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loop. Of all 42 possible patterns studied, 26 ofthem form no output error final section of this correspondence is concerned with developing this
and do not feed back, which means the threshold is below three. Eleven concept.
patterns, each containing at least two input errors, feed back only once,
which means that the feedback loop does not generate new output errors. II RECONVERGENCE OF A PERTURBED ATLE
Four patterns, each containing at least two input errors, feed back twice,
which may generate one output error by the second feedback. Only one We consider the behavior of an ATLE that has already converged to
pattern with three l's in the syndrome register caused by at least three a solution of a particular classification and which then receives a per-
input errors has gone through the feedback loop three times, which may turbation (due to incorrect reinforcement, say) that causes its weight
generate up to two output errors depending on the input error pattern, vector to change. We are interested in the possibility of its reconverging
The empirical tests have thus proved that the feedback loop of the new to a solution without making any errors in classifying the inputs, and
random-error correction code does not propagate errors. show that this is always possible (Result 1) provided its threshold is large

enough compared with the perturbation of the weight vector. It is clearly'
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X and the ith value of the weight vector, respectively, for which a weight
adjustment occurs. Then, we have

w(i + 1) = w(i) + x(i) (2)

and

w(i) * x(i) < 0. (3)

Stability and Admissibility of Adaptive Threshold Logic Note the distinction between the 0 in inequality (1) and the 0 in (3)-the weight vector is a solution giving the correct classification if itConvergence satisfies (1), but it is still changed if it satisfies (3). This distinction be-
tween the criterion of performance and the criterion for adaption is not

B. R. GAINES AND I. H. WITTEN important in normal convergence proofs where only adaption is consid-
ered. We are concerned to show that the performance can be maintained

Abstract-It is shown that an adaptive threshold logic element while adaption occurs, and the distinction is of prime importance. The
(ATLE) whose weight vector is perturbed reconverges without threshold, 0, is a form of "noise margin," and the technique of adapting
error provided its threshold is large compared with the perturba- according to one criterion while basing performance on another is com-
tion. This result is generalized to a criterion of convergence, based mon to many "tracking systems," e.g., in adaptive line equalization
on admissibility, for the nonseparable case. It is shown that con- [6].
ventional ATLE's cannot cope with nonseparability even according
to this very weak criterion. Standard Convergence Proof

Index Terms-'Adaptive threshold logic, convergence, percep- We base our later discussion on the standard ATLE convergence proof
tron, nonseparability, threshold. [4]. Assume there is a W satisfying (1), i.e., the original classes are linearly

separable, and that convergence can be proved if the sequence x(i), can
be shown to be finite, i.e., all members of X occur frequently in the
training sequence from which x (i) is derived. Let us first drefine two basic

I. INTRODUCTION parameters of the set X: P is the minimum scalar product of any x E X
The simple intuitively meaningfulstrutureoftheadatiwith W, andM is the maximum length of any x C X (both P andM canThe simple intuitively meaningful structure of the adaptive threshold be normalized to unity without loss of generality). We have

logic elements (ATLE's) developed by Rosenblatt [1], Widrow [2], and
many others [3], coupled with the availability of straightforward proofs W * x (i) > P (4)
[4] of their convergence under reasonable conditions, has commended
them to many workers in the fields of pattern recognition and machine and
learning. However, Minsky and Papert in their analysis of the compu- x x (i) (5)
tational power of threshold logic [5] have remarked on the irrelevance X ( M
of the basic convergence proofs to justifying the incremental "learning" Hence, squaring each side of (2) and using (3) and (5):
strategy of an ATLE. They note, for example, that the random selection
of a new solution (weight vector) when the current one fails also "con- w(i + 1) * w(i + 1) <w(i) * w(i) + 26 + M2. (6)
verges," and give examples where such a "convergence" is actually more Summing (5) over 0 5 i < :
rapid than that of a conventional ATLE.

