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The seope of th.:i..s E;tudy i~.;; hu.ma:n learn5.ng bch~~.v·:iou:r·, 
pa:rtic:ul arl3r in pe.r'cept:.,_<'l . .l-motoJ.: skills 1 and the vu..:c:i_ar:les 
Hl1:i.ch inf1u.Gl1CfJ it, including t;J.;_e nature o:f the e:r:'rironment 
in vri1ich le<?.?"ning takes }.Jlace and the effect of ve:c·•ba1 
i.nstructions 0 The study J~·angos f:r:·om a general theory of 

., . . b 'h • b 0 +1 , b . ' , 4' • ao.ap-c1. v~ :euav:wu~ a~eo. on .... 1e a.1.{~<-o; • :ra:~..c -cne?r~y "c~ sem:~grou1's 1 

to spscJ.fJ.c exper~meJ.n:;s on the:; opt::urrum contro.L o:c J..earnJ..ng 
behavim}.l"' in 2. perceptual-mcto:c skil1 t and includes comp8ra.tj_ve 
studies of human and ma.ohine learn:U:1g~ 

The first objective of the study has been to develop a 
rigorous and systematic account of the relati.ons bet1·we:a 
beh.avi.our, structure and IYtn'pose in arbitrary syst~:;ms 
inclw!.ing men and macldnes. The seeon.d objective h<HJ been to 
uEe this accom:-lt to develop an int,agrated app:r·oach t:o the 
problem of training~ in r·ihich a k:>.VY\tledge of the patterns of 
bcl'l.avlour, the strv.ctll:I'e and tbe desi.red goals of a system~ 
may be used to formulate an optimal tra:Lning strategy. 'Ihc 
final objective has been to demonstrate the application of 
the tl'J.eory to a realistic si tuat:i.oD ~ and cor:Jpare come of the 
theoretical predictions vd th experimental resu1ts. 

In thG theoretioal studies a taxonomy of adaptive behg;viot'.r 
is establiDhec1 v.rhich enable~'! opex·ational and purely hehav::Lou.ra1 
definitions to ·be provided of terns such as 'adapi:i.ve' and 
1 aJ.c:t})ted'. '.L'l1e taxonomy is given a mathematical :formu.lation 
through the algebraic theory of semi.crou.ps by deriving an 
algorithm for constructing a mintr,'!a1 [i.Dd observable a1.1.torllc1.ton 
cybernetically equ.ivalent to 1:1 syEiiJe:m knov::::1 only through its 
observed behaviour. Furtlwr information <:ibout the st:cu.cture of 
such autom.?.~ta for adaptive systems :U.3 obtainr~;d. by c:malysing the 
influence of purpose on behaviour~ in terms of the epistemo1ogic.s.I 
problons im~.uced by tho citlal-contrcJ. situation of 1ea:cnj.ng abo1J.t 
a system i·lh::Llst trying to cont~:o1 it. These developm.cnts lead to 
the st".)_(ly of training as a cont:r'oJ._ problem~ and adaption as :.:ne 
stability of a hierarchical systa~G 

In the experJmental studies a high--order compensatory 
tracking task is ta.ken as the environment and a feedback 
training system developed on the basis of the theoretical 
ar&,~~.unents o T'he viab:L1:i ty of this. system in terms of its 
dynamics and Btability ia ev~::.luated theo:cetic:ally anc! E:'XperiElent-­
ally ~ using both hu.rllan operators aJ1d automatic controllers & T'he 
utility of the systern is i.nvestigat.ed by a.n experiment loii th 72 
RAF pilots~ in 1,rhich va:cj_ous modes of tre.inj,ng are ooJnpared, and 
intcractioas id .. t;h the form of ir:cG tructions given are also 
evaluated. 'J.:he::::~·3 experiments are :cepc.~a.ted vri th ar'tificial 
ada]..:.tive contJ.'ollers E,.s subjects, in order to enable a 
comp~:;rative study to be ms.de of hwne_n and machine learning. 
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TlJ.e r·cceB..J~e}1 Oil t~lJ.tJ .bJ.J..r;:c;w.J. (\l)0':ec.tor Ci8E:c:c:Lb(:.~d. i~"L~L rtl1iS t:vr~G~:.j.,~3 

was carried out at the De;art~o11t of Experimental Psychology, 
u-r~:t\/G:l: .. sit;l C·f Oa~.rnbJ:iL1{;r:;: CtiJ.O. :r: ~:;.l:] g·x~t:..i;t~~c·u:.L to ]?I~oi~ .. -_,·f:~Cor· ()~lJe 
Z(l1..1g~·ti.,J.]~1 }iG(:ld. of t~I1E })E:}J8..rtr.o.~:;Xl~,;~ :COY' r~;l:t()\Jj~j~ill{~ !IO \'7i'"t:l1 
ctcCOlJ.~.odatio:rlo I an c.t1JJC C!'t:J ... Lc:f·l-l~~ t:J I-.ix~&r? .. )L~,tr::.::-c~{_~OJ:·:y c:C -tl1e 
PE.:J;fcl:tc)J..ogic~"il r .. abor::l.t.oi·~J-, oJ~lcl ~·?"J:; ... JI~Il.Jr":,~lclsorl o:f t:ll.e 
J!hy~:>:Lo1og:Lca1 LD.borat:o:r·;t',. Unj.vcrf;J.ty of Ccu:::l;x·iO.gG ~ for 1n:d;j_c-,t:Lng 
arl.d 81J..pe:r\r:Lzj_xig tti.s J::ese:i:.r"lct.e.,. 

The 1vo:cl{ Vl·3~S 8llppoJ.~--~.::Jd. J:i_l).[~;~~-1~.;:~ ?.t.ll~r t:,v· 'tlio I!5.il1:Ls··L:c:l ()1: :D:~~:~"\:~~:.lce 
( A·vw'""\ a~c" ..,- r·•·n .L,..._r• "I ~ 'f' ·r .·~ ' -f> •. • " 
\A~iliJ;, lll La~ gra0Gl~- GO ~r.u.~. ~on ~or nlS rcaay 
oo-oper<:.tion ~:l.J.ld advice j_n a11 n;:-,_tteJ."i:l ;:;::~feot:Lng the eclJilj_nj_:::/a·::'-tion 
of tlJ.e cont:r~a.et,. and. ~·cc) ~IJ C· C ~ VJ ~ [j~coe}:1J:rlj_d [~<~ ~:~1.0 ~ ~~;l:I&Ouf;l1 1·\.:Lr) 
o~"n.1 lJOrl'~, irJ.:Lt:LaJced t11~=:.! I~lirJ~tfrt:e}r ~ s 5 ... rl te:cc st i~l ~"tc1~1JYJc:i v~e trn.:L~:::)~~g ~ 

The theoretical st·uf~ies clescri becl :\J::t th:i.s the;.<U:; ha\i"C l)\)fm. 

in:fltlenced. frO;]l many so-tJ.::·ces, <Jr1d. r j_:n. EJ:~ .. :r·tj~c~L"L~LC?;J: ~ ~t;ll~~y ()V:e 

much to di~>C<.J_ssions 1d. tJ:~ .A. \Ja .. t::smJ. of the :P;sycho1c•g:L~al 
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J-Ia.1··}_()1~r, '\·ri th ·~-;l1o1·n I llCl."\re SJ)(J11"G rr~:j..l'\.V b,B~~PP-::l lJ.C·t~J:·s Ctl .. sc·~~~ss:ti:1g 
problems of art;ificia1 :i..ateilicence e .. nd. the nat1L'i.'G o:L' lcarnj:::L:· 

:tho .--theoJ~etJ.cal sttld.ic~6 a~ce lrt.:t:t],:t ~u .. }_)O}l t:b.r; :fo~).:c.cl;.:;.:t5 ... onE~ J .. t:.}_.ri. 
in tfte vrorks of Dre-G. J?t:;,sl;:, Dr e 'il ~ ll (: .4. t~::::JJ?' 2Li.ld~ J):t~ ~II G e~J.fJJ.: !' ~c.:r.·\.)£:1 
1·rl'lOEl 9 inclil'~~ec·t:ly 9 l1as corDe the :L:t1toli.ect1.~.a.J .. B·!.;irJ.tLJ ... ~-}.tio::J. fc::c ·c~.;.,:~ 
present 1Wl ... k. 

1Ene techDologicc.1.l req·o.irc.r::rents of th:l..G ;3t•J_c1.~r co-c1.:tc:t not ·r:;_r.;_,,(:: 
been trnclertaken. iii thout accesc-:> tt) tl:.e -;,-;c:ckshop fac:Llit:Ler:: r.,oci; 
up b3r 1-Ir.R.L.Gregory ana. adroj_nistoreli Ly ":-.LILSoJ .. tcr •. :C>;,u.n.1.!.y~ 
the experimente. . .l studj,er:5 cou.1d not rw.ve t<~en -...mdE:ri,sl::e:tl T"~L tbc:<.1.. :: 
acce~38 to the eon trolled e::.'1Viron.rrJGY/..; :::;E:t u.p ·0y D.z·. J. L,. Ged;:s J.cr 
his o1m. \Wrk. 

F•in.ally, I have a cree,.t de1Jt O·f· ts:-reat:t.:·c·~ld-~: ~co ~t;l.tc: rD.crn ctf~ 
R~AeF;p Oakington" 1fl1ose :i .. n--se:r."GS-ty J_)l.::tic·~1).3~],._i_t:~'/ a11cl cc---o}:;er·cl.-ti::;~1 
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vrorthvrhile than they othe::c:.dsc :m:'_t:;b:G have ·been. 
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CHAPTER 1 INTRODUCTmN 

1 1 ~~lotivat.i.on and Aims of Investigation . . ----=------
The 'ivork described originated as an investigation of ! adaptive 

training techniques' for human operators attempting to learn a complex 

perceptual-motor skill such as driving a car or flying an aircraft. 

The major objective has been to investigate in depth a situation in ~.;rh:i.ch 

the 'difficulty' of a task is automatically adjusted to maintain a 

constant level of performance for an operator 1earniilg the task. c:: ...,;"nee 

the automatic adjustment system acts as an 'adaptive trainer 1 , increasing 

the difficulty of the task as the operator learns at a rate dependent on 

his learning, it is pa usible that it may provide a 'teaching-machine 1 

for perceptual-motor skills and speed learning. 

Because the automatic training system is coupled through 

feedback to the performance of the trainee, the possibility of overall 

instability arises and requires both theoretical and experimental 

investigation. Given that an 'adaptive trainer' can be made to operate 

stably under reasonable conditions, its effectiveness as a teachi11g 

system and the variables that determine that effectiveness are also open 

to investigation. 

In any experimental 

generality of the results 

study involving hutnan learning the degree of 

obtained must come into question. In 

particular, in a study of training whel'e 'feedback' is involved it is 

reasonable to expect that the 'sensitivity' of the results obtained will 

be reduced, not only to variations in the trainees but also to v&riation"; 

in the type of task used in training and to the exact. nature of the 

training strategy itself. In the present study the sensitivity of 

the results to the trainees has been investigated by including automatic 

'learning machines' as experimental subjects. 

The sensitivity to task and training strategy raises deepo·· issues 

concerning the system-theoretical nature of the results :)btabed, for 

example, whether general results on the stability a.""ld efficacy of adapt:.ve 

training can be derived for abstract systems which include the particular 

system investigated experimentally as a special case. Ir: the p'esent 

study this problem is investigated at a fundamental level through t!":e 

formal. defini-d.on of an 'adaptive 1 or 'learning' system~ and toth 

·theoretical and experim.;;ntal resul-cs are presented for system;;, of v-:,rying 

degrees of generality. 
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Thus the study has ranged from system-theoretical investir;at:i.o:1s 

of adapt ion and learning, through theoretical analyses of the problem 

of training, to actual laboratory and simulation experiments on the 

training of human beings and learning machines. Such a range seemed 

essential at the time of the study since there was neither adequate 

theoretical material on the mature of learning available on which to base 

experimental studies of training, nor a sufficient rang~ of results on 

adaptive training to act as proving ground for a purely theoretical 

investigation. In this thesis an attempt has been made to present 

both theoretical and experimental studies in a unified form, and to 

link tnem t;ogethe:r ·wher>eve.!" possLble, 

1.2 Background to the Objectives 

One of the most remarkable features of human behaviour is its wide 

range of possible variation in response to the different characteristics 

of the environment in which it takes place. t1an, out of all the animals, 

has developed in the course of evolution the greatest capacity for 

changing his mode of behaviour to that which best achieves his goals in 

any new environment. Some form of adaption to circumstances is found 

in even the lowliest micro-organisms, however, and this capability has 

sometimes been taken to characterize life itself. 

The characterization of life by its adaptive capability has been 

made less tenable in recent years by the success of control engineers 

in designing automatic controllers with a similar ability to modify ::heir 

control policies in the event of unpredictable changes in the controlled 

plant. This development makes it reasonable to. consider the possibility 

of a unified approach to the study of adaption and learning, in both 

animals and machines. 

A unified approach to some aspects of psychology and control 

engineering is attractive on a number of grounds. Firstly 5 the well­

defined and known structures of automatic controllers enable the implic­

ations of theoretical constructs linking structure and behaviour to be 

clarified very rapidly. Secondly, such terms as 'purpose' have to be 

defined clearly and operationally if they are also to be applied to 

machines. Thirdly, automatic adaptive controllers provide a source of 

identical 1 subjects 1 for e~~periments on factors affecting learning. 

Fourthly, engineers are respons.ible for m:my systems studies and 

associated mathematical developments which have direct applications in 

psychology. And finaUy, it is possible that the automatic controller 

of the futur·e will be a general-pur·pose adaptive system, simple to 

fabricate because of its homogeneity of structure, which will be 'trained' 
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to implement a specific control policy. Current investigations of this 

possibility are just as likely to produce results relevant to psychology 

as they are to contribute to control engineering. 

1.2.1 Behaviour, Structure and Puroose 

The chief problem in formalizing such concepts as 'adaption' and 

'learning' is to establish and maintain a clear distinction between 

the structural, behavioural and teleological connotations of these 

terms. The structure, behaviour and purpose of any system are intimately 

related and everyday language makes little distinction between them. 

How~ver, in psychology it is this relationship which is to be investigated, 

and its individual components must be clearly separated. 

For example, if a system is assumed to have a purpose such that its 

behaviour is directed to some goal, then it is possible to observe its 

behaviour and determine to what extent that goal is attained. Thus~ the 

'adaptivity' of a system may be defined in purely behavioural terms, given 

a teleological assumption. Equally, hoHever, it is possible to observe 

-behaviour without any pre-suppositions as to its purpose, and examine it 

for evidence of goal-seeking. The goals then become a property of, or 

a Hay of describing the behaviour. For example, an event may be termed 

'reinforcing' if it increases the tendency for behaviour preceeding it 
, 

to occur, and the 'goal' of any adapting system becomes the seeking of 

reinforcement. 

Either approach to the analysis of adaptive behaviour is valid, 

evaluation of the fulfilment of an assumed goal, or determination of the 

goal from the behaviour. Superficially, the former is more relevant to 

control engineering and human operator training, and the latter to 

animal studies. The problem does not lie in the existence of these 

differing approaches, however, but in the ease with which a tacit change 

may be made between them. An examination of pure observations of 

behaviour, not influenced by any assumptions about its purpose, is biassed 

by the tendency of normal descriptions of behaviour to be also evaluative; 

acts are described by their termlital effects rather than the motions 

which produce them. ,Both aspects of an act are part of an unwieldy 

'total behavioural description', from which everyday language eliminates 

irrelevant components. In so doing, however, the language introduces 1:he 

very assumptions Hhich are the Sl!bject.matter of psychological theory and 

experiment. 
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A different type of problem arises from the relationship betVIeen 

the structural and behavioural connotations of the term 'adaptive'. 

Given full information about the structure of an adaptive system it is 

possible to pr'edict Hhat its behaviouP Hill be in various environments. 

Equally, given full information about the pange of possible behaviour of 

a system it is possible to limit its structure to some sub-set of all 

possible structures. The relation between the physical stPuctuPe and 
. 1 

the sub-set of behaviourally determined structures is that the former must 

·be contained in the latter. In practice, fo1~ large, complex and 

irreversible systems, such as the human organism, the full details of 

the structure, and the full range of possible behaviour, of the system 

are inherently unobservable, and the structure will be limited to some 

sub-set by direct observations of its physical nature, and the behaviour 

will also limit the structure to some sub-set as before. The actual 

structure must lie in the intersection of these sub-sets, and hence, in 

this sense, behaviour can giverr
1
evidence as to structure not obtained / .. 

by direct observation of the structure. 

Further complications arise if the gaps in observed behaviour, which 

are essentially unfillable by observation, are in fact filled by 

assumptions about the behaviour. For example, an event shown to be 

'reinforcing' for some aspect of behaviour may be assumed 'reinforcing' 

for all other aspects. Assumptions are clearly part of any process of 

scientific induction, but have a peculiar status in psychology because 

they are inherently necessitated by the irreversible, non-replicable 

systems studied. The justification for particular assumptions about 

behaviour may come from either structural or teleological considerations -

the behaviour of each of an ensemble of rats may be treated as if were 

the range of behaviours of a single individual, either because the rats 

had must the same goals in satisfying hunger, or because they have much 

the same physiological structure. 

A good example of the interplay between structural, behavioural 

and teleological connotations of the term 'adaptive' lies in the 

justification for the use of automatic adaptive controllers in experiments 

designed to test the efficacy of different training techniques for human 

operators. The adaptive controllers are knOi-m to have been built for 

the purpose of attaining certain goals... Thus purpose will constrain 

the controllers' h~ haviour, and any controller Hi th the same purpose, 

·such as a human operator, will be under the same constraints. Thus, 

it is possible to use an adaptive controller as a 'subject' in an 
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experiment on training with reasonable grounds for supposing that its 

behaviour will be similar to that of human operators. 

The considel~ations put forward in this section made it reasonable 

to suppose that a rigorous and systematic study of learning in any animal) 

and indeed in arbitrary systems) might be based on a formalization of the 

concepts of behaviour, structure and purpose in adaptive systems and of 

the relations between these three. The initial objective vms to analyse 

the way in which the aJaptivity of the system might be evaluated from 

its behaviour) since tr.is was a pre-requisite to the analysis of other 

aspects of adaption. For example, the determination of goals from 

behaviour seems to depend on criteria such as, 'the assumed goals for 

which the system is most adaptive'. The next objective was to establish 

the relation ben~een the adaptive behaviour of a system and its structure, 

and the final theoretical objective was to establish the influence of the 

purpose of a system on its behaviour, independently of information about 

its structure. 

L2 ~-2 .. Application to the Problem of Training 

The normal proving ground for a theoretical analysis of adaption 

and learning is in a study of the lower animals, such as rats, cats and 

octopi. However, there is an aspect of adaption vrhich, although , 
present to some degree in communities of lower animals, only manifests 

~telf fully in human society, and that is the process of education 

or training whereby a positive effort is made by some outside agency to 

direct the course of learning. Application of theoretical results to 

the problem of training is particularly attractive because an integrated 

approach to all aspects of adaption is required. 

The problem of training may be regarded as that of varying the 

learning environment in such a 'I>Iay that the trainee is taken as rapidly 

as possible from his initial, naive state to one where he is competent 

to perform the required task. Viewed in this way, training is itself a 

control problem, albeit at a high level of abstraction and involving 

systems of great complexity. The statement of, and the solution of, 

this control problem requires knowledge of the structure which underlies 

the behaviour of the trainee. This knowledge itself may come from 

infonnation about the structure, behaviour or purpose of the trainee. "' .u. 

practice, none of these alone is sufficient, and the diverse sources have 

to be integrated into a coherent basis for optimal solution of the training 

problem. 

One advantage of taking training as the proving ground for a theory 
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of learning is that it gives a rationale for decisions which would 

otherHise be arbitrary. In any study of adapt ion there are abi trary, 

but necessary, methodological decisions which must be taken, but are not 

determined by the theory. For example, the decision to shut a rat in a 

Skinner box and only observe its behaviour as a succession of bar pressings, 

is arbitrary and yet necessitated, not only by the practical impossibility 

of observing the animal's behaviour in complete detail, but also by the 

theoretical impossibility of utilizing such detailed observations which 

make every observed behaviour an isolated event unrelated to other 

observations. Since the objectives of a study of training are not to 

provide a complete account of all aspects of learning, but rather to 

synthesize and evaluate training tecru1iques for particular purposes, 

there is an independent basis for the arbitrary decisions which have to 

be made in a study of adaption. 

These considerations, and others of a more mundane nat1we made it 

attractive to apply the theory developed to the problem of training 

humans to perform skilled tasks. Hence the study of behaviour, structure 

and purpose in adaptive systems was directed tov1ards establishing a formal 

theory of training and a basis for the synthesis of optimal training 

programs. 

J.. 2. 3 Experimental S,tudies of 1 Adaptive Training 1 

Since the theory of adaption t-Tas intended to be a unified approach 

to any system, it t-Tas desirable in the experimental studies to choose 

environments in t-Thich both human and machine learning might be investigated. 

The problem-solving, decision-making and linguistic skills of the human 

operator, Hhilst stimulating much research in 'artificial intelligence 1 , 

are far from being emulated by machines at present, whilst the continuous 

control skills involved in flying, driving and tracking are closely parallele~ 

by such devices as adaptive auto-pilots and 'model-reference' process 

controllers. Hence, training human operators in perceptual-motor skills 

was taken as a sui table situation for experimental evaluation of the 

theory. 

One particularly interesting situation which has been investigated 

by several t-Torkers in recent years, and which has proved troublesome both 

theoretically and experimentally, is 'adaptive training'. A 'self­

adjusting simulator', or 'adaptive training system' for e. perceptuc.l­

motor skill is a device which aut:o.matically adjusts the difficulty of a 

control task according to the operato1, 1 s performance in an attempt to 

maximize his rate of lear•ning. Such devices have been proposed by var:i.ous 
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agencies and individuals concerned with the training of human operators 

in control skills, such as manoeuvring an aircraft, missile or sub­

marine~ but no rigorous studies of their efficacy, or general effects 

on learning, have taken place. 

It is a reasonable hypothesis that for any operator with a given level 

of skill there is an optimum level of task difficulty which maximizes his 

rate of learn1.'1g. When the task is too difficult he generates a large 

amou.-<t of error and is unable to perceive the effect of his control 

movements, and Hhen the task is too easy he is able to perform it well, 

and has no requirement for a better control strategy. Thus one might 

expect two distinct effects - if the required task is easy for an 

operator then he will learn more rapidly with training at a higher level 

of difficulty - whilst if the required task is very difficult for an 

oper'ator then he Hill learn more rapidly with an easier task. Further­

more, the relative ease or difficulty of a task is a function of the 

operator's basic ability and state of learning, and the optimum level 

of difficulty would be expected to increase as the operator's skill 

improves. The optimal training technique should, therefore, involve 

feedback from the oper,ator' s state of learning to the level of difficulty 

of the task. 

The theoretical studies already outlined from the basis for a formal 

treatment of the proposed advantages of adaptive training and for the 

design of adaptive training systems (which are called feedback trainers 

in this report, in order to avoid over-use of the term 'adaptive'). 

Hence, an experimental study of a feedback trainer~ designed according 

to these considerations, \'las undertaken. This involved comparison of 

feedback training with other training techniques using both human 

operators and automatic adaptive controllers as trainees. Some auxiliary 

problems Here discmrered and investigated b this study, including the 

stability of adaptive trainers and the interaction of the effect of 

instructions Hi th those of different training tecl1niques. 

1. 3 Structure of Thesis 

It has been noted in Section 1.1 that the studies reported in this 

thesis cover a very wide range £rom the theoPetical to the exper'ime:atal, 

and an attempt has been made in its oPga.niz.ation aTJ.d preser!tation to 

show the r.>alance of the contr·ibutions to the different a!'eas. TheoPetical 

developments which are essential to the logical development of the results 

but do not contribute to their main content have been placed in appendices. 

Survey material which is essen1:ial background material to the arguments 
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developed is also placed in appendices - however, material cr'i tically 

surveyed in order to develop a main line of reasoning is placed in the 

main text. Detailed experimental results are also given as an 

appendix but discussed in the main text. This organization has enabled 

the presentation to be complete whilst allowing str·ess to be placed on 

the main part of the investigations. 

1.3.1 Contents of Chapters 

In the following sections the main results of each chapter are 

outlined -

1.3.2 Axiomatic Foundations of Learning and Training 

Chapter 2 commences vli th a critical review of previous work on 

behavioural definitions of ad?ption both in psychology and control 

engineering. An explicatum of the term 'adaptive' is proposed which 

enables many aspects of adaptive dynamics, not previously made clear, 

~ --to be formalized. This is based on the concept of a Jtask' as the 

unit of adaptive behaviour, and consideration of the variation of the 

satisfactoriness of the interaction between controller and environment 

over sequences of tasks leads to the definition of various modes of 

adaption. Finally the results of Appendix 3 are used to define a 

minimal observable structure underlying the behaviour, an 'adaption 

automaton', and the definitions of adaption are framed in terms of this. 

1.3.3 Training as a Control Problem 

In Chapter 3 the approach to learning behaviour developed in 

Chapter 2 is extended to provide a rigorous foundation for the analysis 

of training as a control and stability problem in the state-space of 

the adaption automaton of the trainee. The tech~ique for selecting 

sequences of tasks to bring the state of the automaton into a desired 

region enables various modes of tP.aining to be distinguished. Before 

the problem of training can be 'solved' it is necessary to have some 

information about the. structure of the adaption automaton, and two 

theorems on training establish the minimal and. practical levels of 

information required for an effective trainer to be designed. Possible 

sources of such information are then investigated through consideration 

of the epistemological problems of the trainee in attempting to solve 

the 'dual-control' problem of controlling an environment whilst at the 

same time learning about it. An automata-theoretic statement of this 
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problem is given, in which it is shown that any control policy rest~icts 

the environment to some sub-environment, and that the sub-environment 

generated by a naive controller may be 1.L.'1suitable for learning. The 

basic training strategy is then formulated as maintenance of a sub­

environment similar to that encountered by a controller 'l'lhich has learnt 

the problem. 

1.3.4 A·Feedback Trainer for a Tracking Skill 

In Chapter 4 the selection of a suitable problem for the evaluation 

of a feedback trainer is discussed, and the results of previous chapters 

are applied to the design of a feedback training system for a task 

involving compensatory tracking through high-order dynamics. The 

behaviour of the training system is analysed theoretically, particularly 

its stability, and experimental results are given to verify this analysis 

for non-adapting automatic controllers and human operators. 

1.3.5 Experimental Evaluation of Feedback Training 

In Chapter 5 an experiment designed to test the practical utility 

of feedback trainers is described, which involved training 72 RAF 

pilots in a novel tracking task under six different training regimes. The 

methodology of an experimental comparison between different training 
' 

techniques is discussed, and means for overcoming effects of fatigue, 

and auxiliary variables such as verbalization, and so on, are descr'ibed. 

An experimental design for evaluating not only the various modes of 

training proposed in Chapter 3, but also the interacting effects of 

different forms of verbal instruction and the relative effects of stress 

on performance, is proposed. The results obtained with this design 

are analysed and the significant effects obtained are discussed in detail. 

1. 3. 6 Experiments with. Learning 1•1achines 

In Chapter 6 a range of exper,iments on the adaptive behaviour, and 

the training, of automatic controllers based on adaptive threshold logic 

elements are described. The first exper'iments involve a very simple 

pattern-classification problem, and illustrate the various modes of 

adaption and training defined previously. Other experiments bvolve the 

use of adaptive controllers in the same situation as the human operators 

in the experiments of Chapter 5, and a comparison is made between the 

effects of different training techniques and verbal instructions on 

human cmd automatic adaptive controllers. 
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1. ?· 7 Summary, Conclusions )and P~com;r:endation_~-

Chapter 7 contains a summary of the theoretical and experimental 

results, and brings together the main conclusions. The objectives of 

the study, and the extent ii:o which they have been attained, are reviewed, 

and, finally, recommendations are ma.de for the directions of further 

research on adaptive training and the theoretical foundations for the 

study of learning behaviour. 

1.3.8 Appendices 

Appendix l on Adaptive and Learning Controllers contains the back­

ground ang reference material relevant to the studies of Chapters 3 and 6. 

After introducing the concepts of open-loop and closed-loop adaption, the 

appendix is mainly concerned with adaptive threshold logic elements 

(ATLEs) and their properties both as pattern-recognizers and as controllers. 

Appendix 2 on the Algebraic Theory of Semigroups contains basic 

definitions and results relevant to Appendix 3 and Chapters 2 and 3. 

Appendix 3 on the transition from Behaviour to Structure is an 

original study in its own right, but has been placed as an appendix since 

it contains mainly mathematical results bridging the gap betHeen the 

behavioural approach to adaption of Chapter 2 and the structural basis 

for training of Chapter 3. In Appendix 3 the problem is analysed of , 

deriving a structure for a system from its behaviour which is minimal, 

in that it has only sufficient complexity to account for the observed 

behaviour, and which is observable in that it is possible to determine 

the 1 state' of the structure from a sufficiently long sequence of past 

behaviour. A procedure for determining such a structure from a complete 

description of all possible behaviours is derived. 

Appendix 4 on the Human Controller contains a review of experimental 

studies of the human operator in control systems, vlith particular 

emphasis on adaptive behaviour and teclmiques of training. Linear and 

nonlineal' models of the human operator are examined to determine the 

basic constraints upon the possible control strategies available to him. 

Recent studies of the adaptive capabilities of the human operator in 

response to changes in the controlled system are then revie-;.red. Finally; 

experiments on training the human operator, and in particular the few 

experiments on adaptive training, are critically examined. 

Appendix 5 contains Experimental Results in detail for the study 

of training described in Chapter 5. 
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Chapter 2 AXIO!YSIC FOU:JDATIOJS OF LEARJTillG A:TD TRAEUG - ----

2.1 Intl:•oduction 

It is an essential feature of t!1e trair,ing situatior.., tha.t the 

trainer· is attempting to exert sor.,e control over the le<:n,ninc - -
processes of the trainee. Teaching and trabing by ~uman teachers 

involves both the concept of chanp;inp; the state of the student to 

one in Hhich particular behaviour may be elicited, and also the 

concept of feedback fror:1 the behaviour of the student to the behaviour 

of the teacher. The:se allusions to the fundamental concepts of 

modern control engineering suggest that a formal approach to the 

problems of training might be made e1rouz;h modern control theory, and, 

in the follm-ling chapter, this possibility is explored and a control­

theoretical approach to tr•aining is developed. 

Before any rigorous approach to the control of human learnins 

through training can be taken, h01·1ever, it is necessary to make a 

forr:1al analysis of the nature of 'lc=arning' and 'a.daptive behaviour' 

in their own right. These terms are ones v:hich originally ar•ose in the 

biological sciences 4:o denote the plasticity of behaviour shovm by an 

organism in its struggle to survive in a novel or changeable environ-:-ient. 

The same terms have been carried over into psychology to denote the 

goal-seeking nature of animal behaviour, and have also been applied in 

the engineering sciences to systems designed to-optimize their performance 

through interaction Hi tll their environment. Since t_hesc terms, or 

similar ones, form an essential part of the state~ent of objectives of 

major areas of research into human behaviour, adaptive control and 

artificial intel1igence, it is reusonablc to expect thern to be capable 

of fairly exact definition. This is not so, hov:ever, and the terms 

are used very loosely Hith tacit switches of connotation, particularly 

betvreen 'structural' and 'behavioural' aspects of adapt ion. 

Stanier, at a symposiur~ on "Adaptation in l-licro-organisms" (1953), 

defined the term 'aciaptive' as, 

'the totality of the various processes of cha11ge Hhich confer• 

on an Ol'ganism fitness to its envirorment 1 • 

·This uefinition contains all the elements essential to a taxonomy of 

adaptive behaviour. There is fir.::;tly the or)?;anisr:l, which in the present 

discussion will be called a controller since both natural and artificial 



systems are beine consiciered. There is secondly an environ~~nt_, 

which term has entered the vocabularies of both psychol08Y and 
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engineerinp;. There is thirdly the evaluative concept of 'fitness' 

to the environment, vrhich reflects a description of the orc;anism's 

behaviour in terms of goal-seeking, and entails a perfo:emance measu_re 

for the interaction betHeen controller and environment. Finally 

there is the concept of 'change', in that an organism is not initially 

fitted for its environment but becomes so through a dynamic process 

of adaption. 

Adapt ion, defined in this Hay, may be treated as a purely 

behavioural concept, since there is no necessity to introd.uce notions 

of hoH the organism adapts to its environment, or to argue a priori 

what factors vrill cause adaption to take place. Stanier's definition 

is informal, and non-operational in that it does not contain a decision 

procedure to determine when, or what form of, adaption takes place. 

l1ost attempts to treat learning and adaption more formally have gone 

beyond the observed behaviour and introduced structural or epistemo­

logical considerations, generally because their aims have been to 

model or predict behaviour. It is possible, however, to formalize 

the purely behavioural concept of adaption, into a rigorous framev;ork 

on which to build a•theory of training. 

Section 2 of this Chapter is a review of the few previous attempts 

to establish operational definitions of adaptive, or goal-seeking, 

behavioUr. Sections 3 and 4 present a new formulation of these 

definitions through an axiomatic approach to the description of learning· 

behaviour. 

2 ·1..:1 The 'Analytical_ 3iolo::;v' of Somnerhof 

An early attempt to t;ive a rigorous behavioural definition of the 

concepts of purpose a.'1d goal-seekin;:; in biology and psychology Has 

made by Sommerhof in his book 1 Analytical Biology 1 
( 1950). SOITll-:lerhof 

considers an environment Hhich has a number of states, a regulator 

(controller) H!;ich ~lso has a number of states, and a set of outcomes 

which are determinec by a corabi2ation of the environment's state and 

the controller's state. So~ne of th-2se ou.tcor:.:es are satisfacto1'1y o:J.d 

satisfy il 'focal condition', Hllilst ot:ters are not. Soo!·-:erhof proposes 

that goal--seeking may be said to occur '!'I hen there is ! directed. 

correlation' LetKecn the states of the~ controller and those of the 



envirorKJent such that the outcor.w is satisfactory. He further 

proposes a 1 degr·ee of goal-directedness' in terms of the set of 

states of the environnent for Hhich thE:~ outcome is satisfactory. 

SoDmerhof qualifies his definition Hi th some constraints 

des5_gned to ensure non-triviality of the r:;oal-directedness. Tl1e 
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state of controller must not~ in itself, ensure the satisfactoriness 

of the interaction - that is, the controller must, in some sense, 

'take note' of the environnent. The state of the controller and 

that of the environment Dust be 'episternically independent'- that is, 

there must not be a natural physical connection betvTeen them such 

that the interaction is bound to be satisfactory. Finally, single 

occurrences of satisfactory interactions do not shm·1 goal-directed 

behaviour, but the directed correlation must exist betvreen a number 

of environment and controller states. 

Although Sommerhof introduces the term 'state' of the controller, 

this. is irrelevant to his criterion for goal-directedness, which 

depends only upon the satisfactoriness of the interaction betv.reen 

controller and environment, and hence is purely behavioural. In 

control-theoretical terms, what he proposes is a 'sensitivity analysis' 

(Radanov:ic 1966) of the interaction between controller and environment, 

with goal-directedness being evinced by insensitivity of the satisfactor­

iness to disturbances of the environment. 

Sommerhof's definition clearly applies to a simple servo­

mechanism, and he gives a gun-aiming servo as an example of a goal­

directed system. The constraints which he places upon the nature 

of the behaviour in order to distinguish between the 1 goal-directedness' ~ 

of the simple servo, and the 'non-goal-directedness' of, for example, 

a pendulum, do not appear to be essential, and detract froD the main 

argument. The 'physical law' relating position and acceleration of a 

pendulum is due to its constrained motion in a gravitational field, and 

~s thus a function of the structure of the pendulum and its relationship 

to its environment. Simill.arly, the corresponding la•,.; betHeen the 

position and acceleration of the armature of a servo motor is a 

consequence of the structcr'e of the servo system and its connections 

to a load. Any behaviour of any system, no matter hoH complex, is 

physic~lly deteroined. 

behaviour of pendulur;;s Has equally as mysterious as 'ttJ<:rt of livini~ 

creatures. It is true that J.ack of understanding of the nechanism 
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of a phenomenom may 1ead us to give it undue "Ieight and inportance, 

but this cannot form tbe basis of a logical distinction. 

Tile main critici.sw of Soramerhof' s approach is that it does not 

take into account the dynamics of adaptive behaviour. A controller 

does not generally cl!ange its state instantaneously accordinz to the 

state of the environment, and the manner in Hhich it chan::;es state 

is a flli'l.Ction not only of the im:;ediate environment but also of its 

previous states. It is this sequential dependence, or me1.1ory, 

inherent in the behaviour of nost adaptive systen:s, v<hich gives rise 

to transfer effects in train ins, and, indeed, to most of the corn)'lcxi ty 

of adaptive behaviour. 

2.1.2 Asi1bv 1 s Formulation of 'Directed Correlation' 

Ashby (1952) has given a set-theoretic formulation of Sommerhof 1 s 

definition of goal-seeking bebaviour, Hhich is itself an advance in 

the theory of adaptive behaviour. Ashby considers a set of disturbances, 

D, which cause some changes in the environment. He defines these 

changes by mappin;:;;, 9, from D into the set of possible values of the 

parameters of the environment, E. A disturbance, d E: D, at time t , 
0 

produces'an effect in the environment, e E: E, at time t
1

, such that -

e = 0 (d) (2.1) 
The parameters of the f;oal-seeking systeo are similarly specified by 

a set, F, and its behaviour is a response to d, v1i1ich may be 

represented by a oapping, J.l, f-ror.·1 D into F, such that f, the system 

response, satisfies -

f = J.J(d). 

vlhen the disturbance has evoked responses in the e::.:vironraent and 

goal-seekinr; systera, C\l(d) and ).J(d) respectively, then these tHo 

values interact to give some final outcome at tir:1e t
2

. This 

corresponds to a mappin6, n , frora the product set, Ex F, into Z, 

Hhere Z is the set of all possible ontcones vihen F.: and F range 

uncol"relatedly over all their values. \1'i thin Z is a sub-set, G, 

of outcomes that sati~fy the focal condition and are satisfactory. 

Soooerhof 1 s 1 directed correlation 1 is noH defined CiS being sho;-,rn 

by ).1, in respect of D, n jJ and G, •.c: ancl only if -7 , l ... 

v,=. E.: D 
' 

n(9(d), p(U.)) c G Cz.3) 
thccn: is, for <my distu::."bance tile outcome is satisfactory . 

.t•. shby r.;ilnipulates this result into a neater, and uore intuitively 

satisfying, foY'm, using bis develop:11ent of the set-theoretic terr;inologies 
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of Bourbaki and Riguet (Astlby 1962). In this notation a fu.:.'1ction, 

such as <P, stanclin:::; on its om1 denotes the sub-set of the pr·oduct 

set betHeen its domain and range Sclch that ti·,e functional relationship 

lS satisfied. 
_, 

The inverse) <ll .L, denotes the correspondin:; sub-set 

of the product set bet:-.reen its range and domain. The conposition of 

two such sets, A c::I x J e<.nd B cJ x K, is denoted by A.B~ and is a 

sub-set of the product set I x K, such that -

....J(i,k) £ i\.B, :;J j : (i,j) sA, (j,k) s B 

- the set J is eliminated by this composition. 

Using this notation, Ashby remarks that the e>:pression, (1. 3) 
for directed correlation c~'1 be simplified algebraically by noting 

that the set specified by -

C"'#d £ D, (~(d),Jl(d))) {2.~ 
-1 

- is identical Hith the set Jl.<!' , Hith D eliminated by composition. 

The criterion for directed correlation may be vr.r•i tten -
-1 "f/d sD, (q> (d), JJ(d)) c T1 (G) 

- which is thus equivalent to -

Jl.~-1 C: 11 -l(G) 

- which in its turn may be re-written 

Jl C:: T1 -l(G).¢ 

f?.SJ 

This is an elegant formulation of Sommerhof's definition of goal­

directedness, in which the essential features stand out cle2~ly and 

unnecessary use of the symbolism of differential calculus and continuous 

variables is avoided. In particular, althour,h Ashby introduces times, 

t
0

, t
1 

and t
2

, copied from Sor.<merhof's original argur:1ent, they are 

conpletely irrelevant and do not appear in the final result. 'I'he 

'directed correlation' Uefining goal-seeking is presented in a 

completely abstract form as an inclusion relationship betHeen sets 

forming the domains and ranges of certain mappinss. 

Stripped of the time-dependencies, the definition appear·s so 

simple as to be almost trivial. Indeed, if one labels the 

parar..eters of the environr.1ent by the disturbances that cause them 

(or consider the pararr.eter of the controller to re fleet that of 

the environment rather than that of the disturbance), then 9 becomes 

an identity Dapl;ing, and tile criterion is merely: that 

s u, n(v(d))c G 

- Hhich states that the evaluation of tl1e controller 1 s ;;olicy is 

uniformly satisfactory. hm·;ever, the simple and clear notation is 

in itself ar. invitati.on to introduce a state variabJ.e into the 
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controller's para:neter mapping. For exar:1ple -

f = n+l 
f!(f d ) 

n • n 

- v.rhich extends equation [i. .~ to take account of an h1portant aspect 

of the behaviour of the controJler in tir:1e, previously obscured by 

thelrrelevant introduction of t etc., that an adaptive controller 
0 

E_cc~ satisfactor'Y throur:;h its experience of the environment, and 

may possibly become unsatisfactory again - adapt ion is a dvnar:!_:h_<:-_ process. 

In summary, Somrnerhof' s analysis is a considerable step to;,rards 

a rizorous definition of goal-directed be11aviour, but does not take 

into accow1t the dynamics of adapt ion. Ashby's set-theoretic 

formulation of this analysis is a further advance in clarity of 

. exposition, and enables the defects, and possible extensions, of the 

original definition to be clearly seen. 

2 .1. 3 J3ehavioural Definitions of Adaption in Control Engineerinr;;_ 

In the 1930's, about ten years after \:atson laid the foundations 

of behaviourism is psychology, enr;ineers such as Bode (1960, revieH) 

and l!yquist (1932) Here establishing tectniques for the analysis of 

the structure and behaviour of automatic control systems. Requirm~ents 

for such systeDS to 9perate Hith plant whose characteristics Hel"e not 

knovm in adva..11ce, e.g. drives with varying frictional loads, led 

engineers in the 1950s to develop self-optimizing controllers Hhich 

changed their parameters to maximize their performance. These controllers 

Here termed 'adaptive', since many of the concepts in both standard 

control systems and self-opti!:Jizin~~ controllel'S Here derived by analogy 

with biological systems. 

It is interestinr; to note that control engiaeers reached 

sirailar disae;reements over the definition and aiJ~lication of the term 

'adaptive 1 as have };ehaviour&l psychologists. In a panel disctLssion 

among many of the eminent pioneers of adaptive control, the position 

was summarized by the statement (Freeman 1963), 

'the best Hay we can define &'1 adaptive system today is to 

ask 500 people and HG 1 11 get 500 different a11sv;ers and perhaps 

if v.re ask the sane ]Jeople the next day He'll get 500 additional 

It is clear on revle'.,r::.ns the controversy that, aJ though eapineers 

Here trying to ac:1ieve adaptive behaviou::., in the sense of a cha:::t~ins 

control policy dependent u:;;on the environnent, tl1e critic isms as to 

vrhether a controller iUc>, or H23 not, adaptive were r~:ade largely on 
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structural grolli~Js. Thus, .'\<:J.ib.le ( 196 3) clain~s that the l·ioe and 

Hurphy (1962) 'self-adaptive' controller is not adar;tive because 

it only identifies pl2nt par<lmcters on-line, 1,1hilst 'sc<J.rch <J.ncl hill-

climbing' a1'e necessary for· true adapt ion. Since control engineers 

are primarily involved in the design and fabrication of control 

systems, it Has natural for the engineer to t·erm a controller 

'adaptive' if its structure had been designed to be so, even if its 

actual behaviour Has extremely mal-adaptive. 

Occasionally a distinction betHeen behavioural and structural 

definitions is noted, but not carried to its logical conclusion. 

For exarnple, Clark (1963) remarks that most attempts to define 

adaptive systems -

'seem to be of an anatomical nature ... in terms of the physical 

features of the control system itself ... I feel that the definition 

might better be based on a functional definition'. 

He goes on to suggest -

'where we have a plant vlhose dynamic characteristics vary in 

tine ... if we can design a controller that will solve our problem 

to the satisfaction of all Hho are concerned \·lith the problem, might 

it not be a functional definition of an adaptive control system'. 

Hm-1ever, although such functional, or behavioural, approaches , 
vrere proposed and distinguished from s·tructural connotations of the 

term 'adaptive', the vagueness in the general use of the term 

continued and came to be accepted. Truxal ( 196 3) , in revie-vJing 

the field of adaptive control for a major Congress, re-iterated that 

an adaptive control system Has one -

' desip;ned from an adaptive vietvpoin t', 

and stated that -

'Hhile the literature of control theory is replete with 

arguments re the definition, proz,ress in adaptive control theory 

has not been impeedecl by tile failure of purists to reach universal 

agrecnent on an appropriate definition'. 

The attitude engendered Ly failure to distinr;uish betHeen structural 

and behaviouPal comwtations is sunmed U"D bv Floren tin's ( 1962) 
... ~',.,. 

Wr"'J rer:1ark at the end of a paper on an adaptive control systen that, 
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'to be ordi~wry nonlinear feedback. It seens thu.t any 

syster~utic foruulation of t:1e adaptive control In~obleu leads to 

a meta-DrolJJ.er'l 'dhich is not adc-mtive.' 

2.1.4 Zadeh's ')efinition of ~'?.!ivity' 

The. distinction beblcen structural and behavioural connotations 

of the ter;n 'aclapt ive 1 •ms first r:ade, :i.n a control 

context, by Zadeh (1963) in a shor·t pa;_-,er· entitled, 'On the definition 

of adaptivity', Hhicll proposed a forr:1al and completely behavioural 

intension of the terra. He notes that ·· 

'Host of the vagueness surroundine the notion of adaptivity is 

attirbutable to the lack of clear differentiation betv;een the external 

manifestatior;s of adaptive ber1aviour on the one hand and the internal 

r:1echanisrns by Hl1ich it is achieved on the other' • 

He soes on to propose a c;1aracterization of a:l.aptive behaviour, stating 

that, -

'our premise is that all systems are adaptive, and that the real 

question is Hhat they ar··e adaptive to, and to 'dhat extent'. 

Zadeh frames his definition, as does Sornmerhof, in terms of 

continuous functions and functionals. He considers a system sub:ject , 
to one of a set of specified input time functions, u( t), defined on 

the semi-open interval, t2:_ 0. A family of such inputs, which may 

have a probability rJeasure defined over it, he defines as a ~ce, 

Sy. For each source, he assumes that there is a perforr>1ance criterion 

such that the behaviour of the system Hhen connected to the source 

(that is, Hhen receiving an input belon;:;ing to the family of inputs 

which defines the source) is, or is not, accentable. 2adeh then 

defines 1 <J.daptive 1 in these terms, -

'A syste::J is adaptive with res~ect to a family of sources, ( Sy), 

and a criterion of acceptability, if it performs acceptably v1ell VTith 

every source in the fariiily (Sy).' 

This definitior1 is very close indeed to that of Son::nerhof, and 

lack of reference to the latter illustrates the neglect of his Hork 

Hhose PUblication proceeded that of Zadeh by some thirteen years. 

Zadeh d8es not atte:.Jr)t to give the terr:1 'adaptive 1 an absolute meaninz, 

and exclude trivial cases, but states quite explicitly, -
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'Under this definition every syste:n is c~C.:.aptive Hiti·l respect to 

some set of sour'ces and perfornance criterion. Thus what matters 

is not Hhether the syster:i is adaptive, or not, but Hhat are tile 

sources and performance criteria to Hhich it is adaptive.' 

The sarf\e criticism ~~~ay be leveled at Zadeh's definition as at 

SorG<~erhof's, that he does not take account of the dynamics of 

adaptive behaviour. Indeed, this possibility is excluded by defining 

inputs on the interval, t.::_ 0, rather than some finite interval. Zadeh 

takes into account the time variation of performance with learning only 

through the _suggestion :hat, ··-

'it is appropriate to use a performance function \·rhich assigns 

low Height to the perfm'Tnance :L"'"l the initial stages of the learning 

process.' 

It is interesting to riote that Donalson and Kishi ( 1965) in a 

textbook on automatic control, give a version of Zadeh's definition 

of 'acceptability' in Hhich they modify the input sources to be defined 

over a finite time interval. The reason for this is not stated but 

is inherent in their discussion, for they require an adantive controller 

to modify its control action in an attempt to becone an acceptably 

performing system. The acceptability of performance, in their structural 

definition, becomes something monitored by the controller, and hence , 
regularly evaluated. This chane;e of meaning, from an overall evaluation 

of the controller's ability to cope with its environment, to a local 

evaluation of Hhether it is, or is not, yet coping, it very important 

in the context of adaptive dynamics. Hhilst their modification was 

necessary to the formulation of a structural definition, it could 

equally form the basis of a behavioural definition in which performance 

is monitored not by the controller, but rather by some outside observer. 

Both Zadeh's and Donalson and Kishi's definitions of 'acceptability' 

are important and necessary to a theory of adaption, but a distinction 

must be made between them. In this thesis, the term'acceptable' is 

applied to tl1e interaction betHeen controller and environment in a 

global sense, similar to that of Zadeh. \·!hilst the term 'satisfactory' 

is used in a local sense equivalent to Donalson and Kishi's 'acce~t-

ability'. 

The adaptive contr·ol syster:1s studied in engineerin_r; have not been 

very complex, and, typically, they have had the property that either 
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they are able to adjust their' parameters to a level suitable to their 

envh'om-:ent and Daintain tl1e1:1 tlwr•e, or t~ey are not, and the ones 

i'lhich are not able to do so tend not to l::e reported. /,ny further 

complexity of behavioul', such e1s so1netimes adapting successfully and 

at other times not, or becoming satisfactory for a ·.-~hile and then 

becoming w.1satisfactory again, would be r·egar·ded as a defect and 

reT:Joved if possible. Equally, complex behaviour based on inter-

actions between environments, such as success in adapting to one 

environment ·only after having adapted to another, >·Tould not be 

noticed since the parameters of the controller would usually be 

reset upon changing the environDent. Thus Zadeh's definition in 

terms of total success or total failure of adaption, for all time, 

is comprehensible in the light of engineerinr; experience Hith 

ad9-pt i ve systems. 

In psychology, on the other hand, experience has been of 

.systems -whose level of complexity engineers are still many years from 

synthesizing. The human operator most certainly does not have a 

dichotomous capability in most tasks, and his perforL1ance of one is 

greatly affected by his experience of others. All animals show a 

similar complexity of behaviour, and it is interesting to compare 

some definitions of 1 learning 1 by behavioural psychologists with those 

more formal definitions discussed so far. 

Guthrie (1952) gives a very simple definition -

'These changes in behaviour •,rhich follow behaviour He call 

learning'. 

Hunter (1934) attempts to exclude some behaviour, Hhich is due to 

changes in peripheral structures, from the definition -

1 \-le may say that learning is taking place Hhenever behaviour shoHs 

a progressive change or trend Hith a repetition of the same stimulating 

situation and .when the change cannot be accounted for on the b_asis of 

fatigue of receptor and effector changes' 

McGeoch arid Irion ( 1952) require a change in the evaluation of the . 
behaviour, rather than merely a change in the behaviour itself -

'Learning, as He meas'-tre it, is a change in perfon:1ance Hhich 

occui's UI1der ccndi ti-:ms of practice 1 • 

ThoPpe (1955) requir·es ti1ese chan2,es to be adaptive -

'lie car, define learning as that process '"hich manifests itself 

by adaptive chane;es in individual behaviour as a result of experience'. 



.. 

31 

Hhilst Bush and l·losteller (1955) deliberatel~· exclude this 

requirement -

';·Je consider cmy systeT':at:i.c cnar:.ge in behaviour to be learn:'lns 

whether or not the change is ac'iaptive) ded.rable for ce:ct0:t'1 purposes, 

or in accordance with any such criteria 1 • 

There is one important aspect of adaptive behaviour, comTl!on to 

these diverse definitions, Hhich does not app0ar in Sor:1nerhof 1 s or 

Zadeh's formulations, .::nd that is the nature of leal~ning as a cl~m[;e 

in behaviour with practice or experience. There is one engineering 

paper Hhere ·the essential nature of the dynamics of adapt:Lon is cle2.rly 

stated. !1artens (1959) has proposed a definition of 'r;;aciline le.:nming' 

which is intended to prnvide a test to determine 1,rhe"che1' learning 

really does occur. He requires that a machine be able to adapt to t\;o 

mutually incompatible criteria. 1'hus, in tel'l.lS of Zadeh 1 s def5_n:i.tion, 

the controller vwuld have to have an acceptable perforrn.:::nce vd th ea.ch 

of tHo sclil~ce/performance-cri terion pairs, such that it is physic-s.1ly 

impossible for a system with a fixed control strategy to have c.Yl 

acceptable performance Hi -t:h both. 

This distinction is not as fundamental as· it might alJ_pear, si!1ce 

it is clear that the nachine r:1ust have some means of distinsuishing 

betHeen the tHo source/perforr:!ance-criterion pairs, and if this 

information is considered as part of the source then the adai)tion is 

once again trivial on :1a1~ten 1 s criterion. 

is the rationale behind the situation Hhich :Iartens r'equircs to h.:: 

established as a criterion of real learning. This is such that the 

controller cannot be adapted to both objectives at the sarne but 

must become adapted to one after being adapted to tbe other', and vice 

versa. This connotation of ada::->ti ve dynamics i;c; clec>...;." enough i:1 

structural definitions cf adaptive cm1tr'ollers, and in ti1e :lE:finitic:1s 

of learninz by behavioural psycholo;:;;ists, but it seems to have been 

omi tt ad in more for'mal analyses of adaptive behaviour. 

The objective of the theoretical studies described in the 

rer;iainder of this chapter has been to extend the purely bch.:l'.<icural 

approach to the definitio!"1 of adaption p:::':Jposed by Sof1T1-:::rhof e.:-Jcl Zad~?h 

to a taxonomy of adaptive J-.--e:la.viouY' Hhich takes full acco:.1nt of the 

.relevant to trai:: :ing. 
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2. 2 An Axio':1atic Eusis for a '.l'heorv of :\dapt ive i'ieLav:i.our ------ . ------~---------·--------

Given a situation •hich is to be r'egardeC. as that of a controller 

interacting Hi th an environnc:J.t, ti1cre are a nu;nber of cecisions to 

be taken before a discussion of the adaptivity of tLe controller cc:m 

begin. Hithin the theory of adat,tion these decisio;1s have to satisfy 

certain logical constr<J.ints, but they are otherHise arbitral~y. 1-iithin 

the context of human or animal behaviour, and its function, or of 

adaptive control practice, these decisions will certuinly not be 

arbitrary, for the utility of adaptive concepts in specific situations 
·. 

will depend on them. Some of the decisions 1-:ill be obvious and 

mmentioned, and others 1-·lill be made explicit. Much of the early 

controver'SY over conflicting usage of the term 1 adaptive' in engineerine; 

arose because the 'obvious', tacit decisions of one engineer 'dere not 

those of another~ or because disar:;reement over specific decisions Has 

wrongly ascribed to the definition of adaption itself. 

In attempting to quantify and formalize the application of the 

term 'adaptive' in psychology, it is reasonable to expect that confusion 

is likely to arise over similar issues, and particular emphasis is 

placed in the follm,ring discussion on a clear exposition of those 

aspects of adaption Hhich are arbitrary and depend on agreed definitions. 

In the development proposed here, the arbitrary decisions are localized 

at the point where the interactior, between controller and environnent 

is divided into 'tasks 1 , but in practice such extreme localization is 

unlikely ·to be apparent and the arbitrariness is spread more thinly. 

Although the terminology used, of controller and environment, 

applies particularly well to perceptual-motor skills,.the theory 

applies, and is intertded to be applied, to all aspects of human 

behaviour involving purposeful interaction with sone other system; 

the illustrative eXaT'1ples are chosen to emphasize this. It also applies 

to the analysis of any form of adaptive behaviour by animal or machine, 

and represents a unified approach to the study of adaptior1 and learning. 

2.2.1 The Adaptive Control Situation -------·-------- -
The three elenents of a control situation are a contr'oller inter-

acting with an env iro1lr1en t In bi6l.op;ical syste:;:s none 

of these may be v:elJ.-·defined, and the l'easonable <J.ssisnner..t of roles 

and purposes is the subject of experimental st11dy and theoretical 

analysis (Guines 196f, I;.339). Eve:1 man-made systems do not necessarily 
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split into controller and environment in an obvious Hay, c;:3pec5.ally 

Hhen the 1vhole systen L~ synthetic and ccntainc> local regulatory 

control loops. In the case of the lr..JT!Jan op2Nltc>Y·, a sinil<.',r· con:--;:i.der-

ation applies, on the motor side, to such systems as the spinal 

reflexes controlling muscl8 contraction, and, on the perceptual side,, 

to the dar·k/lir;ht adapt ion of tl1e eye. In consic1erinf;; leal.'ning 

Hi thin the central nervous s~rstem, these per·ipheral syster!!s are often 

better thouzht of as part of the 'envirom:-:ent' . 

Hm.,rever, the separation hetHeen controller and environner:t can 

generally b~ a~reed upon, and they are, for the purposes of the 

theory, defined as black boxes Hi th in rut and output suc}l thcct the 

inputs of one are the outputs of the othet·. The :Follm .. ,ing examples 

of envir-onnents for human controllers :illustrate this concept tasether­

~-<ith the possible associated problens -

(i) The environment is a vehicle on a road. Its inputs and 

outputs clearly depend on whether it is being driven or beins serviced. 

For a driver, the inputs to the envL-:>onr:1ent Hill lle through the st-2eri.n~: 

wheel, clutch, etc., and the outputs fror:, it vJill be visual lr,1ages of 

the road ahead, speedor1eter, and so on, together v.Jith acceleration 

forces, etc. 

( ii) The envj_ronnent is a line figure in tHo dimensions subject 

to the transformations of l::uclidean seometry. Its inputs an:: usuaJ.ly 

regarded as mati1ematical operators transfonninr; the fizure, anci its 

output as a mathematical description of the transformed fis,cn'e. Cons~~der--

at ion of input/output at this level of abstract ion is an example of 

neglecting peripheral ci:;,T.ar.Iics, and can create problems. Although the 

mode of presentation is r:1athematically irrele-vant, a figure JWesent<~d 

pictorially may have an entirely different psychological effect fr·or:; 

one presented as a set of incidence relationships. 

drm-6.1!g a transformed figure is ree;arceci as part of the environment 

of the human controller, or part of the controller itself, is an 

arbitrary decision) but it wi.ll bo.ve son.1:.:: effect on t:r;e analysis of 

tbe learninz process in geor:<etry. 

(iii) The envirom;~ent is ar:c:ther lnr:1an, subj ec.t to n2.turaJ. 

lan~~uase cor:1murd cation. Its inputs ond outputs iT.ay be thougbt of as 

linguistic utteranc•:~s, subject to the saH1C consider1:::J.tior.s as in ( .. "\ 
\ ll;. 

syster:1s, it is interesting to note that nacl:i:1es are also avaiJ.abls 

for intePaction Hith envircn:nents sii:<ilar to th~sc th::'ee. The first 
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form of servo-mechanisrfl v-1ith similar characteristics to the human 

operator. The second is a typical environrcent for Ne>-:ell, ShaH 

and Simon's (1959) General Problem Solver~ and the third is within 

the scope of ileizenbaum's (1966) ELIZA, although the level of 

conversation so far has been fairly mundane. 

The purpose of each of the controllers in the environ.'Tlents 

above may be defined i1\tensively, as motion from one location to 

another, or a proof that tHo angles are equal, OX' persuasion to 

perform some act. Hov1ever, from the point of view of systei'1 behaviour, 

it is not necessaPy to, define the purpose but only to give some prescrip­

tion for saying when it has been achieved - that is, some perfomance 

measuPe is PequiPed. 3ommerhof and Zadeh both define performance 

measures in numerical terms, and often they v;ill be in that form, 

but, in fact, the only feature they use of the measures is a dichotic 

one - is the controller's performance up to the required standard OX' 

not. Thus the minimum requirement for the definition of a controller's 

puPpose is a decision procedure which determines, at least occasionally, 

whether some segment of the interaction between controller and environ­

ment has been satisfacto£Z or not. 

2.2.2 Se~entation of the IntePaction into 'Tasks' 

For purposes of the behavioural definition of adapt ion, we are 

concerned with the manner in which the evaluation of a contPoller 's 

interaction with its enviPonment chanr;es as a function of that inter-

action. The expected behaviour' of an adaptive controller when coupled 

to an e:wironrnent is that, if its conti'ol poicy is not satisfactory 

for the environment, then it will eventually become so. Thus it must 

be possible to set:,T.lent the interaction betT,;een controller and environ-

ment into at least two phases, in the first of which it is not satisfactor7 

and in the second of which it has become so. 

