‘and give remedial instruction if necessary. It could also be
used to give verbal instruction according to the level of performance,
rate of learning, and control strategy of the trainee, for example, if
the level of difficulty in the feedback training loop does not rise to
a criterion level after a certain time. The same system could also be
used to administer the questionnaires and evaluate the operator's
response to, and knowledge of, the training situation. v

It is recommended that future studies of feedback training incorporate
a programmable audio/visual display in the training system, in order to
control fully the verbal instructions to the operator, and evaluate his

verbal behaviour.

(d) The theoretical studies do not distinguish between the learning
of cognitive and perceptual-motor skills, and, whilst tracking tasks are
most obviously amenable to feedback training through variation of
'‘difficulty' to maintain a desired sub-environment, the theory and its
implications should apply equally to the training of cognitive skills,

such as arithmetic and language. The 'paired-associate' learning employed



166

by Gedye and Miller (1969) is an example of a cognitive skill where
various levels of difficulty may be established, and indeed the trajecteories
of performance which they obtain are strikingly similar to those with
the present feedback trainer.

It is recommended that examples of cognitive skills be analysed in
terms of states of adaption and the occurrence of sub-environment
phenomena, in order to examine the possible application of the theories

of learning, and feedback training, developed to non-perceptual-motor skills.

(e) The theoretical studies, together with the experimental
comparison of human operators and learning machines, have demonstrated
that it is possible to establish a general theory of adaption and learn-
ing equally applicable to both artificial and natural learning systems.
The theoretical foundations for the analysis of learning behaviour, and
its relationship to the purpose and structure of the learning system,
are couched in completely neutral and abstract terms, and form a
mathematical rather than empirical system; the empirical content of
the theory arises only in the decision as to the applicability of
certain descriptions to observed behaviour.

The theory of adaptive systems and their training has been closely
linked to the devélopment of a general systems theory applicable to any
system, and the further develcpment of the theory should most fruitfully
be at this general level - adaption and training will then become relat-
ions of stability and control on a system specifically derived for the
analysis of learning‘behaviour. Experimental validation of theories
relating learning behaviour to the epistemology of the environment may
be tested with both human operators and with learning machines, and the
increasing availability of computer-simulated learning systems implies
that they will have a major role in future psycholocgical studies.

It is recommended that theoretical studies of learning and training
be placed within the framework of general systems theory and the
mathematical theory of semigroups, and that increasing emphasis be
placed upon the derivation of general system-theoretic results which
specialize into statements about learning systems. It is also
recommended that adap%ive controllers and learning systems be used as
subjects in experiments on human learning, both as an aid in experimental

design, and for comparative purposes.
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APPENDIX 1 : ADAPTIVE AND LEARNING CONTROLLERS

Al.l Intpoduction

A unified approach to human and machine learning has been taken
in the studies reported in this thesis involving both theoretical and
experimental comparisons between human behaviour and that of automatic
adaptive -controllers. In this appendix is gathered the background and
reference material of adaptive controllers and learning systems relevant to

the studies of Chapters 3 and 6.

A.1.2 Modes of Learning in Intelligent Artifacts

In Chapter 3, the fundamental structure of an adaptive ccntroller
is analysed as a two-level hierarchy, in which the lower level implements
a control policy which is selected by the upper level. This splitting
of what, even in the case of automatic controllers, will normally be an
integrated structure, has an arbitrary element, similar to that inherent
in the definition of a 'task' for the behavioural analysis of adaption.
This arbitrariness resides in the definition of the family of control
policies from which the upper level 'selects', and car lead to some
very simple control systems being termed 'adaptive'. However, this is
in itself not necessarily disadvantageous, since the analysis of very
simple ‘adaptive' structures may elucidate problems of learning in more
complex controllers.

Most adaptive control systems perform some form of identification
of their environment, although the simple linear mcdel common in automatic
control (Truxal 1961) is inadequate for more general situations. Having
evaluated some characteristics of its environment, the controller must
used a decision procedure to generate a control policy which is, in some
sense, optimal for an environment with these characteristics.  Because
this strategy does not involve feedback from the actual performance to
the control policy, it has been termed open-loop adaption (Freeman 1963).
In Chapter 3, the epistemological problems of open-loop adaption are
analysed, and it is shown that identification of“an initial sub-environ-
ment, which is not the desired one, can lead to the selection of a controi
policy which maintains the same sub-environment and does not converge to
an optimal performance.

If the performance of the controlier vhen implementing a particular
control poiicy is measured, and this measurement is used in the selection

of another policy in an attempt to improve the performance, the adaptive
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strategy is termed closed-loop adaption. The earliest and cimplest
example of a closed-~loop adaptive system is Ashby's homeostat (Ashby
1857, 1960), which changes its cecntrcl strategy at randem until the
desired state of equilibrium is reached. Closely related to this

are the 'evolutionary' adaptive systems of Bremermann (1865, 1865)

and Fogel (1965), which éhange some- characteristics of their control
policy, but revert to the previous policy if this dces not lead to
improved'performance. The epistemological problems of closedtloop
adaptive systems are analysed in Chapter 3, and it is shown that mein-
taining an initial sub-environment which is the total environment leads
to excessively slow convergence, whilst not doing so may cause converg-
ence to local minima of the perfcrmance criterion.

There is a further mode of learning which does not readily fit into
either category, and which seems to be vital to animaldevelopment and
the establishment of language (Tinbergen 1951, Thorpe 1956), and this
is learning by mimicing another controller. This mode of learming was
one of the first copied by engineers in synthesizing 'learning machines’,
and is of interest, not only because of the great amount of experimental
data on the use of adaptive-threshold-logic based machines, but alsc
because of its importance in the analysis of some aspects of the effects
of instructions on human, and machine, learning of contrecl skiilis.

I

A.1.3 Adaptive-Threshold-Logic Pattern-Classifiers

The use of adaptive-threshold-logic elements (ATLE) for pattern-~
classification was first proposed and studied by Rosenblatt (1962) as
a model of nervous processes, linking the neural nets ¢f the brain with

powerful pattern-recognition capabilities of human perceptica. Since

then ATLE have been established as fundamental components of many arti-

with a large literature (Nilsson 196%5).

The problem given to an ATLE is to learn to classify a set of stimuli
into two (or more) disjoint classes. During the learning phase, stimulil
are presented to it one by one, together with a statemzint of the class
to which they beleng. Thus, there is necessarily an independent system
for evaluating the class of stimuli, and the problem of the ATLE may be
viewed as one of coming to mimic this evaluator exactly.

The mechanism of learning in an ATLE depends on numeric operatidns,
and the stimuli must be coded intc a vector (or orderad array ¢f numbers)
befoere they may be classified by the ATLE. Figure Al-1 illustrates the

learning situation of an ATLE, coupled to a stimulus generator {or
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‘environment) through a coder with numeric output, and receiving

immediate performance feedback from an independent stimulus evaluator.
The structure and adaptive algorithm of the ATLE itself varies

somewhat between different workers, but Novikoff (1963) has shown that

the majority of cases may be typified by the following procedures:

. . J
(i) Coding of stimulus - let the coder represent a stimulus, S,
from the set of possible input stimuli, by a k-vector, YJ, whose

components are Yg =+1,1<1ic<k.

(ii) Internal weights - within the ATLE there is stored a k-
vectér of 'weights', W, with components, Wi, 1 <i <k, which
determine the classification adopted by the ATLE, and are

adjusted with its experience.

(iii) Decision procedure ~ one set of weights is used to make
a binary, or dichotomous, classification. However, multi-way
classifications may be considered as a set of binary decisions,
and hence the binary classification may be considered without
loss of generality. The binary classification is a function of

the scalar product between the stimulus-vector and the weight

vector -
k
if W.Y = .Z ini LX_JE’
i=l .
then W.Y » 0 =>» stimulus assigned to classl ESI.Z]
W.Y <-0 => stimulus assigned to class,2 _ %1.3
-0 < W.Y <0 => stimulus not assigned 1.1}

where 0 > 0 1is a constant, or 'threshold'.

(iv) Adaptive procedure - after each decision the ATLE is informed
whether the decision was correct, or incorrect, and modifies its

weight values accordingly. If W' is the new weight vector then -

W' = W, if the decision was correct @lg

W' = W -Y, if the decision was incorrect 1.6
and W.Y > 0

W' = W + Y, if the decision was incorrect

and W.Y¥ <0 ' 1.7}

Novikeff (1963) has proved that, if there exists any weight vector
~which will given rise to a correct decision for every stimulus-vector

to be classified, then, given a sequence of stimulus sequence frequently
containing all patterns to be classified, the above adaptive procedure

will cause the weight vector to converge to one giving the correct classi-
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fication, although not necessarily the same one, provided the weights

are not bounded in their values. This convergence property of the ATLE
implies that learning will be successful under a wide range of conditiioms.
It is of interest to consider the more general implications of the
conditions necessary for convergence, and their effect on the adaption-

automaton of the ATLE.

A.1.3.1 Coding Constraints on ATLE Convergence

There are three postulates necessary to Novikoff's proof of
convergence, which are relevant to the adaption and training of human
operators. The first is that there does exist a weight vector which
gives a solution to the classification problem. This is not true in
general, and two classes of vectors which may be distinguished by
taking their scalar products with a weight vector and determining its

sign are said to be linearly separable. The separability applies to

the vectors generated by the coder, not directly to the original stimuli,
which need not necessarily have any numeric connotations.

Hence, the selection of coding between the original stimuli and the
k-vector inputs to the ATLE may be viewed as problem of ergoncmics,
similar to the problem of selecting an appropriate form of display for
the human operator, for example, in detecting sonar targets. Tﬁe best
coding will be such that all possible dichotomizations which may be
required of the ATLE are linearly separable, but that a stimulus-vector
of minimum dimensions consistent with this requirement is utilized. The

ATLE will then be potentially adaptive to all required tasks, and

Novikoff's result demonstrates that this is true no matter what its

initial state, so that it is also compatibly adaptive to the set of

tasks.

Al,3.2 Stimulus-Experience Constraints on ATLE Convergence

Novikoff's second postulate is that every stimulus in the set which
is to be dichotomized is frequently present in the sequence of stimuli
presented during the learning phase that is, for any YJ in the set, and
for any postitive integer, N, there exists M > N, such that the M'th

J ‘s .
Y. This postulate is stronger than necessary,

H]

stimulus presented Y(M)

-because the constraint of linear separability implies that, if some sub-
set of the stimuli has been dichotomized into two classes, A and B which
are necessarily linear separable, then a new stimulus, %, belonging to

neither class, may not necessarily be assignable at will to either A or
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B. It may happen that A+x is linearly separable from B, but that
B+x is not linearly separable from A, or vice versa. In this event,
presentation of stimuli from the set (A+B), and from the set (A+B+x),
must lead to the same dichotomization of the larger set. Hence, it
is unnecessary to present x, and the set (A+B) may be said to be a
support (Minsky and Papert 1968) for the classification of the set,
(A+B+x).

For any required dichotomization, assumed linearly separable,
there will be a number of dichotomizations involving few stimuli which
are supports for it, and amongst these there will be one, or more, with

a least number of elements, a minimum support. Any sub-sets of the

stimuli containing less elements than this cannot be a support, and there
.will also be sub-sets containing more elements which are not supports.
Thus there is a sub-environment phenomenom, in that stimulus generators
which do not generate a sufficient variety of stimuli to support the
required classification may not enable the ARLE to learn that classi-
fication. In the pattern-classification situations considered so far,
there is no feedback from the behaviour of the ATLE to the stimulus
generator, and hence the policy, or classification, of the ATLE doesg
not affect its environment. However, when ATLEs are used as part of
an adaptive control loop, the stimulus generator is influenced by the
ATLE policy, and mayrbe forced into a state where it is not emitting a
support set for the required control policy; this problem is discussed

further in Section Al.4.

Ak.3.3 Weight-Magnitude Constraints on ATLE Convergence

The third postulate necessary to ATLE convergence is that the
values of the weights in the ATLE should be unbounded in magnitude.
Again, this is stronger than necessary, and it may be shown (Gaines 1367%
1969) that the weights need take only a finite range of values, but that
the range necessary for convergence is greater than the range necessary
to ensure that a solution exists. When the range of weights is
adequate for separation, but not adequate for convergence, then it is
possible for tha ATLE, with a given training sequence, to never reach a
final solution but stick in sub-optimal states with the weight values

going through a repetetive cycle.
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For example, the set of stimulus-vectors:

y'o= o, 1,01, -1) Y2 = @, -1, -1, 1)
y
= -1, -1, 1
Y = (-1, 1, -1, 1) Y (-1, -1, 1, 1)
May be separated from the complementary set:
z' = (-1, -1, -1, 1) 22 = (-1, 1, 1, -1)
3 ) 1
z° = (1, -1, 1, -1) zt = (1, 1, -1, -1)
by the weight vector, W = (1,1,1,2); because -
J 4 J
Y owy = 1 > 12 > -12 > -1 o= 5 WYY
. i'i . i"i
i=l i=l

so that, for ©=1/2, Equations LXlZ[ and E}.E for correct classi-
fication are satisfied.

However, if the components of the weight vector are limited to
the range, -2 f_wi < 2, then Novikoff's convergence preof no longer
applies, and equations [A1.5] through Elﬂ , modified to take
account of the 'limiting', do not necessarily lead to a solution. Thus,
given the training sequence consisting of (Yl,Y2,Y3,Yu,Zl,Z2,Z3,Zu)
repeated indefinitely, and starting with initial weight values of zero,
the weights take the following values:-

¢

Wy W, W W,
w(0) 1 0 0 © 0
w(1l) Y2 1 1 1 -1
W) I > 0 0 0
W(3) Y4 1 1 -1 1
w4y L 0 0 0 2
W(5) Z2 1 1 1 1
we) 2 2 0 0 >
W(7) Z4 1 1 -1 >
W(e) 0....0....0.. 2
W(9) Y2 1 1 1 1
W(10) Y3 7 0 0 7
W(11) Y4 1 1 A 2
W(1z) Y 0 o 0 >
W(13) 2, 101 1 1
W(14) % 2 c o 2
W(15) 24 1 1 -1 2
W(e) 2 0.....9.....0.....2
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Hence the weight wector goes through a repetetive cycle, always
terminating with the value (0,0,0,2), which is not a linear separator
for the dichotomy. It is shown in Section 2.25, that a sequence of
stimuli constitutes a 'task' for an adaptive pattern classifier, so
that the behaviour shown above has been elicited by giving the ATLE
the same task repeated. Clearly the behaviour if not 'acceptable',
in the sense of Section 2.2.8, because the ATLE never gives a correct
response and cannot be 'satisfactory'. The state-transitions elicited
by the task, in the example given, are from (0,0;0,0) to (0,0,0,2),
and from (0,0,0,2) to itself - both these states are outside the region
of potential adaption to the task.

ATLE with bounded weights have a richer range of behaviour than
‘do those with unbounded weights, since they do not necessarily converge
even when a solution vector exists within the range of the weights, and
their convergence becomes a function of their initial state.  Hence,
whereas by Novikoff's result the region cf potential adaption for an
unbounded ATLE is either the whole state-space, or it is empty, for a
bounded ATLE the region of potential adaption may be a proper sub-set
of the state-space -~ in the example given, (1,1,1,2) is within the
region, whereas (0,0,0,0) is outside it. Al the various modes of
adaptive behaviour defined in Chapter 2 and 3, together with the
various training techniques possible, may be illustrated with ATLE,
and a comprehensive experimental study of one particular ATLE is

described in Chapter 6.

Al.4 ATLEs in Control Systems

So far the ATLEs have been considered only as pattern-classifiers,
not as controllers, since there is no feedback from the output of the
ATLE into the environment. However, there is no reason why the
stimulus generator of Figure Al-1 should not be a plant of some form
which is to be controlled by the output of the ATLE ~ in this event,
the stimuli might be the error and error-rate, and the output of the
ATLE might operate an incremental actuator. Figure Al-2 shows this
type of configuration, and alsc emphasizes that performance evaluation
is not necessarily obtained by mimicing another controller, although
»uthis remains possible.  However, the immediate and definite performance
evaluation of each output of the ATLE is not normally available in a
control situation. Not only is the performance measure averaged over

many decisions, as, for example, the root~mean-square errcr, but its



186

optimum value is also unknown. Thus the transition from the configuration
of Figure Al-1 to that of Al-2 involves a change in the mode of learning
of the ATLE from mimicing to closed-locp adaption.

If the ATLE should be required to mimic another controller, then
the problem becomes very similar to that of pattern classification,
except that there is feedback from the decisions made to the stimuli
encountered. If it is the actions of the exemplifying controller
which are fed back to the environment, then the only sources of difficulty
are linear'inseparability, and a restricted set of patterns; Widrow and
Smith (1964) have successfully applied this technique to a second-order
control system, equivalent to balancing an inverted pendulum by moving
the base horizontally, using the human operator as the exemplifying controller
However, if it is the actions of the ATLE which are fed back into the
environment, then the sub-environment generated by it may cause the
exemplifying controller to operate outside its normal range of inputs

and to show incorrect behaviour.

Al.u.1 Performance Feedback to ATLE Controllers

When no exemplifying controller is available, then the.criterion
for adaption must be based on typical performance measures, such as
the minimization of gome error functional over an interval. This
creates two sources of difficulty, in that the performance measure is
global over a sequence of decisions, rather than local to each
individual one. ‘

Widrow (1966) has proposed a technique, called 'bootstrapping',
for coverting a global performance criterion, in which a complete
sequence of behaviour is evaluated as good or bad, into a local one.
During an interaction, no change is made in the weights of the ATLE
until a decision is available that the interaction, over some past
interval, has been good or bad. This evaluation is then-applied to
all input/output pairs which have occurred during that interval, and
the inputs are effectively presented again to the ATLE and its outputs
are rewarded or punished accordingly; all input/output pairs must be
stored until the performance evaluation becomes available.

