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Synopsis Whilst the convergence of adaptive-threshold-logic elements may be dealt with quite simply
when they are used for pattern recognition, the behaviour of such devices is far more complex and less
amenable to analysis when they form the variable element of an adaptive control system. This is because
they have the dual control problem of identifying their environment by classification whilst controlling it,
and performance feedback is both relative and global. This paper considers five problem areas in the
utilization of pattern classifying control systems: the derivation of performance feedback, appropriate
coding of input and response patterns, the state-space of adaption and training, linguistic communication
with the controller, and hardware realization of the controller.

Introduction
Although the main virtue of adaptive control systems is usually taken to be their relative
insensitivity to changes in the nature, or parameters, of their environment, there are other
characteristics of equal, if not greater, importance. In particular it may be possible to devise
controllers which are simple to fabricate because of their homogeneity of structure, of low cost
because of their universality and concomitant mass-production, and which are self-synthesizing
through their adaptive capability. Classical techniques of controller synthesis become very
difficult and uneconomic when faced with complex, nonlinear, multi-variable environments, and
the optimum approach to the synthesis and fabrication of specialized controllers may well
become one of making best use of the self-synthesizing capabilities of a few general-purpose
adaptive control systems. In such a case the environment and control policy may never change
during the working life of the controller, and adaption becomes a means of synthesis rather than
a dynamic, sensitivity-reducing, feature of the controller.
One of the most attractive forms of ‘learning module’ for batch-fabrication at low cost is the
adaptive-threshold-logic element studied by many workers as a pattern-classifier. This device is
simple enough to allow a detailed analysis of convergence under certain conditions, but it is also
powerful enough to be utilized as-the basic building block of complex, hierarchical control
systems. This paper considers the problems encountered in attempts to utilize simple adaptive-
threshold-logic pattern-classifiers as the variable elements of adaptive control systems. Although
the behaviour of these devices is simple to analyze in conventional ‘stimulus presentation with
reward/punishment’ situations, it becomes far more complex and less amenable to analysis when
they form part of an adaptive controller. This is because the sequence of incoming patterns is a
function of previous outputs of the threshold logic unit, since these determine the control actions
which influence the environment generating the patterns, and also because the immediate,
decision by decision, performance-feedback of pattern recognition situations is lacking, and the
performance feedback is generally averaged over many decisions and delayed.
Rather than treat in depth one particular aspect of pattern-classifying adaptive control, this paper
presents an over-view of a number of problems, each the subject of current research, and places
them in the context of a simple, single-level configuration in which a basic adaptive-threshold-
logic element is used to generate and implement a control policy.
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The Controller and Associated Problems
The complete control system considered is shown in Figure 1. The ‘environment’ may be
virtually any system with inputs and outputs, but for most of the experiments described it is a
continuous system, consisting of two or three integrators in cascade with interns disturbances,
feedback loops and output limiting. The controller is constructed from an adaptive-threshold-
logic element, whose input and response patterns are binary vectors, and which requires
performance feedback in the form of a binary signal. Hence analogue/binary coders and decoders
are placed in the input and output channels, and some form of performance evaluation must be
provided.

Figure 1: Pattern Classifying Adaptive Controller
The major problems concerned with the realization, utilization and performance, of pattern
classifying adaptive Controllers, discussed in this paper, are:
(i) Performance feedback In pattern recognition each input is associated with a response, and

reward/punishment signals may be given for each decision of the pattern classifier. Such
immediate and definite performance evaluation is not generally available in control
problems, and not only is the performance measure averaged over many decisions (e.g., rms
error) but also the optimum value is unknown. Various techniques have been proposed for
providing performance feedback, but none is particularly satisfactory in that they involve
additional storage, a pre-existent solution to the problem, or specialized knowledge about the
plant parameters and structure. This paper describes in addition some novel experiments in
which a second, competitive adaptive controller is used as a (time-varying) standard against
which to evaluate the performance of the first, and vice versa.

