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Abstract 
A model is developed of the emergence of the knowledge level in a society of agents where 
agents model and manage other agents as resources, and manage the learning of other agents to 
develop such resources. It is argued that any persistent system that actively creates the conditions 
for its persistence is appropriately modeled in terms of the rational teleological models that 
Newell defines as characterizing the knowledge level. The need to distribute tasks in agent 
societies motivates such modeling, and it is shown that if there is a rich order relationship of 
difficulty on tasks that is reasonably independent of agents then it is efficient to model agents 
competencies in terms of their possessing knowledge. It is shown that a simple training strategy 
of keeping an agent’s performance constant by allocating tasks of increasing difficulty as an 
agent adapts optimizes the rate of learning and linearizes the otherwise sigmoidal learning 
curves. It is suggested that this provides a basis for assigning a granularity to knowledge that 
enables learning processes to be managed simply and efficiently. 
Key Words: knowledge management, knowledge level, intelligent agents, adaptive agents, 
management of learning, learning curves 

1 Introduction 
The past decade has seen a major growth in research on the structure, behavior and applications 
of systems based on communities of intelligent adaptive agent. This research has been 
undertaken under many different auspices, as research in distributed artificial intelligence 
(Gasser and Avouris, 1992), artificial life (Langton, 1995), intelligent agents (Wooldridge, 
Müller and Tambe, 1996), reactive agents (Castelfranchi and Müller, 1995), multi-agent systems 
(Weiß and Sen, 1996), reasoning about knowledge (Fagin, Halpern, Moses and Vardi, 1995), and 
so on. The artificial intelligence literature has focused on issues relating to the design of 
computational artifacts, but it has been paralleled by a closely related literature that examines the 
phenomena of natural communities of intelligent adaptive agents from perspectives such as 
cultural biology (Boyd and Richerson, 1985), and the active, dynamic or network society 
(Etzioni, 1968; Castells, 1996; Snooks, 1996). There has also been a growth in recent years of 
organizational literature on the management of knowledge in companies modeled as 
communities of intelligent adaptive agents (Barabba, 1995; Nonaka and Takeuchi, 1995; 
Johansson and Nonaka, 1996). 
What these literatures have in common is a focus on the emergence of knowledge processes 
through interactions in communities of intelligent adaptive agents. They situate knowledge not in 
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the operation of a particular agent but rather in the social processes whereby agents coordinate 
their behaviors. However, much of the literature takes knowledge itself as a starting point, a 
given entity that is part of the notion of an intelligent agent, and focuses on knowledge 
acquisition, inference and communication. The question of how the behaviors of agents in 
communities emerge from the situational dynamics in such a way that they can be imputed goals 
and knowledge is of increasing interest in the artificial intelligence literature (Castelfranchi and 
Müller, 1995; Maes, 1995), as is the management of the processes of making overt “tacit 
knowledge” in the organizational literature (Nonaka and Takeuchi, 1995). However, there is as 
yet no overall theory of the nature of the knowledge construct in terms of its emergence through 
the social processes of communities of intelligent adaptive agents. 
The objective of the research described in this paper is to derive fundamental principles for 
knowledge management in societies of intelligent adaptive agents by defining knowledge in 
operational terms and using this definition to analyze the knowledge dynamics of organizations 
composed of agents and technologies. 
First, Newell’s (1982) knowledge level studies are recapitulated to show that knowledge can be 
treated as a state variable imputed to an agent by a modeler to account for its behavior. 
Second, his rational teleological model is shown to involve few fundamental presuppositions 
about the nature of the systems involved, except that they persist in time and the observer 
hypothesizes that they actively bring about this state of affairs. 
Third, it is shown that the colloquial interpretation of knowledge as something material 
possessed by an agent arises naturally in accounting for the capabilities of agents to perform 
tasks. 
Fourth, it is shown that further constraints on knowledge level modeling arise from the 
hypothesis of compositionality in the derivation of the capabilities of a team from its component 
agents. Furthermore, this give rise to knowledge modeling of organizational knowledge, 
including that of supporting technologies. 
Fifth, it is shown that further constraints on knowledge level modeling arise from the hypothesis 
that an agent’s learning can be managed through the regulation of a graded sequence of tasks that 
it is given to perform. 
In conclusion, it is suggested that a knowledge level analysis of agents, organizations and 
technologies provides appropriate formal foundations for knowledge management in societies of 
intelligent adaptive agents. 

