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I. Introduction
The term identification was introduced by Zadeh (1956) as a generic expression for the problem
of “determining the input-output relationships of a black box by experimental means.” He cited
the various terminologies then prevalent for the same problem: “characterization”
“measurement,” “evaluation,” “gedanken experiments” etc., and noted that the term
“identification” states “the crux of the problem with greater clarity than the more standard terms
above.”
Zadeh formulates the general identification problem as: given

1) a black box, x, whose input-output relationship is not known a priori;
2) the input space of x;
3) a class of models for such black boxes, M, which on the basis of a priori information about

x is known to contain a model for it
determine, by observing the response of x to various inputs, a member of M which is equivalent
to x in the sense that its responses to all time functions in the input space of x are identical to
those of x.
Over the next twenty years the identification problem became an essential area of study for
modern control theory justifying a continuing series of major I.F.A.C. symposia concerned with
this topic alone, and books such as that of Eykhoff (1974) concerned primarily with system
identification. The major effort in control research has tended to be with systems modelled as
linear and continuous in their state variables and either continuous, or uniformly sampled, in
time. Such work has found a wide range of practical applications in plant measurement and, to a
lesser but significant, extent in on-line adaptive control. Similar developments have found
important applications in signal processing for radar and telecommunications where adaptive
filtering techniques based on channel identification are now routinely applied in commercial
systems.
As usual, techniques based on linearity and continuity begin to break down when applied to non-
artificial systems, for example biological and economic modelling. Significant practical use of
the linear “describing function” has been made, for example of the pilot in aircraft design.
However, human motor control is known to be based on discontinuous decision-making leading
to discrete corrections, rather than the smooth, linear motion of classical servomechanisms.
Interesting studies have been made of the human operator using alternative modelling
techniques, ranging from sampled-data linear systems, through Wiener kernels, to finite-state
machines (Gaines, 1969).
As the extremes of biological systems behavior are approached, for example, in animal
ethological studies (Dawkins and Dawkins, 1974; Dawkins, 1976; Vowles, 1970), where the data
is often purely descriptive having no metrical structure, linear systems techniques become totally
inapplicable. Here, the times-series to be modelled are strings of arbitrary symbols and one has
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crossed into the domain of automata theory and the problems of grammatical inference (Fu and
Booth, 1975). Similarly, in studies of picture processing, one obtains spatial, rather than time,
series which are most appropriately studied in grammatical terms (Fu, 1974).
It is interesting to note that Zadeh recognized this spectrum of problems in his discussion of
system “identification” some twenty-one years ago, although the main part of his paper was
concerned with continuous system identification. Indeed, it was probably Moore’s classic paper
on “Gedanken Experiments on Sequential Machines,” published the previous year, that triggered
off the generalization of a variety of approaches to system measurement to being a general
problem of identification.
This paper is a brief survey of the current state-of-the-art of system identification, concentrating
on the general problem rather than the massive amount of work on special cases. Eykhoff’s
book, the I.F.A.C. symposia, and I.E.E.E. transactions on Control, Information Theory, Circuits
and Systems, System Man and Cybernetics, etc., give accounts of specific states-of-the-art. I
have previously published a comprehensive formulation of general systems identification giving
over 200 related references (Gaines, 1977a). This present note abstracts the key features of that
formulation and brings the earlier report up-to-date with notes on recent developments.