(ii) Coding of input and response patterns Adaptive-threshold logic elements cannot realize all
possible input/response transformations, and some are more difficult and less stable than
others. In so far as the required control policy corresponds to a natural input/response
transformation for the threshold-logic element, convergence to a satisfactory policy will take
place most readily and rapidly. This is a typical example of the approach to synthesis
engendered by the utilization of adaptive systems. Partial knowledge of the environment, e.g.
some features of the topology of its state-space, may be totally insufficient to determine an
optimum control policy, but may be quite adequate to suggest input and response codings
which aid the adaptive controller in converging to an optimal policy.
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(iii) The state-space of adaption and training The convergence of adaptive-threshold-logic
elements in pattern recognition is a simple phenomenon, in which if a solution giving the
required input/response transformation exists it is bound to be attained. In control systems
attainment of an optimal policy becomes a function of the initial state of the controller and
the environments in which it learns (there is no necessity for learning to take place only in
the final environment), and an optimal policy, once attained, may not persist (i.e., may not be
stable) since learning continues and maladaption is possible. These phenomena may be
analyzed by considering the effect of performing in a given environment for a prescribed
time, a ‘task’, upon the parameters of the threshold-logic element, the ‘state’ of the adaptive
controller. The selection of a sequence of tasks which forces the controller to a state where it
has a persistent, optimal policy for the final environment ia in itself a control problem—the
training problem. This paper proposes a system for solving the training problem
automatically, and gives experimental results on its application. This is another example of
synthesis through adaption, by using partial knowledge of the environment to derive similar
environments which are easier to learn in.

(iv) Linguistic communication with the controller Whilst certain prior information about the
environment or control problem may be used to suggest reasonable input/output codings and
training sequences, there is other information which seems best used to set up internal
parameters of the controller. For example, a simple control policy may be known which,
whilst sub-optimal, is at least stable, and would form a good initial policy from which to
adapt. Internal parameters of the controller which might be made available for adjustment,
however, need bear no obvious relationship to control policies, or even individual
input/response connectives. A requirement to increase the gain of the controller of Figure 1
demands some change in the weights of the adaptive threshold logic element, but much
further information is required about the controller before this change may be made directly.
The human controller overcomes this problem indirectly through the use of language, and it
is attractive to consider the possibility of setting up channels for linguistic communication
between the control engineer and the adaptive controller. The present paper serves to indicate
that such channels may be implemented, reasonably and simply, and demonstrates some
pitfalls in the use of language.

(v) Hardware realization of the controller One advantage of adaptive threshold logic is that
the convergence is steep descent in form, with feedback from the weights through the control
policy and performance measure to the weights themselves. The changes in the weights made
through adaption thus need not be very precise provided they are in the intended direction
and not excessively large or small. This opens up the possibility of almost any physical
process exhibiting ‘memory’ being used as the basis of an adaptive element. The most
attractive basis at present, however, is the use of conventional digital silicon integrated
circuits, amenable to large-scale integration at very low cost. Threshold logic elements using
these circuits have the peculiarity that their weights are discrete and bounded, and it may be
shown that convergence to a solution, even of a normal pattern-recognition problem, need
not occur even though the solution is within the range of weights. This effect is demonstrated
and a means of overcoming it outlined, which involves the deliberate introduction of random
processes in weight changing.
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The only existing adaptive controller which has been utilized in the manner suggested in this
paper is the human operator, and, without implying that the structure of the human adaptive
process is that of Figure 1, it is useful to compare the results of experiments on coding,
competition, training, communication, and so on, for both human operators and pattern-
classifying automatic controllers. The results are, in fact, striking in their similarity, which might
be expected since an intensely adaptive controller is one whose behaviour is moulded largely by
its environment.
The following sections develop and exemplify the problems and possible solutions outlined in
these five categories.

Performance Feedback
A very simple form of performance evaluation is possible, if a second controller is available
whose policy is satisfactory. It may be placed in control of the environment, with the adaptive
controller receiving the same input but feeding its output only to a comparator which determines
whether it is the same as that of the standard controller and rewards or punishes it accordingly
(Figure 2). This reduces the control situation to a pattern-recognition one, and the adaptive
controller is bound to come to mimic the standard one perfectly in so far as this is possible. One
aspect of the behaviour which is of interest is the response of the adaptive controller to inputs it
has not received whilst learning. Its modelling need be neither strictly in the frequency domain
nor in the time domain, and its generalization will have peculiarities dependent on the
input/output coding.

