
Mediator: an Intelligent Information System Supporting
the Virtual Manufacturing Enterprise

B.R.Gaines, D.H.Norrie & A.Z.Lapsley
Knowledge Science Institute and Division of Manufacturing Engineering

University of Calgary
Calgary, Alberta, Canada T2N 1N4

gaines@cpsc.ucalgary.ca, norrie@enme.ucalgary.ca, lapsley@cpsc.ucalgary.ca

ABSTRACT

Mediator is an open architecture information and knowledge
management system designed to provide a flexible technology to
support the management of complex manufacturing activities
throughout the product life cycle. A heterogeneous environment
is assumed in which the sub-systems are geographically
dispersed and involve different application packages, not
necessarily designed to work together, multiple platforms,
protocols and forms of user interface. The function of Mediator
is to provide a knowledge support system for all those involved
in the manufacturing process from requirements through design,
engineering, production, to maintenance and recycling. It is
designed to facilitate communication, compliance with
constraints including physical restrictions and legal obligations,
and to generally represent knowledge about any activity or sub-
system relevant to the manufacturing process. This paper reports
on a second-generation Mediator implementation based on
World-Wide-Web protocols and browsers augmented by
specialist helper and server applications.

1. INTRODUCTION

Modern manufacturing enterprises are no longer well-defined in
their locations but comprise virtual environments in which
related manufacturing operations may be widely distributed
geographically and yet closed linked conceptually in terms of
dependencies and material, information and knowledge flows
[7]. In particular, the flows relating to the physical
manufacturing operations are only one part of a complex flow of
information and knowledge concerned with underlying
requirements, the logic of design decisions, the availability of
inventory, contractual obligations relating to customers,
suppliers, employees and government agencies, and so on.

Information and knowledge technologies have come to play
major roles in supporting and managing these flows, but the
heterogeneity of the many different sub-systems involved make
the total management of manufacturing a complex problem. In
general, manufacturing systems tend to function reasonably well
under the routine conditions for which they have been developed
but become problematic when situations arise that deviate from
these conditions. Under abnormal conditions the information
available in the system may be irrelevant or misleading, and
background knowledge that would be valuable in rectifying the
situation is likely to be absent.

Mediator is an open architecture information and knowledge
management system designed to provide a flexible technology to
support the management of complex manufacturing
environments. A heterogeneous environment is assumed in
which the sub-systems are geographically dispersed and involve

different application packages, not necessarily designed to work
together, multiple platforms, protocols and forms of user
interface. The function of Mediator is to provide a knowledge
support system for the managers and system operators involved
in running a virtual factory. It is designed to facilitate
communication, compliance with constraints including physical
restrictions and legal obligations, and to generally represent
knowledge about any activity or sub-system relevant to the
manufacturing process.

The Mediator design and prototype is one outcome of the
knowledge systematization technical work stream of test case 7,
GNOSIS, of the international Intelligent Manufacturing Systems
(IMS) pre-competitive research program [10]. GNOSIS involves
over 100 participants in 31 industry and university organizations
in 14 countries, with the objective of developing a post mass
production manufacturing paradigm involving reconfigurable
artifacts.

The GNOSIS knowledge systematization work stream has been
concerned with the modeling and management of information
and knowledge flows throughout the complete product life cycle
from initial needs through design, engineering, production, to
reuse and recycling. This paper focuses on how some of the
concepts developed in GNOSIS have been implemented in
Mediator as a general knowledge systematization tool.

2. MEDIATOR FUNCTIONALITY

Mediator is designed to coordinate the overall manufacturing
process over the complete product life cycle from requirements
to recycling. In particular, it supports the integration of
computer-based system design, production engineering and
production sub-systems into a mutually collaborative framework
for integrated design and manufacture. It provides facilities for
recording and tracing decisions taken at each stage of the
product life cycle, particularly the dependencies between
knowledge, decisions, datasets, and so on.

