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This paper is concerned with establishing broadly-based system-theoretic foundations and practical
techniques for the problem of system identification that are rigorous, intuitively clear and conceptually
powerful. A general formulation is first given in which two order relations are postulated on a class of
models: a constant one of complexity; and a variable one of approximation induced by an observed
behaviour. An admissible model is such that any less complex model is a worse approximation. The general
problem of identification is that of finding the admissible subspace of models induced by a given
behaviour. It is proved under very general assumptions that, if deterministic models are required then
nearly all behaviours require models of nearly maximum complexity. A general theory of approximation
between models and behaviour is then developed based on subjective probability concepts and semantic
information theory The role of structural constraints such as causality, locality, finite memory, etc., are then
discussed as rules of the game. These concepts and results are applied to the specific problem or stochastic
automaton, or grammar, inference. Computational results are given to demonstrate that the theory is
complete and fully operational. Finally the formulation of identification proposed in this paper is analysed
in terms of Klir’s epistemological hierarchy and both are discussed in terms of the rich philosophical
literature on the acquisition of knowledge.

1 Introduction
The problem of inferring the structure of a system from observations of its behaviour is an
ancient one with many ramifications. The literature on the subject is vast, having its roots in the
philosophical problems of the nature of reality and our inference of it from sensations (Locke,
1690; Berkeley, 1710; Kant, 1781). Plato’s (380BC) famous simile of the prisoners in the cave
who, “like ourselves . . . see only their shadows, or the shadows of one another, which the fire
throws on the opposite wall of the cave”, epitomizes the inherent uncertainty and tenuous nature
of inference processes that we all perform and take for granted in our everyday life.

Even if the metaphysical problems of reality are discarded for a more pragmatic approach that
asks, not whether our inferred structures are real, but instead whether they at work, i.e. are
useful, or valid in some weaker sense, deep philosophical problems remain. If our model
structure accounts only for the observed behaviour on which it is based then it appears to suffer
from the usual defect of deductive inference, that it is inferentially vacuous leaving us with only
a re-description of the observations. Whereas if we demand that our structures be predictive,
allowing us to account for further observations, then we come up against Hume’s (1777; Popper,
1972) conclusive arguments that inductive inference can never be validated (at least, neither
deductively nor inductively).
Much of the literature on the “philosophy of science” is concerned with the epistemological
problems stemming from Hume’s arguments. Reactions range from existentialist dread
(Heidegger, 1949) emphasizing the personal and unique nature of our experience and evaluation
of it, to the totally impersonal formal methodologies of incremental data acquisition and model
structure adjustment of Carnap’s logical probability and confirmation theory (Carnap, 1950;
Carnap, 1952; Schilpp, 1963; Carnap and Jeffrey, 1971; Erwin, 1971; Swinburne, 1973).
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Within this spectrum one has a range of existentialist positions (Blackham, 1961); the deep
methodological studies of Brentano (1973) and Husserl (1965) leading to a variety of
phenomenological analyses (Pivcevic, 1975); arguments that observational descriptions of
phenomena are already theory-laden (Hanson, 1958; Polanyi, 1958; Gale and Walter, 1973);
logical analyses of the role of analogy in model formation (Hesse, 1966; Dorrough, 1970;
Uemov, 1970), of simplicity and economy in model selection (Post, 1960; Blackmore, 1972;
Sober, 1975), and of convention in model utility (Lewis, 1969); the demonstrations that
deduction is itself open to Hume’s criticisms (Dummett, 1973; Haack, 1976); the detailed
analysis of specific flaws in the texture of Hume’s argument (Madden, 1971; Stove, 1973); the
aphoristic metaphysical reply to Hume given by Wittgenstein (Dilman, 1973); the various
indications of induction developed by Reichenbach (1949), Harrod (1956), Katz (1962), Black
(1970), Rescher (1973), and others (Swinburne, 1974); Popper’s (1959; 1963; Schilpp, 1974;
Putnam, 1975)  methodological point that hypothesized structures can never be verified, only
falsified, and the Popper-Carnap controversy (Michalos, 1971) over falsification versus
confirmation; the sociological models of scientific revolutions of Kuhn (1962) and the
painstaking studies of how these social functions actually operate of Merton (1973); the more
structural rationale of scientific method of Lakatos (1970) and Hesse (1974): the anarchistic
counter examples of Feyerabend (1975), and the coolly cynical appraisal of the arbitrariness of
the whole debate by Gellner (1974).

Many aspects of these philosophical debates find a more mathematical formulation in studies of
the history (Hacking, 1975) and foundations of probability theory (Reichenbach, 1949; Savage,
1954; Foster and Martin, 1966; Kyburg, 1970; Ruzavin, 1970; Carnap and Jeffrey, 1971; De
Finetti, 1972; Fine, 1973; Maxwell and Anderson, 1975), semantic information theory (Bar-
Hillel and Carnap, 1953; Bar-Hillel, 1964; Hilpinen, 1970; Hintikka, 1970), decision making and
statistical inference (Jeffrey, 1965; Levi, 1973; Menges, 1974), computational complexity
(Martin-Lof, 1966; Kolmogorov, 1968; Willis, 1970; Schnorr, 1971; Chaitin, 1975; Lempel and
Ziv, 1976) and grammatical inference (Feldman, 1972; Patel, 1972; Maryanski, 1974; Fu and
Booth, 1975). The philosophical debate has also become rather more pointed in recent years
because it has been possible to apply the arguments operationally to machines (Putnam, 1964)
that exhibit reasoning by analogy (Kling, 1971), law discovery (Newell and Simon, 1972;
Simon, 1973), inference from incremental observations (Solomonoff, 1964; Klir, 1975),
expectation (Nelson, 1975), and many other manifestations of human learning behaviour
(Andreae and Cleary, 1976).

With this background in mind one treads warily in the development of behaviour-structure
inferencing techniques in system theory. Many of the philosophical problems may be evaded by
assuming that the observed behaviour arose from one of a set of known possible systems. For
example, Zadeh (1962) defines system identification as “the determination on the basis of input
and output, of a system within a specified class of systems, to which the system under test is
equivalent”. Most practical studies of system identification (Eykhoff, 1974) operate within this
framework and presuppose both a “specified class of systems” and a well-defined decision
procedure for determining that a system is “equivalent” to one of these systems on the basis of its
input-output behaviour.

I shall adopt this point of view in this paper and give a general systems theoretic formulation of
the identification problem that encompasses previous specific formulations and yet is sufficiently
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precise for some interesting features of identification to be determined. In particular the
formulation deals very effectively with a major problem left open in the definition above—that
of defining “equivalence” when the class of systems considered is acausal in some sense, e.g.
non-deterministic or stochastic automata. The input-output behaviour of an acausal system is not
uniquely related to its structure and some element of approximation (Wharton, 1974) is essential
in the definition of equivalence. The formulation proposed allows for this in a very clear and
general form that enables, for example, the problem of identifying stochastic automata, or
grammars, to be rigorously defined and solved (Gaines, 1975a; Gaines, 1976a; Gaines, 1976d).

Out of the general formulation come two specific lines of development:-

a) How can the techniques be applied to specific classes of system and what theoretical and
practical results may be obtained, i.e. given that the source of behaviour is a deterministic
finite state automaton (DFSA) or a stochastic finite state automaton (SFSA) what are an
appropriate definition of equivalence, and a practical implementation, and what results
may be obtained about them, theoretically and experimentally?

b) How should the class of model systems be specified and what happens if the observed
behaviour arises from a system not in this class? e.g. will the identification svstem behave
reasonably and give some approximate and useful results, or does it fail completely. Here
there are some surprising results that run counter to our (current) intuitions.

Both aspects of the identification problem are developed in this paper. In particular, the problem
of identifying stochastic finite state automata and grammars is analysed theoretically and
practical experimental results are given. These are closely related to the literature on
computational complexity already noted. but have additional interest because they also establish
close links with subjective foundations of probability (Savage, 1954; Smith, 1961; Smith, 1965;
Aczel and Pfanzagl, 1966; Shuford, Albert and Massengill, 1966; Winkler and Murphy, 1968;
Savage, 1971; Winkler, 1971; De Finetti, 1972; Hogarth, 1975; Shuford and Brown, 1975), in
particular Pearl’s (1975a; 1975d; 1975c; 1975b) recent results on economic bases for subjective
probability and relations between approximation and complexity. Also the results of using
classes of model systems different from the system observed are analysed and discussed for a
variety of cases. The various aspects of the problem are also linked to the rich philosophical
literature on the acquisition of knowledge referenced above This is made more explicit and
precise than was previously possible by using the hierarchical classification of epistemological
levels recently proposed by Klir (1976) as a framework for both the philosophical connotations
and the identification techniques.

This paper is one of a series concerned with establishing broadly based system-theoretic
foundations and practical techniques for the problem of system identification that are rigorous,
intuitively clear and conceptually powerful. An informal introduction to the techniques and a
range of experimental examples have been given in (Gaines, 1976a), and studies have been
reported of applications to the inference of finite-state probabilistic grammars (Gaines, 1976d). It
is expected that later papers will report particular applications to the analysis of sequential
behaviour in humans and animals. The role of this paper is to provide the background and
foundations for such studies.



4

2. A General Formulation of the Identification Problem
Our problem can be stated initially to be: “given a sample of the behaviour of some system, to
determine the optimum model from some prescribed models that would account for its. Note that
Zadeh’s definition of the previous section has already been generalized. We do not need at this
stage to define what is meant by behaviour the terms of reference by which we describe it, etc. In
particular. the notions of input and output have been dropped. These are structural concepts that
belong to the models not the behaviour, and in the examples given it will be shown that the
input/output distinction can be inferred and need not be postulated. A similar remark has been
made by Klir (1975) who calls such systems without the input/output distinction neutral.

In addition the notion of equivalence between behaviour and structure has been dropped. This, in
the sense of a mathematical equivalence relation, is too powerful a notion for a theory that must
encompass the modelling of acausal systems. We need instead some concept of degree of
approximation, an order relation that allows us to say that one model accounts for the behaviour
better than does another. When the more powerful equivalence does exist, for example, in
modelling the behaviour of deterministic finite-state sources with DFSA then it allows for the
elegant category-theoretic formulation of identification in terms of an adjunction between
behaviour and structure developed by Goguen (1973; 1975), Arbib (Arbib and Manes, 1974;
Bobrow and Arbib, 1974), and Ehrig (Ehrig and Kreowski, 1973; Ehrig, 1974).

However, determinism is a myth in the real world, although the success of mechanistic models of
the universe in the eighteenth century has made it something of a holy grail for science until the
present day and there is substantial evidence that the assumption of deterministic causality is
deeply rooted in both human cognitive and perceptual processes (Gaines, 1976f). Many authors
have argued for the replacement of deterministic causality with probabilistic causality (Rescher,
1970; Mackie, 1974; McClelland, 1975; Suppes, 1984). I have proposed elsewhere (Gaines,
1976b) that the process in science that Carnap (1950) calls precisiation, of replacing a
phenomenal explicandum with a noumenal explicatum need not be interpreted in the narrow
sense of precise deterministic explicata, and have demonstrated (Gaines, 1976e) that this is not
only a metaphysical point but also a practical one—the universe becomes incredibly complex and
our models of it nonsensical if we assume determinism in the face of even a slight trace of
acausal behaviour.

2.1 Complexity and Admissibility

Having weakened equivalence to an order-relation of approximation, we face one residual
problem with the definition above, that the concept of an optimum model is no longer
appropriate. For example, imagine that you and I are each given the same sample of behaviour
and asked to model if from the same class of models. “My model is a better approximation,” I
say, “Ah,” you reply, “but mine is a far simpler model. Indeed, I am not sure that all yours does
is not just to retain a memory of the behaviour, whereas mine, whilst a worse approximation, is
clearly a far better representation. If the behaviour were actually being generated by the system
corresponding to my model the degree of approximation I have achieved would be quite
reasonable.”