This segmentation of the interaction betHeen ccntroller and 

environment is inherent in the concept that an ada~tive controller 

'becor:1es satisfactory(, rathel~ than just 'is satisfactory', and is 

fundamental to the analysis of adaptive dynamics. A further dynamic 

satisfactory onct:; it ha~..; Lecor:1e so; that ls, it should rea.ch a stc.bl;.3 

condition of sati::,;factoriness. 

The se~~1ncntation :r.s clearlv rl-"~f:~scnt :tn Sorir:;erhcf' s cor~cept of 
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a 'focal condition' \:hich ::1~1st be a~ctain8d, but he is only concerned 

with 11hether it is attained and not ',v-i tr1 \-Jhat happens before or after-

v;ards. T~1is or::ission probably occurs Lecause his theory develops 

from a cosnideration of such problems as firing a gun at a target, 

where the line of sight has to satisfy a terminal, or 'focal', 

condition only the rnonent of firing. Zadeh, on the other hand, 

althoush his definition stronely resenbles that of Sommerhof, defines 

satisfactoriness over a se::1i·-infinite interval rather than as a 

terminal cor1di tion, and raakes s;::me concession tc the dynanics of 

adaption by suggesting that the performance criterion should attach 

less Heir:;ht to ti1e early sta.ses of learning . These t;.;o, taken 

. together, imply that the controller is expected to become adapted, 

and is not 'acceptable' t:L.'1less it renains so. 

In order to consider controllers i·rhich becorae satisfactory and 

the relapse, or to consider the effect of learning in one environment 

on later learning in another, it is necessary to extend the basic 

segmentation of the interaction which is inherent in the concept of 

becoming adapted, and analyse the changinE, evaluation of the controller's 

performance in greater detail. Donalson and Kishi, in their unmarked 

variation of Zadeh's semi-infinite interval to a finite interval, do 

just this, primarily because they are considering the structure of a 

controller which is monitoring its own behaviour. The introduction 

of a defined time interval as a criterion for ser;menting the inter­

action is unnecessarily restrictive, hoHever, and the follo,,Jinr; 

definition of a 'task 1 is a weak extension of the segmentation ,.,,hich 

is sufficient to form the basis of a taxonony of adaptive behaviour. 

2. 2. 3 Definition of a 'Task' 

A task is a segment of the interaction bet1-1een controller and 

environment for which it is possible to say whether or not the 

controller has perforned satisfactorily. Equivalence relations betHeen 

tasks (so that it is possible to say, for instance, that an interaction 

consists of the sa~e task repeated several times) are arbitrary, but 

will gener·ally folloH the natural relationships betHeen different types 

of controlled system. A task will typically consist of some specification 

.of pl<:mt paraJ:eters, initial conditions and period of interaction, 

together Hith a tolerable performance level above Hhich a co:1trol 

policy is considered satisfactory. 
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\"lthin the theory of adaption a 'task' is restricted only by 

tne necessity for so::1e procedare to determine Hhether a particular. 

interaction betv:een controlle1:· and environr:1ent Hhich constitutes a 

task is, or is not, satisfactory. In practice, it is convenient 

to choose the set of tasks in such a Hay that the segmentation of 

the interaction into tasks is unique. !my interaction TT'.ay then be 

rer.;arded as the perforr1ance by the controller of a set of Hell-defined 

tasks. Since the theory of adaption deals only Hith these tasks and 

the satisfactoriness of tne controller in performing them, it is 

obviously of practical importance that they should be chosen to give 

adequate information about those aspects of the adaptive behaviour 

which are of interest. These aPe meta-theoretic considerations, 

however, and there is no postulate that any system behaviour can be 

mapped uniquely onto some member of the free semi-group generated 

by a set of tasks. The utility of the t·heory in any problems of 

practical interest is an empirical finding, and hence the informal 

justification given for the steps taken so far; and the examples 

given later. 

The segmentation of an interaction into tasks may be performed 

in many Hays - the time of interaction LetHeen controller and 

environment may be fixed - a criterion for the terr1ination in terms 

of the behaviour itself may be given - the interaction may be 

terminated as soon as a decision can be made abou.t tl!e satisfactoriness 

of the controller. The 'termination' itself may be purely conceptual, 

a convenient division of a continuous sequence o·f behaviour into 

separate sub-serJuences, or it nay have a physical reality in that the 

plant is modified at the terr:lination of a interaction. 

The folloHing sections contain tHo exa-:-aples of the segmentation 

of an interaction into tasks, and the second example includes a 

description of a simple adaptive system Hhose behaviour is used latel' 

to illustrate the definitions. 

2. 2.4 A Set of Tasks for a ~ngl~ut, Sinr;le-Clutput System 

Consider the stable~ noiseless, second-order plant sho"\\rn in 

2-1 , COl1sistint; of t\-;o inte~~rator·s in cascade 1·1ith feed.-

Its na~aineters ar·e the rrain ~ 
- 0 -

natural 

frequency and dampin.s ratio. 

to th,se three paramet8rs anct to the initial values of the intezrators, 
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and a decision procedure s-uch that an i~1te~caction is satisfo.ctory 

if~ and m-.ly if, -

t + rr 
" 2 ~2 fo (f(t-t

0
) x( -c)J d+ 1 - ,_ < ;~ 

T t 
0 

- '•:here t is the time at ',Jhicll the interaction starts, x( t) is the 
0 

output of the plant, and E >8 is sone tolerance on the r.m.s. error. 

To test the adaptivit::,r of a contrclle:c to the nla:1t and de;::and 

conditions s-pecified by such a task, it is connected to the plant and 

the demand signal cycled Hith period T. After every cycle the task 

is complete, and the r .n. s. error during that cycle determines Hhct!1er 

or not the controller has performed satisfact0rily. If the controller 

is adaptive the r.m.s. error in each cycle might 0e expected to 

decrease, and hence (by suitable choice of E) the controller >lill be 

unsatisfactory initially, but after a nurr:ber of repetitions of the 

task it Hill becone satisfactory and remain so. 

;,!any othor forms of adaptive behaviour might arise, hoHever - the 

controller could be al1-:ays so.tisfactory or ahrays unsatisfactory - it 

could start by being satisfactory and become unsatisfactory, never 

settling at one or t1)e other. If other tasks with different values 

of the plant paraneters or demand signals Here interpolated, then the 

range of possible behaviour v1ould become far greater still. It is 

the description of this variety of possible behaviours which concerns 

the behavioural theory of adapt ion. 

2.2.5 Example of a Set of Tasks for an Adaptive Pattern-Classifier 

The tHo integrator environment described in Section 2.2.4 is a 

typical continuous control system for both the human operator and 

automatic control syste~s. Tile analysis of adaption througr1 segment-

ation of tbe interaction between controller and environnent into 

1 tasks 1 , hovrever, applies equally well to discrete, problerr.-solving 

environnents, such as those involved in pattern-reco,sni tion. The 

follmling example of a siPlple, perceptron -like pattern-classifier, 

learni;13 to dichotor:1ize pac:terns represented by binary vectors, not 

only exemplifies an ul ternative for::1 of task, but also demonstrates 

sufficient variet:y and complexity of adaptive behaviour -ro illustrate 

later definitions of modes of adapt ion. 

The pr·oblei:~ of the pattern-class:i..f:ier' is to assign each of the 

patterns in an in~;ut strec.m to one of t·,,,o categm"ies. Durir;;z the 
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lear-nins phuse, it is supplied vd.th infornation (r>eHilr>d/punishment) 

as to whether each of its a.ssit::nments is correct, ru!d uses this to 

change its categorization policy. T1ms the envir-onr:1ent of the machine, 

as sho';m in Figure 2-2 , consists of a generator of patterns at its 

input, an acceptor of assiL;mnents at its output, and a source of 

performance feedback at its reward/punisl;ment :Lnput. The performance 

raeasure for a period of interaction will normally be based on the 

corr-ec·tness of its decisions, e.g. the proportion correct. 

A typical 'task' for the pattern-clv_ssifier may be defined by a 

set of input patterns, such as pattern A followed by patternB, <<hich 

r.1ay be >a'itten - T
1 

= (i3,A), together with a performance criterion. 

There are four possible, non-trivial, performance criteria, that the 

performance for T1 is satisfactory if - the category to which A is 

assigned is correct - that to which B is assigned is correct - either 

is correct - or both are correct. Given a sufficient set of pattern 

sequences defining tasks, any stream of input patterns may be split 

up into segr.Jents corresponding to these tasks, and hence the interaction 

between the pattern-classifier and its environment may be segmented as 

previously described. 

This form of pattern-classifier has been used in the present 

study to elucidate some of the phenomena of adaptive behaviour, whilst , 
the more continuous control task described in Section 2. 2. 4 typifies 

another eX]!erimental situation used in the study to investigate human 

and machine learning under various training regimes. 

2.2.6 Probability and Indeterminacy in the Definition of a Task 

It has been tacitly assumed in the Section 2.2.4 that the 

initial conditons of the plant may be dropped from the definition of 

a task, even thouzh this makes the satisfactoriness of the interaction 

inC:etel"ninate. It is often the case that certain potential parameters 

of a task nay be regarded as irrelevant to its description, because 

they do no-r appreciably affect the outcome of the decision procedure 

for evaluating the perforr.1ance of the controller in the task. In . 
the last exar.1ple, if T is lont: compared v:ith the per·iod of the plant, 

then the initial conditions Hill have very little effect on the 

pcrfCJ:::':'1ance intez.ral of .inequality G .1')) . In any practical application 

·there ;-;ill alv1ays be an effect of experi~1ental error on the clecisioli 

procedure, and inC:eterminacies havinr; effects COD]!urabJ.e v:ith this ma.y 

be neglected. 
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Hhich G.o affect the outcome of the decision proceclu!'e - for exdrr:;)le., 

a task rnieht be defined, in a sir-!ilar '''2Y to Zad2li; s 1 sc)urcc', as 

a set of fixed nlant nar;~u>cter•s too ether 't:i th a class of poss:Li1le - ~ --' ______ ., 
der;1and si[;Dals, perha.ps <Iith a probability measure. 

as to a control.ler' s satisfacto:cine ss tlh~ll beco1:1es ::ndeterminc:,t<: or' 

may be based on an ense:nble mea sun~ of its per'formanc::; - for cxar;•ple, 

the maxii11Um or' expec-red r.m.s. error. Indeterminacy may Le accepteci 

as a th.i.r'd forr.1 of evaluation, or may be re~noved J:-)y dP:cidin,g that any 

unsatisfactory evaluation in an ensemble gives rise to an overall 

unsatisfactory evaluation . f-,.ny ensemble evaluation, although 

. acceptable in theory, leads to acute experinental problens in the 

evaluation of adaptive be;1aviour, hov;ever, because it is irr:;_~ossible, 

in general, to reset the state of an ada;)tise system c:nd repeat tbe 

same experiment a number of times. Atte~0ts are made to overcome 

these problems in practice by the use of pop.tlations consistinp: of 

different adaptive systems assuned to be exe~plars of a sint;le 

system. This has obvious dangers in itself, but is again a rr.eta-

theoretic proceduPe. 

Thus, the concept of a 'task' encompasses specific descd.pt.ions 

of the possible rang~ of controlled systems, based on distr·ibutions 

over plant paraneters, de1:\and signals, disturbances and so on, and, 

tr.ti'ough the seGmentation of interactions~ it enables the behaviom~ of 

a controller coupled to an environment to be regarded as the per forr:12.nce 

of a sequence of tasks, for each of w-hich it is; or is not, satisfactory •. 

A calculus of adaptive behaviour based on these concepts may bs use(.l 

to evaluate the relative adaptivity of various controllers only in 

terns cf their ultimate satisfactoriness for given tasks, and the 

path-length (number of tasks) before this is achieved. 

cost-functions for trajectories of adaptive behaviour could readily 

1::-e defined~ but at our present state of knowledge they are not 

justified. 

2. 3 The Definition of ;~odes of Adai>tion 

basic concept of a "ta;;k" introduu;C. in sec·t ir.)ns 

_may b~; 'Jsed as tte founc.~ation f-:Jl""~ Gefi.:-1iti·:·ns of differ.,ent sod~::.; of 

adaptive tehaviour and relationships bet·deen them. The fundament,'-'1 

si tuat:i.on Hi th Hhic1l an adaptive controll::~r is expected to cop8 :J.:-; 
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to be coupled to a fi;<(~d er1vironr:1cnt and learn t:::> control it 

satisfactorily. The intePactiorJ is equivalent to the controller 

per·forming a sequence of tasks cor;sistinr~ of the sam2 task repeated 

indefinitely. Such repetetive task sequences play a snecial role 

in the theory of adaptive behaviour because they correspond to th2 

character•ization of an adaptive system by its chan gins response to the 

same situation. The l"epetetive task: sequence takes the plo.ce of 

the static 'source', or environment, in Zadeh's definition of adap·tivity, 

but is exactly equivalent to it Hith the addition of segmentation. The 

i.'Tlportance of this segmc·ntation in the study of adaptive dynamics 

begins to become appareLt in the follmvinz version of Zadeh's definition 

~· of 'acceptability'. 

2.3.1 Definition of an Acc~ble Interaction 

An interaction behreen controller and environment consistin::; of 

the repetition of a single task is acceptablt::_ if it is eventually 

ah;ays satisfactory. 

Thus, in an acceptable interaction, the initial performance of 

the controller does not natter, and for a number of reDctitions of 

the task it may be satisfactory, unsatisfactory, or Haver bet1·:een 

the tHO• However, it Must eventually beco!7le satisfactory and remain 

so - an acceptable inter'action is one Hhich reaches a stable condition 

of satisfactoriness. In this condition He may say that the controller 

has become 'adapted' to the task. 

2.3.2 Definition of a Controller Adanted to Ct. Task 

An interaction between controller and environment consisting 

f ' . . f . 1 1 • • ,. 1 1-,1 ·~ ...... o tne repetJ.tl.on o. a s1.ng e tasK 1.s lmr:wcc..c;te-:Z accepta,_,_,_e lr l '- lS 

always satisfactory - an ir:nnediately acceptable interaction is 

obviously acceptable. A controller in such a condition that it 

would have an i~:;Inediately accepta:ole interaction 1-:ith a task is 

adantcd to tbc:~t task. _ _.___ 

performance by the controller of a sinr;le task, but the a<ialYtivity 

of the controlh;r :i.s senePu.lly aGvanta~:;eous 1Y~causE: the pa.:rti cular 



42 

invol vi:1~; perforr:1ance of any one of a. DUI~her• of tasks are many, l>ut 

thel'e are three nodes of adaption of particular interest v::1ich are 

dcfinecl in the follo'.vin[: sections. 

Very often an aclctptive controller ~>Jill te .requireci to verforn 

a single task which Hill not cho.nto,e, but Hiwse characterL;tics cannot 

be specifie<l in advance. It ;nust be ca;-.able of having an acceptatle 

interaction with any of a range of tasks, but need not necessarily 

be capable of adapting to a sequence of different tasks. 

of behaviour is characterized in the follmving definition. 

2.3.4 Definition of a_ Po_tcntiallv Adaptive C~mtroller 

This mode 

A controller in such a condition that it will have an acceptable 

interaction ~>lith any one of a set of tasks is potentially adaptive 

to that set of tasks. 

A potentially adaptive controller fulfils one function of an 

adaptive system in compensating for ignorance about the nature of 

its environment. It will not necessarily fulfil another major 

function by performing satisfactorily in a changing situation, since 

there is no ir:1plication that, having adapted to one task, it remains 

potentially adaptive to others. Potential adaption is implied in 

sta tmen ts like, 'a shoe adapts itself to the shape of a foot 1 
, and is 

the weake.st form of goal-attainment to merit the designation 'adaptive 1 • 

A controller which has to perform satisfactorily in a cLanging 

situation must not only adapt to its immediate task, but must also 

remain potentially adaptive to the other tasks it may meet. This 

mode of behaviour is characterized in the follm-:ing definitions of 

compatible adaptivity. 

2.3.5 Definition of a Comoatiblv Adanted Controller -----------------------"' 

A controller is ~natiblv adapted to one task ~>lith respect to 

set of tasks if, in an interaction consistin~ of the repetition of 

that task, it is not only ah:ays satisfactory but also potentially 

adaptive to the set of tasks. 

A controller which is compatibly adanted to m1e tas~ with 

-respect to a set of tasks is clearly '~dapted' to the first task, 

and, whilst performing it, never loses its capability for adapting 

to any of the set of tasks. If the con troller is to fw1ct ion in a 

chanp;inr. enviror;;:Jent, it: L'Ust al'.-Ja)'S, vihen adapting to one task, 
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may meet - that is, it must be potentially adaptive to all its 
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possible tasks no r:Htter Hhich of them it has previously performed. 

2.3.6 Definition of a _for~oatibly Adaptive Controller 

A controller is ~':lrE!ibly adaDtive to a set of tasks if, given 

any sequence of tasks frorn that set, it r•emains potentially adaptive 

to the set of tasks. 

Thus, a controller which is compatibly adaptive to a set of tasks 
.. 

will have an accepta})le interaction v:ith any one of thtOm, and, no 

matter how it becomes adapted to one of them, it Hill be compatibly 

adapted vii th respect to the remainder. 

The phenomenom of potential, but not compatible, adaptivity is 

very interesting and quite cor:1non in biological adaption, both 

phylo_senic and ontogenic, and in animal, even human behaviour. A 

nicrobe may adapt to a new culture to such an extent that it becomes 

dependent on it and dies v:hen returned to its former environment. A 

species may evolve 1..L.'1der the influence of a climatic change but come 

to an evolutionary dead end sue;-; that it cannot reverse the process 

Hhen the climate returns to its original form. A human subject ?ay 

be able to learn to ~ol ve ei ti:.er of tHo problem types equally Hell, 

but, after· having learnt one and performed it for some time, he 

acquires a 1 set 1 tm;ards the processes involved in its solution and, 

Hhen given the other, cannot discover hoH to solve it. 

A controller Hhich is compatibly adaptive t0 a set of tasks 

is not necessarily able to becone adapted sir:1ultaneously to all of 

them. It is, hat-<ever, quite possible fpr tHo tasks to be so similar 

that a controller which is ad:anted to one may also be adapted to the 

other. This mode of behaviour is c!laracterized in the folloHing 

definitions of joint adaptivity. 

2.3. 7 Definition of a c!ointly Adapted Controller 

A controller is :;i ointly a~ted to a set of tasks if, given any 

sequence of tasks from that set, it rercHins adapted to every member of 

the set. 

Thus, a controller ~1ich is jointly adapted to a set of tasks will 

be ahrays satisfactory given any sequence of those tasks. This is a 

very st:con3: condit icn, and an even stronger one is that VJhen a controllel' 

adapts to any one of a SP.t of tasks i-c should eventually become 
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jointly adapted to all of t;lem. 

A controller is jointly 2daptive to a set of tasks if it is both 

compatibly adaptive to t!1e set and, during an <;J.cceptable interaction 

with any task in the set, it eventually JJecornes jointly adapted to 

the whole set. 

Joint adaptivity Hould obviously be expected to te far rarer than 

compatible adaptivity, since it requir'es either that the same control 
.. 

policy be appropriate to tHO different environments, or that a very 

rapid chanee of policy be made Hhen the environment changes. The 

• former phenomenor:1 arise3, fairly trivially, when the environments are 

themselves very similar - for exar:1ple, ridin.g a scooter and then a 

motor-bike - and the latter is of greater interest. The occurrence of 

joint adaption Hhen it is logically impossible for the sar.w control 

policy to be satisfacto-ry in both environments - for exarnple, Hhen 

the :joy-stick in a tracking task is reversed in sense - implies that 

the learning of one skill does not greatly interfere with the skill 

already acquired. 

2. 3. 9 Inter-relatio:6ships betr.veen Different ~1odes of Adaption 

The preceeding definitions of different modes of adaptive 

behaviour have been given in order of increasing strength, for if 

a controller is jointly adaptive to a set of tasks it is also 

compatibly adaptive to them, and if a controller is compatibly 

adaptive to a set of tasks it is also potentially adaptive to them -

Jointly Adaptive -+ Compa.tibly Adaptive -+ Potentially Adaptive. 

These three modes of adapt ion are by no means exhaustive, and many 

variations are possible, G.efining other modes of adaptive behaviour. 

However, many of these Hould be regarded as pathological, serving no 

useful function and having no correspondence to a 'Jell defined "type of 

adaptive behaviour. Other, mOl"e inter'esting varieties of adaptive 

behaviour may be clescrited in ter:-ns of tLe moclss already defined. The 

questions Hhich a.re usually of ir:terest are \·lhether a controller is 

of aduDtion vrhich have been defined fon:; explicata for aJ.l tl-1e co':-Jnon 

stereotypes of adapt i v2 h:::dli1vio11:;:->. 
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2.3.10 Intcli-reJa.tionshi:)s n::;t\c:een rTasks ----------------------·-----------··-

define binary relations on tLe set of t.::,sks relative to a given 

cont:.:'oller - for example, task:
1 

is related to task:2 if, and only if, 

the controller is con:patibly adapted to task
1 

Hith respect to task:2 . 

All six relations are reflexive, and only that induced by 'compatibly 

adaDted' is not svr::i·netric. . ~ 
Hov,rever, only 'adapted' and 'potentially 

adaptive' induce relations Hhich are also transitive (and hence are 

equivalence-relations). For instance, a controller may be jointly 

adapted to task:
1 

and task:
2

, and also jointly adapted to task:
2 

and 

task
3

, but given a sequence containine both task
1 

and task
3 

there is 

no reason Hhy even its potential adaptivity to both tasks should not 

disappear. It is this lack of equivalence relations which gives 

adaptive behaviour its extraordinary richness. A con troller >·7hich 

showed no 'pathological' behaviour Hould be very rare, although the 

" . 

more drastic forms Hould not be exnected to occur. For example, the 

relation induced by 'compatibly adaptive' ought to be one of equivalence, 

because no sequence of normal tasks sl-10uld be able to destroy a 

controller's ability to adapt to one of them. 

The binary relations over tasks, generated by consideration of 

a controller's adaptive behaviour, may be used as the basis for a 

taxonomy of environments according to the problems involved in adapting 

to them. For example, if a family of controllers, in adaptinr; to one 

task, bec~1e jointly adapted to another, then it would be reasonable 

to suppose that the two tasks Here ver•y similar in the control strategy 

required. If it were found that this was not so, but that potential 

adaption to one task implied potential adaption to the other, then it 

would be reasonable to suppose that the tHo tasks 'dere related in the 

adaptive capabilities which they required - this is the basis of some 

'intelligence tests'. 

2.3.11 Arbitrariness and Triviality in the Definitions of 'Adautive' 

The behavioural definitions of 'adapted' and 'adaptive' contain 

an arbitrary element because the classification of 'tasks 1 is -left 

undefined, and the sesmentation of the .interaction behreen controller 

and encironment is at will \·iithin the (very weak) constraints of 

Section 2.2.3. This arbitrariness need not cause difficulty in the 

analysis of adaptive behaviour·, provided it is accepted that at some 
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sta[;e in the discussion of an adaptive controller and its behaviour 

this classification must be agreed. !'ouch of the early controversy 

over the application of tile tern 'adaptive' arose because tl;e 'obvious', 

tacit classification of one psychologist, or engineer, Has not that 

of another, or because; disa[':reement over such a classification Has 

wrongly ascribed to the definition of adapt ion itself. 

Even Hhen the arbitrariness in the definitions is 2.ccepted, 

there ·rer:tains the possibility that some types of adaptive behaviour 

may be 'trivial'. For example, 'jointly adaptive 1 is an apparently 
·. 

very strong conditon Hhich may be quite trivial in reality - for 

exasple, the tasks to Hhich a controller 1Jecoses jointly adapted !'1ay 

be completely equivalent and need not be distinp;uished. 'Potentially 

adaptive' is a very Heak condition which nay often be regarded as 

trivial, because it is sho~TI by systems undergoing an irreversible 

descent to equilibrium. 1Cor:1patibly adaptive' adds the requirement 

of reversibility, and is closest to what is conmonly regarded as beint; 

'really' adaptive. Hm·1ever, although a compatibly adaptive controller 

shows all ti.1e behaviour Hhich one would expect of a 'really' adapted 

to all of its tasks all the time, and hence shmv no adaptive dynamics -

it is just a very good, but static, controller! 

In testing the JJehaviour of an animal, or automatic controller, 

for 'adapt ion' or 1 learning' it rilay be desirable to eliminate this 

'trivial' adaption. It is meaningful, for example, to a::;k Hhether 

an animai perfoms vJell in tHo different situc.tions because it has a 

policy suited to both, or because it changes its· policy according to 

the situation . To force a controller to show adaptive dyTiamics, one 

might say that it is !really adaptive' to a task if it Has an acceptable, 

but not immediately acceptable, interaction consisting of the repetition 

of that task. The controller cannot then be a static system which 

happens to have a suitable control policy. 

Sommerhof (Section 2 .1.1) formulates this non-triviality require­

ment by requiring that tlJe state of the controller must not, in itself, 

ensure the satisfactoriness of the interaction. A particularly neat, 

and operational, for·rnulation of the sane requirement is given by 

Hartens (1959) in his definition of 1 :-:-;achine learning'. 

that the controller have accentable interactio:1s judged by tHo 

inco:npatible performance criteria. It cannot then have a policy '.-Jhich 

satisfies both criteria at once, and hence it is not immediately accertat-le 

for one task when it is adapted to the other. This mc.y Le !"-~-phrased 

that a controller is 'real..ly ddai1tive' if it is conpatibly adaptive to 
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a pair of tasks such that it is ir:·:possible for any controller to be 

jointly adapted to thrcm botl:1. Hm·:ever, it will be noted that all 

these specific formulations are enconpassecl in the present one. 

2. 4. An Automata-Theore_0-..£ Fo~mulation of Adc~ptive Behaviour 

In Sections 2. 2 and 2. 3 an axionatic formulation of the nature 

of- adaptive behaviour has been given in terms of tasks and the 

satisfactoriness of their performance. This formulation has been 

deliberately maintained in non-mathematical form, partly for purposes 
--

of presentation, but also because premature mathematization obscures 

the basic logical nature of the definitions which are independent of 

the notation used in tl1eir· expression. Hov<ever, to take the approach 

established in these sections a stage further and build on it a theory 

of training, some conciseness of notation is necessary, and this best 

comes frora an automatic-theoretic definition of the minimum-state, 

observable structure which is cybernetically equivalent'to the system 

showing adaptive behaviour (using the terminology and results established 

in Appendix 3). It is important to emphasize that the results of 

Appendix 3 justify the remark that the analysis is still purely 

behavioural, in that the automation used is one derived purely frol71 

descriptions of beha1iour and acts only as a convenient basis for 

discussing these behaviours. 

2.4.1 Aclantion Automata 

From Section 2.3, the adaptive behaviour of a system is corr:pletely 

described, in terms of this analysis, by a sequence of descriptions of 

the task given and the satisfactoriness of the controller· in perforDin£; 

the task. Thus~ a mininun sufficient set of descriptors for adantive 

behaviour is the set -

D = t E T} 

- >'i"here t is a task belonp;ing to the set of all tasks HhicJ::, may be 

.:;iven, T, and p, p, are the two possible outcomes, 'satisfactoY'y', and 

'u.r1satisfactory', resf,ectively. 

~-l ne free semi2roup, f:' cre·-o or=>~·e·::l '--·· t}l-i s se_,_ of ... Q' :..:;, L.:_. U\... ...... lJY ........ ~ L 

consist::.; of all possi::.;le soque:1ces of tasks, to.:;et:-1er ;.;i_tll all possi.])lc 

.outcor.1es i::·1 terns of t11e ~;at:i::::facto~C'inCss cf tl1e int2raction. lhe 
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uf :;cc t:ioiJ -'i 3. 2. It will Le asst~~d thot it also satisfies 

po:.;tu1atc! (iii) of Sectio:: A3. 3 - any real behaviour is necessarily 

finite and the dePived automaton an approximation (Section A3.3,6). 

iicncc, usins t;,c construction of Section r\3.3, an autorqaton may be 

dcri vc;u qhich is cybernetically equivalc:-1t to tile observed systeLi -

ti1is c:ill be called the ddap~ion-auto;;;aton of the adaptive syster:1 

defined b)' ~ts behaviour. The aciaption--autor.~aton v1ill sive rise to 

the sa;ne sequence of satisfactoriness as the adaptive sys terr. Hhe::-1 it 

pr.::l'forms the same sequence of tasks. In ~eneral) it will be an 

indeterrain<J.te automaton) and even if its st&tP. is knmm its next state 

cannot necessarily be predicted from tl·le task given, but it is ah1ays 

observable) in that its presellt state can be deterlTlined provided 

suggicient of its past behaviour has been observed. 

f:.n adaption-autonaton is a state-restricted automaton with a 

possibly infinite set of states) S) probably a finite set of inputs, 
. { + -, . . 

T) and two posslhle outputs, P =. .p )p J If the automaton lS lD 

state, s e: S, is given the tc-lS!(, t e: T, then its next state, s' E: S, 

and its output, p e: P, belong to the transition) and output, sets, 

respectively:-

s' 

p 

cr( s, t) 

'IT(s,t) 

12 .12) 
. £?.13) 

Since it is the effect of sequences of tasks) especially those 

generated by the re1)etition of c;. single task, 1·1hich are of interest, 

it is important to have a clear notation distinguishing betHeen tasks, 

sets of tasks, sequellces of tasks) and sets of sequences of tasks. A 

sequence consisting of the task t
1 

follo•:~ed by the task t
2 

Hill be 

v:ritten t
1 

t
2 

(•·;ith the obvious extension to longer sequences~ a 

sequence consisting of the task) t) repeated n tines Hill be Hritten 

tn. A typical set of tasks 1dll be represented by tbe letter, 

T(T
1

) T2 ) etc); a typical sequence of tasks Hill be represer;ted by the 

letter, u (u
1

) u
2

) etc). The set of sequences E;8nerated by the. set 

of tasks, T, as free r;encratcrs Hill bs, Hrittcn tJ('l) - that is, tlle 

set of all poss:~::.-;le ,;equences of tasks H)Lich may be for·med usinp, 

members of T. The function) cr, has an obvious extension frorZl tasks 

to task sequences - if u = tu', then:-



a(s,u) {o(s',u'): s's a(s,t)} 
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(2.liii 

Ea•1ing est.:.:blished tld.c; str;.;ctm'e, it is pocsible to zive set·-

theoretic definitions of all the va:r.·ious nodes of adaption clefbed 

in Chapter 2. These T;1ay r:ow be char·acterized by the sets of r:>td.tes 

of the autor:Jaton in Hhich the behaviour can arise Hhich SE1tis:fies 

the constraints of the pPevious defir1i.tio;1s. 

Let H(T) = {s:VtsT, T(s,t) + = p } 

that is, H(T) is the set of states in which the controller will have 

a ~~!isfactory interacti~~ r,iven any task from the set, T. 

Let A(t) = { ~J ( n ) ,_, ( . ) , s:vn, as,t C><t: 

that is, A(T) is the set of states in ~vhiclj the controller is adaDte9_ 

to the task, t, because, t;iven a sequence of task consisting of t 

repeated, the interaction is always satisfactory. 

Let p (T) :: ,/ 3 H {s: Vtr. T, N: a(s,t) CA(t)} 

that is, P(T) is the set of states in >·:hich the controller is Dotent~<J.~l-y 

adaDtive to the set of tasks, T,because, given any sequence of tasks 

consisting of a member of T repeated, the interaction is even~ually 

alv;ays satisfactory. 

Let = {s: ~ t sT, n, ( t n) "('),..,.T)(~)'f'l 10l 0 S, c·,-,. L I i J. l J ~ •-'-t:j 

that is, 'cA(t,T) is the set of states in which the controller 1.s 

~~tibly adap·ted_ to the task, t, ;.;ith respect to the set of tasb;, T 

because, given a sequence of tasks consisting of t repeated, the 5.nter·-

action is al1-1ays satisfactcr·y and the state remains Hi th the sub-se·~ 

which is potentially adaptive to tbe set of tasks, T. 

Let C(T) = {s: Yu s'J(T), cr(s,u)CP(T)} 

that is, C(T) is the set of stc:ctes in 1·:nicb thr:: controller' lS 

., 1 1 • t" conmatlD v aG~tlve to r;:; set of tasks!- ~. because, given any 

of tasks consisti.n;~ of t1e;:}oe:r.'s of J'~ i·::s state remains .L1 the s:Jb·-sc~ 

'h"hich is ~)OtentialJ.::r adaptive to the SC!t of tas}~s' T. 

Let = ,.. ,., • I... 'T' ~ T 1"'""1 • C"' 11 • A ·• "t t -~ . 'V '· c . , u 12 A 1 ) , u C ._. , ~ ) c , ·, < t ) J 

that is, LT,.(T) .:..s The ~~;e.t of :::;-~~att·:s i:-1 ~./1ich the c·;ntrolli-~r J_;:. lo~~:i:-lv 
i1. .·: .. ~----·-··-

adapted. to '2ach rne:aLf.;r o.f l' .. 
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(2 .2~ 
that lS, J(T) is the set of states in v:hich the controller is .i?._intly 

adaptiv'-" to the set of tasks, 'I', because, c;iven any seque:::-1ce of tasks 

consistin~ of members of T, in ful'ther adapting to any one of these 

tasks it becomes jointly adapted to the:n all .. 

The definitions of tilis section include all the nodes of adaption 

previously described in Section 2.3. The inter-relationships betHeen 

the various modes, briefly discussed in Section 2.3.9, now appear as 

inclusion relations betHeen the adapt ion sets. 

these are:-

H(T l U T2 ) = ll ( T l ) n 'd ( T 
2 

) 

P(T U T ) = P(T l) n P(T 
2

) 
1 2 

C(T
1 

u T
2

) c C(T
1

) 1\ C(T
2

) 

J(Tll) T2) c J(Tl) n J(T2) 

A(t) c H(t) n P(t) 

CA (t,T) = A( t) (\ P(T) 

P(t
1 

\J t
2

) :::> A(t
1

) (\ A(t
2

) :::> JA(t
1

l>t
2

) 

P(T) :::> C(T) .:::>J(T) , 

The oost important of 

(2 .2~ 

I]. 23) 

f?. 2liJ 
1].25) 

(2 .2§) 

f3 .2?J 

1~.2]) 
\3 .29) 

2.4.3 Trajectories in the State-Space of an Adaption-Automaton 

These relations, and the process of adaption itself, appear most 

clearly in diagrams of the adaption sets as sub-sets in the state-space 

of the adapt ion-automaton. In the saoe diagram, the dynamic behaviour 

of the adaDtive system nay be shovm as the trajectory_ of states through 

which it passes in adapting to a sequence of tasks. The set of all 

states of adaption-automaton is shor.-.'D as a rectangular region i11 

Fieure 2-3. From an intial state, such as Y, repetition of a task, 

t, generates a trajectory of states ~>lithin this region - the states 

are assumed to be assigned to points in the re~ion such that, Hithout 

loss of generality for a single task, the trajectory appears as a 

connected path. i·litf-lin the region are delimited those states, \·l(T), 

for vJhich the controller is satisfactOl'Y when given the task. t. The 

states, A(t), for Hllicll the cont:rollex.' is adanted to the task, t, f::::'om 

a sub-set of these, since a trajectol~y sta:ctinz in the acia]ted r·ep;lcn. 

must always remain satisfactory. 'lhe states, P(t), for v1l!ich the 

controller is potentially aci.2,ptive to the task, t, for:-n a third re.3ior:, 

enclosin;c; the one in Hhicl1 it is ada?ted to t. ri;;ure ?.-3 includes all 
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figgre 2-3 Adaption to a Single Task 

FigUre 2-4 Adantion to a Pair. p_f Task..§. 
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the adaption sets relevant to a controller adaptins to a sb1[le task. 

A trajectory through tr1e stute-space, sen era ted :by giving t~1e 

l k . . . n '11 ' o, controller t 1e tas , t, many tlTncs ln successlon, t , ,,.n SilOH cne 

follOl-dni_; bei1aviour:-

started outside the potentially adaptive regio:.1, at Y, it 

may enter the n~gio:.1 of satisfactory interaction, but must 

eventually alv1ays leave it; 

started Hithin the poteutially adaDtive region, at X, it '-'illl 

remain tila t rei:ion, peri1a)JS oscillating be tHe en being sa tis-

factory, and beinz, unsatisfactory, for a Hhile, but eventually 

enterint::; the adu.pted resion, where it is ah.rays satisfactory, 

and never leaving it. 

Some of the relations betHeen )JOtential, compatible, and joint 

adaption for tHO tasks, t
1 

and t 2 , are illustrated in Fi.s:ure 2-4-. 

The space of all states has been split into the re,P;ions, A(t
1

), A(t
2

), 

P(t
1 

Ut
2

), C(t
1 
ut2 )~ J(t

1 
Ut

2
) and JA(t

1
Ut

2
), and inclusion relations, 

(3.2c[l and [3.2~ are clearly illustrated. Since tHo tasks are involved, 

trajectories in the state-siJaCe J;iay shaH a Flore conplex variety of 

behaviour than for a single task. For example, since the state, X0 , 
._j 

is ;.dthin the potentially adaptive ret;ion fol' bot\1. tasks, P( t, U t?), 
.._ -

but outsicle the cornp9tibly adaptive region, C(t
1 

\.) t
2

), trajectories 
n n 

[;en era ted by the task: sequences, t
1 

or t
2

, v-.::al eventually enter the 

adapted re~:;ions, A(t
1

) or A(t
2

), respectively, but, in so doinz, they 

r:1ust also eventually leave P(t
1 
ut

2
). This loss of potential 

adaptivity to one task l.lay not take place ir::mediately on first adapting 

to the other (as in the trajectory from x
0 

to x
1

), but m9-y be dependent 

on adapt·ion takin.s place to L"'th taks. For exarnple, the trajector)' 

from X, to z
2 

u:1der tn
2 

enters t.(tr) >Iithin P(t,\> t')), and hence is 
u L. .1. L.. 

Hithin c.t.. (t
1 

\..H
2

). Jn taking auvantaz,e of the residual adaptivity to 

tl, hm-:ever, the trajectory proceeds to x3 Hhich is not Hithin P(tl Ut2), 

so tilat tr1e co:1troll·2r cannot c-~gai:1 !.;~come adapted to t
2 

rez:ion, 

C(t, \} t?) cannot leave the region of potential adaption to both tasks, 
J. -

P(t; Utr,), no r~atter 1'1hat sequence of tasks of the form, (t_+t")i•, ar.o:o 
..L ~ j_ L 

given. ,...., . . . . . . . . ) ~ n n 
ll'aJectorles orl[:lnatJ_n£ from iiJ.t>nn C ( t

1 
\) t

2
. Dy tl o:r> t

2 
;\~i11 ~.iri'ie tLe st~:1te of t ... 1e aC.aption-e.utor:~aton back a.nci forth bet~·~l"cen 

If such trajectories 

so t~"lat the controller- lS 



53 

adaption~ J,(t
1

U t )~ and rav have ori;_;5rEJ.ted ia the region of joir!t ll. 2 __ '.,!_ 

adaptivity, lT(t
1 

\J t
2

). They need not necessarily have done so, 

since, whilst all trajectories p;enel'dtecl by sequences of the form 

(t
1
+t

2
)<': from ~-:ithin J(t

1
1.l t

2
) must eventually enter JA(t

1
'.l t 2 ), there 

are states outside J( t
1 

\J t
2

) from Hliich sor.1e trajectories of this 

type Hill enter J, ( t, U t,,). 
ll. j_ L. 

For· a given adaption-auto~naton, certain of tbe adaption sub-sets 

Hill generally be empty, and the definitions do not inply that the 

corl'esponding states exist, but merely c1assify ther.1 should they be 

present. The t;w Figures, 2-3 and 2-4, are dravm as if the state-space 

had a convenient topology under the action of t
1 

or t
2

, such that the 

transitions occUl' to neighbourine; points (In the Euclidean topology 

· of the plane). A plot of trajectories in an arbitrary state-space 

will not shoH this convenient form in general, and tr1e individual adaption 

sets may be partitioned into disjoint sub-sets, subject to the various 

inclusion relations. Neither do these figures illustrate the possible 

indeterminacy of the adaption-automaton - trajectories may fork in 

practice. 

2.5 Summary and Conclusions 

In this Chapter,' a critical discussion of the nature of adaptive 

behaviour has led to an axiomatic formulation of a theory of this 

behaviour based on the concept of a "task". Upon this concept has 

been bui.lt a calculus of adaptive behaviour, initially in terms of 

logical definitions, but finally in terms of semiz.roup-theoretic 

definitions based on the derived concept of an adaption-autoDaton. 

The possible modes of adaption are !lany, and only the most important 

in the analysis of a syster.1 1 s adaptive behaviour have been sinr;led out 

for definition. Eowever, any form of adaptive behaviour may novT be 

treated as a trajectory in the state-space of the adaption-automaton, 

and this is botrl a convenient a.r1d intuitively satisfying representation. 

In the folloHins Chapter the problem of training is analysed in terms 

of the trajectories in state-space induced .by the sequences of tasks 

used for traininp; purposes. 
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CHAPTER 3: TRAINING AS A CONTROL PROBLE!·:j 

3.1 Introduction 

In this Chapter the approach to learning behaviour developed in 

Chapter 2 is extended to provide a rigourous foundation for the analysis 

of training as a control problem, and to enable different modes of 

training to be defined In this way it is possible to regard training 

as a problem of control and stability in the state-space of the 

adaption-automaton of the trainee. Before problems can be 'solved' in 

any sense, however, it is necessary to have some information about the 

adaption-automaton. 

It is not reasonable to suppose that the adaption automaton is 

completely known in advance, and neither is it reasonable (because the 

problem would be insoluble) to suppose that no information is available. 

Hence, the latter part of this Chapter is concerned with factors 

influencing the structu:::-e of the adaption automaton, and with the 

minimal forms of information about its structure which make the training 

control problem soluble. 

3.2 Training as Control of the Adaption-Automaton 

The formal analysis of learning behaviour in Chapter 2 (together 

with the results of Appendix 3) show that it is possible to associate 

with any learning system a structure, an 'adaption-automaton', which 

is cybernetically equivalent in its behaviour to the adaptive behaviour 

of the learning system. In particular it has been sho~~ (Section 2.4.3); 

that any learning sequence of behaviour· involving an interaction 

between the learning system and its environment may be I'epresented as a 

trajectory in the state space of the adaption automaton. By considering 

the effects of one form of interaction, or 'task sequence', upon the 

adaptivity of the learning system to particular 'tasks' it is possible 

to formalize the concept of training and associated concepts such as, 

'negative and positive transfer'. 

Consider again Figure 2-·3 which shows the regions of satisfactory 

interaction, W(t), adaption, A(t), and potential adaption, P(t), within 

the state space of the adaption automaton fo:::- a particular learning 

system. If the objective of training is satisfactory performance of 

the task, t, then it is required that the state of the adaption automaton 

should finally lie within the region A(t). However, it is adequate for 
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training purposes 'that the state of the adaption automaton should lie 

within the region P(t)$ since trajectories generated by the task, t, 

from within this region ahrays eventually enter, and remain in, A(t); 

that is, the learning system will itself adapt to the required task 

when the state of its adaption-automaton is initially vdthin P(t). 

Thus the training control problem only becomes non-trivial when 

the initial state of the adaption-automaton is outside the region P(t), 

and the objective of any training strategy must be to bring the state 

of the adaption-automaton within this region. When the initial state 

of a controller's adaption-automaton is outside the region of potential 

adaption to a task, then successful learning will not take place if it 

is given that task alone. Given some other sequence of tasks, however, 

the controller will adapt· to them, and may, in so doing, become 

potentially adaptive to the original task - the sequence of tasks may 

be said to have trained it for the original task. 

In Figure 3-1, for example, the point A is outside the region of 

potential adaption to the task, t, and repetition of the task does not 

lead to stable satisfactory performance. The sequence of tasks, u, 

however, gives rise to a trajectory in the state-space which terminates 

at A1 , within the region of potential adaption - hence, from A, a sequence 

of tasks of the form, ut, causes the controller to become adapted to t, 

whereas a sequence of the form, tn, does not. If the training sequence, 

u, consisted of another task, t', repeated many times, then it would be 

said that there had been transfer of training from t' tot. 

The training sequence, u, will not necessarily be suitable for all 

initial conditions of the controller, and, for example, the trajectory 

induced by u from the point B in Figure 3-1 terminates at B
1 

which is 

still outside the region of potential adaption. It is possible trat 

the training sequence, u, may not only be ineffective in this way, but 

may also be detrimental in certain circumstances - for example, the 

point C is within the region of potential adaption, and yet the 

trajectory induced by u from C terminates at c
1 

which is outside that 

region. In this case, if u = (t')n, then it would be said that there 

had been negative transfer from t' to t. 

Even when u is ineffective as a training sequence it may be possible 

to find an alternative sequence with the desired effect - for example, 

in Figure 3-1 the sequence, v, induces a trajectory from the point, B, 

which does terminate in the region of potential adapt ion. In the case 

of point C, it is clear that no training sequence is required, and the 

task, t, itself induces a trajectory Hithin the region of potential 
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adaption. Thus, even Hhen the con·troJler is not potentially adaptive 

to its required task, it may be possible to cause it to become so by 

giving it an appropriate training sequence. To chose between training 

sequences, however, and to decide whether one is required, it is 

necessary to have some information about the initial state of the 

adaption-automaton. 

Hence, training may be analysed as the control problem:-

given an adaption-automaton str-ucture, representing the possible 

adaptive behaviour of the trainee) generate a sequence of tasks to 

serve as an input to the automaton, such that its state terminates in 

a region where the controller is potentially adaptive to the required 

task. In general, the initial state of the automaton will be 

unknown, and info1~ation about the past behaviour of the trainee must 

be used in order to determine it. Since the adaption-automaton may 

be indeterminate in its state-transitions, an open-loop training 

sequence will not necessarily be adequate, and continuous feedback 

from observations of the behaviour and performance of the trainee may 

be necessary. In the following sections, different strategies for 

training are distinguished according to these considerations. 

3.2.1 Fixed Trainin~ 

It is convenient to distinguish one strategy for 'training' in which 

no attempt is made to solve the control problem described in the last 

section. In Section 2.4, it is stated that 'the flli<damental situation 

with which a controller is expected to cope is to be coupled to a fixed 

environment and learn to control it satisfactorily'. This is, in a 

weak sense, a training situation, in that the trainee is given an 

opportunity to learn, and the seq.1ence of tasks corresponding to it, a 

repetition of a single task, will be called a fixed training sequence 

for the environment corresponding to that task. 

The success of fixed training depends on the trainee being at least 

potentially adaptive to the task he has to perform, or, more strongly, 

compatibly adaptive to the set of tasks he may have to perform. The 

selection of tasks by.the trainer involves no observation of the 

condition of the trainee's adaption-automaton, and he is given only 

those tasks v1hich he is required to perform satisfactorily. 

3.2 .2 Open-Loop Training; 

In open-loop traini!211_, the trainer still does not observe the state 
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of the adaption-automaton of the trainee, but prepares him for 

a.daption to the main task by giving an initial s.equence of auxiliary, 

or training, tasks for which the trainee is not necessarily required 

to be satisfactory. For example, the sequence u from point A of 

Figure 3-1, or the sequence v from point B, both induce trajectories 

which bring the state of the adaption-automaton within the region 

of potential adaption to the task, t. Fixed training on the task t 

alone. is inadequate if the initial condition of the trainee corresponds 

to A or B, but the initial training sequences, u or v, respectively, 

enable adaption to take place, given further fixed training. 

In open-loop training, however, there is no information available 

as to the state of the adaption-automaton, and, if u were chosen to be 

the training sequence, then it would be given under all conditions. 

From Figure 3-1, it is clear that u would not be an effective training 

sequence from B or C, and it becomes important to determine those 

regions of state-space in which u has the desired effect. In Figure 

3-2 are delimited those states from which training with an initial 

sequence, u, causes the trainee to become adapted, or potentially 

adaptive to the task, t. If u were itself a single task, t', repeated, 

then the first region might be called one of 'complete transfer' from 

t 1 to t, and the second region one of 'partial transfer' • It .is , 
interesting to note that neither the region where the controller is 

potentially adaptive, nor that where it is adapted, need be contained 

in the region of partial transfer - the region of potential adaptivity, 

but no transfer from u, may be called one of 'negative transfer'. 

Clearly, the utility of u as a training sequence depends on maximizing 

the region of partial transfer, and minimizing that of negative transfer. 

3.2.3 Conditional Adaption Sets 

The behaviour of a controller relative to training by a given task 

sequence, and the various phenomena of transfer, may be defined by sets 

of the form shown in Figure 3-2, and set-theoretic definitions of 

trainability may be given similar to those for adaptivity. There is 

obviously a far greater variety of possible behaviour in training, 

where adaption is conditional upon previous learning in a training 

sequence which may itself have definable structure, and many phenomena 

are best analysed directly in terms of trajectories in state-space. A 

few conditional adaption sets are of sufficient general importance to 

be formally defined. 
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Let .c\(t:u) = ~: cr(s,u)c:.A(ti) 

that is, A(t:u) is the ~;et of states in vlhich the training sequence, u, 

causes the controller ·co become adapted to the task, t. This is the 

set forming the region of 1 complete transfer 1 in Figure 3-2, and the 

trainee may be said to be ~-~pletely open-loop trainable by the task 

sequence, u, for the task, t, when the state of his adaption-automaton 

is in A(t:u). 

Let P(T:u) = [S: cr(s,u) C P{TD 

that is, P('I': u) is the set of states in Hhich the training sequence, u, 

causes the controller to become potentially adaptive to the set of 

tasks, T • A trainee whose adaption-automaton is in one of these states 

may not adapt to a task, ttT, Hhen given the fixed training sequence, 

tn, but will do so when given the open-loop training sequence, utn; 

a trainee in such a condition may be said to be potentially open-loop 

trainable by the task sequence, u, for the set of tasks, T. 

Similar conditional-adaption sets may be defined for compatibly 

open-loop trainable -

C(t: u) = ~·: cr(s,u) C C(Til 

and for jointly open-loop trainable -

J(T: u) = ' 
fE: cr(s,u.)CJ(TIJ 

Apart from the greater variety of the conditional adaption sets 

themselves, there is also a far wider range of inclusion relations 

possible, and these will not be described in detail. The interesting 

inclusion relations are not .hose logically entailed, as are ~.2~ 

through f2 .2~ , but those which are a function of the controller and 

tasks. For example, the region of negative transfer has already been 

defined as those states in which the controller is potentially adaptive 

to t, but not potentially open-loop trainable by u. For u to induce 

no negative transfer, v1e must have:-

P(t:u) .:::> P(t) 

Another region of interest is that part of A(t) which is outside A(t:u) -

in this region the controller is adapted to t, and this adaption is 

destroyed by giving :i.t u. Hov1ever~ provided -

p(t:u) ..5 A(t) 

the controller is able to re-adapt to t, and u has acted only as a 

transient distrubance to its performance. In this event we might say 
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that the learning of the task, t, was £9bust to the influence of the 

sequence u. 

Clearly consideration of the robustness of learning leads to an 

even more complex structure of adaption sets - A(t) may be split into 

disjoint parts, A
1
(t), A2(t), with corresponding potential adaption 

sets, P
1
(t), P2(t), such that it shows robustness to u in A

1
(t) but 

not in A
2
(t), and we may consider the problem of training a controller 

to, "adapt tot robustly with respect to u". Thus, the conditional 

adaption sets provide not only the means for evaluating various open­

loop training sequences, but also a calculus for defining the effects 

of performing one task, or task sequence, when the controller is in 

various stages of adaption to another; the conditional adaption sets 

enable the stability of adaption to be evaluated. 

3.2.4 Ftedback Training 

An open-loop training sequence would be chosen to make the 

conditional-adaption sets as large as possible, and clearly the optimum 

sequence would be such that at least P(t:u) includes all possible initial 

states of the adaption-automaton. If this is not possible, some 

general restrictions, such as P(t:u):J P(t), may be applied to ensure 

that training does not destroy adaptivity which is already present. 

However, it may not be possible to find a single training sequence which 

has all the desired properties, and hence it may be necessary to apply 

different training sequences dependent on the condition of the trainee. 

So far, the training sequences have been taken as fixed sequences 

of tasks, but, since the adaption-automaton may be indeterminate in 

its behaviour, it is possible that an effective training sequence 

cannot be determined in advance even when the initial state of the auto-

maton is knov..r:n. For example, from D in Figure 3-1, the training 

sequence, u, might induce a trajectory which terminates either at n
1 

within the region of potential adaption, or at D2 which is outside the 

region; a further examination of the condition of the controller after 

having been given u is necessary to dete1~ine whether the training has 

been successful. 

Even if the adaption-automaton is determinate, it's initial state 

will generally be unknown, and observations of the controller's 

interaction with some environment will have to be made in order to 

determine the state of the au:tomaton. The task sequence corresponding 

to this initial interaction clearly need not be a training sequence, 
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and might rather be a testii]_& sequence designed solely to obtain 

information about the controller prior to training. Such a testing 

sequence, or 'probe', differs from a training sequence only in that 

it is designed for rapid observation, rather than to change the state 

of the adaption-automaton appreciably, and testing may be analysed 

within the same theoretical, and conceptual, framework as training. 

Both when the adaption-automaton is indeterminate, and when it is 

to be determined by observat.ion, the training sequence is contingent 

upon feedback from observations of the interactionll:etween tl"ainee 

and environment, and a system for implementing this feedback will be 

called a feedback trainer. For the feedback trainer, training has 

itself become a control problem: there is an 'environment', physically 

the controller, conceptually its adaption-automaton, whose inputs are 

tasks and one of whose outputs is the satisfactoriness of the previous 

interaction; the control problem is to take the automaton from an 

initial state in which the controller (trainee) is not adapted to the 

task, to a final state in which it has become adapted to the task (or 

potentially, compatibly, or jointly, adapted to a set of tasks); the 

perfo~nance measure for this control problem may be based on the nillnber 

of tasks given before the controller becomes adapted, or it may be a 

more complex cost function based on the cost of giving irrelevant tasks, 

and so on. In the ~ollot-ring section the "solution" of the feedback 

training control problem is analysed in more detail. 

3.3 The Nature of the Training Control Problem 

The derivation of open-loop training sequences and feedback training 

algorithms, given the structure of the adaption-automaton, is amenable to 

'solution' by some of the techniques of modern control theory) such as 

'dynamic programming' (Bellman 1957). However, it is totally unrealistic 

to consider the application of such optimal control algorithms to training 

in any real situation since the adaption -automaton will never be known in 

sufficient detail. It is noted in Appendix 3 (A3.~6) that the derivation 

of structure from behaviour as there described is a solution to the 

problem of complete induction. In practice, however, due to the 

irreversibility of most learning systems it is not possible to collect 

descriptions of all possible behaviour and only partial information is 

available. Essentially the adaption-automaton will be only partially 

known, an approximate model of the adaptive behaviour. 
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Thus the training control problei!l is comparable Hith the majority 

of real control problems Hhere there is only partial information abO'.lt 

the plant and controllers are designed to perform reasonably well with 

a range of possible plants rather than opT.imally Hith a par"ticular 

plant. In these circu~stances feedback control is essential (because 

the state-transitions of the partially-lmown plant cannot be completely 

predicted in advance), and the prime initial problem is to en sure 

stability in control - that is, that the controller should bring the 

plant to (global stability), and maintain it in (local stability), a 

prescribed region of its state-space. In the following sections some 

weak conditions on the adaption-automaton will be established which 

ensure the existence of globally stable feedback trainers. 

3.3.1 First Training Theorem 

A necessary requirement for training to be possible is that there 

should be available training sequences to transfer the state of the 

adaption-automaton from any state it might reach during training into 

at least the potentially-adaptive region. Since an adaption-automaton 

is generally indeterminate it is also necessary to ensure that these 

sequences do actually cause the required transition, if not ah;ays at 

least 'frequently' (in the mathematical sense). Given these postulates 

it is at least feasible to cause the le~~ing system to adapt through 

training. 

However, the training algorithm itself is not trivial given that 

the only feedback available is the performance of the learning system. 

A suitable (necessarily weak) training strategy would be to give the 

required task, t, only once the state of the adaption-automaton is 

within the potentially adaptive region, P(t), a~d to chose a training 

sequence at random if the state is outside P(t). The random choice 

ensures that there is a finite probability of entering P(t) and, since 

there is zero probability of leaving P(t), entails convergence of the 

state to within A(t). Unfor•tunately, whether the state of the automaton 

is within P(t) is not known since its performance may be unsatisfactory 

within P(t) and it may be satisfactory outside it (Hithin H(t) - P(t)). 

A suitable training procedure given only performance feedback is 

to give the task t until the perfor~ance is unsatisfactory, a~d then to 

select either t or one of the possible training sequences at random, 
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then give the task t again until the performance is unsatisfactory, 

and so on. Clearly if tis given outside P(t) but lvithin H(t) then, 

by the definitions of these sets (Section 2.4.2), the performance 

must eventually become unsatisfactory and some training sequence will 

be given with a finite probability of causing the state to enter the 

region P(t). Equally if the state is within P(t) but outside H(t) 

there is a finite probability of t being given long enough for the 

state to enter A(t). Convergence under this 1 training strategy 1 is 

clearly a weak result, but the postulates are so weak that no stronger 

result can be expected - the weakest possible conditions that will ensure 

the existence of a convergent feedback training algorithm, and hence a 

globally stable feedback trainer, are an important starting point from 

which to discuss stronger results based on stronger postulates. 

For purposes of the theorems on training, the adaption-automaton 

will be taken to be finite-state. This is unnecessarily restrictive 

but makes the proof more transparent and meaningful in practical terms. 

Theorem 3-1 Given a finite-state adaption-automaton and associated 

sets as defined in Section 2.4.1, a specified task t E T, and a set of 

task sequences,VcU(T), satisfying the conditions specified beloH, then 

nhere is a feedback training strategy (based on the performance feedback 

of equation §.3] orfly) such that the probability of the output of the 

adaption-automaton being satisfactory tends to unity. 

Conditions on task sequences 

If E is the state semigroup (Appendix 3 - Section A3.4) generated 

by the following constraints on the adaption-automaton ·-

a) initial state belongs to some subset S c. S 
0 

b) the sequence of tasks input to the automaton is constructed 

of segments of the form:-

(i) initial segment is T 

(·ii) + if the output of the automaton was p at the end of the 

previous segment then next segment is T 

(iii) otherwise next segment is vt, where v is any task sequence 

such that v e: V\J T 

then -

" s c: l:r"\SJ ]v e: V n(s,v) r Ph) frequently 
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where 'frequently' implies that the sequence of events in which the 

state s occurs and the input sequence v is given either terminates 

after· a finite number of occurrences, or after any occurence of the 

pair (s, v) there always exists some future occur·rence of the condition 

n(s,v)e: P(t). This ensures that training is alHays possible taking 

into account the possible indeterminacy of the. adaption automaton. 

Proof The proof is constructive - consider the training strategy 

defined by the use of the task segments described in condition (b), 

subject to the constraint that when a sequence is selected from V v t 

the selectiqn is probabilistic with uniform probability of selectu1g 

any possible sequence. It is sufficient to show that the state set, 

A(t), is the only trapping set and that there is a finite probability 

of reaching a state within it at any point in the state trajectory. 

A(t) is trapping since by equation ~.1~ for any state s e: A(t), 

o (s,t ) e: W(t) so that from equation 11.1~ 1rCs, t)=p+ and hence from 

condition (b)(ii) the next task will be and from equation [2.16] the 

state will remain within A(t). 

No other state sets outside A(t) can be trapping since for states 

outside W(t) there is a finite probability that a sequence v £ V will 

be used for input that will take the state within P(t) and that a 

sequence containing only T will be used thereafter taking the state 

into A(t). Whereas for states within W(t) -ACt), a sequence con-

sisting only of T cannot be maintained since the state must eventually 

leave W(t) (ry definition of A(t)) and there is then a finite probability 

of not selecting t• 

3.3.2 Second Training Theorem 

The first training theorem is clearly a weak result. Hm-1ever, 

it is worth noting that the training sequence had to be carefully 

con~ucted to avoid the problems caused by W(t) and P(t) not coinciding. 

It is also of interest that an essential random element was necessarily 

introduced into the training strategy to allow for the lack of knouledge 

of the 'correct' trai~ing sequence for a given state. The training 

strategy is simple and does not involve identification of the state of 

the adaption-automaton or detailed knowledge of its structure. 

Stronger results on training can only result from stronger constraints, 

that is, greater knoHledge of the structure of the adapt ion automaton. 
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There are clearly infinitely many possilJlc sets of constraints to 

ensure the existence of conve:f'gcmt training strategies w:l th additional 

desirable properites such as T'-3.pid convergence. Clnly one further 

case will be considered si.nce it corresponds to the type of training; 

pr>oblem considered in Chapters Lf, 5 and 6. The assumption will be 

made that a sequence of tasks is knov-'11 such that per·for·mance of one 

task leads to improved performance of the next task in the sequence. 

The training strategy is then to give the tasks b either for\"?<r·d or 

reverse sequence according to the performance. 