II. Philosophical background to the general problem of identification
System identification is, in one sense, a comparatively new concept, yet in another it is
ancient—the process of acquisition of knowledge about the nature, or structure, of the world
from observations of its behaviour generates the classic epistemological problem described so
graphically in Plato’s Republic through the “simile of the cave.” It is a central problem in
modern philosophies of science, and, as demonstrated by Hume, in an important sense it has no
solution (the derivation of a “solution” itself being an epistemological problem requiring a
further “solution,” ad infinitum).
This lack of a general solution to the problem of knowledge acquisition leads to a new problem,
one of ontology—we actually have to presuppose the nature of “reality,” of being, of the world,
before we can acquire knowledge about it. Here lies a basic conflict at the heart of the problem
of identification—between pure epistemology on the one hand (knowledge is the raw material of
our experience and is prior to all “metaphysical” speculation about being) and ontology on the
other (we have a priori reasons to suppose that the world has a certain nature independent of our
knowledge of it).
In general systems theory we cannot avoid operating in this region of conflict. The ontological
approach to many questions is very satisfying—one can hypothesize and create structures that
are adequate, complete and consistent. Yet invariably the question will arise as to whether this
comforting sense of closure is “real”—if I cannot know what is my justification in saying—if
there is not at least a potential test what is the value of speculation?
There has been a tendency in system theory to adopt the extreme positivist view that the
ontological problem is subsumed under the epistemological one. We can talk only of structures
we can identify, and our preferred way of talking about them is in terms of the procedures for
their identification. We are interested primarily in the best procedures for system
identification—the optimum, correct and unique procedures that would define our channels of
access to knowledge and hence, in terms of the above rationale, the nature of being.
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In recent years there have been developments that appear to bring us closer to a formulation and
solution of the problem of identification than ever before. In concrete terms these command
attention because they weave together the many strands of uncertain system theory, probability
theory, etc., into a coherent whole, and give the correct answers when applied to such problems
as stochastic grammatical inference (Gaines, 1976b, 1977a). In abstract terms, however, these
developments turn the wheel a full circle because they highlight starkly the degree of ontological
commitment necessary to formulate an epistemological problem in an operationally soluble
form. There are decisions to be made that are necessarily arbitrary—not only is uniqueness and a
clear sense of “correctness” lacking, but they are replaced by a degree of universality in which
almost any decisions are viable.
I have argued elsewhere (Gaines, 1977b) that it is such dialectical conflicts that have been, and
are, crucial to the development of systems theory. It is at the point that we accept that there is no
ultimate resolution and begin to examine the conflict itself (rather than indulge in it!) that
progress is most rapid. In this context the interesting problems now are, for example, the
interplay between presupposition, observation, and modelling. What can we gain in terms of
resources saved through pre-suppositions, and conversely, what do we lose in terms of incorrect
results when the pre-suppositions are incorrect? There also arise meta-problems, such as, what
kind of data will lead us to change not just our model, but rather our presuppositions?

III. Key features of the identification problem
Zadeh’s definition given previously forms a convenient framework in which to discuss the
general problem of identification. It already exhibits two key features of the problem:
(1) that the class of possible models must be determined in advance—this is an example of the

precedence of ontology over epistemology—the philosophical problems involved do not
seem to have worried system theorists a great deal, however, and this, I shall argue, is an
error—the apparent generality of some of our model classes, such as automata, is due to
some basic fallacies in the way we evaluate their generality;

(2) that identification is an active process of testing hypotheses by interaction with a
system—rather than a passive process of data acquisition and modelling alone—much of the
work on, for example, grammatical inference neglects this role of action in data
acquisition—we are concerned only with the best model that fits the data when, very often,
the conclusion should be that there is inherent ambiguity in the results—no best model is
determined, only a class of models, selection amongst which requires further data—often,
specific potential exemplars of behaviors may be indicated whose existence, or non-
existence, is the key to a separation between possible models;

What Zadeh’s original definition did not attempt to cover are the additional key features:
(3) that identification is not carried out in the abstract but generally for a purpose and this

purpose is an essential part of the identification problem. We very often, for example,
evaluate identification in terms of prediction, but in complex systems it is rare that we either
need, or can, achieve prediction of all aspects—the data rate of information acquisition is too
low—we are often identifying in order to control, rather than out of pure scientific interest
and many aspects of prediction may be irrelevant—indeed the significant feature of human
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control of complex systems is the degree of achievement possible based on only crude
knowledge;

(4) identification may conflict with other objectives—in terms of the preceding discussion, it is
clear that differing requirements for prediction may be in conflict—an identification scheme
optimal for one class of prediction may not only be sub-optimal for another but actually
conflict with it-however, there are deeper problems when, for example, the purpose of
identification is control; the simplest illustration is the classical “two-armed bandit” problem
in which the gains of knowledge acquisition must be set against the costs of sub-optimal
control;