This correspondence provides a result on the stability of ATLE con- w(N) * w(N) < w(O) * w(O) + N(26 + M2). (7i)
vergence under conditions of perturbation by a transient sequence of Ti so
incorrect reinforcement that does bring out a major advantage of incre- Tiisoe basic inequality for the length of w (N).
mental "learning." It also clarifies the role of the "threshold," which plays Now, taking scalar products on both sides of (2) with W and using
surprisingly little part in the usual convergence proofs. (4)
The nature of the result obtained suggests a new concept of "ad- w(_ )*W> ()W+P (8)

missibility" of an ATLE "solution" in the nonseparable case, and thewi+1)W>w).W+P
Summing (8) over 0 ' i < N:

Manuscript received July 25, 1975; revised January 21, 1976. w (N) * W> w (0).* W + NP. (9)
The authors are with the Man-Machine Systems Laboratory, Department of

Electrical Engineering, University of Essex, Colchester, Essex. Hence, using the Schwartz inequality:
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w (N) * w(N) > (w(0) . W + NP)2/W W. (10) Note that (22) and (23) are independent of 0.
This is the second basic inequality for w(n), and clearly must eventually Now consider any x E X and take the scalar product of both sides of
become incompatible with that of (7) as N increases. Hence, the sequence (2) with x
w (i) is finite with the maximum value of i being I, say. Combining (7) and w(i + 1) * x = w(i) * x + x(i) * x. (24)
(10), we obtain an inequality for I:

(PI+ w(0)- W)2 < W W(w(0). w(0) + I(20 + M2)). (11) Hence, from (5):

Adding (W * W)(20 + M2)((W W)(20 + M2)/4P2 - (W(0) W)/P - I) w(i + 1) x > w(i) x - M2. (25)
to both sides, multiplying by 4, and factoring, we obtain

Summing (25) for 0 < i < N:
(2PI + 2w(0) * W -W* W(20 + M2)lp)2

< W WI 2w(0) - W(26 + M2)/Pl2. (12) w(N) * x > w(O) * x - NM2. (26)

Taking the positive square root of both sides we obtain Substituting from (19), (16), and (17):
2PI - 21w(0)|IWI - W- W(20 + M2)/P

< WI (2 Iw (0) + WI (20 + M2)/P). (13) w(N) - x > 0 - BM - NM2. (27)
So that, finally Hence, there will be no errors during reconvergence if

I < 21w(0)l WI/P + W. W(20 + M2)/P2. (14) 0 > BM + NM2, (28)

but the 'maximum value of N is I of (22), so that (28) implies
If we consider the normalized case with M = P = 1, commencing from

a zero weight vector, w(0) = 0, (14) reduces to 0 > BM + 21 WIBM2/P + W. WM4/P2 (29)

number of corrections to convergence I < W. W(26 + 1) (15) which, for the normalized case M = P = 1, reduces to

fl B>B+21WIB+W-W. (30)
where W - W, given that W has to satisfy (4), may be seen as a measure
of the "difficulty" of a particular cone ofvectors X. Inequalities (29) and (30) show clearly that a sufficiently large value

of 0 can compensate for any size of perturbation to the solution weight
vector, and ensure that reconvergence takes place without inducing any

Behavior During Reconvergence errors in misclassification. If the perturbation is due to transient incorrect

Now consider the ATLE converged to some weight vector, V say, so performance feedback then B will be at most M times the number of falseNowt ' corrections, and hence any period of false feedback whose maximumthlat we have duration is known in advance can be allowed for by a sufficiently large
x C X, V- x > 6. (16) threshold 0. This may be summarized as follows.