Theorem 3. 2· Given a finite-state adaption-automaton and associated 

sets as defined in Sec Lon 2. 4.1, a specified task T e T, and a finite 

• sequence of tasks -

t
0 

, t
1 

, t
2 

, t
3 

s • • • , tN 

satisfying the follovdng conditions 

( i) tN = T 

(ii) V n 0 < n < N , A(tn-l) C P(tn) 

(iii) P( t ) ::> 
0 

£ I") s 

where E is the state semigroup generated by applying any sequence of 

t
0 

through tN from an initial set of states 8
0 

C S, 

then there is a feed:qack training strategy (based on the performance 

feedback of equation w.~ only) such that the probabili-ty of the output 

of the adaption-automaton being satisfactory tends to ~~ity. 

Proof The proof is again constructive 

(a) the initial task given is t 
0 

consider the strategy :m \>lhich -

(b) if the previous task was t and the output of the automa.ton 
n 

Nas p +, the next task is chosen from t and t ( t if 
n !H·l N 

t 
1 

does not exist) vlith finite pr'obability of chasing ea.ch. 
n+ 

(c) if the previous task was t and the output of the automaton 
n 

was p the next task is chosen from t and t (t if t 
n n-1 o n-1 

does not exist) with finite probability of chosing each. 

As shown in the proof of the first training theorem, the condition 

in which the task T is being given when tbe f;tate of the automaton is 

within A (T) is trapping. since the output Hill ah.;ays be p + ar.d by 

condition (b) above no change wi.ll be made in the ta:::K: given. 
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Supoose that the task t 
1 

is being given and the state of the • n-
automaton is within F(tn_

1
), then there is a finite probability that 

t will continue to be given until the state comes within A(t 
1

) and n n-
that the task Hill then be changed to t . Since, by condition (ii) 

n 
of the theorem, A(t 

1
)CF(t ), there is thus a finite probability of n- n . 

changing from the condition in which t 
1 

is being given within P(t 
1

) 
n- n-

to the state in which t is being given within P( t ) . Hence there is 
n n 

a finite probability of reaching the condition in which tN=T is being 

given when the state is within A(T). 

Suppose that t is being given and the state of the automaton is 
n 

outside P(t ), then, by the definition of A(t ), there is a finite 
n n 

probability of t continuing to be given until the state is outside 
n 

vl( t ) and hence the output of the automaton is p-. Hence by condition 
n 

(c) above, there is a finite probability of the task being changed to 

t 
1

• Then either the state will be within P(t 
1

) in which case the n- n-
preceeding paragraph applies, or if not the argument of the present 

paragraph applies. Thus eventually a condition must arise in which 

the state of the automaton is within the potentially adaptive region 

for the task being given, Ol' the task must come to be t but by 
0 

condition (iii), P( t ) .:::::> r i\ S, and the previous paragraph applies. 
0 

Thus the only t~apping condition is T being given within A(T) 

with output always satisfactory, and there is a finite probability of 

reaching this from any other state. 

3.3.3 Extension to a Lattice of Tasks 

An immediate corollary to Theorem [3-2] is to consider a semi­

lattice (Clifford and Preston (l9El) p.24) of tasks, L, ordered by a 

relationship, < , such that T is an upper bound, condition (ii) of 

Theorem 1]-2:1 is satisfied by any pair of directly connected tasks 

in the lattice, and there is a set of tasks, L , each of which satisfies 
0 

condition (iii). That is if:-

(i)Yte: L t<T 

(ii) '{ t,t 1 e: L t < t 1
, but there is not* e L 

t < 

cui>Vt€: 
t~' < t I ~ A ( t ) c: p ( t I ) 

L c. L, P(t) ::;, S 
0 
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then it is clear that any directly connected chain of tasks starting 

within L and terminating at T satisfies the conditions of Theorem @-~. 
0 

Hence the result of Theorem @-;D can be generalized to strategies 

based on probabilistic movement along connected chains in a semi-

lattice of tasks, with movement towards T when the output of the aut¢lmaton 

is satisfactory, and movement towards L when it is not. 
0 

This corollary is important in the context of the situation chosen 

for studies of human learning, and is discussed further in Section 4- .lf .2 

in relationship to the movement of the stability boundary of an operator 

learning a second-order tracking task. However, the result is also of 

interest in its abstract form in that it gives more meaning to the 

concept of relationships between tasks discussed in Section 2.3.10. 

It is also of interest to consider the extension in more qualitative 

terms. One may picture the task given as tending to travel upwards 

through the lattice as learning progresses and the automaton's output 

becomes satisfactory for tasks of increasing difficulty~ and downwards 

through the lattice if the automaton's output becomes unsatisfactory 

and it is suspected that the task is too difficult. If the path 

length from entering P(t) to entering A(t) is long, then a high probability 

of changing the task will tend to take the task up to too high a level 

on the one hand, and,down to a level for which the automaton is already 

adapted on the other. Hence the level of difficulty will tend to 

oscillate with increasing rapidity as the probability of changes goes 

towards one. Equally, however, if the probability of change is very 

low, the transition to a more difficult task will be made later than is 

necessary but the automaton will be well adapted to the current task 

and hence within the region of potential adaption for the next - there 

will be little fluctuation of the task but steady progress towards T • 

It is possible to equate the probability of changing the task with 

the 'loop-gain' of the feedback training by equating p+ to +1 units of 

performance, p- to -1 units of performance, calling the difficulty of 

t , o = n/N, and the probability of changing the task, p. Then we have 
n 

from (a) and (b) of Theorem l3-~ 

expected change in o = p times current performance. 

Hence, the argument of the last paragraph may be interpreted as showing 

that too high a loop-gain will lead to·slow learning through oscillating 
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task difficulty, whereas too low a level will lead to slow but steady 

learning and increase of task difficulty. This is the type of dynamic 

behaviour which would be expected of a simple servo system, and it is 

inter'esting to note that it is possible to derive it from an abstract 

and fairly gener•al feedback trainer without considerations of continuity, 

linearity, etc. It also leads to the expectation, taken up again in 

Section 4.5, that an actual feedback trainer although clearly highly 

nonlinear may be reasonably analysed as a simple servo system. 

3.4 Epistemological Constraints upon the Adaption Automaton 

The problem of ide1tifying the structure of the adaption-automaton 

• of a learning system in complete detail has been circumvented to some 

extent by the two training theorems which demonstrate that training is 

possible Hithout detailed knoHledge of the adaption-automaton provided 

certain constraints on it exist. The weakness of the necessary constraints 

is demonstrated by Theorem 1, whilst Theorem 2 indicates a more practically 

-useful level of constraint. 

It is clearly of interest to consider whether' there is any way 

other than by direct observation of the learning system in which the 

contraints can be inferred. In particular, starting from the assumption 

that the learning sy~tem can solve a certain class of problems and hence 

has a particular approach to, or hypotheses about, its environment, is 

it possible to infer probable (weak) constraints upon its adaption automaton. 

One particular epistemological problem which seems a universal source of 

difficulty in learning is the interaction between the acquisition of 

knowledge about environment and the degree of control exerted over 

In recent years this has been analysed system-theoretically as the 

"dual-control problem". 

3.1.J.l The 'Dual Control Problem' 

..... 
~ .... 

In the development of adaptive control theory, one of the early 

steps in simplifying the overall problem was to split it into two parts -

that of determining the characteristics of the system to be controlled, 

or system identification, and that of determining the best controller, 

relative to some perfOl'ffiance criterion, for a known controlled element, 

or controller optimization. This separation has enabled po..rerful ~:heories 

of identification and optimization to be developed separately from one 
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another. However, in any real adaptive control situation, such a 

separation is impossible and if, fTom the total activity, 'identification' 

and 'optimization 1 are separated out, then the interaction between them 

makes nonsense of any theories holding for each individually; for 

example, even in the control of a simple linear system, Sworder (1966) 

has shown that the optimum identification technique coupled to the 

optimal control algorithm does not lead to the optimQ~ controller. In 

more complex systems, it is clear that there may be a conflict between 

the two requirements that in order to control a system the controller 

must have information about its relevant characteristics, and in order 

to obtain information about system characteristics relevant to control 

the controller must cause the system to operate in the relevant region, 

that is, control it. 

This conflict has been extensively analysed by Feldbaum (1960, 1960*, 

1961, 1961*, 1963) who calls it 'the dual control problem', the dual 

aspects being 'investigating' and 'directing'. He states, 'in dual 

control system, there is a conflict between the two sides of the controlling 

process, the investigational and the directional. An efficient control 

can only be effected by a well-timed action on the object. A delayed 

action \veakens the control process. But the control can only be effective 

when the properties of the object are sufficiently well known; one needs, , 
however, more time to become familiar with them'. In his theoretical 

studies, Feldbaum considers the dual control problem from a statistical 

decision theoretic point of view under restricted conditions, and derives 

some algorithms for optimal control relative to an overall performance 

criterion which combine both identification and optimization. 

Both S\vorder and Feldbaum are more concerned with optimizing an 

overall performance criterion using an integrated strategy, rather than 

determining the effects of combining independent identification and 

optimization algorithms into a single learning control algorith~. In 

general, it is clear that overall optimization is not possible, and there 

will always be a conflict between strategies designed to lean1 about an 

environment, and strategies designed to control it; for example, even 

at the level of the simple maze, initial exploration may shoH that a 

path which approaches close to the goal is blocked - at some time later 

it may become unblocked and offer a very much more rapid route, but the 

possible advantages to be gained by knowing this must be balanced against 

the loss in time taken by continuous exploration. 
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3.4.2 The Sub-Environment Phenornen~m 

The funamental st:>uctu:re of all forms of adaptive controller is 

a two-level hierachy in which the lower level implements one of a 

class of control policies, whilst the upper level selects the class 

to be implemented, Figure 3-3. This definition emphasizes the relativity 

of the term 'adaptive' from a structural point of v:iew, since any 

particular controller may be split up in many ways according to the 

definition of a class of possible control policies; a similar relativity 

in the behavioural definition of 'adaptive' has been noted in Section 

2.3.11 due t·o the variety of possible ways in which an interaction may be 

split up into 'tasks'. The relativity of adaptive control structures 

emphasizes the progressive nature or our understanding of them - as control 

science progresses, we may expect the adaptive controllers of one era to 

become the control policies of the next. 

To select a control policy approriate to the environment and its 

goal in controlling it, the upper level of an adaptive controller 

requires informatim about the nature of the environment and its inter­

action with it. There are two distinct classes of information relevant 

to the selection of a control policy: the nature of the environment 

itself, that is, identification of the input/state/output relationship 

for the environment; -and performance rreasures for various possible 

control policies operating upon the environment. Figure 3-3 shows both 

these types of information being fed to the upper level of the adaptive 

controller, and clearly either source is capable of forming the basis 

for the selection of a control policy: if the controller is able to 

identify the environment completely and correctly, and has access 

to a mapping from environments to optimum policies, then it can implement 

the best policy available; equally, if the controller is able to 

establish performance measures for all possible control policies by 

implementing each in turn, then it can, finally, select the best available. 

It is when identification and performance evaluation are not 

exhaustive, and are combined with the necessity to exert some control over 

the enviromnent, that difficulties in learning arise. These occur because 

any given control policy will generate some sub-environment, that is, it 

will restrict the states and state-transitions of the environment to some 

sub-set of the total possible behaviour. This effect is analysed in 

Appendix A3.2.4, where it is noted that the behaviour of the sub-environment 



.... SELECTION «.~ Nl , ...... -
of CONTROL POLICY 

. . ... .. --~ ---] IDENTIFY t r::.·vA' 11AT~ · '- ·\I...V_ t:, 

ENVIRONMENT l ~v1 PL E t\1 E NTAT I 0 N PERFORMANCE J 
of CONTROL POLICY 

+ I,\ 

t I~ j 
I i 

ENV/RONME1VT 
Figure 3-3 Adaptive control str~ucture 

c 
D 0 
I M 
R M 
E U 
C N 
T I c 

A 
T 
I 
0 
N 

TRAINER 
FEEDBACK 
as to SiATE l 

, t 
of TRAINEE 

TRAINING 
~~ CONTROLLER ,, 

v " -= -: 11 
\1 E~NVIRONiviEN'T I 

_fi 'f 

TRA/1VEE 
1--1-

ADAPTIVE CONl"ROLLEl? 

..... ma: 3::~ 

Figure 3-4 Feedback training system 



72 

generated by a control policy defines a system structure which varies 

with the control policy. The sub-environment generated by an initial 

control policy may be entirely different from that generated by an 

optimum or satisfactory control policy, and learning in the initial sub­

environment may then be irrelevant or even deleterious to performance 

in the desired sub-environment. Alternatively, and especially if the 

adaptive controller adopts a deliberate search policy, the initial 

environment may be so extensive that learning about it would take an 

unacceptably long time. 

The sub-environment phenomenom will have different effects on 

controllers using identification, and controllers using performance 

evaluation, in order to vary their control policy. In identification, 

the measured parameters of the environment Hill generally not characterize 

it completely, but only determine some particular properties. In normal 

circumstances, in the desired or expected sub-en~ironment, many other 

properties will be correlated with these and may be deduced from them. 

If the initial control policy generates an abnormal, or unexpected, 

sub-environment, then the measured parameters may carry no inference 

about other characteristics of the environment, and the control policy 

selected through them might be invalid. If this policy also generated 

an abnormal sub-envi~onment then mal-adaption would continue, so that 

a normal sub-environment and an optimal control policy would never be 

attained. 

If a controller adapting through performance-evaluation measured 

the performance of every possible control policy, then the sub­

environment phenomenom would cause no difficulty. In practice, however, 

the environment cannot be assumed to be stationary over periods long 

enough to do this, and the time taken would be unacceptable. Hence, 

controllers using performance as a guide to adaption assume that there 

is some topology on their control policies such that, given the 

evaluations of a number of different policies, they are able to select 

a ne1-1 policy 'near' to the best and 'away' from the worst; that is, 

they modify their pol~cies incrementally in a 'hill-climbing' mode. 

Incremental changes in policy will generally cause incremental changes 

in the sub-environment, and these changes may be such that the total 

environment fragments into a set of disconnected sub-environments. If 

the jnitial sub-environment is not connected to the desired one then 

the system will be trapped and the controller will never attain optimal 

control; this phenomenom is shown par·ticular·ly clearly by the 'evolution-
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ary' controllers of Bremermann referenced in Appendix l. 

The fragmentation of the environment resulting from difficulties 

in learning may be treated theoretically in terms of the concepts 

developed in Section A3.4, by examining the 0-minima.l ideals of the 

combined controller/environment in terms of the state-semigroup of the 

environment. If the 0-minimal ideal in which the system eventually 

resides contains state-sequences outside the free semigroup generated 

by the states in which the encironment shows the desired behaviour, 

which the adaptive controller is attempting to enforce, then the 

controller is clearly unsuccessful. 

3. 4. 3 Overcoming the Sub-Environment Phenomenom Through Training 

The obvious training strategy to alleviate the difficulties caused 

by the sub-environment phenomenom is to force the initial sub-environment 

of the controller to be the desired sub-encironment. This is clearly 

only possible if there are additional inputs to the environment, and, 

possibly, additional outputs from which to determine how these inputs 

should be driven. The additional loop between these inputs and outputs 

necessary to produce the desired sub-environment may be represented, as 

shown in Figure 3-4, as the addition of a training controller to the , 
environment. The concept of a training controller may be applied in 

a variety of learning situations - in teaching Euclidean geometry, the 

training controller might draw in a suitable construction to enable 

a problem to be solved by elementary procedures; in conversation, the 

training controller might repeat parts of a statement so that material 

relevant to the comprehension of later phrases is not missed; in 

manoeuvring a simulated vehicle, the training controller might apply 

auxiliar'Y feedback to maintain the overall control loop marginally stable. 

Since the trainee in Figure 3-4 is assumed to be adaptive, the 

training controller need exert less and less control to maintain the 

desired environment as time passes. If its control policy remains the 

same, then it is probable that the actual sub-environment vlill become 

only a small part of the desired one, which may have just as deleterious­

effects on the learning of the trainee as the generation of a sub­

environment disconnected from the desired one; it is also necessary for 

the trainee to lea."'D to control the environment independently of the 

co-operation of the training controller. Hence, there may be a training 

controller which selects a suitable training controller either as a 

function of time (open-loop training, Section 3~2.2), or according to 
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information about the state of the trainee (feedback training, Section 

3.2.4). 

In· particular, a sequence of tasks such that peL'forraance of a 

task is a certain region of the state space of the adaption automaton 

leads to a suitable sub-environment for learning relevant to the next 

task in the sequence will lead to conditions satisfying the requirements 

of the second training theorem (Section 3. 3). Thus consideration of 

the relationship betv1een controlling a system and learning about it 

without reference to any particular learning system may lead to probable 

constraints upon the adaption automaton relevant learning systems. Such 

an approach cleai•ly cannot demonstrate that any particular system can 

actually learn a task, but many lead to optimal conditions for learning 

should system be capable of doing so. 

3.4.4 Training and Communication 

It may be noted that the structure of the training system shoHn in 

Figure 3-4 is an exact image of the structure of the trainee, regarded 

as an adaptive controller shown in Figure 3-3. The upper level of the 

training system adjusts the control policies of the lower level so as 

to maximize the effectiveness with which the upper level of the trainee 

varies the control policies of its lower level. Thus, the trainer 

communicates with the adaptive level of the trainee through a very 

complex system in which two controllers interact with a common environment. 

With the human controller, and with recent learning machines, direct 

verbal communication may be possible between the. two higher levels, so 

that the tl'ainer may short-cut the complex communication channel through 

the environment and prime the trainee with information relevant to its 

control problem~ 

The nature of verbal communication is not sufficiently well understood, 

especially in its effects on perceptual-motor skills, to enable a thorough 

analysis of the use of a direct channel of communication between trainer 

and trainee. In the context of identification and performance evaluation, 

however, it is clear that it may be possible for the trainer to pass 

information about the true nature of the environment or the optimality 

of various contr•ol policies to the trainee, and hence eliminate the 

sources of difficulty in the dual control problem. Discussion of possible 

forms of instruction for human operators is given in Section 5.1.8, and 

experiments with learning machines are described in Section 6.3.4. 

The advantages of direct communication are great, but the conditions 

under which it is possible are very stringent - the trainer must not only 
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have the infor·rnation about the nature of the environment, or the 

optimality of control policies, available, but must also be able to 

communicate this as a form assimilable by the trainee. In practice, 

the trainer's knmdedge about the environment will be incomplete, and 

his channel of communication with the trainee will be imperfect. He 

will be able to prime the trainee to some extent, and select training 

controllers in a. reasonable way - the optimum training system will 

combine verbal instruction with feedback training, and the experiments 

reported in Chapter 5 investigate the interaction bet1·1een these two 

techniques. · 

3.5 From Theory to Practice 

This section concludes the description of work an the abstract, 

axiomatic study of learning and training, and is a natural point at 

which to review the implications and utility of the theory. The overall 

logic of the theoretical development is -

(i) Critically analyse the meanings of the terms 1 learning 1 , 

'adaptive' and their derivatives (Section 2 .1). 

(ii) Give plwely behavioural explicata for the concepts ~~der­

lying these terms (Section 2. 2) - this introduces the , 
fundamental concept of a 'task'. 

(iii) Use these as an axiom set for a calculus of adaptive 

·behaviour (Section 2.3) - this introduces 'potential',. 

'compatible' and 'joint' adaption. 

(iv) Derive a mathematical structure in which to express concisely 

the definitions of adaptive behaviour (Appendix 3) - this 

introduces the concept of an observable, non-determinate 

automaton, cybernetically equivalent to a system defined by 

its behaviour. 

(v) Express the previous discussion of adaptive behaviour in 

terms of the equivalent 1adaption-automaton' (Section 2.4)­

this enables-learning behaviour to be described as a tra­

jectory in the state-space of the adaption-automaton. 

(vi) Analyse training as a probelm of control in the state-space 

of the adaption-automaton (Section 3.2) - this enables 

three modes of training to be distinguished, 'fixed', 'open­

loop' and 'feedback'. 



(vii) Note the fundamental impossibility of identifying 

the detailed structure of the adaption-automaton in 

most real systems, and investigate the feasibility 

of training when only weak overall properties of the 

automaton are available (Section 3.3)·- this leads to 

.two theorems on training, one showing that the very 

weak conditions necessary for training to be possible 

are also sufficient to derive an actual trainer, and 

the other demonstrating the improved results possible 

if more information is available about the adaption­

automaton. 
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(viii) Consider other sources of information indicating the 

probable structure of the adaption-automaton apart from 

observation of the learning behaviour (Section 3.1+) -

this introduces the 'dual-control' problem and the 

associated 'sub-environment' phenomenom, and their 

epistemological influence. 

The most important practical outcome of this chain of reasoning 

is that it gives a unified theoretical foundation to the two extreme 

approaches to training - the 'stimulus-response 1 approach on the one 

hand, typified by most 'programmed-learning' material (MacDonald Ross 

1969), and the 'learning-environment' approach on the other, typified 

by the 'adaptive trainer' (Pask 1960) and certain 'computer-assisted­

instruction' programs (Wexler 1970). The 'stimulus-response' approach, 

in which it is intended that each item given to a student be a function 

of his specific responses to previous items, may be seen as an attempt 

at optimum control in the state-space of the adaption-automaton. Its 

application suffers from the same problems that have beset control 

engineers attemtp±ng to apply 'optimum control' theory: that far more 

detailed information about the controlled system (adaption-automaton of 

trainee) is required than is ever realistically available; and that 

the control strategy itself is very complex, so that both its design 

and implementation are major problems. 

The 'learning-environment' approach, in vlhich a situation is created 

·and maintained vrhich is expected to be conducive tq learning, may be seen 

as an attempt to take advantage of the expected region of local stability 
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ir:. the state-space of the adaption-automaton (potential adaption in which 

learning takes place without specific 'training') and extend this to give 

global stability throughout the state-space. 'I'i1is is the approach 

taken in the design of linear feedback servomechanisms which are able to 

stabilize a wide variety of plants without being optimal for any one, 

but equally without requiring detailed information about the plant 

parameters. In many cases in control engineering (for example, Fuller 

1967) the simple linear servo may be shown to have a performance only 

neglibly worse than a very much more complex and specific optimal control 

suitable for only one of the plants to be controlled. 

In practice neither one approach~or the other may be taken as the 

.best mode of training- in general, stabilization through a controlled 

environment, provides the means to extend the trainee's capability to 

learn without the trainer having to pay specific attention to particular 

attributes of the trainee. However, it is unreasonable to suppose that 

it will be possible to extend the capability of all possible trainees 

(that is, ensure global stability throughout the state-space of all 

adapt :ion-automata), and for the residual trainees a specific training 

program designed throu:J~ observation of their individual behaviour and 

problems will be necessary - in practice, the observation will show up 

specific defects of some trainees, e.g. dislexia, lack of spatial 

ability, etc. What is important in practice is that the approach 

taken is that appropriate to the training situation - in particular 

that a 'stimulus-response' approach is not attempted on a broad front, 

but used rather to overcome specific, well-defined problems. 

In the following chapters the generality of discussion is greatly 

reduced, and a specific feedback training system for a perceptual-motor 

skill is examined. The training situation exemplifies the conditions 

necessary for Theorem 3-2 to be applied, and the reasons for this may be 

traced to a sub-environment phenomenom caused by instability in perfor~ing 

the skilled task. Clearly, with an axiomatic approach to the theory of 

training, experimental validation is not concerned with whether the 

results are 'correct', but whether the theory may be applied to any real 

situation 50. The experimental results of the follO'I·dng chapters indicate 

this is so in at least one practical situation~ and hence make it more 

plausible that it is so in others. 
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CHAPTER q. A FEEDBACK TE<AINER FOR A TRACKING SKILL 

4.1 Introduction 

The theoretical developments of Chapters 2 and 3 provide a 

rationale for the application of fe0.dback training t:ech:dques to 

aid the learning of an adaptive system. The theo:ry is, however, 

to a large extent neutral in its application to real situations -

it classifies adaptive behaviour but does not imply that the behaviour 

will occur in any particular situation. The possibility of maintaining 

the desired sub-environment is argued to be a suit~~le basis for feed­

back training~ but it cannot be proved in general that the "training11 

will give rise to improved learning. Thus, empirical tests cf the 

applicability of the theory to real situations are required, and, in 

particular, the viability and utility of feedback training techniques 

are in question. Hudson's (1964) results (Section A4.5.2 ) suggest 

that a feedback trainer may be useful, even if his particular form of 

automated feedback trainer did not prove to be viable, a11d Ke1ly 

(1967) has reported success with a different form of automated system, 

but has applied it largely to testing and not to training. 

Since previous studies had not demonstrated the utility of feed­

back training, and indeed doubts had been expressed about this (Leonc.!~:i 

1962), the first objective of the experimental studies to be described 

was to determine a situation in Hhich feedback training would give 

definitely improved learning compared with alternative tecimiques. Tbe 

theoretical analysis predicts that such situations should exist, even 

with moderately complex adaptive systems, and dernonstr·ating their 

existence for the human controller is a necessary step i.n the study of 

human learning behaviour' and its control through training. Thus the 

questions at issue were whether automated feedback tr·aining e:as :m 

itself viable, for· example, in terms of the trainer's stability, and, 

secondly, whether feedback training is useful in any circumstances~ 

rather than is it applicable to a particular training px··oblem - the null 

hypothesis was that feedback tl'aining of the human operator neve:;:· :z;-i_w,:s 

improved learning, in some sense, over the best open-J.oop o;.• fixed 

training. 

The detailed design of a training s:jtuation i::1 >vhich feedbad~ t:o~in:i:nr. 

might be expected to have definite advantages is discussed in Chap1.er· 5, 

where the problems in evaluating human learning a:ce analysed and the 

experiments on training human opera.tors are described.. The present 
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chapter is concerned with the viabili_:sy of a particular form of feed­

back trainer, its behaviour and stability, and also with its applications 

to the testing of the ability to perform perceptual-motor skills. 

4.2 Choice of Skilled Task 

The choice of a skilled task for the experimental studies Has 

largely arbitrary, the only formal constraint being that the skill. 

should be one which coLld be learnt by a normal operator to a 

reasonably stable level of performance, without artifacts of fatigue, 

task-induced stress, and so on. For the experiments on training, it 

was also necessary that appreciable learning be possible, so that 

differences between initial a"J.d final performances would ber·:measurable 

and an indication of the relative merits of different training techniques. 

It was also desirable that learning take place over a reasonable time­

period, say thirty minutes to three hours, for experimental convenience, 

and that initial performance and ease of learning show little spr•ead 

through the experimental population, so that statistically significant 

results might be obtained from a reasonably small sample of operators. 

The satisfaction of these training constraints is discussed in Chapter 5. 

Informal influences on the selection of a skill were that it should 

be related to those studied by other workers, so that the general 

literature could be drawn upon in interpreting the results, and that 

the skill should be related to a practical situation where the training 

techniques might be applied. In their experiments with feedback testing 

or training, Chernikoff (1962), Hudson (1964), Jex et al (1966) and 

Kelly (1967) have used compensatory tracking tasks with continuous 

ma"J.ual control and visual indication of error, and the psychological 

literature on compensatory tracking is vast, as is the corresponding 

control-engineering literature on single input, single output, 

regulatory controllers. 

A compensatory tracking task, which is of great practical importance 

and involves training to a high level of skill, is the regulation of 

the attitude of an aircraft through the use of elevator control. The 

strategy used by a pilot in controlling the attitude, and the effect 

upon this strategy of changes in the longitudinal dynamics of the aircraft 

have been extensively investigated by many -..;orkers (Appendix 4), largely 

in the aircraft :i.ndustry, who have also monitored other variables of 

interest, such as the pilot's opinion of the simulated craft (Hall 1963). 

Hence, the regulation of the short-period motion :i.n the longitudinal 

dynamics of an aircl'aft was taken as the basis for a model tracking skill. 
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4.2.1 Dynamics ?f the_l)'ackbg Tasl~ 

The longitudinal dy"llamics of an ail~craft (Kolk 1961, Blakelock 

1965) are those between the elevatol~ control (the pi•lot 's joystick) 

and the attitude, or pitch~ of the aircraft. Because a constant angle 

of the elevators creates a turning moment to change the attitude, there 

is a pure integration b(~tween the joystick position and the attitude. 

Because of the interplay of aerodynamic forces, there are also two 

second-order, oscillatory transfer--functions in cascade between the 

joystick and pitch. One of these, causing the 'phugoid' motion of the 

aircraft, is of very long period (several minutes), and is generally 

neglected in studies of the pilot's control policy. The other~ short­

period, dynamics have a natural frequency in the region of 0. 3 Hz, and 

are most relevant to the 'feel' of the longitudinal dynamics. 

In his studies, described in Section A4.2.1, Hall (1963) took 

the longitudinal dynamics to have the form given in Equation A4.l. In 

the present studies, the lead term in the numerator, (l + 0.6s), has 

been omitted and the overall transfer function has been taken to be:-

G(s) 

2 The term w has 
n 

value of 'L' is 

as variables to 

= 
2 2 L/s(w + 2kw s + s ) 
n n 

multiplied through the equation (so that the new 

times the previous value), because k and w are taken 
n 

been 
2 

w 
n 

changed in training. If w is varied using Hall's 
n 

be 

form of the equation, then the concomitant change in gain gives a system 

which feels reasonab~e at one value of w , sluggish at lower values, and 
n 

over-sensitive at higher values. It was found in initial informal 

experiments that variation of w over a \dde range, for a constant value 
n 

of L, gave an acceptable system to control using the dynamics of 

Equation 4 .1. The range of variation of the two parameters was, setting 

F = w /2 Tr: n n 

0 < k < 1 

0 < F < 0. 8 Hz 
n 

A block diagram of the compensatory tracking task with these 

dynamics is shown in Figure 4-1: three integrators in cascade prove 

the overall; third-order dynamics between the manual control and the 

visual display; negative feedback from the output of the second 

integrator to the inputs of both first and second integrators sets up 

the oscillatory second-order transfel'-fu."lction, followed by a pure 

integration; a disturbing sir;_,rnal is fed in at the same point as the 

operator's input. Oscillatory dynamics have b;,en little studied in 
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psychological experiments on the acquisition of skill, but, apart from 

their practical importance~ they have characteristics, in particular a 

non-monotonic response, Hhich create dis':inct and interesting difficuJ.ties 

in learning to compensate for them. Furthermore, the cascaded exponential 

lags, so often used in psychological studies, are a special case of this 

transfer-function with the damping-ratio, k, set to unity. Thus, the 

dynamics offer more scope fur study than the lags utilized by Chernikoff 

(1962) and Kelley (1967); Hudson (1964) included oscillatory dynamics in 

his study. 

4.2.2 Parameters of Difficulty for the Tracking Task 

The implementation of a feedback trainer for the particular third­

order tracking task selected clearly involves using some information 

about the learning behaviour of the hw~an operator fer this form of 

tracking skilL In previous chapters it has been emphasized that this 

information is available from diverse sources:- from observation of 

actual adaptive behaviour to determine the adaption-automaton; from a 

knowledge of the purpose of the controller and the desired sub-environ­

ment for learning; and from a knowledge of the behaviour of other 

controllers with similar objectives to those of the human operator. In 

practice, all these sources contribute some partial information about 

suitable structures for a feedback trainer, and the actual trainer is 

a synthesis from all three. 

The advantage of a tracking task in designing a trainer is that the 

performance of the trainee may be continuously assessed in terms of the 

error which is displayed to him. Hence, it is possible to consider the 

use of a simple performance-feedback trainer, whose sole information 

about the trainee is derived from measurements of his performance. The 

justification of performance-feedback training in terms of maintaining 

the desired sub-environment is discussed in Section 4.4. In this section 

the dependence of performance on parameters of the tracking task is 

analysed, and it is convenient to suppose, informally, that these 

parameters affect the_difficulty of the task for the operator. 

From Figure A4.,..2 ( ii) which is Hall 1 s plot of the contours of consta11t 

mean tracking error in the natural-frequency/damping-ratio plane, it may 

be seen that the operator's performance decreases monotonically \vi th 

decrease in natural-frequency. Figure A4-2(iv), showing the pilot's 

opinion of the tracking task, also indicates that the difficulty 

increases with -decreasing k and F (or \<1 ) , for F less thc:m about 
n n n 

0.8 Hz. In fact, decreasing k causes the system to become more oscillatory) 
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and decreasing \'1 leads to longer time lags, so that these results are 
n 

are to be expected; the disparity betv<een the contours of Figures A4-2 

(ii) and (iv) is probably because too high a frequency of oscillation 

is visually annoying when the system is under-damped. 

A third parameter affecting the difficulty of the tracking task 

is the amplitude and nature of the disturbance at the input. Clearly, 

the greater the amplitude of disturbance the greater will be the error, 

and generally the greater the high-frequency content of the disturbance 

the greater the error. In the initial informal experiments many forms 

of disturbance were used, including Gaussian noise, sine waves and 

square waves of different periods. Because the disturbance passes 

through the complete controlled system, which acts as a low-pass filter, 

much of its high-frequency content is smoothed out and there was little 

difference in effect between these various forms of disturbance. 

Throughout the formal experiments a square-wave of n1enty seconds period 

was used as a disturbance - a repetetive waveform was used to enhance 

the possibilities for learning in the training experiments, and it was 

filtered through the controlled element to avoid the visual fatigue 

associated with a rapidly-changing display. 

Although it may be sho~n that the error due to a disturbance in a 

linear control system is proportional to the amplitude of the disturbance, 

the exact effects of variations in the natural-frequency and damping­

ratio of the controlled element are less readily determined. In control 

engineering, it is known that a regulator for the transfer-function 

described has a more 'difficult' task as F and k are decreased, in 
n 

the sense that the acceleration and velocity terms in the controller 

transfer function have to increase in relative magnitude to maintain 

the same stability margin. In the following section the quantitative 

relationship between the tracking task parameters and controller 

performance is analysed in detail for a simple relay controller, in order 

to provide data for a theoretical analysis of the behaviour and stability 

of a performance-feedback trainer. 

4. 3 Performance of a Rel,?Y Controller for the Track~g Task 

In choosing a form of automatic controller for a theoretical 

analysis of the tracking task~ and for later trials of the feedback 

trainer, a controller with similar ouput characteristics to the human 
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operator was desired. In Appendix 4 and from Figure A4-3 in particular, 

it is shown that the human operator's output for high-order controlled 

elements is discontinuous and far more similar to that of a switching, 

or 'relay', controller, than that of a linear servomechanism. In 

the theoretical and experimental analysis of the feedback trainer 

also, it was found that the behaviour of the trainer with a linear 

servo as 'operator' was very different from that with a human operator, 

whilst that with a relay controller was similar. Hence, the theoretical 

analysis is based on the behaviour of a relay controller performing the 

tracking task. 

4. 3.1 Theoretical Derivation of Mean Error of Re~ay Controll~ 

A 'bang-bang' or rel~y controller (Gibson 1963 p.342) is the 

simplest possible form of regulator for a single-input, single-output 

system. The controller's output takes one of two values, ~ M say, and 

the sign of the output is the opposite of that of the error, so that 

the controller makes the minimum decision necessary to apply some form 

of negative feedback. In systems containing lag, the simple relay is 

an inadequate controller and a predictive, or lead, element must be 

placed before the relay in order to compensate for the lag and cause it , 
to switch before the error passes through zero. A block diagram of a 

relay controller coupled to the tracking task of Figure 4-1 is shown in 

Figure 4-_2, consisting of plant dynamics, clipping element, lead network, 

relay and summer: the error, e(t), is fed through the lead network, 

P(s), to give an output, f(t), which drives the relay element, R; the 

relay drives a binary signal, m(t), into the controlled element, G(s), 

and there is added in the disturbance, a(t); since the loop may go 

unstable and the output of G(s), e'(t), become large, a clipping element 

C, is shown before the error signal, e(t); an averagL~g network, A, forms 

the time-average of e(t), e ' in order to measure the effectiveness of 

the controller. 

The lead net\-rork P( s), was taken to have the simple first-order form:-

P( s) = 1 + l-IS 

and the relay itself ob.:ys the equation:-

m(t) = -sgn(f(t)) ~.5] 
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If the disturbing input, a( t), is taken to be zero, and the affect of 

the clipping element, C, on the loop behaviour is neglected (it may 

clearly be neglected if ]..!=0), then the behaviour of the control system 

may be analysed using the describing function technique (Gibson 1963 

Section 9.3). A limit signal oscillation is set up in the loop such that 

the input to the relay has the form:-

f(t) = 

and satisfies the basic equation of describing function analysis:-

P(jw)G(jw) = liK eq 

where K is the equivalent gain of the relay. This is given by:­eq 

K eq 4MI7rf 

so that the 'gain' of the relay is inversely proportional to the 

amplitude of the signal at its input. 

Substituting in Equation 4.7 from Equation 4.1 and 4.8, we obtain:-

4ML(l+jllw)l7rf = -jw(w2 + 2jkww - w2} li.91 n n .=:1 

and, separating real and imaginary components:-

2 
w

2 I (1 - 2kllw ) [[.1§} w = n n 

f 3 fE.1iJ :: 2ML(l-2k]..!W )l7rkW 
n n 

Continuing to neglect the clipping element, C, we have that:-

e = f I (1 + ]..!2W2)ll2 Ef.liJ 
and, substituting in Equation 8.12 from Equations 8.10 and 8.11:-

e = 2ML(l-2kJ.lW )312 
. n 

3 2 2 112 I (7rkW (l-2kllW +]..! w ) ) n n n 

In obtaining the mean error, e , from e, it is convenient to take into 

account the effect of clipping in C, which is assumed to limit the 

signal in amplitude to ~c, so that:-

( 2el7r 0< e <c 

e = 
( 

~ 2 [e-(e2-c2 )112+c(cos-\cle))]!'Tf e> c 

Equations 4.13 and 4.14 together enable the mean error to be calculated 

for a range of values of the plant and controller parameters. 
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The relationship betv;een e , k, w , and ll is not clear from the 
n 

analytic form of the equations, but cer'tain characteristics may be 

established from special cases. Firstly, the dependence of e on e 

may be made clearer by writing Equation 4.14 in implicit form:-

let 

then 

e = c 

c 

(cosec(8)) e> c 

(l - 2(0-tan(G/2))/TI) e > c 

When e is large, 0 is small and e::::::c/8, so that:-

e :::::: c (1 - c/lfe) e >> c 

and e is asymptotic to c. A table of values relating e/c to e/c is 

given in Table 4-1 - the relationship is linear for e < c and then 

e/c increases less rapidly than e/c. 

e/c e/c e/c ~/c 

0 0 1•540 0•785 
X 0·637x 1·701 0·807 
1 0·637 1•914 0•830 
1·052 0·663 2•202 0'853 
1·122 0•690 2•613 0·877 
1•173 0·707 3·152 0•901 
1•236 0. 724, 4·284 0•925 
1·315 0·743 6·393 0·950 
1·414 0·764 12·745 0·975 
1•540 0•785 0() 1 

Table 4-1 Input Amplitude and Hean Output for a Limiter 

Secondly, for the particular case when there is no velocity feed­

back and l-!=0, from 4.13 we have:-

= 2HL/1Te 

Hence, the lines of constant mean error in the natural-frequency/damping­

ratio plane are such that k is inversely proportional to w cubed. Also, 
n 

subject to limiting, the mean error is inversely proportional to w
3 cubed 
n 

also. From Equation· 4.13, it is apparent that this cubic relationship · 

dominates even when l.l is non-zero, although other terms in k and w then 
n 

appear. In order to establish the relationship beh;een the mean error, 

e , and parameters of difficulty, such as w , experimental trials of the 
n 

system shown in Figure 4-2 were carried out, and the results compared 

with the theoretical results predicted from Equation 4.13 and 4.14; these 
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w = .n 
0.000 
0.625 
1.250 
1.875 
2.500 
3.125 
3.750 
,4.375 
5.000 

87 

are reported in the follo'l':ing section. 

4 .• 3.; 2 Experimental Results on the Behaviour of a Relay Controller: 

The system shown in Figure 4-2 was set up on an analogue computer 

using chopper-stabilized amplifiers, and an integrator was used to measure 

the mean error, e , over a four minute interval. The values of the 

parameters used in the experiments were:-

Disturbance a(t) = 0 

Relay Output M = 0.0216 

Open-loop Gain L = 1,000 

Limiting Level c = o. 95 

Damping Ratio k = 0.5 

Natural Frequency 0 <:: w < 5 radians/second -·n-
Velocity Feedback 0 ~ l.l < 2.5 -

Table 4-2 shows the experimentally determined values of e for various 

values of l.l and w , whilst Table 4-3 shows the theor•etical values fr•om 
n 

Equations 4.13 and 4.14. 

~= 0.000 0.087 0.150 0.225 0.325 0.500 0.750 1.250 2.500 
.966 .964 :957 -952 .947 .940 .934 .920 ... 950 
.~26 .901 .B'79 .883 .857 .815 .759 .542 .059 
.360 .838 .818 .790 .'759 .674 .272 .013 .000 
.785 .753 .728 .687 .569 .109 .005 .000 .000 
.706 .665 .584 .401 .134 .015 .000 .000 .000 
.564 .418 .272 .116 ~025 .000 .000 .000 .000 
.329 .202 .107 .028 .000 .uoo .000 .ooo .000 
.213 .114 .043 .006 .000 .000 .000 .000 .000 
.127 .051 .004 .000 .coo .000 .000 .000 .000 

Table 4--2 Bxoerimenta11;z DeterJ;gined Values of !-iean Error 

w = p..= 0.000 0.087 0.150 0.225 0.325 0.500 0.750 1.250 2.500 n 
0.000 .950 .950 .950 .950 ·950 .950 .950 .950 .950 0.625 .947 .947 ·947 ·947 ·947 ·947 .944 .927 .000 1.250 .929 .927 .~24 .920 .9ll .872 .144 .000 .000 1.875 .880 .866 .848 .811 .686 .042 .ooo .000 .000 2.500 .782 .724 .627 .373 .099 .000 .000 .000 .000 3.125 .574 .397 .256 .104 .oco .000 • GCJO .000 .000 3.7)0 .332 .207 .110 .022 .000 .000 .ooo .uoo .000 4.375 .209 .116 .047 .uoo .ooo .ooo .000 .000 .ooo· 5.000 .140 .068 e0l9 .ooo .ooo .000 .000 .000 .000 
~le 4-3 Theoreticall£ Derived Values of Mean Error ---·--· 
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It is apparent from the tables that the agt'eement betHesn theoretical 

and experimental values oi the mean error is very close for the loHer 

values of eat Hhich limiting does not occur (e< 0.6), and any discrepancy 

may be ascribed to the experimental inaccurancies in establishing H 
n 

(of order 2.5 per cent). However, for higher values of eat which 

limiting plays a major role, the theoretical values rise more rapidly than 

the experimental ones. This may be explained in terms of the approx.irnation 

made by neglecting 1he effects of limiting on the loop behaviour, and only 

calculating its effects on the measured mean error. The limiting clearly 

reduces the error signal circulating in the control loop rather than 

just the measured signal, and this gives rise to the disparity between 

experiment and theory. However, in the heavily limited region, the 

controller has effectively lost control of the loop and the behaviour 

is not of major importance in the theory of training. 

Figure 4-3 shows the experimental values of e plotted as a function 

of wn for different values of p , making appar·ent the variation of performance 

wi~h difficulty. The curves are sigmoidal limiting at high error 

amplitudes approximately according to Equation 4.14, and being asymptotic 

to zero according to the cubic relationship of Equation 4.13. It will 

be noted that the sensitivity of ~ to changes in w , defined by the 
n 

slopes of the curves; varies as a function v:n, but that maximum slope 

occurs at much the same value of e in each case. This is the major 

characteristic which makes a simple feedback training system possible, 

and makes it attractive to use a constant-error criterion for testing 

a controller. 

4.4 Feedback training Strategy 

The three parameters of difficulty for the controlled element shown 

in Figure 4-1, selected for variation in training, are the undamped 

natural frequency, w , the damping-ratio, k, and the amplitude of the 
n 

disturbance, a. There is an alternative viewpoint from which these 

parameters may be examined i-.nich relates the variation of difficulty to 

that of a 'training controller', discussed in Chapter 3. If the 

required control skill is taken to be that of regulating a pure third­

order system, consisting of three pure integrators in cascade with the 
3 dynamics - L/s , subject to a disturbing signal, then a sui table trai..'1ing 

controller might place negative feedback loops around the integrators 

and inject a disturbance-cancelling input. If the negative feedback 

loops are such as to feed the velocity of the output back to the 
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acceleration of rate of change of acceleration, then the overall 

transfer function will be that of the longitudinal 'aircraft 1 dynamics 

described in Section 4.2 .1. In Figure 4-4, the controlled element of 

Figure 4-1 has been re-dra.,.m to separate out the training controller 

from the pure third-order system on which the trainee is ultimately 

required to operate. 

The feedback trainer has to give the naive trainee an easy task 

and then gradually increase its difficulty as the trainee's skill, as 

measured by his performance, improves. This ... :as achieved in practice 

by driving the parameters of the training controller' from the output of 

an integrator, such that one extreme of the output gave the easiest 

task, whilst the other extreme gave the most difficult task. The 

modulus of the error at the output of the controlled element was fed 

to the input of the integrator minus a tolerated level of the mean 

error, e ,in such a sense that if the mean error is above tolerance 
0 

then the difficulty of the tracking task is reduced, whilst if it is 

below tolerance then the difficulty is increased. The overall effect 

is clearly such that if there is a stable value of the integrator output 

then the mean error is equal to the tolerated level. Hence, in Hudson's 

terms (1964), the absolute difficulty of the tracking task is varied by 

the training controller to maintain its difficulty for the trainee constant. 

There are two alternative interpretations of the training strategy 

in terms of the results of Chapter 3 which relate the practical trainer 

to the theoretical studies. These lead to alternative justifications 

of the training strategy which are discussed in the following sections. 

4.4.1 The Training Strategy as I1aintenance of a Desired Sub-Environment 

The third-order controlled element of Figure 4-4 is a linear system 

with three state-variables, the position, velocity and acceleration of 

the output. The desired sub-environment of a regulatory controller is 

a region about zero in this state-space. Provided this region does not 

impinge on the boundaries of the state-space (the position, velocity and 

acceleration are each· bounded in magnitude in any physical realization 

of the transfer-filllction of the controlled element), the system will 

behave within it in a linear m~~ner. The desired sub-environment will 

be of finite size because of the disturbance which, even if perfectly 

predicted, cannot be ca.-!celled instantaneously. The maximurn value of 

the disturbance in all the experiments Has in fact chosen so that a skilled 

operator could maintain the system in its linear region. 
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The control policy of a. naive operator attempting to control the 

third-order system gives rise to an unstable loop, and the state­

trajectory of the system tends to follow the boundaries of the state-

space. Thus, the initial sub-environment may lie entirely outside the 

desired sub-environment and Hill correspond to a nonlinear, rather than 

a linear, system. A suitable training controller >·rill be one Hhich 

attempts to maintain a linear sub-environment by cancelling the disturbance 

and stanilizing the cohtr·ol-loop; this is the effect of training 

controller shown in Figure 4-4. 

Since the desired sub-environment is a region about zero in the 

state-space of the controlled element, it is possible for the trainer to 

detect by direct meas'..lrement whether or not this is being maintained. 

Under the experimental conditions the bounds on the error itself were 

very much more stringent~ than those on its rate or acceleration, and 

hence the value of the output of the controlled element was a sufficient 

indication of the effective sub-environment. A tolerated magnitude of 

error was fixed to define the boundary of the desired sub-environment, 

and the strategy of the trainer was such as to increase the difficulty 

of the task when the error was within tolerance and decrease it other­

wise. This was achieved by the integrator in the training loop, ahom1 

in Figure 4-4 and described in Section 4.4. However, this may now be 

seen as acting continuously to maintain a sub-environment, rather than 

as a device for keeping the mean error constant; in this particular 

situation the two viewpoints are equivalent, but generalization to ~ther 

situations follows from the sub-environment rather than the error-based 

approach. 

4.4.2 The Training Strategy and the Second Training Theorem 

The sub-environment interpretation of the training strategy given 

to the previous section leads to a further analysis of the traL~er if it 

is noted that the desired sub-environment is obtained with plant 

parameters that lie on the stable side of the controller's stability . 
boundary in the natur~l-frequency/damping-ratio plane (where a stability 

boundary is a line of constant mean-error in the plane). Equation 4.18 

indicates that the mean error is a very rapidly increasing function of 

. the natural frequency, wn' so that the stability boundary is well-defined 

with respect to wn, and Figure A4-2(ii) shows boundaries for different 

mean-errors for human operators. Since the feedback trainer is 

attempting to keep the mean-error constant, it may also be seen as 

attempting to keep the trainee on> or withb_. its current stability boundary. 
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Learning may then be seen as a movement of the stability boundary 

towards lower values of k and w • 
n 

This interpretation is of particular 

interest because the trainee is effectively being described in terms of 

the set of tasks for which it is satisfactory. Informally one may say 

that the stability boundary is expected to move outwards provided the 

current plant parameters are on the stable side of it, and the movement 

will be most rapid if the parameters are near to the boundary - the 

rationale for this being the sub•environment argument of the previous 

section. However, this may now be re-phrased in terms of the adaption-

automaton of the trainee, with the sub-environment phenomenom being the 

epistemological basis for constraints on the adaption automaton as 

discussed in Section 3.4. 

Consider the terms of the Second Training Theorem (Section 3.3.2) 

and its extension to a lattice of tasks (Section 3.3.3). Let a task be 

defined as a fixed period of interaction with a plant of certain values 

of natural-frequency, w , and damping-ratio, k. Consider the order 
n 

relationship on the two~parameter family of tasks t(wn,k) such that -

t(w ,k)< t(w' ,k')<=> either w > w' or k> k' or both n n n n 

that is, from Equation 4.13 or 4.18, one task is higher than another in 

the order if the mean error for a relay controller (and, from Hall's 

results in A4.2.1, for a human operator) is greater for that task than 

for the other. Hence the order on the tasks corresponds to the order 

of the mean error and stability boundaries. 

It is now possible to re-phrase the concept of learning as movement 

of the stability boundary - because, for at least some range of values of 

w and k, we expect the stability boundary for a task, if it is originally 
n 

near the task, to move away from it and hence encompass other tasks with 

higher w or k, we have -
n 

given the ordering of tasks of Equation 4.19, there exists a range 

of tasks from ta to tb' such that -

Vt: ta~t~tb 3t' t < t', A(t)CP(t') 

that is, performing t~e task t (within the region P(t)) causes the 

trainee to become potentially adaptive to a task, t'. This interpretation 

gives a form of condition (ii) of Theorem 3.2 - condition (i) may be 

satisfied is ta~T~ tb - whilst condition (iii) effectively requires that 

-there is some task (value of wn and k) in the range ta through tb for 

which the trainee is able to exert stable control at any stage of training. 



The main differences between the training strategy used in the 

proof of Theorem 3.2 and the feedback trainer described in this 

Chapter is that the actual trainer is continuous rather than discrete 

and has no inbuilt random behaviour. In practice these differences 

are small because the human operator himself injects an effective r•andcm 

comp0nent, the 'remnant' (A4.2.1), and also because since the trainer is 

integrating the modulus of an oscillating error signal it is a~tually 

changing the difficulty in a 'discrete-plus-jitter' type of mod~. 

Thus the feedback trainer used in the experimental studies may be 

regarded as a teaching-machine varying the 'difficulty' of a tqek 

according to the performance of the trainee; as an attempt to rnatntain 

the optimum 'sub-environment 1 for learning the required task; or as a . 

realization of a training strategy based on fairly general c<mstraints 

upon the adaption-automaton of the trainee. In the current tra._i,p~ng 

situation all three interpretations are clearly closely re~a~ed ~ 

h()wever, each offers a different basis fo1., generalization in tl1e> ~.nt~r.., 

pretation of the results obtained. 

4.4.3 Implementation of Feedback Tra~1er 

The feedback trc;.iner of Figure 4--Lf was realized on an ane<:j,.og co:r:puter, 

using chopper-stabilized operational mnplifiers and 1 per cent a~curacy 

components. The time constant of integration in the training J_oop, and 

the tolerated mean error -v;ere both adjustable, and reasonable vali.Jes of 

these variables were established during the initial informal tl':i.a1s. 

These parameters, and the effects of changing them~ are analysed in mo:::'e 

detail in the following section en the trainer's stability. 

The output of the feedback training integrator could be ccupled to 

a.-·1y combination of the three servos adjusting the parameters of diffi:::ulty 

of the task. In practice, one or two of the servos v1ere lock<?d :i.n fixed 

positions and the remainder were coupled to the integrator. The space of 

all possjble training environments, defining 'tasks', is three.,-q~mensio!lal~ 

si.J:1ce the difficulty increases as:-

(i) The disturbance is increased from zero to its maxim'..lln value. 

(ii) The undamped natu:::--al frequency is decree.sed from i~cs maximum 

value to zero. 

(iii) The damping ratio is decreased fpom its ma.ximu.\1\ valu~ to z~ro. 

The trajectories of the tr·a.ining environment throvgh this three...,-di.mensional 

space were reduced, by locking or· co-varying the servos, to s:i.ngle 

dimensional paths along lines either parallel to one of the a:<es or diagonal 
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to a pair. In the informal experiments on testing only the natural­

frequency varied (for a range of fixed values of the damping ratio 

and a single value of the distur·bance), and ih the experiments on 

training the natural frequency was locked and the amplitude of the 

disturbance and the damping ratio co-·varied. These particular restrictions 

had the advantage of making the theoretical analysis simpler, but were 

otherwise arbitrary choices. 

This particular form of feedback trainer is similar in its strategy 

for variation of the task difficulty to the feedback testing systems of 

Jex, McDannel and Phatak (1966) and Kelley (1967) (the same strategy was 

suggested by Hudson (1904) in his recommendations for future work) • 

4.5 Stability and Dynamics of the Automated Feedback Trainer 

The expected behaviour of the feedback trainer is that it will 

maintain the desired sub-environment by variation of the parameters of 

the training controller, or, more precisely, that it will adjust the 

difficulty of the task to cause the mean error to come to a certain level 

and maintain it at that level. With a non-adaptive controller, the only 

stable value of difficulty will obviously be uniquely determined by the 

ability of the controller to regulate the control system. It is not 

obvious, however, that the feedback training loop is stable, and indeed 

it may be shown·that with certain forms of controller instability may 

occur. Analysis of the loop stability is complicated by the number of 

feedback loops operative and the nonlinearities in both human operator 

and automatic trainer, but a simple analysis may be based on linearization 

of the outer, parameter-adjusting, loop. 

However, in Section 3.3.3 it has been shown that even at a highly 

abstract level a feedback trainer of the type under discussion may be 

expected to show behaviour similar to that of a linear servomechanism, 

and hence an analysis of the trainer basad on linearization may be use-

ful. In the following section a stability analysis of the feedback trainer 

based on linearization of the training loop is described, and the loop 

dynamics are derived for a relay controller acting as operator. In later· 

sections the analysis is confirmed by experimental studies of human and 

automatic controllers. 

4.5.1 Derivation of the Dynamics of the Training Loop 

Consider first the variation of the mean error modulus with change 

of difficulty, that is, the natural-frequency, damping-ratio, or 
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disturbance in the main loop. For an operator with a fixed control 

policy, at zero disturbance, there will be both an amplitude-dependence 

and a time-dependence in this variation. If his control policy is 

nonlinear so that a limit-cycle forms, then, under the experimental 

conditions, the mean error modulus, e, increases monotonically in 

amplitude for decreasing natural-frequency and damping-ratio; the 

theoretical results of Section 4.3.1, and the graphs of Figure 4-3, 

illustrate this dependence for a nonlinear, 'relay' controller. The 

limit cycle takes time to build up and decay as the task difficulty 

changes, and this time dependence may be approximated by an exponential 

lag with a time contant of the same order as the period of the limit 

cycle. If the control policy is linear, however, there is no stable 

limit cycle, and the error modulus rises exponentially in time to its 

maximwn possible value on one side of the stability boundary, and decays 

exponentially to zero on the other. 

The relation to be expressed approximately in linear terms is that 

the mean error modulus and its rate of change are together linearly 

dependent on the difficulty of the task for the operator. Since the 

error modulus cannot be less than zero, for the linearization it must 

be expressed as a deviation from some positive value, and this is 

conveniently taken as the tolerated level, e • It is clear that the 
0 

error must increase with the difficulty of the task and decrease with 

the operator's ability, but of these only the task difficulty is independ­

ently measurable and it is convenient to relate the operator's ability 

to this. Let the task difficulty increase monotonically with the 

increase of some parameter, o , and let the operator's ability be defined~ 

in related units as a, such that when a=o the mean error modulus, e, is 

at the tolerated level, e • 
0 

The behaviour of the mean error modulus may now be approximated by 

the equation:-

f(~ - e ) 
0 

2 -+ g se o - a @.20] 

where s is the time differentiation operator. The constant, f, will be 

large relative to g for switching mode controllers, whilst f will be a 

function of the disturbance and b large for linear controllers. It is 

clear from Equation 4.10 through 4.11+, that f and g are functions of ;:; , 

o and a - however, for small deviations from a possible stable point, 

Equation 4.20 will be valid. 
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The relationship between task difficulty and the mean modulus error, 

realized by the integrator in the training loop, is:-

so = 
where l/h2 is the time constant of the integrator. Combining Equations 

4.20 and 4.21, we obtain:-

0 + = a @" .22_] 

This is the overall equation for the training loop dynamics, and it may 

be seen that ofollows ~ through a second-order transfer-function with 

undamped natural frequency of h/g radians/second, and a damping ratio of 

f/2hg. 

If there is no true limit cycle and f is zero then so is the damping 

ratio and the training loop becomes oscillatory. It was found experimentally 

that this did occur when a linear controller was used as the 'operator', 

and the difficulty oscillated widely. However, this has no practical 

effect since the human operator's control policy is sufficiently nonlinear 

to cause the value off to do~inate over that of g2 • When this is so, 
2 and g can be neglected, Equation 4.22 reduces to:-

+ = a 

so that again o follows a , but this time through a simple exponential 

lag of time-constant, f/h2• 

These equations give the transient behaviour of o in response to 

changes in a. )' but do not allow for the error signal itself having an 

oscillatory form. The effect of this on the steady-state value of o 

may be approximated by ass~ing that, under steady-state conditions, 

the error signal has the form: 

e = ( 1 + sin ( wt ) ) e 
0 

that is, an oscillatory signal, always positive, with a mean equal to 

e and a frequency equal to that of the oscillations in the lower control 
0 

loop (given by Equation 4.10 for the relay controller). Equations 4.21 

and 4.22 then give the stea~tate solution for o as:­

O· = a + (h2/w)e cos(wt) 
0 

Equations 4.22 and 4.25 indicate that, if the time-constant of the 

training loop integrator is sufficiently long so that h is small, then 

·the difficulty adjustment is well-damped and little of the oscillation 

in the tracking task control loop appears £~ the difficulty variation. 
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The linearization of the training loop is a very strong approximation 

and requires empirical checks of its validity. In the following 

section a quantitative check is given using the analysis of the relay 

controller described in Section 4.3.1, ~.;hilst in Section 4.5.3 qualitative 

checks of the predicted loop behaviour with human operators are described. 

4.5.2 BehavioUL, of the Training Loop with a Relay Controller 

In the experiments on the behaviour of the training loop vlith non­

adaptive controllers, only w was varied, with k at some fixed value, 
n 

and the amplitude of the disturbance, a, either zer9 (for relay controller) 

or at a small fixed value (for human studies). It is convenient to have 

the difficulty, o, vary from zero (easiest) to unity (most difficult), 

and set:-

= 1 .... w /5 
n 

The tolerated level of mean error modulus, e , was set at ·175, because 
0 

this was found to give a demanding but comfortable control task for 

human operators when the difficulty reached its steady state. This 

gives an error oscillation whose amplitude is well below the limiting 

value, and hence the mean error modulus may be determined from Equation 
. . . , 

4.13; 1t 1s conven1ent to write this in the form:-

(4ML/n2k)(l-2kpw ) 3/ 2/(w3(1-2kpw +~2w2 ) 112 ) 
n n n n e· = 

Substituting e = e in this equation enables the value of w and hence o n' 
o, to be derived for which a= o. 