These are the key issues, that we do not rate all models as themselves equivalent. There is
invariably an order relation on our prescribed class of models that gives rise to a trade-off
between the degree of approximation and the preference for models. It is common to call this
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ordering one of complexity with the preference being for the less complex models. For
convenience I shall adopt this terminology, but with the warning that the order relation is not
intrinsic to the class of models. We may both adopt the same class of models but what I regard as
complex may for you be simple. The ordering of models in terms of complexity is arbitrary and
depends upon our individual points of view.

Too much stress cannot be laid upon the fact that our model classes are incompletely specified
for purposes of identification until we have defined an ordering upon them. It is a trap into which
we may easily fall, particularly in general systems theory. Several classes of models open to us
appear so general that we feel they must be adequate to account for all possible behaviours. And
so they are, but that is not sufficient to allow us to suppose that we can base an all-embracing
system science upon this class of systems. When we specify our order relation upon the models
we may find that the behaviours of many important systems require complex models under our
ordering, whereas, with a different ordering on the same class of models, they all become simple.

If this happens then it is probable that there will be a scientific revolution in which the order
relation on our models is changed to make the observed world less complex. Since we normally
wish to associate the ordering with some intrinsic feature of our models this will also lead to us
viewing the models in a different way so as to emphasize some new aspect of their structure. For
example, clearly every finite sample of behaviour (which is all we ever have) can be accounted
for by a DFSA. However, so can it by an SFSA or a Turing machine—why choose one rather
than another? The results of (Gaines, 1976e) show that the behaviour of a simple stochastic FSA
requires, in general, a very complex deterministic FSA model, and, likewise, the behaviour of a
simple push-down automaton requires very complex models with both DFSA and SFSA.

Given order relations of: complexity on our class of models, and of approximation on the extent
to which a model accounts for a given observed behaviour, it is possible to give a precise
formulation of identification in a general systems context: “given a sample of the behaviour of
some system, to determine those models from some prescribed class of models that are
admissible in that, for each one, any other model that gives a better approximation in accounting
for the behaviour is more complex.” The concept of admissibility is one borrowed from statistics
(Weiss, 1961) and proves a powerful one in problems of control theory (Kwakernaak, 1965) and
pattern recognition (Gaines and Witten, 1977) in situations where no definition of optimality is
possible. Note that there is rarely a unique admissible model but instead a subset containing
several admissible models. However, this subset has some interesting properties that do much to
make up for the lack of a single unique model.

In the next subsection I shall put this definition of identification into mathematical form, go on to
analyse some of its properties, particularly those related to computational complexity and then
develop more specific features of it related to particular classes of identification problems.

2.2 Mathematical Formulation of Identification

The concepts developed in the previous sections may be formulated more formally in terms of: a
set of possible observed behaviour, B; a set of models, M; the pointed monoid, (OrdM,≤), of all
order relations on M with one specified relation, ≤, singled out; and a mapping, ƒ: B → OrdM,
from the set of behaviours, B, to the set of order relations on M, OrdM. The quadruple (B, M, ≤,
ƒ), defines an identification space. The relation ≤ is one of model complexity and if m, n ∈ M are
such that m≤n we shall say that the model m is not more complex than n. Other considerations
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being equal it will be assumed that the least complex possible model is preferred. Note. however,
that ≤ may be only a partial order so that, in general, there will be a set of minimal models rather
than a unique minimum. The mapping ƒ is determined by the further order relation of
approximation that each behaviour induces on the set of models. We shall write for b ∈ B, ≤b  =
ƒ(b) ∈ OrdM , and if m, n ∈ M are such that m ≤ b n we shall say that model m is not a worse
approximation to behaviour b than is model n. The best models for b are thus those minimal in
the order relation, ≤b which again need not be more than a partial order.

Now we are in a position to define a solution of the identification problem in terms of the
product of the two order relations, ≤ b

*

∀ m, n ∈ M, m ≤ b
*n ⇔ m ≤ n  and  m ≤b n (1)

i.e. m ≤ b
*

 n if and only if m is neither more complex nor a worse approximation than n. The
minimal elements of the new order relation have the property that there are no other models that
are both less complex and a better approximation than them. Even if both ≤ and ≤b are total
orders it is likely that ≤ b

*  will be a partial order (we can trade more complexity for better
approximation) and hence there will be in general no unique minimum model. The minimal
elements are all admissible (Weiss, 1961) solutions to the identification problem because they
cannot be decreased in complexity without worsening the approximation and cannot be improved
in approximation without increasing complexity. Thus we may define the solution of the
identification problem for a space (B, M, <, f ) and an observed sequence b ∈ B  to be the
admissible subspace determined by b, Mb ⊂ M, such that:

Mb≡{m: ∀n ∈ M , n  ≤ b
*

 m ⇒ m ≤ b
*

 n} (2)

i.e. if any model is better than one in Mb then it is equivalent to it under the order relation ≤b*,.
the usual requirement for minimality. Thus models in Mb are either equivalent or incomparable
in terms of ≤ b

*

. Note that, for rigour when dealing with infinite sets we should impose the
constraint that the minimal elements under ≤ b

*

.exist and belong to M, e.g. by taking a suitable
closure.

Mb may be shown to have similar, but inverse, structures under ≤ and ≤ b
* :

Result 1. For comparable models, the relations ≤ and ≤b are antitone in Mb .i.e. ∀m,n∈Mb:m and n
are comparable under ≤ and ≤b, m≤n ⇔ n≤b m

Proof Assume m ≤ n—if m ≤b n then m ≤ b
*n so that, since n∈ Mb, n≤ b

*  m which implies n ≤b m.
Conversely, assume m ≤b n—if m ≤ n then m ≤ b

*n so that, since n ∈ Mb, n ≤ b
*m which implies n ≤

m. Note the symmetric way in which the relations of complexity and approximation have entered
the discussion and definitions, and the anti-symmetry between them in the admissible subspace
of models shown by this result. Models in the admissible subspace are effectively unordered by
≤ b
*  but ordered in effectively identical, but inverse, ways by ≤ and ≤b.

2.2.1. Example—identification of deterministic automata It is these well structured subspaces
that replace the unique solutions of, for example, problems amenable to the Nerode equivalence,
(Nerode, 1958; Arbib, 1969) and it is of interest to see how such problems fit within the current
framework. Consider the identification space (D*,M, ≤ ,f). where D*  is the free monoid
generated by a (finite) alphabet, D, of atomic descriptors (inputs or outputs); M  is the set of
irreducible, Mealy, finite state deterministic automata with a specified initial state having inputs
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and outputs in D; the ordering of complexity, ≤  , is determined by the number of states of the
automata, so that m ≤ n ⇔ number of states of m less than or equal to the number of states of n;
and the ordering ≤b, induced by a sequence of observed input-output behaviour, b ∈ D*, is in fact
a binary classification in which m is maximal in the order unless it generates the sequence b
exactly when it is minimal (where m starts in the specified initial state, receives the input
sequence imbedded in b and emits an output sequence that is tested against that imbedded in b).

This is the standard case of deterministic automata inferencing from a sample of the input-output
behaviour and the Nerode equivalence. or one of its generalizations, may be used to determine a
minimal-state machines (Rabin and Scott, 1959) using high-speed algorithms (Hopcroft, 1971).
This essentially splits the space of possible machines into three sets:

1) a unique machine (up to isomorphism) that is minimal in the ordering of approximation
(an exact fit) and, subject to this, minimal in the ordering of complexity (minimal state).

2) a set of machines with fewer states than this that are maximal in the ordering of
approximation, i.e. are simpler but do not fit the behaviour.

3) the remaining machines with more states, or with the same number of states that do not fit
the behaviour.

The first two sets of machines together form the admissible subspace, Mb , for the problem. In
this example the second set of machines is of little interest because there is no gradation of
approximation. It would be possible to define a graded form of approximation in terms of some
finer evaluation of the extent to which the outputs of a model, m, diverge from those of the
behaviour, b. However, in conventional deterministic modeling it is the uniqueness of the
“solution” obtained in the first set of admissible models that is of interest.

2.2.2. Example—identification of probabilistic automata The problem of identifying probabilistic
automata will be treated in more detail in sections 3.3.1 and 4. However, it is useful to contrast
the techniques I have previously described (Gaines, 1975a; Gaines, 1976a) with those for
deterministic automata above. The main difference between the two problems is that a
probabilistic automaton model gives not a specific output but instead a distribution over possible
outputs, and a distribution over possible next states. We can evaluate the distribution over
outputs with respect to the actual observed output by using one of the loss functions devised to
elicit subjective probabilities (Aczel and Pfanzagl, 1966; Shuford et al., 1966; Winkler and
Murphy, 1968; Savage, 1971; Winkler, 1971; Hogarth, 1975; Shuford and Brown, 1975), e.g. a
loss of minus the log of the proposed probability for the output that actually occurs (this is zero if
the actual output is predicted with probability 1 and positive otherwise). We can eliminate the
effect of having only a distribution over next states by using observable automata only in which
the actual output that occurs is sufficient to resolve the uncertainty as to the next state.

Consider the identification space, (D*, M, ≤, ƒ), where: D* is a free monoid as before; M is now
the set of irreducible, observable, Mealy, finite-state probabilistic automata over D with a
specified initial state: the ordering of complexity, ≤, is number of states as before; and the
ordering, ≤b, induced by a sequence of observed input-output behaviour, b, is determined by the
natural numerical ordering on the sum of the losses when a model, m, is used to predict b (where
m starts in the specified state. receives the input sequence imbedded in b and emits probability
distribution over the outputs that are used in conjunction with the actual output to determine both
the loss and the next state). The smallest loss gives the best approximation and zero loss
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(minimum possible) corresponds to exact deterministic prediction of the outputs and hence to the
deterministic modelling already discussed.

The admissible subspace for probabilistic identification does not split trivially as it did for
deterministic modelling. For a given number of states there will generally be models that give a
smaller loss (better approximation) than any models with fewer states. As the number of states in
the model (the complexity) increases the loss will get less until it eventually becomes zero and a
deterministic model has been found. However, I have shown elsewhere (Gaines, 1976e) that this
(maximum-state or best approximation) admissible model, with a truly random source, will have
on average about the same number of states as the number of observations (length of behaviour,
b) and is a structurally meaningless memory of the observations.

It is also now of interest to look at the other extreme, not the maximum-state admissible model
(perfect fit) but the minimal-state admissible model with, in fact only one state. A 1-state model
can predict only a constant distribution over the descriptors, say µ (d) for d∈D, where:

µ( )d
d D

=
∈
∑ 1 (3)

and, if there are k(d) d’s in the behaviour b, the total loss will be:

P k d d
d D

= −
∈
∑ ( )log( ( ))µ (4)

which is well known to be minimized (Mathai and Rathie, 1975) when:

µ(d)= k(d)/k (5)

where:

k k d
d D

=
∈
∑ ( ) (6)

The mean expected loss under these conditions is:

( / ) ( ) log( ( ))
max
P k d d

d D

= −
∈
∑ µ µ (7)

which is the (zero-order) Shannon entropy for the distribution.

Result 2. If we plot the approximation against the complexity for the admissible models we get a
monotonically falling graph that intersects the abscissa (minimum loss) at about the length of the
observed behaviour if it is a Bernoulli sequence, and intersects the ordinate (minimum states) at
an estimate of the entropy of the observed behaviour if it is a Bernoulli sequence.

It is this first condition of maximal complexity. that gives an operational definition of the
concept of randomness of even a single sequence (Kolmogorov, 1968) within the framework of
computational complexity (Willis, 1970; Schnorr, 1971; Chalfan, 1986). It is the second
measurement, of entropy, that is conventionally taken as a measure of the randomness of a
sequence. Note, however. that the sequence need not be Bernoulli (zero-memory) for the first
criterion (maximum complexity) to apply. The later discussion and results will show then that
the shape of the entire plot of approximation against complexity for the admissible subspace,
rather than just the intercepts on the axes, may be used to analyse the randomness and the
structure of the sequence of behaviour.
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In the next main section I shall first generalize the first part of the result above to show that the
expected complexity of a randomly generated behaviour is nearly equal to the size of that
behaviour under very weak assumptions, and, secondly, in relation to the second part of the
result, I shall derive measures of approximation with certain convergence properties that give
rise to an expected loss that is the entropy of a behaviour, again in the general case under very
weak assumptions.