Under bootstrapping, the evaluation of individual outputs of the
ATLE may be incorrect and their probability of occurrence may be increaed
when it should be decreased, and vice Qersa, but, in the long run, under
certain conditions, this procedure may be shown to lead to convergence

to an optimal policy (Widrow 1966). Widrow has applied this technique to
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the game-playing situation of 'blackjack' with results close to those
predicted theoretically. Quarmby (1968) has applied the same technique
to the learning of the game of 'Nim', and also finds that it leads to an
optimal solution. His work is of particular interest because he has
varied the form of the environment, in fact a second player, and studied
the effects of this on the speed of learning. These results, which
correspond to the identification of the adaption automaton of an ATLE
controller, are reviewed in the following section.

Béotstrapping alone does not overcome the problem of lack of
knowledge about the optimum value of a performance measure. In a game~
playing situation a win/lose decision is always ultimately available,
but in a control situation a value of an error-functional is not necessarily
good or bad. Even if the minimal value is known, this does not enable
a good/bad criterion to be established unless some tolerable deviation
from it is given. The probd@m can be appreciated by considering a
pattern-classifier in a similar situation - if the input stimuli occur
at random with equal probabilities of either type, then the pattern-
classifier has equal possibilities of reward or punishment - if, however,
it is rewarded only for optimal decisions over the last n patterns, then
the probability of reward drops to 2", and the classifier has to learn
mainly through the negative information that it has made mistakes.

One way of overcéming these problems is to consider performance over
an interval good if it is an improvement over performance over some
preceeding, comparable interval. However, no success has been reported
in the application of this technique to control problems, and negative
results are reported in Chapter 6. An alternative technique, which is
not generally applicable, is described in Chapter & in a successful
application to a particular control problem. This involves the
evaluation of individual outputs of the ATLE according to whether the

error at some fixed interval in the future has decreased or not.

Al.4.2 Problems of the ATLE as a Learning Controller

Examined in more general terms, the evaluation of an ATLE controller's
performance by comparison with its past performance is equivalent to
setting it the sub-goal of attaining a certain performance level, and
varying this sub-goal as a function of its past performance. Another
technique for setting a sub-goal is reported by Widrow and Smith (1964)
in which an ATLE contrecller drives a second~order plant, with a human
operator deciding when negative or positive bootstrapping should be applied

to the ATLE. Hie states that, 'it was found that an observer familiar with
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control system theory, but ignorant of the plant configuration, would
consistently produce training sequences leading to stable system con-
figurations'.

This is a particularly interesting technique for overcoming the
learning problems of an ATLE, since it involves feedback training by
a human observer varying the sub-goals set to the machine. The
observer. does not require detailed knowledge of either the controller
ﬁéévthéicontrolled element, but is able to evaluate the overall
performance and the effect of his own task difficulty variations upon
it. In general, such a direct variation of the sub-goals of a learning
system is not possible, and some form of linguistic communication must
be established. An experiment on such communication Qith ATLE controllers
is described in Chapter 10, and again the importance of feedback to
the trainer is illustrated. ‘

Quarmby (1968) has investigated the learning behaviour of a boot-
strapped ATLE playing Nim against an opponent whose strategy was to play
the optimum move with probability, p, and to play a random move with
probability, 1l-p. When playing against a fixed opponent, the mean number
of games for the ATLE to reach an optimal solution, as a function of p,
was: -

p = 0.} 0.2 0.3 0.40.50.60.70.80.91.0
Number'of games 723 281 104 124 68 51 49 36 35 66

Thus, from the point of view of the time taken to learn the task under
conditions of fixed training (Section 3.2.1).the task increases in
difficulty on either side of the value p= 0.85. However, froﬁ the
point of view of what is the most difficult opponent,'in the sense of
the 'best' opponent who will win most often, it is..¢dlear that the
'difficulty' of the task increases as p ranges from zero to wnity. This
illustrates the problems in the use of the concept of 'difficulty',
discussed, in the context of human learning, in Section A4.5.1. Quarmby
also evaluated the effects on learning of using the open-loop training
strategy of increésing p from zero to unity uniformly over a set of M
games (that is, increasing the difficulty, in the sense of a better player),
and obtained the following results:-

M= 13 17 21 25 29 33 37
Number of games 36 29 28 27 27 34 35

One of the most interesting of Quarmby's results is that when two
ATLE controllers play one against the other, the mean number of games

for one to reach an optimum strategy is 18. This compares favourably
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with the 27 games for the best open-loop training policy used, and 35
games for the best fixed training policy used. The use of an opponent

as part of the training environment who is also a learning system is
clearly a form of feedback traiﬁing, but of a very complex kind. Although
Quarmby's experiments are not conclusive in themselves, they are highly
suggestive of further experiments relevant to human learning, and of
possible strategies for feedback training.

"~ The main problem of ATLEs in learning control tasks may be

related both to the 'generalization' properties of adaptive threshold
logic itself, and to the sub-environment phenomenom. The sub-environment
of a non-optimal control policy, particularly one which causes the overall
system to become unstable, will generate some sub-set of the total set of
input patterns to the ATLE. Because of the linear separability con-
straint upon the dichotomies realizable by the ATLE, any dichotomization
of these patterms partially'determines the response to other patterms,

and a policy which is established in the initial sub-environment may

imply a completely incorrect set of responses in the desired sub-

environment.
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APPENDIX 2: THE ALGEBRAIC THECRY OF SEMIGROUPS

A2.1 Semigroups

The basic literature on the algebraic theory of semigroups is
slight, comprising two volumes by Clifford and Preston (1981,1367),
one by Liapin (1$63) translated from his original text in Russian
published in 1950, and a recent volume on the application of semi-
groups in automata theory edited by Arbib (1968).

A semigroup (Clifford and Preston 1861, p.l) is a non-empty
set, S, together with an associative binary operation defined on S.
A binary operation is a mapping from S x S into S, and it is conven-
ient to write the image of the ordered pair, (a,b), as the precduct

ab; where a, b, ab € 8. If the operation is associative then:
Va,b,c €S, a(bc) = {(ab)c | E\T‘ﬂ
Within a semigroup, S, there may be an element, 1, such that:
Va ¢ S 5. la = al = a @2—2:’

and such an element, if it exists, is called the identity element of
S. It is possible for an element to exist which is an identity only

for left (or right) operation - e is a left identity element of S if:
Va es, ea = a A 132-3
and f is a right identity element of S if: )
‘V/a €S , af = a EQ—IB

However, if S has both a left and a right identity element, then they

are identical since:
e = ef = £ L_AQ-.SJ

If a semigroup, S, has no identity element then it is always possible
to add to it an element defined to have this function, and the extended
semigroup is denoted, Sl. ‘

Similarly, within a semigroup, S, there may be an element, O, such

that:
¥ ae S, Oa = a0 = 0O - [A2-5)

and such an element, if it exists, is called the zero element of S.

Right and left zero elements may be defined as for identity elements,
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the two zerc elements coinciding if they both exist, and, similarly,
a zero element may be appended to a semigroup and the result denoted

by s°.

A2.2 TFree Semigroups

An arbitrary set, D, is said to generate a free semigroup, FD’

by concatenation, which consists of all sequences of elements of D.

The product of two sequences of elements of D, u and v, is defined

to be the concatenation of these sequences, uv - hence, if uzdld2 and
v=d3d4d5, then uv=dld2d3d4d5;
The identity element of F_ is the empty sequence, but no zero element

concatenation is clearly associative.
D
is defined.

In a free semigroup, FD’ two elements, u and v, are equal if, and
only if, they are identical sequences of elements of D. It is possible
to obtain other semigroups from a free semigroup by superimposing on it

generating relations amongst its members - that is by defining that:

Vu)\, vkeS,J\el‘, uk= v}\ EZ-'B
where T is an index set.

An important free semigroup is generated by the set of partial
transformations of a:set, S, into itself. If u and v are mapping
from two sub-sets of S to two other sub-sets, then the mapping, (uv),
is defined if the range of v and the domain of u are not disjoint; if
they are disjoint, then we may define a mapping, 0, whose domain and
range are both empty, and define uvz0. Hence, the set of partial
transformations of a set into itself, together with a mapping, 0, is
a semigroup {(with zero). .

A useful notation for a member of a free semigroup is to let
1’ d2 and d3'
followed by d2 repeated any number of times

(dl+d2+d3)* mean 'any sequence of elements consisting of 4
%4 !

Then, dl(d2) d; means, dl

(including zero), followed by d3.

A2,3 Homomorphisms and Relations

The natural mappings from one semigroup to another, these which

preserve the semigroup structure, are called homomorphisms. A mapping

betweer semigroups, S and S', ¢ : § — §', is a homomorphism if,
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and only if:

‘v/a,b, €S (ab)¢ = (a¢ )(bo ) [1:&’2—5
(where the operator is written onthewright. A one-to-one homomorphism
has an inverse which is also a homomorphism and such a mapping is

called an isomorphism . Isomorphic semigroups are complete identical

in their semigroup structures, and, for theoretical purposes, need not
be distinguished. |

A relation on a set, S, is some sub-set, 0, of the product of S
with itself, SxS. If (a,b) € 0, where a and b are elements of S, then
we may write - a @b, meaning 'a bears the relation 6 to b'. The
composition of two relations on 5, 0 and n , is defined as - (a,b)e0n
if, and only if, there exists c such that (a,c)e® and (c,blen .

‘The set of all such relations on S is a semigroup. Its identity
element is the equality relation, I, such that (a,b) eI <==» a=b. Its
zero element is the empty relation on S.

The converse, 0“1, of a relation, © , is defined by - (a,b) €® =2
&—> (b,a)e® . A relation, 6, is said to be reflexive if T < 0 ;
symmetric if QS.O-l; and transitive if 00 ©; an equivalence if it
is relfexive, symmetric and transitive. An equivalence relaticn
partitions S into a mutually disjoint family of sets, and the natural
mapping from S into its equivalence sets gives rise to the guotient
set, S/0, of S under o .

If S is a semigroup, the natural mapping to a quotient set under
an arbitrary relation is not necessarily a homomorphism, and major
theorems in semigroup theory are concerned with determining when this
is so. A relation, © , on a semigroup, S, is a congruence if, for
a,b €S, aob «—uavlubv, for all u,v €S, and © is an equivalence
(if 0 is not an equivalence, the relation is aid to be regular). If
0 1is a congruence then the quotient mapping from S to S/ 1is a homo-
morphism.

‘There are certain important theorems relating to homomorphisms
and relations which will be quoted here with the numbering of Clifford
and Preston (1961), where the proofs are given:

Theorem 1.5 (Main Homomorphism Theorem) Let ¢ be a homomorphism

of a semigrcup, S, upon a semigroup, S', and let 7 = 0.0 "1, Then T

is a congruence on S, and there exists and isomorphism, y , of S/«
upon S' such that n%u = 0, where =* is the natural homomorphism of

S upen S/mw .
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Theorem 1.6 (Induced Homomorphism Theorem)  Let ¢l and ¢2 be
homomorphisms of a semigroup, S, upon semigroups, Sl and 82 respectively,
-1
g + N
such that ¢l ¢l
9, of Sl upon S2

=P ¢;l. Then there exists a unique homomorphism,

such that ¢le = ¢2;

Lemma 1.28 Let FD be the free semigroup generated by a set, D.
Let S be any semigroup and let ¢o be any mapping of D into S.  Then ¢

can be extended in one and only one way to a homomorphism from FD to S.

Theorem 1.29 Let FD be the free semigroup generated by a set, D.
Let w_ be any relation on FD and let 7 be the congruence relation on PD
generated by LA Let  ®* be the naturgl homomorphism of FD upon FD/v.
Let S be any semigroup and let ¢be a homomorphism of FD inte S such
that u¢=v¢ for every (u,v)eno. Then there exists a homomorphism @ of

FD/ﬂ into S such that #%0=¢ .

A2.4 Ideals

A left (right) ideal of a semigroup, S, is a non-empty sub-set,
~ A, for S such that SACA (AS< A). A two-sided ideal (or simply ideal)
is a sub~set of S which is both a left and a right ideal. A semigroup,
S, is called left (right) simple if S itself is the only left (right)
ideal of S. Similarly a semigroup is called simple if it contains no
proper (two-sided) ideal.

If X is a non-empty sub-set of a semigroup, S, then the intersecticn
of all left ideals of S containing X is a left ideal of S containing X,
and contained in every other such left ideal of S -~ it is called the left’
ideal of S generated by X; similarly for the right ideal of S generated
by X and the (two-sided) ideal of S generated by X. If, in particular,
X is the single element, x, then the ideals generated by it are called
principal ideals generated by x.

An ideal is called O-minimal if it contains elements other than

zero, and the only ideal properly contained in it is the zero element.
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APPENDIX 3 FROM BEHAVIOUR TO STRUCTURE

A3.1 The Relationship Between Structure and Behaviour

The relationship between the physical structure of a system
and its observed behaviour, and to what extent one can be deduced
from the other, have long been controversial topics in both philesophy
'ahd~psyéﬁology. The fundamental problem of knowledge of the 'real
world' inferred from sensations is the prime example of the difficulty
in establishing this relationship in general, but problems of describing,
modelling and predicting arise continually, not only in science, but
also in everyday life. Whilst knowledge of 'reality' is a source of
absolute problems because the observed behaviour is, for the individual,
all that exists, other epistemological problems arise through comparison
'of different souwtces of information about the same physical structure,
particularly when one source of 'information' is a set of pre‘conceived
assumptions.

In this appendix the problem of relating behaviour and structure
is formalized, and a technique for deriving one from the other is
established. The problem is treated in a general way because the
results aré of importance in the present context, not only in the analysis
of adaptive behaviour and techniques of training, but also, at a different
level of discussion, in the study of the epistemological problems of

learning systems which give rise to their adaptive behaviour.

A3.1.1 Extensive and Intensive Definitions of a System

The concepts of 'behaviour' and 'structure' may be formalized by
means of the logical constructs of definition by extension and definition
by intension (Carnap 1956). A property is said to be defined extensively
by the class of all those objects which possess the property. A
property is said to be defined intensively by a rule, or decision
procedure, which determines whether an object has the property. These
constructs may be used to give formal definitions of a system, which

correspond to its structural and behavioural connotations, respectively -

Extensive definition of a system A system is defined extensively

by the class of &@ll possible Lehavicurs which may be shown by the system.
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Intensive definition of a system A system is defined intensively

by a rule which determines whether a particular behaviour is possible

for the system.

One possible decision procedure, or rule, which defines a systen
by intension is that a behaviour is possible for that system 1f, and
only if, it may be shown by another. This second system may be defined
in any way whatsoever, provided the definition enables its behaviour to
be generated. The 'structure' of a sysitem, divorced from notions of
physical ‘'reality', is nothing more than a set of rules for determining
the behaviour of the system, and hence may be regarded as an intencive
definition of the system. In these terms, the problem of the relationshiy
between the behaviour and structure of a system amy be regarded as cne

of deriving an intensive definition from an extensive one.

43.1.2 Cybernetic Equivalence Between Systems

To each of the two types of system definition there corresponds an
equivalence relation between systems - two &ystems may be said to be co-
extensive if they show the same class of behaviours - two systems may be
said to have the same intension if the rules which defire them are
logically equivalent. Wiener (1914) has proposed, in the context of the
analysis of logical relations, that extensive definitions be used in crder
to simplify the analysis of equivalence between relations: if a relation
is identified with the class of n-tuples which satisfy the relaticn,
then equivalence between relations can be evaluated by the theory of sets
and requires no study of the logical structure of relations. In a
later publication, Wiener (1948) extends this concept to arbitrary

-~

systems, and defines two systems to be cybernetically eguivalent if they

show the same behaviour, that is, if they are co-extensive.
The most important feature of Wiener's approach Is that he proposes

that it does not matter what structure we suppcse for a system, if we are

et

only interested in its behaviour, provided it is one of the set of

cybernetically equivalent structures which would give rise to its

e

i+

observed behaviour. Deutsch (196C) has argued for the application o
Wiener's approach in the study of animal behaviour. He states that -

'the central nervous system could be constructed of completely

different types of components withcut affecting the behavioural

(=] g e

()'

apabilities of the machine' - and that -~

'given the system or abstract structure alone of the machine, we
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can deduce its properties and predict its behaviour. On the other
hand, the knowledge that the machine operates mechanically, electro-

mechanically, or electronically does not help us very much at all'.

The logical conclusion of Wiener's arguments about the primacy
of the extensive definition of a system by its behaviour might seem
to be that 'structure' in itself may be neglected. However, Ashby
© (1965) has demonstrated the importance of the concept of 'structure’
in enabling a vast, possibly infinite, number of instances of
behaviour to be subsumed under the single statement of a rule, correspond-
ing to a system structure. For example, the behaviour of a device,
whose input is drawn from the field of real numbers and whose output is
its input plus unity, consists of an infinite set of input/output pairs
with the form - (x, x+1). Rather than tabulate all these pairs in

order to define the system, it is far simpler to state the rule -
S = Ccoutput> = <input>  + 1J [a3.1})

which constitutesa definition of the system, S, as a mathematical
operator, or structure.

Consider a second system, S*, whose structure is =~

- oy
g% = <output> = x2 - y2
x = <input> + 1.25 (3.
y = <input> + 0,75
b -

Although S and S* are structurally dissimilar, they are cybermetically
equivalent in that, given the same input, they will both produce the

same output. This equivalence may be demonstrated by manipulation of
their structural definitions, given a knowledge of the aigebra of real
nunbers. Wiener's argument is that this knowledge is unnecessary, and
that the two systems may be proved equivalent by placing the input/output
pairs which constitute their behaviour in a 1-1 correspondence.