Figure 2:  Learning by Example
The configuration of Figure 2 enables the adaptive controller to copy the policy of an existing
controller, but not to form a novel and optimal policy. It is of practical interest only when the
existing controller is itself a black-box requiring replacement, e.g. a skilled human operator
(Widrow and Smith, 1968). The prime objective of current research on performance feedback in
pattern-classifying adaptive controllers is to remove the need for a standard controller, or
‘teacher’ as it is sometimes (misleadingly) called. One ingenuous proposal has been to generate a
Lyapunov function of the state variables and reward the machine after each action if this has
decreased, punishing it otherwise (Mirabelli, Connelly and Worthen, 1964). This entails too great
a knowledge about the environment to be useful in practice, and is in some ways a variation on
the use of a standard controller since the Lyapunov function effectively defines one; the main
difference is that it is the adaptive controller, rather than this standard one, which controls the
environment during learning.
The type of performance directive one would like to utilize in practice is to minimize some error
functional over an interval. This creates two sources of difficulty in that no absolute standard of
performance is defined, and also the performance measure is global to a sequence of actions
rather than local to each single one. Widrow (1966) has proposed a technique, called
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‘bootstrapping’, for overcoming this second difficulty by assuming that the results of a global
evaluation can be applied locally, and has justified this theoretically under certain conditions. In
practice this entails storing all input/response pattern-pairs during the interval over which the
performance is being evaluated, and this removes some of the simplicity and robustness of
adaptive-threshold-logic hardware. An alternative to this, not previously proposed, is to triplicate
the threshold-logic element, reward one continuously, punish another continuously, and use the
third to make the actual control decisions during the interval over which the performance is
evaluated. At the end of this interval the weight values in either the rewarded or punished
element are transferred to the decision-making one, according as the performance is globally
good or bad.
Widrow has applied bootstrapping successfully to game-playing environments where, even
though the performance evaluation is global, it does at least take the form of a definite
WIN/LOSE result. If the performance evaluation is the value of an error-functional, then further
information is required before this can be fully evaluated as a GOOD/BAD result. Comparison
with a fixed standard is not attractive because the optimum value is not known, and any fixed
comparison is likely to lead to an overwhelming preponderance of reward or punishment initially
such that constructive learning does not take place. It is possible to create a variable standard by
turning the problem into an adaptive game in which two matched controllers each interact with
their separate, but identical, environments for an interval, at the end of which their performances
are evaluated and compared to determine the winner and loser.
The effects of this technique for obtaining performance feedback have been investigated in a
simple control problem. A boat is required to cross a river 1000 ft.wide between two opposite
terminals in minimum time. It moves at a constant speed of 5ft/sec and is controlled
incrementally in angle every 125ft across the river. The river velocity is uniform at 1ft/sec, and
the input to the threshold-logic element is a 20-bit binary pattern representing the distance of the
boat from the bank and its angle to the river. Two pattern classifying adaptive controllers,
identical in structure and parameters, cross the river together and their crossing times, µ, are
compared. All the decisions of that which takes the least time are rewarded, whilst those of the
other controller are punished.
Figure 3 shows typical performance curves for different controllers, in terms of the mean
crossing time (over 10 consecutive crossings) against the number of crossings. In the first graph

Figure 3: Performance of Competing Controllers
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Boat (a*) converges to a near optimal solution whilst its competitor diverges. In the second graph
both boats converge to a fairly sub-optimal solution. These results might reasonably be compared
with similar phenomena which occur in the relative learning of individuals in small groups of
schoolchildren. The stability of the competitive situation is now the subject of investigation, and
these results are given to demonstrate that it is not, in itself, clearly stable or unstable.

Coding of Input and Response Patterns
A threshold-logic element with binary output divides the space of input patterns into two parts
which are said to be linearly separable. The proportion of possible dichotomies which are
linearly separable is asymptotic to zero as the dimension of the pattern-space increases. The
mean number of patterns selected at random which can be arbitrarily dichotomized is about twice
the dimension of the pattern-space, whereas the total number of patterns is 2 to the power of this
dimension. These considerations demonstrate that the capability of an adaptive-threshold-logic
element to realize a control policy with arbitrary codings at input and output is severely limited.
In the same way that a human operator has pre-conceptions about the nature of the world which
strongly influence his reaction to a control task, even when it is completely novel, the pattern-
classifying adaptive controller has inherent assumptions about the topology of its environments
and to the extent that they are satisfied convergence will be possible and rapid.
The topological properties of threshold-logic have been extensively documented (Dertouzos,
1965;  Hu, 1965; Lewis and Coates, 1967), but matching them to those of the environment must
take into account both its natural topology and that induced by the performance criterion. One
source of guidance is that threshold-logic is closely related to maximum-likelihood prediction
based on Bayes inversion of conditional probabilities (Gaines, 1967a), and linear separability is
equivalent to the assumption that the components of the input-pattern vector are independent
evidence for the hypothesis that the best output is a 0 or a 1. The most complete study of coding
problems for pattern classifying adaptive controllers has been made by Smith for the situation
where the required output is a binary nonlinear function of continuous inputs, not involving
cross-product terms (Widrow and Smith, 1968; Smith, 1966).