3. Complexity, Approximation and Partitioning of D-Sets
In considering the identification of sequential systems the observations are essentially ordered in
time and it is natural to consider them to be some subset of a free monoid of atomic descriptions
(as was done in sections 2.2.1 and 2.2.2). I shall make this assumption in sections 3.3.2 and 4 to
focus upon some specific inference problems. However, important results may be derived before
any specific structure upon observations is assumed, and, in the present section, no structure will
be postulated. The concepts developed and results obtained are thus applicable to problems of
identifying systems other than automata, e.g. to problems of optical pattern recognition where
there is a spatial rather than a temporal coherence between observations, or to the problem of
reconciling multiple observers of a system where these may be only a partial order on
observations from different sources.
We will take the behaviour of a system to be a mapping, b: E→D, from a (finite) set of events, E,
to a set of descriptors, D. The event space will normally have some algebraic structure, such as
an order relation, upon it. Note, however, that knowledge of this structure (if it exists) is not
necessary to the results of the following section (it will not be introduced until section 3.3), and
that the term event is not intended to have necessary temporal connotations, e.g. an event might
be a configuration of surface elements making up a picture and the mapping from events to
descriptors might specify the reflectance and hue of each element. It is convenient to adopt
Goguen’s (1974) neat terminology for such mappings and call the behaviour a D-set with E as its
support and D as its truth-set. This establishes an important link to our other studies of the logic
of automata (Gaines and Kohout, 1975), and the possible logical, algebraic, topological and
arithmetic foundations of automata theory. In particular it establishes a link to the wide range of
results on fuzzy and probabilistic systems and the relationships between them (Goguen, 1974;
Arbib and Manes, 1975; Kaufmann, 1975; Zadeh, 1975; Gaines, 1976b; Gaines, 1976c; Zadeh,
1976; Gaines and Kohout, 1977). Such structural considerations will be touched on only briefly
in this paper (section 5.1) but form an important direction in which to extend the results.

3.1 General Results in Complexity

The first part of Result 9 of the previous section may now be derived with less assumptions so
that it applies to the more general formulation of system behaviour given in section 2.2 and
above. It is possible to generalize the enumerative technique used in (Gaines, 1976e), as Pearl
(1975d; 1975c; 1975b) has done independently in conjunction with Shannon’s rate distortion
theory, to show that nearly all behaviours are complex given certain very weak and intuitive
assumptions about the number of models with a given complexity and the number of behaviours
of a given size.
Assume that the complexity of a model is an integer in the range 1 to infinity and that the
numberof distinct models with complexity, C, or less is M(C). Then we may show that the mean
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complexity of a complete set of models up to and including those of complexity Cmax is itself of
order Cmax.

Result 3. If M(C) grows at least exponentially with C then the ratio of the mean value of C, Cmean,
to Cmax in a complete set of models of complexity up to and including Cmax is asymptotic to 1.

Proof The mean complexity is given by

€ 

Cmean =
1

M(Cmax )
C × (M(C) −M(C −1)) =

C=1

Cmax

∑ Cmax − M(C) /M(Cmax )
C=1

Cmax −1

∑ (8)

Now if M(C) grows at least exponentially with C then we have:

€ 

M(C) /M(C −1) ≥ A (9)

for some constant A, so that:

€ 

M(C) /M(Cmax )
C−1

Cmax −1

∑ ≤1/(A −1) (10)

So that:
Cmean  ≥ Cmax -1/(A – 1) (11)

Hence, the ratio of Cmean  to Cmax is asymptotic to 1.

Exponential growth is a common feature of most model sets, such as automata, since the addition
of one more state multiplies the number of possible models by at least a constant. However. it is
also possible to relate the need for exponential growth in the set of models with a similar rate of
growth in the set of possible behaviours. Take the size of a behaviour to be the number of atomic
descriptors necessary to describe it, i.e. the number of events in the behaviour. and let the
number of distinct behaviours of size S be B(S). Suppose now that for deterministic modelling it
is impossible for a given model to be an exact fit (zero approximation) to more than one
behaviour, i.e. there is a mapping from models to behaviours, not necessarily 1-1. Thus we must
have that the maximum complexity of models necessary for behaviours of size S is bounded by:

€ 

M(Cmax ) ≥ B(S) (12)

If we now suppose that M(C) and B(S) are both similar functions of C and S respectively such
that Equation (12) implies:

€ 

Cmax ≥ S − k (13)

where k is a constant. Then, if all behaviours are equally likely, Result 3 implies:

€ 

Cmean ≥ S − k' (14)

where k’ is a constant, provided B(S) grows at least exponentially with S.

The size. defined in this way, of a D-set of Ne events over Nd descriptors is ( )Nd
Ne  showing the

required exponential growth. As noted previously, the action of a new element to a model will
usually increase the number of models by at least Nd also. For many cases the rate of growth of
models with complexity is a polynomial in Nd and C, times an exponential term of the form
Nd
C so that Equations (13) and (14) do apply. Thus the result expressed in (14) is of wide

applicability, loosely expressed:
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Result 4. The mean complexity of model required over a uniform distribution of behaviours of a
given size is asymptotically proportional to the size of behaviour provided the number of distinct
models and the number of distinct behaviours grow in a similar fashion with respect to
complexity and size, respectively, at least exponentially.

3.2 Approximation between D-sets

Having taken a behaviour, b, to be a D-set represented as a mapping from events to descriptors,
b: E →D, we might now assume that a modeller of the observed behaviour also produces some
behavioural D-set, m : E→D, as an attempt to represent b. A deterministic modeller would
produce a single, unique D-set and one could ask whether it was identical to b. However, if the
class of models available was such that identity was not possible then it would be necessary to
have some measure of the extent to which m approximates b. One obvious measure is the total
number of events on which m and b disagree:

€ 

N(b,m) = (1− λ(b(e),m(e)))
e∈E
∑ (15)

where λ  is a two-argument function that takes the value 1 if its arguments are equal and 0
otherwise.

N(b,m) is actually a distance measure, i.e. we can show:

N(x,x)=0 (16)

N(x,y)=0⇒x=y (17)

N(x,y)=N(y,x) (18)

N(x,y)+N(y,z) ≥ N(x,z) (19)

So that it is possible to speak of the measure of approximation as being the “distance” of the
model from the behaviour. The result is dependent only on λ itself being a distance measure and
hence generalizes to weighting schemes other than the simple one given above. If the D-set also
had the structure of a monoid then the measure N could be seen as closely related to measures of
string approximation (Sellers, 1974) used in studies of text editing (Wagner and Fischer, 1974)
and the determination of genetic ancestors (Fitch and Margolias, 1967; Sankoff, 1972).

Measures of approximation such as N would be appropriate to a modeller that proposed just one
behaviour to test against the observed behaviour. For example, in the context of modelling
probabilistic automata, the modeller might put forward the behaviour having maximum
likelihood. However, in general. an acausal modeller would propose not just one particular
behaviour but rather a set of possible behaviours, and we need a measure of approximation that
gives a distance from a set of behaviours to the observed behaviour. The minimum distance of
one object from a set is one well known extension, but fails in this case because a modifier could
generate all possible behaviours and hence ensure zero distance. If, a distribution over the set of
proposed behaviours is also given, however. then the mean distance of the modeller’s proposed
behavioural D-set from that actually observed would seem to be a suitable measure.

There is an alternative, but equivalent, viewpoint that throws new light on the problem. A
distribution over possible behaviours is equivalent to a set-of distributions over descriptors. one
for each event. The modeller can then be seen to be proposing for each event not a predicted
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descriptor but instead a distribution over possible descriptors. This move from (maximum
likelihood) deterministic predictions to so-called subjective probabilities has been studied both
theoretically and experimentally in recent years (Aczel and Pfanzagl, 1966; Shuford et al., 1966;
Winkler and Murphy, 1968; Savage, 1971; Winkler, 1971; Hogarth, 1975; Shuford and Brown,
1975) in order to elicit more information from human beings and to provide formal foundations
for subjective probability theory (Carnap, 1962; Good, 1962; Wright, 1962; Villegas, 1964;
Vickers, 1965; Menges, 1970; Grofman and Hyman, 1973). It is possible to use the techniques
and results developed in these studies directly inrelation to the current problem of acausal system
identification. Indeed, the developments reported here might be seen as an extension of
subjective probability theory to sequentia1 processes.

Thus suppose now that the modeller proposes, not a D-set of descriptors, but rather a set of
distributions over descriptors. a mapping, µ:E →[0,1]D from events to a product space of
numbers between 0 and 1 that sum to unity. I shall write µ(e,d) for the proposed value assigned
to descriptor d at event e—we have:

µ( , )e d
d D

=
∈
∑ 1  (20)

It is simple to extend the measure of approximation N  (Equation 15) to apply to these
distributions by averaging the value as previously defined over the distributions. Let:

NE b e d b e d
e E d D

( , ) ( ( , )) ( ( ), )µ µ λ= −
∈ ∈
∑ ∑ 1 (21)

If the µ(e,d) were in fact used as generating probabilities to generate a single D-set at random to
match against the behaviour, then NE would be the expected number of errors.

The table below illustrates the modelling process now envisaged and the calculation of the
measure NE. For comparison a maximum likelihood proposed behaviour is also given and N is
calculated.

Event : 1 2 3 4 5 6 7 8 9
Behaviour : A B C A A B B C C

A : 0.1 0.1 0.2 1 0.1 0.4 0.4 1 0.5
Model B : 0.2 0.4 0.1 0 0.2 0.6 0.6 0 0.5
Distributions C : 0.7 0.5 0.7 0 0.7 0 0 0 0

:Max. Likelihood : C C C A C B B A A/B

so that NE = 0.9 + 0.6 + 0.3 + 0 + 0.9 + 0.4 + 0.4 + 1 + 1 = 5.5

and N = 1 + 1 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 5

Thus the modeller proposes for event 1, not the maximum likelihood prediction C, but instead
the distribution (0.1, 0.2, 0.7) over (A, B, C), i.e. µ(1, A) =0.1, µ(1,B)=0.2, etc.

This formulation is interesting because it closely resembles the procedures used by de Finetti
(1972) and Savage (Savage, 1971) to elicit subjective probabilities from human subjects. De
Finetti notes that if a target sequence is generated by a Bernoulli source and the subject gives a
vector of numbers representing a distribution over possible symbols at each occurrence, then
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there is a loss function, that, when minimized by the subject, leads to him giving true
probabilities. This is in our present terminology:

SE b b e d e d
e E d D

( , ) ( ( ( ), ) ( , ))µ λ µ= −
∈ ∈
∑ ∑ 2 (22)

i.e. the sum of the squares of the differences between the proposed distributions and the actual
event “distribution” (1 for the event which occurred and 0 for each of the others). Savage shows
the same property for an alternative loss function:

LE b b e d e d
e E d D

( , ) ( ( ), )log ( ( , ))µ λ µ= −
∈ ∈
∑ ∑ 2 (23)

i.e. the sum of minus the logarithms of the components in the distribution of the elements that
actually occur in the behavioural D-set.