The constant, f, may be seen from Equation 4.20 to be the steady­

state rate of change of owith ~ for~ = e, and may be derived in a 

convenient form by logarithmic differentiation of Equation 4.27:-

f = l/(5e(4/wn + 3lq,J/(l-2k~wn) - (l-k~wn)/(wn(l-2kJ.lwn + 

J.l·2w2)))) 
n 

If Equation 4.20 were truly linear, g2/f would be the time constant 

from the moduls error to change in response to changes in 0 • It is a 

difficult term to estimate, however, because it is so dependent on the 

mode of behaviour of the nonlinear relay servomechanism. When 0 , 

and hence w , is changed, the relay servo tends to enter a 1 chatter 1 

n 
mode (Gibson 1963 p.445) in which the trajectory in the (e,e) phase-

plane spirals around the origin with a natural frequency of w (l-k2 )1/ 2 , 
n 

oscillating about this trajectory with a natural frequency of w. The 

period of one spiral was taken to be a reasonable value at which to set 
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0.000 
0.087 
0.150 
0.225 
0.325 
0.500 
0.750 
1.250 
2.500 
Table 

98 

g2 /f to provide some quantitative comparison of theoretical and measured 

loop dynamics. Hence:-

2 2 The constant, h , was set at the value, h =0.057,, and Has such 

that, Hhen e = 0, to rise from zero to maximum difficulty took about 

100 seconds. 

a a damping 
(the or) ( expt) f g train~1oop 

0.072 0.08 1.77 1.65 2.24 
0.215 0.22 1.17 1.46 1.67 
0.318 0.32 0.852 1.34 1.33 
0.425 0.42 0.558 1.18 0.988 
0.531 0.53 0.333 1.011 0.691 
0.653 0.64 0.150 0.788 0.398 
0.752 0.74 0.055 0.592 0.194 
0.844 0.84 0.0162 0.386 0.0878 
0.921 0.91 0.00216 0.198 0.0209 

4-~ Training Loo:Q D;ynamics 

Values of the training loop dynamic parameters derived from the 

theoretical equations are given in Table 4-4, together with the experi-:­

mentally measured values of a , the 'ability' of the relay controller 

in terms of the difficulty of the task. It may be seen that there is 

very close agreement'between the theoretical and measured values of a , 

showing that the describing function analysis of the relay control loop 

is adequate, and that the training loop sets up the correct steady-state 

conditions. The degree of agreement between the theoretically-derived 

dynamics of the training loop and the measured results may be determined 

from Figure 4-5. This shows the variation of o with time in the experi-­

mental system for different values of a. The range of damping ratios 

predicted by the theory is similar to that found experimentally, and a 

damping ratio of 0.7 for a= 0.5 ties in closely with the measured value. 

A more detailed examination of the relationship between measured and 

predicted dynamics, however, shows up major discrepancies. For the low 

damping ratios in the training loop, the period of oscillation should be 

2~g/h ~26g seconds, ?nd this leads to theoretical values which are very 

much lower than those measured. From the form of the oscillations in 

the graphs for low damping ratios, it is clear that the time constant 

in increasing o is very much less tha~ in decreasing it, and that 

Equation 4.20 is a very coarse approximation. The rise time of the 
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graphs for various levels of a also cannot be predicted from the steady­

state, and the actual rises are rate-limited by the limiting of the 

error signal. 

These results represent the limit to which a quasi-linear analysis 

of the behaviour of the feedback trainer may usefully be taken - it 

accounts for the steady-state behaviour and important characteristics 

of the dynamic behaviour, but does not accurately predict the detailed 

dynamics. In the foll.)"l'ting section the implication that the training 

loop will be stable and responsive for relay-like controllers, as is the 

human operator in this situation, is confirmed by experimental studies 

with human controllers. 

4.5.3 Behaviour of the Training Loop with Human Controllers 

In the experiments with human operators, the control was a rolling­

ball joystick of diameter 9 inches, which gave an output of 0.55 units 

for 1 degree rotation and a maximum output of~ 3.8 units. The error 

was displayed on a 5 inch diameter oscilloscope as a horizontal deviation 

from a central vertical line with a sensitivity of 0.38 units for 1 inch 

of.movement. The sense of the control was such that a movement to the 

left sent the spot to the left, and the joystick itself was centralized 

by light springs. A} 0.5 inches on either side of the central display 

marker were two other vertical markers, and the operator was instructed 

to move the control so as to keep the spot on the oscilloscope within 

the outer markers. The experiments took place in a soundproof room, 

9 1x9', dimly but comfortably lit and free of experimental apparatus except 

for some tables, a typists' chair for the operator, and the oscilloscope~ 

mounted 3 feet from the ground about 3!) from the chair. 

The parameter of difficulty varied by the feedback trainer was the 

' undamped natural frequency of the third-order transfer function, H , 
n 

according to Equation 4.26 as for the experiments with relay controllers. 

The damping ratio, k, was set at one of a range of fixed values, for 

example 0.25, 0.75, 1.0, so that the minimUm natural-frequency at which 

the controller was stable for a given damping ratio was obtained. It was 

found desirable to have some small disturbance injected in the loop, since 

otherwide the human operator's tended to adopt a control mode in which 

they brought the position and velocity of the error almost to zero, centred 

the joystick, and then ceased to make control movements tmtil the error had 
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become large again. This conditional-control mode enabled the difficulty 

to increase whilst the controller was ineffective until the tracking 

loop was potentially unstable, but, since it had effectively been 

opened, there was no effect on the error. When the loop was closed 

again, ho\'Tever, oscillations rapidly built up, ·forcing the difficulty to 

decrease. A small disturbance prevented the operator from adopting this 

mode of control, and an amplitude of 0.0033 units was found to be 

adequate. This was added to the output of the joystick, so that the 

total input was -

input to tracking system= joystick ouput + 0.0033sgn(sin( t/10)) 

Figure 4-6 shows the variation of difficulty as a function of time 

.for various human operators under various conditions. Graph A is that 

of an operator new to the task with the integrator constant in the training 

loop set to h2 = 0.057 - it can be seen that the difficulty rises slowly 

and irregularly to an asymptotic value, but oscillates somewhat about 

this. Graph B is the second trial for the same operator, and it may be 

seen that the rise to the asymptote is faster - when this final range 
2 of values was approached, the value of h was decreased by a factor of 

four to h2 = 0.0143, and this smooths out the final value of difficulty. 

This procedure of changing the integrator time-constant in the training 
, 

loop to obtain a fast rise to the asymtote but then a smooth reading of 

it was adopted in all the experiments on the use of the feedback trainer 

to test human perceptual-motor skills; with RAF pilots, who found the 

tracking task with rolling-ball and oscilloscope simple and natural, it 

was found that between one and two minutes of tracking were adequate for 

a near-final value to be reached. Graphs C and D were generated by 

highly-skilled flying instructors, and it may be seen that the ultimate 

level of difficulty is rapidly reached and closely maintained. 

It was found that the tracking task was very fatiguing, and that 

between four and ten minutes operation was all that could be reasonably 

demanded, even from pilots and well-practiced operators. After the 

first trial, no appreciable learning was noticeable, although there was 

a clear separation between individuals in ability. No very long series . 

of fifty or more spaced trials was carried out, however, since learning 

over long periods was not of interest in the context of the present 

experimental studies, and this might have shown definite evidence of 

learning; Hudson (1964), using similar task dynamics, gave ten hours 



101 

l. ~------------------------------------------------------~ 

6 

() . 

•. . 

Time 2 Minutes 3 4 

Figure 4-6 Variation of Difficulty with Time for Humah 
Controllers 

N 
A 
T 
u 
R 
A 
L ·4 

STABLE 

....._ _____ __ 
-------

c 
F 
R 

--- --E: 
E 
Q B 
u 
E 
N UNSTABLE 
c 
y 00~------------------~------------------~ ·5 

DAMPING-RATIO 

5 

Figure 4-7 Stability Boundaries of Human and Automatic Controllers 



102 

training in total to each of his subjects. The relevance of these 

findings on fatigue and leaming to the study of the utility of a 

feedback trainer is discussed in Chapter 5. 

4.6 Use of Feedback 'Trainer' for Testing 

It has been suggested by a number of workers, particularly Kelley 

(1967, and Prosin 1968), that an important application of feedback 

'training' systems is not to training itself~ but rather to the accurate 

measurement of perceptual-motor skills. By measuring, for a given operator, 

the difficulty at constant error, rather than the error at constant 

difficulty, a performance-feedback system can greatly increase the 

sensitivity of tests for evaluating an operator's capabilities. As 

Poulton (1965) has noted, tests at constant difficulty lack discrimination 

at the upper and lower end of the range of abilities~, if the level of 

performance extends into regions where it is physically limited. This 

is clear from Figure 4-3, showing mean-error for various controllers as 

a function of difficulty (variation of undamped natural frequency). A 

test at constant difficulty corresponds to a vertical line in this figure, 

and it may be seen that such a line, at any value of difficulty, effectively 

dichotomizes the controllers into those whose mean error is low, and those 

for whom it is high;' the controller's capability is given one of two values 

instead of being set out on a continuum. A test at constant error 

corresponds to a horizontal line in Figure 4-3, and that for e = 0.175, 

the value used in the experiments, is shown as a dashed line; it can be 

seen that this intercepts the curves for different. controllers at approxi~ 

mately equal increments of difficulty, and discriminates well between 

their capabilities. 

No validation studies of the feedback trainer described has been 

carried out in order to test its utility in measuring some aspect of 

perc~ual-motor ability. The 72 RAF pilots who took part in the training 

experiments described in Chapter 5 were tested, as described in Section 

4.5.3, at three values of the damping ratio. Each test lasted five minutes 

and they were given in the order - k=0.50,0.25,l.OO, to combat the effects 

of possible learning. For purposes of experiments on differences due 

to training, the population tested has been selected for their homogeneity, 

established through RAF selection procedures, and hence were unsuitable 

for the validation of tests of individual differences. HoHever, the 

correlation coefficients between the values of a measured for each value 

of k are an indication of the replicability of this type of test; these 
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are given in table 4-5, and it can be seen that they indicate a high 

degree of replication, given the homogeneous nature of the population; 

a itself ranged from 0.00 to 0.53. 

k= 0.25 0. 50 1.00 

0.25 1.00 0.63 o·. 74 

0.50 0.63 1.00 0.70 

1.00 0. 74 0.70 1.00 

Table 4-5 Test Correlations 

·. 
The measurement of difficulty, in terms of w , for constant error at 

n 
various values of k, enables the stability boundary of a controller to 

be plotted out automatically. Figure 4-7 shows measured boundaries for 

three human operators (A,B,C), obtained in this way, and those of two 

relay controllers (D,E). These may be compared with contours of 

constant mean error obtained by Hall (1963), and shown in Figure A4.-2(ii). 

4.7 Conclusions 

The theoretical and experimental studies of this chapter demonstrate 

that the particular automated feedback trainer developed, based on a 

third-order tracking task and a constant mean-error feedback criterion, 

is a viable system, free of artifacts such as might be caused by its 

instability. The close agreement between experimental and theoretical 

results with relay controllers shows that the equipment itself, used in 

the experiments described in Chapter 5, is reliable and capable of high-

accuracy measurements. The theoretical foundations developed indicate 

directions for the extension of the trainer to other skills, and the 

type of problem that will be encountered. 

The experimental situations described in this chapter have been 

such that the controller cannot, or does not, learn the control skill. 

In the following two chapters, experiments are described in which both 

human operators and adaptive controllers learn the skill under a variety 

of training regimes, in order to evaluate the utility of feedback training. 
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CHAPTER 5 EXPERI!1ENTAL EVALUATION Of FEEDBACK TRAINING 

5.1 Considerations in Experimental Design 

P~vious chapters have laid the theoretical foundations for the 

study of training, and have lead to the development of the particular 

form of feedback trainer for a tracking skill described in Chapter 4 . 

This has been shown, both by theoretical analysis and through experi­

mental trials, to be a viable system, free of artifacts such as might 

be caused by instability. The 'difficulty' of the tracking task 

follows the 'ability' of th operator in a stable manner and in a 

reasonable time, so that the 'trainer' may certainly be used to test 

the ability to perform the tracking skill. It remains to be shm.;n that 

its concomitant maintenance of the desired sub-environment has the 

expected effect of maximizing the rate of learning of the skill, and, 

h~nce, that the trainer is a useful device. 

There are many experimental and methodological problems in the 

comparative study of various training techniques, and conclusions drawn 

from experimental studies which neglect these problems may be completely 

invalid. In the following section these problems are outlined briefly 

together with the approach taken in the present studies to overcome them; 

results of some informal experiments to estimate the magnitude of certain 

problems are also outlined. 

5.1.1 The Nature of .'Good' Performance 

To determine whether one training technique is better than another, 

it is necessary to have some measure of the goodness of the end-product, 

that is, the trained human operator. Usually training is considered to 

be required for some reasonably well-defined task, and the performance of 

the operator on this task is evaluated by transferring him to it after 

training. However, questions arise as to what inferences may be made 

from this about his performance in the range of task situations he is 

likely to meet in practice; >.rhether his skill is robust and a reasonable 

standard of performance can be maintained under stress; whether the 

performance can be maintained for a period of time; and whether he 

retains the skill after a period of time w·i thout use. Obviously, in 

practice, one does not want to train so specifically that slight changes 

in the task cause great deterioration in performance, and neither should 

some degree of 'stress' cause such a deterioration. Equally, one 

requires the standard of performance to be maintained over a reasonable 

in.terval, and expects the skill to be remembered even though it has not 
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been performed for a while. 

These various approaches to the evaluation of training are to 

some extent, independent, and may be treated in the context of the 

taxonomy for adaptive behaviour developed in Chapter 2. The 

operator should become adapted to the task, so that his performance 

not only attains a high standard but remains stably so. He should be 

jointly adapted to all variants of the task, of interest, including 

those corresponding to differing degrees of stress. He should be 

compatibly adapted to the main task with respect to all the 'tasks' 

which may fill the intervals between performance of the main task, 

including periods of 'inactivity'. The criteria for evaluation may 

be rigorously defined in these terms, but the problem remains of deter­

mining whether the criteria are satisfied from observation of behaviour 

in appropriate experimental circumstances. 

In the present studies neither the maintenance of performance over 

extended periods of time, nor the retention of the skill, were measured. 

For various reasons, the performance on each of several different 

tasks was evaluated at the end of the training phase, so that over­

specificity of training could be evaluated; by the nature of the task, 

it was unlikely to occur. 

5.1.2 Push-button Controls and Fatigue 

It has been noted in Sections A4.3.5 and 4.5.3. that the use of the 

rolling ball joystick in a continuous tracking task produces complaints 

of fatigue after a few minutes, whereas the u::e of discrete push-button 

controls produces no complaints of fatigue even after extended periods 

of tracking. A decrement in the performance of a continuous tracking 

task after as little as one minute has been noted by other workers 

(Ornstein 1963), and improved performance with push-button controls has 

been explained as an effect of the reduced computational loading on the 

operator (Young and Meiry 1965). A further important advantage of the 

push-buttons in the present context is that they offered the possibility 

of withdrawing completely from &>y interaction with the system. With a 

joystick control, such withdrawal is liable to cause large errors, ~~less 

the control is very light and accurately self-centering at zero output, 

whereas the push-buttons give zero output immediately when they are not 

depressed. 

The effects of fatigue are a minor nuisance in studies of human 
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control strategies Hhere short tracking l~uns may be used, but in the 

study of learning they present a major problem. Even breaking the 

tracking sessions up into short intervals is not realistic way of 

overcoming fatigue, since continuous control tasks causing acute 

fatigue are not met, for obvious reasons, in the systems which a human 

operator is normally required to control. In.order to estimate the 

magnitude of the difference between types of control and determine 

whether a push-button system would be reasonable, an initial informal 

experiment was carried out comparing the time for which operators were 

prepared to ~rack, in a fairly free situation, with each form of control. 

The continuous joystick was that described in Section 8.5.3. The 

push-button controls consisted of two microswitches with half inch flat 

buttons, mounted in the arms of a typists' chair at such a position that 

they were comfortable for all operators. The output of either push­

button was a pulse of 10 milliseconds width, ~ 0.12 units in amplitude, 

which may be regarded as an impulse of 0.0012 units times the Dirac 

delta function. Either control fed into the third-order system described 

in Section 4.2.1, and the experimental environment, controls, and so on, 

were as described in Section 4.5.3. 

Visitors to the laboratory and other subjects were given the 

opportunity to try out the tracking system and to track as long as they 

wished; the intervar of voluntary tracking was noted. These experiments 

were informal in that the tracking task varied from person to person, and 

the majority of operators tracked under uncontrolled conditions. Also, 

some performed both tasks, othersonly one - This effect was 'balanced' 

· by always using a further operator under than dondi tion. The discrepancy 

between the times is, however, so great that it is considered worthy of 

note; no more formal study was made because the effect is not central to 

the objectives of the present work. 

Table 5-l shows the duration, in minutes, for which operators tracked 

voluntarily with the rolling ball control and with the push-buttons. The 

results are given in chronological order, with the operators and conditions 

arbitrarily labelled so that the extent of balance in the experimental 

'design', and possible auxiliary effects, may be seen. The mean time 

with the push-buttons is 20.0 minutes, compared with 6.1 minutes for the 

joystick; this difference is significant at the p = 0.001 level using 

the two-sided Mann-Witney U-test (Siegel 1956). This result bears out 

the verbal comments of operators, and even if one ascribes it, for 

example, to an increased interest in the push-buttons, it indicates that 

sustained tracking with the push-buttons was more acceptable to the 
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operators. Hence, the push-button controls were used throughout the 

experiments on training. 

OperatorOConditionflJoystickflP.B. OperatoruConditionOJoystickOP.B. 
6.1 

A 
B 
c 
D 
D 
E 
E 
F 
G 
G 
H 

3.5 H y a 8.5 2.7 I a a 29.1 10.2 J a ex 
K ~ 21.0 a 2.1 33.0 14.4 L 6 a: 
L 6 5.1 

~ 5.2 
6 1.7 

~ 10.7 M 
24.3 M 6 10.4 

a: 
~ 15.4 N ~ 18.3 

~ 2.0 p 6 8.0 
11.7 p 6 44.0 

y 

Tabel 5-l Voluntary Tracking Times with Different Controls 

5.1.3 Use of Complex Controls to Give Scope for Learning 

In the evaluation of different training techniques, if the skill to 

be learnt is either such that little learning is possible in the time of 

the experiment, or learning is a function of time ·rather than environmental 

conditions, then clearly the effects of different training techniques will 

be indistinguishable.' In a practical situation this implies that 

training is irrelevant, but, since the objective of the present study was 

to demonstrate a difference between training techniques, it was considered 

desirable to develop a task which gave adequate scope for learning. 

It was also desirable that the task could be learned by a naive 

operator to a level of performance approaching that which was ultimately 

possible in a reasonable time - 30 minutes say, both to avoid problems 

in obtaining trainees, and to avoid artifacts due to differential rates 

of initial and final learning under different training regimes. If, in 

comparing two training techniques, the performance under one regime is 

uniformly better than that under another, then there is no problem in 

determining which is best. If however, the relative performances inter-

change their relationspip at some time in the training period, then this 

might be missed if the experimental period is too short. This phenomenom 

might be expected in open-loop training at low and high levels of difficulty, 

where the low level of difficulty might give rapid initial acquisition, 

but be inadequate for later learning. 
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Previous workers on feedback training have used simple tracking 

skills as tasks for which training is required (Chernikoffl962 s Hudson 

1964), similar to that used in the experiments described in Chapter 4. 

However, the skills involved in performing the task have very little 

stnucture and only involve the acquisition of a certain control policy, 

so that the scope for learning is limited. Since there are few sub-

skills and there are no strong interactions between them which makes 

satisfactory performance of one necessary to the learning of another, then, 

as discussed by Pask (1965), it is unlikely that feedback training will 

give ~ery great advantages. 

The requirement for tasks with interactions and scope for learning 

is not entirely methodological - in reality, tasks involving the 

performance of a single skill at a very high level of performance are 

very rare. For example, the task of flying an aircraft is difficult, not 

because any individual tracking task has anywhere near the difficulty of 

those commonly used in the laboratory, but because a large number of 

different activities have to be integrated together, and poor perfonnance 

of one creates an undesirable sub-environment for learning another - an 

aircraft diving after a stall is not a suitable environment for learning 

the finer points of rudder control. In the majority of real-life 

perceptual-motor skills, such as flying, driving and typing, the skill 

to be acquired is a complex of many minor sub-skillss and the problem 

of learning is to integrate them into a cohesive whole. 

There are many possibilities for tracking tasks involving interacting 

sub-skills to be set up in the laboratory. For example, the cross­

couplings between the various axes in an aircraft might be simulated in 

a two-dimensional tracking task, with differing dynamics in the two axes 

and strong cross-couplings between them. In the present study, for 

purposes of simplicity and ease of interpretation of the results, it was 

considered desirable to use a single-dimensional tracking task, and an 

interaction was introduced by use of unnatural controls, the push-buttons 

which reverse their sense at each push, described in Section A4.3.5. 

The function of these controls is difficult to determine when the system 

is not under control,.but, equally, the system is virtually impossible 

to bring under control until the function of the push-buttons has been, 

at least partially determined. 
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5.1.4 Choice of Feedback, and Comparative, Training Situations 

Given the use of the reversing push-buttons as controls, the 

parameters of task difficulty to be adjusted by the training loop were 

chosen to be those, which from theoretical considerations and initial 

informal exper-iments ,rrost varied the difficulty of learning to use the 

controls. Since a prime requirement for performance feedback when 

using the push-buttons is to be able to note the direction of motion 

induced in the CRT spot, both damping-ratio and amplitude of disturbance 

were expected to have major effects on speed of learning - when the 

operator presses a button, an unexpected zero-crossing of the disturbance 

may cause the spot to move in the 'wrong' direction, and, equally, a low 

damping-ratio leads to oscillations which make it difficult to determine 

the net direction of motion. Hence, in the dynamics of Equation 4.1, 

the undamped natural frequen~y was set at the mid-range of the values 

used previously - w = 2.5 radians/second; the damping ratio was varied n 
from k=O to k=O. 5, and the amplitude of the disturbance was varied from 

0.0033 units to zero, as the parameter of difficulty,o , varied from 

unity to zero. 

When the difficulty was near zero, so that the disturbance was low, 

it was possible for the error to become zero and remain near zero whilst 

the operator took no control action - the difficulty would then rise , 
slowly until the disturbance became appreciable, and then fall back to 

zero. To remove this artifact, a small constant term was added to the 

output of the push-buttons and the disturbance to form the total input 

to the system. This had an amplitude of 0.00033 units, and was sufficient 

to cause the spot to drift over the right-hand side of the screen when 

the difficulty was zero and there was no control input. If the output 

of tbe push-button controls is written as 0.0012u, where u is plus or 

minus the Dirac delta function, then the overall equation for the loop 

dynamics is : -

s(s
2 + 2.5(1- o)s + 6.25)e = 1.2u + 0.33 + 3.3sgn(sin(nt/10))c ~.iJ 

It may be seen from the coefficients of the push-button input, 

drift and disturbance, that the operator only has to push the buttons 
" -

three times a seaond to neutralize the disturbance, whilst one push every 

four seconds is sufficient to overcome the drift term. It was found that 

the error tolerance used in the training loop of the system described in 

Chapter 4 was unreasonably stringent when tracking with push-buttons, and 

that a mean error tolerance of 0.34 units gave a comfortable, and 

acceptable, level of performance when the training loop was in a steady-
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state, The time-constrult of the training integrator was set at the 

higher of the two values used in testing since this gave the best 

compromise between speed of following the operator's learning curve, 

and superimposed noise. The equation of the training loop is then:-

s6 = 0.0143(0.34 - MOD(e)) 

where MOD(e) is the amplitude of the error. Since this is bounded 

below by zero, and above by 0.95 units, the minimum time for o to fall 

from unity to zero is about two minutes, and to rise from zero to unity 

is about fow minutes. 

The choice of alternative training situations for comparison with 

feedback training is clearly very great - if one particular value of 

difficulty is taken to define the task for which training is required, 

then fixed training at that same level is one obvious possibility -

training at some other value of difficulty and then transferring to a 

test at the required level is the simplest form of open-loop training -

a time-varying trajectory of difficulty is a more general open-loop 

training sequence. Clearly, only a limited number of alternative 

training techniques could be evaluated, and with the limited information 

gained in the initial informal experiments on the relative merits of 

different training techniques it was decided to use training at a 

constant level of difficulty as the open-loop technique for comparison 

with feedback training. 

In order to provide an adequate evaluation of the operators' 

capabilities after training it was necessary to test their performance at 

several levels of difficulty (Section A4.4.1), and it was convenient to 

choose these also as the levels for open-loop training, since the same 

experimental results could then be used as a basis for the evaluation of 

fixed training m1d of open-loop training at higher, or lower, levels of 

difficulty thru1 the required task. Three levels of difficulty were 

selected as a result both of the initial experiments with human operators, 

and of t~computer-simulation experiments with learning machines described 

in Chapter 6. These levels were o = 0.25, 0.50, 0.70, and their relative 

levela can be appreciated from approximate descriptions of the appearance 

of the system to the operator:-
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o=0.25 (L-low difficulty) Very easy for the skilled operator, and spot 

can be kept within plus or minus five per cent of CRT centre. With 

naive operators, the spot moves lackadaisically, traversing the full 

width of the screen slowly and regularly. 

o=O.SO (H-high difficulty) More demanding for·the skilled operator, but 

it is still within his capability to keep the spot within plus or 

minus twenty wive per cent of CRT centre, never letting it reach the 

edge _of the screen. With a naive operator, the spot moves rapidly 

from one side of the screen to the other, and remains for a while at 

each edge. 

o:0.70 (V-very high difficulty) Approaching the limit of the highly skilled 

operator's control - he finds it difficult to prevent the spot reach-

ing the edge of the screen occasionally. With a naive operator, the 

~pot races about, both the system oscillation and the disturbance 

affecting its movement. 

In the initial experiments it was clear that learning was virtually 

impossible at the very high difficulty level, and that training at o=O.SO 

was the highest which would give useful results. The difference in 

situations between the low and high difficulty conditions was so great, 

however, that both were considered of interest. Hence, three separate 

training regimes were established: 

(i) High Difficulty - H - the 16 operators trained under this 

condition had tre level of difficulty set at o=O.S (H) 

throughout the training period. From the informal experiments, 

it was predicted that this group would show little learning 

and perform badly at all test levels of difficulty. 

(ii) Low Difficulty - L - the 24 operators trained under this 

condition had the level of difficulty set at 0=0.25 (L) 

throughout the training period. It was predicted that some 

members of this group would learn to a high standard, but 

that others would not. 

(iii) Feedback - F.- the 32 operators trained under this condition 

started with o=O and had the feedback training loop operative 

throughout the training period. It was predicted that all 

members of this group would learn to a high standard. 
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The numbers trained in each group wer·e chosen to maximize the information 

from training conditions of most interests and to provide an adequate 

separation between the groups expected to be most similar. 

The integrated error under each of the three test conditions, 

o=O.SO, o=0.25, o=0.70, was measured at the end of the training period. 

It was possible to regard any of these three levels as that for which 

training was required, and hence it was possible to compare fixed 

training (2 combinations), open-loop training at a higher level of 

difficulty (1 combination) open-loop training at a lower level of 

difficulty (2 useful combinations), and feedback training (3 combinations). 

5.1.5 Effects of Individual Differences 

The obvious way to evaluate the relative merits of different training 

techniques is to take an individual, train him under one regime and 

measure his performance on the required task, and then erase his 

learning, train him under another regime and again measure his performance. 

Unfortunately, as discussed previously, the adaption-automaton of the 

human operator is generally irreversible, and learning cannot be 'erased'. 

Hence, it is not possible to compare the effects of different training 

regimes on an individual, and, indeed, the same operator, before and 

after training, will'probably show far larger differences in behaviour 

than are apparent between different operators before training. 

Thus, it is necessary to compare the effect of different training 

regimes on populations of operators rather than individuals, and to take 

a large enough sample to ensure that the probability of assigning a 

disproportionate number of individuals of one type to one training 

condition is very low. The size of the group required to give a certain 

sensitivity to differences in the effects of training regimes reduces 

as the overall population becomes homogeneous, containing individuals 

similar in their characteristics and abilities. In the present study, 

RAF pilots at an advanced stage of training and selection formed the 

experimental population. They were a middle-stream group, who had passed 

through all the selec~ion procedures testing general flying and navigation 

skills and personal qualities, but had failed to graduate to the more 

demanding aircraft. Thus the population was inherently homogeneous, 

and also very well documented, so that any effects of individual 

differences could be examined. 
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The use of non-human operators such as learning machines enables 

the identical individual to be trained under two or more different 

regimes. Clearly, experiments with learning machines cannot replace 

those with human operators in a study whose objective is the evaluation 

of training techniques for human beings. However, since the arguments 

of Chapter 3 suggest that the effectsof different training techniques 

are, to some extent, independent of the nature of the trainee, studies 

with learning machines, although they cannot eliminate those with human 

operators, are an aid both to establishing experimental conditions, and 

to interpolating between results obtained for human operators. The 

experiments with humans described in this Chapter have also been carried 

out 'Vi th learning machines, and the results ar•e described in Chapter 6. 

5.1.6 The Induction of 'Stress' 

Some measure of the effect of 'stress' on performance was considered 

desirable in order to determine the robustness of the acquired skill to 

the performance of non-related activities. 'Stress' is a term covering 

a variety of phenomena (Section A4.4.2), and, in the present studies, it 

was taken to mean merely the potential cause of a deterioration in the 

operator's performance of the main task, not induced by the performance 

of other physical or'mental skills. It was noted in the initial informal 

experiments that telling the operator that his performance was being tested 

caused a different approach to the task, for example, a different posture, 

a look of concentration, deeper breathing, and general indications of 

anxiety. It was, therefore, assumed that knowledge of the occurrence of 

performance evaluation was in itself stressful, and might be detrimental -

to performance. This assumption was brone out by the comments of the RAF 

pilots in the main trials, who were very concerned to know when they were 

under test, and commented on the 'fairness' of the stated test procedures. 

In order to induce this particular form of stress in a uniform and 

controlled manner, the operators were given explicit instructions stating 

when the performance evaluation would take place; it was, in fact, 

continuous, but this is irrelevant to the stress induced. The overall 

experimental technique was to allow the operator a 'learning' phare in 

which he was unaware that his performance was being monitored, and then 

to give him instructions stating that he was to be tested, and evaluate 

·his performance again. Any difference in performance immediately before 

and after the instructions is clearly due to activities in the intervening 

period, none of which was performing the task and one of which was 

assimilating the stress-inducing instructions. Although this procedure 
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was designed to measure the effects of a form of 'stress', this is 

clearly not necessarily related to any other form of stress- hm'lever, 

the results of the operational procedure described are an indication 

of the robustness of the acquired skill. 

5.1.7 Verbalization and Instructions 

Verbalization and associated thought processes play an important 

part in the learning of skilled tasks, even though the final control 

policy may be essentially non-verbalizable. Even when tracking with the 

conventional joystick control, many operators gave a running commentary 

on what they were doing, why they were doing it, and especially about what 

the spot of light on the CRT screen 'intended' to do next. This 

verbalization was even more apparent with the reversing push-buttons where 

there is clearly a cognitive, or problem-solving, element in determining 

the relationship between control actions and their effects on the display. 

It is probable that such a component necessarily plays a part in any 
1 structured skill' (Pask 1965), since the inter-relationship between 

sub-skills is a higher -order function, or 'meta-language' (Pask 19651'), 
/' 

thaf the relationships between variables within a single skill. 
I 

In order to evaluate the effects and importance of verbalization, 

informal experiments,were carried out with a variety of operators using 

the reversing push-buttons and adaptive trainer described in Section 5.1.4. 

They were asked to comment on their control strategy as they attempted to 

learn the tracking task, and their comments were noted. In these experiments, 

a large-screen (12 inch) oscilloscope was used as a display, and the levels 

of difficulty attained are not comparable with those in the formal 

experiments described later. Unless otherwise noted, the operators in 

the formal experiments were not told anything about the push-buttons, but 

were asked to use them to hold the spot on the oscilloscope in a region 

centred on a marked mid-line. The following is a brief description of 

some of the results which most influenced the main experimental design. 

O,eerator A (Electronic Engineer) Curve A
1 

of Figure 5-l shows the 

variation of difficulty with time for an operator who learnt the 

skill rapidly, and to a high level. He remarked after the 

experiment, 'After about five minutes I suddently managed to stop 

pushing the opposite switch when the one I pressed was wrong'; a 

sudden change in ability at this time is apparent from the curve 

A
1

• A
2 

is a tl~ajectory for the same operator several hours later, 

with no intervening practice. It may be seen that it rises rapidly 

to the previous maximum level, showing retention of the skill. 
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Qperator B (Psychologist) Curve B of Figure 5-l is most noticeable 

for the lack of any real learning, although it shows a definite 

rise in the first few minutes. After the experiment, the 

operator remarked that he had first formulated the hypothesis that 

pressing one button gave alternate steps, whilst pressing one 

after another gave steps in the same direction: this is correct, 

and explains the initial rise. However, he said that this hypothesis 

had proved to be incorrect, and he had not been able to determine 

how the push-buttons operated. From further discussion, it became 

apparent that he was unaware that there was a disturbance that moved 

the spot independently of the controls. This is zero initially, 

and only becomes sufficient to overcome the draft when o is about 

0.2. When the disturbance became sufficient to reverse the 

expected direction of motion when he pushed the controls, this 

'refuted' his hypothesis. 

Operator C (Mathematician) Curve C of Figure 5-l provides one of the 

most fascinating insights into the cognitive aspects of learning 

the skill. The operator immediately pushed both push-buttons 

at a very high rate and very wildly. After some 5 minutes he 

graduated to a strategy in which he pushed the buttons rapidly and 

at 'random' until the spot was in the centre region, and then left 

them alone. This approach produces some degree of control, and 

took. him up to o=0.35, thence slowly declining; the change in 

the smoothing of the trajectory after seven minutes is due to an 

increase in the time-constant of the training loop. After fifteen 

minutes, the operator rested and stated that he had the impression 

that the push-buttons did one thing when the spot was in one place 

on the screen, and another when it Has in a different place. He 

had tried various hypotheses as to the nature of this positional 

relationship, hut none had proved correct. 

The operator then asked the experimenter what the push-buttons did, 

and he replied, 'Hatch me tracking', and gave the buttons ten pushes, 

keeping the spot.in the centre. The operator immediately took over 

the buttons, and within three minutes had attained a difficulty level 

of o=0.5. After a further fifteen minute tracking session, during 

vrhich the level o>O. 5 was maintained, the operator rested for five 

minutes and then tracked for a further thirty-six minutes. The 
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level of difficulty was set at o=0.5 at the start of this final 

run, and an immediate rise to o=0.77 is apparent. After eleven 

minutes (total time on graph forty-one minutes), a rise to o=0.87 

may be seen - on seeing the charts afterwards, the operator remarked 

that this was when he realized that the 'pendulum' had to be moved 

in the mean (that is, the centre of oscillation of the spot was 

what he was controlling), and that the energy of oscillation was 

increased by pulsing at the end of a swing, and decreased by pulsing 

at the other. At the end of this very long training period, the 

operator was still keen to continue tracking. 

Operator D (RAF Trainer) As shown in curve D of Figure 5-l, this 

operator was trained at the level, o=0.5, for six minutes initially. 

At the end of this period he was asked what the buttons do, and 

replied that the right-hand button stops the spot when coming from 

the right and the left-hand button stops the spot when it is 

coming from the left, but neither has any effect in the centre of 

the screen. The operator then tracked for thirty seven minutes 

with the feedback trainer operative, attaining a maximum level of 

o=0.4. During the rest period it became clear that he was now 

aware of the manner of operation of the reversing push-buttons, 

but he still talked of the capability of stopping the spot rather 

than being able to return it to the centre. After a further 

fifteen minutes tracking, during which the level of difficulty rose 

to a maximum of o=0.62, he said that it was possible to control the 

spot very easily when it was in the centre, but the best strategy 

when it went to the edge was to leave it until it returned; this 

policy probably accounts for the jagged nature of his difficulty 

trajectory. 

Operator E (Electronic Engineer) This operator trained for twenty-

five minutes at o=0.5, as shown in curve E of Figure 5-l, and at 

the end of this period had no idea at all of how the push-buttons 

operated, professing complete ignorance. Without any information 

about the push-buttons, he tracked for a further forty-two minutes 

under feedback training conditions, taking seven minutes even to 

move the spot into the centre region, and never reaching a level of 

difficulty above 8=0.32. He was still unable to state what the 
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push·-buttons did, and this was explained to him by the experimenter, 

after which, in a further fifteen minutes tracking, he performed the 

task reasonably v1ell and attained a level of difficulty, o=O. 5. 

Discussion From these informal experiments, and many others of the same 

nature, it was clear that the third-ox'der tra.cking task with reversing 

push-button controls had the required features for use in the experimental 

comparison of feedback and other training techniques. Operators were 

able to track for periods of twenty-five minutes or more without experience, 

or complaint, of fatigue. All operators started with a total inability 

to perform ~hat was a new and strange task for everyone, but it was 

possible to attain a high level of ability after as short a period as 

five minutes of feedback training, but more typically after twenty minutes. 

Training for extended periods at high levels of difficulty produced little 

or no learning- from the results with operators D and E, it might even 

produce negative transfer, possibly because of the type of behaviour 

shown by operator B - and yet these levels of difficulty were readily 

attainable under feedback conditions. 

Most interestingly, from these initial experiments it was clear that 

verbal instructions could exert a strong influence over the learning of 

an operator, and that verbalization was a major effect in the learning. 

It was decided to investigate possible interactions between the effects 

on learning of the form of instructions given and the training technique 

used, by giving two different forms of instruction, one of which gave no 

information about how the push-buttons worked, and the other of which 

gave a great deal if information; these are described in the following 

section. It was also decided to attempt to evaluate the operator's 

knowledge of the task and his degree of verbalization by giving appropriate 

questionnaires after training; these are described in Section 5.1.9. 

5.1.8 Forms of Instruction 

There appear to be three basic forms of instruction which might be 

used to help the operator: firstly, those which describe to him the 

nature of the system he is to control - that is, if you do this then this 

will happen; secondly, those which advise him on a suitable control 

policy -fuat is, if this happens then do this; and thirdly, those which 

inform him of sub-goals to be attained - if you are able to achieve this 

·then it will be useful in performing the task. It is assu~ed, of course, 

that instructions as to the main objectives and the 'rules of the game' 

are always necessary. It was not possible to include all these 
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variations, and the first type was chosen because the form of the 

instructions is simple and obvious, being purely descriptive of the 

system and not requiring any knowledge of human control strategies. 

Hence, only two forms of instruction were used in the experiment: 

the weak instructions, telling the operator nothing about the task he 

is to perform, except the performance criterion and the controls to be 

used; and the strong :nstructions, telling him, in addition, the 

nature of the coding of the push-button controls. The instructions 

were given to the operator on one side of a foolscap page at the start 
·. 

of the experiment, and he was asked to read them throughly. The actual 

form of the instructions was as follows: 

R.A.F., ******* Medical Psychology 
1966 

Introduction In order to investigate training techniques for various 

skills it is necessary to use both a range of subjects, from those 

professionally involved in similar skills to those who may never have 

attempted them before, and also a range of skills, some of which must 

be novel for all subjects. The tasks to be performed will be presented 

to different subjects in different ways as part of the investigation. 

The particular skills you will be asked to perform all involve keeping 

a spot of light in the centre region of a display, using either a rolling 

ball joystick or a pair of push-buttons. 

This is the background to this study. For the results to be valid 

we have to rely on your co-operation both in performing the tasks as 

well as possible, and in answering questions about them. 

TASK I The spot of light on the display moves from side to side only, 

and your task to to maintain it in the centre of the display (marked by 

the centre black line), not deviating outside the black lines on either 

side of the centre line. If the spot comes to the edge of the screen 

it will not disappear, but should rest there so that you can see it. 

(The following paragraph was used only in the weak instructions) 

The red push-buttons on the arms of your chair are to be used as 

controls. You may find their effect puzzling at first, but part of your 

task is to learn what they do and this is not very complicated. 
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(The following paragraph was used only in the strong instructions) 

The red push-buttons on the arms of your chair al"'e to be used as 

controls. Depressing either push-button imparts an impulsive move~ent 

to the spot of light. At any instant one of the push-buttons is 

capable of knocking the spot to the left, and the other one is capable 

of knocking it to the right. Neither button consistently gives a left 

or right impulse, however, but instead they alternate in their effects 

each time you press one. The effects of the push-buttons may be 

puzzling at first, but part of your task is to learn how to use them. 

(The remaining three paragraphs terminated both) 

If it is not possible to maintain the spot of light always within 

the black markers then you should try and control it so that its average 

position is in the centre - that is, so that the spot deviates equally 

to right and left without any tendency to be more one way than the other. 

The red light will come on to indicate that an experiment is in 

progress. If at any time whilst the light is on you wish to stop tracking 

please inform the operator (who can hear you through the intercom). He 

will lock the apparatus until you are ready to continue and there will 

be no need to repeat the earlier stage. 

Please read through again if you wish. 
, 
-*-*-*-*-*-*-*-*-*-*-*-*-

Each of the three main experimental groups, H,L. and F (Section 5.1.4), 

was subdivided into two groups with weak or strong instructions , labelled 

w and s respectively. Thus there vlere six experimental groups altogether, 

with eight operators in each of the ~roups Hw ru~d Hs, twelve in each of 

the groups Lw and Ls, and sixteen operators in each of the groups Fw and 

Fs. 

5.1.9 Form of Questionnaires 

For all operators, the training period was divided into two sessions 

of twenty-five minutes, after each of which the operator was required to 

fill in a questionnaire. The prime objective of these was to provide 

some measure of the individual operator's attitude to the experimental 

situation, and some measm~e of his verbal reaction to the con-rrol problem. 

Auxiliary objectives were to require the operator to read the instructiOJJ.S 
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again at the end of the first training period, and to give an interesting 

but relaxing task in between experimental trials. The questionnaires 

Here based on the types of comment, and topics of interest, -which had 

become apparent during the informal trainLDg sessions outlined in 

Section 5.1.7, and, wherever possible, obtained data in a quantitative 

rather than qualitative form. No time limit was placed on the filling 

in of questionnaires, and this varied widely between operators. 

Figures 5-2 and 5-3 show the questionnaire which was administered 

at the end of the first 25 minute training session. The first question 

asks for th~ experimental instructions to be read through again, and 

requests comments on them to ensure that this is done. When these 

instructions were first read, the operator had no experience of the 

tracking task, and was unable to gain any whilst reading them since the 

equipment was inactive. Hence, it was felt that the instructions might 

have little effect, and that it was desirable to give them to the operator 

again; in the present experimental design, it is not possible to 

separate out the effect of instructions before, and after, the initial 

training session, but this is a very interesting possibility for future 

experiments. 

The second question in Figure 5-2 requests an estimate of the 

initial training period - it was felt that this might reflect the level , 
of stress, or involvement, of the operator in the task. In further 

questions, the operator is required to respond by marking a position on 

a line, ten centimetres in length, the two ends of which correspond to 

different extremal responses. All operators marked the lines without 

query and without apparent difficulty, so that this form of answer 

appears to be acceptable. The various questions seek to evaluate interest 

in the task, its apparent difficulty, the operator's estimate of his 

present performance, and of his potential future performance. 

The first question in Figure 5-3 attempts to evaluate the operator's 

estimate of his own ultimate potential, and of the possibility of ever 

performing the task according to the instructions. It is interesting 

to note at this point, that this question was badly filled in, with many 

operators omitting one figure. This contrasts with the lOcm lines, which 

were completed by all 72 operators, showing the adva.ntage of requiring 

questions to be answered in this way. The final questions on Figure 5-3 

attempt to evaluate the extent to which the operator is able to solve the 

control problem in verbalfurm~ 

Figure 5-4 shows the questionnaire administered after the second 

training period. The first three questions attempt to discover the degree 
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This questionaire is to help us in evaluating the 
training situation. Please add any comments necessary if the 
given answers to questions are not adequate. 

Please read through the instructions given to you at 
the start of this task. Were they adequate or should further 
instructions have been given ? 

AliT COMMENTS: 

Please estimate how many minutes you have been performing 
the task •••••••• MINS. 

Was the task itself interesting or boring~ please indicate 
'by marking an appropriate position on this line between the two 
extremes: 

Very 
Boring 

MlY COMMENTS: 

Very 
Interesting 

Was the task itself too difficult or too easy to learn 
and perform ? 

Far too 
Difficult ~----------------------------------~Far too Easy 

Just Right 

ANY COMMENTS: 

How well do you feel you were performing the task finally ? 

Complete 
Failure ~--------------------------------~Perfectly 

" 
At the end of another practice run of the same length how 

well do you estimate you could per£orm the task 1 

Complete 
Failure · Perfectly 

Figure 5-2 l!'irst Questionnaire - Part I 



How many further practice runs would you need to perform 
the task - 7 ? adequately.......... perfectly.~ •••••••• 

ANY COMMENTS: 

·What effect do the push-buttons have on the display ? 

The spot is stationary as sho~n: 

,·' 

which push-button would you press ? 

J.J.fY COMMENTS: 

Having pushed the button the spot moves as shown· 

how would you press the push-buttons to bring it back to the 
centre '? 

ANY FINAL COMMENTS: 

Figure 5-3 First Questionnaire - Part II 
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You have now received ~rotraining runs on this task. 
Were they too long or too short' LONG JUST RIGHT SHOR~ 

Please .mark the length of time which would be most suitable for 
these practice runs: 

·Present length 

Is the experimental set-up itself in any way uncomfortable 
or fatiguing, and if so what improvements might be made ? 

How many further training runs would you require to perform 
the task adequately '! ...... perfectly ? . ..... . 

Have you any further comments about the effects of the 
push-buttons on the display 1 

' 
The spot is stationary as shown:·. 

which push-button would you press 1 

ANY COMMENTS: 

LEFT RIGHT 

When you push the button the spot moves as shown: 

how would you press the push-buttons to bring it back 
to the centre ? 

ANY FINAL COMMENTS: 



125 

of stress, or discomfort to the operator resulting from performance 

of the task. The remaining questions are similar to those on the 

first questionnaire, and investigate estimation of ultimate performance 

and knowledge of the control policy. 

5 .1.10 Summary of Experimental Design 

Seventy-two RAF pilots were trained in the push-button tracking 

task described in Section 5.1.4, using the reversing push-button controls 

described in Section A4.3.5 and the display and experimental environment 

described~ Section 4.5.3. Three forms of training regime were used, 

as described in Section 5.1.4, and two forms of instructions, as described 

in Section 5.1.8, giving six experimental groups whose constitution is 

summarized in Table 5-2. 

Training Regime 

H - High Difficulty 
o=O. 5 (H) . 

L - Low Difficulty 
o=0.25 (L) 

F - Feedback 
o variable to maintain 
performance constant 

Instructions 

w - Weak 
uninformative 

Hw- 8 

Lw - 12 

Fw - 16 

s - Strong 
informative 

Hs - 8 

Ls - 12 

Fs - 16 

Table 5-2 Numbers of Operators in Experimental Groups 

All operators had the same schedule of training, testing,answering 

questionnaires, and so on, and this is summarized in Table 5-3. 

Activity 

Read Instructions 

Test1 o=0.5(H) 

Questionnaire
1 

Duration 

Variable 
(7-18 min.) 

20 min. 

. 5 min. 

Variable 
(18-53 min.) 

Description 

Instructions reproduced in Section 
5.1.8 weak and strong forms. 

Track under one of three conditions, 
H,L,F; the feedback group started 
with o=O.OO. 

Continue tracking without interruptio1 
and without knowledge of change, but 
with o=O.S, and performance measured. 

Fill in Questionnaire shown in Figure: 
5-2 and 5-3; this involves reading 
instructions again. 



Test
2 

o=O. 5 (H) 

Questionnaire 2 

Test3 . o:O.S(H) 

Test
4 

o:0.25(L) 

Test
5 

o:0.70(V) 

20 min. 

5 min. 

Variable 
( 12-31 min. ) 

5 min. 
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Track under same conditions as 
Train1; the feedback group started 
with o at the same level as it 
was at end of Train1. 

As for Test1 • 

Fill in Questionnaire of Figure 5-4; 
informed that there will be three 
tests, each of five minutes. 

Measure performance over last 4 
minutes of test; this is at same 
level of difficulty as previous, 
unannounced test. 

5 min. Same as Test3 but at level of 
difficulty as that at which L group 
trained. 

5 min. Same as Test3 but at higher level 
of difficulty than that met by any 
operators, except a few of F group, 
during training. 

Table 5-3 Experimental Schedule 

5.2 Experimental Results 

An experiment of this size and nature generates a great deal of data 

which may have within it not only the answers to the questions originally 

posed, but also indications of new phenomena, possibly more important 

than those which it was intended to examine. Hence it is desirable to 

present the results in as detailed a form as possible, without losing 

track of overall trends in a mass of data. This has been attempted 

by giving the raw data in numerical form in Appendix 5, displaying it in 

graphical form in this chapter, and giving statistics of the data in the 

appendix - the major effects are then clearly visible, and any peculiarities 

of distribution may be seen, whilst their magnitude may be checked either 

from the (parametric) statistics given, or by manipulation of the raw data. 

5.2.1 Learning Behaviour 

The interaction between the feedback trainer and the trainee is 

itself of interest for the 32 operators under the Feedback condition, 

and a complete set of trajectories of difficulty against time for these 

operators is given in Appendix 5. For convenience, these results are 

plotted in pairs, but the pairing is based on clarity of presentation 

only and does not reflect any properties of the data. Graphs 1 through 

16 are those of the Fs group, and 17 tr~ough 32 are those of the Fw group; 
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these results can be linked to the raw data through the last column of 

this data. 

A wide variety of possible behaviour is apparent in these graphs, 

from the steady climb to a high level of 13, through the rapid climb to 

a plateau of 7, the two-plateau characteristics of 8, the oscillatory 

uncertainty of learning of 30, and the rise and fall of 18 and 22. Some 

effects can be related to the experimental situation - the central 

discontinuities in 4 and 8 are related to the pause given for filling 

in the questionnaire, and, possibly, to the re-reading of the instructions -

but many of the differences between the curves, particularly in relative 

smoothness and timing of rises and falls, appear to be data of a 

significant nature apparent only in the trajectories, and suggest that 

profile-matching could be applied to obtain more information from 

feedback 'trainers' used as tests. 

5.2.2 Performance on the Tests 

Figures 5-5 and 5-6 show bar graphs in which the performance of each 

of the72 operators on a particular test is shown as a horizontal line at 

the appropriate ordinate. The bars are grouped in six columns corresponding 

to the various training conditions, and these charts illustrate the 

performance differenees between groups induced by different training 

conditions. The significance of these differences may be determined 

from Table A5-2 of Appendix 5, which gives the mean and variance for 

each group on each test, together with t-statistics and variance ratios 

for the comparisons of means and distributions of the various groups; 

values which attain a one per cent level of significance are bracketed 

for ease of interpretation. 

Figure 5-5(a) shows that, on a test at the high level of difficulty 

(H: o=0.5) session, the Hw, Hs, and Lw groups show a uniformly low level 

of performance, whilst the Ls, Fw and Fs groups show a spread of performance 

ranging from the very low to very high; only the Fs group is significantly 

better than the first three groups, however. The spread of the two groups, 

Hw and Hs is significantly less than all the other groups, and this may 

be related to the sigmoidal nature of plots of performance against 

difficulty. 

From Figure 5-5(b) it appears that, at the end of the second training 

·session, these differences have been enhanced, and all three groups~ Ls, 
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Fw and Fs, are now better than Hw, Hs, and Lw, but there are no 

significant differences within each set of three groups. However, the 

graph is suggestive of an overall difference between groups with strong 

and groups with weak instructions. Figure 5-S(c), which shows the 

performance on a test at the same level of difficulty after the 

operators were informed of the test, has the same interpretation as 

Figure 5~5(b). However, the variable of greatest interest is the 

relationship between ttese figures and the effect of instructions on 

performance - this is shown by the plot of performance differences in 

Figure 5-6(b) and analysed in Section 5.2.4. 

Figure 5-5(d) shows the performances on a test of lower difficulty 

(L: o=0.25), and in this the Hw, Hs, and Lw groups again appear as not 

significantly different, the Ls and Fw groups are significantly better 

than these three, and the Fs group is significantly better than the other 

five. It is interesting to note the wide spread in learning of the Hw, 

Hs and Lw groups, particularly since the Lw group is being tested at 

the same level as that at which it trained. The high performance of 

some members of the H group on this test is due, in some part, to learning 

during the five-minute test period. The test results at a higher level 

of difficulty (V: 6=0.7), shown in Figure 5-6(a), demonstrate the spread 

in abilities which still exists in the better groups. 

5.2.3 Effect of Instructions 

The effect of giving informative (strong) instructions, containing 

a description of the operation of the complex controls, compared with 

that of giving uninformative (weak) instructions, was a pronounced 

improvement in performance, significant in all but the high-difficulty 

(H) group. The effect is by far the most pronounced in the group, L, 

trained at a low level of difficulty, in which there is a clear dichotomy 

of performance according to the instructions given. It is reasonable to 

suppose that, at this level of difficulty, a control policy sufficient 

to maintain the desired sub-environment could be set up and applied 

verbally - the operator had time to think. The effect is less apparent 

in the group trained at a high level of difficulty, H, who learnt 

uniformly badly, and the group trained under feedback conditions, F, 

who learnt uniformly well. 

Another interesting feature of the effect of instructions is that 

it is more pronounced in the group undergoing feedback training, F, at 
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the end of the second training session than at the end of the first. 

It had seemed reasonable to predict that the instructions would be of 

most benefit tothe naive operator, and it is clear that the effect 

cannot be explained, for this group, by the sigmoidal nature of performance 

curves. It appears, however, from the comments of the operators, that 

many of them could not comprehend the instructions at first reading, 

whereas,_ after some experience in tracking, the instructions were very 

helpful. This may be partially due to poor instructions but is also 

an indication that an optimum interplay between direct communication 

and feedback training is required, and suggests that best results will 

be obtained with a system in which the instructions are under the control 

of the training system and can themselves be made contingent on performance 

feedback. 

5.2.4 The Effect of Instruction-Induced 'Stress' 

Figure 5-6(b) shows, for each operator, the error on the tnird 

test minus that on the second, and hence a positive 'error difference' 

corresponds to an improvement of performance. Since the third test 

is at the same level of difficulty as the second test (H: o=O.S), and 

follows it after an interval with no practice at the tracking task, any 

error difference must be due to the effect of events in the intervening 

interval. During this interval the operator filled in the second 

questionnaire, and was then informed that his proficiency was to be tested. 

As discussed in Section 5.1.6, this information was expected to be 

stress-inducing, and hence, possibly, to cause a deterioration in the 

operator's performance. Alone, however, the interval of other activity 

might be expected to lead to an improvement in performance. 

From Figure 5-6(b), it may be seen that the effect of the instructions 

varies widely over the three groups: out of the sixteen operators trained 

at a high level of difficulty, twelve show a deterioration in performance: 

the group trained at a low level of difficulty split equally into twelve 

who get worse and twelve who improve; out of the thirty-two operators 

trained under feedback conditions, only four show any deterioration, and 

the general performance improvement is very marked. From Table AS-2, 

only the improved performance of the F group over the H and L groups is 

significant at the 1% level; no effects of the main instructions are 

apparent. 
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As noted in Section 5.1.6, the effect of the information that the 

operator is to be tested is not necessarily one of 'stress' and it is in 

any event too superficial a conclusion to state that the performance 

of the operators trained under feedback conditions improved with 'stress', 

whilst that of operators trained lli~der open-loop conditions deteriorated 

or remained unchanged. For exainple, the mean level of performance of each 

of the groups differs widely, and the nonlinearity of the performance 

scale magnifies changes at the mid-level of performance and minimizes the 

apparent extent of those at very high, or very low, levels. However, 

taking account of this effect only increases the contrast between the 

three groups, since the deterioration of the H group would be more 

pronounced, as would the improvement of the F group. 

The most reasonable explanation of the overall effect of instruction­

induced 'stress' is that the feedback group had spare capacity in test 

two, or had become fatigued through controlling at the high level of 

difficulty many of them had attained, and were able, after the instructions 

or a rest, to produce a higher standard of performance; the group trained 

at a high level of difficulty had learnt littie and became highly stressed 

when asked to apply this learning; and the group trained at a low level 

of difficulty either show a mixture of both types of behaviour, or a 

random spread in performance. The circumstances of test two are anomalous 

for this last group, '1, because it was probably apparent to them at the 

end of the training interval that the task had become more difficult. 

This might have induced them to use all their available capacity in the, 

supposedly unknown, test, and hence show no improvement in performance 

when informed of the test. 

5.2.5 Responses to the Questionnaires 

The marking of the ten-centimetre lines of the questionnaires was 

carried out by all operators without question or comment, whereas the 

response to questions requiring a written answer was poor, answers often 

being completely omitted. Because of the variety, both in quantity and 

nature, or the written responses, comparisons between the groups at a 

semantic level are not ·possible. However, the total number of vmrds written 

by each operator on the questionnaires was evaluated to give an indication 

of the degree of verbalization, if not its nature. The time estimate was 

uniformly filled in, and this was recorded. 

There is no significant difference between the groups in their 

estimates of the actual time of the training sessions, which is about five 

minutes less than the true time. However, the estimated optimal training 
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time varies Hidely between the groups, especially in the degree of 

within-group agreement. The Hs group, trained. at a high level of 

difficulty with informative instructions, request a rather shorter 

training session, and are the only group in which the optimal length 

is less than the estimated actual length; the high variances of the 

Hw and Lw groups are largely due to single individuals putting do-vm 

very -high values. 

The interest in the tracking task which is indicated does not 

vary widely between the groups, although that of the Ls group is greatest 

and significantly more than that of the Lw and Hs groups. This 

uniformity of interest suggests that the differences in performance 

which were obtained were not a function of the relative motivations, or 

degree of boredom, of the groups under different conditions. Performance 
r 

estimates again do not vary ~as 
l 

widely betvteen the groups as might be 

expected. Those of the Hw and Hs groups are lower, than the others, 

by no means in proportion to actual performances; this re~lects the 

'adapt ion level' effect in performance evaluation, since no absolute 

standard is given to each operator. 

The estimates of task difficulty show interesting differences 

but 

between the groups, apparent in Figure 5-6(d) - as expected, the H;-1, Hs 

and Lw groups, all of whom performed badly, find the task too difficult, 

but there is a remarKable consensus of opinion in the Ls group, emphasized 

by the availability on this particular scale of a centre point mar'ked 

'just right' • The total number of words written on the questionnaires 

also brings out an interesting difference between the groups, in that the 

Hs group vtrote over twice as many words as the Hw group. It may be 

noted from Figure 5-6(c) that the Hs group has no individual writing 

less than about ninety words, which is ver·y much higher than the minima 

of the other groups. This seems to reflect the unique status of the 

Hs group, who were told how to do the task and then found they could not 

in practice - a situation apparently creating much verbal behaviour. 

The results obtained with the questionnaires are interesting and 

throw some light on the effects of the different training situations en 

the motivation, comfort and verbalization of the operators. Much more 

precise information could have been obtained if an automated questionnaire 

system with data-logging facilities for response times, such as that 

described by Gedye and Miller ( 1969), had been available. Such a system 

would also be valuable in enabling the instructions to be presented to a 

/ 
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controlled level of comprehension. 

5.2.6 Differences BetHeen the Experimental Groups 

The group, H, trained at a high level of difficulty (H:o =0.5), 

show virtually zero learning compared with the·other groups. At 

the end of the second training session, the sub-group, Hs, with 

informative instructions show better· performance than HH (significant 

at 5 per cent level). The level of difficulty, H:o=0.5, is not in 

itself too high for successful learning and performance, however, since 

65 per cent of the feedback group attained it, or much higher levelss 

during training. The Hs group, in particular, show interesting verbal 

behaviour, both in requesting significantly shorter training sessions, 

and writing significantly more on the questionnaire than the H'I'T group, 

presumably because they find the tracking task unexpectedly impossible, 

using the verbal instructions alone. In the easiest test, Test4 
(1: o=0.25), the H group show a very wide spread of performance; those 

who did well showed appreciable learning during the test. 

The group, 1, trained at a low level of difficulty, 1: o=0.25, split 

clearly according to the instructions given - those with the weak, non­

informative instructions do not show appreciably better performance than 

the group trained at a high level of difficulty, whereas those with 

strong, informative instructions show a spread in performance from very 

high to very low throughout the tests, but are comparable in performance 

to the group under feedback training. The 1s group stand out as 

expressing the greatest interest in the task and estlinating that its 

difficulty was 'just right'. 

The group, F, trained under feedback conditions in which o was 

adjusted to maintain their mean error constant, again split according 

to the instructions given, but not in nearly so dramatic a manner as 

the 1 group. Both Fw and Fs groups learn to a high level of performance, 

and are significantly better than the Hw, Hs and Fw groups on all tests. 

The Fs group is significantly better than the 1s group on the fourth 

test (1: o=0.25), whioh is particularly interesting since this is the 

level at which the 1s group trained. There is no significant difference 

betv;een the f·,.;r and Ls groups on any of the tests, and indeed the 1s group 

is slightly better in three out of the five. However, under instruction­

induced stress, both the F groups show significantly better results than 

the 1s group, and, of course, al.l other groups. 
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5.3 Implications of Experimental Results 

The interpretation of the results in terms of transfer from a 

training condition to an easier, or more difficult, test condition is 

very interesting. The Hs group shows little learning, and hence 

little transfer, to tasks either easier or more difficult, whereas· the 

Ls group shows good transfer to more difficult tasks. In particular, 

the results of the fifth test, V: S =0. 7, shov-~ that training on an easier 

task leads to poor transfer, v-~hereas training on a very much easier task 

leads to good transfer - no theory in terms of relative difficulty can 

account for this result. As noted in Section A4.5.1, Gibbs (1951) 

expresses his conclusions on transfer of training in terms of learning, 

'carried on until the total possible skill is approached in both tasks'. 