The State-space of Adaption and Training
The expected behaviour of an adaptive controller when coupled to an environment is that, if its
initial control policy is not satisfactory, then it will eventually become so (Zadeh, 1963). Thus it
is possible to segment the interaction of the controller with its environment into at least two
parts, in the first of which it is not satisfactory and in the last of which it has become so. This
segmentation, which is inherent in the basic concept of adaption, may be extended to form a
description of the full range of adaptive behaviour (Gaines, 1967b). A task is defined to be a
segment of the interaction for which it is possible to say whether the controller has been
satisfactory. At the beginning of a task the controller will be in some state which causes it to
implement a particular control policy. At the end of a task it will be in some other state and
implement another control policy. With a reasonable definition of the set of tasks, the final state
and satisfactoriness of performance will be a function of the initial state and task, and the
adaptive behaviour of the controller may be ascribed to an automaton whose inputs are tasks,
whose states are controller states, and whose outputs are on the one hand control policies, and on
the other the satisfactoriness of the control policy for a given task.
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Being coupled to a fixed environment is equivalent to the adaption-automaton of the controller
having a sequence of inputs consisting of the same task repeated, and this interaction is defined
to be acceptable if it is eventually always satisfactory. An acceptable interaction is one which
attains a stable condition of satisfactoriness, and in this stable condition the controller is said to
be adapted to the input task. A controller in such a state that it will have an acceptable
interaction with any one of a number of tasks is defined to be potentially adaptive to that set of
tasks; for any of these tasks it will adapt to satisfactory performance through experience and
without aid. Figure 4 illustrates how the state-space of an adaption-automaton is divided into
regions by consideration of the trajectories generated in adaption to a task, t. The states for which
the controller is adapted to t form a sub-set of those for which it is satisfactory, and also for those
in which it is potentially adaptive to t. A trajectory through the state-space generated by giving
the task t many times in succession, tn, started outside the potentially adaptive region, at Y, may
enter the region of satisfactory interaction but must eventually leave it, whereas started within
the potentially adaptive region, at X, it will remain within that region, eventually entering the
adapted region and never leaving it.

Figure 4 State-space of Adaption
When the controller’s initial state is outside the region of potential adaption for a task, then
learning will not take place given that task alone. Given some other sequence of tasks, however,
the controller will adapt to them and in so doing may become potentially adaptive to the original
task—the sequence of tasks has trained it for the original one. In Figure 4, the state A is outside
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the region of potential adaption, but from it the trajectory generated by the sequence u terminates
at A1 within that region. From X, however, u does not generate a trajectory into the desired
region, although there is another sequence v which does so. The selection of tasks to form a
training sequence is itself a control problem in the state-space of the adaption-automaton, but the
theory of adaptive behaviour does not, in itself, indicate how this problem may be solved.
The causes of mal-adaption lie in the basic epistemological problem of attempting to control an
environment whilst at the same time learning about it in order to improve the control policy, the
dual control problem (Feldbaum, 1966). A given control policy restricts the states and transitions
of the environment to some sub-set of the total possible behaviour. The desired sub-environment
generated by an optimal policy may be entirely different from that generated by the initial policy
of a naive controller, and adaption which takes place in it may be irrelevant or even deleterious.
Hence the aim in selecting a training sequence should be to maintain the desired sub-
environment regardless of the control policy of the trainee. To do this requires feedback about
the state of the trainee, and, if the environment is a linear dynamical system with a single output,
maintaining the mean-error at a constant level may be shown to provide a feedback criterion
having the required effect (Gaines, 1968a).
Figure 5 illustrates a training system for a third-order continuous environment (Gaines,
1966)—the additional control loop necessary to maintain the desired sub-environment is closed
by a training controller , selected by a trainer having feedback from the performance of the
trainee. The training controller damps some of the integrators to make the control problem
simpler, and the amount of damping is varied automatically by the trainer. This consists in
practice of a single integrator which integrates the modulus of the error minus a fixed tolerance.
If the mean error is above this tolerance the output of the integrator increases and drives a servo
which increases the damping, making the control problem simpler, whereas otherwise it is made
more difficult. For controllers of fixed performance, therefore, the control problem is
automatically adjusted in difficulty to an asymptotic value at which the controller’s mean error is
equal to the tolerance.