(5) the identification problem as stated may have no well-defined solution—this is because the
requirement for a solution is a model whose responses are “identical” to those observed—for
non-deterministic systems such identity is not meaningful, and, since “noise” is significant in
most real-world systems, practical applications of identification generally have to allow for
non-determinism; we may then talk in terms of the degree to which the model approximates
the observed behavior but this is now an order relation rather than a unique classification;

(6) the identification problem may have a number of possible solutions, choice amongst which is
dependent on other factors—even when the system is deterministic, there may be several
models whose responses are identical to those observed—generally, all models will not be of
equal status and there will be a preference ordering on them such that if two are of equal
validity then one is preferred to the other; it is convenient to call this preference ordering one
of simplicity, or its converse, of complexity.

These six aspects of the identification problem take it out of the realm of passive data analysis
and lead to its rich philosophical foundations requiring rather more subtle formulation in system-
theoretic terms than might be expected. In the following section, I will summarize the
formulation of the problem given in detail previously, and then go on to discuss some of the
problems stated and the current state-of-the-art within this framework.

IV. Identification, approximation and complexity
It is early yet to give a “state-of-the-art” review of identification—there has been much progress
in recent years, but problems remain, particularly in the practical feasibility of applications based
on theoretical and computational techniques.
In the sixties, the key developments were the studies of inductive inference by: Watanabe (1960)
arising out of his fundamental studies in physics (Watanabe, 1955); Solomonoff (1964) triggered
off (Solomonoff, 1959) by Chomsky and Miller’s (1957) studies of grammar discovery; and
Gold (1967) who was concerned with the fundamental constraints on such inductive inference.
These lead to two main centres of activity in the late sixties and early seventies: that developed
by Feldman (1967, 1972; Biermann and Feldman, 1972) at Stanford, concentrating on
deterministic grammars and leading to the key theoretical studies of Horning (1969) and the
applications to automatic programming of Biermann and Krishnaswamy (1976); and that
developed by Booth at Connecticut, concentrating on stochastic grammar and leading to the
studies of Patel (1972) and Maryanski (1974) on computational procedures for stochastic
grammatical inference.
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These developments all depended largely on heuristic methods that had high degrees of
plausibility but lacked secure formal foundations. A key breakthrough here came in the early
seventies, with the results of Goguen (1973), Arbib & manes (1974), and Ehrig (1974), who
showed that for wide classes of deterministic systems the solution to the identification problem
could be expressed as an adjunction between categories of behaviour and structure. This was a
very elegant general framework in which to place identification, and the common
characterization of the problem for linear continuous systems and for nonlinear discrete systems
gave substance to Zadeh’s suggestion some eighteen years earlier (echoed in Arbib’s work
(1966) on automata and control theory) that there was a single, system-theoretic principle
involved.
The next step forward was clearly to extend these results to non-deterministic systems. This
appeared a small step, but was not—in retrospect, it involved the foundations of probability
theory which were themselves going through an era of change in the late sixties and early
seventies with both “subjective” and “complexity” based approaches gaining strength (Fine,
1973). The problem in going from deterministic to stochastic systems is that the
behaviour/structure adjunction seemed crucially dependent on the uniqueness (up to an
isomorphism) of the solution to the identification problem. For stochastic systems, such a unique
relationship between the minimal structure which will account for a behaviour and the behaviour
itself disappears. The structure can now only approximate the behaviour and the more complex
the structure, the better the approximation. A similar phenomenon had been noted by Feldman
(1972) for the inference of deterministic grammars when the example set is incomplete (as it will
usually be for practical examples).
In the limit, this process of improved approximation with increased complexity can lead to
ridiculous results. Gaines (1976a) showed that if zero-memory (Bernoulli) probabilistic
sequences were modelled by deterministic automata then the ratio of the mean number of states
in the automaton required to the length of the observed behaviour was asymptotical unity! In
retrospect again, this is a computational-complexity result that nearly all random sequences are
maximally complex (Kolmogorov, 1968). However, its epistemological significance is profound.
Finite automata form an adequate set of models for all finite sequences of behaviour, i.e., for