This was not done in the present experiment, and it is possible that 

ultimately the H group might have learnt the task. However, it is 

clear that they would take very much longer to do so, and that no 

practical importance attaches to laws of training expressed in these 

terms unless predictions are also made about the rates of learning. 

The utility of feedback training is best examined by considering 

separately the groups under H and s conditions of instruction. With 

the non-informative ~nstructions, w, the interaction betv-~een learning 

how to control the system and learning how the system operates, the 

dual control problem (Chapter 3), is predominant and the sub-environment 

phenomenom may be expected to strongly influence learning. This is 

strongly borne out by the experimental results in that the FH group, 

under feedback training, show overwhelmingly better performance at all 

test levels of difficulty, than either of the HH and Lw groups under 

open-loop training. Thus, in a situation v-~here the task is complex 

and poorly defined, and where interactions between performance and 

gaining knowledge may be expected, the experimental results clearly 

demonstrate the predicted advantages of feedback training. 

With the informative instructions, s, the operator has the possibility 

of overcoming the sub-environment phenomenom by setting up a control 

policy 'verbally', and initially taking a cognitive approach to the 

perceptual-motor tracking skill. This will only be possible if the level 

of performance required of him is not too high. Comparison of the results 

£or the Hs, Ls and Fs groups gain shows a significant advantage to feed­

back training, but now the L group is more similar to the F group than to 

the H group. This interaction between the effects of verbal instruction 

and the level of difficulty in training is, perhaps, the most important 
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outcome of the present series of experiments. It not only provides 

experimental evidence of the meaningfulness and applicability of 

the approach to problems in learning advanced in Chapter 3, but is 

also relevant to the practical instruction situation in flying and 

driving, where verbal instruction and variation in task difficulty are 

closely combined. 

The demonstration of an interaction between verbal instruction and 

the various modes of training, and its relationship to the sub-environ­

ment phenomenom, is , in particular, a vindication of the approach taken 

to the study of learning and training by Pask (1960,1961,1964, 

1965,1965*), who has emphasized the importance of language in learning, 

and the linguistic nature of all processes in the learning hierarchy. 

The theoretical developments in the first half of this thesis indicate 

that feedback training will be most effective when there are complex 

interactions between the 'sub-skills' required for the learning of a 

particular task, and it is these interactions which are most amenable 

to description through language - thus, it is no coincidence that both 

feedback training and verbal instructions exert a profolli>d influence on 

learning in the experimental situation chosen. 

The experimental situation is itself of interest in that the use 

of reversing push-buttons ~o control a high-order system provides a task 

new to all operators, and which is learnt in about thirty minutes by 

operators under one training regime but not learnt at all by those under 

another. Although the task is clearly artificial, it involves an 

interaction between learning to use the controls and learning to controi 

the system which is found, from one cause or another, in most skilled 

tasks for which training is required. Thus, the task provides an 

interesting and useful addition to the repertoire of laboratory situations 

for the investigation of human skills, their learning and training. 

In the following chapter, experiments with adaptive-threshold-

logic .controllers, paralleling those with human operators, show that the 

results obtained are not unique to human learning, but are found with 

other forms of learning system, and, hence, are a function of the learning 

situation. In Chapter 7, possible extensions of the present experiments 

tocther situations are discussed, together with the relevance of the 

results to practical training problems. 
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CHAPTER 6 : EXPERIHENTS WITH J~EARNING MACHINES 

6.1 Introduction 

It has been noted several times that automatic adaptive controllers 

may be used as 'subjects' in experiments on learning and training, and 

that the results may not only illustrate fundamental phenomena of learning, 

but also be of direct relevance to the learning behaviour of human 

operators in similar situations. The advantages of using automatic 

controllers in this way, apart from the obvious ones of availability 

and experim~ntal convenience, are that an enserr~le of identical machines 

may be used to compare the effects of different training regimes, and 

that the reasons for particular behaviour shown by a machine may be 

investigated in detail by examination of the internal behaviour of the 

machine. 

The choice of adaptive controllers is already wide and grOws with 

the increasing n~er of machines being described in the literature.At 

one extreme are the linear controllers with parameters varied by cross­

correlation (Donalson and Kishi 1965), whose behaviour is amenable to 

detailed theoretical analysis but which show only a limited repertoire 

of adaptive phenomena, and at the other extreme are multi-strategy, 

hierarchical learning systems, such as STeLLA (Andreae and Cashin 1969), 
, 

whose behaviour defies prediction and shows a complex variety of adaptive 

reactions to the environment. Between these two extremes are pattern­

classifiers and adaptive controllers based on adaptive theshold logic 

elements (ATLEs), whose basic structure is simple and amenable to analysis 

(Appendix 1), but v1hose behaviour can range over the full repertoire of 

adaptive phenomena described in previous chapters. 

Two studies of computer-simulated learning systems are reported in 

this chapter: the first demonstrates the richness of behaviour possible 

for even a very simple adaptive system, and exemplifies the modes of 

adaption and phenomena of training discussed in Chapters 2 and 3; the 

second utilizes an ATLE controller as a range of subjects for the feed­

back trainer discussed in Chapters 4 and 5, and compares the learning 

behaviour with that of human operators. 

6.2 Adaptive Behaviour of an ATLE Pattern-Classifier 

In the theoretical discussion much emphasis has been placed upon 

the inherent complexity or 'richness' of adaptive behaviour, and it is 

useful to chose as an experimental system v1ith which to illustrate some 

modes of adaptive behaviour and training a very simple adaptive-threshold 
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logic pattern-classifier (ATLE). The nature and behaviour of ATLEs 

is discussed in detail in Appendix 1, where it is shown (Al.3.3) that 

an ATLE with bounded weights does not necessarily converge to a solution 

of a pattern-classification problem, even when the Novikoff conditions 

are satisfied. Its convergence is dependent upon the initial values 

of the weights, that is its initial state,and,.in terms of the discussion 

of Section A3. 5, there is more than one 0-minimal ideal in which its 

state may ultimately r~side. In Section 2.2.5, a pattern-classifier of 

this type has been used to examplify the concept of a task, and in this 

section the example is developed in more detail through experimental 

studies. 

Using the notation of Section Al.3.3, consider the ATLE with five 

weights, W. 1 ~ i ~ 5, which are bounded in the range from -4 to +4, 
l. 

so that: 

-4 < W. < +4 
l. 

and consider the set of stimulus vectors: 

A = (1, 1, 1, 1, -1) A' 
B = (1,-1,-1,-l, 1) B' 
c = (-1, 1,-1,-1, 1) C' 

D = (-1,-1, 1,-1, 1) D' 

E = (-1,-1,-1, 1, 1) E' 

' 

= 

= 

= 

= 

= 

The left-hand set of vectors may be separated 

by the weight vector, w - (1,1,1,1,3), since -

W.A = W.B = w.c = W.D = W.E = 1 

W.A' = W.B' = W.C' = W.D' = W.E' = -1 

1~ i ~ 5 [ 6.1 J 

(-l,-1,-l,-1, 1) 

(-1, 1, 1, 1,-1) 

( 1,-1, 1, 1,-1) 

( 1, 1,-1, 1,-1) 

( 1, 1, 1,-1,-1) 

from the right-hand set 

> +1/2 

< -1/2 (6.2] 

Consider now an ATLE pattern-classifier using the decision a~d 

adaptive procedures of Section Al.3. Because A=-A', B=-B', and so on, 

it is unnecessary to take the two sets of patterns separately, and 

training sequences may be regarded as made up of A,B,C,D and E, only. 

In terms of the definition of Section 2.2.5, let the sequence of patterns, 

t = (E,A,D,C,A,B), be a 'task' for which it is required to train the 

pattern-classifier. The effect of giving the classifier this task once, 

starting with a weight-vector (O,O,O,O,O), may be calculated as in 

Section Al. 3. 3: 
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Hence, giving the pattern-classifier the task, t, changes its 

state from the initial weight-vector, {O,O,O,O,Okto the final weight-

. vector, (0,0,0,0,2). This is still not a solution to the problem, but 

it may be shown that repeating the task another two times leads to 

convergence to the solution, (1,1,1,1,2). Hence, the pattern-classifier 

is potentially adaptive to the task, t, when its state is given by the 

weight-vector, (0,0,0,0,0). However, given a different initial weight­

vector, such as (0,0,0,1,0), the pattern-classifier does not necessarily 

converge, and shows limit-cycle behaviour, as in the example of Section 

Al.S.3. 

By plotting out the state-sequences of the pattern-classifier, given , 
the task, t, in every possible state, its adaption-automaton may be 

completely identified, and experiments may be carried out on compatible 

adaption, operi-loop training, and so on. However, even this very simple 

adaptive system has 9
5 = 59,049 states, which makes it a major computational 

problem to examine the structure of the complete adaption-automaton in 

practice, and only particular parts of the transition diagram can be 

mapped out. It is convenient in doing this to simplify the nomenclature 

for states of the automaton by adding 4 to each component of the weight­

vector and writing the result as a string of digits - thus, {O,O,O,O,O)= 

44444, and ( -1, -2, 4,+4 ,0) = 32804. 

6.2.1 Adaption-Automaton of the Pattern-Classifier 

Figure 6-1 shows'some trajectories induced by the task, t, in the 

state-space of the adaption-automaton of the ATLE. There are five 

possible states in which the classifier has attained a solution to the 

problem, 55557, 55568, 55658, 56558, 65558, and the first, second and 

fourth of these are shown in the figure marked in heavy rings. By the 

nature of the error-correcting adaptive procedure, once these states 
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Figqre 6-1 State-Transitions of Adaption-Automatop. 
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are attained the weights are not changed, and these states are invariant 

under the task, t. The centre part of the figure shows part of the 

tree of states converging in to the final state, 55557. This is clearly 

an ideal of the state-semigroup of the automaton, and the monogenic sub­

semigroup generated by the state, 55557, is the only a-minimal ideal 

contained within it. The states 56558 and 55568, shown in the lov<er 

part of the figure, also generate a-minimal ideals, and the centre and 

lower parts of the figure clearly contain states which are within the 

region of potential adaption of the automaton. 

In the upper part of the figure, are shOwn state sequences which 

do not lead to solutions, such as that terminating in the state, 46478, 

which, although it is invariant and generates a 0-minimal ideal, is not 

a solution to the pattern-classifiecation problem. Because it is 

possible for weight-vectors which are not solutions to change under t, 

the interesting behaviour shown in the topmost part of the figure is possib!e­

states 47558 and 45558 together form a cycle, and the automaton alternates 

between them. 

6.2.2 Modes of Adaption 

The transitions in state-space of Figure 6-1 are for the single 

task, t, only - by considering also the state-transitions introduced by 

other tasks, illustrations may be given of all the modes of adaption 

defined in Chapter 2 and 3. For example, consider the set of vectors 

obtained by interchinging the first and last components of the vectors, 

A, B, C, D, E, A', and so on, defined in Section 6.2- let these be 

A1 , B
1

, c
1

, and so one, so that, for example, A
1

: (-1, 1, 1, 1, 1) and 

E1 = (-1, 1, 1, -1, 1). The new sets of vectors can clearly be separated 

by the weight vector, w1 = (3,1,1,1,1), since -

The training sequence,.s :(E1 ,A1 ,D1 ,A1 ,B
1

), bears the same relationship 

to the new sets of vectors as the sequence, t, to the old ones, and hnnce 

the effect of performing s on the adaption-automaton of the pattern­

classifier may be derived from Figure 6-:1 ·by interchainging the first and 

last digits of each state label. 

Figure 6-2 sh<:>ws a fragment of the state-space of the automaton, 

generated by taking the sequence in Figure 6-1 commencing with 11111 and 
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Figure 6 -2 Compatible Adaption for Two Tasks 

~iffiiTe 6 -3 Aoplicati.Qn of Training Sequence 
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terminating in 55557, and drawing in also the transitions induced 

by the task, s. Initially the tasks both induce the same transitions, 

but then the state sequences diverge, and a task sequence of the form tn 

leads to convergence, for that task, in the state, 55557, whereas a task 

sequence of the form sn leads to convergence, for that task , in the 

state, 75555. The state diagram of Figure 6-2 has many interesting 

features; particularly the interchange relationships between 44446 and 

64444, 73355 and 53357, and 55557 and 755555. The last two states are 

those corresponding to solutions, and there is a single-step transition 

from one solution to another, showing that the automaton is compatibly 

adapted tot with respect to s in 55557, and vice versa in 75555. 

It is clear that all the states shown in Figure 6-2 are within the 

compatibly adaptive region for the set of tasks, (s,t), in that any 

sequence from the free semigroup generated by s and t leads to a state 

from which 55557 can be reached under the action of tn, and 75555 can 

be reached under the action of sn. The similarity in action of s and 

t is due to the selection of tasks both requiring positive weight vectors -

if instead the exact opposite dichotomy to that required by t were selected, 

so that A, B, C, D and E were assigned to the negative class, then the 

solution weight vector would be w2 = (-1, -1, -1, -1, -3) = 33331. It 

may be seen from Figure 6-1 that there is a sequence under t leading from 

33331 to 75557, and vice versa, so that the automaton is compatibly 

adapted with respect to t in the state, 33331. In this case, however, 

the two tasks will clearly tend to induce state transitions in opposite 

direct ions. 

The phenomenom of joint adaption may be investigated by considering 

the effect of a different sequence of the tasks constituting t - let r _ 

(E,D,C,B,A), so that whenever the automaton is adapted to t it is also 

adapted to r, and hence jointly adapted to the set of tasks, (r,t). Even 

though r is similar to t, however, and only has one stimulus less, learning 

with r takes many more task performances than learning with t - for 

example, starting from 11111 the sequence induced by rn is:-

11111 ~ 21111 ~ 12202 ~ 21113 ~ 32222 ~ 30224 ~ 12224 

~ 23315 ~ 23335 ~ 34226 ~ 54226 ~ 43337 ~ 44446 ~ 55337 

~ 44448 ~ 55557 , a fifteen-step, rather than a seven-step, learning 

·sequence. 

6.2. 3 Training 

In Figure 6-2, sn may be regarded as an open-loop training sequence 
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for the pattern--classifier learning to perform the task, t. Since 

s never induces a transition directly into 55557, none of the states 

shown is vlithin the conditional adaption set, A(t: u), where u=s say, 

defined in Section 6.2.3 as one of complete open-loop trainability. 

However, all the states shown are within P(t:u), the set of potential 

open-loop trainability. It is interesting to·note that from some states 

sn gives more rapid training than tn - for example, from, 55353 s
2

t is 

better than t 4• It is also interesting that, whilst sn and tn are both 

effective training sequences, (ts)n or (st)n are not, both leading to 

trapping in . 44446 r;:! 64444. One might say that training under one 

regime lays the foundations for further training under that regime, and 

that, although the ultimate goals are similar, the routes taken under 

the two regimes are different. 

In Figure 6-2, the use of sn as a training sequence for t is interest­

ing but not important since the classifier is always potentially adaptive 

to t anyway. Figure 6-3 shows a sequence of transitions under t starting 

from the state 55357 which is outside the region of potential adaptivity 

to t, so that, given tn the classifier does not converge but instead 

becomes trapped in the state 55578. The open-loop training sequence 

considered is that generated by giving the stimulus, D, alone, so that 

the task d: (D). From the first two states in the sequence, 55357 and 

46468, dn induces trajectories into the potentially adaptive region for t. 

From the final state, 55578, the trajectory induced by dn terminates at 

44668 which is not within the potentially adaptive region for t. One might 

say that training on the task sequence dn is necessary for learning, but 

it must be given early in the learning of the main task, tn, if it is to 

be effective. 

6.2.4 Conclusions to be Drawn from Pattern-Classifier Experiments 

It is clear that experiments with simple learning systems, such as 

ATLE classifiers may be used to illustrate the various phenomena of 

learning and training previously defined, but it is not clear whether 

such experiments have any significance in studying learning behaviour and 

establishing new 'laws' of learning. One obvious conclusion is that 

very simple systems, such as a device operating upon five 'weights' each 

taking nine values can have very complex behaviour, so complex in fact 

that it is impossible to study it in detail completely. 

Secondly, approaches to the analysis of behaviour which seem plausible 

and reasonable for the human operator should also appear plausible and 

reasonable for simple learning systems. In Section 6.2.3, at the end of 
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each paragraph, the results obtained have been re-stated in broader, 

behavioural terms. Each operational definition of a phenomenom of 

human behaviour may be applied to artificial learning systems~ and each 

statement of a 'law' of behaviour in terms of these definitions can be 

evaluated in experiments with artificial systems, for example, the 

possible 'law' of relative transfer between easy and difficult t~sks. 

Not only does such an evaluation check that the definitions are truly 

operational, but also it may lead to a greater understanding of the basis 

for the proposed 'law'. 

6. 3 Adaptive Behaviour of an ATLE Controller 

It was desired to parallel the experiments on the utility of the 

feedback trainer for a tracking task, described in Chapters 4 and 5, 

with similar experiments using adaptive controllers as trainees rather 

than human operators. Such experiments were expected to aid in the 

design of experimental situations for the human subjects, to enable the 

most sensitive evaluation of the utility of feedback training, and to 

provide an interesting comparison between human and machine learning. 

An ATLE cqntroller was chosen as the learning system since it could be 

simply and rapidly simulated on a digital computer. 

The experiments with this controller were carried out during the 
' design stage of the experimental system for human operators (Section 5.1) 

and provided the data on which the levels of difficulty in the informal 

design experiments were based. In the following sections the ATLE 

controller is described and the experimental results with it are analysed 

in relation to their influence on the maL~ experimental design and in 

comparison with the results of the human operator studies. 

6.3.1 Description of ATLE Controller 

An ATLE controller with the structure shown li1 Figure Al-2 and 

analysed in Section Al. 4 was design~d to act as the tr'ainee 'learning 

machine' for the feedback trainer shown in Figure 4-4; the equations 

of the particular trainer used are given in Section 5.1.4. The inputs 

and outputs of the ATLE controller were constrained to accuracies and 

information rates roughly equivalent to those of the human operator in 

the same situation. The :position and •Jelocity of the spot on the 

oscilloscope were coarsely quantized, encoded into a binary pa.ttern, and 

sampled at 200 milli-second intervals. A positive or negative impulse~ 

u (Equation 5 .1), was given at the output of the ATLE controller 100 

milliseconds after the corresponding binary input was received. 
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A fifteen-bit binary pattern, Y. = + 1 0 < i < 14, v1as generated at r 
. ~ - - ! 

the input of the ATLE by thresholding the position and velocity, e and e · 

respectively, each at seven levels; the remaining bit was permanently 

set. The threshold levels were chosen to cover the ranges of position 

and velocity, nominally~ 1.0, with maximum discrimination in the region 

about zero; they were, ~ 0.6, ~ 0.35, ~ l, and.O.O. The sign of the 

impulse at the output of the ATLE was determined in the usual way -

where W. are the weights of the ATLE;in the .particular case when the right 
~ 

hand side of the equation was zero, the sign of u was taken to be positive. 

Performance feedback to the ATLE to adjust the weights and hence 

adapt the control policy was the source of much difficulty, as described 

in Section Al.4.1. Various trials were carried out with possible performance 

feedback strategies, such as, for example, averaging the error over an 

interval and applying positive or negative bootstrapping over that interval 

according to whether the mean error was less than, or greater than, the 

mean error over the preeeeding interval. The majority of strategies 

investigated did not lead to adaption to a reasonable control policy. 

Out of the remainder, the following was selected as a reasonable and 

successful procedure. 

At any sampling,instant, n, the input pattern, Y.(n) and the output 
~ 

100 milliseconds later, u(n), were stored, together with the error at 

that sampling instant, e(n). k sampling instants later, this data was 

examined and if the error modulus had decreased the decision giving rise 

to u(n) was taken to be successful and the weights adjusted accordingly, 

otherwise the decision was taken to be unsuccessful and the weights were 

adjusted in the opposite direction. Thus if -

~(n) = sgn(MOD(e(n)) - MOD(e(n+k))) 

then W.(n+k) = (1-n)W.(n+k-1) + 
~ ~ 

nY .(n)sgn(u(n))(l-B +S<t>(n)) 
~ 

which is a standard ATLE convergence procedure for continuous, bounded 

weights, in which 1/n· is the approximate time-constant of convergence -

set at about 3,000 sampling instants in the experiments, and S determines 

the relative effects of revmrd and punishment - (28 -1) is the ratio of 

·the magnitude of the weight change made when a decision is pnsuccessful 

to that made when it is successful. 
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k and B are parameters of the ATLE controller which were adjusted 

in the experiment to give a family of controllers with different 

'personalities'. Although this particular form of controller has a 

problem-determined performance feedback loop, and is not such a general 

form of controller as was originally hoped for, this is irrelevant to 

the results of the exepriments, in that these are concerned ;.rith the 

relative effects of different tr•aining regimes on the learning of given 

controller. 

6.3.2 Control Policies of the ATLE Controller 
r 

The control pol~es implemented by ihe ATLE controller are best 

described in a figure givang the locations within the (quantized) 

position/velocity phase plane in which positive or negative impulses 

will be emitted. If position is located on the horizon~al axis, 

and velocity along the vertical axis, with the normal senses, then each 

axis is d;ivided up into eight regions, and there are sixty-four cells 

in the phase plane. Representing a positive output by an asterisk,:':, 

and a negative output by a da~h, ' , a control 

policy in which the output is entirely position 

de pendent is -
*·lHH(· I l I I 
****'I II ****I It j **7Ht! i! ! 
****! I I I -M•*** I I I t ****I Itt **** f I 1 I 

A control policy with predictive velocity feedback would have more 

dashes in the upper left hand quadrant, and more asterisks in the lower 

right hand quadrant. 

Every one hundred sampling instant (20 seconds tracking) the 

comput~r-simulated ATLE controller printed out its control policy in 

the form shown, sofuat its progress in learning could be evaluated not 

only in terms of its performance, level of difficulty attained and 

stabilization of the weight values, but also in terms of the ty~e cf 

policy it was implementing. A number of these policies were taken as 

fixed, non-adaptive controllers, and the valae of a., the maximum level 

of difficulty at which they v1ere able to maintain the mean error at the 

tolerated level of 0. 34 tmits, was measured using the feedback traber 

as described for relay controllers in Section 4. 5. 2; the mean error· for 
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each fixed controller at the standard test levels of difficulty, 

0=0.25(L), o:::O.SO(H) and 6=0.70(V) (Section 5.1.4), was also measured. 

Table 6-1 shows the control policies, values of a., and values of 

e for the three levels of difficulty, for eighteen different policies 

having varying degrees of velocity feedback. P-Ol corresponds to 

positional control only and leads to very poor.performance- a. is virtually 

zero. A minimal amount of velocity feedback in P-03 causes an increase 

in a to 0.33. A wide variety of other control policies, P-05 through 

P-13, including the maximal velocity feedback of P-13, lead to a. 

between 0.5 and 0.6, whilst the maximum value of a found for this type 

of controller was a = 0.65 for P-18. 

To some extent the quadruples of {a,L,H,V) may be compared with 

the corresponding quadruples for human operators in Appendix 5, Table 

A5-l (subjects 41-72 on a
2

, test results 4, 3 and 5, respectively -

noting that the decimal point before the figures in A5-l has been omitted). 

However, for a given value of any of the quadruple, comparisons within 

the human or machine groups reveal a wide range of possible values for 

the other members of the quadruple, as does a cross-comparison between 

humans and machines. It is certainly not possible to infer what types 

of control strategy the human operators were using, and the ATLE 

controller was not intended to be a model of the human controller at 

the control policy level, but rather a possible model at the comparitive 

difficulty of learning level; this is discussed further in Section 

6.3. 5 

6.3.3 Experiments with the ATLE Controller 

It has been noted in Section 6.3.1 that the majority of performance 

feedback strategies investigated for the ATLE controller did not lead to 

the learning of a reasonable control policy. Some lead to definite mal-

adaption, and others to virtually positional control with a slight varying 

velocity component. In the latter case it was found that under adaptive 

training / took up a value between 0. 2 and 0. 3 (compared with mal-adaption 

where a oscillated between 0.0 and 0.05). The gradient of task difficulty 

with a in the range 0:0 to 0.25 seemed to be so slight that a minimal 

level of accomplishment corresponded to a about 0.25. 

By adjusting k and S (Section 6.3.1) a range of values was found 

for which the ATLE controller learned under adaptive conditions to 

substantially higher values of a. Again the learning appeared dichotomous 
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****I I I I I I I I I I I I ***I I I I I *·lH;.I I Ill ***I I I I I **I I I I I I 
****I I I I I I I I I I I I ****I I I l *** t I I I I ***I I I I I ***I I I I I 
****'I I I I I* I I I I I ****I I I I -!(·***I I I I ****I I I I ***I I I I! ****I I I I *·*"***I I I ****I I I I ****I I I I -!<·****I I I ****I I I I ****I I I I *******' ****I I I I *****I I I ******I I *****II I ****I I I I ******** ****I I I I *****I I I ******I I *****I I I ****I I I I ******** ****I I I I ******I I *******I ******I I ****I I I I ******** ****II I I ******I I *******I ******I I 

J:'-01 P-02 P-03 P-04 P-05 P-06 
a 0.024 a 0.258 a 0.331 a 0.460 a 0.529 0: 0.548 
L 0.442 L 0.424 L 0.325 L 0.173 L 0.231 L 0.143 
H 0.620 H 0.291 H 0.570 H 0.266 H 0 •. 316 H 0.288 
v 0.821 v 0. 582 v 0.807 v 0.775 v 0.766 v 0.772 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I **I I I I I I I* I I I I I I ***I I I I I I I I I I I I I 
***I I I I I ****I I I I ****II II ****I I I I ****I I I I ****I I I I *****I I I ******I I ***-*"**I I ******I I ******I I ******I I ******** ******** ******** ******** ******** *******I ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** 

P-07 P-08 P-09 P-10 P-11 P-12 
a 0.562 a 0.564 a 0.569 a 0.579 a: 0.579 a 0.590 
L 0.117 L 0.168 L 0.115 L 0.119 L 0.119 L 0.183 
H 0.315 H 0.187 H 0.238 H 0.326 H 0.325 H 0.233 
v 0.512 v 0.567 v 0.500 v 0.518 v 0.540 v 0.537 
I I I I I I I I I I I I I I I I I I I I I I I t
P-13 P-14 P-15 P-16 P-17 P-18 

a 0.595 a: 0.612 a 0.621 a 0.629 a: 0.629 a 0.646 
L 0.173 L 0.099 L 0.103 L 0.120 L 0.120 L ·o.096 
H 0.252 H 0.278 H 0.224 H 0.261 H 0.260 H 0.127 
v 0.540 v 0.489 v {). 409 v 0.490 v 0.469 v 0.446 

Table 6-1 Control Policies and Performances of ATLE Controllers 
---------

A 

·5 

Time 10 Minutes· 20 30 
Figu.re 6-4. }!"'eedback Training of ATLE Controllers 
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if a stable value of a was reached at the higher level it was in the 

range 0.55 to 0.65, and no controllers stabilized at levels of a 

between 0.3 and 0.5. The upper bound on o. corresponded to a maximal 

velocity feedback policy such as P-18. It was found that this bound 

could be increased to about a=0.7 by increasing the number of levels 

at which the position and velocity were quantized for the ATLE. It 

could be increased substantially beyond this only by reducing the sampling 

interval-from 200 milliseconds. However~ the 7 levels of quantization 

on position and velocity and the 5 per second sampling rate has been 

chosen to be plausibly related to those of the human operator and were 

retained. 

It was found that all the ATLE controllers which could learn to a 

high level of a had t·wo stable final states of learning, one of which 

corresponded to a value of a about 0.25 and the other of which corresponded 

t~ a value of a about 0.6. Which of these two final states was attained 

was a function of the learning conditions~ This was clearly what was 

required if the machines were to be used as indicators of the probable 

effect of different training strategies on the human operator - machines 

which never learnt or machines which always learnt were both useless 

for p.ur.pose s of ascertaining the relative merits of training strategies. 

As might be expected the learning behaviours of the ATLE controllers 

was considerably morg stereotyped than that of the human operators shown 

in Appendix 5 (Figure A5-l). Figure 6-4 shows the three main forms of 

behaviour obtained with the feedback trainer plotted as task difficulty, 

o (which from Equation 4.20 provides a lagging measure of a), against 

time. Machine A (k=4, S=0.625) learns rapidly to a high level, o=0.63, 

and remains stably there implementing the control policy P-16; an 

extended experiment showed that this policy remains stable for at least 

another 30 minutes with no indication of any potential relapse. Machine 
B (k=4,S=0.6) rises to o=0.3 but no further and finally stabilizes 

with o=0.25 implementing a policy similar to P-03. Machine C shows 

a hybrid between the two behaviours, rapidly rising to o=0.58 

implementing P-15, but then gradually declining to o=0.25 with a policy 

similar to P-03. 

From these experiments a.nd informal ones with human operators 

(Section 5.1.4) the levels of o=0.25 and o=0.5 were chosen as suitable 

for non-feedback, open-loop training at fixed difficulty. The lower 

·level was chosen because it seemed relatively easy for controllers to 
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attain a cont-r•c.J. policy at C:::O. 2 5 \'lhich leacL to good performance and 

hence the desired sub-environment. The higher> level Has chosen because 

it \'las possible for human and i:lac:hin12 controllers to .l~:;arn to tr:at 

level under adaptive conditions and mc:tintain a consistentJ.y r;cod level 

of performance there. The t\<JO levels \-,'el"e well separated a.nd prov icled 

quite distinct training and test conditions. For testing~ a third lc.~ve1 

&:o. 70 >'las also used to provide a difficult task for even the best 

performers - hoNever, it adds very little to the r-esults of ChapteJ' 5 

and none of the learning systems investigated was capable of learning e_t 

this level of difficulty. 

The ATLE controllers were tested under open-loop training conditions 

in which they learned at a fixed level of difficulty for the equivalent 

of 30 minutes and then were tested 0!1 the adaptive trainer. t'1achbe A 

(k=4, 8:0.625) was trained U."lder open-loop conditions at fixed diff:i.cult:ies 

of o:o.25 and o:::o.5 - in both cases it J.earnt quickly to a high level with 

a final policy -

which is similar to P-08. However, training A 

on the feedback trainer starting at maximum level 

of difficulty caused it to stabilize with policy 

P-02 and a low level of performance. Another 

machine, D (k=5, 8:0.6), had a virtually identical 
, 

I I I I f ; ! I 
I I I ! ! f ' ' 
tiS!tifl 

~··lHi--11;· i l I! 
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trajectory to A on the feedback trainer and attained a final level of 

difficulty, 0:0.63 with the control pol.i.cy P-16. Hov1ever, m:;_chbe D 

was unable to learn to a high level under open-loop training conditio;!s 

with o:o.5, and stabilized at -

a policy similar to P-03. At 0:::0.25, how~ver, D 

learnt the policy P-08, which 1eads to a high level 

of performance . Further experiments Hith D showed 

that the level, o=0.3, ~1as a critical one for its 

lear:Jing, and at this level it learnt the velocity 

feedback policy -

which kept the error-rate low but exerted no posit-

ional control. It ... ras clear that D must have tW'.:> 

stable final policies.under feedback conditions, one 

::<·-¥:.;!: -'>: ! • I I 
-*-\:·-.··~· l ' "l ' 
*~··".l.;· * Y.f t ~ I 
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of which was P-16 - by trial and f~::-ror tbe otter policy was found to 

be that sho.,.m on the left, one similar, to th.3t learned u.nde:t' or-t';n-loop 

training a.t 6::0.5. Ma.chine C, wnich sho~-t6d UfJst;:o_bJ.e h:arri:1g 

under feed~.bock conditicns, a.lso learnt to a high ~tctrtdord at 
I 

0 =0. 2 5, but It or at 5 =0" 5; in this cas-:; thel\::; wa~; ,:ii~l.y a. 
/ 



machine could ~naintain at 6=0.2::- a stablr:> poJ.:i.cy Hhici: ·~:0ulc.i enB.bJ.<' ::,.,_ 

to perform Hell at ():::0. 5, v1hen the di .. ff:i.cu.•.ty x·ec.cl:ed i..he hi.ghc"£' J.2ve.: 

this policy deter·iorated into cne Hh:i.ch would give satisfactor·y 

performance only a-r the lm.re::-- level of diffict1.1ty. 

There results with ATLE adaptive contl'Cller's are S1Jmmari.zed ··­

Section 6.3.5 where tll.~y are compared with thc·sc with human 0pel'<:.tcrs. 

For comparison purposes, howevE:r·, some equivalent of the effect c:f 

instructions on humc:m opera.tors •:as desired a:.-.:d this is discussed in tf.e 

following section. 

The major influence of the type of insti•uctions given to hu:::2.r:. 

operators on their• lear·ning of the tracking task, and. the interactic" of 

this effect with that of the 'training r•egime, de scrib<~d i'1 Chapter· S, ;.<ad-::: 

it desirable to investigate the possibility of such effects with tbe 

ATLE controllers. The main problem was clearly to dec5.de 1d:at \-<OuJ.d 

constitute verbal instruction in their case, and boH they mi;;;ht D;} c,'l-:p::cte'.i 

to take note of it. 

One approach to language which seems nost fr,uitf•J . .l io control si.tu':iti c;:s 

is to consider the linguistic structure that must be SG"i: up to repla.<:e an 

existing~ or hypothe,tical, physical link. For examplE:, co:lsickr. s. 

controller which uses a 'fast model' of its environmen·c to sea!•c'i! n;,~· a:1 

optimum control sequence, such that the norrn.al link ~ctW3l''! mod<::l a:1d 

controller is broke:..1 and replaced by coilllr:unic::,.tion in a 'r:aturc:1 lz,nguasc 1 • 

The controller must be able to pose questions of the fo:cril, ·'If T.tce 

environment is in state •': n~·· and I use con'tl'Ol actio!! •'; a~·:, •,..;hat '<;i L'1. 

the next state be. 1 ~ and tr.e model must be able to reply) 

will be ~' J..l~:.' 

'Tb.~. next s.ta t~~ 

This is language at a simple and a:ppar.'em:ly trivial J.e'''"J.: b:2::: consi/.:~:c 

the similar, but more realis-cic, s:i.tuation in Hhi.c.b a contl~-:.}.le:t• ::•x.i.::>:s ~ 

some form of model exists~ and it is desL'ed to have the one r,,,:d<:e us·~ o.f 

the other. Assuming that some mechanisn may be set up t,;it1-3n t!v2. c:mt::·oJ.:!':';' 

to enable it: to use knowledge about t~e effects of contr~cl ac·t:i.ons., ,J. i.:y:;:i'>::i i. 

problem vdll be that the representation o:f the e:1vi:r·onment in the con.t~··:>ll,;-;:: 

is ·very differGnt from that in the model - for !O:xam~)le, that it is una.Llc 

variable l~ather· tl1an a digita.l patte:;:-n. 

Ltcomplete and the c.cntro1lei' mus~~ he a..ble to USE:! replies of tf:s for·T~~, 

) cr 1 I do not knm-;, ' 

1 ,.. ·­
.l L 
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illustrate the need fOl." assumptions and typical vagueness of linguistic 

communication between unmatched, ill-assor·ted structures (such as human 

beings). 

There is no obvious mechanism for causing the ins"trl..!Ctions given 

to human operators (Section 5.1.8) to affect the ATLE controllers. It 

would be adequate for the purposes of this chapter to assume that the 

instructions would cause the ATLE 1 s to start with a useful control 

policy, such as P-03, and check whether learning takes place starting from 

this policy when it does not starting with the normal useless policy 

(which,from Section 6.3, is a policy consisting of all asterisks). How­

ever, some experiments were carried out with a simple mechanis.'!l for 

'verbal' communication with the ATLE 's, not: identical to that with human 

operators (of the second type described in Section 5.1.8, rather than 

the first), which demonstrate that the concept of such connnunication can 

be made meaningful and operational. 

The ATLE controller previously described was given the capability 

of accepting statements like, 'When the position of the spot on the 

oscilloscope is x and its velocity is v, then a sensible sign of control 

signal is c.', and using them to adjust its control policy accordingly. 

The controller t imagines' the input-pattern it would receive resulting 

from x and v, considers that it has emitted the output c, and rewards 

itself for so doing. ' This simple structure is readily extended to take 

account of non-quantitative specifications, 'When the spot is on the far 

left moving fast to the right .•. ', and other qualifiers, 'It is very 

sensible .... '· The overall effect of a message is to modify the ATLE 

controller's policy, or, initially, to urime it wjt:h a control policy. 

In the context of the experiments vli th human operators, it was of 

i..1terest to discover whether this priming through instructions would 

enable a controller previously unable to learn a suitable policy to 

establish an initial sub-environment in which it could do so. 

The weight changes of the ATLE are Equivalent to adding in the stimulus 

vector if it should cause a positive output, and. subtracting it if the 

output should be negative. Hence, given the instru::::tion, 1lf the spot 

is on the laft, press the right-hand button', the ATLE i>lould generate the 

stimulus vector- (-1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1), 

where the fir·st seven components are positional information, assuming 

that e=O.l, the next seven components represent a lack of velocity information 

·ancl the last component is a.h;ays set. The output required is positiv0, 

and hence this stimulus vector becomes the weight vector. The corres-



ponds to the control policy -

This is purely positional policy with no velocity 

feedback, as might be expected from the .instructions, 

and is sensible, even though, from P-Ol of Table 6-1, 

it is ineffective. 
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A variety of sets of initial instructions were experimented vlith, 

some of which gave rise to very powerful control policies - for example, 

the set: when the position is x and the velocity is v, the sign of the 

output should be c, for:-

(x,v,c) = (-0.4,0.3,-l), (-0.2,-0.3,1), (0.2,0.2,-1), (-0.5,-0.2,1) 

generates the weight vector~ (0,0,-2,-2,-2,0,0,0,0,-4,-4,-4,0,0,0), which 

corresponds to the control policy -

This is P-07 of Table 6-1 and corresponds to good 

performance at 6=0.562, a very high level, and one 

adequate to ensure learning to a stahle policy at 

this level of performance for machine D under open-

loop training at c=0.5, a level at which it was previously 

learn. 

unable to 

Thus, instructions may be used with the ATLE controller to overcome 

their problems :in learning. One outcome of the experiments on various 

sets of instructions, such as those in the last paragraph, was to 

demonstrate that the effect of instructions could not be determined in 

advance - there is no particular reason. why the instructions given above 

should have such a good effect, and, indeed, on detailed examination 

they seem rather odd. In practice it was found that.instructions could 

be used effectively by giving one, examining its effect on performance, 

and then selecting another- that is, 'telling' was ineffective (Lewis 

and Cook 1969), but instrua:tions based on feedback as to their effect 

could be used to control behaviour. 

6.3.5 Comparison of Human and ATLE Experiments 

In comparing the- experiments with human operators and ATLE controllers 

learning the tracking task of Chapters 4 and 5 it is important to make 

clear on what grounds the comparison is based, in particular at what level 

the ATLEs might be expected 'model' the human behaviour. The starting 

point for• the study of learning controllers was -

given an arbitrarily chosen class of adaptive controllers "rlith 

similar timing/accu:cacy constraint-s to the human operator (thdt i~, in 
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the sense of Section 2.2.1, the peripheral system of the human being 

was regarded as part of the environment), and the design problem of 

finding controllers in the class which would learn to perform well 

the tracking task given to human operators, do, the controllers found, 

show more than one stable state of adaption and is the relative effect 

of different training strategies on the state of adaption similar to 

that for human operators. 

This position may be further clarified by considering some of the 

possibilities that might have arisen -

(i) No machines learn - bad choice of adaptive controllers -

chose another or drop experiment. 

(ii) Some machines learn and do so to much the same standard 

• under all training conditions - bad choice of adaptive 

controller for modelling human learning behaviour - if 

at early stage of study might also have lead to change 

in tracking task or training conditions - at later 

stage, when human differential learning had been establ­

ished, would have been of interest in showing that 

learning differences were not inherent in the task. 

(iii) Machines learn at ·o=O. 2 5 (L) but not under feedback 

conditions, or, worse, learn at o=0.5 (H) but not under 

feedback conditions - at an early stage this would have 

been taken as an indication of a bad feedback trainer­

after the studies with human operators, it would be a 

difficult result for which to account. 

None of these possibilities actually occurred, and the range of 

parameters covered in the experiments is such as to rule them out for 

the class of ATLE controllers investigated. Possibility (ii) might 

well occur with some classes of controllers - however, the ATLE with 

sampled, quantized inputs and a global learning strategy based· on 

incremental weight changes and generalization were chosen to have those 

features of human learning most likely to be affected by the type of 

problem posed by the tracking task (system identification and predictive, 

control with time del~ys in feedback). It is interesting to note that 

range of a with the ATLE controllers, 0.2 - 0.65, compares well with the 

range of values for human operators after 20 minutes tracking (a1 of 

·' 

Table AS-1), 0.20 - 0.74; neither humans nor machines did markedly better 

or worse than one another in terms of absolute levels, indicating that 
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the sampling and quantization constraints were reasonable. 

If one were comparing two groups of human subjects it v;ould be 

appropriate to make statistical comparisons betwe~n the results for 

the two populations. HoHever, the composition of the 'population' of 

ATLE controllers under consideration is completely arbitrary and can 

be chosen at will. The four types of behaviour shmm by machines A, B, 

c and D, described in Section 6.3.3 (together with that of complete mal­

adaption) exhaust the range elicited from the ATLE controllers. However•, 

A through D, are not just four 'subjects' but rather representatives of 

whole populations (obtained by variation of k and p) with closely 

similar behaviour. Hence, the question under consideration is whether 

each type of human learning behaviour is shown l:y one of A through D, and 

each type of behaviour shown by A through D is also shown by some human 

operators. 

Hachine A learnt well under the three training conditions (F ,L,H) 

even though it had a stable state of poor performance (Section 6.3.3). 

This contrasts with the human operators in that none learnt under the H 

.condition, so that at least one learning system showed a better learning 

capability than any of the human operators. Machine D better typified 

the human operators in that it learnt under the better conditions, F illld 

L but not under H. Machine B learnt to a comparatively low level under 

all conditions which 'corresponds to a few of the human operators. 

Machine C could attain an unstable state of learning under L and F, 

but always eventually sank back to a lower state. The only comparable 

results with human operators are Graphs 18 and 22 of Figure A2-l, 

although a rise to a high level and then a smooth progressive decline was 

found with one operator in the preliminary, informal experiments. It 

was ascribed at the time to fatigue, boredom, or some other such con­

venient psychological variable. In retrospect, because it is not so easy 

to dismiss a machine's behaviour in this vray, such negative learning, or 

mal-adaption, appears of great importance. The learning machine did not 

suffer from muscular fatigue, neither did it become bored or lose con­

centration. One may only suppose that the changes in the sub-environment 

brought about by adaption of the control policy were such as to induce 

mal-adaption. In the human operator this phenomenorn may be accompanied 

by complaints of boredom or fatigue, hut these do not explain the mal­

adaption. 

Thus, machine D was the most appropriate to form the basis of an 
1 ense rrible of identical machines' to evaluate the differential effects of 

training r-egimes (Section 6.1), and it was used in the experiments to 

determine the critical level of o at which le2.rning just failed to take 
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place ( 6=0.3, Section 6.3.3) and in the experiments on the effect of 

inst~uctions (Section 6.3.4). In summary, the studies with ATLE 

controllers were of benefit in the design of the experimental system 

for human operators. They also gave rise to an adequate set of patterns 

of learning behaviour to account for the human opera<tors who could learn 

the task under F and L conditions not being able to do so under H condi­

tions. The overall results suggest that, since similar patterns were 

shown by·humans and machines, the results obtained derived from the 

epistemological problems posed by the tracking task not from any 

particular human peculiarities in learning it. The 'fatigue' or 

'boredom' of machine C, and the effect of 'instructions' on the learning 

of machine D, are of less weight, but illustrate possible extensions of 

the studies with learning systems to the modelling of other aspects of 

learning behaviour. 
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CHAPTER 7: SUMMARY, CONCLUSIONS AND RECOt1~1ENDATIONS 

7.1 Review of Objectives 

The aims of the investigation and background to the objectives have 

been outlined in Sections 1.1 and 1.2. It is appropriate at this stage 

to review the objectives in the order in which the relevant results have 

been presented. The first objective has been to provide a rigorous 

foundation for studies of learning and training by developing a systematic 

acco~it of the relations between behaviour, structure and purpose in 

arbitrary systems including meru and machines. In Chapter 2 an axiomatic 

approach to.the definition of adaptive behaviour has been established 

which enables operational and purely behavioural definitions to be 

provided of terms such as 'adaptive', and 'adapted'. In Appendix 3 

the problem of deriving a structure which could give rise to observed 

behaviour has been analysed, and an algorithm established for constructing 

a minimal and observable structure cybernetically equivalent to an 

observed system. In the latter part of Chapter 2 these results have been 

used to define the 'adaption automaton' of a learning system, and to base 

a taxonomy of adaptive behaviour upon the properties of this automaton. 

Thus, the first objective has been attained, and, in particular, the 

definitions of modes of adaption, the derivation of structure from 

behaviour in which all 1 intervening variables' are measurable, and the 

analysis of problems in learning in terms of the 'sub-environment phenomenom' 

appear to break new ground and clarify difficult issues, both in animal 

psychology and in systems theory. The residual problems stem largely 

from the vast range of possible behavioural sequences generated by even 

a small set of descriptors, and the impossibility of empirical observation 

of all possible behaviours of any single adaptive system - a difficulty 

resulting not only from the amount of data and time taken to collect it, 

but also from the logical impossibility of causing an irreversible 

system to show all its possible behaviours. The complete resolution of 

these difficulties is impossible, but a practical resolution will result 

from the development of theories of approximation and incremental 

identification of general systems, and their application to adaptive 

systems. 

The second objective has been to use these results to develop an 

integrated approach to the problems of training, in ;.;hich a knowledge of 

·the patterns of behaviour, structure and desired goals of a system may be 
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used to formulate an optimal training strategy. In the first part of 

Chapter 3, the problem of training was formulated as one of controlling 

the adaption automaton of the trainee, and hence linked to the axiomatic 

system developed in Chapter 2. A theorem was then es'tablished which 

demonstrated that the necessary constraints on_the adaption automaton to 

make training possible were also sufficient for the contruction of an 

effective feedback trainer. A second training theorem demonstrated that 

further constraints on the adaption automaton could lead to a more 

structured feedback trainer. In neither case did the training system 

require detailed knowledge of the structure of the adaption automaton of 

the trainee, and the trainer was seen to act as a stabilization system 

pt'oviding a suitable 1 learning environment 1 rather than a detailed stimulus/ 

response-based controller. This was also demonstrated in more abstract 

form in the latter part of Appendix 3 where the theory of adaption was 

related to that of the stability of general systems. 

In the latter part of Chapter 3 the determination of constraints 

upon 'the adaption automaton of the trainee which will enable the training 

theorems to be applied has been related to an analysis of the epistemological 

problems of the trainee in attempting to control an environment whilst at 

the same time learning about it. An automata-theoretic statement of this 

problem was given, in which it was shown that any control policy restricts 

the environment to some sub-environment, and that the sub-environment 

generated by a naive controller may be unsuitable for learning. The basic 

training strategy was then formulated as maintenance of the sub-environment 

similar to that encountered by a controller which has learnt the problem. 

Hence, the second objective ·1-1as attained in that various formulations 

for effective feedback trainers have been established based on the range 

of possible information about the trainee and the training problem. 

The third objective has been to demonstrate the application of the 

theory to a realistic situation, and compare some of the theoretical 

predictions with experimental results. A high..:.order compensatory tracking 

task, related to the control of the longitudinal dynamics of aircraft, was 

chosen as an environment for the experiments on learning. In Chapter 4, 

a feedback training system was developed for this task using the 

hierarchical training structure of Chapter 3, and a theoretical and 

experimental analysis of its viability, in terms of overall behaviour a~d 

stability, was described. In Chapter 5, an experiment with human 

operators to determine the utility of this trainerrdescribed, in which 

various modes of training, fixed open-loop, a"'ld feedback, v<ere compared, 
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and the interaction of the mode of tr·aining with the form of instruction 

given was also ev~luated. In Chapter .6 ~ the same experiments wer•e 

repeated with articial adaptive controllers in order to enable a comparative 

study to be made of human a nd machine learning. 

The theoretically predicted advantages of feedback training were 

found, both with human operators and automatic controllers, and the 

effects of differing instructions were consistent with the hypothesized 

sub-environment phenomenom. Apart from replications of this type of 

experiment with other forms of task, the maL~ directions for further 

research are_ the incorporation of the instructions within the feedback 

training loop, and the investigation of the applicability of feedback to 

real training situations, such as those of flight simulators. The 

present studies and experiments have not attempted to demonstrate that 

the concepts of adaption and traLDing developed have application to the 

general range of human learning behaviour, cognitive as well as perceptual­

motor skills, although the theoretical discussion has been carried out at 

a level of abstraction \.;hich suggests that this is so, and there is scope 

for major studies of the application of feedback training to cognitive 

skills. 

7.2 Summary of Theoretical Results 

An operational and purely behavioural approach to the study of 

adaption and learning may be established by considering the interaction 

between controller and environment to be segmented into a sequence of 

'tasks', for each of which it is possible to say whether the interaction 

has, or has not, been satisfactory. The fundamental situation of an 

adaptive controller, to be coupled to a fixed environment and learn to 

control it satisfactorily, is then equivalent to the controller performing 

a sequence of tasks consisting of the same task repeated indefinitely, and, 

if its behaviour eventually becomes satisfactory and remains so, then it 

is said to be acceptable for the task. When the controller has reached 

this stable state of satisfactoriness, it is said to be adapted to the 

task. 

Given these fundamental concepts, a variety of different modes of 

adaption may be distinguished when the controller may become involved in 

any of a set of tasks. If it is able to have an acceptable interaction 

.with any one of the set, then it is said to be potentially adaptiv~ to 

the set. In adapting to one, however~ it may become unable to adapt to 

the others, and~ hence, if this does not occur it is said to be c~ 
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adaptive to the set. If in adapting to one of the tasks the controller 

actually becomes adapted to all of them, then it is said to be jointly 

adaptive to the set. 

In train~ a controller for a particular task, it may be given 

other tasks for which it is not requir·ed to be satisfactory, but which 

cause it to become adapted, or potentially adaptive, to the main task. 

According to the way in which the subsidiary tasks are selected, three 

modes of training may be distinguished: in fixed training, tre controller 

is given only the main task, and l'eliance is placed on its bei.1g potentially 

adaptive to this task; in open-loop training, the trainee is given some 

training sequence of tasks before adapting to the main task, but this 

sequence is not varied for differences in trainees or states of learning; 

and, in !eedback training, the trainee is given a sequence of tasks 

selected according to observations about its state, particularly those 

obtained from its performance. 

In feedback training, the trainer has a control problem in taking 

the trainee from a state in which it is not potentially adaptive to the 

required task to one in which it is. These 'state·' of adaption may be 

formally, and rigorously, defined by considering the observed inter­

actions between controller and environment to be sequences of 'descriptors' 

each of which is defined by the task given and the satisfactoriness of the 

interaction. From ~he set of all possible sequences of descriptors, which 

may be said to define the adaptive system extensively through its behaviour, 

an automaton structure may be derived, the adaption-automaton, which 

shows the same behaviour. In particular, this structure may be chosen 

to be observable, in that a sufficient segment of past behaviour defines 

its present state, and to have a minimum number of states consistent 

l-Tith observability. The various modes of adaption correspond to differing 

forms of stability of the automaton, and tra.ining is a control-problem 

in the state-space of the automaton. 

Although the adaption-automaton structure can, in theory, be derived 

from a complete set of descriptions of behaviour, in practice such a set 

cannot be observed for an irreversible system, and non-behavioural sources 

of information must be examined in order to identify the structure of 

the adaption-automaton. One source of such information comes from the 

examination of the epistemological problems of learning which are, to a 

large extent, independent of the nature of the learning system, and have 

to be faced by all controllers in the same environment with similar 
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purposes. One major source of problems in learning is the inter·action 

between the requirement to know how to control the environment in order 

to learn about it, and the requirement to know about an environment in 

order to control it. This interaction arises because each control 

policy of the learning systems restricts the environment to some sub-set 

of its states and state-transitions, or sub-environment, and the sub­

environment generated by naive controller may be very different from that 

of a controller with a satisfactory policy, and learning in it may be 

irrelevant or even deletrious. Thus, one objective of a feedback training 

strategy may be to maintain the desired sub-environment. 

7.3 Su~mary of Experimental Results 

A feedback training system was developed for a third-order compensatory 

tracking task with dynamics consisting of an integration in cascade with 

a stable second-order transfer function. The damping-ratio of this latter, 

and the amplitude of the disturbing signal, determined the difficulty of 

the tracking task, and these were co-varied automatically to maintain the 

operator's mean error constant. The behaviour of this system, particularly 

its stability and speed of response, was analysed both theoretically and 

experimentally for non-adaptive relay controllers, and the results shown 

to be similar and acceptable, in that the loop behaviour was free of 
, 

artifacts such as might occur from instability. 

A modified version of this system, in which impulsive push-button 

controls which reversed polarity each time they were depressed were 

used to induce interactions between learning about the system and controlling 

it, was used in experiments to investigate the utility of feedback training. 

72 operators, from a homogeneous population comprising RAF pilots at an 

advan~ed stage of selection and training, were trained under three 

conditions of difficulty, High, Low, or Feedback, and two forms of 

instruction, Weak or Strong. The High and Low difficulty groups were 

trained at fixed levels of difficulty and the Feedback group with the 

trainer. The Heak instructions gave no information about the operation 

of the controls, whilst the Strong instructions explained their nature. 

All operators were tested finally at three levels of diffi~ulty , High 

Low, and Very High, and the High test was given twice in succession, the 

first time without the operators being informed, in order to test the 

effect of instruction-induced stress. All operators filled in quest ion­

naires to evaluate their attitude to, and knoHledge of, the task, and 

their degree of verbalization. Similar experiments were carried out 

'1-lith computer-simulated learning machines in order to determine whether 
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the results were independent of the learning system, as theoretically 

predicted. 

The main results of the experiments are as follows:-

(a) The operators trained at a High level of difficulty show little 

or no learning and do badly on all the tests. The Strong 

instructions have a significant effect in. improving learning, 

but do not overcome the operator's basic difficulties. The 

High level of difficulty is n6t in itself tmattainable, however, 

since over 65 per cent of the Feedback group reach it, or a 

much higher level, during training. 

(b) The operators trained at the Low level of difficulty split 

clearly according to the instructions given - those with 

Weak instructions show little learning, whilst those with 

Strong instructions show a spread in performance from very 

good to very poor throughout the tests. 

(c) The operators trained under Feedback conditions all learn 

to a high standard. Those with Heak instructions do not 

differ significantly from the group trained at a Low level 

with Strong instructions. The Feedback group with Strong 

instructions are significantly better than all other groups. 

(d) The overall effect cf Strong, or informative, instructions 

is to improve learning in all groups, but less markedly in the 

groups trained under the best or worst conditions. The clear­

cut split in the group trained at Low difficulty demonstrates 

that good instructions may compensate, to some extent, for poor 

training conditions. 

(e) The effect of instruction-induced stress is that operators trained 

at a High level of difficulty get worse, oper-ators trained as a 

Low level do not vary appreciably, whereas operators trained 

under Feedb~ck conditions get significantly better. This is the 

only difference in performance which differentiates the group 

trained at a Low level with Strong instructions, from those 

trained tmder Feedback with Weak instructions. 

(f) The results Hi·th computer-simulated learning machines parallel 

those with human operators, in that tbe rank order of traini.'1g 

conditions was the same for both, some machines could learn at 

Low difficulty or under Feedback, but not at High difficulty, 

and the effect of instructions could be to give an initial policy 
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sufficient for learning to take place at High difficulty. 

(g) Feedback training was significantly better than open-loop 

training for a given set of instructions. Its advantages 

were most pronounced when the instructions given were unin­

formative, and this is consistent with the supposition that 

the instructions aided the operators in establishing the 

desired sub-environment. 

7. 4- Conclusions, Practical Implications and Suggestions for Further 
Research 

No single experimental study of human behaviour can give rise to 

definitive results, but arising out of the present studies it is 

reasonable to present the following broad conclusions and recommendations 

for further study: 

(a) A feedback trainer of the type developed for these studies 

is most likely to be an effective training device for perceptual-motor 

skills which have several components, each of which is fairly difficult 

to perform in its o~~ right, and which interact with one another such 

that poor performance of one creates a difficult situation in which to 

learn the other. 

In the laboratory this situation was created by giving the operators 

unusual controls and high-order dynamics in a one-dimensicnal tracking task. 

In practice the situation is more likely to arise in the control of multi­

dimensional systems in which the dynamics in each axis are different 

with strong cross-couplings between them. 

It is predicted, therefore, that feedback training will be of 

value in situations where a nurrber of skills have to be learnt and there 

are interactions between the performance of one and the learning of 

another. It is less likely to be of value in single-dimensional tasks, 

although they may be difficult, for example, high-order tracking in one 

axis; in multi-dimensional tasks where there is little interaction, for 

example, three-dimensional tracking with compatihle controls/displays 

and the same dynamics.in each axis with no cross-coupling; in multi­

dimensional tasks where there is strong interaction but little opportunity 

for learning one of the interfering tasks, for example, tracl<in8 with the 

displayed signal immersed in random noise. 
--------------;----------··-··----·-·--------- - ·····-- - ---·- - -· ( 

It _ l.S recommended that these predictions be validated by further 

experiments, and, in particular, that the efficacy of feedback training 
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be investigated in a multi-axis system with compatible controls/ 

displays but differing dynamics in each axis and strong cross­

coupling between them. 

(b) The feedback trainer forms the basis for a sensitive test 

of an operator's ability to stabilize a centro~ system. The level o£ 

difficulty at which the operator can attain a given error criterion is a 

measure of his ability. The homogeneous group of operators chosen for 

the present study was well-suited to the sutdy of the effects of different 

training regimes, but unsuitable for the validation of the 'trainer' 

as a test. 

It is recommended that a small feedback training system be constructed 

specifically as a test device, and evaluated in a population having a 

normal range of abilities. 

(c) The strong interaction between the effects of instructions and 

those of different training regimes, obtained in the present study, 

emphasize the importance of verbal instructions in teaching a perceptual­

motor skill, and of controlling verbal effects in laboratory studies of 

the learning of such skills. 

It is quite feasible, at the current state of tec~~ology, to 

incorporate an audio/visual teaching machine device in the simulator 

under control of the 'feedback training system. This device could be used 

to give the operator his initial instructions, evaluate his understanding 

of them, and give remedial instruction if necessary. It could also be 

used to give verbal instruction according to the level of performance, 

rate of learning, and control strategy of the trainee, for example, if 

the level of difficulty in the feedback training loop does not rise to 

a criterion level after a certain tine. The same system could also be 

used to administer the questionnaires and evaluate the operator's 

response to, and knowledge of, the training situation. 

It is recommended that future studies of feedback training incorporate 

a programmable audio/visual display in the training system, in order to 

control fully the verbal instructions to the operator, and evaluate his 

verbal behaviour. 

(d) The theoretical studies do not distinguish between the learning 

of cognitive and perceptual-motor skills, and, whilst tracking tasks are 

most obviously amenable to feedback trabing through variation of 

'difficulty' to maintain a desired sub-environment, the theory and its 

implications should apply equally to the training of cognitive skills, 

such as arithmetic and language. The 'paired-associate 1 learning employed 
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by Gedye and Hiller (1969) is an example of a cognitive skill \'l'here 

various levels of difficulty may be established, and indeed the trajectories 

of perfonoance which they obtain are strikingly similar to those with 

the present feedback trainer. 

It is recommended that examples of cognitive skills be analysed in 

terms of states of adaption and the occurrence· of sub-·environment 

phenomena~ in order to examine the possible application of the theories 

of learning, and feedback training, developed to non -perceptual-motor- skills. 

(e) The theoretical studies, together with the experime."'ltal 

comparison of human operators and learning machines, have demonstrated 

that it is possible to establish a general theory of adaption and learn­

ing equally applicable to both artificial and natural learning systems. 

The theoretical foundations for the analysis of learning behaviour, and 

its relationship to the purpose and structure of the learning system, 

are couched in completely neutral and abstract terms, and form a 

mathematical rather than emp~rical system; the empirical content of 

the theory arises only in the decision as to the applicability of 

certain descriptions to observed behaviour. 

The theory of adaptive systems and their training has been closely 

linked to the development of a general systems theory applicable to any 

system, and the furtl-ler development of the theory should most fr•uitfully 

be at this general level - adaption and training will then become relat­

ions of stability and control on a system specifically derived for the 

analysis of learnh1g behaviour. Experimental validation of theories 

relating learning behaviour to the epistemology of the environment may 

be tested with both human operators and with learning machines, and the 

increasing availability of computer-simulated learning systems implies 

that they will have a major role in future psychological studies. 