The convergence properties of these loss functions is readily demonstrated by assuming that the
descriptor at event e is itself generated probabilistically by the same generating probabilities
p(e,d) and proving that the minimum expected loss occurs where µ(e,d)=µ(e,d). It has been
shown (Aczel and Pfanzagl, 1966; Shuford et al., 1966) that there is an infinite family of such
loss functions with the convergence property that a subject minimizing them is forced to give
true probabilities in a probabilistic situation. De Finetti (1972) showed this happened
experimentally and the procedure has been used to assess “good probability assessors” in
meteorology (Winkler and Murphy, 1968; Winkler, 1971) and to get maximum information
about students’ knowledge in multi-choice examinations (Shuford and Brown, 1975). Pearl
(1975a) has recently given more meaning to the various measures that may be used to elicit
subjective probabilities by relating them to possible hypotheses that the subject might make
about the distribution of future payoffs in what, to him, is a gambling situation. For example SE
corresponds to an exponential fall in future expected payoffs and LE corresponds to the slower
decay of a Cauchy density. The original measure proposed, NE of Equation (21) does not lead to
the optimal modeller giving true probabilities, but is instead minimized by the modeller who
gives maximum-likelihood estimates in a probabilistic situation, i.e. a distribution having the
value 1 for the most likely event and 0 for all the others. Since, it again corresponds to well-
defined and well-known pattern of decision making behaviour.

The most striking difference between SE and LE may be seen by contrasting them on the
example given previously where E=5.5

    SE = (0.92+0.22+0.72)+(0.l2+0.62+0.52)+(0.22+0.l2+0.32)+(02+02+02)+(0.92+0.22+0.72)+
             (0.42+0.42+02)+(12+02+12)+(0.52+0.52+12)

         = 1.34+0.62+0.14+0+1.34+0.32+2+1.5= 7.26

    LE = -1og2(0.1)-log2(0.4)-log2(0.7)-log2(1)-1og2(0.1 )-log2(0.6)-log2(0.6)-1og2(0)-1og2(0)

          =3.32+1.32+0.51+0+3.32+0.74+0.74+∞+∞=∞
The logarithmic measure will not tolerate the situation where an event is given a valuation of
zero but then occurs—the error then becomes infinite, whereas both NE and SE give large but
finite errors in this situation. The logarithmic measure is also distinguished in that it depends
only on the valuation given to the event which actually occurred regardless of the distribution
over the other components. This has been taken by some writers as a desirable feature although
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the argument seems dubious and there are more meaningful considerations that make the
logarithmic measure attractive (see following section).

One important aspect of the move earlier in this section from the concept of a modeller
proposing a distribution over possible behavioural D-sets to the concept of its proposing a set of
distributions is that the loss measures may be regarded as having a component associated with
each event. The overall loss is, in all three cases, the sum of the losses associated with each
event. The component added for event may be described as the surprise caused by that event. All
three measures agree that the surprise caused by an event given the valuation I which actually
occurs is zero (e.g. event 4 in the example). They give varying weights to events which would
occasion little surprise (e.g. event 3) or much surprise (e.g. event 1) and, as noted, the
logarithmic rule expresses infinite surprise at an event that occurs when the valuation given to it
is zero. This valuation of “surprise” is consistent with the model of decision-making based on
“potential surprise” proposed by the economist Shackle (1955; 1969), and is particularly useful
in on-line learning algorithms where a marked increase in the rate of surprise may be used to
indicate the need for the recomputation of the model.

3.2.1 Entropy—the expected loss for probabilistic behaviour One can avoid the premature use of
evocative terms such as subjective probabilities for the distributions proposed by the modeller in
the previous section, preserving methodological neutrality until results, under certain
circumstances, prove the terms justified. The theoretical and experimental studies of de Finetti,
Savage et al., indicate that if the actual event sequence is probabilistically generated then a
modeller that is optimal (in the sense of minimizing the poorness-of fit measures, SE or LE) will
be forced to propose the actual generating probabilities of events. This result is an important link
between subjective and physical or frequentist accounts of probability theory. It is equally
important as a link between our general approach to system identification and probabilistic
modelling. However, the measures defined in the previous section and the identification
techniques based on them do not in themselves entail a hypothesis of probabilistic acausality.
The fact that they behave meaningfully and well when used with probabilistic systems is clearly
desirable, even essential, but there is no converse argument that they are based on a hypothesis of
probabilistic behaviour in the system modelled.

Clearly, we may now expect to obtain results for probabilistic modelling (optimality of
identification techniques, decision criteria for selecting amongst admissible models, etc.) which
do not necessarily apply in more general cases—indeed are not meaningful unless further
hypotheses are made about the more general case. Clearly also, there are few hypotheses
comparable in power and significance to that of a probabilistic generator. In the experimental
studies, I have taken examples of asynchronous systems modelling where no probabilities are
definable but it is possible to obtain weaker, structural rather than numeric, results for
identification techniques based on the measures of approximation defined. An example of
nonprobabilistic acausality will be given in section 4.3 where several samples of the behaviour of
a deterministic system are identified—the acausality arising through the sampling process and
having no numeric, probabilistic significance in the model. Such examples are important in
demonstrating the generality of the approximation measures outlined and also illustrate the role
of the probability logic (Rescher, 1969; Gaines, 1976b) underlying probabilistic models in
representing more general acausal phenomena; Kalman (1957) has shown that whilst linear
operational techniques may be applied to sampled-data or discrete systems separately, the most
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appropriate representation of a sampled-data, discrete system is pseudoprobabilistic; I have
shown elsewhere (Gaines, 1975b; Gaines and Kohout, 1975) the wider roles of probability logics
in modelling possibility and eventuality; and close links have been established (Rescher, 1963;
Danielsson, 1967; Miura, 1972) between probability topics and modal logics (Hughes and
Cresswell, 1968; Snyder, 1971) of possibility, necessity and time (Prior, 1967).

However, it is also of interest to determine what happens in a truly probabilistic situation when a
modeller does manage to propose precisely the optimal distributions that he is forced to converge
towards when minimizing the loss functions SE and LE. Suppose the actual probability of
occurrence of descriptor d at event e is p(e,d) and the distributions proposed by the modeller are
such that µ(e,d)=p(e,d). The expected values of the loss functions of equations 21 through 23
NE, SE and LE, respectively, are:

NE bp p e d p e d
e E d D

∧

∈ ∈

= −∑ ∑( ) ( , )( ( , ))1 (24)

SE bp p e d p e d p e d p e d p e d p e d
e E d D e E d D

∧

∈ ∈ ∈ ∈

= − + − = −∑ ∑ ∑ ∑( ) ( , )( ( , )) ( ( , ))( ( , )) ( , )( ( , ))1 1 12 2 (25)

LE b p
∧

( , ) =
e E d D

p e d p e d
∈ ∈
∑ ∑ ( , ) log ( ( , ))2 (26)

Equations 24 through 26 show that the expected value of the loss, or approximation measure,
when the modeller matches the actual generating probabilities is actually an entropy (Aczel,
1971) function for all three measures. In particular, LE of Equation (26) is the familiar Shannon
entropy whose significance in inductive inference has been emphasized by Watanabe (1969).
The coincidence in values of NE and SE is interesting but spurious since as noted previously,
whilst the condition µ(e,d)=p(e,d) gives a minimum for SE and LE, the corresponding condition
minimizing NE is:

µ(e,d)= 
1

0

, , '

,

if d d

otherwise

=



 (27)

where d’ is some descriptor such that:

€ 

p(e,d') =max
d
(p(e,d)) (28)

a maximum likelihood estimate. Thus De Finetti’s quadratic loss function SE of Equation (22)
has the same expected loss as the more obvious definition of NE in Equation (21) (expected
number of errors) but forces actual probability estimation on the modeller which NE does not. It
is also interesting to note that NE and SE are the expected value of cont(e&d) and LE is the
expected value of inf(e&d), linking these results to theories of semantic information and logical
probability (Carnap, 1950; Carnap, 1952; Bar-Hillel and Carnap, 1953; Schilpp, 1963; Bar-
Hillel, 1964; Hilpinen, 1970; Hintikka, 1970; Carnap and Jeffrey, 1971; Erwin, 1971;
Swinburne, 1973).

To give physical significance to the values p(e,d) within the current framework (in which the
events in E have so far been regarded as unique) we need to hypothesize some structure on the
event space such that many different events may be regarded as equivalent. Then the descriptors
at those events may be regarded as a sample space for some process generating descriptors with a
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probability distribution µ(e,d) (where µ(e,d) µ(e’,d) for equivalent e and e’). Such an equivalence
relation between events makes it possible for events, under the equivalence relation, to be
recurrent, and hence for a modeller to determine the generating probabilities. If there is more
than one equivalence relation (i.e. all events are not equivalent to one another) then there is also
some structure present to be determined by the modeller. The following section discusses this
problem of the determination of this structure.

3.3 Structures on D-sets

We have come remarkably far without assuming any structure on the D-sets representing
behaviour and proposed by modellers. This has been quite deliberate since I wished to effect a
clear separation between: (a) concepts of complexity and randomness (section 3.1); (b) measures
of approximation between behaviour and model (section 3.2); and (c) the modelling of sequential
machines (this section). It will be noted that the developments in sections 3.1 and 3.2 are
independent of one another and neither requires such postulates as: the behaviour is that of a
sequential machine; events are ordered in time: etc. The concept that a random behaviour is one
whose complexity is nearly equal to its size. and the result that the expected loss in
approximating a random event is an entropy for it. have both been obtained under very weak
assumptions and constraints. In particular neither involves notions of causality or of
computational complexity in terms of sequential machines. In the context of the-general
formulation of the problem of identification given in section 2.2 the first result relates to the
intercept of the plot of approximation against complexity for admissible models with the axis of
zero approximation. and the second result relates to its intercept with the axis of zero complexity
and to the significance of the approximation at different complexities. Thus the two results are
linked through the concept of an admissible subspace of models.

I emphasize the general status of these results because they will clearly have a role to play in any
more specific formulations of the identification problem In a sense they will be re-discovered for
each class of behavioural and model structures, and a major virtue of a general systems theoretic
formulation is to guide this re-discovery and allow the fundamental status of these concepts and
results to be seen independently of the class of problems for which they are obtained.
Conversely, the essentially structural role of notions such as causality can be seen more clearly if
they are separated from the numerical notions of complexity and entropy and only introduced at
this late stage.

3.3.1 The “Rules ofthe Game” What then are the rules of any further constraints upon the
behavioural D-set. that it is ordered, monoidal, etc.? In fact. they are best viewed as rules of the
game whereby the modeller is allowed to use the descriptors attached to some subset of events as
a basis for proposing distributions that apply to others. Consider the two extremes: the modeller
has to propose distributions completely a priori; with complete knowledge of events the
modeller can propose precisely the actual behaviour. Both these extremes are trivial and in any
realistic problem formulation the modeller will have partial knowledge about some events that
win influence his proposals about others.

I call the constraints upon the use of partial knowledge rules of the game because the modeller
can usefully be viewed as playing a game against an opponent, or at least being constrained by a
referee—he has to state what algorithm. within the rules of the game, he is using to propose a
distribution and then his opponent or the referee evaluates it and reports back the loss, or degree
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of approximation, achieved. This concept is useful because in practice, since we are concerned
with the problem of formulating a model for an already known behaviour, Of identifying its
underlying generative structure, the modeller actually knows all the behaviour and it is what he is
allowed to use that is constrained. For example, if events are ordered (e.g. in time) and the
modeller in proposing a distribution over descriptors for a particular event is allowed to use only
the value of descriptors for events properly less than that one, then it is said to be causal
(Windeknecht, 1967; Orava, 1971; Windeknecht, 1971). If there is a metric topology on the
event space and the modeller in proposing a distribution for a particular event is allowed to use
only the value of descriptors for events in a neighbourhood of specified size about that event then
it is said to be local. If the algorithm used by the modeller in determining its proposals for each
event is independent of the particular event then it is said to be uniform.

Non-uniform modelling can be justified if the event space has known inhomogeneities, e.g.
boundaries in optical pattern recognition. Uniform local algorithms are appropriate to such
operations as contour extraction in scene analysis (Moore, 1971; Duda and Hart, 1973) and has a
natural interpretation in terms of Lie groups (Hoffman, 1966; Grenander, 1969). They have been
studied, for example, by Minsky and Papert (1969) in determining the power of “diameter-
limited perceptrons”. Uniform local causal algorithms correspond to so-called finite-memory
(Hellman and Cover, 1970; Witten, 1976) algorithms, and have been studied as definite events
(Perles, Rabin and Shamir, 1963) locally-testable languages (McNaughton and Papert, 1971;
Zalcstein, 1971), etc.