every behaviour we can always find a model which exactly matches it. The result showed that
this concept of “adequacy” was not sufficient to give meaningful solutions to the identification
problem.
The solution to these difficulties proved to be to face the lack of uniqueness of the solution to the
stochastic system identification problem head-on and define the “solution” to be an admissible
subset of models, such that any member of the solution subset, if it is more complex than another,
is also a better approximation. This establishes a Galois connection between the orders of
approximation and complexity in the subset which Ralescu (1977) integrated recently into an
elegant category-theoretic formulation of the identification problem for deterministic, stochastic
and fuzzy systems, as an adjunction. No longer is the solution unique, but the subset of
admissible solutions is, and it can be characterized in this way.
In one sense the work of Gaines and Ralescu completes the earlier studies of Zadeh, et al., in that
both the identification problem and its solution have been formulated in a general system-
theoretic framework embedded in category-theory. However, identification is a real-world
problem so that the question of the applicability of the results is also highly significant.
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A first question is clearly: where do these measures of approximation and complexity come
from? At one level the answer is that they are arbitrary—complexity is our preference ordering
on models in themselves, and approximation is our preference ordering on the relationship
between a behaviour and models. Any step beyond this involves additional presuppositions.
I doubt that many people will find the statement of the arbitrariness of complexity and
approximation satisfactory or, perhaps, satisfying. However, the only resolution is through
statement (3) of the previous section that identification has a purpose; the specific purpose of a
specific proposal for system identification may lead to acceptable presuppositions that constrain
otherwise arbitrary decisions. For example, if we are modelling a time-series and our purpose is
prediction and we know the pay-offs for errors, etc., then a definite measure of approximation
may suggest itself. This has been studied by Savage (1971), de Finetti (1972), Pearl (1975), et
al ., in the context of subjective probabilities. Wharton (1974) has given a survey of
approximation measures for grammatical inference.
The problem of complexity definition has been treated in the literature by attempts to give
intensional definitions of complexity classes, i.e. a logical structure that is plausible in itself and
generates a complexity order over a class of models. Sober (1975) discussed this in a
philosophical context in his book on Simplicity, and it has become an important topic in system
theory (Cornacchio, 1977). One very interesting approach developed by Horning (1969) in the
context of grammatical inference is to define grammar-grammars that are themselves meta-
grammars for generating grammars. This gives a natural complexity measure for a grammar in
terms of the length of its derivation, and has been used as the basis of an effective stochastic
grammar inference program by Van der Mude and Walker (1978). Their algorithm has the
interesting property of taking into account the precision of estimates of probability in the
complexity measure, analogous to the intuitive feeling that there is less content in describing a
probability as 0.5 rather than 0.523. Gaines (1976b, 1977a) has so far used only measures of
complexity based on simple enumeration of states, or links, in automata—such measures and
their variants have been analysed by Zeigler (1976).
Computational algorithms to determine the admissible subset of models require the controlled
enumeration of models in order of complexity—“controlled” so that time is not wasted in
generating duplicate or impossible candidates. Wharton (1977) has recently analysed and
surveyed approaches to such enumeration. The practical algorithms for structure inference that
exist are crucially dependent on the efficient control of candidate model generation, and Klir
(1976; Klir and Uyttenhove, 1976, 1977), in particular, has studied structure generation as a
central component to realistic identification schemes. In particular his notion of an
epistemological hierarchy itself gives structure to the ontological decisions necessary at various
levels of any identification scheme.
Another potentially fruitful approach to the removal of arbitrariness in measures of complexity
and approximation is to study the effects of varying requirements for linguistic invariance, i.e.,
that the model should not change when the behaviour description language is varied, the basis of
Goodman’s “grue” paradox (Sober, 1975). While a requirement for total invariance is clearly
impossible, limited forms of invariance act as intentional constraints upon possible complexity/
approximation orders and may prove to give intuitive meaning to what would otherwise be
arbitrary formal relations.
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V. Appraisal
The links of system identification to problems in the philosophy of science are obvious and
important. In general, we are trying to form a model of the world through our observations of it.