It is recommended that theoretical studies of learning and training 

be placed within the framework of general systems theory and the 

mathematical theory of semigroups, and that increasing emphasis be 

placed upon the derivation of general system-theoretic results which 

specialize into statements about learning systems. It is also 

recommended that adaptive controllers and learning systems be used as 

subjects in experiments on hum~1 learning, both as an aid in experimental 

design, and for comparative purposes. 
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APPENDIX 1 ADAPTIVE AND LEARNING CONTROLLERS 

Al.l Intvoduction 

A unified approach to human and machine learning has been taken 

in the studies reported in this thesis involving both theoretical and 

experimental comparisons between human behaviour and that of automatic 

adaptive-controllers. In this appendix is gathered the background and 

reference material of adaptive controllers and learning systems relevant to 

the studies of Chapters 3 and 6. 

A.l.2 Modes of Learning in Intelligent Artifacts 

In Chapter 3, the fundamental structure of an adaptive controller 

is analysed as a two-level hierarchy, in which the lov:er level implements 

a control policy which is selected by the upper level. This splitting 

of what, even in the case of automatic controllers, will normally be an 

integrated structure, has an arbitrary element, similar to that inherent 

in the definition of a 'task' for the behavioural analysis of adaption. 

This arbitrariness resides in the definition of the family of control 

policies from which the upper level 'selects', and can lead to some 

very simple· control systems being termed 'adaptive 1 • Ho\'lever, this is 

in itself not necessarily disadvantageous, since the analysis of very 

simple 'adaptive' structures may elucidate problems of learning in more 

complex controllers. 

Most adaptive control systems perform some form of identification 

of their environment, although the simple linear model common in automatic 

control (Truxal 1961) is inadequate for more general situations. Having 

evaluated some characteristics of its environment, the controller must 

used a decision procedure to generate a control policy which is, in some 

sense, optimal for an environment with these characteristics. Because 

this strategy does not involve feedback from the actual performance to 

the control policy, it has been termed open-looE adaption (Freeman 1963). 

In Chapter 3, the epistemological problems of open-loop adaption are 

analysed, and it is shovm that identification of an initial sub-environ­

ment, which is not the desired one, can lead to the selection of a control 

policy which maintains the same sub-environment and does not converge to 

an optimal performance. 

If the performance of the controller vlhen implementing a particular 

control policy is measured, and this measurement is used in the selection 

of another policy in an attempt to improve the performance, the adaptive 



strat;egy is termed closed-loop adaption. The earl:!.est and .:.d.r.tplest 

example of a closed-loop adaptive system is Ashby 1 s homeosta.t (Ashby 

1957, 1960), which changes its control strategy at rundom until the 

desired state of equilibrhuu is reached. Closely related to this 

are the 'evolutionary' adaptive systems of Bremermann (1965, l9E5) 

and Fogel ( 1965), which change some characteristics of their contra.:!. 

policy, but revert _to the previous policy if this does not lead to 

improved performance. The. epistemological problems of closedt.loop 

adaptive systems are analysed in Chapter 3, and it is shoi-m that main­

taining an initial sub-environment which is the total environment leads 

to excessively slow convergence, whilst not doing so may cause conve:::'g­

ence to local minima of the performance criterion. 

There is a further mode of learning w·hich does not readily fit into 

either category, and which seems to be vi tal to animal development and 

the establishment of language (Tinbcrgen 1951, Thorpe 1956), and this 

is learning by mimicing another controller. This mode of leai:'l1ing ~Ias 

one of the first copied by engineers in sy-nthesizing 'learning machines', 

and is of interest, not only because of the great amount of experimental 

data on the use of adaptive-threshoJd-logic based machines, but also 

because of its importance in the analysis of some aspects of the effects 

of instructions on human, and machine, learning of control skills. 

A.l.3 Adaptive-Threshold-Logic Pattern-Classifiers 

The use of adaptive-threshold-logic elements (ATLE) for pattern­

classification was first proposed and studied by Rosenblatt (1962) as 

a model of nervous processes, lbking the neural nets of the brain ,.lith 

powerful pattern-recognition capabilities of human perceptio.1. Si:tce 

then ATLE have been established as fundamental components of many .arti­

ficial learning systems, and they have become a popular research tcpic 

\-lith a large literature (Nilsson 1965). 

The problem given to an ATLE is to learn to classify a set of sti::mli 

into two (or more) disjoint classes. During the learni!1g phase, stimJ.;.li 

are presented to it one by one, together with a stateme:;~t of the class 

to which they belong. Thus, there is necessarily an independent system 

for evaluating the class of stimuli, and the problem of the l\.TLE may be 

viewed as one of coming to mimic -chis evaluator exactly. 

The mechanism of learning in &I ATLE depends on numeric opAT\J.tior:s, 

and the stimuli must be coded in to a ve~tor ( or• ordered arJ'ay o.f numl>:;,rs} 

before they may be classified by the ATLE. 

learning situation of an ATLE, coupled to a stimulus gene:r·ato-::·· (or 
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environment) through a coder with numeric output, and receiving 

immediate performance feedback from an independent stimulus evaluator. 

The structure and adaptive algorithm of the ATLE itself varies 

somewhat between different workers, but Novikoff (1963) has shown that 

the majority of cases may be typified by the following procedures: 

(i) Coding of stimulus -let the coder represent a stimulus, SJ, 

from the set of possible input stimuli, by a k-vector, YJ, whose 

compoJ;).ents are Y~ = .±.. l , 1 ~ i ~ k. 

(ii) Internal weights - \·dthin the ATLE there is stored a k­

vector of 'weights', W, vtith components, W., 1 < i < k, which 
~ - -

determine the classification adopted by the ATLE, and are 

adjusted with its experience. 

(iii) Decision procedure - one set of weights is used to make 

a binary, or dichotomous, classification. However, multi-•..;ay 

classifications may be considered as a set of binary decisions, 

and hence the binary classification may be considered without 

loss of generality. The binary classification is a function of 

the scalar product between the stimulus-vector and the weight 

vector -
k 

if W.Y ,_ 
l: W.Y. [K1.1J 

i=l 
~ ~ 

then H.Y > 0 => stimulus assit,'1led to class
1 

{KLi) 

W.Y <-0 => stimulus assigned to class2 lbLm 
-0 < W.Y < 0 => stimulus not assigned fKLg) 

\-lhere 0 > 0 is a constant, or 'threshold 1 • 

( iv) Adaptive procedure - after each decision the ATLE is informed 

whether the decision -vras cor·rect, or incorrect, and modifies its 

weight values accordingly. If W' is the new weight vector then -

W' = w, if the decision was correct 

W' = w - Y, if the decision was incorrect 

and vl. Y > 0 

W' :. w + Y, if the decision '"i:as incorrect 

and H. Y < 0 \Xl.j] 

Novikoff (1963) has proved that~ if there exists any \·ieight vectm• 

. which will given rise to a correct decision for every stimul.us-vectm' 

to be classified, then, given a sequence of stL~:ulus sequence frequently 

containing all pattems to be classified, the above adD.ptive procedure 

will cause the weight vector to converge to one giving the correct classi-
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fication, although not necessarily the sa'T•e one, provided the weights 

are not bounded in their values. This convergence property of the ATLE 

implies that learning will be successful under a wide range of conditiions. 

It is of interest to consider the more general implications of the 

conditions necessary for convergence, and their effect on the adaption­

automaton of the ATLE. 

A.l.3.1 8oding Constraints on ATLE Convergence 

There are three postulates necessary to Novikoff's proof of 

convergence, v;hich are relevant to the adapt ion and training of human 

operators. The first is that there does exist a weight vector which 

gives a solution to the classification problem. This is not true in 

general, and two classes of vectors ''hich may be distinguished by 

taking their scalar products with a weight vector and determining its 

sign are said to be linearly separable. The separability applies to 

the vectors generated by the coder, not directly to the original stimuli, 

which need not necessarily have any numeric connotations. 

Hence, the selection of coding between the original stimuli and the 

k-vector inputs to the ATLE may be vie,1ed as problem of ergonomics, 

similar to the probl~m of selecting an appropriate form of display for 

the human operator, for example, in detecting sonar targets. The best 

coding will be such that all possible dichotomizations which may be 

required of the ATLE are linearly separable, but that a stimulus-vector 

of minimum dimensions consistent with this requirement is utilized. The 

ATLE will then be potentially adaptive to all required tasks, and 

Novikoff 1 s result demonstrates that this is true no matter what its 

initial state, so that it is also compatibly adaptive to the set of 

tasks. 

Al.3.2 Stimulus-Experience Constraints on ATLE Convergence 

Novikoff' s second postulate is that every stimulus in the set which 

is to be dichotomized is frequently present lll the sequence of stimuli 

presented during the learning phase that is, for any YJ in the set, and 

for any postitive integer, N, there exists M > N, such that the M'th 

stimulus presented Y(H) = YJ. This postulate is str·onger than necessal'Y, 

·because the constraint of linear separability implies that, if some sub­

set of the stimuli has been dichotomized into two classes, A and B which 

are necessarily linear separable, then a new stimulus, x, belonging to 

neither class, may not necessarily be assignable at will to either A or 
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B. It may happen that A+x is linear·ly separable fl'Om B, but that 

B+x is not linearly separable from A, or vice versa. In this event, 

presentation of stimuli from the set (A+B), and from the set (A+B+x), 

must lead to the same dichotomization of the larger set. Hence, it 

is unnecessary to present x, and the set (A+B) may be said to be a 

support (Minsky and Papert 1968) for the c.lassification of the set, 

(A+B+x). 

For any required dichotrnnization, assumed linearly separable, 

there will'be a number of dichotomizations involving few stimuli which 

are supports for it, and amongst these there will be one, or more, with 

a least number of elements) a minimum support. Any sub-sets of the 

stimuli containing less elements than this cannot be a support, and there 

will also be sub-sets containing more elements which are not supports. 

Thus there is a sub-environment phenomenom, in that stimulus generators 

which do not generate a sufficient variety of stimuli to support the 

required classification may not enable the AILE to learn that classi­

fication. In the pattern-classification situations considered so far, 

there is no feedback from the behaviour of the ATLE to the stimulus 

generator, and hence the policy, or classification, of the ATLE does 

not affect its environment. However, when ATLEs are used as part of 

an adaptive control loop, the stimulus generator is influenced by the 
' 

ATLE policy, and may be forced into a state where it is not emitt~ng a 

support set for the required control policy; this problem is discussed 

further in Section Al.4. 

Ail. 3. 3 \~eight-Magnitude Constraints on ATLE Convergenc~ 

The third postulate necessary to ATLE convergence is that the 

values of the weights in the ATLE should be unbounded in magnitude. 

Again, this is stronger than necessary, and it may be shown (Gaines 1967* 

1969) that the weights need take only a finite range of values, but that 

the range necessary for convergence is greater than the range necessary 

to ensure that a solution exists. When the range of weights is 

adequate for separation, but not adequate for convergence, then it is 

possible for tha ATLE, with a given traL~jng sequence, to never reach a 

final solution but stick in sub-optimal states \·lith the weight values 

going through a repetetive cycle. 
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For example, the set of stimulus-vectors: 

yl = (1, 1,: l, -1) y2 = (1, -1, -1, 1) 

y3 
y4 -· (-l, _, 1, 1) 

= ( -1, 1, -1, 1) ... , 

May be separated from the complementary set: 

zl = (-1, -1, -1, :1.) z2 = ( -1, 1, 1, -1) 

= (1, -1, 1, -1) = (1, 1, -1, -1) 

by the weight vector, w = (1,1,1,2); because -
~ J 

4 
W.Y~ W.Y. = 1 > 1/2 > -1/2 > -1 = E 

i=l 
~ ~ 

i=l 
~ J.. 

so that, for 0::1/2, Equations [b1.1] and [L:ill for correct classi­

fication are satisfied. 

However, if the components of the weight vector are limited to 

the range, -2 ~ W i ~ 2, then Novikoff' s convergence proof no longer 

applies, and equations lKL §] through \'Fl. 7J , modified to take 

account of the 'limiting', do not necessarily lead to a solution. Thus, 
· h . . . . f < 1 y2 y3 y4 1 ~2 z3 4) g~ven t e traJ..nJ..ng sequence consJ..stJ..ng o Y , , , ,Z ,L.. , ,Z 

repeated indefinitely, and starting with initial l'leight values of zero, 

the weights take the follm-ling values:-

w1 w2 w2 w4 

W(O) 
y1 0 0 0 0 

W(1) 1 1 1 -1 y2 
W(2) 2 0 0 0 y3 
W(3) 1 1 -1 1 y4 
W(4) 0 0 0 2 

z1 
W( 5) 1 1 l 1 

z2 
\v( 6) 2 0 0 2 

z3 
vl( 7) 1 l -1 2 

z4 W(8) 0 0 0 2 y1 ..................... 
W(9) 

y2 1 1 1 1 
W(10) 2 0 0 2 y3 
W(11) 1 l -1 2 y4 
W(12) 0 0 0 2 

zl 
W(l3) 1 1 1 1 '7.2 
W(14) I..J 2 0 0 2 

z3 
\'/( 15) 1 1 -1 2 

z4 
W(16) 0 0 0 2 . . . . . . . . . . . . . . . . . . . . . 
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Hence the weight wector goes through a repetetive cycle, always 

terminating with the value {0,0,0 ,2), which is not a linear separator 

for the dichotomy. It is shown in Section 2.~, that a sequence of 

stimuli constitutes a 'task' for an adaptive pattern classifier, so 

that the behaviour shown above has been elicited by giving the ATLE 

the same task repeated. Clearly the behaviour if not 'acceptable 1 , 

in the sense of Section 2.2.8, because the ATLE never gives a correct 

response a~d cannot be 'satisfactory'. The state-transitions elicited 

by the task, in the example given, are n~om (o,o;o,o) to (0,0,0,2), 

and from (0,0,0,2) to itself -· both these states are outside the region 

of potential adaption to the task. 

ATLE with bounded weights have a richer range of behaviour than 

do those with unbounded weights, since they do not necessarily converge 

even when a solution vector exists within the range of the weights, and 

their convergence becomes a function of their initial state. Hence, 

whereas by Novikoff's result the region of potential adaption for an 

unbounded ATLE is either the whole state-space, or it is empty, for a 

bounded ATLE the region of potential adaption may be a proper sub-set 

of the state-space - in the example given, (1,1,1,2) is within the 

region, whereas (0,0,0,0) is outside it. Al the various modes of 

adaptive behaviour defined in Chapter 2 and 3, together with the 

various training techniques possible, may be illustrated with ATLE, 

and a comprehensive experimental study of one particular ATLE is 

described in Chapter 6. 

Al.4 ATLEs in Control Systems 

So far the ATLEs have been considered only as pattern-classifiers, 

not as controllers, since there is no feedback from the output of the 

ATLE into the environment. However, there is no reason why the 

stimulus generator of Figure Al-l should not be a plant of some form 

which is to be controlled by the output of the ATLE - in this event, 

the stimuli might be the error and ert~r-rate, and the output of the 

ATLE might operate an incremental actuator. Figure Al-2 shows this 

type of configuration, and also emphasizes that per·formance evaluation 

is riot necessarily obtained by mimicing another controller, although 

this remains possible. However, the immediate and definite performance 

evaluation of each output of the ATLE is not normally available in a 

control situation. Not only is the performance measure averaged over 

many decisions, as, for exa~ple, the root-mean-square error, but its 
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optimum value is also unknown. Thus the transition from the configuration 

of Figure Al-l to that of Al-2 involves a change in the mode of learning 

of the ATLE from mimicing to closed-loop adaption. 

If the ATLE should be required to mimic another controller, then 

the problem becomes very similar to that of pattern classification, 

except that there is feedback from the decisions made to the stimuli 

encountered. If it is the actions of the exemplifying controller 

which are fed back to the environment, then the only sources of difficulty 

are linear inseparability, and a restricted set of patterns; VidrovJ and 

Smith (1964) have successfully applied this technique to a second-order 

control system, equivalent to balancing an inverted pendulum by moving 

the base horizontally, using the human operator as the exemplifying controller 

However, if it is the actions of the ATLE which are fed back into the 

environment, then the sub-environment generated by it may cause the 

exemplifying controller to operate outside its normal range of inputs 

and to show incorrect behaviour. 

Al.4.1 Performance Feedback to ATLE Controllers 

When no exemplifying controller is available, then the criterion 

for adaption must be based on typical performance measures, such as 

the minimization of some error functional over an interval. This 

creates tvto sources of difficulty, in that the performance measure is 

global over a sequence of decisions, rather than local to each 

individual one. 

Widrow (1966) has proposed a technique, called 'bootstrapping', 

for coverting a global performance criterion, in which a complete 

sequence of behaviour is evaluated as good or bad, into a local one. 

During an interaction, no change is made in the weights of the ATLE 

until a decision is available that the interaction, over some past 

interval, has been good or bad. This evaluation is then·applied to 

all input/output pairs which have occurred during that interval, and 

the inputs are effectively presented again to the ATLE and its outputs 

are rewarded or punished accordingly; all input/output pairs must be 

stored until the performance evaluation becomes available. 

Under bootstrapping, the evaluation of individual outputs of the 

ATLE may be incorrect and their probability of occurrence may be increaed 

when it should be decreased, and vice versa, but, in the long run, under 

certain conditions, this procedure may be shm·m to lead to convergence 

to an optimal policy (flidrow 1966). Hidrow has applied this technique to 
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the game-playing situation of 'blackjack' with results close to those 

predicted theoretically. Quarmby (1968) has applied the same technique 

to the learning of the game of 'Nim 1 ~ and also finds that :i.t leads to an 

optimal solution. His work is of particular interest because he has 

varied the form of the environment~ in fact a second player, and studied 

the effects of this on the speed of learning. These results~ which 

correspond to the identification of the adaption automaton of an ATLE 

controller, are revieweu in the following section. 

Bootstrapping alone does not overcome the problem of lack of 

knowledge about the optimum value of a performance measure. In a game­

playing situation a win/lose decision is always ultimately available, 

but in a control sitaation a value of an error-functional is not necessarily 

good or bad. Even if the minimal value is known, this does not enable 

a good/bad criterion to be established unless some tolerable deviation 

from it is given. The probdQffi can be appreciated by considering a 

pattern-classifier in a similar situation - if the input stimuli occur 

at random with equal probabilities of either type, then the pattern­

classifier has equal possibilities of reward or punishment - if, however, 

it is rewarded only for optimal decisions over the last n patterns, then 

the probability of reward drops to 2-n, and the classifiel' has to learn 

mainly through the negative information that it has made mistakes. 
' One way of overcoming these problems is to consider performance over 

an interval good if it is an improvement over performance over some 

preceeding, comparable interval. However, no success has been reported 

in the application of this technique to control problems, and negative 

results are reported in Chapter 6. An alternative technique, which is 

not gener'ally applicable, is described in Chapter 6 in a successful 

application to a particular control problem. This involves the 

, evaluation of individual outputs of the ATLE according to whether the 

error at some fixed interval ~. the future has decreased or not. 

Al.4.2 Problems of the ATLE as a Learning Controller 

Examined in more general terms, the evaluation of an ATLE controller 1.s 

performance by comparison Tolith iits past performance is equivalent to 

setting it the sub-goal of attaining a certain performance level, and 

varying this sub-goal as a function of its past performance. Another 

technique for setting a sub-goal is reported by Widrow and Smith (1964) 

in which an ATLE controller drives a second-order plant, with a human 

operator deciding when negative or positive bootstrapping should be applied 

to the ATLE. He states that, 'it was found that an observer familiar \>Tith 
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control system theory, but ignorant of the plant configuration, would 

consistently pvoduce training sequences leading to stable system con­

figurations' • 

This is a particularly interesting technique for overcoming the 

learning problems of an ATLE, since it involves feedback training by 

a human observer varying the sub-goals set to the machine. The 

observer. does not require detailed knowledge of either the controller 

nor the controlled element, but is able to evaluate the overall 

performance and the effect of his own task difficulty variations upon 

it. In general, such a direct variation of the sub-goals of a learning 

system is not possible, and some form of linguistic communication must 

be established. An experiment on such communication with ATLE controllers 

is described in Chapter 10, and again the importance of feedback to 

the trainer is illustrated. 

Quarmby (1968) has investigated the learning behaviour of a boot­

strapped ATLE playing Nim against an opponent whose strategy was to play 

the optimum move with probability, p, and to play a random move with 

probability, 1-p. When playing against a fixed opponent, the mean number 

of games for the ATLE to reach an optimal solution, as a function of p, 

was:-

p = 0.~ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Number of games 723 281 104 124 68 51 49 36 35 66 

Thus, from the point of view of the time taken to learn the task under 

conditions of fixed training (Section 3.2.l)~the task increases in 

difficulty on either side of the value p= 0.85. However, from the 

point of view of what is the most difficult opponent, in the sense of 

the 'best' opponent who.-will win most often, it is -clear that the 

'difficulty' of the task increases as p ranges from zero to unity. This 

illustrates the problems in the use of the concept of 'difficulty', 

discussed, in the context of human learning, in Section A4.5.1. Quarmby 

also evaluated the effects on learning of using the open-loop training 

strategy of increasing p from zero to unity uniformly over a set of M 

games (that is, increasing the difficulty, in the sense of a better player), 

and obtained the following results:-

M = 13 17 21 25 ~9 33 37 

Number of games 30 29 28 27 27 34 35 

One of the most interesting of Quarmby's results is that when two 

ATLE controllers play one against the other, the me&~ n~~ber of games 

fOr one to reach an optimum strategy is 18. This compares favourably 
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with the 27 games for the best open-loop training policy used, and 35 

games for the best fixed training policy used. The use of an opponent 

as part of the training environment who is also a learning system is 

clearly a form of feedback training, but of a very complex kind. Although 

Quarmby's experiments are not conclusive in themselves, they are highly 

suggestive of further experiments relevant to human lean1ing, and of 

possible strategies for feedback training. 

The main problem of ATLEs in learning control tasks may be 

related both to the 'generalization' properties of adaptive threshold 

logic itself, and to the sub-environment phenomenom. The sub-environment 

of a non-optimal control policy, particularly one which causes the overall 

system to become unstable, will generate some sub-set of the total set of 

input patterns to the ATLE. Because of the linear separability con­

straint upon the dichotomies realizable by the ATLE, any dichotomization 

of these patterns partially determines the response to other patterns, 

and a policy which is established in the initial sub-environment may 

imply a completely incorrect set of responses in the desired sub­

environment. 
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APPENDIX 2: THE ALGEBRAIC THEORY OF SEMIGROUPS 

A2.1 Semi~roup~ 

The basic literature on the algebraic theory of semigroups is 

slight, comprising two volumes by Clifford and Preston (1961,1967), 

one by Liapin (1963) translated from his original text in Russian 

published in 1950, and a recent volume on the application of semi­

groups in automata theory edited by Arbib (1968). 

A semigrou£ (Clifford and Preston 1961, p.l) is a non-empty 

set, S, together with an associative binary operation defined on S. 

A binary operation is a mapping from S x S into S, and it is conven­

ient to write the image of the ordered pair, (a,b), as the product 

ab; \'lhere a, b, ab e: S. If the operation is associative then: 

V a,b,c e: S , a(bc) = (ab)c 

Within a semigroup, S, there may be an element, 1, such that: 

v'a e: S , la = al = a 

and such an element, if it exists, is called the identity element of 

S. It is possible for an element to exist which is an identity only 

for left (or right) operation - e is a left identity element of S if: 

Va e: s ' ea = a 

and · f is a right identity element of S if: 

'c;/a e: s ' af :: a 

However, if S has both a left and a right identity element, then they 

ar·e identical since: 

e = ef = f 

If a semigroup, S, has no identity element then it is .::lways possible 

to add to it an element defined to have this function, and the extended 
1 semigroup is denoted, S • 

Similarly, Hithin a semigroup, S, there may be an element, 0, such 

that: 

'-J a e: S, Oa :: aO = 0 

and such an element, if it exists, is called the zero element of S. 

Right and left zero elements may be defined as for identity elements, 



191 

the two zero elements coinciding if they both exist, and, similarly, 

a zero element may be appended to a sernigroup and the result denoted 
0 by s . 

A2.2 Free Semigroups 

An arbitrary set, D, is said to generate a free semigroup, FD, 

by concatenation, ••hich consists of all sequences of elements of D. 

The product of two sequences of elements of D, u and v, is defined 

to be the concatenation of these sequences, uv - hence, if u=d1d2 and 

v=d3d4d
5

, then uv=d1d2d3d4d5; concatenation is clearly associative. 

The identity element of FD is the empty sequence, but no zero element 

is defined. 

In a free semigroup, FD, two elements, u and v, are equal if, and 

only if, they are identical sequences of elements of D. It is possible 

to obtain other semigroups from a free semigroup by superimposing on it 

generating relations amongst its members - that is by defining that: 

Vu')..' v ').. E s ' ').. E r ' 
where r is an index set. 

An important free semigroup is generated by the set of partial 

transformations of a,set, S, into itself. If u and v are mapping 

from two sub-sets of S to two other sub-sets, then the mapping, (uv), 

is defined if the range of v and the domain of u are not disjoint; if 

they are disjoint, then we may define a mapping, 0, whose domain and 

range are both empty, and define uv=O. Hence, the set of partial 

tra~sformations of a set into itself, together with a mapping, 0, is 

a semigroup (with zero). 

A useful notation for a member of a free semigroup is to let 

(d1+d2+d3)* mean 'any sequence of elements consisting of d
1

, d
2 

and d
3

. 

Then, d1(d2)*d3 means, 'd1 followed by d2 repeated ~~y number of times 

(including zero), followed by d3• 

A2.3 Homomorphisms and Relations 

The natural mappings from one semigroup to another, those which 

preserve the semigroup structure, are called homomorphisms. A mapping 

between semigroups, S ru!d S', ~ : S ---+ S' , is a homomor·phism if, 
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and only if: 

V a,b, e: S (ab)4> (acj> )(b<j> ) 

(where the operator is written on the r.Tight. A one-to-one homomorphism 

has an inverse which is also a homomorphism and such a mapping is 

called an isomorphism • Isomorphic semigroups are complete identical 

in their semigroup structures, and, for theoretical purposes, need not 

be distinguished. 

A relation on a set, S, is some sub-set, e, of the product of S 

with itself, SxS. If (a,b) e: e, vthere a and b are elements of S, then 

we may write - a 0b, meaning 'a bears the relation e to b'. The 

composition of two relations on S, e and n ' is defined as - (a,b)e:en 

if, and only if, there exists c such that (a,c)e:e and (c,b)e:n . 
The set of all such relations on S is a semigroup. Its identity 

element is the equality relation, I, such 

zero element is the empty relation on S. 

that (a,b) e:I ~ a=b. Its 

The converse, 0-l, of a relation, 0 , -1 
is defined by - (a,b) e:e 

~(b,a)e:e. A relation, e, is said to be reflexive if~~ e; 

symmetric if ec e-1 ; and transitive if eeE e; an ~qui valence if it 

is relfexive, symmetric and transitive. An equivalence relation 

partitions S into a mutually disjoint family of sets, and the natural 

mapping from S into its equivalence sets gives rise to the quotient 

set, S/0, of S under e • 

If S is a semigroup, the natural mapping to a quotient set under 

an arbitrary relation is not necessarily a homomorphism, and major 

theorems in semigroup theory are concerned with determining when this 

is so. A relation, e , on a semigroup, S, is a congruence if, for 

a,b e:S, a0b ~uav0ubv, for all u,v e:S, and e is an equivalence 

(if e is not an equivalence, the relation is aid to be regular). If 

e is a congruence then the quotient mapping from S to S/e is a homo­

morphism. 

There are certain important theorems relating to homomorphisms 

and relations which will be quoted here with the numbering of Clifford 

and Preston (1961), where the proofs are given: 

Theorem l. 5 (Hain Eomomorphism Theorem) Let 0 be a homomorphism 

of a semigroup, S, upon a semigroup, S', and let TI = e.e -l. Then TI 

is a congruence on S, and there exists.and isomorphism, v, of S/TI 

upon S 1 such that v.,{v. = e, where TI* is the natural homomorphism of 

S upon S/Tr • 
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Theorem 1.6 (Inducedji_?momorphism Theorem) Let Q>1 and ¢2 be 

homomorphisms of a semigr.oup, S, upon sernigroups, s1 and S2 respectively, 

such that <j>
1

• ¢~1 s
2

• ¢;1 Then there exists a unique homomorphism, 

El, of s1 upon s2 such that <t>1El = ¢2 • 

Lemma 1.28 Let FD be the free semi group generated by a set~ D. 

Let S be any semigroup and let <!> 
0 

be any mapping of D into S. Then <~>o 
can be extended in one and only one way to a homomorphism from FD to s. 

Theorem 1.29 Let FD be the free semigroup generated by a set, D. 

Let ~0 be any relation on FD and let ~ be the congruence relation on FD 

generated by ~0 • Let ~;': be the natur~l homomorphism of F D upon F D/~. 

Let S be any semigroup and let <Pbe a homomorphism of F D into S such 

that u¢=v¢ for every (u,v)E~0 • Then there exists a homomorphism El of 

FD/~ into S such that ~*El=¢ • 

A2.4 Ideals 

A left (right) ideal of a semigroup, S, is a non-empty sub-set, 

A, for S such that SAc.A (AS<:::. A). A t\'10-sided ideal (or simply ideal) 

is a sub-set of S which is both a left and a right ideal. A semigroup, 

S, is called left (right) simple if S itself is the only left (right) 

ideal of S. Similarly a semigroup is called simple if it contains no 

proper (two-sided) ideal. 

If X is a non-empty sub-set of a semigroup, S, then the intersection 

of all left ideals of S containing X is a left ideal of S containing X, 

and contained in every other such left ideal of S - it is called the left. 

ideal of S ~enerated by X; similarly for the right ideal of S generated 

by X and the (two-sided) ideal of S generated by X. If, in particular, 

X is the single element, x, then the ideals generated by it are called 

principal ideals generated by x. 

An ideal is called 0-minimal if it contains elements other than 

zero, and the only ideal properly contained in it is the zero element. 
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APPENDIX 3 FRm1 BEHA 'HOUR TO STRUCTUR.I: 

A3.1 The Relationship Between Structure and Behaviour 

The relationship between the physical structure of a system 

and its observed behaviour, and to what extent one can be deduced 

from the other, have long been controversial topics in both philosophy 

and psychology. The fundamental problem of knowledge of the 'real 

world' inferred from sensations is the prime example of the difficulty 

in establishing this relationship in general, but problems of describing, 

modelling and predicting arise continually, not only in science, but 

also in everyday life. Whilst knowledge of 'reality' is a source of 

absolute problems because the observed behaviour is, for the L~dividual, 

all that exists, other epistemological problems arise through comparison 

of different so-~ces of information about the same physical structure, 

particularly when one source of 'information' is a set of pre~conceived 

assumptions. 

In this appendix the problem of relating behaviour and structure 

is formalized, and a technique for deriving one from the other is 

established. The problem is treated in a general way because the 

results are of importance in the present context, not only in the analysis 

of adaptive behaviotW and teclmiques of training, but also, at a different 

level of discussion, in the study of the epistemological problems of 

learning systems '1-lhich give rise to their adaptive behaviour. 

A3 .1.1 Extensive and Intensive Definitions of a Syst.~l!!. 

The concepts of 'behaviour' and 'structure' may be formalized by 

means of the logical constructs of definition by extension and definition 

by intension (Carnap 1956). A property is said to be defined extensively 

by the class of all those objects vlhich possess the property. A 

property is said to be defined intensively by a rule, or decision 

procedure, which determines whether an object has the property. These 

constructs may be used to give formal definitions of a system, v1hich 

correspond to its structural and behavioural connotations, respectively -

Extensive definition of a s;z:;:;tem A system is defined extensively 

by the class of all possible behaviours >-Ihich may be shown by the system. 



Intensive definition of a ~;tste:E_ A system is defined intens:i.ve.ly 

by a rule which determines whether a particular behaviour is possible 

for the system. 

One possible decision procedure, or rule, which defines 2. ST~tem 

by intension is that a behaviour is possible for that system if, and 

only if, it may be sho<m by another. This second system may be defined 

in any way whatsoever, provided the definitio~ enables its beh;wiour to 

be generated. The 'structure' of a system, divorced fr'om notions of 

physical 'reality', is nothing more tha,."l a set of rules fo1' detenn:i:ning 

the behaviour of the system, and hence may be regarded as an intensive 

definition of the system. In these terms, the problem of the relationship 

between the behaviour and structure of a system amy be regarded as one 

of deriving an intensive definition from an extensive one. 

A3 .1. 2 Cybernetic Equivalence Between Systems 

To each of the two types of system definition i:her·e corresponds a"l 

equivalence relation between systems - two systems may be sv.id to be co­

extensive if they show the same class of behaviours - two systems may b~ 

said to have the same intension if the rules which defir.e them are 

logically equivalent. Wiener (1914) has proposed, in the conte;{t of th~ 

analysis of logical relations, that extensive definitions be: used in order 

to simplify the analysis of equivalence between relations: if a relation 

is identified with the class of n-tuples which satisfy the r'E!lation, 

then equivalence between relations can be evaluated by the tht:ory of sets 

and requires no study of the logical structure of relations. In a 

later publication, Hiener (1948) extends this conceot to al~Litrary 

systems, and defines tHo systems to be c_yberneti<?ally eguivaJ.ent if they 

shoVT the same behaviour, that is, if they are co-extensive. 

The most Jmportant feature of Wiener·' s app:t'oach is that r1e proposes 

that it does not matter' uhat structure we suppose for a systern, if ~'e a:c·e 

only interested in its behaviour, provided it is one of the set o.f 

cyber•netically equivalE:mt structures which would give rise to its 

observed behaviour. Deutsch (1960) has argued for· the. application of 

Wiener's approach in the study of animal behaviour. He states that -

'the central nervous system could be const!'UCtE,d of completely 

different types of components Hi thout affecting the behavioural 

capabilities of the machine' - and that -

1 given the sy3tem or abstract structure alone of the machine, He 
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can deduce its properties and predict its behaviour. On the other 

hand, the kno'lrled~e that the machine operates mechanically, electro­

mechanically, or electronically does not help us very much at all 1 • 

The logical conclusion of Hiener's arguments about the primacy 

of the extensive definition of a system by its behaviour might seem 

to be that 'structure' in itself may be neglected. Hm-1ever, Ashby 

(1965) has demonstrated the importance of the concept of 1 structure 1 

in enabling a vast, possibly infinite, number of instances of 

behaviour to be subsumed under the single statement of a rule, correspond-

ing to a system structure. For example, the behaviour of a device, 

whose input is drawn from the field of real numbers and whose output is 

its input plus unity, consists of an infinite set of input/output pairs 

with the form - (x, x+l). Rather than tabulate all these pairs in 

order to define the system, it is far simpler to state the rule -

s Goutput> = <input> + i) 
which constitutesa definition of the system, S, as a mathematical 

operator, or structure. 

Consider a second system, S*, whose structure is -

s,.: <outpu~> 
2 2 

::::] 
- = X y 

X = <input> + . fb3. 2) 

y = <input> + 

Although S and S'>; are structurally dissimilar, they are cybernetically 

equivalent in that, given the same input, they will both produce the 

same output. This equivalence may be demonstrated by manipulation of 

their structural definitions, given a knowledge of the algebra of real 

numbers. Wiener's argument is that this knowledge is unnecessary, and 

that the two systems may be proved equivalent by placing the input/output 

pairs v1hich constitute their behaviour in a 1-l correspondence. 

This, conceptually simple, set-theoretic procedure may be used when 

the system structures, or the rules governing them, are completely 

unknovlt\. It is of greatest interest, however, when the structure of one 

system is unknmm, but, by analysis of its behaviour, it may be shown 

to be cybernetically equivalent to another system en know structure. The 

second system may then be taken to subsume the behaviour of the first, 

or act as a 'model' for it, with the advantages in simplicity of 

description demonstrated by Ashby. Since the structure of the model 

:i.s knmm, statements may be made about the properties of its behaviour 
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without detailed examination of that behaviour, and these statements 

may be applied immediately to the behaviour of the cybernetically 

equivalent system whose structure is unknown. 

A3.l. 3 Mathematical Machines as Hodels 

No one model has inherent precedence over another that is 

cybernetically equivalent, and additional criteria have to be applied 

to select a particular form of model from all those available. For 

biological systems, it is natural to give physiological structures 

primacy in the modelling of animal behaviour, but, for practical 

purposes,these have the disadvantage that the behaviour of large 

structures of neurons, for example, is difficult to determine, both 

because they are nonlinear elements and because their individual 

structures and connectivity are poorly knov.rn. A similar situation arises 

in the study of the behaviour of gases, where the statistical mechanics 

of the behaviour of individual molecules may be used to derive the 

thermodynamics of marco laws of behaviour, such a.s Boyle's law relating 

the pressure and volume of an enclosed gas. Boyle's law, ho-vrever, 

was discovered and used long before the pr·operties of individual molecules 

were known, and, sim~larly, 'laws of behaviour' may be derived long 

before that behaviour can be ascribed to a physiological struct~re. 

One form of model which it is reasonable to propose is that which 

has no properties other than that of showing the required behaviour. 

An abstract mathematical model has this feature, together with the 

advantage that it is readily communicated in ~.;ritten form. Ashby 

(1957) has proposed and developed the theory of state-determined machines 

to provide a mathematical object which has forms cyben1etically 

equivalent to any other system: such a 'machine' is, conceptually, a 

device with states, inputs and outputs, such that the present state and 

input determine the next state and output. It is of interest to note 

that the general-purpose digital computer has been developed as a 

machine which, by 'programming', may be made cybernetically equivalent 

to virtually any other system (Gaines 1968). The methematical theory 

of computers, called Automata Theory (HcNaughton 1961), is essentially 

an extended form of Ashby's theory of machines. This correspondence 

.betv1een abstr·act 'machines' and computers has the advantage that models 

put for·itard .L1 terms of the forr:1er may be physically realized in terms 

of the latter, and hence the behaviour of the models may be demonstrated. 
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A3.1.4 The Observability of Structural ~_§lriables 

The structure which is derived from behaviour to serve as a model 

for the system producing the behaviour acts, in some sense, as an 

'explanation' of that behaviour. Deutsch (1960) distinguishes this 

type of explanation, which he calls 'generalizatory', from an 

alternative form which he calls 'causal' - 'causal' explanations are 

those based on previously established physical laws. Brindley (1950) 

makes·a si~ilar distinction between explanations of human behaviour 

based on psychological observations, and explanation based on knowledge 

of physiological structure. 

The distinction between 'causal' and 'generalizatory' explanations 

proposed by Deutsch is not fundamental, in that the laws of physics are 

themselves inductive generalizations from observations of matter and 

are not inherently more profound than the 'laws' of psychology. There 

is a sense in which physiological structures have a preferred status in 

psychology, but the preference is based on their being derived from 

alternative observations of the same system, not on any fundamental 

difference in logical status. The linking of observations on different 

parts of the same system is a source of difficulty, however, and it is 

reasonable to criticize the premature identification of 'intervening 

variables' in psychology with physiological constructs. There is no 

intrinsic reason, however, why a structure proposed from a cybernetic 

viewpoint, in that it will generate the observed behaviour, should not 

be partially, or wholly, identified with a physiological structure. This 

has occurred with Deutsch's own model of 'drive', where certain parts of 

the cybernetic structure may be identified with nuclei in the .. pypothalamus. 

Deutsch's comments make it clear that the cybernetic structure 

derived from behaviour has no more predictive po~•er than the behaviour 

itself, in the sense of being able to determine future behaviour. Given 

a knowledge of all possible behavioural sequences which may be exhibited 

by a system, the basis of a 'generalizatory' t}~e of explanation, and a 

particular instance of a segment of observed behaviour, it is possible 

to match the segment v.1ith all possible sequences, delimiting the 

behaviour which may follow it, and hence predicting to some extent what 

that behaviour Hill be. If more of the past behaviour is known then 

the future behav:i.our nay be further delimited) and hence the prediction 

-will become moi.'e precise, or not. change. Since the f-uture behaviour of 

a physical system is governed by i~s present condition, knowledge of its 

past behaviour which affects predictions about future behaviour must be 



199 

equivalent to more detailed information about its present condition. 

In the limit, it is possible that knowledge of the past behaviour may 

be used to specify the present condition of the system precisely. 

These considerations suggest further criteria to be applied in 

selecting cybernetic models of behaviour. The only fundamental 

constraint on a structure Hhich is to serve as a cybernetic model for 

observed_ behaviour is the very weak one, that it should shm-1 all the 

observed behaviour, and only that behaviour. For any given set of 

behaviour·, 'there will be very many possible structures, and these will 

vary greatly in complexity. For example, any model can be increased in 

complexity without limit by the addition of internal processes v1hich have 

no affect on the output, or by the addition of intervening variables 

within the model. The system, S' ' defined as -

S' - <output> X y 

X = <input> + z ~3.3) 

y = z 1 

z = (<input> )2 

is cybernetically equivalent to the system, S, of Section A3.1.2, but 

contains the redundant variables, x,y,z, and the redundant process 

defining z. This un,necessary complexity may be eliminated by 1~equiring 

that any intervening variables be tneasurable, that is observable from 

past behaviour, and that the number of different internal conditions of 

the model is the minimum necessary to account for all the modes of 

behaviour. It will be demonstrated that these t\<ro conditions interact, 

in the sense that observability of all structural variables may necessitate 

more internal conditions than are necessary solely to ·accotmt for the 

behaviour - a seemingly paradoxical result. 

A3.1. 5 Summary of Consti•aints Upon Structural Models 

If one system is to act as a model for another then there is one 

necessary constraint upon it, and three desirable ones -

(i) Cybernetic equivalence - the model should be cybernetically 

equivalent to the system it is modelling: that is~ there should be 

a 1-1 correspondence betltleen the behaviours of the two systems. 

(ii) Only sufficient properties - the model should have no properties, 

other than that of showing the observed behaviour of the system it is 

modelling. This is not essential, and mechanical or electrical models 

may be useful psychological models. An abstract mathematical model 
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has the advantage, ho\-Jever, that there ax,e no unnecessary features 

to confuse its evaluation. 

(iii) Observability of structural variables - given a sufficiently 

long sequence of past behaviour, it should be possible to determine 

all internal parameters of the model precisely. 

(iv) Minimum states - subject to contraints (i) and (iii), the 

number of possible values of the internal parameters of the model 

should be minimal. 

In the following sections a procedure for constructing an automata­

theoretic model of a system, given its behaviour alone, is derived which 

satisfies these constraints. 

A3.2 The Behaviour of Automata 

In the analysis of behaviour some formal explicatum of the concept 

of 'behaviour' itself is necessary. Since behaviour is essentially a 

sequence of observations, it is possible to provide an explicatum by 

setting up a calculus for the results of observations. This is done 

in the following postulates relating to the observation of a system,L 

The first postulate is that the behaviour can always be described -

(i) There exists a set, D (the set of descriptors), such that a 

Unique member of D may al\..ays be assigned to the system, E ·~ 

This ensures that the set of descriptors is sufficient and that a 

decision procedure exists for describing the behaviour with a unique 

descriptor: uniqueness ensures that problems of semantic relationships 

between descriptors in themselves do not arise. 

The second postulate identifies the system, E , with the set of all 

behaviour that it may show -

(ii) A system, defined by extension, is a sub-set, E, of the free 

semigroup generated by concatenation of member of the set, D, such that 

every sub-sequence of a member of the sub-set is also a member of the 

sub-set. 

This defines a system as a set of sequences of descriptions, or observ­

ations of behaviour (a sequence of descriptions being a 'behaviour')> 

and ensures that any part of an observed behaviour is also noted as an 

observed behaviour. 

A3. 2.1 The Semigroup of Descriptors 

The term 'semigroup' used in postulate (ii) of the previous section 

requires further elucidation. A semigroup is a mathematical object, 
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similar in structure to a group but with weaker postulates. Although 

semigroups logically precede groups~ it is only during recent years 

that they have been studied in detail by mathematicians~ whereas the 

study of groups has long been intense and the literature is vast. The 

theory of semigroups is fundamental to the study of automata. _and general 

systems, and will be used extensively ll1 this thesis. A summary of the 

relevailt theory and t.erminology is given in Appendix 2. In this section 

the relationship between systems and semigro'.lps is established. 

Let ~·be a system defined as in postulate (ii), such that~ c FD, 

the free semigroup generated by the set of descriptors, D. Then E, as 

defined, is not itself a semigroup because~ given behaviours, a, b,e E 

it is possible that the behaviour, ab, does not belong to E - that is, it 

may not be shown by the system. However, it is possible to extend r. 
by addition of the zero element such that it is a semigroup homomorphic 

to FD. 

Theorem A3-l If E c. F D is a system, and e is the relation defined by -

a0b ~< --~) a, b e: F D - ~, or a = b 

then e is a congruence relation and the natural homomorphism from FD onto 

the quotient semigroup, FD/0, maps the set, (YD-~J, into 0, the zero 

element. 

Proof For any a, b; s'.lch that aeb,and any x e:FD, consider xa and xb. 

If a=b, then xa=xb, and hence xaexb. Otherwise a, b e: FD - ~. Suppose 

xa e: E, then a is a sub-sequence of a member of ~, and hence by 

postulate (ii) a e: ~. Thus, by contradiction, xa e: FD - ~; similarly, 

xb e: FD - ~' and hence xaGxb. Similarly we may prove that axebx. 

Thus, e is a congruence relation and the quotient semigroup, FD/8 , 

and the natural homomorphism, ~, from FD to it, are defined. Let 

a e: FD - E, and b e: FD. Then ab e: FD - ~' and hence a~ = (ab)~ 

under the quotient mapping, but ~ is a homomorphism so that -

(ab) ~= a~.b<l>. Thus, a<l> = a<l>.b<l> , and similarly - a<l> = b¢.a¢ ' 
implying that a is the zero element of F D/G • 

This theorem shows very clearly the relationship between the extensive 

definition of a system and the algebraic properties of semigroups. A 

system, defined by extension' may be represented as the free semigroup 

generated by its descriptors, >vith zero adjoined, and a generating 

relation such that every sequence of descriptors Hhich is not a possible 

beh3.viour is mapped into zero. Because every sub-sequence of a 

possible behaviour is also required to be a behaviour, this mapping is 

a homomorphism, the natural mapping between semigroups, and the resultant 

structure is itself a semigroup. 
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A3.2.2 Implications of Grouu Postulates 

The relevance of semigroup structures to the study of system 

behaviour may be further clarified by consideration of the effects 

of strengthening the postulates, and !"'epresenting the system by a 

group, rather than a scmigroup, structure. The additional postulate 

for a group is that, for every element a e: FD, there exists an element 
-1 -1 -1 a e: F D _such that a a = 1; a is termed the 1 inver•se' of a. The 

part of the unity element, 1, in FD is played by the empty sequence, 

and equality of sequences is defined only by their being identical. 

Hence, no inverse elements can exist in the free semigroup of descriptors, 

r
0

, itself, because the above equation would imply that the succeeding 

behaviour, a-1, makes an already observed behaviour, a, become unobserved. 

Equally, no inverse elements can exist in the quotient semigroup, FD/0, 

defining the system, E , because the only additional relationship of 

equality is generated by the mapping into zero, and zero has no inverse. 

If a further relationship of equality were defined in r 0 , which 

implied, for example, that behaviours were equivalent which achieved 

the same goal, the additional group postulate would demand that any 

behaviour could be nullified in its effect on the attainment of the 

goal. This is obviously a very strong postulate implying a degree of 

reversibility which, whilst present in many systems studied in physics 

and chemistry, is not always fou..'1d in animal behaviour, and is certainly 

very rare, almost by definition, in the learning process. This explains 

the necessity for the mathematics of semigroups, rather than that of 

groups, in the analysis of adaptive behaviour. 

A3.2.3 Structure of Automata 

One of the most general structures to have been investigated in 

recent years is the sequential machine, or automaton (Gill 1962, Ginsburg 

1962, Moore 1964, Hartmanis and Stearns 1966, Booth 1967, Hennie 1968). 

Any physical system, examined at discrete intervals, can be represented 

as an automaton, and automata theorists are developing tec~!iques for 

analysing general, nonlinear systems (Wymore 1967), which may eventually 

become as povrerful as comparable teclmiques for linear systems at 

present (Zadeh &'1d Desoer 1963). Since the discrete, decision-making 

mechanisms of animal behaviour are not amenable to analysis with linear 

systems theory, the development of automata theory is particularly . 

important in biology. In particular, an automaton structure is an 

adequate representation of a biological system, a11d the problem of 
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relating behaviour and structure may be reduced to that of determining 

an automaton whose behaviour matches that of the observed system. 

An automaton is a device with inputs, states and outputs, v1hose 

present state and input determine its next state and output. This may 

be formalized (Mealy 1955) in the following terms - an automaton, or 

sequential machine, is characterized by -

( i). A set s of states. 

(ii) A set I of inputs. 

(iii) A set G of outputs. 

(iv) A mapping, a: I X s s, called the next-state function. 

(v) A mapping, 'It: I X s G, called the output function. 

Hence a particular machine may be characterized by the 5-tuple, 

(I.S.G.<J.1T). The dynamic behaviour of the machine is determined by 

the following transition equations:-

s' = a (i,s) 

g = 1r (i,s) 

- where s is the present state, s' is the next state, and g :is the 

present output. 

A3.2.4 Descriptor Semigroup of an Automaton 

' Since the state of an automaton is an internal variable which may 

not be directly observed, its overt behaviour may be completely described 

in terms of its inputs and outputs. In the terminology of the previous 

section, a complete description of the behaviour of the automata in its 

present condition is -

d ( i,g) 

It is apparent that a set of sequences of such descriptors, corresponding 

to a set of observed behaviours of the automaton, obey the postulates 

for an extensive definition of a system defined in Section A3.2. It is 

also apparent that any restrictions on the initial state of the automaton, 

or upon the input which may be applied when a certain output is present, 

will generally restrict the observed behaviour to some sub-set of all 

possible behaviour, and hence will give rise to an extensive definition 

of a different system. This is important in the context of the problems 

faced by any learning system in attempting to learn about its environment 

(which may be regarded as an automaton), and is analysed in Section 3.5. 

"For any t;i2scription of the behavioUr of the automatr.n, d = ( i,g), 

there will be a set of states, R, in ~~hich the input, i, may be applied. 

Consider the sub-set of R, Q c: R) such that the output, g, occurs -



204 

Q s : s e R, g = n(i,s) 

Let Q be the domain of a mapping, Md, whose range, T, is the set of 

states which may follow the state, s e: Q, and the input, i, so that -

T - (s• : s € Q, s' = n(i,s)] \b3. [I 
The mapping, Md Q~T, is then defined 

s' = Md(s) ~3.9J 

-where s e Q, and s' = a(i,s), g ~ n(i,s}. 

Thus, with every description, d, of the behaviour of the automaton, 

M : (I,S,G,a,n), it is possible to associate a unique mapping, Md' 

from the class of partial transformations of the set, S, into itself. 

This association may be written as the mapping, A, such that -

= A3.10 

-where the range of A isM, some sub-set of ST, the set of partial 

transformations over S. 

This mapping does not, in itself, demonstrate a relationship between 

the semigroup of partial transformations over S, and the semigroup of 

descriptors defining the behaviour of the automaton; an arbitrary mapping 

between semigroups does not necessarily imply any similarity between 

their structures. However, the following theorem shows that the mapping~ 

A, is an isomorphism, so that the semigroups of partial transformations 

is identical in structure with the semigroup of descriptors. 

Theorem [!:.3-~ The free semigroup of partial transformations over S, 

FM' generated by Md for all d e D, is isomorphic to the quotient semigroup, 

FD/e of Theorem lb3-~, under the transformation, A. 

Proof A maps the generating set, D, of the free semigroup, FD, into the 

free semigroup genera ted by the set, H. c S T, the set of partial trans­

formations over S. Hence, by Lemma 1.28 of Clifford and Preston (196li, 

;\ may be extended to be a unique homomorphism from FD to FM by setting -

(abc ••• n }A = M MbM ••• I-1 a c n = aA.b;\.c;\ ••. nA ~3.llj 

Consider a behaviour, u = ab € t:' --n r. The absence of ab from the set 

of possible behaviours implies that the input-output pair corresponding 

to b cannot follow that corresponding to a. Thus, for every possible 

state in which the machine may be after having shown the behaviour, a, 

(all states in the range of W ),either the input corresponding to b 
a 

cannot be applied or the output corresponding to b does not occur. In 

either event, these states cannot lie in the domain of Mb and hence the 

range of Ma and the domain of Hb do not overlap, so that th8 mapping, 
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MaMb , takes its domain into the empty set, ~ • 

Any mapping in FM which takes its domain into the empty set plays 

a part of the zero element in the semigroup of partial transformations, 

and hence \-le have that any behaviour, u E F D - r , is mapped into 0 by 

A. Thus, considering the r-elation, 0 , of Theorem A3-l , if u0v, 

then either u=v so that UA = VA , or u,v E FD - r so that UA = VA = 
0. Hence, by Theorem 1.29 of Clifford and Preston (1961), (see Appendix 

A2.3),_ there exists a homomorphism, A1 
, of FD/0 into F5T, such that 

0A' = X. By the nature of 0 and A, A' is clearly A itself extended over 

FD/e. The mapping between FD/0 and FsT is one-to-one and hence A1 

is an isomorphism. 

Thus the two semigroups, FD/ 0, corresponding to the extensive 

definition of the automaton by its behaviour, and FMc r 5T , corresponding 

to the intensive definition of the automaton by its structure, are 

completely equivalent. Thus the problem of determining an automaton, 

cybernetically equivalent to a system defined by extension, may be 

regarded as one of finding a suitable mapping from the descriptors of 

the system to the set of partial transformations over some set, such that 

there is an isomorphism between the semigroup structures on them both. 

A3.2.5 Choice of Structure for a System Defined by Extension 

There are many possible automata, with differing numbers of states 

and differing transition equations, which are cybernetically equivalent 

to any given automaton. Without further constraints there is no basis 

for selecting between these automata. One possible constraint is to 

demand that the automaton have the minimum number of states necessary to 

show the required behaviour, but this may lead to a structure vrhich is 

peculiar in that no amount of information about its past behaviour will 

allow one to deduce its present state; in control-theoretical terms, 

the automaton has unobservable states (Kalman 1960, Wymore 1967 p.277). 

For example, consider the two automata whose state transitions and 

corresponding behaviour are shown in Figure (b3-fj as directed graphs; 

each node of the graph cm'responds to a state of the autotaton, and 

each line of the graph coreesponds to a possible transition between 

states, the emitted behaviour being indicated by a letter (descriptor)~ 
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( i). Minimum State (ii) Observable 

Figure A3-l Different Structures for Equivalent Automata 

Any behaviour of either of the two automata is of the form -

(a+b)~':a c~·= (in the notation of Appendix 1), and hence both systems 

show the same ran~e of possible behaviour and are cybernetically 

equivalent. The first system, (i), has only two states, which is 

clearly the minimum necessary to restrict behaviour to this form. Given 

that the past behaviour is of the form - {a+b)*a, however, 

to determine whether the automaton is in state s
1

, or s2 • 

second system, (ii), any behaviour terminating in a leaves 

it is impossible 

With the 

it in s, ; .... 
behaviour tenninating in b leaves it in s

1 
and in c leaves it 

s 3• Thus any sequence of past behaviour is sufficient to determine 

its present state. 

in 

Thus although the second system, ( ii), has :one more state th~'1 

system (i), all its states are obsel~able, and it is possible to deter­

mine its current state from its past behaviour. This condition not 

only gives an operational definition of the 1 states 1 of the hypothetical 

structure giving rise to the observed behaviour, in that all 'intervening 

variables' are measurable, but leads to what is, in many ways, a more 

'realistic' structure. For example, it appears from the transition 

diagram of system (i) that behaviour, c, occurs only when the automaton 

is in state, s2 , and hence that 5 2 is particularly infor·mative about the 

occurrence of c. However, since no sequence of past behaviour terminating 

in a, no matter hm-1 long, is sufficient to determine whether the system 

is in s
1

, or 5 2, this apparent 'in format ion' is rather misleading. Or. 

the other hand, the alten1ative structure, (ii), makes E immediately 

apparent that behaviour, c, may be emitted "!tThen the automaton is in 

either of states, s 2 or s 3, but that behaviour, b, may also be emitted 

when it is in s2 • 

This further exemplifies the desirable constraint, (iii), proposed 

in Section A3.1. 5, that all internal parameters of the model, its state 
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variables, should be measurable from a sufficiently long sequence of 

observations of past behaviour. Given that this contraint upon the 

automaton structure is satisfied, it is reasonable to further impose 

contraint (iv) of that section, and minimize the number of internal 

states of the automaton. In the following sections, a construction 

is established for deriving an automaton structure for a system 

defined by extension, which satisfies these constraints. 

A3.3 Construction of a Minimal, Observable Automaton 

A set of observable states for a system defined by extension may be 

determined by noting that the pr•esent state of an automaton is essentially 

that which contains all the known information about its future behaviour, 

and considering the manner in which knowledge of past behaviour restricts 

future possible behaviour. 

Consider a system defined by extension as a sub-set, E, of the 

free semigroup, FD, generated by the set of descriptors, D. Any 

behaviour, u e: FD' generates a sub-set of I:, NucE , defined to be-

N 
u {v : v e:FD' uv e: I:} £F3.1~ 

- so that N is the set of potential future behaviours vrhich may follow 
u 

the behaviour, u. ~t will be noted that if u does not belong to E , 

the N is the empty set, ~ • 
u 

Theorern U3-V For all u, v e: F D' N eN uv v 

Proof For any w e: N , we have by definition that uvw e: E • By uv 
postulate (ii) for a system (Section A3.2), the sub-sequence of uvw, 

vw, also belongs to L Hence w e: N , and thus N C. N • 
v uv v 

This result implies that the addition of successive descriptions 

of the past behaviour of the system creat~s an ordered sequence in the 

lattice of sub-sets of F D' ordered by inclusion:. We will assume that 

this sequence is bounded, and hence that sets of the'form N eventually 
uv 

stabilize so that -

'{t e: FD, either Ntuv = Nuv , or Ntuv = ~ . 
This is stated formally in the third system postulate -

(iii) To any descriptor, d e: D, there corresponds a family of 

sub-sets of FD' dn , possibly including the empty sub-set, !lJ , such 

_that -



- if N e dn u e; F -
D 

(1) there exists v e; FD, such that, for all t E FD 

such that tvd e; 1:, Ntvd = N • 

(2) there exists N' e; dn , such that Nud ~ N'. 
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The first part of the postulate only requires that all members of dn 

are actually attained bounds of the sequences created by behaviour 

terminating in d - that is, the sub-sets of possible future behaviour 

are as small as possible, and none are included which do not occur. 

The second part of the postulate ensures that the members of dn are 

sufficient always to bound the effects of prior knov<ledge about the 

behaviour of the system. 

This postulate is not inherent in the general concept of a system, 

but is a reasonable one, being implied by many other contraints upon 

the system. For example, if the system has a finite memory span so 

that information about the sufficiently remote past is irrelevant to 

its future behaviour, or if it shows only a finite number of possible 

behaviours, then postulate (iii) is satisfied. This last condition 

is a1ways implied in practice, because only a finite number of observat­

ions may be made bef~re a model is formed. It is interesting to note 

that the postulate is not implied by the descriptor set, D, being 

finite in number. The justification for the postulate, in the present 

context, is that it is satisfied in all cases of interest, for one 

reason or another, and that systems which do not satisfy it generate 

an infinite variety of behaviour and are,thus, not subject to complete 

experimental observation. 

A3.3.1 Assignment of States 

The concept of the 'state' of a system plays a very important role 

in modern control and general systems theory. It was first formalized 

by Poincare (1885), in the context of d;.{namical systems and thermodynamics, 

in the late nineteenth century. His definition was naturally based on · 

structural considerations, being a set of parameters defining the positions 

and momenta of a system of particles, and it is only in recent years 

. that the purely behavioural connotations of the concept have been studied. 

In particular, Zadeh (1964) has analysed the conditions for the assignment 
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~f values to the state-variables of a system to be consistent with 

given behaviour of that system. 

Zadeh takes the content of the concept of state to be -

'a number or set of nuwbers, which collectively contains all the 

information about the past of the system that is relevant to the 

determination of its future behaviour' 

In a structural context, the definition of the 'state' of an automaton 

in Section A3.2.4 clearly satisfies this statement- it is a \•ariable 

which, together with the sequence of future inputs to the ~utomaton, is 

sufficient to determine all future outputs, and all future states, of 

the automaton. In a behavioural context, Theorem A3-3 demonstrates 

how further information about the past behaviour of a system restricts 

its potential future behaviour, and hence must reduce the set of states 

in which the system may be after the observed behaviour. 

The problem of state-assignment thus consists of giving a set of 

possible values, or designators, to a system which contains all the 

known information about its future behaviour. Thus, if S is an 

abstract set and ~ is a system defined extensively as a sub-set of the 

free semigroup, FD' generated by the descriptor set, D, then a state 

assignment to the system is a mappmg from FD to the family of sub­

sets of S, 2s, which,satisfies certain consistency requirements. These 

are set out in the following definition. 

A3. 3.2 Definition of a Consistent State Assignment 

The mapping, y : FD >2s 
' is a consistent state assignment 

if, and only if -

(i) u c ~ <rC: 7>· uy ~ $ . 
(uv)y c: vy 

ut, vt c L. 