This, concepfuélly simple, set-theoretic procedure may be used when
the system structures, or the rules governing them, are completely
unknowa. It is of greatest interest, however, when the structure of cne
system is unknown, but, by analysis cf its behaviour, it may be shown
to be cybernetically equivalent to another system cn know structure. The
- second system may then be taken to subsume the behaviour of the first,
or act as a 'model' for it, with the advantages in simplicity of
description demonstrated by Ashby. Since the structure of the model

is known, statements may be made about the properties of its behaviour



197

without detailed examination of that behaviour, and these statements
may be applied immediately to the behaviour of the cybermetically

equivalent system whose structure is unknown.

A3.1.3 Mathematical Machines as Models

No cne model has inherent precedence over another that is
cybernetically equivalent, and additional criteria have to be applied
to select a particular form of model from all those available. For
biological systems, it is natural to give physiological structures
primacy in the modelling of animal behaviour, but, for practical
purposes,these have the disadvantage that the behaviour of large
“structures of neurons, for example, is difficult to determine, both
because they are nonlinear elements and because their individual
structures and connectivity are poorly known. A similar situation arises
in the study of the behaviour of gases, where the statistical mechanics
of the behaviour of individual molecules may be used to derive the
thermodynamics of marco laws of behaviour, such as Boyle's law relating
the pressure and volume of an enclosed gas. dele's law, however,
was discovered and used long before the properties of individual molecules
were known, and, similarly, 'laws of behaviour' may be derived long
before that behaviour can be ascribed to a physiological structure.

One form of model which it is reasonable to propose is that which
has no properties other than that of showing the required behaviour.
An abstract mathematical model has this feature, together with the
advantage that it is readily communicated in written form.  Ashby

(1957) has proposed and developed the theory of state-determined machines

to provide a mathematical object which has forms cybernetically
equivalent to any other system: such a 'machine' is, conceptually, a
device with states, inputs and outputs, such that the present state and
input determine the next state and output. It is of interest to note
that the general-purpose digital computer has been developed as a
machine which, by 'programming', may be made cybernetically equivalent
- to virtually any other system (Gaines 1868). The methematical theory
of computers, called Automata Theory (McNaughton 1361), is essentially
an extended form of Ashby's theory of machines. This correspondence
_between abstract 'machines' and computers has the advantage that models
put fcrward in terms of the former may be physically realized in terms

of the latter, and hence the behaviour of the models may be demonstrated.
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A3.1.4 The Observability of Structural Variables

The structure which is derived from behaviour to serve as a model
for the system producing the behaviour acts, in some gense, as an
'explanation' of that behaviour. Deutsch (1960) distinguishes this
type of explanation, which he calls 'generalizatory', from an
alternative form which he calls 'causal' - ‘'causal' explanations are
those based on previously established physical laws. Brindley (1$60)
makes ‘a similar distinction between explanations of human behaviour
based on psychological observations, and explanation based on knowledge
of physiological structure.

The distinction between 'causal' and 'generalizatory' explanations
proposed by Deutsch is not fundamental, in that the laws of physics are
themselves inductive generalizations from observations of matter and
are not inherently more profound than the 'laws' of psychclogy. There
is a sense in which physiological structures have a preferred status in
psychology, but the preference is based on their being derived frcm
alternative observations of the same system, not on any fundamental
difference in logical status. The linking of observations on different
parts of the same system is a source of difficulty, however, and it is
reasonable to criticize the premature identification of 'intervening
variables' in psychology with physiological constructs. There is no
intrinsic reason, however, why a structure proposed from a cybernetic
viewpoint, in that it will generate the observed behaviour, should not
be partially, or wholly, identified with a physiological structure. This
has occurred with Deutsch's own model of ‘drive', where certain parts of
the cybernetic structure may be identified with nuclei in the:.hypothalamus.

Deutsch's comments make it clear that the cybernetic structure
derived from behaviour has no more predictive power than the behaviour
itself, in the sense of being able to determine future behaviour. Given
a knowledge of all possible behavioural sequences which may be exhibited
by a system, the basis of a 'generalizatory' type of explanation, and a
particular instance of a segment of observed behaviour, it is possible
to match the segment with all possible sequences, delimiting the
behaviour which may follow it, and hence predicting to some extent what
that behaviour will be. If more of the past behaviour is known then
the future behaviour may be further delimited, and hence the prediction
-will become more precise, or not change. Since the future behaviour of
a physical system is governed by its present condition, knowledge of its

past behaviour which affects predictions abcut future behaviour must be
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equivalent to more detailed information about its present condition.
In the limit, it is possible that knowledge of the past behaviour may
be used to specify the present condition of the system precisely.

These considerations suggest further criteria to be applied in
selecting cybernetic models of behaviour. The only fundamental
constraint on a structure which is to serve as a cybernetic model for
observed. behaviour is the very weak one, that it should show all the
oﬁéérvéd behavibur, and only that behaviour. For any given set of
behaviour, there will be very many possible structures, and these will
‘vary greatly in complexity. For example, any model can be increased in
complexity without limit by the addition of intermal processes which have
no affect on the output, or by the addition of intervening variables

within the model. The system, S', defined as -

S' = [<output> = X -y i
X = <input> + =z fAs 3
'y =z - 1 ‘

z (dnmm>)2

=3

is cybernetically equivalent to the system, S, of Section A3.1.2, but
contains the redundant variables, X,y,z, and the redundant process

defining z. This unnecessary complexity may be eliminated by requiring
that any intervening variables be measurable, that is observablie from

past behaviour, and that the number'of different internal conditions of

the model is the minimum necessary to account for all the modes of
behaviour. It will be demonstrated that these two conditions interact,

in the sense that observability of all structural variables may necessitate
more internal conditions than are necessary solely to account for the

behaviour - a seemingly paradoxical result.

A3.1.5 Summary of Constraints Upon Structural Models

If one system is to act as a model for another then there is cne

necessary constraint upon it, and three desirable ones -

(i) Cybernetic equivalence - the model should be cybernetically
equivalent to the system it is modelling: that is, there should be
a 1-1 correspondence between the behaviours of the two systems.
(ii) Only sufficient properties - the model should have no properties,
other than that of showing the observed behaviour of the system it is
modelling. This is not essential, and mechanical or electrical models

may be useful psychological models. An abstract mathematical model
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has the advantage, however, that there are nc unnecessary features
to confuse its evaluation.

(iii) Observability of structural variables - given a sufficiently
long sequence of past behaviour, it should be possible to determine
all internal parsmeters of the model precisely.

(iv) Minimum states - subject to contraints (i) and (iii), the
number of possible values of the internal parameters of the model

should be minimal.

In the following sections & procedure for constructing an automata-
theoretic model of a system, given its behaviour alone, is derived which

satisfies these constraints.

A3.2 The Behaviour of Automata

In the analysis of behaviour some formal explicatum of the concept
of 'behaviour' itself is necessary. Since behaviour is essentially a
sequence of observations, it is possible to provide an explicatum by
setting up a calculus for the results of observations. This is done
in the following postulates relating to the observation of a system,Z.
The first postulate is that the behaviour can always be described -

(i) There exists a set, D (the set of descriptors), such that a

Rl

tnique member of D may always be assigned to the system, I .

This ensures that the set of descriptors is sufficient and that a
decision procedure exists for describing the behaviour with a unique
descriptor: uniqueness ensures that problems of seﬁantic relationships
between descriptors in themselves do not arise.

~ The second postulate identifies the system, I , with the set of all
behaviour that it may show -

(ii) A system, defined by extension, is a sub-set, I, of the free
senigroup generated by concatenation of member of the set, D, such that
every sub-sequence of a member of the sub-set is aiso a member of the
sub-set.

This defines a system as a set of sequences of descriptions, or observ-
ations of behaviour (a sequence of descriptions being a 'behaviour'),
and ensures that any part of an observed behaviour is also noted as an

observed behaviour.

'A3.2.1 The Semigroup of Descriptors

The term ‘semigroup’ used in postulate (ii) of the previocus section

requires further elucidation. A semigroup is a mathematical object,
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similar in structure to a group but with weaker postulates. Although
semigroups logically precede groups, it is only during recent years

that they have been studied in detail by mathematicians, wheresas the

study of groups has long been intense and the literature is vast. The
theory of semigroups is fundamental to the study of automata and general
systems, and will be used extensively in this thesis. A summary of the
relevant theory and ‘terminology is given in Appendix 2. In this section
the relafionship between systems and semigroups is established.

Let I.be a system defined as in postulate (ii), such that I < s
the free semigroup generated by the set of descriptors, D. Then I, as
defined, is not itself a semigroup because, given behaviours, &, b,e I
it is possible that the behaviour, ab, does not belong to I - that is, it
‘may not be shown by the system. However, it is possible to extend I
by addition of the zero element such that it is a semigroup homomorphic

to FD.

Theorem A3-1 If I c:FD is a system, and © is the relaticn defined by -

abb ¢——> a, b ¢ FD -Z,0or acz=b

then @ is a congruence relation and the natural homomorphism from FD onto

the quotient semigroup, FD/G » maps the set, [?D-i], into 0, the zero

element.

-Proof Yor any a, by such that adb,and any x e¢F_, consider xz and xb.

D

If azb, then xa=xb, and hence xafxb. Otherwise a, b ¢ F_ - I. Suppose

xa € I, then a is a sub-sequence of a member of I, and hznce by
postulate (ii) a € I. Thus, by contradiction, xa € FD - I; similarly,
xb € FD - I, and hence xaOxb. Similarly we may prove that axObx.

Thus, © is a congruence relaticn and the quotient semigroup, FD/@ s
and the natural homomorphism, &, from FD to it, are defined. Let
ae FD - I, and b ¢ FD. Then ab e'FD - I, and hence a® = (ab)¢ ,
under the quotient mapping, but ¢ is a homomorphism so that -
(ab) o= a®.b®. Thus, ad® = a®.b® , and similarly - a% = bd.ad |,

implying that a is the zero element of FD/G .

This thecrem shows very clearly the relationship between the éxtensive
definition of a system and the algebraic properties of semigrcups. A
system, defined by extension, may be represented as the free semigroup
generated by its descriptors, with zero adjoined, and a generating
relation such that every sequence of descriptors which is not a possible

mbehaviour is mapped into zero. Because every sub-sequence of a
possible behaviour is also reguired tc be a behaviour, this mapping is
a homcmorphism, the natural mapping between semigroups, and the resultant

structure is itself a semigroup.
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A3.2.2 Implications of Group Postulates

The relevance of semigroup structures to the study of system
behaviour may be further clarified by consideration of the effects
of strengthening the postulates, and representing the system by a
group, rather than a semigrcup, structure. The additional postulate
for a group is that, for every element a ¢ FD’ there exists an element
a_l € FD_such that a'la = 13 a-l is termed the 'inverse' of a. The
péfonf the wnity element, 1, in PD is played by the emptyvéequence,
and equality of sequences is defined only by their being identical.
Hence, no inverse elements can exist in the free semigroup of descriptors,
FD’ itself, because the above equation would imply that the succeeding
behaviour, a-l, makes an already observed behaviour, a, become unobserved.
Equally, no inverse elements can exist in the quotient semigroup, FD/O,
defining the system, T , because the only additional relationship of
equality is generated by the mapping into zero, and zero has no inverse.

If a further relationship of equality were defined in FD’ which
implied, for example, that behaviours were equivalent which achieved
the same gocal, the additional group postulate would demand that any
behaviour could be nullified in its effect on the attainment of the
goal. This is obviously a very strong postulate implying a degree of
reversibility which, whilst present in many systems studied in physics
and chemistry, is no£ always found in animal behaviour, and is certainly
very rare, almost by definition, in the learning process. This explairs
the necessity for the mathematics of semigroups, rather than that of

groups, in the analysis of adaptive behaviour.

A3.2.3 Structure of Automata

One of the most general structures to have been investigated in
recent years is the sequential machine, or automaton (Gill 1962, Ginsburg
1962, Moore 1964, Hartmanis and Stearns 1966, Booth 1967, Hennie 1968).
Any physical system, examined at discrete intervals, can be represented
as an automaton, and automata theorists are developing techniques for
analysing general, nonlinear systems (Wymore 1967), which may eventually
‘become as powerful as comparable techniques for linear systems at
present (Zadeh and Desoer 1963). Since the discrete, decision-making
mechanisms of animal behaviour are not amenable to analysis with linear
-systems theory, the develcpment of automata theory is particularly -
important in biology. In particular, an automaton structure is an

adequate representation of a biclogical system, and the problem of
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relating behaviour and structure may be reduced to that of determining
an automaton whose behaviour matches that of the observed system.

An automaton is a device with inputs, states and outputs, whose
present state and input determine its next state and output. This may
be formalized (Mealy 1955) in the following terms - an automaton, or
sequential machine, is characterized by - '

~ (i)- A set S of states.

(ii) A set I of inputs.

(iii) A set G of outputs.
(iv) A mapping, o: I xS S, called the next-state function.
(v) A mapping, : I xS G, called the output function.

Hence a particular machine may be characterized by the 5-tuple,
(I.5.G.0.7w). The dynamic behaviour of the machine is determined by
the following transition equations:-
s' = o (i,s) 63@
g r (i,s) - Bs.3

- where s is the present state, s' is the next state, and g is the

11}

present output.

A3.2.4 Descriptor Semigroup of an Automaton

Since the state of an automaton is an internal variable which may
not be directly observed, its overt behaviour may be completely described
in terms of its inputs and outputs. In the terminology of the previous
section, a complete description of the behaviour of the automata in its
present condition is ~ |

d = (i,g) : Bs.dl
It is apparent that a set of sequences of such descriptors, corresponding
to a set of observed behaviours of the automaton, cbey the postulates
for an extensive definition of a system defined in Section A3.2. It is
also apparent that any restrictions on the initial state of the automaton,
or upon the input which may be applied when a certain output is present,
will generally restrict the observed behaviour to some sub-set of all
possible behaviour, and hence wiil give rise to an extensive definition
of a different system. This is important in the context of the problems
faced by any learming system in attempting to learn about its environment
(which may be regarded as an automaton), and is analysed in Section 3.5.
"For any description of the behaviour of the automaton, d = (i,g),
there will be a set of states, R, in which the input, i, may be applied.

‘Consider the sub-set of R, Q < R, such that the output, g, occurs -
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Q = s:segR,g=nli,s) [63.7]

Let Q be the domain of a mapping, Md’ whose range, T, 1s the set of

states which may follow the state, s ¢ Q, and the input, i, so that -

T = [s‘ :seQ, s'= w(i,s)]. @38]
The mapping, Md : Q—>»T, is then defined -

s! = Md(s) : E‘3'§J
- where s ¢ Q, and s' = ¢g(i,s), g = n(i,s).

Thus, with every description, d, of the behaviour of the automaton,
M= (I,5,G,0,7), it is possible to associate a unique mapping, Mys
from the class of partial transformations of the set, S, into itself.
This association may be written as the mapping, A, such that -

Md = da A3.190

- where the range of ) is M, some sub-set of ST, the set of partial
transformations over S.

This mapping does not, in itself, demonstrate a relationship between
the semigroup of partial transformations over S, and the semigroup of
descriptors defining the behaviour of the automaton; an arbitrary mapping
between semigroups does not necessarily imply any similarity between
their structures. However, the following theorem shows that the mapping,
X, is an isomorphism; so that the semigroups of partial transformations
is identical in structure with the semigroup of descriptors.

Theorem [53—2] The free semigroup of partial transformations over S,

‘FM’ generated by Md for all d ¢ D, is isomorphic to the quotient semigroup,

FD/e of Theorem [53-1], under the transformation, A.

Proof A maps the generating set, D, of the free semigroup, FD, into the
free semigroup generated by the set, MAC:ST, the set of partial trans-
formations over S. Hence, by Lemma 1.28 of Clifford and Preston (1981},

) may be extended to be a unique homomorphism from F_ to FM by setting -

D

(abe...n)A = MMM ..M = ak.bh.ch...nh [23.11])

Consider a behaviour, u = ab ¢ FD - Z. The absence of ab from the set
of possible behaviours implies that the input-output pair corresponding
to b cannot follow that corresponding to a. Thus, for every possible
state in which the machine may be after having shown the behaviour, a,
"(all states in the range of Mé),either.the input corresponding to b
carmot be applied or the output corresponding to b does not occur. In
either event, these states cannot lie in the domain of M. and hence the

b

range of Ma end the domain of M. do not overlap, so that the mapping,

b
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MM takes its domain into the empty set, ¢ .
ab’?®

Any mapping in FM which takes its domain into the empty set plays
a part of the zero element in the semigroup of partial transformatioms,

and hence we have that any behaviour, ue F_ - £ , is mapped into O by

A. Thus, considering the relation, © , ofDTheorem A3~1 , if uBv,
then either u=v so that ux = vA , or u,v ¢ FD - ¥ so that ul = vA =
0. Hence, by Theorem 1.29 of Clifford and Preston (1961), (sece Appendix
A2.3), there exists a homomorphism, A' , of FD/O into FST, such that
OA' = A, By the nature of © and A, A' is clearly X itself extended over
FDIG . The mapping between FD/O and FST is one-to-one and hence \'
is an isomorphism,

Thus the two semigroups, PD/ 0, corresponding to the extensive

definition of the automaton by its behaviour, and FM < F.t » corresponding

to the intensive definition of the automaton by its struiture, are
completely equivalent. Thus the problem of determining an automaton,
cybernetically equivalent to a system defined by extension, may be
regarded as one of finding a suitable mapping from the descriptors of
the system to the set of partial transformations over some set, such that

there is an isomorphism between the semigroup structures on them both.

A3.2.5 Choice of Structure for a System Defined by Extension

There are many possible automata, with differing numbers of states
and differing transition equations, which are cybernetically equivalent
to any given automaton.  Without further constraints there is no basis
for selecting between these automata. One possible constraint is to
demand that the automaton have the minimum number of states necessary to
show the.required behaviour, but this may lead to @ structure which is
peculiar in that no amount of information about its past behaviour will
allow one to deduce its present state; in control-theoretical terms,

the automaton has unobservable states (Kalman 1960, Wymore 1967 p.277).