Result 1: An ATLE that has converged to a solution of a classification
Suppose V is now perturbed by the addition of some bounded vector U and is then subject to a perturbation of its weight vector will reconverge
such that without errors of misclassification provided its threshold is sufficiently

U. U < B2 (17) large compared with the magnitude of the perturbation.

where U represents a disturbance to the weight vector caused, for ex- III. ADMISSIBILITY AS A CRITERION IN THE
ample, by a sequence of incorrect reinforcements to the ATLE. Intui- NONSEPARABLE CASE
tively, if V is large and U is small, it may be possible for the ATLE to
reconverge without the resulting changes to V being sufficient to lead The result of Section II, that a sufficiently high threshold allows an
to errors. We can clearly make V large by increasing the threshold 0, but, ATLE to reconverge after a perturbation with no errors of misclassifi-
from (14) this would also seem to increase the number of corrections to cation (at the expense, only, of an increased training period), in itself
reconvergence. However, the following argument shows that this is not provides a counterexample to the argument in [5] that a random selection
so, and the number of correctidns is a function only of B, the bound on of the weight vector when an error occurs is as good as the ATLE's in-
the magnitude of U. cremental learning strategy. Clearly random selection will lead to re-
We need to make use of the fact that V is already a solution. Note first convergence being exactly the same as convergence and subject to mis-

that (7) and (14) together imply that, if 0 is increased, then W(N) (and classification errors. It is the basic inertia of incremental learning that
hence VI) grows at most of order 6. Now if we use the equations of the leads to the result established in the previous section.
previous section to describe the reconvergence of the ATLE and define The concept introduced in Section II, of the stability of ATLE per-
W in terms of V as formance under perturbation, seems of interest in its own right. In more

general terms, the capability of a learning system to modify its behavior
W = VP/0, (18) without making errors by applying a more stringent criterion to its own

then W is a solution satisfying (4) and WI is nonincreasing with 0. Now behavior than is necessary for the required performance is clearly an
we take w (0) to be the perturbed weight vector interesting phenomenon. As already noted, it is the basis of some adaptive

line equalization systems [6], but it also has some obvious cognates in
w(0) = V + U (19) human and animal behavior. We decided to investigate whether it was

and substitute thisin .12 eliminating Vthrough toobtapossible to show that an ATLE could maintain its performance even
and substItute this in (12), eliminating V through (18) to obtain an esti- under nontransient disturbances, e.g., in readapting to a new set of pat-
mate for I,the number of corrections to reconvergence tern vectors. Defining this concept rigorously is not trivial because in

(2PI + 2W* U-W- WM2/P)2 < W. Wl 2U-WM2/PI 2. (20) general the union of old and new sets of pattern vectors will be nonsep-
arable and "error-free" performance is not definable. However, there is

Taking positive square roots as before: a distinction between reasonable errors and unnecessary errors, that is
some weight vectors will be better than others because they give incorrect

2P1 - 21 WI UI - WZ WM2/P < 21 WI UI + W- WM2/P. (21) results with a smaller subset of pattern vectors.

Grouping terms and using (17): Our attempts to define this situation have led to the following new
treatment of the nonseparable case. This is important in more general

I < 2 WIBIP + W- WM2/P2. (22) terms because one is concerned that, when a learning system cannot
converge to error-free performance, at least it behaves reasonably. Al-

Hence, again for the normalized case M = P = 1, we have though there have been previous studies of the nonseparable case [7], [5],
number of corrections to reconvergence they have not introduced a general definition of convergence in this sit-

uation. This we now do in terms of the concept of admissible solutions,
I < 21 WIB + W- W. (23) borrowed from statistics [9] and used in control theory [111].
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Fig. 1. Counterexample to stable convergence.

Admissible Weight Vectors sensible design objective for an ATLE required to operate in a changing
environment. UJnfortunately, simple counterexamples show that the

We first define a natural preorder relation on all possible weight vec- conventional ATLE cannot satisfy these criteria in general.
tors, in fact one of subset inclusion determined by the subset of X with To provide a general counterexample while avoiding the possibility
which a weight vector has positive scalar products. of the ATLE "remembering" all past patterns input, it is necessary to

Definition 1: IfX is a set of pattern vectors (normalized in the usual place some weak constraints upon it which still, however, cover all pub-
way by sign changing to form a single class rather than two [3]) and W lished algorithms.
and W' are two weight vectors, then we define a preorder relation on the Result 3: Stable convergence and reconvergence are impossible in
weight vectors, >, by general for an ATLE whose next weight vector is a convex function of its