A basic Mediator technology is an open architecture visual
language tool for representing conceptual schema in a way that
is comprehensible to users, and can be easily tailored to different
application domains. Mediator supports semantic networks that
can be used to represent rules, procedures and constraints with
formal, operational semantics such that an inference system can
be used to give advice and check for constraint violations. The
representation is domain independent and the system can reason
with legal constraints and corporate procedures as well as with
design constraints. Less formal concept maps are also supported
where the role of the system is primarily information retrieval
rather than reasoning, and the formal and informal systems can
be combined.

Procedures can be triggered through the user interface to the
visual language, and the procedures can include other
applications or general-purpose agent systems [19, 20] that
support active integration between applications and between
sites. Data translation and knowledge interchange are supported
through such agents.

It is assumed that many of the systems to be integrated are
geographically dispersed and have been developed separately
without any coordination. The problem is one of heterogeneous
integration to provide a powerful and usable combined system
that:
i) Enhances the functionality of each of the individual sub-

systems
ii) Offers users additional capabilities beyond those of the

individual sub-systems
iii) Provides users with an overall coordination system that is

readily comprehensible.

It is a fundamental design requirement that the basic Mediator
technology should be minimal, modular, open-architecture,
cross-platform, and easy to enhance, maintain and use. Mediator
is only justified to the extent that it is resource-effective in
improving the coordination of complex situations, and would be
counter-productive if it introduced new problems and
complexities.

3. MEDIATOR ARCHITECTURE

The Mediator architecture is a distributed client, distributed
server design, in which multiple users can collaborate
synchronously or asynchronously through processes running
anywhere on the network. The implementation supports a
heterogeneous environment in which there are multiple
protocols and multiple forms of user interface.

Figure 1 shows the basic architecture. At the center is a
collaborating and geographically dispersed user community.
Beneath this is shown the computational infrastructure to
support the collaboration.

User Interface
Graphics, text,

visual languages, hypermedia

User
Community
Collaborating,

Geographically
dispersed

Applications
Packages of functionality
providing defined services

Processes
Programs initiated by applications,

not necessarily running on the same processor as the application

Communications
LAN/WAN connectivity supporting

generic and proprietary knowledge and data interchange formats

M
e
d
i
a
t
o
r
-
a
w
a
r
e

A
p
p
l
i
c
a
t
i
o
n
s

Mediator-Interfaces
Visual languages,

Hypertext

Mediator-Services
Interpreted interactive visual languages,

Active documents

Mediator-Agents
Light-weight processes triggered by

user and agent actions

Mediator-Messages
Object-oriented knowledge and data interchange protocol

STEP, Ontolingua, KQML

A
p
p
l
i
c
a
t
i
o
n
-
s
p
e
c
i
f
i
c

P
r
o
c
e
s
s
e
s

I
n
t
e
r
f
a
c
e
s

S
t
a
n
d
a
r
d

S
t
a
n
d
a
r
d

A
p
p
l
i
c
a
t
i
o
n
s

I
n
t
e
r
f
a
c
e
s

H
y
b
r
i
d

A
p
p
l
i
c
a
t
i
o
n
-
s
p
e
c
i
f
i
c

C
o
m
m
u
n
i
c
a
t
i
o
n
s

M
i
x
e
d

P
r
o
c
e
s
s
e
s

C
o
m
m
u
n
i
c
a
t
i
o
n
s

M
i
x
e
d

Figure 1 Mediator architecture

The community interacts with the system through a variety of
forms of user interface, typically graphics, text, visual languages
and hypermedia. They access a variety of ‘applications’ defined
as packages of functionality providing defined services.

The functionality is made operational by initiating processes
which may run anywhere on the network; that is, remote
procedure calls are expected to be common. Inter-process
communications is provided through local and wide area
networks supporting a range of generic and proprietary
knowledge and data interchange formats.

On the left of Figure 1, these four layers are shown instantiated
in terms of conventional software packages designed
independently of mediator: as standard interfaces, standard
applications, application-specific processes and application-
specific communications.

It is assumed that such standard applications can play a role in a
Mediator-coordinated systems, minimally by the application and
its datasets being registered in Mediator with its application
windows open on the Mediator desktop, and maximally by
Mediator controlling its inputs, outputs and operations by job-
control scripts. Existing application software is assumed to play
a major role in the operation of Mediator, and one can
conceptualize this role by noting that the Mediator system will
know a lot about such applications while they will know
virtually nothing about Mediator.