For example, consider the twc automata whose state transitions and
corresponding behaviour are shown in Figure [§B-i] as directed graphs;
each node of the graph corresponds to a state of the autotaton, and
each line of the graph coreesponds to a possible transition between

states, the emitted behaviour being indicated by a letter (descriptor).
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(i) Minimum State (ii) Observable

Figure A3~1 Different Structures for Equivalent Automata

Any behaviour of either of the two automata is of the form -
(atb)®a c* (in the notation of Appendix 1), and hence both systems
show the same range of possible behaviour and are cybernetically
eguivalent. The first system, (i), has only two states, which is
clearly the minimum necessary to restrict behaviour to this form. Given
that the past behaviour is of the form - (a+b)*a, however, it is impossible

to determine whether the automaton is in state S)s O 8 With the

x
second system, (ii), any behaviour terminating in a leaves it in s,;

S

behaviour terminating in b leaves it in s, ;3 and in ¢ leaves it in

Sye Thus any sequence of past behaviour ii sufficient to determine
its present state.

Thus although the second system, (ii), has one more state than
system (1), all its states are observable, and it is possible to deter-
mine its current state from its past behaviour. This condition not
only gives an operational definition of the 'states' of the hypothetical
structure giving rise to the observed behaviour, in that all ‘intervening
variables' are measurable, but leads to what is, in many ways, a more
'realistic' structure. For example, it appears from the transition
diagram of system (i) that behaviocur, ¢, occurs only when the automaton
is in state, s

» and hence that s, is particularly informative about the

2 2
occurrence of c. However, since no sequence of past behaviour terminating

in a, no matter how long, is sufficient to determine whether the system
is in S5 OF Sy, this apparent ‘'information' is rather misleading. On
the other hand, the alternative structure, (ii), makes ¥ immediately
apparent that behaviour, ¢, may be emitted when the automaton is in

either of states, s, or s,, but that behaviour, b, may also be emitted

2 3?

when it is iIn Sy

This further exemplifies the desirable constraint, (iii), proposed

in Section A3.1.5, that all internal parameters of the model, its state
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Variables, should be measurable from a sufficiently long sequence of
observations of past behaviour. Given that this contraint upon the
automaton structure is satisfied, it is reasonable to further impose
contraint (iv) of that section, and minimize the nimber of internal
states of the automaton. In the following sections, a construction
is established for deriving an automaton structure for a system

defined by extension, which satisfies these constraints.

£3.3 Construction of a Minimal, Observable Automaton

A set of observable states for a system defined by extension may be
determined by noting that the present state of an automaton is essentially
that which contains all the known information about its future behaviour,
and considering the manner in which knowledge of past behaviour restricts
future possible behaviour.

Consider a system defined by extension as a sub-set, I, of the
free semigroup, PD, generated by the set of descriptors, D. Any

behaviour, u € FD, generates a sub-set of I, Nuc:Z , defined to be -

{v : veF

Nu D’

uwv e L} (£3.12)

i

- so that Nu is the set of potential future behaviours which may follow
the behaviour, u. It will be noted that if u does not belong to I ,

the N, is the empty set, ¢ .

Theorenm [53—5] For all u,v e F

D’ NquNv .

Proof TFor any w e Nuv » we have by definition that uvw e Z . By
postulate (ii) for a system (Section A3.2), the sub-sequence of uvw,
VW, alsc belongs to I. Hence w ¢ Nv’ and thus NUV‘c:Nv'

This result implies that the addition of successive descriptions
of the past behaviour of the system creates an ordered sequence in the
lattice of sub-sets of FD’ ordered by inclusion. We will assume that
this sequence is bounded, and hence that sets of the form Nuv eventually
stabilize so that -

V’t € FD, either Ntuv = NUV , or Nt = ¢ .

This is stated fbrmally in the third system postulate -

(iii) To any descriptor, d € D, there corresponds a family of
sub-sets of FD, dn , possibly including the empty sub-set, & , such
.that -
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s if Nedn , ue F -

(1) there exists v e FD, such that, for all t ¢ FD

such that tvd € Z, N N .

tvd -

(2) there exists N' € dn , such that Nud =~ N,

The firsf part of the postulate only requires that all members of dn
are aétually attained bounds of the sequences created by behaviour
terminating in d - that is, the sub-sets of possible future behaviour
are as small as possible, and none are included which do not occur.
The second part of the postulate ensures that the members of dn are
_sufficient always to bound the effects of prior knowledge about the
behaviour of the system.

This postulate is not inherent in the general concept of a system,
but is a reasonable one, being implied by many other contraints upon
the system. For example, if the system has a finite memory span so
that information about the sufficiently remote past is irrelevant to
its future behaviour, or if it shows only a finite number of possible
behaviours, then postulate (iii) is satisfied. This last condition
is always implied in practice, because only a finite number of observat-
ions may be made before a model is formed. It is interesting to note
that the postulate is not implied by the descriptor set, D, being
finite in number. - The justification for the postulate, in the present
context, is that it is satisfied in all cases of ihterest, for one
reason or another, and that systems which do not satisfy it generate
an infinite variety of behaviour and are,thus, not subject to complete

experimental observation.

A3.3.1 Assignment of States

The concept of the 'state' of a system plays a very important roie
in modern control and general systems theory. It was first formalized
by Poincaré (1885), in the context of dynamical systems and thermodynamics,
in the late nineteenth century. His definiticn was naturally based on
structural considerations, being a set of parameters defining the positions
and momenta of a system of particles, and it is cnly in recent years
. that the purely behavioural connotations of the concept have been studied.

In particular, Zadeh (1964) has analysed the conditions for the assignment
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of values to the state-variables of a system to be consistent with
given behaviour of that system.

Zadeh takes the content of the concept of state to be -
'a number or set of numbers, which collectively contains all the
information about the past of the system that is relevant to the

determination of its future behaviour'

“In a structural context, the definition of the 'state' of an automaton
in Section A3.2.4 clearly satisfies this statement - it is a variable
which, togéther with the sequence of future inputs to the automaton, is
sufficient to determine all future outputs, and all future states, of
the automaton. In a behavioural context, Theorem A3-3 demonstrates
how further information about the past behaviour of a system restricts
its potential future behaviour, and hence must reduce the set of states
in which the system may be after the observed behaviour.

The problem of state-assignment thus consists of giving a set of
possible values, or designators, to a system which contains all the
known information about its future behaviour. Thus, if S is an
abstract set and I is a system defined extensively as a sub-set of the
free semigroup, FD, generated by the descriptor set, D, then a §£§£g
assignment to the system is a mapping from FD to the family of sub-
sets of S, 285 which satisfies certain consistency requirements. These

are set out in the following definition.

A3.3.2 Definition of a Consistent State Assignment

The mapping, y : Fﬁ-——JB-ZS, is a consistent state assignment
if, and only if -

(i) u ¢ I &> uy ¥ 9.

(ii). Yu,v ¢ Fpo (wly < vy .

(iii) VYu,v ¢ Fpo UY o VY # ¢ —> Jt ¢ Fp : ut, vt e I.

The first requirement implies that there is no state of the automaton
which can follow impossible behaviour. The second is less trivial, and
implies that furfher information about past behaviour can only reduce the
possible present states of the automaton. The third requirement implies
that if the same state is possible after two different behaviours then
~-there is at least one possible future behaviour common to both.  This
last requirement is stronger than is strictly necessary - it is sufficient
to require that the state sets assigned to behaviours with differing

future possible behaviours are not identical. However, the only effect
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of weakening the requirement is to allow states to be assigned which

the automaton can never enter, a trivial possibility in the present

context.
Theorem A3-4 In the notation of Section A3.2.4%, the state assignment
to the behaviour of an automaton, M =z (I,S,G, o,n), given by -

uy = Range {(u)) [53.133

- is a consistent state assignment.,

Proof This is trivial, following from Equation [53.11] where )

is defined as a sequence of mappings. Part (i) of the definition

follows because there is no mapping corresponding to up if u does not
belong I. Part (ii) follows because the range of the product to

two maps is included in the range of the last. Part (iii) follows
because any common state in the range of two maps allows a map with this
state in its domain to follow both.

If the state variables are not only to be consistent but also
observable, then it must be possible to assign a single member of S to
a behaviour by examination of sufficient behaviour preceeding it. By
postulate (iii), part (1), of Section A3.3, the sub-sets belonging to
dn , which each correspond to different sets of potential future behaviour,
are each irreducible by further information about the past behaviour of
the system. Hemnce it is reascnable to assign a single member of § to
each distinct sub-set belonging to the union of all the dn . This

observable state assignment is stated formally in the following definition.

A3.3.3 Definition of an Observable State Assignment

Let n' e 2FD be a family of sub-sets of FD which is the uniocn of dnp
for all d -

- (x : 3aq, xean) [(3.14)
- and consider the equivalence relation on p' , that two sub-sets
belonging to n' are guivalent if and only if they are constituted of
identical elements. Let n® be the quotient set of p' by this relation,
i.e. the distinct sub-sets in the union. Let § be a one-to-one mapping

from pn* to an arbitrary, abstract set, S, so that for X-gm, Js ¢ S -

s = X§ @:3.15_\
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s .
Then the mapping, Y : FD —zmm 2 5 defined by
uy = [kqu)S : \/ t e FD such that twu e T , Ntwu = Nw;] E§3'l§]

- is defined to be an observable state assignment.

The defining points, (qu)ﬁ , belong to S, even though the domain
of & is n*, because the second part of the defining equaticn is equivalent
to part (1) of postulate (iii) in Section [}3.3] . Hence, since any u
may be expressed as - u = xd, where x is a sequence and d is a descriptor, .

’ 3
we have that N € n(d) for some d; and thus N e n .
wu wu
This assignment is observable in that, for a behaviour, u, such

that the potential future behaviour cannot be further reduced by knowledge

2,

w
of behaviour preceeding u, Nu € n , and hence - uy = (Nu)é , a single

‘state belonging to S.

Theorem [ES-E] An observable state assignment is consistent.

Proof Using the notation of Definitions, A3.2.2 and A3.3.3, part (i)
of the consistency requirements follows because there is no sub-set in
the domain of § which can follow impossible behaviour, and ‘hence uy

is empty if u e F - £. Part (ii) follows because, if N is irreducible,
wuy

D
it may be regarded as N(Qu)v and hence it is also one of the irreducible

sub-sets for vy . Thus, (quy)a = (N )8 , is a member of both uy

(wu)v
and vy, and hence (uv)y < vy . Part (iii) follows from § being a 1-1
correspondence, for if there is a common state to uy and vy , s =

(qu)G = (Nw‘v)a , then qu = Nw'v
to both qu and Nw'v such that ut and vt both beleng to ZI.

, and hence there exists t belonging

It is interesting to note that an observable state assignment is
not necessarily minimal, because the assignment does not take into
account the inclusion relations between the sets in n*. For example,
given a,b,c e D, it is pcssible that annbn = ¢, an v bn = c¢cn ,
and hence it would be reasonable to assign s

toan, s, to bn , and

both S and s, tocn . This is a consisteni assignmeni which requires
less states than the observable one, since the latter would require a
further state, Sy » to be assigned to cn . However, with the minimal
assignment, it wculd be impossible, given uc such that Nuc D cn

to determine whether the system is in state $1 » Or 5,.
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Having taken, nN#%, effectively as the set of (observable) states,
it remains to be shown that there is a one-to-one correspondence
between partial transformations of these states and the set of
descriptors, D, which extends to an isomorphism between the semigroup,

FD/Q » and the semigroup of partial transformations.

A3.3.4 Partial Transformations Corresponding to Descriptors

éonsider a system defined extensively by its behaviour as a sub-set,
L , of the free semigroup, FD’ generated by the set of descriptors, D.
Let n%® be the family of distinct, irreducible sub-sets of future
possible behaviour; let & be a one-to-one mapping from p¥* to an
arbitrary, abstract set, S; and let the mapping, y : FD .__49-29,
be an observable state-assignment - all as defined in Section A3.3.3.

Suppose that a mapping, Md , from one sub-set of S to another such
sub~set, is to be associated with each descriptor, d ¢ D. Take the

range and domain of Md to be -

Range (Md) = dy [}3.1%]

Domain (Md) = {s:s=X8§ , Xe n¥% de X} [A3.18]7
- so that, the rangerf Md is the set of states vhich may arise after
behaviour terminating in d, and the domain of M, is the set of states

d
which may precede behaviour commencing with d.

The mapping M. may now be defined. Suppose that the state, s ¢ S,

d
belongs to the domain of Md, then, from Eguation [lé] , there exists

X € n¥%, such that d € X and s=X§ . By the definition of p%, it is a
quotient set of n', and hence, from Eguation [1§] , X ¢ an  for some
a € D. Hence, by the definition of n in postulate {iii) part (1)

of Section A3.3, there exists v ¢ FD such that, for all t ¢ HD such that

tva € L, Ntva = X. Consider now the sequence of behaviour, vad.

Since the possible future behaviour following va is irreducible., so is
that following vad, and since d g X = Nva’ vad ¢ I . Hence, Nvad €

vad)d is defined,and s' ¢ S. The state, s', is

to be taken as the image of s under the mapping, Md, and hence it is

n#®*, and thus s' = (N

necessary to prove that s' is unique. Suppose that v'a' is a second

=N . =
tv'a' “via!

, and, for the sake of contradiction,

sequence such that, for all t £ F_ such that tv'a'e %, N

[}

2

X. &s before, we have N ¥

via'a ey
‘will suppose that Nyigrg # N, 4+ Then there must exist a sequence, w,

which belongs to one, but not to the other - suppese, without loss of

generality, that it belongs to Nva Hence, we have - vadw ¥ 0,

q
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v'a'dw = 0, but the first equation implies that dw belongs to Nva'
This, however, is identical to Nv'a” and hence dw & Nv’a" which

implies that v'a'dw # 0. Thus, by contradiction, we have Nv'a’d= Nvad’

- s .
so that (Nv,a,d)ﬁ = (Nvad)ﬁ =z g' is unique.
Thus, the mapping, Md, is defined such that -
s' = sMy 4 £3.19)

~ or, equivalently, such that -
(N,_q08 = (N, )8 M, [23.20)

~ whenever the left hand side of the equation is defined.

The association of Md with d may be written as a mapping, A , such

that -

My = da [a3.23
-~ where the range of A is M < ST. This is identical to Equation
|§3.uﬂ of Section A3.2.4%, and, as noted there, A may be extended to

be a unique homomorphism from FD to FM by setting -

(abc...n)r =M MM ...M =adbl.ck ... (3.2

b

- so that, for any u ¢ PD, we may write -
M, = uA [a3.23

The domain and range of Muﬁmay be determined from the following consider-
ations. Suppose s ¢ Domain (Mu) and s' € Range (Mu), where u=abc...n.
Then s ¢ Domain (Ma), so that, from Equation [2@]3 there exists

va (=w, say), such that s=(Nw)6 . The image of s under Ma is (Nwa)d s

and the image of this under Mb is (Nwab)é , and so on, so that, finally

we have -
b 1 -
s' = (N8 3.24]
Hence, from Equation 16 -
Range (M ) = uy | [3.25

and, since wu ¢ I so that u ¢ Nw € n®, we have -
Domain (M) = B :sX6, X en*, ue X] [3.24]

These twe equations are extended forms of Equations E.'B and ES] , and
the first of them shows that, as required, the assignment of states to
“the sequence u by the range of Mu is an observable, and consistent, state

assignment.

~
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Theorem ﬁ3—6] The mapping y : Fd——-‘psT, defined in Equation @(ﬂ )

is an isomorphism.

Proof y is an isomorphism if, and only if, for u,v e I, uv e FD- T
«—3» Range (Mu)cw Domain (Mv) = & . Suppose uv g FD- £ , but the

range of Mu and the domain of M, are not disjoint, then there exists s
belonging to both. Since s ¢ Range (Mu), we have s=(qu)6 ,» for some

W. Since s ¢ Domain (Mv) , we have s=(X)§, where v ¢ X. Since §

is one-to-one, X=qu, and hence v ¢ qu, so that wuv f,and thus uv ¢ I.
Hence, by contradiction, the result is proved from left to right, Conversely,
suppose that the range and domain of the mappings are disjoint, but uv ¢ I .
Then v e N , and hence by postulate (iii), there exists w such that

veN e n®.  Then s=(qu)6 satisfies the conditons for belonging

both to the range of Mu and to the domain of Mv. Hence, by contradiction,

the result is proved from right to left.

A3.3.5 Transition and Output Equations of Equivalent Automaton

A semigroup of partial transformations having been constructed which
is isomorphic to the semigroup of descriptors defining the system,
transition and output equations may be established for a cybernetically
equivalent automaton. Whilst the equations are similar in form to those
of Equations (3] and [4] , for a system defined by its structure, they
are not idential because the equivalent automaton has a certain type of
indeterminacy in its governing equations. )

If the behaviour of the system consists of input/output pairs
generated by some automaton, then we have the set of descriptors, D,
which is a sub-set of the product set between the set of inputs, I, and
the set of outputs, G =D < I x G. Thus each d ¢ D may be written, as
in Equation [&l , 4d

(i,g), where i ¢ I, and g € G.

With each d e D there is also associated a mapping, Md’ according
to Equation [éi] . Let s belong to the domain of Md’ as defined in
Equation [ia] s and let s' be the image of s under Md, as defined in
Equation {iﬁ] . s' may clearly be considered as the 'next state' of a
machine, cybernetically equivalent to the system, I, whose current state
is s and whose current input is i. However, s' is not necessarily a
unique 'mext state', because the pair (i,s) need not itself be unique to

d and M It is possible that there exists a second output, g* ¥ g, such

4
that (i,g#) = d% ¢ D, and s € Domain (Md*)' Let s* = st*, then, when
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the machine is in the state, s, and receives the input, i, its next

state and output may either be s' and g, respectively, or s* and g¥,
respectively. Hence a transition equation, of the form of Equation Y I
is not necessarily determinate, and o{i,s) is a set of possible states
rather than a single unique state; equally, the output, =(i,s), also
becomes a set of possible outputs.