Local and finite-memory algorithms must not be confused with finite-state algorithms. The
notion of state, as developed by Birkhoff (1927), Markov (1954; de Fiorino, 1966), Zadeh (1964;
1969), Salovaara (1974), and others, is a system concept of major importance in its own right
and quite distinct from that of “finite memory”. There is an ontological distinction between them
in that the “finite memory” refers to a bounded locality accessible in the environment, in the
observed behaviour, whilst the “finite-state” refers to a limited storage capacity in the algorithm,
or model.

States are best introduced into tile current discussion by considering them as (conceptual) tokens
that may be placed on events as an aid to proposing distributions. A finite-state algorithm has
only a specified finite number of distinctions between tokens that it may make. The placing of
tokens is governed by rules of (he game similar in their possibilities to those for proposing
distributions. However, the placing of tokens and the proposing of distributions is now allowed
to depend not just on the description at a specified set of events but also the tokens placed at
them.

The terms local and causal may clearly be applied to the algorithm for placing tokens at events
as before. However, an interesting new distinction arises since the descriptor actually at the event
may, or may not, be abound to influence the token placed there (it would clearly be trivial to
allow it to influence the proposed distribution for descriptors there). If the algorithm for
allocating a token to an event is dependent only on descriptors and tokens at other events and
gives a definite result it is said to be deterministic. If it gives a definite result only when the
descriptor at the event is also specified it is said to be nondeterministic but observable; otherwise
it is just nondeterministic. Thus, in the context of causal systems. a nondeterministic but
observable algorithm cannot predict the next state precisely but knows what it is when the next
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descriptor is known, i.e. it can always specify the current state precisely, not just as a
distribution.

The concept of state is normally associated with causal processes, i.e. time sequences. If we
specify that the events are either chain-ordered or incomparable so that the behaviour may be
regarded as a submonoid of the free monoid of descriptors, and that a local neighbourhood of an
event are the events immediately next to it in its chain, then a local causal deterministic
algorithm is a deterministic sequential machine or automaton, and a local causal observable
algorithm is an observable probabilistic automaton.

The role of states in general may be seen as that of extending the locality open to a local
algorithm. Tokens may be placed to indicate features of the event space that are not apparent
from inspection of the allowed local neighbourhood. For example. in pattern recognition the
global property of being part of an oriented line, as opposed to the local property of being an
oriented line segment, requires the placing of tokens to compute. It is the defect of the perceptron
that it cannot place such state tokens that Minsky and Papert (1969) studied, demonstrating the
resultant weakness with respect to the determination of global properties.

It will be noted that, whereas in a causal system there is an unambiguous sequence for the
placing of tokens, the ordering in time, this does not exist in general and problems may arise in,
for example the spatial assignment of tokens such that many, or no. final assignments are
possible. It is interesting to speculate that this may correspond to some of the phenomena of
spontaneous change in perception (Gregory, 1970) whereby, for example, a figure will be first
perceived as one object and then as another—the assignment of local features to global percepts
being ambiguous and a number of different, but self consistent, assignments being possible.

Informally also the concept of states as conceptual tokens placed in the environment is attractive
because it is apparent that many problems of sequential inference are avoided in human and
animal societies by placing actual physical tokens in the environment. The internal states
necessary to an algorithm solving an essentially sequential inferencing problem may be seen as
compensating for the lack of such physical sign posting in the actual environment. Since it will
be clear that even simple sequential inferencing tasks can require massive computation it may
well be that the mathematical models of induction thus generated are not a reasonable
representation of human thought processes. We mark the environment to make inferencing
simple and to avoid the need for internal states (short-term memory) as much as possible.

3.3.2 Probabilistic automaton structures If we now focus down upon local causal algorithms
over descriptor monoids, i.e. probabilistic automaton. it would be useful to derive some overall
convergence results similar to those for deterministic automaton modelling using the Nerode
equivalence. These are primarily (Gaines, 1976e):

1) The number of states in the model is a monotonic non-decreasing function of the length
of the observed sequence of behaviour. Thus the model cannot become simpler with
further observations;

2) The number of states in the model of a sequence of behaviour generated by an M-state
deterministic automaton cannot exceed M. Thus the model cannot grow more complex
than the generating system.
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The situation is far more difficult to analyse for probabilistic modelling because there is now no
well-defined best model but instead an admissible subspace of possible models. However. some
comparable results may be obtained. Any probabilistic automaton may be regarded as outputting
a distribution over possible outputs at each step (this is not identical in concept to an ensemble of
all possible transitions. but rather more artificial since we are following the state-distributions of
a single automaton) Consider the problem or how a modeler might actually come to match a
sequence of distributions. The two sources of difficulty are:

a) Since the sequence is not Bernoulli and the distributions change from event to event the
modeller must be able to locate himself in the sequence. i.e. the events with different
distributions must he observable. This is similar to the situation in deterministic
modelling where no modeller can discriminate between two different structures if their
reduced, observable forms are isomorphic. In practice, for a probabilistic model, this
condition implies simply that, even though from a state we can predict only the
probability of the next state, after the transition the output must be sufficient to indicate
the actual state. Thus in analysing the match between source and model we need only
consider the reduced form of the source—this appears in result (2) above as the number
of states in a model cannot exceed those in the source rather than becomes eventually
equal to their number.

b) The distributions themselves are not the actual outputs and an indefinitely large sample of
actual outputs is necessary in order to estimate them. Thus the distributions in any
transient behaviour of the source automaton cannot be precisely estimated, only those in
its recurrent behaviour.

Combining these two factors we can see that it is realistic to consider matching precisely in a
model only the recurrent behaviour of the reduced form of a probabilistic automaton. The
recurrency is an additional constraint compared with deterministic modelling and clearly a
reasonable one in the circumstances. Conceptually the modeller of an observable sequence of
distributions is applying a Bernoulli sequence modelling strategy to each distinct distribution.
However, he has both to discover the observation algorithm and estimate the distributions.

Consider the formulation of the identification problem given in section 2.2.2 with the
identification space, (D*, M,≤ , f), where: M is the space of probabilistic Moore automata in
reduced form; m ≤n if m has less states than n; the value f(b)= ≤b being defined for a sequence of
behaviour b by m≤b n if LE(b, µm,) LE ≤ (b, µn)+εs where µm and µn are the distributions arising
from modelling m and n respectively, s is the length of b and ε is a small tolerance to allow for
statistical fluctuations (an alternative f may be similarly defined based on SE instead of LE). Now
consider the behaviour of the admissible subspace for a sequence of observations of increasing
length of a finite state probabilistic source.

A result equivalent to (1) above could be that the maximum number of states in the admissible
models is monotonic non-decreasing. However, this is not so because in the short term the
particular sequence generated may be such as to justify complex models. However, there is a
result equivalent to (2):

2’) For any ε, for a given probabilistic source, the maximum number of states of an
admissible model cannot eventually exceed that of the source as the sequence of
observation increases. This follows because the properties of LE are such that averaged
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over a long sequence of recurrent states any modeller cannot do better than put forward
precisely the distributions of the reduced form of the source and hence the source itself
will have at least as low a value of LE as any model with a greater number or states.

We still cannot show that the maximum number of states is precisely that of the source, even in
reduced form. because the modelling procedure cannot necessarily identify the transient
behaviour of the source. Our definition of ≤b  based on LE and s means that in the long term the
transient behaviour will have a decreasingly small effect so that eventually the admissible
models neglect it. The maximum number of states in an admissible model will then correspond
to the number of states in the recurrent part of the automaton generating the observed behaviour
(there is clearly no well-defined recurrent part in general since we may enter different recurrent
parts after the same initial transient). What of the admissible models with less than the maximal
number of states? These correspond to the “lumping” of states in a Markov process and will
inevitably give higher values for the entropy of the process and hence LE. They are best
approximations to the source in the sense that they minimize the deviation in behaviour from that
of the actual source.

In the next section some experimental results on an actual computer implementation of a
probabilistic automaton modelling algorithm are given that illustrate the points made in this
section.

4 Some Computational Studies
The approach to the problem of identification developed in the previous sections is intended to
be completely operational and hence open to computer implementation and experimental study
and application. Even the most general formulation of section 2.2 is mathematically precise in
terms of order relations and open to computational study for any identification technique.
Probably the most interesting level at which to undertake such computational study at the present
time, however, is that of probabilistic automaton inference. This is currently an unsolved
problem with many interesting recent case studies, generally in terms of probabilistic
grammatical inference (Feldman, 1972; Patel, 1972; Maryanski, 1974; Fu and Booth, 1975) that
is also of great practical importance for the analysis of real world data such as human and animal
behaviour patterns (Vleck, 1970; Dawkins and Dawkins, 1973; Dawkins and Dawkins, 1974;
Suppes and Rottmayer, 1974).

The main reason that the problem of inferring the structure of a discrete probabilistic system
from its behaviour has not been solved (in the sense that the equivalent problem for deterministic
systems has) is that discussed in section 2, that the nature of a “solution” is not well defined—we
have had no decision procedure to determine that a particular probabilistic automaton is a
“correct” representation of a given sequence of behaviour. Thus, the most successful studies of
the problem have tended to be those that have concentrated on the methodology of
approximation, of deciding when a particular automaton or grammar is reasonably correct. In
particular the recent studies of Maryanski (1974), part of a programme of research directed by
Booth (Patel, 1972; Fu and Booth, 1975), provides a series of challenging problems and results
for other workers. The concepts of an admissible subspace (section 2.2), and the specific
measures of approximation (section 3.2), developed in this paper provide the basis for a
formulation and solution of the problem of probabilistic structure inference that is precisely
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defined, and hence complete in a sense that previous formulations have not been, and it is clearly
of interest to evaluate the operation of the techniques on actual data.

The following sub-section describes ATOM, a suite of programs embodying the identification
techniques described in this paper. A reanalysis of some of Maryanski’s data using ATOM, is
given in (Gaines, 1976d), and a variety of informal examples in (Gaines, 1976a). The examples
in the paper have been selected both to demonstrate the basic techniques and also to illustrate the
hierarchical analysis of epistemological levels in system identification proposed by Klir (1976;
Klir and Uttenhove, 1979) and discussed in section 5.1 of this paper.

4.1 The ATOM Identification System

The identification system to be described is one in which the class of models M is that of finite-
state probabilistic automata with the relationships, and ≤b defined as in section 3.3 by the number
of states in the model and the logarithmic approximation measure, LE, respectively. The
computational algorithms to determine the admissible models are one of a suite of programs
called “ATOM” written in the interpretive string-handling language BASYS (Facey and Gaines,
1973; Gaines and Facey, 1975) on a time-shared PDP11/45 (the algorithms have also been used
in FORTRAN on a PDP10 with KA10 processor and run some 50 times faster). ATOM provides
facilities for interactively entering observed data and forming on-line predictions from models,
and so on. However, for the automata modelling studies it is generally used in restartable
background batch mode since computational runs of hundreds of hours may be required.

A behaviour to be modelled is input to ATOM as a string of arbitrary character strings separated
by spaces or end-of-line terminators. Thus:

MARY HAD A LITTLE LAMB ITS FLEECE WAS ?
is a sequence of behaviour consisting of 9 symbols, and:

I=2
P=A(I)
J=P/I+7

is a sequence of behaviour consisting of 3 symbols. This acceptance of free format strings is
particularly helpful in some examples such as natural language processing and automatic
programming.