At the top of Figure 1, the four layers are shown instantiated in
terms of core Mediator-specific technology, what might be
called a Mediator-shell since the majority of the software is not
specific to any particular application of Mediator, but provides
general collaboration and integration facilities.

The primary user interface to Mediator is through visual
languages allowing the general representation of semantic
systems through graphical symbols. This is supplemented by
hypertext and hypermedia as appropriate. The application layer
uses particular instances of these visual languages with
application-specific semantics and a visual appearance designed
to be natural to use in the context of the specific application.

The process layer supports agents as light-weight processes
triggered by user interaction with the visual languages, and also
triggered by other agents [19].

The communication layer supports object-oriented protocols for
knowledge and data interchange such as STEP, Ontolingua and
KQML [4]. It also supports messages in arbitrary formats as
appropriate to communication with other applications not
designed with Mediator in mind.

On the right of Figure 1, the four layers are shown instantiated
in terms of separately designed applications that are ‘Mediator-
aware’ to some extent, for example in using the Mediator
interface technology, applications, agents or protocols as part of
their normal operation.

The Mediator shell technology is designed to be highly modular
and readily integrated in whole or in part with existing
applications. Thus, in a design domain, one might envision a
Mediator graphic interface and data interchange protocols being
integrated with functional design tools such as HUT’s ∆ [14] or
University of Tokyo’s SYSFUND [15].

A detailed example of the application of Mediator agent
processes to the control of manufacturing activities is given in
an accompanying paper [21], and the remainder of this paper
focuses on the communications and user interfaces of Mediator,
and their implementation on the World-Wide Web.

4. MEDIATOR VISUAL LANGUAGE

Much of the user interaction with Mediator is through an open
architecture visual language system developed to support
graphic interaction with computers on a wide range of topics
including knowledge representation [6, 23], concept mapping
[12, 17], Petrinets [22], bond graphs [16], and so on. The system
was developed as an alternative to textual interfaces to take
advantage of modern graphic workstations through a simple and
natural visual language of great generality. The generality is
achieved because the underlying data structure is a sorted
digraph which can represent typed binary relations and hence
virtually any mathematical structure. A comprehensible user
interface is provided through the capability to reflect the type
structure in node decorations such as fonts, shading and color.

User interaction with Mediator takes place through the creation
of statements in the visual language, and through interaction
with these statements through popup menus whose content is
specific to node type. Actions are context-sensitive: to the node
selected for the popup, to nodes linked to it, and to other nodes
preselected by clicking on them in the graph. This allows both
simple and complex activities to be initiated by simple and
comprehensible user actions. For example, Figure 2 shows a
shop floor information access concept map being used to access
bill of materials information for a particular product.

Figure 2 Interacting with a shop floor information map

The general concept map tool allows the style and functionality
of such windows to be tailored to general classes of situations.
Individual maps are then generated automatically or manually
for particular situations, in this case a product with two possible
line layouts. The user interface can be programmed using a wide
range of possible dialogs. In this case a popup menu gives
access to the bill of materials, through another concept map, or
by initiating action with the appropriate database.

The visual language provides a very general and easily
customizable interface to the underlying knowledge and data
structures, and processes operating on them such as specific
applications and general agents, including communications with,
and remote procedure calls to, other systems. The language may
be used as a ‘wrapper’ to existing applications available only in
binary form, and it may also be used as an embedded component
of other applications available in source form. A computer-
supported cooperative work approach has been adopted from the
outset so that maps may be shared across local and wide area
networks and used for distributed project coordination.