Carnap’s confirmation theory appears as our incremental adjustment of a model resulting from
new data. Popper’s falsification theory appears as our removal of models from the admissible
subset following new data that decreases their degree of approximation. Kuhnian “scientific
revolutions” appear as changes in the complexity ordering on models which maintain the
simplicity of all previously simple behavior but allow more behavior to be regarded as simple.
And so on—there is a rich literature essentially relating to system identification in the philosophy
of science.
The links of stochastic system identification to probability theory are also close. Gaines (1976b,
1977a) obtains a solution to the problem of inferring stochastic finite-state grammars by using
the subjective probability eliciting measures of Finetti and Savage. The expected loss of an
optimal identifier turns out to be an entropy function. A random sequence may be defined as one
that is maximally complex relative to a class of models. One may, in fact, reformulate probability
theory in these terms thus integrating the “subjective,” “complexity,” “information-theoretic,”
and “axiomatic” foundations.
The links of system identification at the general level discussed in this paper to practical
problems are still tenuous, and yet sufficiently strong to be the driving force behind most current
studies. Biermann and Krishnaswamy (1976) have used their (deterministic) inferencer as a
component of an experimental auto-programming system, and such program inference is the goal
of several ongoing studies. Blum and Blum (1975) have given theoretical foundations for what
can be achieved in terms of program compression programs based on grammatical inference, and
Crespi-Reghizzi, Melankoff and Lichten (1973) have studied its use in programming language
design. Gaines (1976b) used autoprogramming with errors to illustrate the use of stochastic
grammatical inference and is currently studying the analysis of animal ethological data. Walker
(1976) is applying his program to medical case histories.
One limitation to all current inferencers is speed of computation. Models with up to about 10
states of sequences of length about 1,000 over 10-symbol alphabets seem to be the point at which
most implemented algorithms run of steam. One way of obviating this is to look for sub-optimal
but fast algorithms that give good models but not necessarily admissible ones. Witten (1977) has
re-analysed some of Gaines’ examples using such a scheme based on the modelling techniques
of Andreae’s “Purr-Puss” learning scheme (Andreae and Cleary, 1976). Another approach,
however, is to note that when the current schemes break down they are involved in searching
millions of models; might it not be that the set of models is unsuited to the application? Gaines
obtained a ten times speed-up in reanalysing Maryanski’s examples by changing from a
complexity measure based on states to one based on links between states. This was a sensible
Kuhnian “paradigm shift” because, in retrospect, the artificial examples used to generate the data
were not highly connected. Hence, a change in complexity ordering that differentially decreased
the complexity of low connectivity models relative to high connectivity models made the “real-
world” generated by Maryanski simpler and easier to understand. Such results point to the need
to consider carefully the ontological implications of the class of models used (including the
complexity order on it) when attempting to analyse real-world data.
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I have perhaps over-emphasized in a paper on “system identification” the story of grammatical
inference. This is because the inference of automata and Turing machines solves a very general
form of systems identification. However, there are other important studies that would require
papers in themselves to describe, in particular: Hajek and Havranek’s (1977) studies in
Czechoslovakia during the last decade of the GUHA system of inductive inference that has been
applied to a variety of medical data analysis problems (Hajek, 1978), and Michalski’s work at
Champaign, Illinois, on inductive logics applied to the inference of plant disease taxonomies
(Chilausky, Jacobson and Michalski, 1976). These, together with a wide range of studies making
more specialized assumptions about the class of models (eventually impinging on classical
statistical estimation and linear systems theory) fit into the general framework for identification
outlined in this paper. Much work needs to be done on the role, and interrelationships, of the
various pre-suppositions involved and the complexity/approximation measures used or implied.
I also do not have the space to discuss points (2) and (4) raised earlier, that identification is an
active process of guiding data acquisition and may conflict with other objectives. We have been
so far away from formal foundations for identification without these added problems that they
have so far received little attention, although they are key aspects of practical “learning
machines.” Now that the basic problem of the semantics behavior/structure inference is acquiring
rigorous foundations, one may expect more attention to be paid to the dynamics of the process.
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