W> W 'X W' * x > O = W * x > ° (31) previous weight vector and pattern vector, and which converges in the>W'~~ C X, W. ==*W-x>0 (31)cae) S ~~~~~~~~~linearlyseparable case.

i.e., any pattern correctly classified by W' is also correctly classified by Proof: Consider the planar nonseparable set of vectors, IA,B,C,DI,
W. shown in Fig. 1. The subscripted weight vectors A1, A2, etc., are at right
We are now in a position to define admissibility. angles to the relevant nonsubscripted vector, and delimit the cones of
Definition 2: A weight vector is admissible if it is maximal in the admissible weight vectors: A2C2 for $A,C}; CID1 for JB,C,D[; and A1D2

preorder relation defined by (31). for IA,D[-where, for example, A2C2 indicates the convex cone of vectors
Hence, an admissible weight vector has no others properly greater than of the form aA2 + 2C<, a > 0 and d > 0.

it in the preorder relation, i.e., such that they correctly classify all those Now consider the training sequence in which at some arbitrary time
correctly classified by it plus some others. a sequence consisting of A's and C's only is presented. Since the ATLE

Thus, admissibility provides the weaker criterion necessary in the converges in the separable case the weight vector must eventually lie in
nonseparable case. We can no longer say that a weight vector is optimal A2C2. At this time the training sequence,switches to a sequence of B's
in providing a solution, but we can at least say it is admissible if there are only. Again the ATLE will readapt but there is no convex combination
no better attempted solutions. The separable case now appears as a of B and a vector from A2C2 that is both admissible and has a positive
special condition upon the preorder relation. projection on B.

Result 2: The set of pattern vectors, X, is linearly separable if and only This shows that the convergence to the set IA,B,C,D} cannot be stable
if all admissible solutions are equivalent in the preorder relation of in terms of Definition 4 given what is a legitimate training sequence from
(31). that set. The same example also shows lack of stable reconvergence from

Proof: If the set is linearly separable then there is at least one W the set A,C] to the set B,D[.
satisfying, x e X,W * x > 0. From (31), for any other W', we have W >
W', so that the only admissible solutions must be equivalent to W in the IV. CONCLUSIONS
preorder relation. Conversely, if all solutions are equivalent then there
is no x E X which is misclassified by one weight vector and not another. It has been shown that an ATLE whose weight vector is perturbed
However, x itself is trivially a weight vector correctly classifying x. Hence, reconverges without error provided its threshold is large compared with
there are no x which are misclassified by any admissible solutions. Hence, the perturbation. This result has been generalized to a criterion of con-
the set is linearly separable. vergence in the nonseparable case in which a weight vector is said to be

In the nonseparable case the ATLE weight vector will not in general admissible if the set of pattern vectors on which it has a positive projec-
cease changing after a finite number of corrections during a training tion is maximal in that it is not a proper subset of that for some other
period, but will continue to change ad infinitum. However, we can define weight vector.
an appropriate form of "convergence" by requiring its weight vector to Stable convergence to a nonseparable set of pattern vectors is then
become, and remain, admissible. Because of this requirement for con- defined as continuing admissibility given any arbitrary training sequences
tinuing admissibility we have called this stable convergence. from the set, and stable reconvergence from one pattern set to another

Definition 3: An ATLE has stably converged for a set of pattern vectors has been defined on a similar basis. It is shown that neither stable con-
X, if and only if, its weight vector is admissible and, given any training vergence nor stable reconvergence are possible in general for any of the
sequence drawn from X, its weight vector changes in such a way as to normal range of ATLE's.
remain admissible. These results clarify the role of the threshold as a "noise-margin" in

This concept of stable convergence is shown by Result 2 to be a gen- the ATLE, and also the fundamental weakness of the ATLE in the
eralization of normal ATLE convergence and equivalent to it in the nonseparable case.
separable case. It is an important practical extension because separability
often cannot be guaranteed and stable convergence would at least mean REFERENCES
that no better solutions were available. It also provides a sensible criterion
for behavior during readaption from a set X to X' in that the weight [1] F. Rp)senblatt, Principles of Neurodynamics. Washington: Spartan, 1962.
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times. Computer and Information Sciences, J. T. Tou and R. H. Wilcox, Eds.