ATOM assumes that all the symbols are automaton outputs unless it is separately informed that a
certain set of symbols are inputs and/or another set are delimiters. All the modelling schemes
treat these two classes in a similar fashion: inputs are not brought into the string approximation
measurement, i.e. one does not evaluate the extent to which input symbols are predicted
correctly: delimiters are taken to indicate that the string before the delimiter may not be used to
predict that after it. In the automaton models a delimiter causes a reset to a single state of the
model. Otherwise both inputs and delimiters are treated as any other symbols in the string of
behaviour. Note that the availability of delimiters enables separate samples of behaviour
(separate sentences say in a grammatical inferences problem) to be freely concatenated together,
separated by delimiters, to form a single sequence of behaviour. Note also that the modelling
process does not necessitate inputs and delimiters being specified in this way. If they are then the
computation is faster, but if they are not then their nature may be inferred from the results - i.e.
inputs arc “outputs” that cannot be predicted and delimiters are those which appear as a general
reset - examples of such inferences will be given later.
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The automation identification subprogram in ATOM generates. for a given behaviour, the
admissible subspace of either Mealy or Moore probabilistic automata. as requested, commencing
with l-state models (Mealy) or k-state models (Moore) where k is the number of different
symbols in the behaviour). The actual output of the programme is thus the set of best-
approximation 1-state models, the set of best-approximation 2-state models. etc. The search
ceases when no more admissible models are found, but in practice this condition rarely arises
since the search space for larger models grow rapidly with the number of states and the
programme is terminated by lack of time rather than by completion of the search. However, since
the simpler admissible models are output first, the modelling is always complete up to models
with the number of states at which it was terminated.

The search procedure is essentially simple because only the space of non-deterministic automata
has to be searched, not that of probabilistic automata, i.e. the transitions are initially regarded as
being only present or absent. When a non-deterministic model of the behaviour has been
generated the actual transition probabilities are filled in from the relative frequencies of the
transitions in the particular model with the given behaviour. This is legitimate because these
values are known to minimize the LE. The value of LE for the model/behaviour pair is then
calculated and used to ascertain the approximation relative to previous models generated. If the
approximation is the same, or better, than that of the best models previously formed then the new
model is added to the set of potentially admissible models. Any models with the same number of
states but a poorer fit on both criteria are discarded. The search then continues. Whenever the
models with a given number of states has been searched then the remaining best models with that
number of states are filed as being admissible. The normalized values of NE (assuming
maximum-likelihood estimates) and LE are filed with the model.

The generation of models is basically an exhaustive enumeration of all possible observable
nondeterministic automata. However, some care is necessary to avoid duplication and to take
advantage of any structural features of the sample behaviour (e.g. some symbols never following
other symbols). Models are generated using the actual behaviour to fill in state transitions. The
initial model is a l-state automaton and, if N-state models are being searched, N is taken as a
bound on the number of states. The initial state has to be the first and only state. Each symbol in
turn in the behaviour is then examined. If it corresponds to an existent transition no action need
be taken. If there is no transition corresponding to it then one is entered to the first state and a
marker placed on a stack. The state is then advanced to its next value and the next symbol
checked.

Eventually a model has been formed and may be evaluated for LE. A backtrack is then made by
taking off the stack the last transition entered ands if it is to state k, changing it to be to state k +
1 and continuing as before. However, if state l was a new state then it is removed and
backtracking performed again, or if k was the last state and not new, and k is less than the
allowed maximum number of states, then a new state is added and the transition entered to this.
Eventually backtracking is no longer possible and all models with the allowed number of states
have been generated without duplication and without considering transitions not necessitated by
the behaviour being modelled.

“Delimiter” symbols are taken to cause a reset to a single state (usually the initial state since
strings with delimiters normally commence with one). “Input” symbols are not taken into
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account in the calculations or LE. The following sections contain examples of ATOM automaton
modelling in action.

4.2 Identification of a Five-State Stochastic Automaton

Figure 1a shows a sequence of 200 descriptors generated by a 5-state binary stochastic source
(read in the natural order of English text, from left to right, line to line). This was input to ATOM
and the admissible subspace of models computed up to 6 states based on a normalized LE
measure of approximation. A deterministic model was also computed.

Figures 1a-f: Identification of a 5-state stochastic automaton.
B B A B B A B A B A B A B A B B A B B A B B A B B A B B A B
B A B A B A B B A B A B A B A B A B B A B B A B A B A B A B
A B A B A B A B A B A B B A B B A B B A B A B A B A B A B A
B A B A B A B B A B B A B B A B B A B B A B B A B B A B B A
B A B A B A B B A B A B A B A B A B A B A B A B B A B B A B
B A B B A B B A B B A B A B A B A B A B A B B A B A B A B A

B A B A B A B B A B B A B B A B A B A B
Figure 1a: The behaviour sequence of 200 descriptors.

Figure 1b shows the ATOM output of 1 through 6 state admissible models. The first line gives
NE (as fraction and percentage): followed by PLOGP (normalized LE); the type, number of
states and number in order of search of the model; and the name of data file. The following lines
describe the state transitions of the model: for each state, the transition under each descriptor and
the number of times it occurs (in brackets), e.g.:

1:B → 1(34) A → 2(83)
means that in state 1 a B leads to state 1 34 times and an A leads to state 2 83 times. The final
line after each model shows the total number of models searched—note that no 6-state models
exist that are better then the 5-state best.

Figure lc is a plot of approximation against complexity (PLOGP or LE against number of states)
for the admissible models. and Figure 1d is a set of diagrams of the models themselves with
descriptor associated with the transition subscripted with the number of times the transition
occurs. Note how LE commences near its maximum value of unity for a l-state (Bernoulli
sequence) model, corresponding to the total number of A’s in the sequence being close to that of
B’s. It drops sharply by one half for a 2-state model that shows essentially that A is always
followed by B. It drops substantially again for a 3-state model that adds the constraint that BB is
followed by A. Going to a 4-state model produces no significant drop but there is one in going to
a 5-state model. In fact this gives an accurate model of the source which was a 2-state system
generating (AB)* that had a probability of 0.2 in one of its states of transiting to a 3-state system
generating (ABB)* that in its turn had a probability of 0.3 of returning to the original system
from one of its states. Going on to a 6-state system produces no significant drop in LE and in fact
LE reaches zero only with a (deterministic) model of 172 states.
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Figure 1b: ATOM analysis of behaviour—1 through 6-state admissible models.
In terms of regular events the actual sequence is of the form (BBA | BA)* and the useful models
produced are:

1-state: (A*B*)* LE=0.978
2-state: (BB*A)* LE=0.499
3-state: (BBA | BA)* LE=0.402
5-state: (BBA | BA)* LE =0.317

The drop in LE between 3 and 5 states is caused not by an improvement in the language structure
in these terms but by the decoupling inferred, that a BBA is more likely to be followed by a
BBA, and a BA by BA, than the alternative possibilities, i.e. a better indication of the language
structure would be ((BBA)* (BA)*)*.
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Figure 1c: Plot of approximation against complexity (logarithmic measure, LE, against
number of states) dashed plot from validation sample.

Figure 1d: Admissible models produced by ATOM up to 5 states.
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Figure 1e shows the pattern of “surprise” (minus log of predicted probability for descriptor that
actually occurs) for the first 70 descriptors in the sequence for each of the admissible models. It
is apparent how the surprise caused by the deterministic transitions (within the two subsystems)
drops to zero except for those where transitions may occur from the BBA subsequence to the BA
subsequence. or vice versa. At these points the surprise at transitions within a subsystem is low
whereas that at transitions between subsystems is high. Note that the “surprise” patterns shown
are retrospective—they result from “replaying” the entire behaviour through the final model
based on it. A different pattern would emerge if the surprise were calculated incrementally with
the modeller calculating a model on the basis of the sequence so far observed. However, I shall
not consider the incremental dynamics of such learning situations in this paper.

Figure 1e: Surprise at each of first 70 descriptors for 1 to 5-state admissible models.
I have used the term significant for the changes in LE in the previous paragraph. However, apart
from the visual appearance of Figure lc where changes may clearly be seen, this term has not
been justified. Some studies of mathematical significance in entropy change and uncertainty
analysis has been made (Miller and Madonna, 1954; Garner and McGill, 1956; Kullback, 1968)
but much more foundational work is needed to provide formal significance of the ATOM results,
e.g. taking into account the number of models searched and the length of sequence analysed. One
heuristic approach that is useful with the current system is to give ATOM a second, independent
sample from the same source and get out values of LE for the admissible models generated from
the original source, i.e. validate the models against an independent sample. This is the source of
the dashed plot in Figure 1c that was obtained by evaluating the second sample shown in Figure
1f against the models of Figures 1b or 1d. Note how the 5-state, “correct”, model stands out as
not losing any significance whereas the dashed curve of approximation for the other models lies
above that based on the sample that generated the models.
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B A B A B A B B A B B A B B A B B A B B A B A B B A B B A B
B A B A B A B A B B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B B A
B B A B B A B B A B A B A B A B A B A B A B B A B B A B B A
B B A B B A B B A B B A B B A B B A B B A B A B A B A B A B
A B A B A B A B A B A B A B B A B A B A B A B B A B B A B B

A B B A B A B A B B A B B A B B A B B A
Figure 1f : Independent second sample of behaviour for validation.

4.2 A Transient Behaviour from a Five-State Automaton

The test against an independent sample suggested and demonstrated in the previous section
makes sense if the source is in a recurrent phase. However, ATOM also provides meaningful
models of transient sequences. Consider, for example, similar behaviour to that already analysed
but where the BA to BBA transition only occurs once. The sequence (BA)15(BBA)10 was input to
ATOM and analysed up to 6-state models to produce the plot of approximation against
complexity shown in Figure 2a.

Figure 2a-c: Identification of a transient behaviour

Figure 2a: Plot of approximation against complexity (logarithmic measure, LE, against
number of states)

A turnover at 5 states is again apparent and the models of Figure 2b again show improving
hypotheses as to the actual sequence structure. Note, however, in this case the final improvement
in approximation at 5 states where the model actually breaks into two parts for the first time-
there is only a single transition from state 1 to state 3 and there is no return from states 3, 4 or 5
to states 1 or 2. The patterns of surprise shown in Figure 2c also show up this clear change when
a 5-state model is reached, with a very clear marker at the point of transition from the transient
sequence to the recurrent sequence.
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Figure 2b: Admissible models produced by ATOM up to 6- states

Figure 2c: Surprise at each descriptor for 1- to 5-state admissible models.
Thus ATOM can provide a very clear analysis of a sequence of behaviour that shows an isolated,
non-recurrent change, where concepts of stationarity do not apply.
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4.3 Miscellaneous Studies-Delimiters, Inputs and Outputs

Previous publications (Gaines, 1976a; Gaines, 1976d) contain a range of examples of ATOM
inferring models from behaviour in a variety of applications including: stochastic grammatical
inference; the analysis of human behaviour: and the derivation of programs from their
traces—this last being an application of grammatical inference studied previously (Biermann,
1972; Biermann, Baum, Krishnaswomy and Petry, 1973; Crespi-Reghizzi, Melankoff and
Lichten, 1973) only for cases where there are no errors in the trace and use of the Nerode
equivalence gives an equivalent deterministic automaton flowchart for the program trace. There
are two main features of interest in these other studies that are relevant to the general formulation
of this paper-the hypothesizing or inferring, of delimiters and of inputs.

To illustrate the role of delimiters, Figure 3a shows the observed behaviour of a system as a
sequence of 101 descriptors from the set {A, B, C, D}. In fact the behaviour is that of a 3-state
deterministic machine generating the repetitive sequence (CBA)*, sampled in short segments of
arbitrary length with the symbol D inserted as a delimiter at segment boundaries. It consists
overall of 19 samples of behaviour concatenated together between delimiters.

Figures 3a-d: Identification of a sampled deterministic automaton.
A D B A D A C B D C B A C B D B A C B A C D C D A C B A D
A C B D B A C B A C B A C D B A D A C B A C B A C B A D A
C B A C B A C B A D C D B A C B A D B A C D B D C B A C D

A C B A C B A C B A C D D A
Figure 3a The behaviour-sequence of 101 descriptors.