5. INTEGRATION WITH OTHER SYSTEMS

The primary objective of the Mediator development is to
provide a ‘shell’ technology for coordinating collaborative
manufacturing projects across networks. However, the open
architecture, modular, networked, distributed client, distributed
server technology underlying the Mediator implementation is
well-suited to vertical application with applications as shown on
the right of Figure 1. The development of ‘Mediator-aware’
applications is attractive not only in increasing the functionality
of Mediator, but also in allowing rapid prototyping of new
applications. The effort required to develop good quality user
interfaces is a major component of resource usage in most
application development, and the use of the generic Mediator
interfaces and protocols can increase the speed, and decrease the
cost, of specialist system development.

One reason a generic visual language was chosen as a general-
purpose interface is because graphical representations are used
in many branches of science and engineering, and the Mediator
interface is to be able to emulate many such representations
through a single software system. For example, a research group
focusing on optimal scheduling and rapid shop-floor
reconfiguration could develop algorithms that interface to
Mediator for purposes of user interaction, and run on a high-per-
formance server anywhere on the network.

The existing Mediator graphic representation facilities could be
used to provide an iconic interface giving a geometric, or more
abstract, representation of the configuration and material flows.
However, the primary project resources could be applied to the
development of improved scheduling and reconfiguration
algorithms and not diverted to user interface aspects of the
system which, while very important, are not the primary focus of
the research. For example, Figure 3 shows a bond graph from
HUT’s ∆ functional design system [14] represented in the visual
language, and Figure 4 shows a partial behavioral model from
University of Tokyo’s SYSFUND functional design system [15]
similarly represented. The generic Mediator data structures can
be imported from, and exported to, the specific systems through
simple converters.

Figure 3 A bond graph in Mediator

Figure 4 A SYSFUND behavioral model in Mediator

A semantic network visual language is already available for
Mediator [6] that compiles into a KL-ONE-like knowledge
representation system [5, 8] used to represent formal knowledge
structures [9]. This has been used to operationalize a
corporation’s procedures manuals [18] in a way that is
applicable, for example, to the regulatory aspects of
manufacturing

6. MEDIATOR NETWORK PROTOCOLS

Figure 5 shows the way in which Mediator operates over a
network. A server agent at a site manages a knowledge base
consisting of a set of files from different applications. Concept
maps are used to represent the files and relations between them.
Files may be opened from the maps in the appropriate
applications. Since the maps and hypermedia documents of
Mediator are also files, the system can be used to support large-
scale linked knowledge structures. Client agents at remote sites
connect to server agents across the network and allow files to be
accessed remotely in the same way as they are locally.

Mediator
Server Agent

Mediator
Client Agent

Mediator
Information

Agent

Local
Files

Mediator
Server Agent

Mediator
Client Agent

Wide
Area

Network

Local
Files

Other
Sites

Mediator
Information

Agent

Mediator
Information

Agent

CAD
Application BOM

Application

Mediator
Application

CAD
Application

MRP
Application

Mediator
Site

Mediator
Site

Mediator
Information

Agent

Mediator
Information

Agent

CAD
Application

Mediator
Application

Mediator
Application

Figure 5 Mediator operation over a network

Figure 6 left shows a screen dump of a Mediator server agent
managing files for three projects at one location. Figure 6 right
shows a Mediator client agent at a remote location having linked
to the server agent. The cursor in the right screen dump is over a
node in the concept map and has changed to a button shape to
indicate that the associated dataset will be opened if the mouse
button is clicked.

Figure 6 Client agent linked to server agent across a network

Figure 7 shows the dataset opened when the button is clicked. It
is another concept map, but this time embedded in a document,
giving the project structure from requirements through design to
operational models, including a video demonstrating the
prototype system in operation. The embedded concept map
remains active. If the user selects this video through the “Open
File” option in the popup menu as shown, or through the button
cursor as shown above, then the video will open and play in a
QuickTime viewer. The popup menu also allows the user to
check on the application program appropriate to the file since it
is being fetched from a remote site, and the local site may not
have the appropriate application available. Embedding concept
maps in active, printable documents [11] allows reports,
manuals, etc, to be easily generated.