The next state and output are not independently indeterminate, and
there is a correspondence between the state and output sets, in that s'
and g, or s* and g%, occur together. Hence, once the output is known,
the'next state' is well defined, but the converse does not hold, because
it may happen that s' = s%, in which event the output alone is indeterminate.
Because of this asymmetry, the indeterminacy is best assigned solely to

‘the output by writing the transition equations:-

g € n(i,s) G3.27]
o(i,s,g) , EA3.28]

s!

The generation of an automaton structure which is indeterminate
in that the present state andrinput do not determine the next state and
output uniquely, is reasonable in the present frame of reference. Inputs
and outputs have been ineitricably mixed in descriptors, and there is no
reason why the automaton's behaviour, in some circumstances, should not
be characterized solely by its outputs. The automaton, even though its
behaviour is indeterminate, remains observable, in that its output is
sufficient to determine its state. It is, however, essentially uncontroll-
able, in that, even with unrestricted control over its inputs, it is not
necessarily possible to force the automaton into a particular one of its
potential future states. Accepting this indeterminacy, it is now possiblé
to define formally an observable automaton structure which is cybernetically
equivalent to a system defined by its behaviour, I .

In the notation of the preceeding sections, let s € S, and i ¢ I,

and define the set -
A(iy,s) = {d: Fg € G, s ¢ Domain (Md), d =(i,g)} ES.2Q

A(i,s) may be empty, in which event, the input i never occurs when the

automaton is in state, s. Let

w(i,s) = {g: de A (i,s), d = (i,g) } EB.BB_]

and o(i,s,g) = st » where d =(i.g) o E§3.3§
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Then Equation |30J and |31} define the output and next state functions
of Equations {27) and [28] , for an indeterminate, but observable,
automaton, cybernetically equivalent to the system defined by its
behaviour as a sub-set, X , of the free semigroup, FD’ generated by

the descriptor set, D.

A3.3.6 Problems in the Construction of the Autcmaton

The preceeding section gives the main results of this appendix -
that from the system postulates (i), (ii) (Section A3.2.0) and (iii)
(Section A3.30), it is possible to derive a structure for a system defined
by its behaviour, which is minimum-state, observable, and cybernetically
equivalent to the original system. In psychological terms, it is possible
-to eradicate all intervening variables which cannot be operationally
defined and measured. Hence, it is possible, with full rigour, to re-
state the behavioural definitions of modes of adaption, given in Chapter
2, in terms of the cybernetically equivalent structure. Thus is
particularly important when it is desired to control adaption by varying
the learning environment as discussed in Chapter 3. The system~theoretic
results obtained in this chapter are also relevant, not only to the
problems of the trainer dealing with an adaptive system, but also to the
problems of the system itself in learning to cope with its environment,
for example in the "éual-control" problem (Section 3.4.1).

However, there are difficulties in applying the results of this
appendix to practical situations. At the most mundane level, the
problem of manipulating the semigroup of segquences of descriptofs to
détermine the mapping n (Section A3.3) of descriptors into irreducible
sub-sets is itself computationally demanding, although it may be solved
for simple cases with present computers. More fundamental is the problem
of collecting the information as to which behaviours belong to p (A3.2(ii)).

We have effectively solved a problem of complete induction in this

appendix, andassumed that all possible behaviour is known. There are both
practical and theoretical objections to basing a theory on this assumption.
At a fundamental level there can be no operational procedure for collecting
all possible behavioural sequences of the automaton, firstly if the
automaton is irreversible so that it cannot be taken back to earlier
states, and secondly if the maximum number of possible states is unknown
~so that it cannot be determined whether all possible behaviour has been

elicited.
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These difficulties are increased in practical situations where
the time available for observation will be limited as are the
possibilities for manipulating the behaviour. Both theoretical and
practical obstacles generate the need for an incremental approach to
determination of approximate structures.

In reality data about a system is gathered incrementally, item
by item, and it is gensrally necessary to specify a structure for the
‘system before its behaviour is completely known. If a minimum-state,
observable .automaton is constructéd, which is cybernetically equivalent
to some sub-set of a systems behaviour, then the question arises as to
how this structure will change whern new behaviour is observed. Altermatively,
since new behaviour is expected to be observed, it is reasonable to add
some examples of what may be observed to those which have already been
observed, and base the automaton construction on this, particularly if
this greatly simplifies the structure. In this event, it is necessary
to know the effect on the structure of deciding that some behaviour is
definitely now shown by the system. ¢

The problems of incremental identification and approximation of an

automaton structure may be stated formally -

given two systems defined as extensively as sub-sets, I, L',
respectively, of the free semigroup, FD’ generated by the set of
descriptors, D, and thch satisfy system postulates, (i), (iji) and
(iii), what is the relationship between the minimum state, observable
automata, cybernetically equivalent to systems generating I and ¢ ',

induced by the inclusion relation, f < z'.

If I and ' are identical apart from a few sequences then we would
expect the structure determined for one to be a good épproximation for
the other. This may be formalized by considering any structure whose
.behaviour lies between £ and I' as a tolerable approximation, and

posing the question -

what is the minimal-state, observable automaton whose behaviour is

a subset, zac;FD, such that -~
t
ICIi, C: [a3.57]
the problem of approximation is ¢l early closely related to that of

incremental identification, and solutions to neither problem are availeable

-at present. The most relevant work is that on the simplication, and
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representation, of non-parametric data structures, such as those obtained
in information retrieval systems, using graph-theoretical techniques
(Salton and Sussenguth 1964, Meetham 1963, Vaswani 1965, Meetham 1966).

The state transitions of an automaton, and the sequences of behavioural
descriptors, form directed graphs (Ore 1962, Berge 1962, Flament 1963,
Harary 1965), and techniques developed for the matching and simplificaticn
of graphs may be applied to the approximation of automata. Unfortunately,
the theories of automata, semigroups, and graphs, are in comparable

stages of early development, and no one is able to make a major contribution
to another - it is in their synthesis that future advances in system theory

may be expected.

‘3.4 Semigroups of States

havt LCEM
In this appendix the input/output pairs of an automatoq)analysed as

a semigroup. It is possible also to consider the sequences of states
through which an automaton passes as a semigroup, and this enables a more
powerful approach to be made to the problems of adaption and training than
is possible with the purely set-theoretic definitions given in Sections
2.4.2 and 3.4.3.

Let (I,S5,G, §¢) be an automaton, defined as in Section A3.2.3,
except that it may be indeterminate, so that g and y are mappings into
2S, rather than S itéelf, and the behaviour of the machine is determined

by the equations:-
s' ¢ o(i,s) . [83.33
g' e n(i,s) [_[_\3,35

Starting in a given state, for any particular input control policy -

that is, for any procedure for selecting the inputs which may inveclve
feedback and be dependent on past inputs, outputs and states,the automaton
will pass through a sequence of states. This sequence will not
necessarily be the same if the automaton is started in the same state
again, and it is possible to conceive of an ensemble of identical
automata being started in the same state to generate all possible state-
sequences commencing with that state. If this is done for all possible .
states, then a set of state-sequences is obtained which, if the states
are taken as descriptors, satisfies system postulates (i) and (ii) of
”Section A3.2.0, Hence, by Theorem A3-1, of all states sequences from
the free semigroup of state sequences, FS; which do not occur, are mapped

into the zero element, 0, then the resultant structure is a semigroup.
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3.4.1 Analyéis of State-Semigroups in Terms of Ideals

The ideals of a semigroup (Appendix 2), sets which are invariant,
or contract, under concatenation with any other element in the semigroup,
are fundamental to the characterization of the semigroup structure. In
the context of the state-semigroups of an automaton, the right ideals,
in particular, characterize restrictions on the future behaviour of the
automaton, and the stability, and some features of the controllability,
of the automaton may most conveniently be expressed in terms of ideals.

Let I# be a sub-semigroup of the free semigroup Fg generated by
the set of states, S (Section 3.4). Let B be a transformation from
the set of sub-sets of I%* into itself, such that:

ifU e 2 E=’=, UB = E.l P usvw, v e U, w g I¥ Es.a?j]

UB 1is the set of sequences which commence with a sequence from U, and
may be written as the concatenation of the sets U and §* UB = (U)( 1%#).
It is clearly a right ideal of I# because (r%) (I*)c I* so that ((U)
(z#))(z*)c (U)(I¥*), and may be called the right ideal generated by U;

. .- . . L ®
B may clearly be restricted as a mapping from either I# or S into 2 R

and the same symbol will be used for the three mappings.

An ideal is called O-minimal (Clifford and Preston 1961 p.66) if
it contains elements other than zerc, and the only ideal properly
contained in it is the zero element. Hence, if W is a O-minimal ideal,
then either M2 =M or M2 = 0 - in terms of state semigroups, the elements
of M are either recurrent or terminal sequences. An ideal of ¥ is
characterized by O-minimal ideals contained in it, and the union of the
O-minimal ideals contained in an ideal, M, will be dencted M . Tor
consideration of stability, a state-semigroup may be taken tc have no
terminal states (those which cannot be followed by any other state,
including themselves), and hence (M a)(Ma ) = Ma . Thus, the set of
sequences present in the O-minimal ideals is invariant, and any sequence

of states contained in them may recur.

A3.4.2 Stability and Adaption

The concept of 'stability', in its conventional application to the
behaviour cf dynamical systems, involves an existent topology on the
inputs and outputs of the system - a system is stable if a 'small'
disturbance at the input produces a 'small' disturbance at the input;

even in recent attempts to extend the notion of stability to more general
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systems, some form of inbuilt topology remains (Magiros 1966, Bushaw 1967).
However, the inference from topocliogy to stability, found in formal
definitions, is the opposite to that actually used in discovering the
properties of real systems and modelling their behaviour. If, under

one set of conditions, the system behaviour has certain properties, and,
after a transient change in these conditions, the property is retained
then this change is a 'small' perturbation - that is, we discover the
topology- of the input by observing its effects on the output.

Hence, any topology upon the input of a system is useful only in so
far as it feflects the effect of the input upon relevant properties of
the system behaviour. For example, the Euclidean distance between two
acoustic waveforms, regards as points in a space, is almost irrelevant
to their properfies as speech-points close together sound alike, but
‘pointssounding alike may lie far apart; the situation is worse for the
sensation of pitch, since points close together may sound very different.
Thus, the important problem in system stability is not the stability
itself, and indeed every system is stable in some topology, but the
relationship between extrinsic topologies applied to the system, and
intrinsic ones derived from the system behaviour itself. In extending
the notion of stability to general systems, it is this concept of intrinsic
stability and the calculus associated with it that requires abstracticn
and extension, and the state-semigroups with their associated O-minimal
ideal structure provide the means to do this.

When considering the stability of linear systems, there is generally
some preferred input, the zero input, which is normally present and about
which perturbations occur. For the more general automata, as defined
in Section A3.2.3, the 'steady-state', or preferred, input is arbitrary
and may be taken to be any possible input, i ¢ I say. Let the structural
state-semigroup of the automaton, generated by the input sequences

consisting of i repeated be I,. For any initial state, s the right ideal

generated by So is defined asisos » and consists of the sequences of

states starting with S, which may occur when the input is i". The set

of sequences sosa is also defined, and states occurring in these sequences
form the 'confluence sets' used by Ashby (1960 Ch.1l4) in his distussion

of habituation, é stability phenomenom. In a stable linear control

system with no noise injection, 506a may be a sequence consisting of the
'zero' point in the phase space repeated indefinitely, and will be
~independent of 543 whereas ia nonlinedr control of a linear system it

will be the sequence of points on a limit cycle, and may be a function of

S .
.0
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Suppose now that some transient disturbing sequence, u, is

injected into the system in place of some segment of the input, i,

The state after this input will belong to the setcr(u,soe ), where

the next-state function has been extended to input sequences and state
sets in a natural way. It is possible that this set does not coincide
with soB, since the disturbance may give rise to passage through new
transient states, and the question of interest is whether the sets, s, Ba
and (c(u;soB))Ba, coincide. If they do coincide, then the disturbance
has had no effect on the ultimate state sequence and may be said to be
'small' - if the sets do not coincide, then their symmetric difference,
D, = s, Ba \ ( a(u,SOB))Ba - s Ba o (o (u,sos ))Ba, is an indication
of the 'size' of the disturbance, u. Certainly if Duc D, then the
effect of u is less than that of v - however, if nc inclusion relationship
>holds, then a measure over the set of states enables a completely
quantitative assignment of 'size' to a disturbance to be made.

This calculus of stability is completely intrinsic to the automaton
and does not require any imposed topologies if the partial order over
disturbances is accepted as an adequate description of their relative
effects. One form of extrinsic criterion may be to regquire that the
state of the automaton is ultimately within some set, R« S. This will
be so if soBa<: FR, and the disturbance, u, will be 'small'’ in its
effect if (c(u,soB))Batz PR. In the definitions of ‘'adaption sets' given
in Section 2.4.2, if R is taken to be W(t), then A(t) is the set of states
of the form, So’ such that the system is extrinsically stable, for an
input i=t, and no disturbances. C(T) is the set of states in which the
system is intrinsically stable for each t ¢ T, with respect to a
transient disturbance of the form u eFT.

Thus the calculus of adaption developed in Section 2.4 is no more
than an application of a generalized theory of stability to the adaption
automata derived from the learning behaviour. Unfortunately, nonlinear
stability theory itself has not yet progressed to the point where it
may serve as the foundation of learning systems thecry. However, the
results on training obtained in Chapter 23, particularly Section 3.3,
demonstrate the value of a "stabilization" approach to training, and the
potential for future extensions of nonlinear stability theory and its ‘

applications.



APPENDIX 4: THE HUMAN CONTROLLER

A4.1 Introduction

In this appendix studies of the human controller are reviewed
which are relevant to the experiments on the learning of a tracking
skill, described in Chapters 4 and 5; related material on human

‘béhéVioﬁf; studies of training, and particularly so-called 'adaptive'
training is also incorporated in this appendix.

The long-lag type of tracking task used in the experiments of
Chapters 4 and 5 is similar in its dynamics to the longitudinal motion
of an aircraft, and linear models of the human control strategy with
plant of these dynamics have been extensively investigated in the
aircraft industry. Although the results do not give much insight into
the actual human behaviour, they provide some useful approximations on
which to base the designs of Chapters 4 and 5, and are critically
reviewed in the following section.

A4.2 Foundations of Linear Modelling

In mathematical terms, a linear transformation is a mapping between
vector spaces which obeys the superposition principle, in that the trans-
form of the sum of two vectors is the sum of the transforms of each of
the two individual vectors (Mirsky 1955). Functions of time over an
interval form a vector space which is infinite-dimensional, and the
operations of addition, scaling, integration, differentiation and time-~
delay may be shown to be linear operations (Riesz and Nagy 1855). A
linear dynamical system is one whose action may be represented in terms
of these operations alone (Birkoff 1927), and these systems have been
extensively studied in linear systems theory. In particular, linear
functionals from the space of linear functions to a complex algebraic
variable have been developed, such as the Laplace transform, which
enable linear operators on time-functions to be manipulated in an
algebraic manner with full mathematical rigour.

Because linear system theory is so well-developed and contains
such a powerful body of techniques for studying system behaviour, when
a noniinear system is to be analysed it is convenient to attempt to

.approximate its behaviour by that of some linear system. If the linear



223

approximation is good, in some sense, then much of the behaviour of
the nonlinear system may be predicted from a linear model whose
behaviour is readily determined.  In control engineering., techniques
have been developed for the analysis of the stability of nonlinear
systems using a linear approximation, or 'describing function' (Gibson
1963). The first techniques developed were based on an analysis of
the behaviour of the nonlinear system when excited by simple harmonic
‘waveforms at various frequencies. Booton (1353) extended these
resulfs to’'systems excited by noise=like signals, and it is his
technique which has been used to derive linear approximations to human
control policies.

A detailed mathematical analysis of the describing function
technique is not relevant to the present studies, but certain assumptions
made, and their applicability to the human controller, are important in
evaluating the utility and implications of linear models of the human
operator, and these assumptions will be outlined here. The configuration
envisaged for linear modelling is shown in Figure A4-1: a nonlinear
system, N, drives a linear system, G, the output of which, c(t), is
subtracted from the input signal, r(t), and fed to the nonlinear system
as an error signal, e(t); the output of the nonlinear element, m(t),
is assumed to be made up of two components, one of which is correlated
with the up of two céﬁponents, one of which is correlated with the

error, and the other of which, n(t), is independent of it.

ANIES ¢ o(t) o
2(+)_on o) | = SR> 3
X output

input N

Figure A4-1 Linear Analysis of Nonlinear Feedback System

Booton's analysis depends on the assumption that the signals in the
system, particularly e(t), are Gaussian processes. Even if e(t) is
Gaussian, m(t), the output of the nonlinear element, will not be, and
hence neither will c(t). However, if the linear element G is narrow
band with respect to the input spectrum, by the central limit theorem
its output will more closely approximate a Gaussian process (Gibson 1863
p.387), and hence, if r(t) is Gaussian, then so will be e(t). Thus,

the use of describing function technigues to model a nenlinear system is
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dependent on the assumptions that the input is Gaussian, and that
the nonlinear element is followed by a filter which is narrow-band
with respect to the input spectrum.