Figure 3b is a plot of approximation against complexity for admissible models of the sequence
and a turnover at 4 states is apparent. The transition diagram of Figure 3c shows the 4-state
admissible model and the dominant CBA cycle is apparent. Superimposed on this are some less
frequent “noise” transitions of which the most notable are those involving D since it can be seen
that D may occur in any state, always leads to state 1, and from this state any descriptor may
occur. The fact that D always leads to a single state shows that it acts as a reset input to the
automaton causing a return to a single state. Since this implies in its turn that there is no memory
in the automaton of the behaviour prior to D such a reset input is also called a delimiter. The
occurrence of a D transition from any state and the exit to any state from the reset state suggests
that state-independent. i.e. asynchronous, sampling is taking place. Note that the overall model is
a Moore automaton in which transitions correspond to states: state 1 to D; state 2 to B; state 3 to
A; and state 4 to C.

Figure 3d shows the surprise pattern for the initial sequence of observations from which it can be
seen that D and the descriptor after it are both surprising but the rest of the descriptors, within the
sampled behaviour pattern, are not. Thus ATOM has effectively derived the original structure of
the system generating the behaviour. Note that this example involves no truly probabilistic
phenomena. The sampled system is completely deterministic. The sampling itself is not random
but only asynchronous and hence non-deterministic—longer samples were allowed deliberately
in the later part of the sequence. As demonstrated in the previous example, the ATOM algorithm
copes with non-probabilistic indeterminacy and derives the correct structure without strong
probabilistic assumptions.
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Figure 3b: Plot of approximation against complexity (logarithmic measure, LE, against
number of states).

Figure 3c: 4-State admissible model.

Figure 3d: Surprise at each descriptor in initial sequence of behaviour.
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This example may also be used to illustrate a further feature of ATOM. Rather than inferring that
a descriptor is a delimiter as a result of the ATOM analysis, we can specify in advance that it is
to be treated as one. ATOM then only generates models in which that descriptor acts as a reset
input, i.e. all transitions from it lead to only one state. This saves computation in searching the
space of models, e.g. in deriving the 4-state model above over 108 4-state Mealy models were
searched but if D is specified to be a delimiter this is to be reduced to 105 (if, additionally, only
Moore models are searched this drops to 1). Hence, a priori structural knowledge may be traded
directly for computing effort. However, if the structural hypothesis is incorrect then, as
demonstrated in (Gaines, 1976e), the results obtained may be, not just an approximation, but
instead totally meaningless.

The ability to specify a descriptor to be a delimiter is useful in allowing ATOM to be used to
analyse behaviour that is a sub-monoid (i.e. a set of strings) rather than just a single string. If AB,
CAA and ABC, are three separate observed behaviours for which a single common model. or
grammar, is to be inferred, then they may be fed to ATOM as the single string, /AB/CAA/ABC/,
with / specified as a delimiter. This technique has been used extensively in grammatical
inference with ATOM and is discussed in (Gaines, 1976d).

Certain descriptors may also be specified to be inputs to ATOM and then the surprise at their
occurrence is not added in to the measure of approximation, so that neither NE nor LE take the
predictions of these descriptors into account when evaluating the models. Conversely an
input/output distinction may be inferred from the surprise patterns of ATOM’s models in which
descriptors giving rise to zero surprise are taken to be outputs, the others being inputs. This form
of inference is illustrated in (Gaines, 1976a) where sample of the input/output behaviour of a
deterministic, non-autonomous automaton is fed to ATOM without the input output distinction
being specified and this is readily inferred from the admissible models produced.

These computational studies illustrate clearly that the concepts developed in this paper are
operational and can be applied to give clear analyses of actual data, to perform an automatic
transformation from behaviour to model and thus identify the system giving rise to the
behaviour.

5 Discussion
In section 1 I mentioned a wide range of philosophical studies relevant to the problem of system
identification. In this final section I shall link some of the concepts and results of these studies to
specific aspects of the approach to identification developed in previous sections and exhibited in
ATOM. These links are intended to be suggestive and analogical rather than a formal
correspondence. There is an important sense in which the formal, mathematical approach to
identification stands alone independent of its interpretation—a single phenomenon within it may
assume many different roles under different interpretations and may be consistent with a variety
of conflicting philosophical positions. Conversely there is an equally important sense in which
each philosophical position stands per se and is wider, and more enduring, than an approach to
identification couched in current mathematical and system-theoretic concepts.

System theorists are naturally wary of tangling with philosophy and the philosophical literature.
System studies have generally arisen from two main sources: applications of technology,
particularly automation and computers, on the one hand: and biological and environmental
modelling on the other. These practical foundations are somewhat remote from the fundamental
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questions of philosophy, questions that to a large extent are dynamic and foundational just
because no reasonable person would ask them. As Descartes remarks, “There is nothing so
absurd or incredible that it has not been asserted by one philosopher or another”. It is tempting to
join Mach in his wistful remark, “I am a scientist and not a philosopher”, but one also remembers
that it is in his role of questioning established beliefs, as a philosopher of science, that his work
had most impact on later developments such as relativity theory (Blackmore, 1972).

Conversely, philosophers are wary of becoming too enmeshed in the science and mathematics of
their time. Particularly in this epoch we have come to accept change as the natural order of
things, and to assume that the scientific thought of today will not be that of tomorrow.
Nonstandard as a technical term in logic and mathematics has also become something of a
laudatory adjective. Pluralism, relativism and a willingness to take a legalistic. rather than
theological. approach to scientific debate, arguing from axioms rather than beliefs, are the bases
of modern scientific thoughts. They do not give the appearance of a base on which to lay
foundations, unless laissez faire is itself seen as a metaphysical position.

These disclaimers aside, however, there is much to be gained by bringing to bear every possible
approach, every insight of philosophy, system theory and practice, upon the fundamentally
intractable problem of knowledge acquisition, of system identification. In the next section I shall
discuss the approach developed in this paper in the context of Klir’s hierarchical model of
system epistemology, and then discuss both the approach and Klir’s model in the context of other
philosophical studies.

5.1 Klir’s Epistemological Hierarchy

Figure 4 shows Klir’s (1976) hierarchy of epistemological levels of systems.

Figure 4: Klir’s epistemological hierarchy
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The lowest level is one of source systems, effectively one of data definition whereby the way in
which behaviour will be described is defined and agreed. In terms of section 2.2 of this paper,
this is the level of definition of B, the set of possible behaviours. More specifically. in terms of
section 3, it is the level of definition of D and of possible b ∈ B mapping from some event space
E to D, i.e. of possible  D-sets. Thus level zero in the hierarchy might be said to define a domain
of discourse for the description of behaviour. In terms of the example of section 4.2, a statement
at this zero level domain of discourse is any string of A’s and B’s.

The next level in the hierarchy is one of data systems, effectively one of system observation
whereby the actual behaviour of some system is described in terms of the agreed domain of
discourse at level zero. In terms of this paper, this is the level of definition of actual members of
B of a D-set representing behaviour. Thus level one of the hierarchy might be said to define the
observed (or required) behaviour of the system. In terms of the example of section 4.2, the data
system is that string of A’s and B’s shown in Figure 1a.
The next level of the hierarchy is one of generative systems, effectively one of a stationary
model for a system. In the context of system identification the model will arise as a hypothesis
about the generation of a behaviour described at level one. Klir notes that the model may be
deterministic or stochastic and that its invariance (or stationarity) is with respect to a set of
variables that may include space and time. Thus the uniform applicability of these concepts to
both sequential behaviour and spatial patterns, as noted in section 3, is intrinsic to Klir’s
presentation also. In terms of section 2.2 of this paper, level two of the hierarchy is one of the
models from a set M appropriate to a behaviour at level one. This paper may now be seen as
concerned with the relationships between levels one and two in Klir’s hierarchy. In terms of the
example of section 4.2, any of the automata shown in Figure 1d is a generative system at level
two.

The next level in the hierarchy is one of structure systems. effectively one at which the models
themselves are seen to have internal structure and hence to be analysable in other terms. This
level may be regarded as one at which a number of atomic models are taken as co-existent, with
the system being described in terms of a relationship between them. Alternatively, it may be
regarded as one of non-stationary models that are changing along some dimension such as space
or time. There is no formal discussion of structure at level three in this paper. However, in
section 4.2 I have noted informally that the 5-state model produced may be viewed as a 2-state
system loosely coupled to a 3-state system, and this is a statement at the level three domain of
discourse of Klir’s hierarchy.

The hierarchy proceeds to meta-levels, etc., but the four lowest levels are most relevant to this
paper. In particular the clear separation of the source system from the data system, and of the
generative system from the structure system, are very helpful in defining the boundaries of the
current study. I have defined the source level in very general terms as a class of D-sets and have
not been concerned with properties, or appropriateness, at this level. I have defined the set of
models also in very general terms and have been concerned only with the behaviour they
generate, not their internal structures. The focus on the interface between levels one and two has
been quite deliberate because of the previous lack of a sufficiently precise formulation of how
this relationship should be established and evaluated. This has previously made the rigorous
formulation of the problem of system identification (behaviour-model transformation) impossible
certainly for uncertain, e.g. stochastic or non-determinate, systems. The formulation in terms of
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approximation and complexity in this paper, and the specific definitions of approximation and
complexity for monoids. etc., resolve this problem.

Technically, and practically, the study must be extended to levels zero and three to be of real
value. The general D-set with its total lack of relations between data terms is unrealistic for
many practical problems. We have topological or metrical constraints upon the semantics of our
data terms which should be taken into account at higher levels. For example, a measurement of
2V at a control system transducer is between one of 1V and one of 5V; it may even be said to be
nearer the 1V reading than the 5V one; it might even make sense to talk of its being twice the 1V
value; and so on. Thus real measurements are rarely the arbitrary, unrelated symbols that are all
that are hypothesized in the definition of a D-set used in this paper.

However, it should be noted that any restriction placed on B, or D-sets, reduces the ontological
neutrality of our definition. Such a restriction reflects a preconception about possible behaviours
and hence about possible structures underlying them, e.g. we may condition ourselves to observe
only causal, or even only linear, systems. The trade off, as illustrated in section 4.3, is between
restrictions and speed-of-modelling data-requirements. A preconception may prevent us from
discovering a property of the data, but lack of it, when it is justified, may both increase our
computational burden and lead us to less precise conclusions than are justified. We cannot afford
to re-discover that a system is linear every time we wish to check its transfer function, but if we
measure only the linear describing function we shall never realise that a nonlinearity has
appeared.

The determination of the structure at level three of the models at level two is an important
problem in its own right. In deterministic automata theory the Hartmanis-Stearns (Hartmanis and
Stearns, 1966) and Krohn-Rhodes (Arbib, Krohn and Rhodes, 1968) decomposition techniques
lead essentially to structural representations at level three of models at level two. Similar
techniques mar be applied to the probabilistic automaton models of section 4.2 to give a formal
basis for the statement that the best 5-state model corresponds to coupled 2-state and 3-state
models. The hierarchical models of systems developed and analysed over a long period by
Mesarovic (Mesarovic, 1960; Mesarovic, Macko and Takahara, 1970; Mesarovic and Takahara,
1975) may be similarly automatically derived from model structures at level two, and much of
“system theory” is concerned with such structural transformations (Klir, 1972). There is the same
inherent arbitrariness in transformations between levels two and three that I have already noted
between levels one and two. There is no one structural decomposition of a model that is correct
but many of varying preferability. In recent years this relationship has begun to be analysed also
in terms of (structural) complexity (Zeigler, 1974; Zeigler, 1975).

There is a direct relationship between measures of structural complexity at level three and the
model complexity at level two assumed in this paper. The ordering of complexity over models
required in section 2.2 corresponds to a level three construction of the least-complex structure for
the model at level two, e.g. a minimum-state structure. Thus the counting of states that is taken as
a basis for evaluating complexity in the specific automata-theoretic studies of this paper
corresponds to a particular concept of the nature of systems at level three. However. it is only
one possible measure even in the context of automata—we may well feel than an 8-state
automaton that can be regarded as a certain form of product of three 2-state automata is rather
less complex than one which cannot. This is one reason for defining complexity to be only a
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partial ordering over models since this type of consideration does not necessarily lead to a
simple numeric measure of complexity giving a chain order.