Figure 7 Project management concept map embedded in a
document

7. IMPLEMENTATION ON WORLD-WIDE WEB

The initial Mediator prototype developed during the GNOSIS
test case was implemented on the Apple Macintosh platform and
operated over local area networks. It was issued on the CD-
ROM that contained the final reports of the GNOSIS test case
[13], and it was used to index these reports and the
accompanying demonstration software and digital videos
through layered concept maps accessing the heterogeneous
collection of files that comprised the final reports,
demonstrations and data sets . Figure 8 of the accompanying
paper on GNOSIS shows Mediator in use to access material on
the CD-ROM [10].

Since the completion of the GNOSIS test case in March 1994
we have had a systematic program of research designed to make
Mediator technology widely available on a cross-platform basis
operating through the Internet. The hypertext transport protocol
(HTTP) [2] of the World-Wide Web (WWW) [3] was chosen

for the low-level communications layer since HTTP servers are
widely available for a range of platforms, as were associated
browsers such as NCSA Mosaic and Netscape. In particular, the
browsers support not only the hypertext markup language
(HTML) [1] but also arbitrary data types through interface to
other ‘helper’ applications such as our concept mapping tools.
This makes it possible to implement the Mediator architecture of
Figure 1 and the protocols of Figure 5 using standard protocols
and application packages in large part. This is particularly
significant because one objective of the research program in the
past 18 months has been to move Mediator out of the research
laboratory and make it widely available on the Internet to
support the long-term IMS research program.

The main programming effort has been to port the concept
mapping tools cross-platform so that they can act as client
helpers to WWW browsers on any platform. Figure 8 shows
Xcm operating under Motif and X-Windows under SunOS as a
helper to Netscape.

Figure 8 Screen dump of Mediator running on a UNIX workstation

At the top right of Figure 8 a Mediator concept map of a
sequence of design processes for an engine mount has been
opened. This was fetched by Netscape from an HTTP server on
the Internet , and because the file extension was ‘.cm’ the server
and Netscape recognized it as a concept map data type and
opened it in the Xcm application. A popup dialog associated
with each node allows files to be specified that are associated
with the nodes following the Mediator protocols described in
Section 6. However, the file accesses are now specified through
WWW uniform resource locators (URLs) which enables them to
be fetched from any HTTP server on the Internet. At the top left
the user has fetched a FrameMaker document containing the
requirements specification for the engine mount which Netscape
has opened in FrameMaker. At the lower left he has fetched an
annotated requirements specification in HTML which has
opened in Netscape and itself contains hypertext links to other
files. At the top center the user has opened an HTML document
containing the STEP specification of the mount, and at the lower
right the AutoCAD drawing which Netscape has opened in
AutoCAD. A similar screen would be generated on other
platforms by the same sequence of actions.

8. CONCLUSIONS

Mediator, an open architecture information and knowledge
management system has been described which provides a
flexible technology to support the management of complex
manufacturing environments. Its implementation on the World-
Wide Web provides a powerful general tool for the support of
the virtual manufacturing enterprise.

ACKNOWLEDGMENTS

This work was funded by Industry, Science and Technology,
Canada, as part of the international IMS research program, and
by the Natural Sciences and Engineering Research Council of
Canada. We are grateful to many colleagues in IMS for their
contributions to the Mediator project, in particular, Aldo
Dagnino, Peihua Gu, Martti Mäntylä, Tetsuo Tomiyama and
Moriki Toyama.

REFERENCES
[1] J. Barry, “The hypertext markup language (HTML) and
the World-Wide Web: Raising ASCII text to a new level of
usability,” Public-Access Computer Systems Review, vol. 5, no.
5 pp. 5-62, 1994.
[2] T. Berners-Lee, Hypertext Transfer Protocol. CERN,
Geneva. 1993.
[3] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen,
and A. Secret, “The World-Wide Web,” Communications ACM ,
vol. 37, no. 8 pp. 76-82, 1994.
[4] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R.
Fritzson, D. McKay, J. McGuire, S. Shapiro, and C. Beck,
Specification of the KQML Agent-Communication Language.
The DARPA Knowledge Sharing Initiative External Interfaces
Working Group. 1992.
[5] B.R. Gaines, “Empirical investigations of knowledge
representation servers: Design issues and applications
experience with KRS,” ACM SIGART Bulletin, vol. 2, no. 3 pp.
45-56, 1991.
[6] B.R. Gaines, “An interactive visual language for term
subsumption visual languages,” in IJCAI’91: Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence.
Morgan Kaufmann: San Mateo, California. p. 817-823, 1991.
[7] B.R. Gaines, “Manufacturing in the knowledge economy,”
in Proceedings of ICOOMS’92: International Conference on