There are alternative views of the describing function technique
which throw some light on the meaning of the assumptions made. The
overall linear model is an approximation to the transfer function between
the inpuf, r(t), and the output c(t). This will be good to the extent
that € is a narrow-band filter which eliminates frequencies, n(t),
which are not present in the input. Since G is known, K, the linear
model of the nonlinear element is effectively available from the closed-
loop response. However, the relationship between e(t) and m(t),
predicted from a knowledge of K, will only account for that part of m(t)
which is not filtered out by G. Hence, to the extent that G is narrow-
band and enables the describing function technique to be used, it also
restricts the model of N to account for only a small part of the
behaviour of the nonlinear element.

A further effect on the type of linear model obtained for N 1is
dependent on the amplitude of e(t) compared with that of r(t) (more

trictly on the ratio of rms amplitudes). Since n(t) and r(t) are
uncorrelated random processes, any part of n(t) which passes through

G and is fed back to form e(t) increases the error, on average. Hence,
for the controller to perform well and maintain a small error between
overall input and output, it is necessary for the nonlinearly generated
part of its output which passes through G to be small. In the context
of the human controller, this implies that a good linear model may be
obtained for the overall lcop behaviour of an operator controlling a
linear system; the model will not account for any components cf the
operator's output which have little effect on the system.

The linear approximation to a nonlinear system varies with system
variables, such as the mean amplitude oftheinput - for example, a relay
switching function whose output is the sign of its input has a constant
rms output, and hence its 'equivalent gain' is inversely proportional
to the rms input amplitude. Similar dependencies on e{t), and hence on ‘
both r(t) and G, occur for any form of nonlinear element, N, and the
measured describing function will be found to be a funection of the input
and controlled element. Thus N will appear to be 'adaptive' to the

‘input and controlled element, but this 'adaption' is completely open-
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loop and unrelated to any effort by N to improve its performance -
the ‘adaption' is an artifact resulting from the linear modelling,
rather than adaptive behaviour on the part of N.

To conclude this critical examination of the describing function
technique, it is worth quoting Gibson's remark (Gibson 1963 p.388) that,
'‘under a wide set of circumstances the use of the Gaussian describing
function to compute clgsed-loop response ié invalid'. Although the
technique is based on a mathematical analysis which looks Lboth impressive
and plausible, in practice its derivation is based on highly restrictive
assumptions, and, even when these apply, the medning of the results
obtained is not clear. Although this critique has been largely
destructive, it is essential to consider linear modelling in some
depth because it is the most obvious, and most readily applied, tkchnique
for analysing human control policies. Equally, aﬁy other approach to
modelling must be able to withstand similar criticism, and the defects
of linear modelling can be most readily overcome if they are throughly

analysed.

A4.2.1 Results of Linear Model Studies of the Human Controller

The earliest study of the human operator as a linear servomechanism
is that of Tustin (1547) who proposed that, despite amplitude nonlinear-
ities, temporal discontinuities and haphazard fluctuations, there might
be an ‘'approximate linear law' that would describe the main part of the
operator's behaviour. Since that time, there have been many sfudies,
including those of Russell (1951), Krendel (1951,1852), Elkind (1956),
and McRuer and Krendel (1959). The early studies have been reviewed
by Licklider (1960) and more recent reviews have been given by Summers
and Ziedman (1964), Young and Stark (1965), and McRuer et al (19865).
Hall (1963) has published a concise study covering the main aspects of
linear models of the human cperator in a flying situation, and this is
summarized here for reference in Chapters 4 and 5.

All the studies of linear models referenced have taken control
situations in which it is reasonable to expect the human operator. to
act linearly: the error, e(t), has been displayed on an analogue,
positional display, such as an oscilloscope or pointer-meter; the
_operator's output m(t) has been applied to an analogue positional

control, such as a joy-stick. In most cases only the error, e(t),
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has been displayed to the operator (compensatory tracking), but

in a few studies, Elkind's in particular, r(t) and c(t) have been
displayed on the same scale (pursuit tracking). Hall studied
compensatory tracking with G, the controlled element, having a form
corresponding to the short-period motion in the longitudinal dynamics

.bebéircfaft - its transfer~functicn was of the form:

L(1 + 0.8s) A4.1
Gis) = ; .
s(1 + 2K s + é2 32)
w W‘n

where L is the gain of the controlled element, W is its undamped natural
period in radians/second;.and k is the damping ratio; in Hall's
experiments, 0< k< 1 and Of.wﬁ < 7. The input, r(t), was a Gaussian
random signal passed through a low-pass filter of the form l/(l+s)3.
Hall's operators were highly skilled pilots, used to controlling
elements with dynamics of this form.

Hall's main results are illustrated in Figure A4-2 by plots of
various variables in a plane with damping ratio, k, as abscissa, and
undamped natural frequency, Fn = Wh/ZK, as ordinate. He considered
the operator to be adting linearly if the rms level of the 'remnant'
terms, n(t), was less than five per cent of the rms operator output,
m(t). From Au4-2(i), it may be seen that the operator acted linearly,
by this criterion, for the higher values of natural frequency and -
dampiﬁg ratio. Figure Au4-2(ii) shows contours delimiting regions of
similar tracking performance in terms of mean error - .this plot gives
some indication of the variation in 'difficulty' of the tracking task
with variation of Fn and k, and is important to the design of the
adaptive trainer described in Chapter 4.

Hall found radical changes in the form of linear model associated
with different controlled elements, and the regions associated with
different models are delimited in Figure A4-2(iii); . the forms of model
are given in Table A4-1. The term e*'2s, occurring in all four models,
is a pure time delay of 200 msec similar in magnitude to a simple
visual/motor reaction-time. The terms in s in the numerators of the

transfer~functions
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Figure A4-2 Results of Experiments on Linear Modelling
(Hall 1963)
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Region - Form of Model - K(s) (Ball 1953)
A - 0‘16(l+0-67s)e-0.28/(l+0-23)
B - 0e25 ¢ 0%
C - 0'5(l+0‘77s)e—o.23/(l+2°53)
D - 0‘0625(l+28)2e-0.£5/(l+0'58)2

stick output (inches)

where K(s)™~
error signal (degrees)

Table Ai-1 Various forms of Model for Human Controller

correspond to a phase~lead, or dependence upon the input velocity,

and similar terms in the denominator correspond to a phase-lag, or
smoothing of the efror signal. Region A is one of high damping

and medium-speed response, and the model has a predominant lead term
showing that the operator is using the velocity of the error to predict
ahead. Region C is one of low damping and fast response, where the
higher frequency components of the input are very apparent, and the
model has a dominant lag term showing that the operator is filtering
out, or fe3ponding less, to these components. In Region B, between
these two, the model suggests that the operator, apart from his reaction-
tim delay, is acting as a pure gain element. In region D, where the
system is show and underdamped, second-order terms in s appear in the
numerator, showing that the operator is now making use of information
about the acceleration of the error.

Hall asked the éxperienced pilots who acted as experimental
subjects to rate the controlled element for its 'handling qualities'
as if it were an aircraft, and the consensus of these ratings is
shown in Figure A4-2(iv). It is from comparison of plots (iv) and (i)
that the main justification for the utility of linear models of the
human operator in the aircraft industry is derived - Hall states it
thus

'If the pilot's opinion is 'good' the pilot is acting linearly.
«e.. if a system is studied which has to be altered so that the pilot
opinion will be high, the better the configuration becomes in terms of

handling qualities the more accurate a linear analysis will be'.

This is a very fair, and a virtually complete, assessment of the
utility of linear models of the human controller, emphasizing the
“restricted, but useful, conditions under which they apply.

One final question which Hall considered was to suppose that the

operator was acting linearly and determine the 'source' of the remnant
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term, n(t). Records of the pilot response, m(t), for configurations
in region D of Figure A4-2(iii) showed that there was superimposed on
the output predicted by the linear model a 'rather frantic switching'’
mode, with the pilot alternating 'somewhat arbitrarily between the

two hard over stock' positions. Hall reports that the switching did
not occur regularly and was not correlated with error zero crossings -
he matches the remnant component in spectral density with a random
telegraph waveform having a mean time between switching of 3.5 seconds.
Diamantideé (1958) has reported a similar effect under the same
conditions, and ascribes it to pilots attempting to obtain 'informative
feedback' about the controlled element dynamics by injecting a signal
into the loop. He also reports that the injected signal is more
apparent with less skilled pilots, and, in one operator at least, the

signal disappeared with learning as an 'exponential function of time'.

A4.2.2 Utility of Linear Models in Human Operator Studies

Because of the strong theoretical constraints upon the circum-
stances under which the describing function is meaningful, several
workers have studied the validity of the necessary assumptions in
experiments with the human operator, and the extent to which overall
behaviour, such as stability, may be predicted from the measured linear
models. Elkind & Darley (1963) measured the deviations. from a .
Gaussian distribution of the operator's output, m(t), the remmant, n(t),
and the error signal, e(t), for a controlled element, G, which was a
pure gain, with an input r(t) which was band-limited Gaussian noise.

He reports that the output 'obtained with all inputs and the error

and remnant signals obtained with medium bandwidth inputs appear to be
approximately normally distributed'. Hall (1957), in a similar
experiment but with a controlled element of the form given in Equation
A4.1, found that the amplitude distribution of the error signal was
approximately normal, but the distribution of the operator's output
appeared rectangular and even bimcdal when the bandwidth and damping
of the controlled element were low.

Jex, Cromwell and Siskind (1960) and Smith (1963) have compared
the stability boundary for the human operator, computed from describing

function measurements, with the actual boundary found by experiment.



They used the results obtained by Krendel and McRuer (18€0) to
predict the stability of the controlled system for second-order
unstable dynamics (negative damping ratio), and find it necessary
to introduce an input-predictive mode of operation to account for
the experimental results. Skolnick (1966) has used measured data
on the human operator describing function to determine 'capability
bounds' on the human controller, and has proposed techniques for
'6pfimiZiﬁg the performance of a control system containing a human
operafor using these bounds.

Various workers have studied the effect of verbal instructions
to an operator on the parameters of a corresponding linear model, and
these effects are summarized by McRuer and Krendel (1957) in what is
still the most comprehensive and detailed diséussion of linear
modelling and its relevance to human operator studies. McRuer and
Krendel used two sets of instructions, one of which emphasizéd 'speed!
in reducing the effect of disturbance, and the other of which emphasized
'accuracy' in nulling the disturbance. For one operator they found
no change in the measured describing function under the two conditioms,
whereas for another they found a distinct change corresponding to:
higher dc gain and shorter smoothing time-constant when the emphasis
was on 'speed'; lower dc gain and smoothing time-constant triple what
it was for 'speed' when emphasis was on accuracy. Russell (1851)
measured the change in linear models parameters after the operator
had drunk a substantial quantity of alcohol, and reported lower dc gain
and greatly reduced capability to introduce lead, that is, to estimate
error-velocity.

Sheridan (1960) has used a technique for measuring the describing-
function on-line to follow changes in the model parameters when those
of the controlled element undergo a step variation. He reports that,
'the experienced operator adapts almost instantanedusly if the parameters
of controlled process or the type of display suddendly change'. This
is in accord with the more recent studies of Young et al (19564) who
investigated the time taken for the operator to adapt to changes in the
gain of the controlled element, and sense of the error, in a simple
compensatory tracking task. They report that, 'adaption generally
occurs in O-4 - 0-8 sec following a controlled element change, and the
resulting error is usually reduced to its asymptotic level in 1-3 sec

bfollowing transition.  Krendel and McRuer (13960) have outlined a
developmental approach to the learning of a tracking skill in terms of

the parameters of the describing function at various stages. Fuchs
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(1962) has put forward a 'progression-regression' hypothesis suggesting
that in learning the parameters of the higher time derivatives of the
error will be gradually given more weight, whilst under stress their
relative weights will be reduced. DeLessio and Palin (1961) put
forward a program to identify the time-variation of the parameters of
an operator's describing function, and hence form 'an adaptive model
for the human operator', but this program has not been carried out.
Briggs (1964) has defended the linear describing function as a

powerful méthodology for human operator studies, but claims that there
has been too much effort expended on the development of the technique,
and too little on 'the descriptive quantification of behaviour and
analytic tests of hypotheses about behaviour'; he fears that the same
mistake will be made in future developments of nonlinear models. This
is an important criticism which bears equally on the development of
models of human adaptive behaviour, and in the following section some
details of the relationship between actual behaviour and its equivalent

linear model are examined.

A4,2.3 Nature of the Linear Approximation and Constraints Upon It

In the studies of the feedback trainer, described in Chapters 4
and 5, it has been ndtural te use controlled elements whose parameters
vary progressively, but rapidly, over a range of values, and hence to
obtain records of the behaviour of the same operator under different
conditions within a short span of time. These records serve to
illustrate some of the characteristics of the describing function
discussed in Section A4.2. Figure A4-3 shows the input, r(t) = sin
(nt/5), a sine-wave of 10 seconds period, and the operator's cutput,
for a tracking task with continucus manual input and continuous visual

display of error, and controlled element dynamics of the form:

G(s) = L/s(s+l/T)2 @42]
that is a second-order lag of time-constant, T, followed by a pure
.integration; this is similar to Hall's dynamics, Equation A4.1l, with
k=1 and wn=l/T (Fn=l/2ﬂT).

In the upper part of the figure, which shows the response for a
short time lag (T=0-:25 sec), the operator's response has an overall
shape which is similar to that of the sine-wave input but lagging it

in phase. This response is clearly made up of a number of discrete
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Figure A4-3 Sine-Wave Tracking Through Cascaded Lags
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movements, however, and is not the continuous sinusoid response

which would be obtained from a linear servo in the same situation.

If the Fourier transform of this response, however, it will clearly
be found to have a very high percentage of its energy inuthe expected
sinusoid, and very little in the 'perturbation' due to the discrete
movements. The converse is true of the response at high lags (T=0-7
sec), shown in the lower part of Figure A4-3. The operator is now
responding so rapidly with such large amplitude movements that his
output appéars closer to a pulse-width modulated signal than a sinusoid.
A Fourier transform would still show a phase-lagging signal at the
input frequency, but this is now lower in amplitude and accounts for
a minority of the energy in the response.

A correlational analysis of the control behaviour partially shown
in Figure A4-3 would result in a good linear fit to the controller at
short lags and a bad fit (high remnant) at long lags. More importantly,
the model would differ greatly for the two situations, and yet it is
plausible, both from an examination of the records and from the fact
that they were taken within a few seconds of one another from the same
operator, that the operator has not changed his control strategy in
the least. This is the gravest defect of the describing function -
that the linear model of an operator may vary widely as function of his
environment without hsi control strategy changing at all.

The intermittency and discreteness of the human operator's
response is not a newly discovered phenomenom - Telford (1931) reported
a 'refractory phase' in the motor responses to two stimuli presented
within an interval of about 0:5 seconds of one another, and Craik{(1su7)
described the type of response in a tracking task, shown in Figure Au4-3,
as 'intermittent corrections' consisting of 'ballistic movements'.
However, whilst many workers have followed up Telford's discoveries
of a central refractory period in simple discrete stimulus/response
situations, lack of development of bcth the theoretical and technological
tools has made it impossible to go further with Craik's analysis until
recently. Even now only a few steps forward have been taken, and no
comprehensive and complete structure, equivalent to the descriling
function, is available for nonlinear studies of the human operator. In
the following section, work on nonlinear models of the human operator
is reviewed for its relevance to improved models of human adaptive

behaviour.
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A4.3 Nonlinear Mcdels of the Human Controller

The evidence for a fundamental discrete-time, discrete-action
basis for human perceptual-motor skilled behaviour has been presented
in general reviews by Summers and Ziedman £1964), Young and Stark (196%5),
and Poulton (1966), and alsc in theses propcsing sampled-data models
of the human controller (Bekey 1962, Lange 1965). Definitive evidence
has been gathered of discrete-action and discrete-time phenomena in
peripheral behaviour such as hand and eye movements, and theoretical
models of these have been explored in depth. Less firm evidence has
been adduced for discrete-time phenomena in perception and decision-
making, but no models have yet been proposed which can account for all
the experimental data. In the following section work on discrete
behaviour in sub-structures of the human controller is reviewed, whilst
further sections outline sampled-data and 'bang-bang' models of overall

tracking behaviour.

Au4.3.1 Discrete Phenomena in Human Peripheral Dynamics

In moving his hand from one position to another, or in rotating
his eye from one fixation to another, the human operator has to vary
the location of a mass using the force exerted by his muscles which
is limited in its magimum value. Dynamically,.the hand or eye is
virtually a pure mass, with low dissipation of energy through
friction, and low storage of potential energy through spring-like
behaviour. A simple servomechanism, in controlling the location of
an object, applied a force to it proportional to the deviation of the
location from the desired one, in such a direction as to reduce the
deviation. Bushaw (1953) showed that the control policy of the linear
servomechanism was not time-optimal, in that it did not reduce the
error in location to zero as rapidly as possible, and he showed that
a 'bang-bang' controller, applying maximum available force in cne
direction for half the time and then applying it in the other, gave
improved performance. From 1953 onwards, a number of workers proved,
with increasing generality, that the minimum-time control of a linear
system was achieved by a controller which applied either maximum or
zero force (Fuller 1960). This result has been extended to the
optimization of performance criteria other than settling time, such
as error-functionals (Fuller 1860%).

In 1962, Smith (1962) and Wilde and Wescott (1962) published
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papers giving experimental evidence that the human operator used
bang-bang control in moving his hand and arm, and at the same time
van der Gon, Thuring and Strackee (1962) described a ‘handwriting
simulator' which accurately reproduced the movements of the hand in
writing using bang-bang controllers in two dimensions. In a later
paper, van der Gon and Thuring (1965) reported that the controllers
worked at a fixed force within a movement pattern, rather than at
constant maximum force. They state that, 'to write the same word
involves the use of the same timing and that the instruction of change
of size is interpreted as change of force'; since the size of the
writing varies as the square of the force, small changes in force are
adequate to produce large changes in size. Equally, the human
operator does have anultimate limit in the force applicable, and
loading the hand or arm with more inertia reduces the speed of move-
ment (Smith 1962). The minimum time of application of the force for
an unloaded limb was found by all workers to be about 90msec, which
tallies with the response-time of the muscle servo (Hammond, Merton
and Sutton 1956) and the rate at which nervious pulses are sent to
the muscle (Lippold, Redfearn and Vuco 1857). A similar discrete-
action servomechanism has been discovered in the control of eye-
movements (Stark, Voésius and Young 1962, Young and Stark 1963),

with independent control of positional saccades and velocity pursuit
motion, again with forces applied for about 90 msec in turn.

