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A technique is described for the identification of probabilistic and other non-deterministic automata from
sequences of their input/output behaviour. For a given number of states the models obtained are optimal in

well defined senses, one related to least-mean-square approximation and the other to Shannon entropy.
Practical and theoretical investigations of the technique are outlined.

1 Introduction

The use of the Nerode equivalence over regular sets to derive a minimum-state automaton that
realises the input/output behaviour of some discrete system is well established, and various
practical implementations have been developed (Fu and Booth, 1975), as have rigorous
mathematical foundations (Goguen, 1973). The combinatorial difficulty of determining the
equivalence and the corresponding computational problem are well known and minimum-time
algorithms have been developed (Hopcroft, 1971). However, a more fundamental limitation to
the use of the technique for system identification has been described recently: the Nerode
equivalence gives exactly the correct structure in its original context of deterministic systems,
but the introduction of the slightest observation noise, or acausality in the observed system, leads
to a meaningless structure whose member of states grows proportionally with the length of
observations (Gaines, 1976). This letter describes a new approach to behaviour— structure
transformations that yields the same results as the Nerode equivalence for deterministic systems,
but also identifies non-deterministic and probabilistic systems.

2 Problem Statement

From an observed sequence of behaviour, e.g. bccedeecf, where b is the first observation and f
the last, infer the ‘best’ structure for an automaton that might generate it. More formally, an
observed behaviour is a member of the free monoid D* generated by some set of descriptors D
of which some subset / may be designated as inputs (which need not be predicted); some subset
T as terminators (such that the string before them may not be used to predict the string after
them) and the remainder as outputs. However, neither / nor 7 need be defined and the algorithm
will determine them (at the cost of additional computation). For the purposes of modelling, ‘null’
inputs and outputs are assumed to be inserted in any member of D * if necessary to give an
interleaved sequence.

A model space <M, C, P> for the problem consists of an allowed set of models M, a function C:
M — R, from models to the positive reals, measuring the cost of a model and a function P: M x
D* — R", measuring the poorness of fit of a model to an observed behaviour. An admissible
subspace for a given u € D* is determined by M(u) C M, the subset of nonimprovable models
such that if m € M(u) there is no m” € M such that P(m’, u) < P(m, u) and C(m’) <= C(m). For
example, M might be the set of irreducible, deterministic Mealy machines with a specified initial
state, C(m) might be the number or of states of m € M and P(m, u) might be 0 if m generates the
input/output sequence u € D* exactly, and 1 otherwise (where m starts in the specified initial
state, receives the input sequence embedded in u and returns to the initial state at any terminator



in u). This corresponds to the standard deterministic case in which the Nerode equivalence may
be used to derive an admissible subspace consisting in fact of a set of isomorphic minimal-state
automata.

The binary nature of P in this case corresponds to there being a well defined correct solution
given the allowed class of models. However, Gaines (1976) shows that the model obtained is not
meaningful if the observed behaviour has been generated by a non-deterministic system. M needs
to be widened to allow for approximate models, and the evaluation P needs to reflect the degree
of approximation.

3 Approximate Models

Let M now be the set of probabilistic Mealy machines that are observable in the sense that, even
though the next state can only be predicted probabilistically, each possible transition is
associated with a distinct output, so that the state after a transition may be determined from the
output. The inputs and terminators in a sequence u will again drive it through a well defined state
trajectory, but now it is not expected to exactly match each output in a, only to predict it. C(m) is
again the number of states in m, but P(m, a) is a measure of the poorness of prediction. One
possible measure P, is the total errors when m is used to predict only the most likely output.
However, this is unnecessarily coarse, since m has available a vector of probabilities over
possible outputs, and, for example, ¢ occurring when the prediction of b, ¢, d is (0 6, 0.4, 0) is
clearly much better than when it is (0.6, 0, 0.4).

The literature on subjective probability provides bases for measures with better discrimination
than P, Finetti (1972) has shown that, if the actual event is represented by a vector with a 1 for
the output which occurs and 0 for the others, the distance between the prediction and occurrence
is a suitable measure of poorness of performance. The total of the squares of the Cartesian
distances between the predictions of a model m and the occurrences of outputs in a sequence u
will be denoted Py(m, a). Finetti shows that if the occurrences form an ergodic stochastic process,
a predictor minimising its mean-square distance will come to predict the actual probabilities of
occurrences. Other performance measures with this property have been characterised (Winkler
and Murphy, 1968) and a particularly interesting one is that which only takes into account the
component of the prediction for the event which occurs allocating a poorness estimate of the
logarithm of the predicted ‘probability’ to it. The total of the logarithms to base 2 of the
probabilities predicted by a model m of the outputs in a sequence u will be denoted P(m, u).

4 Implementation

Algorithms to compute the admissible subspace of either Mealy or Moore probabilistic
observable automata for arbitrary u have been implemented and tested with a wide variety of
source material. The algorithm is basically a search over non-deterministic automata—the
optimality condition mentioned for the measures implies that the ‘transition probabilities’ may be
filled in from the measured transition frequencies of these automata. A recursive algorithm
constrained by the sequence to generate only possible models is used, but otherwise the search is
exhaustive. The output from the program is a listing of admissible automata for increasing C(m)
(number of states), together with values of P,, P; and P, for each automaton.



5 Outline of Results

Practically, the technique is limited by the amount of computation required. and in a typical run
(10 h on a 1 microsec-cycle-time 16 bit-word minicomputer) models of up to 10 states only may
be derived. However. examples of sequences from deterministic, probabilistic and asynchronous
machines together with human problem-solving data have been successfully analysed. Fig. 1 is a
plot of P(m, u) against C(u) from the analysis of a 100-element binary sequence generated by a
stochastic learning environment studied by Andreae (1974), and also shows the beginning of the
observed behaviour and the 2-, and 4-, state admissible models generated. The 4-state model
accurately identifies Andreae’s original stochastic environment, and a pronounced drop in P,
may be noted at 4 states. P, becomes 0 for the 91-state model, in line with the results of (Gaines,
1976).

Theoretically, it may be shown that:-

(a) if at is an ergodic stochastic sequence of outputs generated by an n-state automaton the
expected value of Py(n, u) is a measure of the entropy of the sequence [Zp(1-p)];

(b) under the same conditions the expected value of P, u) is minus the Shannon entropy of
the sequence [Zp(log, p)];

(c) under the same conditions, if the generating probabilities are not 0 or 1 the expected
value of C(m) at which P(m, u) = 0 is at least half the length of u (Gaines, 1976);

(d) no improvement can be gained by considering non-observable automata as models.
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Figure 1 Results of modelling sequence u (initial part shown)
Graph of poorness of fit P; against number of states C for admissible models: 2-state and 4-state
admissible models generated (the subscripts to the labels of the transitions are the number of
times the transition occurs in u)

6 Conclusions

A technique has been given for the determination of automaton structures from a sequence of
behaviour which is ‘best’ in some rigorous and meaningful sense. It overcomes the problems
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associated with extending deterministic techniques to the non-deterministic case, accurately
identifying probabilistic automata and providing a pseudo-probabilistic model for other non-
deterministic sources. Practically, its use as a system identification technique is feasible in
simple cases, but is limited by computation time to models with up to 10 states. Nevertheless it
provides a normative technique against which faster heuristic methods may be judged.
Theoretically, it gives a finite-state approach to the modelling and measurement of
computational complexity of individual sequences (Kolmogorov, 1968). It is also a base-level
minimum-assumption method, against which the savings of assumptions of deterministic source,
known maximum number of states, linearity etc., may be evaluated.
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