Object-Oriented Manufacturing. University of Calgary: Calgary.
p. 19-36, 1992.
[8] B.R. Gaines, “A class library implementation of a
principled open architecture knowledge representation server
with plug-in data types,” in IJCAI’93: Proceedings of the
Thirteenth International Joint Conference on Artificial
Intelligence. Morgan Kaufmann: San Mateo, California. p. 504-
509, 1993.
[9] B.R. Gaines, “Experience with a class library for
organizational modeling and problem solving,” Integrated
Computer-Aided Engineering, vol. 1, no. 2 pp. 93-107, 1993.
[10] B.R. Gaines and D.H. Norrie, “Knowledge
systematization in the international IMS research program,” in
Proceedings of 1995 IEEE International Conference on Systems,
Man and Cybernetics. IEEE: New York. p. 958-963, 1995.
[11] B.R. Gaines and M.L.G. Shaw, “Open architecture
multimedia documents,” in Proceedings of ACM Multimedia 93.
p. 137-146, 1993.
[12] B.R. Gaines and M.L.G. Shaw, “Concept maps indexing
multimedia knowledge bases,” in AAAI-94 Workshop: Indexing
and Reuse in Multimedia Systems. AAAI: Menlo Park,
California. p. 36-45, 1994.
[13] GNOSIS, GNOSIS: Intelligent Manufacturing Systems:
IMS Test Case 7: Hybrid-CD, Macintosh (native), PC, Unix
(ISO 9660). Knowledge Science Institute and Division of
Manufacturing Engineering, University of Calgary, Canada.
1994.
[14] J.-K. Gui and M. Mäntylä, Assembly modeling on the
basis of a mechanical design prototype. Laboratory for
Information Processing Science, Helsinki University of
Technology. 1993.
[15] M. Ishii, T. Tomiyama, and H. Yoshikawa, A synthetic
reasoning method for conceptual design. Department of
Precision Mechanical Engineering, The University of Tokyo.
1993.
[16] D. Karnopp, R.C. Rosenberg, and J.J. van Dixhorn, “Bond
Graph Techniques for Dynamic Systems in Engineering and
Biology,” Journal Franklin Institute, vol. 308, no. 3, 1989.
[17] R. Kremer and B.R. Gaines, “Groupware concept mapping
techniques,” in Proceedings SIGDOC’94: ACM 12th Annual
International Conference on Systems Documentation. ACM:
New York. p. 156-165, 1994.
[18] R.C. Kremer, “Experience in applying KRS to an actual
business problem,” in Proceedings of the Sixth AAAI Knowledge
Acquisition for Knowledge-Based Systems Workshop, J.H.G.
Boose, B.R., Editor. University of Calgary: Calgary, Canada. p.
11-1-11-12, 1991.
[19] A.D. Kwok and D.H. Norrie, “Integrating multiple
reasoning in intelligent agent systems,” Integrated Computer-
Aided Engineering, vol. 1, no. 2 pp. 83-90, 1993.
[20] A.D. Kwok and D.H. Norrie, “Intelligent agent systems
for manufacturing applications,” Journal of Intelligent
Manufacturing, vol. , pp. 285-293, 1993.
[21] F.P. Maturana and D.H. Norrie, “A generic mediator for
multi-agent coordination in a distributed manufacturing system,”
in Proceedings of 1995 IEEE International Conference on
Systems, Man and Cybernetics. IEEE: New York. p. 952-957,
1995.
[22] W. Reisig, Petri Nets: An Introduction, Berlin: Springer.
1985.
[23] J.F. Sowa, Conceptual Structures: Information Processing
in Mind and Machine, Reading, Massachusetts: Adison-Wesley.
1984.