The first requirement implies that there is no state of the automaton 

which can follow impossible behaviour. The second is less trivial, and 

implies that further information about past behaviour can only reduce the 

possible present states of the automaton. The third requirement implies 

that if the same state is possible after two different behaviours then 

.there is at least one possible future behaviour common to both. This 

last r·equirement is stronger than is strictly necessary - it is sufficient 

to require that the state sets assigned to behaviours with differing 

future possible behaviours are not identical. However, the only effect 
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of weakening the requirement is to allow states to be assigned v1hich 

the automaton can never enter, a trivial possibility in the present 

context. 

Theorem A3-4 In the notation of Section A3.2.4, the state assignmer.t 

to the behaviour of an automaton, M :: (I,S,G, o,,r), given by -

uy = Ra11ge ( u),) ~3.13) 

- is a consistent state assignment. 

Proof This is trivial, following from Equation ~3.11) where X 

is defined as a sequence of mappings. Part (i) of the definition 

follows because there is no mapping corresponding to u). if u does not 

belong E. Part (ii) follows because the range of the product to 

two maps is included in the range of the.last. Part (iii) follows 

because any common state in the range of two maps allows a map with this 

state in its domain to follow both. 

If the state variables are not only to be consistent but also 

observable, then it must be possible to assign a single member of S to 

a behaviour by examination of sufficient behaviour preceeding it. By 

postulate (iii), part (1), of Section A3.3, the sub-sets belonging to 

dn , which each correspond to different sets of potential future behaviour, 

are each irreducible by further information about the past behaviour of 
' 

the system. Hence it is reasonable to assign a single member of S to 

each distinct sub-set belonging to the union of all the dn This 

observable state assignment is stated formally in the following definition. 

A3.3.3 Definition of an Observable State Assignment 

Let n' ~ 2FD be a family of sub-sets of FD which is the union of dn 

for all d -

n' _ G : ;J d, x £ d;) ({\3.l'il 

-and consider the equivalence relation on n' , that two sub-sets 

belonging to n' are Equivalent if and only if they ar-e constituted of 

identical elements. Let n* be the quotient set of n' by this relation, 

i.e. the distinct sub-sets in the union. Let 0 be a one-to-one mapping 

from n* to an arbitrary, abstr'act set, S, so that for X·g 1, ;:J s £ S-

s = xc; 



Then the mapping, y 
s . FD ~ 2 , defmed by 

uy ((N )0 
I..! wu V t e FD such that twu e l: , Ntwu = N~ 

- is defined to be an observable state assignment. 

The defining points, (N ) o 
wu , belong to S, even though 1:he 
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doma.in 

of o is n1:, because the second part of the defining equation is equivalent 

to part {1) of postulate (iii) in Section (A3. 3) . Hence, since any u 

may be expressed as - u = xd, where x is a sequence and d is a descriptor, 
'/; 

we have that N £ n(d) for some d; and thus N e n . wu wu 
This assignment is observable in that, for a behaviour, u, such 

that the potential future behaviour cannot be further reduced by knowledge 

of behaviour pr·eceeding u, 
,,: 

Nu e n , and hence - uy = (Nu)o , a single 

· state belonging to S. 

_T_h~e_o_re __ m __ ~Q_A_3_-~~~ An observable state assignment is consistent. 

Proof Using the notation of Definitions, A3.3.2 and A3.3.3, part (i) 

of the consistency requirements follows because there is no sub-set in 

the domain of o which can follow impossible behaviour, and ·hence uy 

is empty if u £ FD- l:. Part {ii) follows because, if N is irreducible, 
'\<;'UY 

it may be regarded as N(Wu)v and hence it is also one of the irreducible 

sub-sets for vy • Thus, (N )o = (N( ) )o , is a member of both uy wuy wu v 
and vy, and hence (uv)y c. vy • Part (iii) follows from o being a 1-1 

correspondence, for if there is a common state to uy and vy , s = 
{N )o = (N , )o , then N = N 1 , and hence there exists t belonging wu wv wu vrv 
to both N and N 1 such that ut and vt both belong to r. wu w v 

It is interesting to note that an observable sta1:e assignment is 

not necessarily minimal, because the assignment does not take into 

account the inclusion relations between the sets in n'~;. For example, 

given a,b,c. e: D, it is possible that ann bn = ~ , an v bn = en , 

and hence it would be reasonable to assign s
1 

to an , s2 to br, , and 

both s1 and s2 to en • This is a consis1:ent assignment which requires 

less states than the observable one, since the latter would require a 

further state, s 3 , to be assigned to en • However, with the minimal 

assignment, it wculd be impossible, given uc such that N '::) en 
uc 

to determine whether the system is in state s1 , or s2 • 
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Having taken, n1=, effectively as the set of (observabil:e) states, 

it remains to be sho~~ that there is a one-to-one correspondence 

between partial transformations of these states and the set of 

descriptors, D, which extends to an isomorphism between the semigroup, 

FD/0 , and the semigrou.p of partial transformations. 

A3. 3.4- Partial Transformations Corresponding to Descx•iptors 

Consider a system defined extensively by its behaviour as a sub-set, 

t , of the free semigroup, FD, generated by the set of descriptors, D. 

Let n* be the family of distinct, irreducible sub-sets of future 

possible behaviour; let cS be a one-to-one mapping from n)': to an 

arbitrary, abstract set, S; and let the mapping, y FD =;.;.-2s, 

be an observable state-assignme~t - all as defined in Section A3.3.3. 

Suppose that a mapping, Md ' 
sub-set, is to be associated wit!:J, 

range and domain of Md to be -

Range (Md) 

Domain (Md) = {s 

dy 

s=Xo 

from one sub-set 

each descriptor, 

, X E n*, d c 

of S to 

d £; D. 

X } 

another such 

Take the 

U3 .17) 
ij.3 .1![1 

- so that, the range of Md is the set of states which may arise after 

behaviour terminating in d, and the domain of Md is the set of states 

which may precede behaviour commencing with d. 

The mapping Md may now be defined. Suppose that the state, s £: S, 

belongs to the domain of Md' then, from Equation \!a~ , there exists 

X E n*, such that d £: X and s=Xo • By the definition of n*, it is a 

quotient set of n', and hence, from Equation (li±) , X e: an for some 

a e: D. Hence, by the definition of n in postulate (iii) part (1) 

of Section A3.3, there exists v e: FD such that, for all t £: FD such that 

tva e: E, N = X. Consider now the sequence of behaviour~ vad. tva 
Since the possible future behaviour following va is irreducible, so is 

that following vad, and since d £: X = N , vad e: va E • Hence, Nvad £: 

n*, and thus s' is defined,and s' £: S. The state, s', is 

to be taken as the image of s m1der the mapping, Md' and hence it is 

necessary to prove that s' is unique. Suppose that v'a' is a second 

seq~ence such that, for all t :;:; FD such that tv'a' E I:, Nt, ,=N. ,= v a v·a 
X. As before, we 

will suppose that 

have Nv'a'd e:N n;'c, and, for the sake of contradiction, 

N , 'd ¢ N d' Then there must exist a sequence, w, v a va 
which belongs to one, but not to the other - suppose, without loss of 

generality, that it belongs to N d' Hence, we have - vadvr :f. 0, va 
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v'a'dw = 0, but the first equation implies that dw belongs toN va 
This, however, is identical to Nv'a'' and hence dw ~ Nv'a" which 

implies that v'a'dw ~ 0. Thus, by contradiction, we have Nv'a'd= Nvad, 

so that (Nv'a'd)o = (Nvad)o = s' is unique. 

Thus, the mapping, Hd, is defined such that -

s' = sHd 

- or, equivalently, such that -

(N d>o va = {N ) o Md va 

- whenever the left hand side of the equation is defined. 

fE3.20j 

The association of Md with d may be written as a mapping, A , such 

that-

= dA 

- where the range of A is M c ST. This is identical to Eq;,Lation 

of Section A3.2.4, and, as noted there, A may be extended to 

be a unique homomorp~ism from FD to FM by setting -

(abc., .n)A = M MbM ••• M = a A.bA • CA ••• nA 
a c n 

1};3.2~ 

- so that, for any u e FD, we may write -

M = UA 
u 

The domain and range of M ~may be determined from the follo;,ling consider­
u 

ations. Supposes e Domain (M) and s' e Range (M ), where u=abc ••• n. 
u u 

Then s e Domain {M } , so that, from Equation ~o)-, there exists a 
va (=w, say), such that s=(N )0 • The image of s under H is (N )0 , w a wa 
and the image of this under Mb is (Nwab)o , and so on~ so that, finally 

we have -

s' = (N )0 wu 

Hence, from Equation 16 

Range (M ) = uy. 
u 

and, since wu e 

Domain (M ) 
u 

so that u e 

= 

N e n*, we have -w 

These two equations are extended forms of E~ations [ 7) 

x] (F3 .2t[l 

and ~8] , and 

the first of them shows that, as required, the assignment of states to 

-the sequence u by the range of M is an observable, and consistent, state 
u 

assignment. 
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Theorem Jh,"3-6] The mappbg y F d--~ST, defined in Equation ~3J , 
is an isomorphism. 

Proof y is an isomorphism if, and only if, for u,v e UV E F - I: 
D 

range of M and the domain 
u 

Suppose uv e FD- E , but the 

of H are not disjoint, then there exists s 
v 

belonging to both. Sirice s e Range (11 ) , we have 
u 

s=(N )6 , for some 
wu 

w. Since s e Domain (M ) , we have s=(X)o, where v e 
v 

X. Since o 

is one-to-one, X=N , and hence v e N , so that \-TUV I:,and thus uv e r.. wu wu 
Hence, by contradiction, the result is proved from left to right~ Conversely, 

suppose that the range and domain of the mappings are disjoint, but uv e l: • 

Then v e N , and hence by postulate (iii), there exists w such that 
u 

v e N e n*· Then s=(N )o satisfies the conditons for belonging wu wu 
both to the range of M and to the domain of M • Hence, by contradiction, u v 
the result is proved from right to left. 

A3. 3. 5 Transition and Output Equations of Equivalent Automaton 

A semigroup of partial transformations having been constructed which 

is isomorphic to the semigroup of descriptors defining the system, 

transition and output equations may be established for a cybernetically 

equivalent automaton. Whilst the equations are simila1.~ in form to those 

of Equations t]) and [4] , for a system defined by its structure, they 

are not idential because the equivalent automaton has a certain type of 

indeterminacy in its governi.11g equations. 

If the behaviour of the system consists of input/output pairs 

generated by some automaton, then we have the set of descriptors, D, 

which is a sub-set of the product set between the set of inputs, I, and 

the set of outputs, G - D C. I x G. Thus each d e: D may be W!'itten, as 

in Equation (6] , d _ ( i,g), vrhere i e I, and g e G. 

With each d e: D there is also associated a mapping, Md, according 

Let s belong to the domain of Md, as defined in 

and let s' be the image of s under Md' as defi.ned in 

to Equation {j.iJ 
Equation Q.8] 
Equation Q..9J • s' may clearly be considered as the 'next state 1 of a 

machine, cybernetically equivalent to the· system, I:, whose current state 

is s a'1d whose current input is i. However, s' is not necessarily a 

tmique 'next state', because the pa:i.r (i,s) need not itself be unique to 

__ d and Md. It is possible that there exists a second output, g;'; ':f. g, such 

that (i,g1:) = d;'; e; D, and s E Domain (Md;';). Let s;~ = st1df:' then, when 
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the machine is in the state, s, and receives the input, i, its next 

state and output may either be s' and g, respectively, Ol' s~·= and g:':, 

respectively. Hence a transition equation, of the form of Equation (.4) , 

is not necessarily determinate, and o{i,s) is a set of possible states 

rather than a single unique state; equally, the output, n(i,s), also 

becomes a set of possible outputs. 

The next state and output are not independently indeterminate, and 

there is a correspondence between the state and output sets, in that s' 

and g~ or s* and g*, occur together. Hence, once the output is known, 

the'next state' is well defined, but the converse does not hold, because 

it may happen that s' = si', in vlhich event the output alone is indeterminate. 

Because of this asymmetry, the indeterminacy is best assigned solely to 

the output by writing the transition equations:-

g 

s' 

e: 

= 
n(i,s) 

o(i,s,g) 

The generation of an automaton structure which is indeterminate 

in that the present state and input do not determine the next state and 

output uniquely, is reasonable in the presant frame of reference. Inputs 

and outputs have been inextricably mixed ~1 descriptors, and there is no 

reason why the automaton's behaviour, in some circumstances, should not 

be characterized solely by its outputs. The automaton, even though its 

behaviour is indeterminate, remains observable, in that its output is 

sufficient to determine its state. It is, however, essentially ~~controll­

able, in that, even with unrestricted control over its inputs, it is not 

necessarily possible to force the automaton into a particular one of its 

potential future states. Accepting this indeterminacy, it is now possible 

to define formally an observable automaton structure which is cybernetically 

equivalent to a system defined by its behaviour, E • 

In the notation of the preceeding sections, let s e: S, and i e: I, 

and define the set -

/l(i,s) = {d : 3 g e: G, s e: Domain (l1d), d ::(i,g)} /h3.2~ 

b(i,s) may be empty, in which event, the input i never occurs when the 

automaton is in state, s. Let 

'lr(i,s) = {g : d e A (i,s), d - (i,g) } 

and o(i,s,g) = sMd , where d ::(i.g) 
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Then Equation @QJ and @i] define the output and next state functions 

of Equations \.?iJ and (?~ , for an indeterminate, but observable, 

automaton, cybernetically equivalent to the system defined by its 

behaviour as a sub-set, l: , of the free semigroup, F D, genera ted by 

the descriptor set, D. 

A3. 3. 6 Problems in the Construction of the Autcmato:-1 

The preceeding section gives the main results of this appendix -

that from the system postulates (i), (ii) (Section A3.2.0) and (iii) 

(Section A3.30), it is possible to derive a structure for a system defined 

by its behaviour, which is minimum~state, observabl.e, and cybernetically 

equivalent tofue original system. In psychological terms, it is possible 

. to eradicate all intervening variables which cannot be oper•ationally 

defined and measured. Hence, it is possible, with full r:i.gour, to re-

state the behavioural definitions of modes of adaption, given in Chapter 

2, in terms of the cybernetically equivalent structure. Thus is 

particularly important when it is desired to control adaption by varying 

the learning environment as discussed in Chapter 3. The system-theoretic 

results obtained in this chapter are also relevru~t, not only to the 

problems of the trainer dealing with an adaptive system, but also to the 

problems of the system itself in learning to cope with its environment, 

for example in the "dual-control" problem {Section 3.4.1). 

However, there are difficulties in applying the results of this 

appendix to practical situations. At the most mundane level, the 

problem of manipulating the semigroup of sequences of descriptors to 

determine the mapping n (Section A3.3) of descriptors into irreducible 

sub-sets is i~self computationally demanding, although it may be solved 

for simple cases with present computers. More fundamental is the problem 

of collecting the information as to which behaviours belong to L: (A3.2(ii)). 

We have effectively solved a problem of complete induction in this 

appendix, a~d assumed that all possible behaviour is known. There are both 

practical and theoretical objections to basing a theory on this assumption. 

At a fundamental level there can be no operational procedure for collecting 

all possible behavioural sequences of the automaton, firstly if the 

automaton is irreversible so that it cannot be taken back to earlier 

states, and secondly if the maximu.-n mJmber of possible st:ates is 1..mknovm 

so that it cannot be deternined whether all possible behaviour has been 

elicited. 
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These difficulties are u1creased in practical situations where 

the time available for observation will be limited as are the 

possib.ili·ties for manipulating the behaviour. Both theoretical and 

practical obstacles generate the need for an incremental approach to 

determination of ~oximate structures. 

In reality data about a sys tern is gathered incrementally, item 

by item, and it is generally necessary to specify a structure for the 

system before its behaviour is completely knoi'ffi. If a minimum-state, 

observable.automaton is constructed, which is cybernetically equivalent 

to some sub-set of a systems behaviour, then the question arises as to 

how this structure will change when new behaviour is observed. Alternatively, 

since new behaviour is expected to be observed, it is reasonable to add 

some examples of what may be observed to those which have already been 

observed, and base the automaton construction on this, particularly if 

this greatly simplifies the structure. In this event, it is necessary 

to know the effect on the structure of deciding that some behaviour is 

definitely now shown by the system. 

The problems of incremental identification and approximation of an 

automaton structure may be stated formally -

given two systems defined as extensively as sub-sets, I:, I:', 

respectively, of the free semigroup, F~, generated by the set of 
..J 

descriptors, D, and which satisfy system postulates, (i), (ii) and 

(iii), what is the relationship between the minimum state, observable 

automata, cybernetically equivalent to systems generating I: and r ', 
induced by the inclusion relation, t ~ E'· 

If I: and I:' are identical apart from a few sequences then we would 

expect the structure determined for one to be a good approximation for 

the other. This may be formalized by considering any structure whose 

.behaviour lies between I: and E' as a tolerable approximation, and 

posing the question -

what is the minimal-state, observable automaton whose behaviour is 

a subset, I:ac:r0 , such that -

the problem of approximation is clearly closely related to that of 

incremental identification, and solutions to neither problem are available 

at present. The most relevant wor·k is· that on the simplica·tion, and 
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r·epresentation, of non-parametric data str·uctures, such as those obtained 

in information retrieval systems, using graph-theoretical techniques 

(Salton and Sussenguth 1964, t-1eetham 1963, Vaswani 1965, Meetham l966). 

The state transitions of an automaton, and the sequences of behavioural 

descriptors, form directed graphs (Ore 1962, Berge 1962, Flament 1963, 

Harary 1965), and te-ekniques developed fo1~ the matching and simplification 

of graphs may be applied to the approximation of automata. Unfortunately, 

the theories of automata, semigroups, and graphs, are in comparable 

stages of early development, and no one is able to make a major contribution 

to another - it is in their synthesis that future advances in system theory 

may be expected. 

3.4 Semigroups of States 
Ita tlf'- hte.v 

appendix the input/output pairs of an automatonJanalysed as In this 

a semigroup. It is possible also to consider the sequences of states 

through which an automaton passes as a semigroup, and this enables a more 

powerful approach to be made to the problems of adaption and training than 

is possible with the purely set-theoretic definitions given in Sections 

2.4.2 and 3.4.3. 

Let (I,S,G, q it") be an automaton, defined as in Section A3.2.3, 

except that it may be indeterminate, so that a and it" are mappings into 

2s, rather than S it~elf, and the behaviour of the machine is determined 

by the equations:-

s' 

g' 

a ( i, s) 

'!r(i,s) 

[3.3~ 

U3. 3!±) 

Starting in a given state, for any particular input control policy -

that is, for any procedure for selecting the inputs which may involve 

feedback and be dependent on past inputs, outputs and states,the automaton 

will pass through a sequence of states. This sequence will not 

necessarily be the same if the automaton is started in the same state 

again, and it is possible to conceive of an ensemble of identical 

automata beL1g started in the same state to generate all possible state-

sequences commencing with that state. If.this is done for all possible. 

states, then a set of state-sequences is obtained which, if the states 

ar·e taken as descriptors, satisfies system postulates (i) and (ii) of 

Section A3. 2.0. Hence, by Theorem A3~1, of all states sequences fro~ 

the free semigroup of state sequences, r 5 ; which do not occur, are mapped 

into the zero element, O, then the resultant structure is a semigroup. 
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3.4.1 Analysis of State-Semigroups in Terms of Ideals 

The ideals of a semigroup (Appendix 2), sets which are inval~iant, 

or contract, mder concatenation with any other element in the semigroup, 

are fundamental to the characterization of the semigroup structure. In 

the context of the state-semigroups of an automaton, the right ideals, 

:in particular, characterize restrictions on the future behaviour of the 

automaton, and the stability, and some features of the controllability, 

of the automaton may most conveniently be expressed in terms of ideals. 

Let }:1: be a sub-semigroup of the free semigroup F~ generated by 

the set of states, S (Section 3.4). Let S be a transformation from 

the set of sub-sets of E* into itself, such that: 

if u : u=vw, v € U, w € E*] 

US is the set of sequences which commence with a sequence from U, and 

may be written as the concatenation of the sets U and 1:1: US = (U)( r,1:). 

It is clearly a right ideal oft* because(~*) (E*)c: E* so that ((U) 

(E*))(E*)~ (U)(E*), and may be called the right ideal generated by U; 

S may clearly be restricted as a mapping from either E* or S into 2r *, 

and the same symbol will be used for the three mappings. 

An ideal is called a-minimal (Clifford and Preston 1961 p.66) if 

it contains elements 'other than zero, and the only ideal properly 

contained in it is the zero element. Hence, if W is a a-minimal ideal, 

then either M
2 = M or M

2 
= a - in terms of state semigroups, the elements 

of M are either recurrent or terminal sequences. An ideal of p': is 

characterized by a-minimal ideals contained in it, and the union of the 

a-minimal ideals contained :in an ideal, H, will be denoted M • For 

consideration of stability, a state-semigroup may be taken to have no 

terminal states (those which cannot be followed by any other state, 

including themselves), and hence (M a)(Ma ) = Ma • Thus, the set of 

sequences present in the a-minimal ideals is invariant, and any sequence 

of states contained in them may recur. 

A3.4.2 Stability and Adaption 

The concept of 'stability', in its conventional application to the 

behaviour of dynamical systems, involves an existent topology on the 

inputs and outputs of the system - a system is stable if a 'small' 

disturbance at the input produces a 'small' disturbance at the input ; 

even in recent attempts to extend the notion of stability to more general 



220 

systems, some form of inbuilt topology remains (Magiros 1966, Bushaw 1967). 

However, the inference from topology to stability, found in formal 

definitions, is the opposite to that actually used in discovering the 

properties of real systems a~d modelling their behaviour. If, under 

one set of conditions, the system behaviour has certain properties, a.nd, 

after a transient change in these conditions, the property is retained 

then this change is a small' perturbation - that is, we discover the 

topology-of the input by observing its effects on the output. 

Hence, any topology upon the input of a system is useful only in so 

far as it reflects the effect of the input upon relevant properties of 

the system behaviour. For example, the Euclidean distance between two 

acoustic waveforms, regards as points in a space, is almost irrelevant 

to their properties as speech-points close together sound alike, but 

pointssounding alike may lie far apart; the situation is worse for the 

sensation of pitch, since points close together may sound very different. 

Thus, the important problem in system stability is not the stability 

itself, and indeed every system is stable in some topology, but the 

relationship between extrinsic topologies applied to the system, and 

intrinsic ones derived from the system behaviour itself. In extending 

the notion of stability to general systems, it is this concept of intrinsic 

stability and the calculus associated with it that requires abstraction 

and extension, and tqc state-semigroups with their associated 0-minimal 

ideal structure provide the means to do this. 

When considering the stability of linear systems, there is generally 

some preferred input, the zero input, which is normally present and about 

which perturbations occur. For the more general automata, as defined 

in Section A3.2.3, the 'steady-state', or preferred, input is arbitrary 

and may be taken to be any possible input, i e I say. Let the structural 

state-semigroup of the automaton, generated by the input sequences 

consisting of i repeated be l:!. For any initial state.; s
0

, t~e right ideal 

generated by s is defined as s S , and consists of the sequences of 
0 0 

states starting with s which may occur when the input is in. The set 
0 

of sequences s Sa is also defined, and states occurring in these sequences 
0 

form the 'confluence sets' used by Ashby (1960 Ch.l4) in his disc~ssion 

of habituation, a stability phenomenom. In a stable linear control 

system \'lith no noise injection, s Sa may be a sequence consisting of the 
0 

'zero 1 point in the phase space repeated indefinitely, and -w·ill be 

.independent of s
0

; whereas in nonlinear control of a linear: system it 

will be the sequence of points on a limit cycle, and may be a function of 

s . 
. 0 
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Suppose now that some transient disturbing sequence, u, is 

injected into the system in place of some segment of the input, im. 

The state after this input will belong to the set o-(u,s 8 ), where 
0 

the next-state function has been extended to input sequences and state 

sets in a natural way. It is possible that this set does not coincide 

with s 8, since the disturbance may give rise to passage through ne~-1 
0 

transient states, and the question of interest is whether the sets, soea 

and (o(u~s 8))8a, coincide. 
0 

If they do coincide, then the disturbance 

has had no effect on the ultimate state sequence and may be said to be 

'small' - if the sets do not coincide, then their symmetric difference, 

D = s 8a \J ( o(u,s 8))8a s Ba n (o (u,s 8 ))Sa, is an indication 
u 0 0 0 0 

of the 1 size 1 of the disturbance, u. Certainly if D c::. D then the u v 
effect of u is less than that of v - however, if no inclusion relationship 

holds, then a measure over the set of states enables a completely 

quantitative assignment of 'size' to a disturbance to be made. 

This calculus of stability is completely intrinsic to the automaton 

and does not require any imposed topologies if the partial order over 

disturbances is accepted as an adequate description of their relative 

effects. One form of extrinsic criterion may be to require that the 

state of the automaton is ultimately within some set, R c S. This 'trill 

be so if s
0

8a c FR' and the disturbance, u, will be 'small' in its 

effect if (o(u,s
0

8))8a c. FR. In the definitions of 'adaption sets' given 

in Section 2. 4.2, if R is taken to be W( t), then A( t) is the set of states 

of the form, s , such that the system is extrinsically stable, for an 
0 

input i=t, and no disturbances. C(T) is the set of states in which the 

system is intrinsically stable for each t e T, with respect to a 

transient disturbance of the form u £FT. 

Thus the calculus of adaption developed in Section 2.4 is no more 

than an application of a generalized theory of stability to the adaption 

automata derived from the learning behaviour. Unfortunately, nonlL~ear 

stability theory itself has not yet progressed to the point where it 

may serve as the foundation of learning systems theory. However, the 

results on training obtained in Chapter 3, particularly Section 3. 3, 

demonstrate the value of a "stabilization" approach to training, and the 

potential for futur'e extensions of nonlinear stability theory and its 

applications. 
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APPENDIX 4: THE HUMAN CONTROLLER 

A4.1 Introduction 

In this appendix studies of the human controller are reviewed 

which are relevant to the experiments on the learning of a tracking 

skill, described in Chapters 4 and 5; related material on human 

behaviour, studies of training, and particularly so-called 'adaptive' 

training is also incorporated in this appendix. 

The long-lag type of tracking task used in the e){periments of 

Chapters 4 and 5 is similar in its dynamics to the longitudinal motion 

of an aircraft, and linear models of the human control strategy with 

plant of these dynamics have been extensively investigated in the 

aircraft industry. Although the results do not give much insight into 

the actual human behaviour, they provide some useful approximations on 

which to base the designs of Chapters 4 and 5, and are critically 

reviewed in the following section. 

A4.2 Foundations of Linear Modelling 

In mathematical terms, a linear transformation is a mapping between 

vector spaces which qbeys the superposition principle, in that the trans­

form of the sum of two vectors is the sum of the transforms of each of 

the two individual vectors (Mirsky 1955). Functions of time over an 

interval form a vector space which is infinite-dimensional, and the 

operations of addition, scaling, integration, differentiation and time­

delay may be shown to be linear operations (Riesz and Nagy 1955). A 

linear dynamical system is one whose action may be represented in terms 

of these operations alone (Birkoff 1927), and these systems have been 

extensively studied in linear systems theory. In particular, linear 

functionals from the space of linear functions to a complex algebraic 

variable have been developed, such as the Laplace transform, which 

enable linear operators on time-functions to be manipulated in an 

algebraic manner with full mathematical rigour. 

Because linear system theory is so well-developed and contains 

such a powerful body of techniques for studying system behaviour, when 

a nonlinear system is to be analysed it is convenient to attempt to 

,approximate its behaviour by that of some linear system. If the linear 
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appro)drnation is good, in some sense, then much of the behaviour of 

the nonlinear system may be predicted from a linear model whose 

behaviour is readily determined. In control engineering, techniques 

have been developed for the analysis of the stability of nonlinear 

systems using a linear approximation, or 'describing function' (Gibson 

1963). The first techniques developed were based on an analysis of 

the behaviour of the nonlinear system when excited by simple hannonic 

waveforms at various frequencies. Booton (1953) extended these 

results to· systems excited by noise7like signals, and it is his 

technique which has been used to derive linear approximations to human 

control policies. 

A detailed mathematical analysis of the describing function 

technique is not relevant to the present studies, but certain assumptions 

made, and their applicability to the human controller, are important in 

evaluating the utility and implications of linear models of the human 

operator, and these assumptions will be outlined here. The configuration 

envisaged for linear modelling is shown in Figure A4-l: a nonlinear 

system, N, drives a linear system, G, the output of which, c(t), is 

subtracted from the input signal, r(t), and fed to the nonlinear system 

as an error signal, e(t); the output of the nonlinear element, m(t), 

is assumed to be made up of two components, one of which is correlated 

with the up of two components, one of which is correlated with the 

error, and the other of which, n ( t), is independent of it. 

G c 
output 

Figure A'+-1 Linear Analysis of Nonlinear Feedback System 

Booton's analysis depends on the ass~~ption that the signals in the 

system, particularly e(t), are Gaussian processes. Even if e(t) is 

Gaussian, m(t), the output of the nonlinear element, will not be, and 

hence neither will c(t). However, if the linear element G is narrow 

band with respect to the li1put spectrum, by the central limit theorem 

its output will more closely appr'oxi.mate a Gaussian process (Gibson 1963 

p.387), and hence, if r(t) is Gaussian, then so ''~ill be e(t). Thus, 

the use of describu1g function techniques to model a nonlinear system is 
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dependent on the assumptions that the input is Gaussian, and that 

the nonlinear element is followed by a filter which is narrow-band 

with respect to the input spectrum. 

There are alternative views of the describing function technique 

l-rhich throw some light on the meaning of the assumptions made. The 

overall linear model is an approximation to the transfer function between 

the input, r(t), and the output c(t). This will be good to the extent 

that G is a narrow-band filter which eliminates frequencies, n ( t), 

which are not present in the input. Since G is known, K, the linear 

model of the nonlinear element is effectively available from the closed­

loop response. However, the relationship between e(t) and m(t), 

predicted from a knowledge of K, will only account for that part of m(t) 

which is ~ filtered out by G. Hence, to the extent that G is narrm-1-

band and enables the describing function technique to be used, it also 

restricts the model of N to account for only a small part of the 

behaviour of the nonlinear element. 

A further effect on the type of linear model obtained for N is 

dependent on the amplitude of e(t) compared with that of r(t) (more 

strictly on the ratio of rms amplitudes). Since n(t) and r(t) are 

uncorrelated random processes, any part of n(t) which passes through 

G and is fed back to'form e(t) increases the error, on average. Hence, 

for the controller to perform well and maintain a small error between 

overall input and output, it is necessary for the nonlinearly generated 

part of.its output which passes through G to be small. In the context 

of the human controller, this implies that a good linear model may be 

obtained for the overall loop behaviour of an operator controlling a 

linear system; the model will not account for any components of the 

operator's output which have little effect on the system. 

The linear approximation to a nonlinear system varies with system 

variables, such as the mean amplitude oftheinput - for example, a relay 

switching function whose output is the sign of its input has a constant 

rms output, and hence its 'equivalent gain' is inversely proportional 

to the rms input amplitude. Similar• dependencies on e(t), and hence on 

both r(t) and G, occur for any form of nonlinear element, N, and the 

measured describing function will be found to be a f~~ction of the input 

and controlled element. Thus N will ~ppear to be 'adaptive' to the 

i..•put and cont1•olled element, but this 'adapt ion' is completely open-
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loop and unrelated to any effort by N to improve its performance -

the 'adaption' is an artifact resulting from the linear modelling, 

rather than adaptive behaviour on the part of N. 

To conclude this critical examination of the describing function 

technique, it is worth quoting Gibson's remark (Gibson 1963 p.388) that, 

'under a wide set of circumstances the use of the Gaussian describing 

function to compute closed-loop response is invalid'. Although the 

technfque is based on a mathematical analysis which looks both impressive 

and plausible, in practice its derivation is based on highly restrictive 

assumptions, and, even when these apply, the meaning of the results 

obtained is not clear. Although this critique has been largely 

destructive, it is essential to consider linear modelling in some 

depth because it is the most obvious, and most readily applied, technique 

for analysing human control policies. Equally, any other approach to 

modelling mus~ be able to withstand similar criticism, and the defects 

of linear modelling can be most readily overcome if they are throughly 

analysed. 

A4.2.1 Results of Linear Model Studies of the Human Controller 

The earliest study of the human operator as a linear servomechanism 
' 

is that of Tustin (1947) who proposed that, despite amplitude nonlinear-

ities, temporal discontinuities and haphazard fluctuations, there might 

be an 'approximate linear law' that would describe the main part of the 

operator's behaviour. Since that time, there have been many studies, 

including those of Russell (1951), Krendel (1951,1952), Elkind (1956), 

and McRuer and Krendel (1959). The early studies have been reviewed 

by Licklider (1960) and more recent reviews have been given by Summe~s 

and Ziedman (1964), Young and Stark {1965), and McRuer et al (1965). 

Hall (1963) has published a concise study covering the main aspects of 

linear models of 1he human operator in a flying situation, and this is 

summarized here for reference in Chapters 4 and 5. 

All the studies of linear models referenced have taken control 

situations in which it is reasonable to expect the human operator. to 

act linearly: the error, e(t), has been displayed on an analogue, 

positional display, such as an oscilloscope or pointer-meter; the 

operator's output m(t) has been applied to an analogue positional 

control, such as a joy-stick. In most cases only the error, e(t), 
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has been displayed to the operator (compensatory tracking), but 

in a few studies, Elkind's in particular, r( t) and c ( t) have been 

displayed on the same scale (pursuit tracking). Hall studied 

compensatory tracking with G, the controlled element, having a form 

correspot:J.ding to the short-period motion in the longitudinal dynamics 

of aircraft - its transfer-function was of the form: 

L(l + 0.6s) A4.1 
G~s) = 

s(l + 215. s + .!2 ~2 ) w w-n n 

where L is the gain of the controlled element, wn is its undamped natural 

period in radians/ second·,:. and k is the damping ratio; in Hall's 

experiments, 0< k< 1 and 0< w < 7. The input, r(t), was a Gaussian 
- - - n 

random signal passed through a low-pass filter of the form l/(l+s)3• 

Hall's operators were highly skilled pilots, used to controlling 

elements with dynamics of this form. 

Hall's main results are illustrated in Figure A4-2 by plo~s of 

various variables in a plane with damping ratio, k, as abscissa, and 

undamped natural frequency, F = w /2r., as ordinate. He consiclared 
n n 

the operator to be acting linearly if the rms level of the 'remnant' 

terms, n(t), was less than five per cent of the rms operator output, 

m(t). From A4-2(i), it may be seen that the operator acted linearlys 

by this criterion, for the higher values of natural frequency and 

damping ratio. Figure A4-2(ii) shows contours delimiting regions of 

similar tracking performance in terms of mean error - .this plot gives 

some indication of the variation in 'difficulty' of the tracku1g task 

with variation of F and k, and is important to the design of the n 
adaptive trainer described in Chapter 4. 

Hall found radical changes in the form of linear model associated 

with different controlled elements, and the regions associated with 

different models are delimited in Figure A4-2 (iii) ; . the. forms of model 

are given in Table A4-l. The term e-· 2s, occurring in all four models, 

is a pl~e time delay of 200 msec similar in magnitude to a simple 

visual/motor reaction-time. The terms in s in the numerators of the 

transfer-functions 
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(iii) Form of model (iv) Pi lot opinion 

Figure A1-2 Results of Experiments on Linear Modelling 
(Hall 1963) 
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(Hall 1963) 

Table A'+-1 Various forms of Model for Human Controller 

correspond to a phase-lead, or dependence upon the input velocity, 

and similar terms in the denominator correspond to a phase-lag, or 

smoothing of the error signal. Region A is one of high damping 

and medium-speed response, and the model has a predominant lead term 

showing that the operator is using the velocity of the error to predict 

ahead. Region C is one of low damping and fast response, where the 

higher frequency components of the input are very apparent, and the 

model has a dominant lag term showing that the operator is filtering 

out., or responding less, to these components. In Region B, between 

these two, the model suggests that the operator, apart from his reaction­

tim delay, is acting as a pure gain element. In region D, where the 

system is show and underdamped, second-order terms in s appear in the 

m.unerator, showing that the operator is nov1 making use of information 

about the acceler•ation of the error. 

Hall asked the experienced pilots who acted as experimental 

subjects to rate the controlled element for its 'hruidling qualities' 

as if it were an aircraft, and the consensus of these ratings is 

shown in Figure A4-2(iv). It is from comparison of plots (iv) and (i) 

that the main justific~on for the utility of linear models of the 

human operator in the aircraft industry is derived - Hall states it 

thus 

'If the pilot's opinion is 'good' the pilot is acting linearly. 

if a system is studied which has to be altered so that the pilot 

opinion will be high, the better the configuration becomes in terms of 

handling qualities the more accurate a linear analysis will be'. 

This is a very fair, and a virtually complete~ assessment of the 

utility of linear models of the human controller, emphasizing the 

restricted, but useful, conditions under which they apply. 

One final question which Hall considered was to suppose that the 

operator was acting linearly and deterwine the 'source' of the remnant 
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term, n(t). Records of the pilot response, m(t), for configurations 

in r~gion D of Figure A4-2(iii) showed that there was superimposed on 

the output predicted by the linear model a 'r•ather frantic switching' 

mode, with the pilot alternating 'somewhat arbitrarily bebreen the 

two hard over stock' positions. Hall reports that the switching did 

not occur regularly and was not correlated v<i th error zero crossings -

he matches the remnant component in spectral density with a random 

telegraph waveform having a mean time between switching of 3.5 seconds. 

Diamantides (1958) has reported a similar effect under the same 

conditions, and ascribes it to pilots attempting to obtain 'informative 

feedback' about the controlled element dynamics by injecting a signal 

into the loop. He also reports that the injected signal is more 

apparent with less skilled pilots~ and, in one operator at least, the 

signal disappeared with learning as an 'exponential function of time'. 

A4.2.2 Utility of Linear Models in Human Operator Studies 

Because of the strong theoretical constraints upon the circum­

stances under which the describing function is meaningful, several 

workers have studied the validity of the necessary assumptions in 

experiments with the human operator, and the extent to which overall 

behaviour, such as stability, may be predicted from the measured linear 

models. Elkind & Darley (1963) measured the deviations from a 

Gaussian distribution of the operator's output, m(t), the remnant, n(t), 

and the error signal, e(t), for a controlled element, G, which was a 

pure gain, with an input r(t) which "Y;as band-limited Gaussian noise. 

He reports that the output 'obtained with all inputs and the error 

and rerrnent signals obtained with medium bru1dwidth inputs appear to be 

approximately normally distributed'. Hall (1957), in a similar 

experiment but with a controlled element of the form given in Equation 

A4.1, found that the amplitude distribution of the error signal vras 

approximately normal, but the distribution of the operator's output 

appeared rectangular and even bimodal when the bandwidth anJ damping 

of the controlled element were low. 

Jex, Cromwell and Siskind (1960) and Smith (1963) have compared 

the stability boundary for the human operator, computed from describing 

function measurements, with the actual _boundary found by experiment. 
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They used the results obtaLDed by Krendel and McRuer (1960} to 

predict the stability of the controlled system for second-order 

unstable dynamics (negative damping ratio), and find it necessary 

to introduce an input-predictive mode of operation to account for 

the experimental results. Skolnick (1966) has used measured data 

on the human operator describing function to determine 'capability 

bounds' on the human controller, and has proposed techniques for 

· optimizing the performance of a control system containing a human 

operator using these bounds. 

Various workers have studied the effect of verbal instructions 

to an operator on the parameters of a corresponding linear model, and 

these effects are summarized by McRuer and Krendel (1957) in what is 

still the most comprehensive and detailed discussion of linear 

modelling and its relevance to human operator studies. McRuer and 

Krendel used two sets of instructions, one of which emphasized 'speed' 

in reducing the effect of disturbance, and the other of which emphasized 

'accuracy' in nulling the disturbance. For one operator they found 

no change in the measured describing function under the two conditions, 

whereas for another they found a distinct change corresponding to: 

higher de gain and shorter smoothing time-constant when the emphasis 

was on 'speed'; lower de gain and smoothing time-constant triple what 

it was for 'speed' when emphasis was on accuracy. Russell (1951) 

measured the change in linear models parameters after the operator 

had drunk a substantial quantity of alcohol, and reported lower de gain 

and greatly reduced capability to introduce lead, that is, to estimate 

error-velocity. 

Sheridan (1960) has used a technique for measuring the describing­

function on-line to follow changes in the model parameters l-lhen those 

of the controlled element undergo a step variation. He reports that, 

'the experienced operator adapts almost instantaneously if the parameters 

of controlled process or the type of display suddendly change'. This 

is in accord with the more recent studies of Young et al (1964) who 

investigated the time taken for the operator to adapt to changes in the 

gain of the controlled element, and sense of the error, in a simple 

compensato1~ tracking task. They report that, 'adaption generally 

occurs in 0 · 4 - 0 · 8 sec following a controlled element change, and the 

resulting error is usually reduced to ~ts asymptotic level in 1-3 sec 

following transition. Krendel and HcRuer (1960) have outlined a 

developmental approach to the learnL1g of a tracking skill in terms of 

the parameters of the describing function at various stages. Fuchs 
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(1962) has put forward a 'progression-regression' hypothesis suggesting 

that in learning the parameters of the higher time derivatives of the 

error will be gradually given more weight, whilst under stress their 

relative weights will be reduced. DeLessio and Palin (1961) put 

forward a program to identify the time-variation of the parameters of 

an operator's describing function, and hence form 'an adaptive model 

for the human operator', but this program has not been carried out. 

Briggs (1964) has defended the linear describing function as a 

powerful methodology for human operator studies, but claims that there 

has been too much effort expended on the development of the technique, 

and too little on 'the descriptive quantification of behaviour and 

analytic tests of hypotheses about behaviour'; he fears that the same 

mistake will be made in future developments of nonlinear models. This 

is an important criticism which bears equally on the development of 

models of human adaptive behaviour, and in the following section some 

details of the relationship between actual behaviour and its equivalent 

linear model are examined. 

A4.2.3 Nature of the Linear Approximation and Constraints Upon It 

In the studies of the feedback trainer, described in Chapters 4 

and 5, it has been natural to use controlled elements whose parameters 

vary progressively, but rapidly, over a range of yalues, and hence to 

obtain records of the behaviour of the same operator under different 

conditions within a short span of time. These records serve to 

illustrate some of the characteristics of the describing function 

discussed in Section A4.2. Figure A4-3 shows the input, r(t) = sin 

(~t/5), a sine-wave of 10 seconds period, and the operator's output, 

for a tracking task with continuous manual input and continuous visual 

display of error, and controlled element dynamics of the form: 

G(s) = L/s(s+l/T)2 ib-4.2] 

that is a second-order lag of time-constant, T, followed by a pure 

integration; this is similar to Hall's dynamics, Equation A4.1, with 

k=l and w =1/T (F =l/2~T). n n 
In the upper part of the figure, which shows the response for a 

short time lag (T~0·25 sec)) the operator's response has an overall 

shape which is similar to that of the sine-wave input but lagging it 

in phase. This response is clearly made up of a number of discrete 
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movements, however, and is not the contL~uous sinusoid response 

which would be obtained from a linear servo in the same situation. 

If the Fourier transform of this response, however, it will clearly 

be found to have a very high percentage of its energy innthe expected 

sinusoid, and very little in the 'perturbation' due to the discrete 

movements. The converse is tt'ue of the response at high lags (T=O • 7 

sec), shown in the lower part of Figure A4-3. The operator is now 

responding so rapidly with such large amplitude movements that his 

output appears closer to a pulse-width modulated signal than a sinusoid. 

A Fourier transform would still show a phase-lagging signal at the 

input frequency, but this is now lo\-ter in amplitude and accounts for 

a minority of the energy in the response. 

A correlational analysis of the control behaviour partially shown 

in Figure A4-3 would result in a good linear fit to the controller at 

short lags and a bad fit (high remnant) at long lags. More importantly, 

the model would differ greatly for the two situations, and yet it is 

plausible, both from an examination of the records and from the fact 

that they were taken within a few seconds of one another from the same 

operator, that the operator has not changed his control strategy in 

the least. This is the gravest defect of the describing function -

that the linear model of an operator may vary widely as function of his 

en~ironment without hsi control strategy changing at all. 

The intermittency and discreteness of the human operator's 

response is not a newly discovered phenomenom - Telford (1931) reported 

a 'refractory phase' in the motor responses to two stimuli presented 

within an interval of about 0·5 seconds of one another, and Craik(l947} 

described the type of response in a tracking task, shown in Figure A4-3, 

as 'intermittent corrections' consisting of 'ballistic movements'. 

However, whilst many workers have followed up Telford's discoveries 

of a central refractory period in simple discrete stiJnulus/response 

situations, lack of development of both the theoretical and technological 

tools has made it impossible to go further with Craik's analysis until 

recently. Even now only a few steps forward have been taken, and no 

comprehensive and complete structure, equivalent to the describing 

function, is available for nonlinear studies of the human operator. In 

the following section, work on nonlinear models of the human operator 

is reviewed for its relevance to improved models of human adaptive 

behaviour. 
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A4.3 Nonlinear Hodels of the Human Controller 

The evidence for a fundamental discrete-time, discrete-action 

basis for human perceptual-motor skilled behaviour has been presented 

in general reviews by Summers and Ziedman {1964), Young and Stark (1965), 

and Poulton (1966), and also in theses proposing sampled-data models 

of the human controller (Bekey 1962, Lange 1965). Definitive evidence 

has been gathered of discrete-action and discrate-time phenomena in 

peripheral,behaviour such as hand and eye movements, and theoretical 

models of these have been explored in depth. Less firm evidence has 

been adduced for discrete-time phenomena in perception and decision­

making, but no models have yet been proposed which can account for all 

the experimental data. In the following section work on discrete 

behaviour in sub-structures of the human controller is reviewed, whilst 

further sections outline sampled-data and 'bang-bang' models of overall 

tracking behaviour. 

A4.3.1 Discrete Phenomena in Human Peripheral Dynamics 

In moving his hand from one position to another, or in rotating 

his eye from one fixation to another, the human operator has to vary 

the location of a mass using the force exerted by his muscles which . 
is limited in its maximum value. Dynamically, the hand or eye is 

virtually a pure mass, with low dissipation of energy through 

friction, and low storage of potential energy through spring-like 

behaviour. A simple servomechanism, in controlling the location of 

an object, applied a force to it proportional to the deviation of the 

location from the desired one, in such a direction as to reduce the 

deviation. Bushaw (1953) showed that the control policy of the linear 

servomechanism was not time-optimal, in that it did not reduce the 

error in location to zero as rapidly as possible, and he showed that 

a 'bang-bang' controller, applying maximum available force in one 

direction for half the time and then applying it in the other, gave 

improved performance. From 1953 onwards, a number of workers proved, 

with increasing generality, that the minimum-time control of a linear 

system was achieved by a controller which applied either maximum or 

zero force (Fuller 1960). This result has been extended to the 

optimization of performa"1ce criteria other than settling time, such 

as error-functionals (Fuller 1960*). 

In 1962, Smith (1962) and Wilde and v1escott (1962) published 
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papers giving experimental evidence that the human operator used 

bang-bang control in moving his hand and arm, and at the same time 

van der Gon, Thuring and Strackee (1962) described a 'handwriting 

simulator' which accurately reproduced the movements of the hand in 

writing using bang-bang contr•ollers in two dimensions. In a later 

paper, van der Gon and Thuring (1965) reported that the controllers 

worked at a fixed force within a movement pattern, rather than at 

constant maximum force. They state that, 'to write the same word 

involves the use of the same timing and that the instruction of change 

of size is interpreted as change of force'; since the size of the 

writing varies as the square of the force, small changes in force are 

adequate to produce large changes in size. Equally, the human 

operator does have anultimate limit in the force applicable, and 

loading the hand or arm with more inertia reduces the speed of move­

ment (Smith 1962). The minimum time of application of the force for 

an unloaded limb was found by all workers to be about 90msec, which 

tallies with the response-time of the muscle servo (Hammond, Herton 

and Sutton 1956) and the rate at which nervious pulses are sent to 

the muscle (l.ippold, Redfearn and Vuco 1957). A similar discrete-

action servomechanism has been discovered in the control of eye­

movements (Stark, Vossius and Young 1962, Young and Stark 1963), 

with independent control of positional saccades and velocity pursuit 

motion, again with forces applied for about 90 msec in turn. 

Apart from the clearly defined discrete phenomena in human limb 

and eye movements, there is considerable circumstantial evidence for 

discrete phenomena, 'data-sampling' or a 'psychological movement' in 

perception itself. Experiments on the 'psychological refractory 

period' (WelfOrd 1952), on choice reaction times (Hick 1952), on 

temporal numerosity (White 1963), on periodicities in simple reaction 

times (Stroud 1954, Augenstine 1954, Venables 1960), on backward 

masking of one stimulus by a succeeding one (Kolers .... l962), and on the 

reaction time to the cessation of a repetetive stimulus (Callaway and 

Alexander 1962), all suggest that visual perception is not a continuous 

process. Various authors have suggested, on the basis of such data, 

that the brain works in terms of a moment of time, in duration about 

90 msec~ within which even~s are confused in their temporal relation-

ships. As Kolers (1968) and Allport (1968) have pointed out, however, 

no simple model of such discreteness in time can account for more th~• 

a minority of the known phenomena, although it is clear that some form 
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of discontinuity is present. Some workers (Wiener 1948, Lindsley 

1952, Surwillo 1963) have attempted to link the hypothesized 

periodicity in perception of 90 msec with the similar periodicity 

in the alpha rhythm of the brain, and indeed Surwillo has described 

definite experimental evidence of a st~ong correlation between alpha 

period and simple reaction time ovei' a population. However, no 

incontrovertible evidence of such a link has been obtained. 

A4.3.2 Sampled-Data Models for Human Tracking Behaviour 

The evidence of temporal discontinuities in human perception and 

movement, together with the observed nonlinearities in human tracking 

behaviour (Craik 1947, Hick 1948, Poulton 1962) when perception and 

movement are coupled closely together, has lead to a number of proposals 

for data-sampling models of the human controller in which the display 

is sensed intermittently and a motor-pattern released according to 

what is observed. In control engineering (Kalman and Bertram 1959, 

Jury 1958) such sampled-data control systems became of practical 

importance with the use of digital computers in control loops, and for 

the case where the sampling frequency is constant a theory of linear 

--sampled -data systems 'has been developed based on the z-transform, which 

is similar in pwoer to the theory of continuous linear systems based 

on the Laplace transform. Because such a theory exists, it has been 

customary to base recent human operator models on sampled-data systems 

with constant sampling-frequency, although this does not fit the 

experimental data (Lange 1965), and attempts have been made to develop 

techniques to deal with more complex sampling criteria (Bekey 1962). 

The earliest sampled-data model was that of North (1952) who took 

Tustin's model of the human operator and replaced the differential 

equations by difference equations. North matched the behaviour of 

his model against that of the human operator in terms of power spectra 

only, and the first study in which the behaviour was matched in the 

time domain was that of Ward (1958). More recently Bekey (1962), 

Lange (1965) and Kreifeldt(l965) have proposed sampled-data models for 
\ 

human tracking behaviour, and Bekey(l965) has reviewed some of this 

work. Lange's work was a continuation of the work of ~Hlde and Lemay 

·(Wilde and Wescott 1963; Lemay and Wescott 1962), and has the most 

detailed experimental backing; the main points of his model and results 

are outlined in the following paragraph. 
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Lange considered compensatory tracking through a simple gaL•, 

with continuous manual control and visual display, of zero-mean 

Gaussian noise with a cut-off frequency of 3·8 radians/seconds, and 

used highly trained operators as subjects. In his model, the 

operator samples both position and velocity of error instantaneously, 

regularly at about 150 msec intervals, and attempts to reduce both to 

zero by a 'bang-bang' output to actuate his band. The qualitative 

nature of the output of the model is a far better match to the operator's 

output than that of a linear model. Quantitatively, correlations of 

between 0•8 and 0·9 were obtained between model errors and operator 

errors, corresponding to cross correlations beuveen their outputs of 

between 0•98 and 0•99. The match in the time-domain could have been 

improved by taking a varying sampling interval, and Lange suggests an 

extended model with random variation of the sampling frequency. 

A4.3.3 Bang-Bang Models of Human Controller for High-Order Systems 

Data-sampling models ofthe human control provide a good represent­

ation when the controlled element is a pure gain and the operator is 

effectively required to match a difficult waveform. In this situation, 

the movement of the hand to match the waveform, and the movement of 

the eye to track it,.are clearly the main variables, and the tracking 

models are closely related to those of the nand and eye alone. The 

situation is also a very natural one, to which hand and eye co-ordination 

should have become well-suited during the course of evolution, and it 

is not surprising that the movement time of the eye, the reaction time 

delay between visual stimulus and motor response, and_the movement time 

of the hand, are all similar in magnitude at about 180 msec - it would 

be no advantage to the system to have one very much less than the others. 

Hence, a 'sampling interval' of the same order is a reasonable approxim­

ation in these simple situations. When the lags in the controlled 

element become very much greater than those in the operator, however, 

the eye and hand in themselves become of less importance; and the 

problem-solving capability of the brain in between them comes to 

dominate the behaviour. 

It was noted in Section A4.3.1 that bang-bang, or maximal force, 

control is the optimum strategy for the control of a pure second-order 

'"System which approximates to the dynamics of an eye or limb. This 

result has been extended to the time-optimal control of any linear 
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system, and the maximum-effort controller is becoming as ubiqU::i.tous in 

the literature as the linear controller (Fuller 1960, Fuller 1962). 

Pe\-T (1963) and Young and Meiry (1965) pr·esented experimental evidence 

that in the control of both stable and unstable second-order systems 

the human operator ado.pts a bang-bang control strategy, and have 

shown that tracking improves if this strategy is forced upon the 

operator by giving him a two-position only control. 

Because the two-level output of a bang-bang controller is far 

simpler to monitor than the continuous output of a linear controller, 

and the control strategy can be represented by those points in the 

state-space of the controlled element at which the controller changes 

from one output value to the other (the 'switching-line' in the 

position/velocity 'phase-plane' for a second-order system), it is 

comparatively simple to measure the control policy of the human operator 

working in a bang-bang mode. In partj.cular, the adaption of the 

control policy during learning is readily followed, and since a plot 

of individual decision-points is obtained as a function of time it is 

possible to clarify the effects of indeterminacy in the policy (in 

the 'search' phase), indeterminacy in the measurement of the policy 

(since only a limited number of data points are available), and time­

variation of the policy with learning. In linear modelling by 

correlational techniques, the smoothing of data over time causes these 

factors to be inextricably mixed. 

Li, Young and Meiry (1965) have described qualitatively the 

variation of the human operator's switching line in learning to control 

an unstable second-order system. Weir and Phatak(l967) have measured 

the time-variation of the switching line in response to step changes 

in the controlled element dynamics. However, as yet, there does not 

appear to have been published any detailed study of the learning of a 

high-order control skill, where a bang-bang control policy is either 

forced by the nature of the controls, or expected to appear. 

A4.3.4 Adaptive Nonlinear Models of the Human Controller 

Angel and Bekey (1968) have described a siwple finite-state 

machine for the control of a pure second-order system, based on experimental 

studies of discrete actuation in 9uman limb movements (Section A4.3.1), 
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which provides a qualitative match to many of the characteristics of 

human hand motion, and has self-adjusting properties giving it an 

adaptive capability; so far, they have not presented studies of the 

goodness of fit of the model to human tracking behaviour and its 

adapt ion. Preyss and Meiry (1968) have described a 'stochastic model' 

of human learning behaviour in controlling a pure second-order system, 

in which-the output is bang-bang and its polarity is switched on the 

basis of p~obabilistic estimates of the efficacy of so doing. These 

estimates are themselves built up from prior experience using Bayes 

rule (Minsky a.'"ld Selfridge 1961) to weight the evidence obtained from 

sensors giving quantized position and belocity information from the 

controlled element} This model learns to control the second-order 

system, and its behaviour, both in tracking and in learning is 

qualitatively similar to that of the human operator -again, no detailed 

analysis of goodness of git is presented. 

Gaines (1967) and Gaines and Quarmby (1968) have presented 

comparative studies of human and machine learning behaviour, in which 

the learning model was an adaptive-threshold logic pattern-classifying 

adaptive controller; details of these studies are reported in Chapter 

6 for comparison with the human operator experiments of Chapter 5 -

--only goodness of fit ·to the learning behaviour is considered. Studies 

of learning system models of the human operator are currently limited 

onlr by the availability of suitable learning systems in a utilizable 

form. As more learni.'"lg machines become generally available, preferably 

as computer programs for small, on-line process control machines, it 

will be possible to evaluate their utility as human operator models. 

A4.3.5 Tracking with Nonlinear Controls 

Since the human operator of high-order systems adopts a strongly 

nonlinear control policy, it is of interest to consider whether his 

performance is enhanced through the use of a control >.rhich naturally 

induces this type of policy; for exa~ple, a two or three position 

joystick rather than a continuously variable control. Young and Meiry 

(1965) have noted that, in high-order systems, the error is dependent 

on the integral of the control movement, and the operator must keep 

track of this quantity. With a continuous control, this involves 

integration of a continuous function of time; with a two or three 

position controller, it involves sununation of the time intervals when 

the output is positive, a.'1d subtraction of those for vthich it is 
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negative; for a pulsing controller, which gives out fixed-duration, 

fixed height pulses, either positive or negative in sign, it involves 

only counting the excess of one type of pulse over the other. Thus 

these three types of control should be successively easier to use, 

provided the integrations in the system are adequate to filter out 

the quantization noise of the nonlinear controls. 

Pew (1963) found in his studies that the performance of the human 

operator in controlling a pure second-order system was similar with a 

continuous joystick and a two-position switch. Kilpatrick (1954) 

found that when the controlled element dynamics were of the form, l/s
2 

or l/s2(s+3), there was no significant difference between the tviO types 

of controller, whereas with a very difficult controlled element, requiring 

more lead, such as l/s2(s+l), the rms error for the continuous control 

was fifty per cent higher than for the bang-bang control. Young and 

Stark (1965) note that, in Kilpatrick's studies, that 'even though the 

operator uses the continuous controller in a more or less bang-bang 

fashion, he is able to use the bang-bang controller in a pulse control 

fashion'. 

Gaines (1966,1967) has reported that the use of pulsing controls 

not only improves the performance of the human operator in high-order 

systems, but is also 'less fatiguing; some experimental results are 

described in Chapter 5. He was interested in obtaining a control for 

use in studies of training, which was itself difficult to use and 

involved interactions between the learning of the tracking task and 

learning to use the control. Building memory into the pulsing control 

system, such that the sign of a pulse obtained from one of two push­

buttons depended upon that last pressed, gave a control with the 

required characteristics. The control consisted of a pair of push 

buttons, one held in each hand, such that pressing one push-button would 

give out a positive impulse. The polarity of the two push-buttons was 

not constant, however, and changed each time either was pressed. Hence, 

to obtain a stream of pulses of constant polarity, it is necessary to 

alternate between the two push-buttons. 

Initially this control feels most awkward and unnatural to use, 

but eventually, after ten to thirty minutes of use under reasonable 

conditions, it becomes as simple and natural to use as the non-reversing 

'push-buttons. The problems in using this control may be appreciated 

by considering the situation in which the operator has pushed a button 

and the erTor has increased - his natural tendency is to push the other 
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button, but the correct response is to push the same button again. 

Gaines (1966) describes the various stages of learning to use the 

push-button controls, from an almost entirely verbal strategy, through 

the build-up of response structures, to a highly-skilled, non­

verbalizable control strategy. This type of control was used in the 

experimenxs of feedback training, described in Chapter f, and these 

provide further information about the problems of learning associated 

with it. 

A4.3.6 Control Strategies ~in Hulti-Variable Situations 

Whilst much research effort. has been devoted to the study of the 

dynamics of the peripheral mechanisms of the human controller, and to 

the linking of these by control strategies for compensatory tracking, 

and much progress has been made in the understanding and modelling of 

the human operator in simple situations, there is no comparable 

understanding of the control strategies adopted in more realistic 

situations, where the operator has multiple, diverse and interacting 

tasks to be performed either simultaneously, or sequentially. However, 

as Pask (1960,1965) has noted, these are the situations for which 

training is required, where a number of interacting sub-skills have to 

be learnt,- and the training problems for the simple, laboratory tracking 

skills used in modelling the human controller may be very different 

from those encountered in more realistic situations. 

At the level of overall performance, there have been a number of 

studies of two-dimensional tracking tasks, with the error on one axis 

presented as the horizontal axis on an oscilloscope, and the error on 

the other presented as the vertical axis - the control being a two­

dimensional, continuous-output joystick (Chernikoff, Duey and Taylor 

1959, Duey and Chernikoff 1959, Chernikoff and Lemay 1963). The main 

result of~ese was that tracking in both axes deteriorated as the task 

dynamics in the two became more different, and that a two-dimensional task 

with the same dynamics in both axes was similar in difficulty to the 

equivalent one dimensional task. At a similar conceptual level, Dander 

(1963) has investigated the possibility of predicting pilot ratings of 

multi-axis control tasks from single-axis data. The interference 

between widely differing tasks, which do not in themselves interact, 

·has been extensively investigated in studies to improve the sensitivity 

of performance measures through the use of secondary tasks (Knowles 1963). 