Apart from the clearly defined discrete phenoména in human limb
and eye movements, there is considerable circumstantial evidence for
discrete phenomena, 'data-sampling' or a 'psychological movement' in
perception itself. Experiments on the 'psychological refractory
period' (Welford 1952), on choice reaction times (Hick 1952), on
temporal numerosity (White 1963), on periodicities in simple reaction
times (Stroud 1954, Augenstine 1954, Venables 1960), on backward
masking of one stimulus by a succeeding one (Kolef331962), and on the
reaction time to the cessation of a repetetive stimulus (Callaway and
Alexander 1962), all suggest that visual perception is not a continuous
process. Various aﬁthors have suggested, on the basis of such data,
that the brain works in terms of a moment of time, in duration about
90 msec, within which events are confused in their temporal relation-
ships. As Kolers (1968) and Allport (1968) have pointed out, however,
no simple model of such discreteness in time can account for more than

a minority of the known phenomena, although it is clear that some form
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of discontinuity is present. Some workers (Wiener 1948, Lindsley
1952, Surwillo 1963) have attempted to link the hypothesized
periodicity in perception of 90 msec with the similar periodicity
in the alpha rhythm of the brain, and indeed Surwillo has described
definite experimental evidence of a strong correlation between alpha
period and simple reaction time over a pcpulation. However, no

incontrovertible evidence of such a link has been obtained.

A4.3.2 Sampled-Data Models for Human Tracking Behaviour

The evidence of temporal discontinuities in human perception and
movement, together with the observed nonlinearities in human tracking
behaviour (Craik 1947, Hick 1948, Poulton 1962) when perception and
movement are coupled closely together, has lead to a number of proposals
for data-sampling models of the human controller in which the display
is sensed intermittently and a motor-pattern released according to
what is observed. In control engineering (Kalman and Bertram 1358,
Jury 1958) such sampled-data control systems became of practical
importance with the use of digital computers in control loops, and for
the case where the sampling frequency is constant a theory of linear
- —sampled -data systems ‘has been developed based on the z-transform, which

is similar in pwoer to the theory of continuous linear systems based
on the Laplace transform. Because such a theory exists, it has been
customary to base recent human operator models on sampled-~data systems
with constant sampling-frequency, although fhis does not fit the
experimental data (Lange 1965), and attempts have been made to develcp
techniques to deal with more complex sampling criteria (Bekey 1962).

The earliest sampled-data model was that of North (1952} who took
Tustin's model of the human operator and replaced the differential -
equations by difference equations. North matched the behaviour of

his model against that of the human operator in terms of power spectra
only, and the first study in which the behaviour was matched in the

time domain was that of Ward (1958). More recently Bekey (1962),

Lange (1965) and Kreifeldt(1965) have proposed sampled-data models for
human tracking behaviour, and éekey(1965) has reviewed some of this
~work. Lange's work was a continuation of the work of Wilde and Lemay
(Wilde and Wescott 1963; Lemay and Weséott 1962), and has the most
detailed experimental backing; the main points of his model and results

are outlined in the following paragraph.
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Lange considered compensatory tracking through a simple gain,
with continuous manual control and visual display, of zero-mean
Gaussian noise with a cut-off frequency of 3°8 radians/seconds, and
used highly trained operators as subjects. In his model, the
operator samples both position and velocity of error instantaneously,
regularly at about 150 msec intervals, and attempts to reduce both to

zero by a ‘'bang-bang' output to actuate his hand. The qualitativev
7hé£ure.of-the output of the model is a far better match to the operator's
outpuf than that of a linear model. Quantitatively, correlations of
between 0°8 and 0°9 were obtained between model errors and operator
errors, corresponding to cross correlations between their outputs of
between 0-98 and 0:99. The match in the time-domain could have been
improved by taking a varying sampling interval, and Lange suggests an

extended model with random variation of the sampling frequency.

A4.3.3 Bang-Bang Models of Human Controller for High-Order Systems

Data~sampling models of the human control provide a good represent-
ation when the controlled element is a pure gain and the operator is
effectively required to match a difficult waveform. 1In this situation,
the movement of the hand to match the waveform, and the movement of
the eye to track it, .are clearly the main variables, and the trécking
models are closely related to those of the hand and eye alone. The
situation is also a very natural one, to which hand and éye co-ordination
should have become well-suited during the course of evolution, and it
is not surprising that the movement time of the eye, the reaction time
delay between visual stimulus and motor response, and the movement time
of the hand, are all similar in magnitude at about 180 msec - it would
be no advantage to the system to have cne very much less than the others.
Hence, a 'sampling interval' of the same order is a reasonable approxim-
ation in these simple situations. When the lags in the controlled
element become very much greater than those in the operator, however,
the eye and hand in themselves become of less importance; and the
problem-solving capability of the brain in between them comes to
dominate the behaviour.

It was noted in Section A4.3.1 that bang-~bang, or maximal force,
control is the optimum strategy for the control of a pure second-order
~system which approximates to the dynamics of an eye or limb. This

result has been extended to the time-optimal controi of any linear
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system, and the maximum-effort controller is becoming as ubiquitous in
the literature as the linear controller (Fuller 1360, Fuller 13862).
Pew (1953) and Young and Meiry (1965) presented experimental evidence
that in the control of both stable and unstable second-order systems
the human operator adopts a bang-bang control strategy, and have

" shown thét tracking improves if this strategy is forced upon the
operator by giving him a two-position only control.

Because the two-~level output of a bang-bang controller is far
simpler to monitor than the continuous output of a linear controller,
and the control strategy can be represented by those points in the
state-space of the controlled element at which the controller changes
from one output value to the other (the 'switching-line’ in the

.
t 1s

He

position/velocity 'phase-plane' for a second-order system),
comparatively simple to measure the control policy of the human operator
working in a bang-bang mode. In particular, the adaption of the
control policy during learning is readily followed, and since a plot

of individual decision-points is obtained as a function of time it is
possible to clarify the effects of indeterminacy in the policy (in

the 'search' phase), indeterminacy in the measurement of the policy
(since only a limited number of data points are available), and time-
variation of the policy with learning. In linear modelling by
correlational techniques, the smoothing of data over time causes these
factors tc be inextricably mixed. . )

Li, Young and Meiry (1965) have described qualitatively the
variation of the human operator's switching line in learning to control
an unstable second-order system. Weir and Phatak(1%867) have measured
the time-variation of the switching line in response. to step changes
in the controlled element dynamics. However, as yet, there does not
appear to have been published any detailed study of the learning of a
high-order control skill, where a bang-bang control policy is either

forced by the nature of the controls, or expected to appear.

Ay,3.4 Adaptive Nonlinear Models of the Human Controller

Angel and Bekey (1968) have described a simple finite-state
_machine for the control of a pure second-order system, based on experimental

studies of discrete actuation in Buman limb movements (Section A4.3.1),
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which provides a qualitative match to many of the characteristics of
human hand motion, and has self-adjusting properties giving it an
adaptive capability; so far, they have not presented studies of the
goodness of fit of the mcdel to human tracking behaviour and its
adaption. Preyss and Meiry (1968) have described a 'stochastic model'
of human learning behaviour in controlling a pure second-order system,
in which the output is bang-bang and its polarity is switched on the
basis of probabilistic estimates of the efficacy of so doing. These
estimates are themselves built up from prior experience using Bayes
rule (Minsky and Selfridge 1961) to weight the evidence obtained from
sensors giving quantized position and belocity information from the
controlled elementi  This model learns to control the second-order
'system, and its behaviour, both in tracking and in learning is
qualitatively similar to that of the human operator -again, no detailed
analysis of goodness of git is presented. _

Gaines (1967) and Gaines and Quarmby (1968) have presentéd
comparative studies of human and machine learning behaviour, in which
the learning model was ah adaptive-threshold logic pattern-classifying
adaptive controller; details of these studies are reported in Chapter
6 for comparison with the human operator experiments of Chapter § -
-only goodness of fit ‘to the learning behaviour is considered. Studies
of learning system models of the human operator are currently limited
only by the availability of suitable learning systems in a utilizable
form. As more learning machines become generally available, preferably
as computer programs for small, on-line process control machines, it

will be possible to evaluate their utility as human operator models.

AY4.3.5 Tracking with Nonlinear Controls

Since the human operator of high-order systems adopts a strongly
nonlinear control policy, it is of interest to consider whether his
performance is enhanced through the use of a control which naturally
induces this type of policy; for example, a two or three position
joystick rather than a continuously variable control. Young and Meiry
(19€5) have noted that, in high-order systems, the error is dependent
on the integral of the control movement, and the operator must keep
track ¢f this quantity. With a continuocus control, this involves
‘integration of a continuous function of time; with a two or three
position controller, it involves summation of the time intervals when

the output is positive, and subtraction of those for which it is
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negative; for a pulsing controller, which gives out fixed-duration,
fixed height pulses, either positive or negative in sign, it involves
only counting the excess of one type of pulse over the other. Thus
these three types of control should be successively easier tc use,
provided the integrations in the system are adequate to filter out
the quantization noise of the nonlinear controls.

Pew (1963) found in his studies that the performance of the human
operator in controlling a pure second-order system was similar with a
continuous joystick and a two-position switch. Kilpatrick (1954)
found that when the controlled element dynamics were cf the form, l/s2
or l/s2(s+3), there was no significant difference between the two types
of controller, whereas with a very difficult controlled element, requiring
more lead, such as l/sz(s+l), the rms error for the continuous contrcl
was fifty per cent higher than for the bang~bang control. Young and
Stark (1965) note that, in Kilpatrick's studies, that 'even though the
operator uses the continuous controller in a more or less'bang-bang
fashion, he is able to use the bang-bang controller in a pulse control
fashion'. '

Gaines (1966,1967) has reported that the use of pulsing controls
not only improves the performance of the human operator in high-order
systems, but is also less fatiguing; some experimental results are
described in Chapter 5. He was interested in obtaining a control for

~use in studies of training, which was itself difficult to use and
involved interactions between the learning of the tfacking task and
learning to use the control. Building memory into the pulsing control
system, such that the sign of a pulse obtained from one of two push-
buttons depended upon that last pressed, gave a control with the
required characteristics. The control consisted of a pair of push
buttons, one held in each hand, such that pressing one push-buttoh would
give out a positive impulse. The polarity of the two push-buttons was
not constant, however, and changed each time either was pressed. Hence,
to obtain a stream of pulses of constant polarity, it is necessary tok
alternate between the two push-buttons.

Initially this control feels most awkward and unnatural to use,
but eventually, after ten to thirty minutes of use under reasonable
conditions, it becomes as simple and natural to use as the non-reversing
‘push-buttons. The problems in using this control may be appreciated
by considering the situation in which the operator has pushed a button

and the error has increased - his natural tendency is to push the other
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button, but the correct response is to push the same button again.
Gaines (1966) describes the various stages of learning to use the
push-button controls, from an almost entirely verbal strategy, through
the build-~up of response structures, to a highly-skilled, non-
verbalizable control strategy. This type of control was used in the
experiments of feedback training, described in Chapter &, and these
provide further information about the problems of learning asscciated

with it.

A4.3.6 Control Strategies din Multi-Variable Situations

Whilst much research effort has been devoted to the study of the
dynamics of the peripheral mechanisms of the human controller, and to
the linking of these by control strategies for compensatory tracking,
and muchvprogress has been made in the understanding and modelling of
the human operator in simple situations, there is no comparable
understanding of the control strategies adopted in more realistic
situations, where the operator has multiple, diverse and interacting
tasks to be performed either simultaneously, or sequentially. However,
as Pask (1960,1965) has noted, these are the situations for which
training is required, where a number of interacting sub-skills have to
‘be -learnt,-and the training problems for the simple, laboratory tracking
skills used in modelling the human controller may be very different
from those encountered in more realistic situations.

At the level of overall performance, there have been a number of
studies of two-dimensional tracking tasks, with the error on one axis
presented as the horizontal axis on an oscilloscope, and the error on
the other presented as the vertical axis - the control being a two-
dimensionai, continuous-output joystick (Chernikoff, Duey and Taylor
1959, Duey and Chernikoff 1959, Chernikoff and Lemay 1963). The main
result of these was that tracking in both axes deteriorated as the task
dynamics in the two became more different, and that a two-dimensional task
with the same dynamics in both axes was similar in difficulty to the
equivalent one dimensional task. At a similar conceptual level, Dander
(1963) has investigated the possibility of predicting pilot ratings of
multi-axis control tasks from single-axis data. The interference
between widely differing tasks, which do not in themselves interact,

‘has been extensively investigated in studies to improve the sensitivity
of performance measures through the use of secondary tasks (Knowles 1963).

The factors which make 'secondary iocading' techniques useful operate to
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to make the modelling and prediction of interference difficult, since
there is generally a level below which a secondary task shows no
detectable effect - it is using up the operator's 'spare capacity’.

At a detailed level,the main problem in mecdelling human control
strategies in multi-variable situations is that of measuring and
simulating 'attention switching' as the operator multiplexes his
control capabilities to various parts of the total system. One of
the more accessible and important indications of attention is the
instrument,at which the operator is looking, and much effort has been
devoted to measuring and modelling the human controller's visual
behaviour in a many-instrument, multi-dimensional tracking task
(Senders 1964, Carbonell 1966, Senders, Ward and Carbonell 1967).
Senders originally proposed, and tested experimentally, a model in
which the frequency of sampling an instrument was proportional to the
potential information flow-rate through that instrument regarded as
a communication channel. The later studies extend this to models
which take account of the 'queueing' of instruments for attention, and
the risk taken in not reading a particular instrument.

Even pursuit tracking, where the operator is shown not only the
error but also the input, or disturbing, signal, is itself a multi-
variable tracking situation, and poses far greater difficulties in
the analysis of the operator's behaviour than does compensatory tracking.
Poulton (1952, 1952%, 1957, 1957*) has studied the difference between
behaviour in compensétory and pursuit tracking in great detail, and
suggests that the advantage of the pursuit situation stem from its
enabling a complete separation to be made between the demanded input
to the system, the 'track', and the operator's own input through the
system. This separation aids both the prediction of future system
behaviour, and the modelling by the operator, as part of his learning
process, of the demand signal and system dynamics.

The pursuit tracking situation becomes even more complex when
the operator can see not only the immediate value of the demand signal,
- but also some segment of its future values, for example, in a car-driving
situation. Classical. control theory gives no indication of how
advantage may be taken of such a pre-view, and hence it has been impossible,
until recently, to approach the modelling of human contrcl beshavicur in
~the vehicle-steering situation from a control-theoretical pcint cof
view. Sheridan and Roland (1966) have now used the modern control

technique of 'Dynamic Programming' (Bellman and Dreyfus 1962) to obtain
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a normative model of the optimum control strategy in this situation for
comparison with that of the human operator. This interesting and powerful
approach has also been expounded in some detail by Thomas (1962), and offers
the opportunity for a substantial advance in the understanding of human
control behaviour. Dynamic programming is essentially a computational
technique which enables very general control problems to be solved, given
a criterion of optimality, by numerical algoritlms, its main disadvantage

is the amount of computation and data-storage required, but this is far less

than that for a complete search of all possible control policies.

A4.4 Overall Performance of the Human Controller

"Work on the detailed modelling of human behaviour, whether linear or
nonlinear, has been the exception rather than the rule, and psychologists
have tended to concentrate on the effects of variables such as training
_conditions, stress, and auxiliary tasks on performance, rather than on the
actual control behaviour. Adams (1964) has noted that American research
has dealt with tracking performance, and given less emphasis to the under-
lying mechanisms of the skilled activity, whilst British research has taken
a more molecular view.

In this section, some of the results of studies on the measurement of
performance, and the effect of variables neglected in the control-theoretical

models of tracking behaviour, such as instructions and stress, are outlined.

At 4.1 The Measurement of Performance

The taxonomy of adaptive behaviour introduced in Chapter 2 involves the
definition both of a task, and the satisfactory performance of a task. The
measurement of satisfactory performance on a particular task is not itself
difficult, because an operational definition of 'satisfactoriness' is built
into that of a task. However, in practice the question of interest is more
likely to be to determine the range of tasks, out of a set of possible tasks,
to which the operator is adapted; in a real training situation, there is
rarely a single well-defined task, and in more basic studies it is necessary
to make maximum use of the experimental data.

When the range of tasks is such that there is a single parameter of
difficulty, and, for a given operator, increasing the difficulty decreases

the performance, then the problem of determining the range of adaption
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reduces to that of determining the tasck of greatest difficulty which
the operator can perform at a specified level. In practice, it has
been easier to measure the operator's performance at a number of ievels
of difficulty, rather than the difficulty for constant performance, and,
as Poulton (1965) has noted, this may lead to lack of differentiation
between operators with different capabilities d¢f a sufficient span of
difficulty is not included in the tests. When the task of interest is
not readily varied in difficulty, or no natural continuum of difficulty
exists, it may be possible to create an equivalent effect by giving
the operator a second task, assumed not to interact physically with the
first, which can itself be varied over a continuum of difficully. The
performance on the secondary task may then differentiate between
operators, even if that on the primary task does not (Knowles 1963);
the situation is also more realistic than that of giving the operator
a task of high difficulty), since practical problems, such as flying,
generally involve multiple, rather than individually difficult, tasks.
One assumption about the human operator which may be made to give
some theoretical foundation to the use of secondary tasks to increase
the sensitivity of performance measures, is that the operator is a
single-channel system (Broadbent 1958) whose 'capacity' is constant,
so that the secondary task measures the amount of channel capacity
surplus to the requirements of the primary task. It is reasonable to
extend this model and hypothesize that the stress on the operator
increases as high channel capacity is taken up by a task, leaviﬁg less
capacity for emergencies, and hence, even without a secondary task,
physiological indicators of stress may be used to establish the degree
of effort, or 'channel capacity' required by the main task. Thus,
where Brown and Poulton (1961) used a secondary task to measure the
demands of different road situations on car drivers, Taylor (1954)
used the operator's galvanic skin response to the same end. Similarly,
Benson, Huddleston and Rolfe (1965) have used a variety of physiological
measures to determine the relative difficulty of tracking tasks with

analogue and digital altimeters.