Such considerations are clearly of great importance but they do not affect the discussion of this
paper where no constraint is placed on the ordering of model complexity, except to reinforce the
statement in section 2.1 that the order relation is not intrinsic to the class of models. We do not
normal envisage a model without also assuming a structure but, in fact. the same model may be
regarded as having many different structures and complexities.

5.2 The Wider Context

The wider philosophical context for Klir’s epistemological hierarchy and the operation of ATOM
is far too wide to cover in this paper. It ranges through the whole gamut of philosophical
positions and concepts mentioned in section 1, and does so necessarily in the sense that focusing
on only one aspect itself distorts the overall picture. Much of the relevant discussion has taken
place in the context of the behavioural sciences (Koestler and Smythies, 1969; Borger and Cioffi,
1970), including biology (Monod, 1972; Ayala and Dobzhansky, 1974; Lewis and Bohm, 1974),
psychology (Wann, 1964; Wolman and Nagel, 1965; Care and Landesman, 1968; Mischel, 1969)
sociology (Schutz, 1967; Blalock, 1971; Schutz and Luckmann, 1973; Comte and Andreski,
1974; Giddens, 1974), and economics (Shackle, 1955; Shackle, 1969; McClelland, 1975),
because the problem of identification in the technological sciences is so much more readily
defined—we are already aware of the structure, or structural possibilities, of systems that we
ourselves have designed. The frontiers of the physical sciences stand between these extremes and
have aspects of both (Feigl, Scriven and Maxwell, 1958; Feyerabend, Feigl and Maxwell, 1966;
Radner and Winokur, 1970; Shanin, 1972), from the deep epistemological problems of particle
physics (Körner, 1957; Bastin, 1971) and time (Gale, 1967; Gold and Bondi, 1967; Zeman,
1971) to the logical, postulational systems of dynamics (Bhatia and Szego, 1967; Auslander and
Gottschalk, 1968). All of these differing subject areas have their own, varied but related,
approaches to the problem of knowledge acquisition, and the problem of system identification, of
behaviour - structure inference, is common to them all.

As noted in section 1, the formal approach to the inference of system properties developed in this
paper, and by others, avoids rather than resolves many difficult problems. Hume’s inductive
scepticism leaves us with no logical justification of our processes of knowledge acquisition and
hence what we actually do becomes somewhat arbitrary. This arbitrariness shows up in the
present study at a number of levels: the choice of D-sets and their structures (if any); the choice
of models; the ordering relation of complexity; the induced order relations of approximation; and
so on. The effect of additional hypotheses to resolve some of the arbitrary decisions necessary
has been discussed, and can be taken into account formally once the decision has been taken to
include them.

Dilman (1973, p.19) argues that. although such decisions are groundless, they are, “not arbitrary
in the sense that so much in our life hangs together with them.” Wittgenstein (1972) emphasizes
this view many times stating that, “Scepticism is not irrefutable, but obviously nonsensical when
it tries to raise doubts where no question can be asked”, and. “what the law of causality is meant
to exclude cannot even be described”. It is the basis of his remark, “If anyone said that
information about the past could not convince him that something would happen in the future, I
should not understand him.” (Wittgenstein, 1953). This line of argument establishes a direct link
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between Simon’s (1973) “normative theory of law discovery” and our immediate predictive use
of the “laws,” even though they are only “patterns in data.” The historian may be interested in
models as providing a rational explanation of past events. but usually we intend them as guides
to the future.

None of this, or any variant of the counter arguments to Hume (Swinburne, 1974) actually
refutes the need for arbitrary (or, at least groundless) decisions, and, as a rejoinder to one line of
argument that occurs at a number of levels. it is worth noting the metatheoretic result that: the
introduction of any hypothesis into the problem of identification allows the generation of
counter-examples that do not satisfy the hypothesis and are modelled in a meaningless way. This
is rather too vague for formal proof at present but there are now sufficient examples to make it a
reasonable inductive assertion. We cannot expect to introduce useful constraints on the inference
process that are also ontologically neutral, and if we make an ontological commitment then we
are in danger of not comprehending what are actually simple phenomena.

This is one of the problems, with its connotations of arbitrary decisions and commitment, that
has lead to so-called existentialist philosophical studies, although the diversity of positions taken
is such that one cannot speak of an existentialist “school.” These studies may appear too
introspective, often verging on solipsism and nihilism, to those whose standard is the classical
philosophy of science. However, there is much to be gained in the understanding of the
foundations of system theory, particularly in its application to the behavioural sciences. through
the works of. for example, Merleau-Ponty (1964), Sartre (1943), Heidegger (1949) and Husserl
(1965). Perhaps the motivation for studying the questions thus raised best comes from Becker’s
(1932) rather more humorous Yale lectures on the “heavenly city of eighteenth-century
philosophers.” To laugh at the preconceptions of the past in successive historic progression
generates the momentum necessary to carry history into the future and allow us, as if
retrospectively, to view the preconceptions of the present.

The authors noted above are associated with the phenomenological approach to the study of
knowledge. whose proponents again range from the mystical to the scientifically respectable,
notably Mach (Bradley, 1971; Blackmore, 1972). Phenomenology is concerned with the study of
experience with a view to bringing out their “essences,” their underlying reason.” For Husserl
(1965; Pivcevic, 1970), it was to be an analysis “free from presuppositions,” as contrasted to the
a priori bases for most metaphysics. Thus phenomenological analysis is concerned initially with
the lowest level of Klir’s hierarchy, one that is neglected, to some extent unrecognized, in
classical systems theory. We are used to the terms in which behaviour is to be described being
specified for us in advance and tend to regard the problem of identification as commencing
beyond this point-a general method should be able to cope with any domain of discourse at a
lower level. However, the terms of reference accepted at level zero propagate upwards through
the hierarchy and dominate all higher-level concepts. The nature of such effects is best seen
through the phenomenological case histories discussed by Spiegelberg (1976, e.g. the
phenomenology of "force"), and Roche (1973). This last is of particular interest also for its
comparison of phenomenological analysis with the “conceptual analysis” of logical positivism
(Kolakowski, 1968).

Once above the level of existence and the phenomenon, the links between the problem of
identification, Klir’s hierarchy, and philosophical discussions are more obvious. The
structuralism (Ehrmann, 1970) and presuppositional (Wilson, 1975) analyses of modern
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linguistic philosophy and the linguistic orientation of logical positivism clearly have their places
in what may be regarded as grammatically orientated inductive inference process. It is easy to
integrate this approach to the problem of identification with what Giedymin (1975) terms the six
doctrines of “strict positivism.” However, equally there is no need to accept these doctrines—the
order relations of section 2.2 define a form of rationality and hence the basis for a “rationality
principle” (Popper, 1972; Koertge, 1975), but this need be none that we know or accept at
present.

Even with all the low level choices made, with source level, data level, and the class of models at
generative level together with their orderings, well determined, there are still decisions to be
made. For example, the regular events corresponding to each of the 1 through 5-state admissible
models of the behaviour analysed by ATOM in section 4.2 are each viable hypotheses as to the
structure of the data. It was assumed in that section that we recognize the 5-state model as that
which is “correct,” but it may well be that the improvement in approximation from 1 to 2 states
is enough to satisfy us—“facts are always presented at a sacrifice of completeness and never
with greater precision than fits the needs of the moment” (Blackmore, 1972, p. 174). Having
hypothesized that the event structure is of the form (BB*A)*, however, how do we proceed? Are
we, with Popper (1959), to search for the sequence AA that refutes our hypothesis or, with
Putman (1975), to search for the sequence BBB that is predicted but not yet seen. In ATOM
terms, finding the first would force us back to the 1-state model, whereas not finding the second
would push us on to the 3-state model. There is an interplay not only between the consistency of
data and theory but also between the complexity of a theory and its value in approximating the
data—Newtonian mechanics and special relativity are both admissible theories on all current
data in the formal sense defined in this paper.

Finally, the discussion of the preceding section serves to illustrate the role of programs such as
ATOM as themselves sources of phenomena relating to inductive inference and knowledge
acquisition The gedanken experiment of having a confirmation machine (Erwin, 1971) is itself a
source of stimulating discussion, but it is better by far to actually have one and to see it in action,
both on data for which one “knows the answer” and on data for which one does not. There is
nowadays no reason why any theory of knowledge acquisition should not be put into operational
form and allowed, or required, to compete in real and artificial worlds. If we cannot understand
automata then how can we hope to comprehend ourselves, and if we cannot make sense of what
we can do then how may we say what we should do?

Summary and Conclusions
The problem of system identification has effectively been defined as: “given a sample of the
behaviour of some system, to determine the admissible subspace of some prescribed class of
models that would account for it.” Admissibility is itself defined in terms of two order relations
on models: a static order of complexity; and a dynamic order of approximation induced by the
behaviour. An admissible model is such that any other with better approximation has greater
complexity. It has been shown that this framework encompasses the identification of both
deterministic and stochastic finite state automata, or grammars, but that it also encompasses non-
temporal “behaviour” in, for example, pattern recognition.

The behaviour of the plot of approximation against complexity for admissible models has been
investigated. It has been shown (section 3.1) that for zero approximation (perfect fit ) nearly all



38

behaviours require models of nearly maximum complexity. A general basis for the measurement
of approximation has been introduced related to work on logical, or semantic probability and the
elicitation of subjective probabilities (section 3.2), and it is shown that, with probabilistic
sources, the approximation of an admissible model may be regarded as an entropy measure of the
behaviour (section 3.3). The role of structural constraints upon models has been examined and
concepts of causality, locality and uniformity have been introduced as “rules of the game”
(section 3.3.1). The way in which the placement of state “tokens” allows local algorithms to
recognize global properties has been discussed together with the concept of observability.
Finally, the sense in which an identification algorithm can determine the structure of a
probabilistic automaton has been analysed (section 3.3.2).

A computer implementation of an algorithm for determining admissible models of sequential
behaviour, ATOM, has been described (section 4.1) and its operation illustrated through the
analysis of some sample behaviours, including coupled automata (section 4.2) and non-recurrent
sequences (section 4.3). Plots of the approximation against complexity, admissible models, and
the “surprise” of the models at each description in the behaviour have been given. In particular,
the capability of ATOM to infer, or specify in advance, special properties of the descriptors, such
as being delimiters or inputs has been discussed and illustrated (section 4.4).

In the discussion section the behaviour of ATOM and the general approach to identification
proposed have been analysed in terms of Klir’s epistemological hierarchy of systems. It has been
shown that the problem solved is one of the interface between levels one and two, of data
systems and generative systems (section 5.1). The relationship of these to both lower and higher
levels, and in particular the relationship of the model complexity used to structural complexity at
level two have also been discussed. Finally, a brief summary has been presented or the
relationship of these studies to various philosophical developments (section 5.2).

This paper gives a precise and complete basis for the analysis and solution of one of the major
problems of system identification, that of behaviour-model transformation, effectively the
movement from level one to level two of Klir’s hierarchy. In that sense it “solves” the technical
problem of structural, or grammatical inference, for nondeterministic and stochastic automata.
and for a wide class of similar problems. The practicality of the solution is limited by the
computational effort required, but it may well be that which we find ourselves searching large
numbers of models we should ask whether we have the right formulation—would another model
space be more appropriate?; and whether we are solving the right problem—would a sub-optimal
solution be equally acceptable? Both questions are analysable within the framework of this
paper.

On the other hand. I have attempted to indicate the way in which a formal solution of the
interrelation of levels one and two relates to consideration at level zero, the phenomenological
level, and level three, the structural level, and how all these levels relate to the various
approaches to knowledge acquisition studied in various philosophical contexts. The availability
nowadays of powerful interactive computers makes it possible to implement the system-theoretic
methodologies imbedded in those philosophical positions and investigate them not as theories
but as practice. It is through observation of, and interaction with, the autonomous operation of
our theories, as computer algorithms competing with one another in the acquisition of knowledge
of real and artificial data, that we have most to gain at present.
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