The factors which make 'secondary loading' techniques useful operate to 
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to make the modelling and prediction of interference difficult, since 

there is generally a level below which a secondary task shows no 

detectable effect- it is using up the operator's 'spare capacity'. 

At a detailed level,the main problem in modelling human control 

strategies in multi-variable situations is that of measuring and 

simulating 'attention switching' as the operator multiplexes his 

control capabilities to various parts of the total system. One of 

the more accessible and important indications of attention is the 

instrument at which the operator is looking, and much effort has been 

devoted to measuring and modelling the human controller's visual 

behaviour in a many-instrument, multi-dimensional tracking task 

(Senders 1964, Carbonell 1966, Senders, Ward and Carbonell 1967). 

Senders originally proposed, and tested experimentally, a model in 

which the frequency of sampling an instrument was proportional to the 

potential information flow-rate through that instrument regarded as 

a communication channel. The later studies extend this to models 

which take account of the 'queueing' of instruments for attention, and 

the risk taken in not reading a particular instrument. 

Even pursuit tracking, where the operator is shown not only the 

error but also the input, or disturbing, signal, is itself a multi­

variable tracking situation, and poses far greater difficulties in 

the analysis of the operator's behaviour than does compensatory tracking. 

Poulton (1952, 1952*, 1957, 1957*) has studied the difference between 

behaviour in compensatory and pursuit tracking in great detail, and 

suggests that the advantage of the pursuit situation stem from its 

enabling a complete separation to be made between the demanded input 

to the system, the 'track', and the operator's own input through the 

system. This separation aids both the prediction of future system 

behaviour, and the modelling by the operator, as part of his learning 

process, of the demand signal and system dynamics. 

The pursuit tracking situation becomes even more complex when 

the operator can see not only the immediate value of the demand signal, 

but also some segment of its future values, for example, in a car-driving· 

situation. ClassicaL .. control theory gives no indication of how 

advantage may be taken of such a pre-view, and hence it has been impossible, 

until recently, to approach the modelling of human control behaviour in 

·the vehlcle-steering situation from a control-theoretical point of 

view. Sheridan and Roland (1966) have now used the modern control 

technique of 'Dyna~ic Programmi~g' (Bellman and Dreyfus 1962) to obtaL~ 
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~ normative model of the optimum control strategy in this situation for 

comparison with that of the human operator. This interesting and powerful 

approach has also been expounded in some detail by Thomas (1962), and offers 

the opportunity for a substantial advance in the understanding of human 

control behaviour. Dynamic programming is essentially a computational 

technique whi?h enables very general control problems to be solved, given 

a criterion of optimality, by numerical algorithms, its main disadvantage 

is the amotmt of computation and data-storage required, but this is far less 

than that for a complete search of all possible control policies. 

A4.4 Overall Performance of the Human Controller 

·work on the detailed modelling of human behaviour, whether linear or 

nonlinear, has been the exception rather than the rule, and psychologists 

have tended to concentrate on the effects of variables such as training 

conditions, stress, and auxiliary tasks on performance, rather than on the 

actual control behaviour. Adams (1964) has noted that American research 

has dealt with tracking performance, and given less emphasis to the tmder­

lying mechanisms of the skilled activity, whilst British research has taken 

a more molecular view. 

In this section, som~ of the results of studies on the measurement of 

performance, and the effect of variables neglected in the control-theoretical 

models of tracking behaviour, such as instructions and stress, are outlined. 

A4.4.1 The Measurement of Performance 

The taxonomy of adaptive behaviour introduced in Chapter 2 involves the 

definition both of a task, and the satisfactory performance of a task. The 

measurement of satisfactory performance on a particular task is not itself 

difficult, because an operational definition of 'satisfactoriness' is built 

into that of a task. However, in practice the question of inter~st is more 

likely to be to determine the range of tasks, out of a set of possible tasks, 

to which the operator is adapted; in a real training situation, there is 

rarely a single well-defined task, and in more basic studies it is necessary 

to make maxi'1ltun use of the experimental data. 

When the range of tasks is such that there is a single parameter of 

difficulty, and, for a given operator, increasing the difficulty decreases 

the performance, then the problem of determining the range o·f adaption 
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reduces to that of determining the task of greatest difficulty which 

the operator can perform at a specified level. In practice~ it has 

been easier to measure the operator's performance at a number of levels 

of difficulty, rather than the difficulty for constant performance, and, 

as Poulton (1965) has noted, this may lead to lack of differentiation 

between operators with different capabilities Qf a sqfficient span of 

difficulty is not included in the tests. When the task of interest is 

not readily varied in difficulty, or no natural continuum of difficulty 

exists, it may be possible to create an equivalent effect by giving 

the operator a second task, assumed not to interact physically with the 

first, which can itself be varied over a continuum of difficu]o/. The 

performance on the secondary task may then differentiate between 

operators, even if that on the primary task does not (Knowles 1963); 

the situation is also more realistic than that of giving the operator 

a task of high difficulty!; since practical problems, such as .flying, 

generally involve multiple, rather than individuaily difficult, tasks. 

One assumption about the human operator which may be made to give 

some theoretical foundation to the use of secondary tasks to increase 

the sensitivity of performance measures, is that the operator is a 

single-channel syste~ (Broadbent 1958) whose 'capacity' is constant, 

so that the secondary task measures the amount of channel capacity 

surplus to the requirements of the primary task. It is reasonable to 

extend this model and hypothesize that the stress on the operator 

increases as high channel capacity is taken up by a task, leaving less 

capacity for emergencies, and hence, even without a secondary task, 

physiological indicators of stress may be used to establish the degree 

of effort, or 'channel capacity' required by the main task. Thus, 

where Brown and Poulton (1961) used a secondary task to measure the 

demands of different road situations on car drivers, Taylor (1964) 

used the operator's galvanic skin response to the same end. Similarly, 

Benson, Huddleston and Rolfe (1965) have used a variety of physiological 

measures to determine the relative difficulty of tracking tasks with 

analogue and digital altimeters. 

A4.4.2 Variables Affecting Performance 

There are a number of factors affecting an operator's performance, 

such as the instructions given, fatigue, stress, and so on, which are 

not taken into account in control-engineering models, but may have a 
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major effect on performance. In particular, lack of control of these 

factors may invalidate the results of experiments involving the 

measurement of human performance. FOl"' example, the instructions given 

to an operator required to perform a control task are generally 

indadequate to define the optimal automatic controller for the task. 

Hence, one must assume that the operators make additional assumptions 

in performing the task, and these may differ betl'leen operators. In 

these circumstances 5 a difference in performance between operators-may 

be due to ~heir using performance criteria differing from those of the 

experimenter, rather than, for example, due to a difference in learning 

capabilities in different training regimes. 

Leonard (1960) hypothesizes that the human operator adopts a 

mean square error criterion in optimizing his performance, but the 

evidence he presents, whilst notnegating this, does not necessarily 

indicate that this is so, since all error measures are closely correlated, 

and, in many situations, optimization of one automatically optimizes 

several others. Miller (1965) demonstrated that a human operator 

changed his control strategy radically in response to changes in the 

performance measure, indicated to him by continuous visual feedback 

of performance. Ward and Senders (1966) demonstrated that the 

operator, in a similar situation to that adopted by Miller, was able 

to obtain better performance when instructed about the perfonnance 

criteria than when they were displayed to him continuously. 

The effects of instructions and linguistic interaction in general 

on the learning and performance of perceptual-motor skills is not well 

understood, although the studies referenced above, the developmental 

studies of Luria(l96l), and the effects onthe parameters of linear 

models, referenced in Section A4.2.2, show that major effects occur. 

Lewis and Cook (1969) have suggested that a, analysis of human verbal 

inter-action may be simplified by restricting it to the act of 'telling', 

and that 'telling' may occur by signs which are not necessarily verbal -

for example, the supplementary performance feedback used by Miller 

(1965). Lewis and Cook emphasize that in telling the person emitting 

information has no feedback as to the use made of it by the recipient, 

and this pP~nomenom has been a major one in studies of the effects of 

supplementary perfOrmance feedback on learning. Kinkade (1963) reviewed 

previous experiments, some of which L,dicated that performance indication 

-to the operator improved the levei of performance which he had reached 

when the supplementary feedback was removed, and others of which indicated 

that his perfcrmance deteriorated to that of a control group, and suggested 
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that performance feedback also could be used as error feedback in a 

'hill·climbing' control strategy if normal error feedback was poor; 

his subsequent experiments confirmed this hypothesis. 

The effect of stress on performance is also difficult to determine, 

mainly because 1 stress' is a term covering a variety of phenomena 

(Chiles 1957), and there is no reason, in advance, why they should all 

cause similar effects. Whilst, in everyday discourne it would be 

accepted that the danger of imminent death, for example is a situation 

creating stress, in psychology the term has come to mean almost any 

effect causing deterioration in the operator's performance of the main 

task, not induced by the performance of other physical or mental skills. 

Garvey and Henson (1959) generalized the term even further by calling 

the effect of secondary tasks, 'task-induced stress', a use not 

inconsistent with the possibility of using physiological measures of 

stress as alternative to secondary tasks. 

In practice, the experimental interest in stress relative to human 

performance is not so much in the nature of stress itself, but in its 

induction in order to test the robustness of an acquired skill. To 

this end Mackworth (1950) used the effects of tear gas; Bersh, Notterman 

and Schoenfield (1957) used classical conditioning of an electric shock 

to a tone; Walker(l~63) used an auditory 'shadowing' task; and Eason 

(1963) and Taylor (1964) have measured the 'stress' induced by the main 

tracking task, using generalized muscular activity, and galvanic skL~ 

response, respectively. 

A4. 5 Training 

The acquisition of perceptual-motor skilled behaviour, and the 

variables affecting it, have been subject to much study, and the main 

body of experimental data has been reviewed by Bilodeau and Bilodeau 

(1961) and Bilodeau (1966). In the following sections the concepts of 

transfer-of-training and task-difficulty are analysed, experiments on 

the use of performance feedback, guidance and pacing are reviewed, 

and previous experiments on feedback training are examined. 

A4.5.1 Transfer of Training 

Superficially, the evaluation of the relative merits of different 

__ training techniques is straightforward-- in concept, it is resolved by 

a comparison of the performance of an operator after training under 

each of the possible regimes. However, in practice the evaluation is 

made very complex by the irreversibility of human learning, the variety 
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of performance criteria possible, and the variations in experimental 

design possible within the same abstract framework. Some of these 

factors have been analysed theoretically in previous chapters, and, 

in particular, the analysis of Chapters 2 and 3 provides a suitable 

foundation for resolving the complexity. 

The impossibility of erazing human learning entails that one 

operator.cannot be compared against himself, but that populations of 

operators, assumed homogeneous, must be compared. This, in itself, 

creates problems - for example, an operator may perform one task to a 

higher standard than he does another, and yet a second operator may 

have a reverse range of performances. It is clear that learning and 

the relative difficulties of different tasks will vary from individual 

to individual, and, by comparing populations one creates anomalies. 

The scope for possible anomaly is immensely widened by the variety of 

performance criteria which may be applied. For example, suppose that 

the numerical values of a performance measure after training under two 

different regimes are - Group A (1,1,1,1,3,3,3,3), Group B (2,2,2,2,2, 

2,2,2). If the criterion of satisfactoriness is set at 2.5, then the 

training that produced Group A is clearly best. If it is set at 1.5, 

then that producing Group B is best, and if the 'mean' performances of 

the groups are compa~ed, there is no difference. 

The variety of possible experimental designs is best illustrated 

by temporal effects in learning. If the learning of a particular skill 

is dependent only on the time spent in practicing relevant tasks, then 

an experimental design in which one group practices one task, and then 

is compared with a control group in learning or performing a second 

task, may show that the first task is relevant to the ·second, in that 

positive transfer occurs, but does not indicate whether training on the 

first task is useful - as Day (1956) n9tes, 'transfer' from one task to 
~QIV 

itself (called 'fixed training' in Chapter 3) may be better)transfer 

from other tasks. The situation becomes more complex if differential 

rates of learning are coupled with differential final levels of acquired 

skill. If one training techniques leads to a rapid initial rise in 

performance but a low level of final skill, and another technique has 

the converse effect, then the mean performances of operators trained by 

the two tecr.niques will cross over at some poi.l"lt in time. Hence, 

_comparison of the two groups will be entirely dependent on the length 

of the experimental training period. 

The methodological problems in the evaluation of the evaluation of 

transfer of training have been analysed in great detail by Gagn~, Foster 
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and Crowley (1948). However, in later studies problems of a semantic 

nature have become apparent, particularly those concerned with the 

effects of relative task difficulty on transfer. Bartlett (1947) 

noted that tasks have a natural topology such that wide variations ca~ 

be made in physical factors without any correspondL~g change in puman 

performa~ce, and states that, 'The fundamental features of a performance 

will remain stable over a certain range of its conditions. Outside 

this range'they will change often in a dramatic or radical manner'. 

Helson (1949) has made a similar suggestion, and has demonstrated, in 

a limited range of tracking tasks, that a U-shaped curve is obtained 

on plotting performance against variation of a variety of task parameters. 

Gibbs (1951) extends the concept of zones of equal performance to 

account for variations in ease of transfer between learning on one task 

and performance of another. In stating his conclusions, Gibbs uses the 

term, 'task difficulty', which he earlier introduces implicitly as being 

determined by differences in the mean performances of two groups of 

operators, assumed matched. He states, 'It appears that the amount of 

transfer between two equally difficult tasks may be equal, whereas the 

transfer between two unequal tasks may be unequal. There may be greater 

transfer from the difficult to easy task than from the easy to difficult, 

if the same kind of ability is required in both tasks and learning is 

carried on until the total possible skill is closely approached in both 

tasks.' 

Day (1956) and Holding (1962) review experiments on the transfer 

of training between 'easy'and 'difficult' tasks, and vice versa, and 

conclude that no simple and universal prediction of asymmetrical transfer 

in these terms is possible. Holding states that, 'the use of the concept 

of difficulty must give may to far more detailed analysis of the 

appropriate skills, if asymmetrical transfer is to be predicted.' 

However, the concept of 'difficulty' is a natural and attractive one, 

which cannot be outlawed from the design and analysis of experiments, 

even if it is outlawed from the published discusssions of them, and it 

is worth noting some possible sources of the diverse results in transfer 

experiments and their implications. 

Holding (1952) notes, as mentioned above, that beth the ultimate 

level of performance a~d the rate of learning may vary with task 

difficulty. Gibbs (1951) specifically excludes effects due to the 

variation in rate of learning fr•om his state.'T.ent of expected transfer, 

by requiring that learning continue until the total possible skill is 
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approached. He also suggests that, 1 there is an optimal level of 

task difficulty for every kind of learning material 1 , pr·esumably one 

which maxlinizes the rate of learning. Taken together with his 

explanation of as~mmetrical transfer in terms of a hierarchy of 

abilities, the higher of which encompass performance of the lower, a 

reasonable statement of the direction of asymmetrical transfer would 

be of the form -

If th1=re is a natural continuum of tasks generated by a physical 

parameter of the environment, and there is either a U-shaped or mono­

tonic variation in the difficulty in the tasks along this continuum -

as measured by the performance levels of a group of operators performing 

each of the different tasks, then learning of a more difficult task 

on the continuu~, providing it takes place to its ultimate level, will 

give better performance on the transfer task than learning on an easier 

task. However, the maximum rate of learning does not necessarily take 

place with either the task of best performance or the task of maximum 

difficulty. 

This statement, although it sets out the theses and qualifications 

of previous hypotheses in some detail, is still amenable to different 

interpretations, largely because of the vagueness of the terms, 'difficulty' 

and 'rate of learning'. If an operator is performing one task as 

training for another, then it is not the rate of learning of the first 

which we wish to maximize, but rather the rate of learning of the second -

conceptually, the operator's control policy should be 'frozen',at 

intervals whilst he is learning the first task and his performance 

measured on the second task to plot a true 'learning curve'; one 

advantage of working with automatic adaptive controllers is that this 

conceptual procedure can actually be carried out. Furthermore, inherent 

in the requirement that the rate of learning should be maximized is the 

assumption that an operator's state, in so far as his further learning 

is concerned, is determli1ed solely by his performance. Although this 

assumption is not valid in general, and counter-examples may always be 

found, it is a useful working hypothesis m practical training situations·. 

The greatest problem in the use of terms such as 'difficulty'and 

'rate of learning 1 is that performance measures give only ordinal, not 

interval scales, and that any monotone transformation of- a performance 

··measure is valid. Hence, the only valid comparison of rates of 

learning is in terms of the time interval to change from one level of 

performance to another, and only the relative ease or difficulty of two 

tasks is defined. The possible effects of a monotone change in the 



250 

scale of performance are further compounded by the possibility of 

a similar change in the scale of the underlying physical variables -

hence, the ~hape of a U-shaped curve of performance is meaningless. 

Furthermore, some common monotone transformations, particularly 

logarithmic ones, may eradicate parts of the scale of physical 

variables and turn a U-shaped function into a monotonic one, giving a 

false appearance of graded difficulty - for example, in tracking tasks 
--

involving exponential lags, positive lags only are generally considered 

and increasing difficulty vdth increasing lag is discovered; increasing 

negative lag, however, corresponding to an unstable system, also gives 

incr·easing difficulty. 

A4.5.2 Feedback Training 

Whilst the arguments of the previous section indicate that, ultimately, 

a detailed analysis of learning behaviour, of the type discussed in 

Chapters 2 and 3, is essential to predict all the phenomena of transfer, 

the concepts of transfer between levels of 'difficulty', and maximizing 

the 'rate of learning', outlined in the previous section, form the basis 

of an 'approximation' of the type discussed in Appendix 3. The basis 

for determining the optimum level of difficulty for learning, in terms 

of maintaining the desired sub-environment has been discussed in 

Chapter 3. Acc~pting the statement of degree of transfer .and rate of 

learning, given in the last section, as a reasonable approximation, 

however, one point it brings out clearly is that the level of difficulty 

in training which gives the best transfer is not necessarily that which 

maximizes the rate of learning. Hence, if training in the shortest 

possible time to the highest possible level is the objective, the 

difficulty of the task should vary with time. Since the future learning 

of an operator is also assumed to be determined by his present performance 

of a particular task, the variation in task difficulty should be a 

function of the present difficulty and performance - this leads directly 

to the 'feedback trainer' described L> Chapter 3. 

The earliest mention of the possibility of feedback training for 

perceptual-motor skills appears to be that of Stockbridge and Siddall 

(1956), who suggested that a guided weapons tracking trainer be used 

in which, 'the difficulty of the task is proportional to the success 

of the subject'. A short exposition by Senders (1961) of the principles 

of 'adaptive teaching machines' is an example of the many studies of 

feedback training which have been reported only informally. In a number 

of papers, Pask (1960,1961,1964,1965~~) has made available a deep and 
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comprehensive analysis of automated training, and has placed it in 

the general context of interactions between self-organizing systems; 

he has applied these principles to cognitive skills rather than 

perceptual-motor skills. 

Actual equipment for feedback training has been described in detail 

by Ziegler, Birmingham and Chernikoff (1962), as a 'teaching machine 

for the selection and training of operators of higher order vehicles 1 • 

The task was compensatory tracking in two dimensions ;with the same 

third-order dynamics in both axes, consisting of three integrators in 

cascade with variable feed-forward (so-called 'quickening') around them. 

The amount of feedforward was controlled by a servomechanism driven by 

the smoothed sum of the mean error modulus in both axes. Hence, as 

operators learnt their mean error was expected to decrease and the task­

difficulty to increase. No formal experiments have been reported with 

this system, although Chernikoff (1962) indicates that it appears to 

result in improved training; the discussion following his paper is 

particularly informative. A similar feedback traL~er was proposed at 

the same time by Kelley (1962). 

Other studies of equipment relevant to feedback training have been 

.carried out by Jex, McDonnell and Phatak (1966, 1966*, McDonnell and Jex 

1967), using a first~order divergent system with variable divergence 

rate; this system has been investigated solely for testing. Kelly 

(1967, and Prosin 1968) has carried out extensive tests of various 

forms of task with performance feedback for personnel evaluation, and 

his equipment and the ensuing discussion are both relevant to the design 

of feedback trainers. 

Some training aids which have previously been shown to affect 

learning, and whose magnitude may be varied along a continuum, are 

obvious candidates for feedback training since the aid must eventually 

be withdra~m and performance feedback may be used to schedule the 

withdrawal. For example, Holding and Hacrae (1966) have demonstrated 

that a 'hinting' device, which makes the joy-stick in a complex tracking 

task easier to move in the correct direction, has a profound influence 

on the rate of learning; descreasing 'hinting' to a subliminal level as 

learning proceeds offers obvious possibilities for feedback training. 

Similarly, the degree of 'augmented fe~dback' is another variable 

susceptible to continuous variation, and Briggs (1961,1962) has invest-

igated the scheduling both of display aiding and extra performance feed-

back. In the firs-: paper t.i.e reports that there is an optimum level 

of display aiding, and that experience on systems with either too much, 
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or too little, aiding leads to reduced learning. He suggests that, 

'optimum schedules for display aiding be determined for each device 

or task'. In the later paper, Briggs (1962) investigates the effect 

of slowly withdrawing augmented feedback in a tracking task according 

to various schedules, but fi••ds no significant improvement in learning 

over a control group without augmented feedback. 

The only major experimental study of feedback training is that of 

Hudson (i964) who trained some 72 operators for ten hours each (in 

fifteen mi~ute periods) on a third-order system with variable parameters 

including both feedforward and feedback. Hudson mechanized an automatic 

feedback training loop in the same way as Ziegler et al (1962), by 

relating the parameters of the task directly to the mean error. However, 

hefamd this was not successful since the parameters both varied widely 

with the error, and the mean performance required became excessively 

high if the ultimate levels of difficulty were to be attained. In his 

conclusions, he suggests that the automatic loop should have been set 

up to keep the mean error constant by varying the difficulty of the task. 

In his experiments, Hudson maintained approximately constant error 

conditions for some groups of operators by putting himself in the 

adaptive loop, and adjusting the parameters of difficulty by hand so 

that the operator's mean score of 'out-of-controls' (error becoming so 

great that spot leaves screen and is reset) was constant over each fifteen 

minute training ru.."l. Hudson's main result is that a plot of the final 

test performance on the c . .,.,irtericn task against the mean level of 

performance during training is strongly U-shaped, and there is a very 

clear optimum level of difficulty for maximum transfer. Another result 

of particular interest is that Hudson used a variety of plant parameter 

variations to maintain the performance constant, but only the actual 

level of difficulty seems to affect the main result. 

Significant as they are, Hudson's results may be criticized on a 

number of counts: firstly, because of the variety of conditions used, 

the number of subjects under each condition is small (between 4 and 6) 

so that the results are only marginally significant; secondly, each 

'out-of-control' took a minimum of five seconds of the operator's trainL"lg 

time whilst the equipment was reset, since th~ mean nQmber of times this 

occurred (over the ten-hour training period) was 77 in a fifteen minute 

practice session, there is clearly the possibility of a major effect due 

~·to the differences in actual training times - this is not unrealistic, 

in the sense that it is clearly a loss of the 'desired sub-environment', 

but represents a trivial variation in the difficulty of the task; thirdly, 
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although highly suggestive, the experiments do not test the viability 

of automatic feedback training, and, since the experimenter was part 

of the loop, the results are not replicable. 

Gaines (1965, 1966, 1966~':, 1967, 1968~':, l968~h':, 196s:·:~h':, l968~':M::':) 

has published a series of reports and papers on automated feedback training, 

its theoretical foundations, viability and utility. The material from 

these is incorporated in the various chapters of the present volume, which 

represents.a complete account of this work. 



l'f\hr"::j :=::YJ:~:Cj"rf_· __ r-:e~n·t:f_J_~:.:~ oJ· ..:oo:.,..,,~J.·~i t·-Y~ ...; ,~ ~r:'r'lr: ... ~- .. ; "il.,c},.:.J --!, .. 1 C·"hr,·\-.~·-c~~ ..... f) 
-. . ._. .,..# ___ .~.,,.. ....... ~-\. __ ,..,-; ____ 1.:1~-V'...J. .... .-.l..J ... •-~·;,.~_.J.. .. !...;..;..\ \i....._ .• :}·;·~-L.,.~ ...... .;:;\..-t .C- • ... .l.r.>.-_tJLi:;.l- .... :l' 

tor;t0ttr_Gr~ VTi."tl1 Ctl1 ::l.n.a.J .. ;,r;-:s:Ls 0~~, "C}.l~3 1~8 -~~-E1 ~ ']~hi~f:3 O .. }J];~C21d.:LY: 
cor.ttairlE) tl1e l'"tBJI cia:ta. ar~d f) ~tj_;;.tics oJ\ ..:c11e e:{;;t:r:LLJ.erl·t 1·ri tl1 
72 R.A1? pi1.ots ~ cmLductsd to :Lt1vc::st:Lgate t~w ut:LLLty of fe:~dbt-.c~;;: 
ti··ail1irt{;o I·t t=tlso irt.oltldes ~~J}.O"tS of· tr"ajeetCfi.~J~ of Ct:L:f~fictti.t:i 
BB3.i:nst time for the 32 operc:;_-~oJ:::1 v/ho U.J.lci.er-v1:::nt feec3."back train:.::.1e;. 

!:':5 d_BLi.-c_;:s. Sill_.ll::?::~i~)!.S1.ti§ 
rif18 "b .. f (~ !)~ - j p·~i ·~r..,:·, ..::; -t-.:"!,"1 e :r·e-• ,q! "J __ l_+ 2, 0 4 ,. .. ~ 1-,_! '~-- c..:a-....:--")"'\e"Yt·~ ~T' --=~1·) ..t.~ C• 01" t"'Fi>-'~ .;f ........... ~ '-": ("P ,. ....=......... J.;;.,,., ..t. o~- C.-:_, t.ol... __ ,.,. v:. . .., ,_ -1.. 1..1 _ • ,,..,..t:-J.- J:! .: • • I_ . .._Lt.::.- ... \J i:); •• .t.. .J.. c;...... •••• ..L~_.:.._ J..;,Q 

RJ1J? p:5.lvcs. The subject rnunl.J.~;::·iJ are ind:Lvidu.a11y c.:cbit:cn.r~.r 9 but 
opere,tor:::> hs.ve beun grou.r)(::d in-to the Dix groups, Ihi, Es ~ I.fc[ ~ Ls, 
l~v1 9 Fs, c1e:til18d. j_lJ. Ta_.-b:Le 5 "-~~ Q ~ .. il1c tet5·t rE::ErLll ts a.J:.··e th.e Inea.n 
"'T''"'r)·L~ S C ·O::·•,o:, f-'\ 0V81"• -'' ,,,., .. ,.. ··.·.·j ll1 ' .;..,., r• o-'' '~1 C' ,., .. :. _._,., '"'0" ,~-}' 11·~.--. '"'~- Of' rl"1c· .h 'j (~ v_.,~,.., ................... ,. J_\...r_A.J.. ltl-.:.L..t~'....:-.:> ..l. .L.·:-;·t~:"Vl l.!J.J..t.. v .. t_;.l ~Ol't::' ... cLU~ ... .,., 

r.;;_7,,, >'11•::; -1:1-:n 1'-'-'TE,l Oin d-i-r·f"l'-.,1-1-'r,, :t."s •ol<'><) .,..,o+o,.:J :p~1"" ..J..rl-i+o r:· .. c· e·,.-. ...,n" _,. _,., "-'-- ._._ ""~~ ~ '·-'- - --~-~-'-··-'·''A. .. '-lJj· ,,, c,, _ _,._, k.C vvU.o -'-··•'-' U, -'-'"·' _;~. ''"·-'-'~-'-

are the se.:s;e as those of Che.pter 4 , b<~.t r;ml tiplied by 1, COO fo:c 
CC:l11Venience. 0: '<"•"1 ('' r~r·:.:. tf)(> TY·'"'l< "levels o-f' d-'·f-P..;cr•'-'·-~r ,, .. u.,,c,;-.1°;· ,.... - j o ... -...... • "2 v... t..::;: ...... _. ~~ Cct :- .... ,~ ,/ . "" I ... ro.. ... ;~J.~ ....... ~.J.. ~-L V.j (.:,!.> v Vc.A.o..:~l. •._,\)~ 

b\r t1.-.1o -ccwc'i'oo;;c11t t•'~<11·"J"'i1'~rt ::r-1-'·u"'''l'fi a·"l'"'l"'•::' ·th-=' Tl}"'::.:;·,·, ·.one~ q,;;,r>-'Yf]t: t: lJ '-" J_ v v , ... ~........ ;,.. .... '-"-·-- ....... ~--~-u 0 _ l···...J..· .. V- • .,J.,. J.() ..-..-v ..... _ ~ ~~...- ~ (..._,. __ _.~,. ~ v....., v ... _.\,..i.. 

training sessions respectively 1 mu:.U.;1pJ.:J ... r;d by lCO. 

'.tiHrl is thE' e;:3 "te ,<:;j_vcn en the q_ucstionna:Lre of J?:i.gl.:.re 
r.:)· ... 2 J·., .. , rn·:-i'll'+eoc< IT1'.·)r_; ~,r,y+ ·f-'()<"IY• re:=~ri.:Y!o··:::; r.·-v•e· tr'l<'" i-!~c,j·,·.,·,--.Q'F'"' ->n ... f .,J .•• .c..u...L..-vt.v ...... Oo. ..l.l.v l ... l:,- .. 6.;.; .A-\,.-:,.~-. ..... CJ...\."J_ ...... ~~,~.. ... (:;.\...J.. ....,. U..J-;..J.,.'O.J.J. ·~1--) ....i,. 

rn:LJ_lir:1et:res f~I--on1 t11e lc:t··t-·J:l~J..rJ.d edee o:C tl1o SCfJ.les of J?:Lg-t..ll~c 5 -·2 
r~-1- ''ill-iCh +tl"'- ~<ur·,J',::c.c-·L·~·.::' 1":1!-0fi(:~ -:, J···l·;o:.;rl- c~-1.-,nc·E~ c~co"'!<'>C' 1-''-'"i"P 1()(\ ;-(,c,·'; ··;nyHr ._-to \I \', ....&... ..__ \.1.~-'·-" ,.,_. ,._... .._. •L...I' _ • .._.~,...-" ~ A.,_._.._ .A.,'. \,.t..,.L,.I'~~) _,. k.,.i '-..(,-V~ ~~-_~...._ ... ,_ ,j,.._ V ,_,_.,. -L-'-· -·b 

( '""l +1"1e 0"'•-i G-~ 1''101 c·u· "''~''t'J' (')r""rl" i:r•r:oc; '\ ~ t.r:'lC·''' Y•o;p~r.>.S'E"""'t _,l' .. 1,-l'E' C•'""'r.•Y•e< -:·:()"Y' I c:< ).~.1 v.L • .L....~-t;..L.-'".J.. :~_.......,.._.J ___ J....L<-•,.J..,. ....... ~ .... r'f '-""J .......... .!:-"·-· .. ..!..!. "·"·-· .l:J-.. ... .~...<.,A,v ....... o 

eBti.rnat;3s of l1is II~·T:e1·E::st ir1 tr.Le ts .. 8l{:, tl1e Dll?i'ic1.tlts .. of t~l1e 

task, h:i.s }Jft.ESe:nt 1cv·el oi:' pEn'i:'ormance ~ and hj_r:3 l:'UC;;·,n"e. level cf 
performs.nce. T-he OF['imal tir:1e rr:;e,oj_Eg is from the E:1econd. 
questionnaire~ Figure 5-4, and ts.ken :from the m~.;_r~;:ed.. scr:,le 1 

assmning the 1 prest:mt le:n.gth 1 to be 25 mintJ.tes. Tl"w total m_:~xo.b~:r 
of \fORDs w-ritten on all three cruestj.onnaires is gi·\Ten :L11 tho w:.;xt 
column. The RAE1 score is the total mnx·J\: obtcj_nE'd. from no:cma.l 
x·c"l·tings d·D .. rj_ng tl1e ope:ce .. to:c' s fLlil' ... c:;_~clirlj .. rlg ot· };Je:r:~s<)llo.,:L q_u.8..li .. ties 9 

examination pe:rfornw.nco and f_lyiug <::tbj_]_:L-~jy; in t;}·:e pr(:',se:n.t contGxt 
it is used only to check the comparability of the six oxperlmenTal 
groups~ I18lli.lJe:r'sllip of \·ll1icll 1'/aD assigr1ecl tat l'lCiilclorn' B.il1Ct-.~ tl1e 
IULE' data. ·Has not a'tai1!?~b1e before the ex:psrin:.c:::nt;. The fina.l 
coJ:t.unn, GI:L\.:PH, for the feedback t;roup, refers to the tra.jec:toJ.'Y 
0 -P r1.; _.o-to.·1 "'·u·l ~-·r J. n -,"l' o~·1Y''·' 11'.::; -1 

.;.. ........ ..1.. ..L .L ~ . V ~··- lJ j - .J.. ~.,:, l· .. - C - -. e 

,.,..~..., .r::r-. J, "" • ,.,., lt -~ 

'.L'at).LC .!'Gl ~r: gl v·as t~ne means C1).10. varlaJ!Ces OI ·r.:.Ge c;_a ·a O.i: 
Ta.lJJ_e itS -1 ~ tfli tl1i:t1 ectc11 of' tile sj_~{ fS~~o~J~f'S ~ a.ll.O. orl.:<l)les gr·o·u.:p~3 
to be cor:<o::t:::'ed for d:l:C:f:"er-eD.ce;-3 j_n nc~s.n ,::md v::<.:cLm.ce by the t-test 
8.l~.d. \laY'i.c:t!ice ...... :~cJ..tio test; 'l8 .. lv~es signi:[5~Clli""1-G at the one pe:c oe.!It 
iE:r<:t:ii1 are bracketed 7 one-tailed for the six results on pcrfor:-usrce. 

Tr.tese stn:tif1tj.cs a.l~ 13 :.L11ter1d.ed 011l~{ as [ill ir1dj .. oc1tion C)f tl:t.E; 
,,-,qo·nJ·+,,Q"e· r\·f' +1'!C' c'·i_~-"··fr-'reY\cec.' bc>"v::.-:.en ttY-' ,2TO"L>D3 an.t•;ay.r-:·c·t j:o .~..~.· . .:..~t..., _ ... ~..... ..J~'~ :,..~ ....... !...La ...... ....., .. J..:.• ~... .. " •. ....,. ·~ ...._. o·- ....... .._·· .... ._~.}_. _,.~ 

.,,.~,.. ·"'""s k ~ 'Y'l·~ ~- ..-: ;:) _____ ., ...!r. .o~~,""'-} -~e ... _)"Y"\{.-, ~,..., ... , .,.Tr)_ .• ..:.--.~nc·~e::....- ..... !\Tr.··-- .,.)._.y,,-,v-.~e·c·~ ...... -: ..... 
~ J-\~"tiTfv :> ·-.) 2.:..-.l.~c.t ') -u' 1._.-:...r.,;.u . .2.. l \.:!J..t.~ .t...:J C:l..t.l.0 C4J..._:...;_ I u .. J. J ... ,.:...,- ......... ):.) ~ ;_·~ .... .:;.l-.~--...:1.-~. ,:.1,..:_.;_;_ ~ .-.... .. ~ <..,.; 

t onto ~011-J~ ~ivQ a more 00~rc~t estimate of tbe nrobabi]ltv of -....., . V ll , •' .A.. -V~ C')-·• • ....__... ~ . ..:,. ·- _, ~.._ ...._, ' ,.. _ _.._, ..... • J.. - -. "' •..1 

chance occurrence of the pheno~ena of in rest. 

Figu_:c(' A:: <L is ~::;. coo:p:Lete set of trc.:o_.jectories of 6.iffj_cu1ty 
G..f~tEtiYlfJt titl:~~ :f."'oJ~ t:~J.<=-1 32 or;el--~ato:t:s l1n(teJ:." :feec1l~~j .. c~}~-- Jc1~cliiliJ:1@;-: FJurDJ)~~:::_~s 
l ~tll:C"OlJ .. g}l 1.6 ::1l~o 1:·:8 ~ r:..::.J.C.~ 1.'1 t}l:r-cY~:<.[;l;_ 3~? c: .. :r'e ?\"r; tile {;~ra.J)h.f-3 =~~-"1.~/ tr;?. 

r·e~l(J. ted. to <)tfJ_\~:r CLE-1.t:i t}.;_~:.-olJ..CSll tl1.e 1.etst cc>lL-tiilJ1 o1· 'J~a-b.le .!;~5 -J. ~ 



Test H.erm1ts 
0 0 . l) 1 2 

p 
.u 

{J~L :.:..·r":'.·..-
.L.:..i'i 586 ~534- 576 -, 0'/. 

~-...Jj 

02 \_T,, 
J.~'/J 598 5(3~) 51:5 5 :;::5 

(;) IIvT 564 5T7 5G3· 7J2 
Qlj !-J\rl ~)96 585 583 35'7 
05 lhr 571 559 606 6 fi- ~5 
06 Ihr 562 :'567 5f/l 7JO 
07 r· FrJ 565 565 573 777 
()(.3 Hvr 563 ,.,.. ?'· .... 

b<) 617 250 

I•1ec:trl 576 5'"'~ I) 580 52'1 

09 IlZJ 597 5:)4 545 721 
10 ...... 

liS 529 46~- 499 427 
11 Hs 573 4~~7 4· 411 164 
12 £18 ::>71 

r- r-, ~ 
) {.J... 605 701 

13 Hs 572 :571 607 748 
14 Hs 534 ~ ·:;r-.: 

..) ./ \.1 571 377 
15 Hs 581 551 580 ,- ('1 17 Ov, 

16 Hs 535 507 487 330 
Nean 561 529 538 510 

(f.l 0: ') :r: 
-- '-· T 

·'-

1·.·• .. :·l 

j_ 

N 
[ [~ 

~~ ": \.) 
J.J "' ..,. 

E ... L 
]:~ I' 1 

~"1 (' 
0 . 

F 0 T.r D 
II .:.I. 

u 1) 0 ~~ ..... ... .. , 
m II' R F J. 

D 

640 -- -- 30 76 34 27 63 25 030 721 
C!O ·"·"· -... , l.Cl ()9 42 24 80 3.1 047 710 

'Q -- -- 12 51 J.l 00 53 25 13i 705 
6G6 -- -- 25 71 26 13 21 28 099 686 
647 -- -- 20 21 50 43 43 05 044 699 
0 1 7]~ ·-~=- _._,. J_Q :jr{ ~~2 32 29 12 ll) 6)4 
625 -- -- 20 88 36 31 32 18 091 710 
600 -- -- 20 81 20 01 39 52 024 640 
652 -- -- 18 62 33 21 45 25 073 689 

C.n·) 
v.) ~- -- -~-

"lQ 
~J ... t...J 53 25 25 44 21 212 696 

C)4 --· --- )0 37 19 23 48 12 113 646 
563 30 73 /f'X 12 37 25 204 725 

_.,._ -- '+) 
6St1~ 

t'"'l:f""\ .~.\~ 26 24 24 "17 l5r-1 769 .. ~·"·- -- L'-../ t:O .! • 

G4i3 -- ........ !#''-'"' l5 77 58 '2'0 
:J..J 68 15 138 724 

66\) -....,_ -- 20 '}') 
c. ........ )J_ 06 17 09 233 718 

6 :ll1. '"" r- R'?. 32 28 60 J .. 8 190 69'7 --~ -·- c~ ::) ...,) 

630 ·-- -- 22 ,...lh c_:; 42 25 25 16 86 666 

6LLr~ 1-
..... -.. -- 23 :.:;o 35 23 40 17 167 705 

17 L·1·1' 582 538 579 550 648 -- -= 10 2~5 16 35 66 22 259 668 
18 livr 572 488 421 240 60.6r -·~· -- 15 39 22 46 61 25 OB4 699 
19 Lw 611 554 567 512 651 -- -- 20 82 50 26 45 17 161 687 
20 Lvr 554 605 590 515 t.55 -·- -~· 23 03 08 01 00 11 010 '711 
21 L-:,J ::~84 222 282 152 I:G2 -·~ -- 10 70 33 59 73 25 178 701 
22 Lw· 644 595 5eo 601 638 -·~ -~- 20 5e ~rr L).9 48 25 130 720 
23 L~v 579 448 4'76 183 fi20 ~·= -·~ 26 5t3 44 44 61 22 064 716 
24 Lw· 563 464 395 170 41:37 ··-"~, -- 20 30 29 22 33 90 166 694 
25 L;v 628 573 575 7 48 632 -- -- C!C 81 33 18 41 :21 168 785 
26 I;~;; 564 571 561 775 659 ·-- -- 26 f55 1:1 52 51 23 151 648 
27 Lw 583 563 568 740 650 -- -~ ~25 60 45 3!;. 39 25 033 680 
28 L"vi 556 505 473 295 596 -- -- 25 51 02 10 06 20 021 67 4 

FJ:ean 560 510 506 457 603 -~- ·-- 20 54 31 33 44 27 119 699 

29 Ls 590 345 571 214 592 -- ........... 25 68 r::n ?v 25 49 25 033 729 
30 I18 

,...._,. i r) 203 220 122 3f38 20 83 50 16 34 10 130 690 )J.b ·-- -- ~ .• _/ 

31 J;S 580 237 2tr1 145 390 -- -- 20 74 50 C4 83 25 056 '705 
32 I18 356 201 "I 0'< ..,..;; ./ 104 2"'n 0::; -- --- 20 96 51 27 68 24 l(J9 652 
33 Ls 478 296 252 l!J-0 394 ·-- -- 06 98 47 76 82 25 232 663 
34 Ls 317 227 228 1:-37 ~') r;/" 

-' ··- ,_) -- -- 25 79 66 69 78 19 356 675 
35 IJS 431 402 347 183 5EJ() --· ........ 24 45 5{' ~I 59 6C:: v 

.. 0 

.l...t 143 689 
36 Ls 534 578 sen 34-6 591 -- -·~ 

')(\ 
t~.V 

r::g 
./. 48 50 64 25 246 TL7 

37 Ls 360 28£1 274 19'7 ~-·4 ~) --- -- 20 99 50 72 69 25 026 6'73 
38 IIS 615 439 455 223 562 -~- -- 20 48 50 23 JA 27 089 740 
-:<:Q 
./..J Ls ~-79 191 219 131 302 -- -·- 25 86 50 69 80 r) ,..-

c.? 135 725 
40 Ls 622 551 612 492 641 ?0 99 7. ,.- 40 41 25 1)3 656 ..... = _., .. .)? 

Nean 473 334 )27 204 45? -- ·-- 20 78 50 ~-4 Gl 24 l41 693 

?;:::;t: 
'·• ,I.} 



256 

IT Ill Test E.esul t;.:; o:1 ct 2 i !.-.~- D 2 1!' 0 ¥l H. G 
0 0 -'- •. I 11 U P 0 A !1 l 2 3 4 5 D · N:ri:':E; ~r TH. }'A 

E 0. 5 0. 5 0. 5 0. 25 0. 7 E & F 8 • • D P 
• • H 

'- ·•;;.. 1:"7:"· 7-•Jl 27"' l •·) /, ··"~? ';(Q 5? ~ r• Q'' j, ~ 0 8 2· 8 '"'l QC'l 7 '-S 2"' Lf.L .l' ',{ '))C:. ')." ll -'---'1· )')') ./'.) -- .t) -~~~ 4) L. ,;: b. . '.) v 
/:-2 }'1\r 451 2)2 250 ltSl 37'7 49 6f3 08 60 45 38 67 16 072 ?teO 17 
43 189 232 185 083 197 74 70 15 98 40 38 65 25 157 758 19 
44 }\;- 40) 353 2J_5 J27 );::2 30 65 30 64 50 64 88 25 071 709 25 
45 ]~ 590 520 530 251 591 33 47 30 70 39 29 35 25 299 756 26 
46 :l:'w 498 5?8 451 191 564 28 40 30 57 39 39 38 25 085 711 28 
47 Fvr 580 499 390 212 520 31 38 15 49 43 50 52 25 149 728 18 
48 13\r 610 450 450 226 568 )0 43 30 <'i8 50 56 68 18 058 714 23 
49 .F\'1 338 308 252 092 L]84 5:5 T'5 15 99 39 27 44 25 096 650 31 
50 Fw 541 525 496 206 622 30 30 15 69 43 40 59 21 095 717 30 
51 l'vr 260 398 ?39 145 t:,~(1 62 62 14 66 45 31 lt2 16 0'71 652 21 
52 Fw 541 438 388 254 507 29 40 20 33 49 54 82 16 046 754 32 
53 E\r 481 3:38 3~J) 175 534- 43 52 15 69 )? 28 66 28 135 664 22 
rA, D 3n0 27:3 lr8 ~~.r r~~ I( ''7 ~0 na ~r 18 2n JO ~n~ 692 29 ?~- J.'\V O<..) J _o v{t;J C:.c:;;c. LJ_j o )1.! 'j:J )1.) · .. (') .:..; lJ(') . -. 

55 Fw 642 572 508 292 581 20 28 25 46 32 17 17 20 099 650 24 
56 :E'vr 474 283 2lE3 214 4<17 50 53 26 57 46 52 48 23 131 644 27 
i\~earJ. 470 393 334 177 ~-65 41 5?. 21 68 43 38 52 2;~ 107 706 --

57 Fe- 358 :.557 167 129 I''"\·"~· tl 52 62 2'0 5fi 40 44 56 25 C78 742 11 -0 C:.)O '·' 
58 J:~s 519 332 155 071 2\)3 32 68 ., r.· 

... L.) 6C: ,1_q 54 80 18 120 668 08 
59 '!<''~ 563 ~L75 446 192 (::...-).' r) 'A3 41 lr:: 79 45 1 l 49 ., 0 OSl 705 02 - t:.:> :.J_)t:_ ,1 j ......... .l.:; 

60 "fi'q 417 ~'33 255 134 35) 46 58 30 "l 'I 29 41 53 32 072 723 14 - u 

_,_, 
61 Fs 515 403 3·40 134 ?2:3 ):_) 48 20 :?3 LL··;; 50 66 "I Q 102 721 12 '"' """""''..) 
62 li,CI h '7') 421 301 122 :J (J}~ 35 4E3 ... , r:· 00 24 27 ·-/ r 

};~ 0413 680 10 >J ..) It:.. ..... ::,) ')U 

63 }_<'~ ,-::;. 452 2Qr{ 221 090 319 35 66 2\) £3:5 50 36 7'!;. 2'' -? ],3·4 685 06 
64 1"3 282 225 1.6t7 075 241 58 76 25 

,. . .,, 
(..L. 42 51. 50 .1.2\ 09/j- 690 13 

65 }?s 205 '),-'7 _c:_ l.ll2 105 J.76 58 82 22 99 4L~ 4-7 60 j 25 039 65L~ 15 
66 I'f3 326 196 201 108 ))) 6) 76 10 68 65 7._j 51. .·~ ~- 072 678 07 _1 ....... ~..:) 

67 1i's 326 261 2'"!Q fU 128 ;,;r-18 55 69 2·4- 99 67 54 r-h 
'J..J 27 094 704 09 

68 -~1(.., 346 149 l~L7 099 ?r··r:. 56 78 22 71 46 20 41 35 061. 7!J-4 05 .J~ 0 ~.)u 

69 li•· ... 233 1TL 137 085 C~O]~ 5'~ s-, 15 76 r· ,, 69 90 25 093 702 03 ;;:; 0 ') )\J 

70 l~s 4£36 375 356 267 50b 33 43 05 (')' 
Olj- 37 21 3~l 20 126 677 16 

71. ·r.('""' 370 226 J./2 063 "2..'1 -: 66 80 1 0:: 71 tj.O 45 
r'r' 17 ]_'[g 660 01 J_ .:.:> j..l • .J. -'-..J Ob 

72 J?s 510 400 363 186 474 37 5'7.: 1'7 (j r"~j rry 70 84 16 11M 626 Ot~ _, I ! )I . '-t-) 

I'iean 405 303 238 124 347 47 64 18 65 46 42 60 22 100 691 --



. ·-. 
;:j \: ):_: ·~. ,, 

th'i (\ :)'(6 0 0()0 0 .0 1,./; (1 .: ,, 
~-) 2 "··~ ,. 0 . ., -·' r.:. ' . _. 

F:c, 0 56} 0 oo:1 u (\ () c :'"; r) 1 r) e.:~ 4,l.U . 0 0 . .; ~--' c. .• . l. " 
I.J\I 0 5CO (' .OU8 c e>C; 2 1 0 

.. , . u . c .. ..:. J .. 
T·' 0 4T5 0 012 (! () '"' ,.1 .-,\.Jo'J . . .. / . >-' 

11-.r 0 . Lr1c~ 0 .Ol~) () Q (; 

l?s 0 . 405 n v " 013 
1?erfoJ~D1C?.IlCC OJ1. Scec:rY~c(l ~rcc_'lt 
........... .U.'I< __ ....... ~, .... , .... _.~.,.... '~~ ... ...,., ......... _,., ....... ..,,...,,__. • .,_,., . ..,_,,..._ ........ ,__. ... ~ • ...._..~"·' .... - ... . 

l'Iod.e 

Hvr 
Hs 
L1~r 
Ls 
Fl-..r 
Fs 

lclode 

Hw 
Hs 
Lv-r 
Ls 
J:'\r 
J?s 

l!J:ode 

Hv;r 
Hs 
Lvv 
Ls 
]\;r 
l''s 

Hv-r 
lis 
L·iv 
Ls 
li'vr 
Fs 

Me Em Vs.r. 

0.573 0.001 
0. 529 () o C~CI2 

0.510 0.010 
0~334 (.) ~ 016 
0.393 0. C.ll4 
0.303 0.009 

He an Var. 
0.580 0.001 
0.538 0.004 
0.506 0.009 
0.327 0.017 
0.334 0.015 
0. 23E3 0.009 

I·1ean -v8 .. 1--o" 

0 r::,')7 ._.,c.. 0.046 
0.510 0.040 
0.457 0.052 
0.204 0.011 
0.177 0.004 
0.124 0.003 

0.652 0.001 
0.648 0.001 
0.603 0.006 
0.457 C.Ol5 
0.465 0.014 
0.347 0.015 

Hvv Ili3 

o.o 2.5 
0¢0 

Hw· Hs 

o.o 0.2 
0.0 

0.0 

t; ....... .:G63t3 

Il/t J~./J I; ... l;l 

"'1 :7(c:: tjf~li -, 

g:g~a~r~ 
()(I() '1 r, 

""' • c. 
0.0 

I ) 
\ 
) 

) 

., 
5 ..:_. G 

(" () ·t) . 

.}.!D 

) 
I 
\ 
) 

) 

0.0 

l . .... 

-, l l j,. 

l 1 
]_ 

ve .. r· _.. J:~ B .. ·t i () s 
Ii~·~· lis j~r,.-;.r lJs 1'.,1-J" I'fJ 

l 

v:::u~~-ra. t:ios 
li~·; }Is Iivl Ls ~F1<r }"is 

1 

var-~ra.tios 
H1·Y l-Is IiVT LB lr111 1{\::::: 

1 1 
1 

l 

1 

vc1:c-,r2 .. .~Gj .. os 
I[\:f I-i.r:~ Lll IJs ~\r .B's 

1 

l l 
l 



Pe1~forr~t:::~JJ.c:e Gl'1.r:J.ll!c:~;;c~ 1.J~ncle::.-.; ::,;t,. 
•""''~""'·"""-"""""-~• ,.o,. -'"· ,o<."J'.,_.,.,,.,...,_...,.,_.,.......,_,o.:~-<.··~· •'-'-n:u.><.'' _,,..,,.,, · • - .... ,.._,,.H,,..~·o .• :c· > "'""'·'· 

Hode I~c-::an Vo.r. 

H'v! -~0. 005 0 ,. 001 
Hs -C.OlO U.COl 
Iivf 0. 005 0. COl 
Lf> o.ocn o.oo1 
~F\r Ocr059 ()eO(J) 
.f:'s 0.064 0.003 

r· r· ,) • u 

"'(; ..... ·t r~. ~:;; ·;J C) 

C (\ 
) ti" '-1 c~ ~ 2 ::; ~C) 

() ~ \) ~~ \1 [-:~· 
ij"~~(j 

r•. r· 
t)" v 

Estimated ·Tin.1e o:f ~1'ruil::5_:7_(: 
·----~------~-- ····---·~-~--~~--~-· . .,-~----"··- __ (.,·"· 

t"--' t C: ~) 
Node Hean lis :en 
Hw 1 (..... 1 51 OoO "! ':"; 0.6 0 ,, r· r~· 

(:: '3 J_ ...:....C <> Lt -- 4 _..1 • I \..J 0 I 

I1s 22.5 "0 0.0 1 .. 0 (). 9 O~G l 7 C.) ~-· e ' 

L1·1 20.0 30 0.0 () ¢2 0.3 (', 0 
v •'·-' 

IJS 20.4 22 OoO ..... , "') 
Ve-e.. 1.1 

J:'vf 20.8 65 CeO 1.1 
Fs 18 .. 1 33 CJ.O 

Interest in Trackinp Task 
~--........ .,..,,...,,. .. ~ .......... ._ ......... ---·· .... ·<•'-'-•·'""'""" .. ""' .......... , ...... ~ ... ,.-... 

·t--tet5tr:; 
rio de He an iT' var. H1·r Hs Lvr J~s E\; :Ps 

H1q 61.7 4'72 0.0 0.9 0. 7 ]_ 0 7 o. '7 ,, 3 I' I ~~ ... 

Hs 50.4 565 o.o ,. . '';." r ~ r~ \ : c.: ]~ ,) 2 Vo.)\ ... ,.,.J-'-•Q 
L-\f 5'3.5 599 0 r-l f ~;:5~ ~tJ ) '1 c l.l '' V \. ,;~~ •. ;;. •. ~ • -~ e tJ 
.lJS 78.0 359 o.c l 7.. ., "' -·) ..L 9 ....... 

FH 67.9 427 0 ·~ . \,., n -;: 
V • .) 

Fs 65.2 762 0.0 

Estimated Difficultv of Trsckin2 Task 
a~--..... v ... .,..,... ....... __ .... , __ ,_..,.._,...,~>T<'-'"""='__..,,.,.,..,.~,""""'~•.....,.,.,.. . .,.__. ... A,~J....,~._ ... _,.. __ _,,_,_.,,. 

t-te;:~ts 
Node l!Iean "lar. Hv liB •r Ls Fvv "' J.iVl l:S 

H1·r 32.6 156 OoO 0.3 r~ ? ( ~2.802.5} ...,t ~ ...... . "' ·-·~.,...... ... - ·~ .....,""'.,..; "'"~·'"" ~ 

Hs 34.5 147 0.0 · .. ' ,.. {. ) ') r.c '.' r 0. 5 \J.,~.'}. ·-.) ,: • 2 
L~·l 31.3 233 Oo0(~.7Q2.8~2.8\ d.,.~ .... ,, •. ~,, •.• ' ... , •. -.~·~ I 

Ls 49.8 41 n C(7 l""l ~·, .. .: • ; .;Lt,.~ 1 -'- • c_ 
:F1; 43.0 32 0.0 (.1..5 
Fs 45. 5 126 o.o 

Node ITean Var. 

Ihr 21.4 218 0.0 n ? 'l r.::: 2. 3 ( ,g_.~_7 9. .:?:...o"Sl) ~. ~ .L.) 

Hs 22. r7 91 0.0 1.5 2 . 3 ( 2 . 6 Q ·:, • ij ) I 
~~ .C:---· 

L1-r 33.0 292 o.o "i 3 
·- 0 0.9 l c L~ 

IJS 44.2 ~·r ~.) o.o 0.8 0.) 
JJ"v: 38.1 187 0.0 0.7 
Fs 41.9 277 0.0 

VD.:::·~-~rn~t :Los 
U-,r lis ~ .. 

:Ls 
-,., 

j·i't:':! •.•. w J,,ii'/J ~-N- ~ ) ... • 

"1 l 
., "1 2 ~,..; 

• L J. • .J.. ~-' 

l l l 2 
,,. 
--, 
.-' 

1 1 ') 
,... 

L. c_ 
., ·'":I '" J.. '-- c_ 

1 1 
,.J.. 

1 

·\rar~-···:ca~tios 

H"tv II;1 J.J;_v· J:s l~·J 1~-,c~ 
•1-o )...) 

1 2 2 2 l 2 
1 1 j_ 2 1 ..... 

1 1 rt 1 .::. 

1 2 2 
1 ') ,_ 

-, 
·-'-

var·"·:catios 
Hw B~3 L1,'1 IJS E\.r f's 

l l -, 1 1 0 
..L c . 

1 "I 2 l J _,_ 

1 2 l l 
1 1 2 

1 2 , 
.J.. 

var-x·at:Los 
Hi'l l-Is L"VT IIS .F~\7' Pc• -"' 

l 1 2 4 5 1 
1 2 3 5 1 

1 /6..'( ' \ ) :J) 2 
1 2 3 

1 4 
1 

var--rs.tio 
Hvr Hs LI-J J.JS .'b"tr rs 

1 2 1 3 l 
.., 
.l. 

1 3 (1) 2 rj( 
./ 

1 2 2 ") _,_ 

1 3 2 
1 2 

1 



T-1od c; J.vic:a.n VB .. l~" 

I1v 
Hf3 

Node 

II~>t 
Hs 
LvJ 
Ls 
:F'vr 
Fs 

45 e () 

'-10(\~-
43.7 
60,7 
52.3 
59.6 

l'Iebn 

24o5 
16.6 
27.2 
23.6 
2]_. 8 
22. ;3 

)32 
290 
461 
L~38 
388 
266 

Var. 
1'-,k I ./ 

23 
375 

8 
15 
34 

1'-~~i;J 

o.o 

(\ ,-, ~, i 
\.,i • -.. ,; -f...- 0 .l. 

lis I.r:·r r~s l\i J?s 

1.5 c~ r;:; . e _./ 0.2 0 ~ (7 C)~ 5 
o.o J ;,!;j or,') 8)" 7. 

• ·- Q (.t \ -t~~. v. .,';:;;:, .... _-; c:.. ~ ) 
o.o Oo6 .1 ~ 

.L ... L c~ 0 9 
0.0 1.4 0.7 

o.o 0.3 
o.o 

'fotc~.l \lc'?·~ds \lrti t·~e11. o.n C}tlsst~orlrlo..ireF:i 
·-·-~·---------·-----~-~--f=·tests-·----·-·· 

r1ode Eea.n Var. H1.;r Hs Li'7 Ls }~\~ is 

1620 0.0(3.9)1.5 1.8 1.4 1.7 
2340 0~0 1.6 0.7 2.4(3.8) 
5320 o. o o. 6 o. 4 ·o:-9 

.t1\f 73.5 
Hs 166.5 
Lw· 118.8 
Ls 140.7 8470 0.0 1.1 1.6 
F1'r 1CJ7 .4 3420 0.0 0.4 
Fs 99.6 1080 0.0 
RAJ:, }'-,rc.:; 1··1 ~' .L 'i r-n 
;;___...;;!+~.r-;;;_l_,_;.<_. ~~----.--

t--tests 
i~Iode l''iean Var. ,.-:-

.rii'.Y I-is IJv; Ls F-r.-J E\s 

rhv 68.9 9·9 o.o Oo9 o.G 0.3 0.0 0~1 
Hs 7') 5 \ .. 12.8 0.0 0.4 0.8 0.6 (' Q 

) . -' 

Lvl 69'. 9 10.8 0.0 0.4 0.4 0.6 
Ls 69.3 8.3 OQO 0 ? . ~ 0.1 
1<"\r 70 8 6 15.2 0.0 0 0 ·--Fs 69.1 9·6 o.o 
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\ra_~c-1~8~ tj_o r::: 
''l'"f' 
tl ... k"l Hs "I' 

.!.Ji!J" l;G E~vJ J:!'s 

1 l l. 1 1 
, 

...!.. ..1.. 

1 2 2 -, l .J.. 

1 ... l l .. J. 

1 1 2 
1 2 .J.. 

1 

vo.r···ratios 
H1:r Hs J~vl Ls rvr Fs 

var-rat:i.os 
Rlf Hs Lv1 Ls 

l 2 3 5 
1 2 3 

l 2 
1 

vt:.u'-·ratios 
Hw Hs Ii'.·l Ls 

1 1 1 1 
1 1 ., 

.J.. 

1 l 
1 

~~ .~ \f J:"s 

2 2 
2 2 
2 (5) 
3 (-· ,§) 
l ) 

1 

F\'1 Fs 

2 1 
I 1 ..... 
2 1 
? 1 '-

1 2 
1 



26(.: 

0 Ninutes 50 



26l 

1.0 

0 

l .. O 

0 Time Ninutes 50 
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0 Time Nintttos 50 

0 Time Ninv.tes 50 



263 

l .. O 

6 

0 

0 Time I1inutes 50 

l .. O 

0 

0 Time l1inutes 50 
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0 Time Ninutes 50 

0 Time Hinutes 50 
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0 Time I1inutes 50 

0 Time I,'Iinutes 50 
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1.0 

0 

0 Time I'1inutes 50 

0 Time r.:rinutes 50 
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0 Time T1inutes 50 

0 Time 50 