Figure 5: Automatic Training system
With adaptive controllers as trainees the performance will again be held constant, but the
difficulty of the control task should increase as they learn. Figure 6 shows the variation in
difficulty with time for three pattern-classifying adaptive controllers having the structure of
Figure 1, controlling the three integrators of Figure 5. Machines A and B learn to high and
medium levels respectively, whereas machine C shows unstable initial learning (cf the trajectory
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from Y in Figure 4) eventually settling to a medium level. With regard to the efficacy of the
training technique it may be noted that none of the machines learn a control policy which will
enable them to perform at the tolerated level, even at zero difficulty, when they are trained in a
fixed environment with a difficulty of 0.3 or greater. Similar results have been obtained with
human operators training on the system of Figure 5 (Gaines, 1967b, 1968b).

Figure 6: Automatic Training of Adaptive Controllers

Linguistic Communication with the Controller
Human language is a complex, multi-purpose structure which defies complete formal analysis.
One approach to language which seems most fruitful in control situations is to consider the
linguistic structure that must be set up to replace an existing, or hypothetical, physical link. For
example, consider a controller which uses a ‘fast model’ of its environment to search for an
optimum control sequence, such that the normal link between model and controller is broken and
replaced by communication in a ‘natural language’. The controller must be able to make
statements of the form, ‘If the environment is in state *s* and I use control action *a*, what will
the next state be’, and the model must be able to reply, ‘The next state will be *n* ‘. This is
language at a simple and apparently trivial level, but consider the similar, but more realistic,
situation in which a controller exists, some form of model exists, and it is desired to have the one
make good use of the other. Assuming that some mechanism may be set up in the controller to
enable it to make use of knowledge about the effects of control actions, a typical problem will be
that the representation of the environment in the controller is very different from that in the
model and that it is unable to specify a state *s* but only the previous output, and that in terms of
an input-pattern rather than an analogue variable. On the other hand the model may be
incomplete, and the controller must be able to use replies of the form, ‘It may be *n*, *n* or
*p*’, or ‘I do not know’. These examples illustrate the necessity for assumptions, and typical
vagueness, of linguistic communication between unmatched, ill-assorted structures (such as
human beings).
It is possible to set up a simple system such that the controller of Figure 1 can make use of
statements like, ‘When the environment gives output *o* a sensible control input is *i* (Gaines,
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1967c). The controller ‘imagines the input-pattern it would receive, exhaustively searches its
response-patterns for the one which would give the most similar control input to d, and rewards
itself for performing this action (in imagination). This simple structure is readily extended to take
account of other qualifiers, ‘It is very sensible..’, and so on. Experiments with it are highly
amusing and instructive, illustrating the inherent assumptions and ambiguities in language,
which can, however, often be overcome within the language if feedback as to the behavioural
effects of statements is available. For example, it was found that a naive controller generalized a
statement of the form, when the error is positive perform action-minus’, into a control policy
consisting of action-minus whatever the input, which retarded learning. Coupled with the dual
statement about negative errors and action-plus, however, this greatly reduced the learning
transient. A simple result, but one which was unexpected when the statement was first made.

Hardware Realization of the Controller
The most promising means of fabricating the adaptive-threshold-logic element in the controller
of Figure 1 is all-digital, large-scale integrated circuits, using digital counters to store the
variable weights. The standard convergence proof for adaptive-threshold-logic in a pattern-
recognition situation (Novikoff, 1962), assumes a far greater potential range of weights than is
necessary to ensure that a solution exists. If this range is essential to convergence then the
threshold-logic element is forced to have redundant states in so far as its ability to realize a
particular control policy is concerned. A simple example has been given elsewhere (Gaines,
1967a) to demonstrate that this redundancy is essential if a deterministic adaption algorithm is
utilized, and an analytic proof is also given that no redundancy is required if a suitable stochastic
algorithm is implemented. In fact convergence is guaranteed under the usual conditions
whenever a solution exists within the range of weights, provided the normal, individual weight
changes are made, independently, with a probability bounded away from both zero and unity.
Effectively, random noise must be injected into the magnitude of the weight change, and this has
been done, with the stated effect, in at least one hardware adaptive threshold-logic pattern
classifier (Clapper, 1967).

Conclusions
This paper has ranged far and wide through the problems involved in using adaptive pattern
classifiers as the variable elements of adaptive control systems, and it has raised far more
problems than it has solved. It illustrates the new dimensions added to the normal pattern-
recognition situation when there is feedback from the classifier’s decisions to the sequence of
input patterns, and when performance feedback is relative and global. The problems of
performance-feedback, training and linguistic communication open up new research areas about
which little is known as yet. Although practical applications are obviously for the future,
advances in circuit technology will make pattern classifying adaptive controllers increasingly
attractive and the associated techniques for utilizing them of increasing practical importance.
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