Definition 4: An ATLE which has stably converged for a set X, in r Washington: Spartan Books, 1964, pp. 288 317.
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reconvergence if its weight vector is all the time admissible for at least 1962), pp. 615-622.
One of X,X U X', or X', finally becoming stably converged for X'. 141 N. Nilssoln, Le?arningi Machines. New York: McGraw-Hill 1965.
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T'ech. Doc. Rep. RADC-TDR-63-533, 1964.
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provide the very weakest criteria by which one may Judge ATLE per- J. Math. Anal. and Appl., vol. 17, pp. 560-576, 1967.
formance in the nonseparable case, and that stable reconvergence is a 191 L,. Weiss, Statistical Derision Theory. New York: McGxraw-Hill, 1961.
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[10] H. Kwakernaak, "Admissible adaptive control," in 1965 Proc. IFAC Symp. that in M or A? even if the machine/machines which detect any fault of
Theory of Self-Adaptive Control Systems. (London: Society of Instrument the copies ofM become faulty, the entire arrangement remains to be
Technology, 1965). respectively, fault-tolerant or fail-safe. This process of replication ofM

to realize M or M causes the circuit realization ofM orM to be greatly
simplified, although the memory element requirements may be higher
than that in case of realization with r error correcting codes.
Throughout this correspondence, it will be assumed that a machine

M with n number of memory elements is represented by Fig. 1, where C1
is the excitation circuit of the ith memory element, which is chosen as
a unit delay element. The inputs to Ci are the primary input vector and
present internal state vector. The block Z is a purely combinational
network which generates the output ofM from the present state vector

Realization of Fault-Tolerant and Fail-Safe Sequential and the primary input. As the fault-tolerant and fail-safe realization of
Machines combinational networks has been well studied by several authors [9]-[I1],

this paper will not deal with such realizations of the block Z and will as-

A. SEN GUPTA, D. K. CHATTOPADHYAY, A. PALIT, sume such realizations. This is why it is said earlier that to realize M, it

A. K. BANDYOPADHYAY, M. S. BASU, AND is sufficient to generate the correct state ofM from the states of the copiesA. K.BANDYOPADHYA, M. S. BASU,ANDof M. It is shown in this correspondence that r + 1 number of copies of
A. K. CHOUDHURY M is sufficient to realize M to tolerate r number of faults as compared

to 2r + 1 copies as in [12]. In Sections II and III, realizations ofM and AM,
Abstract-Given a synchronous sequential machine M, this respectively, are discussed for r = 1 and extending the same principle,

correspondence deals with the fault-tolerant realizationM ofM realizations ofM and M for arbitrary r are discussed, respectively, in
and also its fail-safe realization M? on the assumption that the faults Sections IV and V.
that can occur to the circuitry ofM or A? are of permanent stuck-at
type and the total number of faults can be at most some preset II. SINGLE FAULT-TOLERANT REALIZATION OFM
positive integer r. First, the realization ofM orM is derived for r
= 1 and then the same idea is extended to have the realization for From the representation of Fig. 1 of a machine M, it readily follows that
any arbitrary r. It has been shown that the realization ofM is such if r number of faults occur anywhere in the circuit of the state machine
that it is also able to tolerate faults of nonpermanent nature. version ofM, then at the first time when the state ofM deviates from its

normal state, the deviation cannot be in more than r bit positions of the

Index Terms-Error correcting codes, fail-safe realization, fault corresponding code vector of the state. The deviation even may be in less
than r bit positions corresponding to the case when some of the faultsmasking, replication redundancy, single and multiple fault-toler- occur to the same C.. In this section, realization ofM will be dealt with

ance. corresponding to r = 1. In fact, the realization that will be discussed here
applies to the case where due to fault in M, whenever the state of M de-
viates from its normal state for the first time, the deviation is in only one
bit position. Thus, this realization is also able to tolerate some particular

I. INTRODUCTION type of multiple faults as well, e.g., when only one Ci is faulty, any number
of multiple faults in that Ci will be tolerated.