A4.4.2 Variables Affecting Performance

= There are a number of factors affecting an operator's performance,

such as the instructions given, fatigue, stress, and so on, which are

not taken into account in control-engineering models, but may have a
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major effect on performance. In particular, lack of control of these
factors may invalidate the results of experiments involving the
measurement of human performance. For example, the instructions given
to an operator required to‘perform a control task are generally
indadequate to define the optimal automatic controller for the task.
Hence, one must assume that the operators make additional assumptions
in performing the task, and these may differ between operators. In

- these circumstances; a difference in performance between operators.may
be due to their using performance criteria differing from those of the
experimenter, rather than, for example, due to a difference in learning
capabilities in different training regimes.

Leonard (1960) hypothesizes that the human operator adopts a
mean square error criterion in optimizing his performance, but the
evidence he presents, whilst notnegating this, does not necessarily
indicate that this is so, since all error measures are closely correlated,
and, in many situations, optimization of one automatically optimizes
several others. Miller (1965) demonstrated that a human cperator
changed his control strategy radically in response to changes in the
performance measure, indicated to him by continuous visual feedback
of performance. Ward and Senders (1966) demonstrated that the
operator, in a similar situation to that adopted by Miller, was able
to obtain better performance when instructed about the performance
criteria than when they were displayed to him continuously.

The effects of instructions and linguistic interaction in general
on the learning and performance of perceptual-motor skills is not well
understood, although the studies referenced above, the developmental
studies of Luria(1961), and the effects onthe parameters of linear
models, referenced in Section A4.2.2, show that major effects occur.
Lewis and Cook (1969) have suggested that an analysis of human verbal
inter-action may be simplified by restricting it to the act of 'telling',
and that 'telling' may occur by signs which are not necessarily verbal -
for example, the supplementary performance feedback used by Miller
(1965). Lewis ahd Cook emphasize that in telling the person emitting
information has no feedback as to the use made of it by the recipient,
and this phenomenom has been a major one in studies of the effects of
supplementary performance feedback on learning. Kinkade (1963) reviewed
previous experiments, some of which indicated that performance indication

“to the operatcr imprcved the level of ﬁerformance which he had reached

when the supplementary feedback was removed, and others of wnich indicated

that his perfcrmance detericrated to that of a control group, and suggested
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that performance feedback also could be used as error feedback in a
'hill~climbing' control strategy if normal error feedback was poor;
his subsequent experiments confirmed this hypothesis. |

The effect of stress on performance is also difficult to determine,
mainly because 'stress' is a term covering a variety of phenomena
(Chiles 1957), and there is no reason, in advance, why they should all
cause similar effects. Whilst, in everyday discourse it would be
accepted that the danger of imminent death, for example is a situation
creating sfréss, in psychology the term has come to mean almost any
effect causing deterioration in the operator's performance of the main
task, not induced by the performance of other physical or mental skills.
Garvey and Henson (1959) generalized the term even further by calling
the effect of secondary tasks, 'task-induced stress', a use not
inconsistent with the possibility of using physiological measures of
stress as alternative to secondary tasks.

In practice, the experimental interest in stress relative to human
performance is not so much in the nature of stress itself, but in its
induction in order to test the robustness of an acquired skill. To
this end Mackworth (1950) used the effects of tear gas; Bersh, Notterman
and Schoenfield (1957) used classical conditioning of an electric shock,
to a tone; Walker(1963) used an auditory 'shadowing' task; and Eason
(1963) and Taylor (1964) have measured the 'stress' induced by the main
tracking task, using generalized muscular activity, and galvanic skin
response, respectively.

A4.5 Training

The acquisiticn of perceptual-motor skilled behaviour, and the
variables affecting it, have been subject to much study, and the main
body of experimental data has been reviewed by Bilodeau and Bilodeau
(1961) and Bilodeau (1986). In the following sections the concepts of
transfer-of-training and task-difficulty are analysed, experiments on
the use of performance feedback, guidance and pacing are vreviewed,

and previous experiments on feedback training are examined.

ALt .5.1 Transfer of Training

Superficially, the evaluation of the relative merits of different
training techniques is straightforward - in concept, it is resolved by
a comparison of the performance of an operator after training under
each of the possible regimes. However, in practice the evaluation is

made very complex by the irreversibility of human learning, the variety
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of performance criteria possible, and the variations in experimental
design possible within the same abstract framework. Some of these
factors have been analysed theoretically in previous chapters, and,

in particular, the analysis of Chapters 2 and 3 provides a suitable
foundation for resolving the complexity.

' The impossibility of erazing human learning entails that one

operator cannot be compared against himself, but that populations of
vsﬁératofs; assumed homogenecus, must be compared. This, in itself,
creates problems - for example, an operator may perform one task to a
higher standard than he does another, and yet a second operator may
have a reverse range of performances. It is clear that learning and
the relative difficulties of different tasks will vary from individual
to individual, and, by comparing populations one creates anomalies.
The scope for possible anomaly is immensely widened by the variety of
performance criteria which may be applied. For example, suppose that
the numerical values of a performance measure after training under two
different regimes are -~ Group A (1,1,1,1,3,3,3,3), Group B (2,2,2,2,2,
2,2,2). If the criterion of satisfactoriness is set at 2.5, then the
training that produced Group A is clearly best. If it is set at 1.5, -
then that producing Group B is best, and if the 'mean' performances of
the groups are compaged, there is no difference.

The variety of possible experimental designs is best iliustrated
by temporal effects in learning. If the learning of a particular skill
is dependent only on the time spent in practicing relevant tasks, then
an experimental design in which one group practices one task, and then
is compared with a control group in learning or performing a second
task, may show that the first task is relevant to the second, in that
positive transfer occurs, but does not indicate whether training on the
first taék is useful - as Day (1956) notes, 'transfer' from one task to
itself (called 'fixed training' in Chapter 3) may be better};;%nsfer
from other tasks. The situation becomes more complex if differential
rates of learning are coupled with differential final levels of acquired
skill. If one training techniques leads to a rapid initial rise in
performance but a low level of final skill, and another technique has
the converse effect, then the mean performances of operators trained by
the two techniques will cross over at some point in time. Hence,
_comparison of the two groups will be entirely dependent on the length:
of the experimental training pericd.

The methcdological problems in the evaluation of the evaluation of

transfer of training have been analysed in great detail by Gagné, Foster
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and Crowley (1948). However, in later studies problems of a semantic
nature have become apparent, particularly those concerned with the
effects of relative task difficulty on transfer. Bartlett (1547)

noted that tasks have a natural topology such that wide variaticns can

be made in physical factors without any corresponding change in human
performance, and states that, 'The fundamental features of a performance.
will remain stable over a certain range of its conditions. Outside

this range’ they will change often in a dramatic or radical manner'.
Helson (1949) has made a similar suggestion, and has demonstrated, in

a limited range of tracking tasks, that a U-shaped curve is obtained

on plotting performance against variation of a variety of task parameters.

Gibbs (1951) extends the concept of zones of equalvperformance to
account for variations in ease of transfer between learning on one task
and performance of another. In stating his conclusions, Gibbs uses the
term, 'task difficulty’, whiéh he earlier introduces implicitly as being
determined by differences in the mean performances of two groups of
operators, assumed matched. He states, 'It appears that the amount of
transfer between two equally difficult tasks may be equal, whereas the
transfer between two unegual tasks may be unegqual. There may be greater
transfer from the difficult to easy task than from the easy to difficult,
if the same kind of ébility is required in both tasks and learning is
carried on until the total possible skill is closely approached in both
tasks.' . ‘
Day (1956) and Holding (1962) review experiments on the transfer

of training between 'easy'and 'difficult' tasks, and vice versa, and
conclude that no simple and universal prediction of asymmetrical transfer
in these terms is possible. Holding states that, 'the use of the concept
of difficulty must give may to far more detailed analysis of the
appropriate skills, if asymmetrical transfer is to be predicted.'
However, the concept of 'difficulty' is a natural and attractive one,
which cannot be outlawed from the design and analysis of experiments,
even if it is outlawed from the published discusssions of them, and it

is worth noting some possible sources of the diverse results in transfef-
experiments and their implications.

‘ Holding (1962) notes, as menticned above, that bcth the ultimate
_level of performance and the rate of learning may vary with task
difficulty. Gibbs {1951) specifically excludes effects due to the
variation in rate of learning from his statement of expected transfer,

by requiring that learning continue until the total possible skill is
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approached. He also suggests that, 'there is an optimal level of

task difficulty ... for every kind of learning material', presumably one
which maximizes the rate of learning. Taken together with his
explanation of asymmetrical transfer in terms of a hierarchy of
abilities, the higher of which encompass performance of the lower, a
reasonable statement of the direction of asymmetrical transfer would

be of the form -

If there is a natural continuum of tasks generated by a physical
parameter of the environment, and there is either a U-shaped or mono-
tonic variation in the difficulty in the tasks along this continuum -
as measured by the performance levels of a group of operators performing
each of the different tasks, then learning of a more difficult task
on the continuum, providing it takes place to its ultimate level, will
give better performance on the transfer task than learning on an easier
task. However, the maximum rate of learning does not necessarily take
place with either the task of best performance or the task of maximum
difficulty.

This statement, although it sets out the theses and qualifications
of previous hypotheses in some detail, is still amenable to different
interpretations, largely because of the vagueness of the terms, 'difficulty’
and 'rate of learning'. If an operator is performing one task as
training for another, then it is not the rate of learning of the first
which we wish to maximize, but rather the rate of learning of the second -
conceptually, the operator's control policy should be 'frozen'.at
intervals whilst he is learning the first task and his performance
measured on the second task to plot a true 'learning curve'; one
advantage of working with automatic adaptive controllers is that this
conceptual procedure can actually be carried out. Furthermore, inherent
in the requirement that the rate of learning should be maximized is the
assumption that an operator's state, in so far as his further learning
is concerned, is determined solely by his performance. Although this
assumption is not valid in general, and counter-examples may always be
found, it is a useful working hypothesis in practical training situations.

The greatest problem in the use of terms such as 'difficulty'and
'rate of learning' is that performance measures give only ordinal, not
interval scales, and that any monotone transformation of a performance
“measure is valid. Hence, the only valid comparison of rates of
learning is in terms of the time interval to change from one level of

performance to ancther, and only the relative ease or difficulty of two

tasks is defined. The possible effects of a monotone change in the
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scale of performance are further compounded by the possibility of

a similar change in the scale of the underlying physical variables -
hence, the shape of a U-shaped curve of performance is meaningless.
Furthermore, some common monotone transformations, particularly
logarithmic cnes, may eradicate parts of the scale of physical
variables and turn a U-shaped function into a monotonic one, giving a
false appearance of graded difficulty - for example, in tracking tasks
-1nvolv1ng exponential lags, positive lags only are generally con31dered
and increasing difficulty with increasing lag is discovered; increasing
negative lag, however, corresponding to an unstable system, also gives

increasing difficulty.

A4.5.2 Feedback Training

Whilst the arguments of the previous section indicate that, ultimately,
a detailed analysis of learning behaviour, of the type discussed in
Chapters 2 and 3, is essential to predict all the phenomena of transfer,
the concepts of transfer between levels of 'difficulty', and maximizing
the 'rate of learning', outlined in the previous section, form the basis
of an 'approximation' of the type discussed in Appendix 3. The basis
for determining the optimum level of difficulty for learning, in terms
of maintaining the desired sub-environment has been discussed in
Chapter 3. AAcc-_eptir;g the statement of degree of transfer and rate of
learning, given in the last section, as a reasonable approximation,
however, one point it brings out clearly is that the level of difficulty‘
in training which gives the best transfer is not necessarily_thét which
maximizes the rate of learning. Hence, if training in the shortest
possible time to the highest possible level is the objective, the
difficulty of the task should vary with time. Since the future learning
of an operator is also assumed to be determined by his present performance
of a particular task, the variation in task difficulty should be a
function of the present difficulty and performance - this leads directly
to the 'feedback trainer' described in Chapter 3.

The earliest mention cf the possibility of feedback training for
perceptual-mofor skills appears to be that of Stockbridge and Siddall
(1956), who suggested that a guided weapons tracking trainer be used
in which, 'the difficuity of the task is proportional to the success
of the subject'. A short exposition by Senders (1361) of the principles
of 'adaptive teaching machines' is an example of the many studies of
feedback training which have been reported only iﬁformally. In a number

of papers, Pask (1960,1961,1964,1965%) has made available a deep and
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comprehensive analysis of automated training, and has placed it in
the general context of interactions between self-organizing systems;
he has applied these principles tc cognitive skills rather than
perceptual-motor skills.

Actual equipment for feedback training has been described in detail
by Ziegler, Birmingham and Chernikoff (1962), as a 'teaching machine
for the éelection and training of operators of higher order vehicles'.
The task was compensatory tracking in two dimensions with the same
third-order dynamics in both axes, consisting of three integrators in
cascade with variable feed-forward (so-called 'quickening') around them.
The amount of feedforward was controlled by a servomechanism driven by
the smoothed sum of the mean error modulus in both axes. >Hence, as
operators learnt their mean error was expected to decrease and the task-
difficulty to increase. No formal experiments have been reported with
this system, although Chernikoff (1962) indicates that it appears to
result in improved training; the discussion following his paper is
particularly informative. A similar feedback trainer was proposed at
the same time by Kelley (1962).

Other studies of equipment relevant to feedback training have been
carried out by Jex, McDonnell and Phatak (1966, 1966%, McDonnell and Jex
1967), using a first-order divergent system with variable divergence
rate; this system has been investigated solely for testing. Kelly
(1967, and Prosin 1968) has carried out extensive tests of various
forms of task with performance feedback for personnél evaluation, and
his equipment and the ensuing discussion are both relevant to the design
of feedback trainers.

Some training aids which have previously been shown to affect
learning, and whose magnitude may be varied along a continuum, are
obvious candidates for feedback training since the aid must eventtally
be withdrawn and performance feedback may be used to scheduls the
withdrawal. For example, Holding and Macrae (1966) have demonstrated
that a 'hinting' device, which makes the joy-stick in a complex tracking
task easier to move in the correct direction, has a profound influence
on the rate of learning; descreasing 'hinting' to a subliminal level as
learning proceeds offers obvious possibilities for feedback training.
Similarly, the degree of 'augmented feedback' is another variable

”susceptible to continuous variation, and Briggs (1961,1962) has invest-

1]

igated the
back. In

cheduling both of display aiding and extra performance feed-

ck

he first paper he reports that there is an optimum level

of display aiding, and that experience on systems with either too much,
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or too little, aiding leads to reduced learning. He suggests that,
‘optimum schedules for display aiding be determined for each device

or task'. In the later paper, Briggs (1962) investigates the effect
of slowly withdrawing augmented feedback in a tracking task according
to various schedules, but finds no significant improvement in learning
over a control group without augmented feedback.

The only major experimental study of feedback training is that of
Hudson (1964) who trained some 72 operators‘for ten hours each (in
fifteen minute periods) on a third-order system with variable parameters
including both feedforward and feedback. Hudson mechanized an automatic
feedback training loop in the same way as Ziegler et al (1962), by
relating the parameters of the task directly to the mean error. However,
he fand this was notvsuccessful since the parameters both varied widely
with the error, and the mean performance required became excessively
high if the ultimate levels of difficulty were to be attained. In his
conclusions, he suggests that the automatic loop should have been set
up to keep the mean error constant by varying the difficulty of the task.

In his experiments, Hudson maintained approximately constant error
conditions for some groups of operators by putting himself in the
adaptive loop, and adjusting the parameters of difficulty by hand so
that the operator's mean score of 'out-of-controls' (error becoming so
great that spot leaves screen and is reset) was constant over each fifteen
minute training run. Hudson's main result is that a plot of the final
test performance on the cfiterion task against the mean level of
performance during training is étrongly U-shaped, and there is a very
clear optimum level of difficulty for maximum transfer. Another result
of particular interest is that Hudson used a variety of plant parameter
variations to maintain the performance constant, but only the actual
level of difficulty seems to affect the main result.

Significant as they are, Hudson's results may be criticized on a
number of counts: firstly, because of the variety of conditions used,
the number of subjects under each condition is small (between 4 and 6)
so that the results are only marginally significant; secondly, each
'out-of-control' took a minimum of five seconds of the operator's training
time whilst the equipment was reset, since the mean number of times this
occurred (over the ten-hour training period) was 77 in a fifteen minute
practice session, there is clearly the possibility of a major effect due
“to the differences in actual training fimes - this is not unrealistic,
in the sense that it is clearly a loss of the 'desired sub-environment',

but represents a trivial variation in the difficulty of the task; thirdly,
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although highly suggestive, the experiments do not test the viability
of automatic feedback training, and, since the experimenter was part
of the loop, the results are not replicable.

Gaines (1965, 19566, 1966%, 1967, 1968%, 1968%%, 19680k, 19pgHist)
has published a series of reports and papers on automated feedback training,
its theoretical foundations, viability and utility. The material from
“these is‘incorporated in the various chaptérs of the present volume, which

represents,a complete account of this werk.
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