An r-fault-tolerant realization M of a synchronous machineM is that Let Fi denote the logical function generated by C- and F' denote that
realization ofM which produces normal input-output behavior ofM even when some faults have occurred to C1. Let F denote the next state func-
when a number of faults occur to the circuitry of M, the total number of tion of M. If sj is the state of M at any instant and it differs from the
faults being less than or equal to r, whereas an r-fail-safe realization A -corresponding normal state of M in jp number of bit positions of the
ofM is that realization ofM which either continues to produce normal corresponding code vector of the state, then it will be denoted as s,
input-output behavior ofM or produces a safeside output for all applied P.
inputs whenever a number of faults occur to the circuitry ofM; the total Definition 1: An ordered pair of a present state of M and an input
number of faults being less than or equal to r and each fault being of symbol is defined as a total state of M.
permanent stuck-at type. Evidently, therefore, for reliable operation of Each Ci generates a logical function corresponding to all total states
a synchronous sequential machine it should be designed incorporating of M. Assuming the occurrence of single fault to M, the fault may occur
fault-tolerant capabilities. A fail-safe realization M, on the other hand, 1) to any of the Ci's, or 2) to the input of any of the delay elements, or 3)
needs a check up of its circuitry whenever the safeside output is produced, to the output of any of the delay elements.
indicating faults may have occurred to it. Several authors have dealt with Definition 2: A total state ofM will be said to detect a fault ofM if for
the problem of fault-tolerant realizationM [1]-[5] as well as the fail-safe that total state, 1) F- and F' differ, when the fault occurs to Ci, or 2) F,
realization A? [6J-[7] of a machine M. The r-fault-tolerant realization is and the stuck-at fault of the input of the ith delay element differ when
derived in these papers using the principle of assigning minimum Ham- the fault is at the input of the ith delay element, or 3) F, and the stuck-at
ming distance 2r + 1 codes to the states of the machine (the principle fault of the output of the ith delay element differ, when the fault is at the
commonly used in coding theory to design error correcting codes capable output of the ith delay element. Suppose, at any instant,M is in the state
of correcting at most r errors [8]) which are obtained either from linear sj, so that sj - 0. Then, for an input symbol Ik, for which the total state
block code or from past states of the machine, etc. On the other hand, the (si, I4) does not detect the fault of M, F(sj, Ik4) - 0. Thus, for any fault
fail-safe realization Al is derived by designing the machine in such a way of M if at any instant M is at the nondetecting correct total state, M
that the machine ultimately reaches a terminal state whenever a fault masks the fault itself and the state ofM at the next instant is the correct
occurs in the circuit of M and thus, goes on producing the safeside output. next state of M. Now, ifs1 - 0 and if the input toM is I'k such that (sP, If,,)
Apparently, therefore, the designs ofM and M are not related to each detects the fault of M, then on the assumption of single fault, F(s1, II,,)
other at all. In this paper, the fault-tolerant and the fail-safe realizations - 1, i.e., if at any instant M is at the detecting correct total state, the state
are derived from the same viewpoint. Depending on the value of r, a ofM at the next instant is erroneous and the error is to be detected and
number of copies of the machine M is taken and it is then detected correct state at the next instant is to be determined. If the fault ofM is
whether any of them is faulty or not. If any of them is found to be faulty, such that the initial state s1 '-- 1, (sj -~- t, t > 1, cannot exist because of
then in case of realization of Al, the correct state of Al is derived from the single fault occurrence) the correct state at the present instant is to be
states of the copies of Al, and in case of realization of M, the output of determined. Thus, to achieve fault-tolerant realization, the correct state
all the copies are suppressed by the safeside output. It has been shown of Al at the instant is to be determined only if the total state of Al at the

previous instant detects the fault and this determination is carried on
by taking a second copy of Al. We shall refer the fault-tolerant realizationManuscript received February 1'3, 197.5; revised November 15,, 1975. achieved by this process as the Type I realization.
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