2 The Knowledge Level 
In his seminal paper on the knowledge level Newell (1982) situates knowledge in the 
epistemological processes of an observer attempting to model the behavior of another agent: 

“The observer treats the agent as a system at the knowledge level, i.e. ascribes 
knowledge and goals to it.” (p.106) 

emphasizing that: 
“The knowledge level permits predicting and understanding behavior without having an 
operational model of the processing that is actually being done by the agent.” (p.108) 
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He defines knowledge as: 
“Whatever can be ascribed to an agent such that its behavior can be computed according 
to the principle of rationality.” (p.105) 

noting that: 
“Knowledge is that which makes the principle of rationality work as a law of behavior.” 
(p.125) 

and defining rationality in terms of the principle that: 
“If an agent has knowledge that one of its actions will lead to one of its goals, then the 
agent will select that action.” (p.102) 

Newell’s argument form is a cybernetic one of the type originated by Wiener (1948) and refined 
by Ashby (1956) whereby an arbitrary system is treated as a black box to be modeled on the 
basis of its input/output behavior with no presuppositions about its internal structure. Ashby 
(1952) used this argument form to derive many phenomena of living systems, such as 
habituation, from general properties, such as the existence of many alternative attractors in the 
state system. Zadeh (1964) developed the abstract formulation of system identification from a 
cybernetic stance, showing how the notion of state is an abstraction introduced in modeling 
formalisms to account for the influence of past experience on future behavior. Gaines (1977) 
developed general algorithms for such identification in terms of arbitrary measures of model 
complexity and of the approximation of a model to observed behavior, and showed that 
appropriate measures led to optimal identification of deterministic and stochastic automata from 
their behavior. He emphasizes the formal arbitrariness of the presuppositions underlying a 
modeling schema, and shows that inappropriate presuppositions lead to indefinitely complex 
models (Gaines, 1976). 
In the light of these analyses, Newell’s arguments may be seen as stating that knowledge is a 
state variable imputed by a modeler in order to account for its behavior, and that the appropriate 
presuppositions for modeling an agent are those of rational teleology, that it has goals and acts to 
achieve them. Two fundamental questions arise about Newell’s framework for knowledge, one 
reaching backwards to the justification of modeling behavior teleologically in terms of goals and 
their rational achievement, and the other reaching forwards to the nature of the knowledge state 
space that an observer will generate, its detailed qualitative and quantitative characteristics. 
The next section briefly examines the preconditions for rational teleological models to be 
effective, and the remainder of the paper develops in depth the structure of knowledge models 
that will arise in a society of agents. 

3 Emergence of Rational Teleological Models 
One way of analyzing the foundations of rational teleological models is to assume that they have 
none—that the modeling of other agents in terms of goals and knowledge is justified to the 
extent that it works—a pragmatic argument of the form developed by Peirce and James (Ayer, 
1968). This assumption is that of Dennett’s (1987) intentional stance, and it is in accordance 
with the basic theory of modeling, the Popperian position that our presuppositions in modeling 
are but conjectures subject to refutation if we are not satisfied with the results of using them 
(Popper, 1963). Modeling theory tells us that if the intentional stance was not appropriate to 
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modeling human agents then it would lead to complex models with poor predictive power and 
we would find it more useful to adopt some other stance. 
However, it is useful to examine some simple systemic characteristics of agents that would 
justify the use of rational teleological models if only to illustrate how few presuppositions are 
necessary for the model to be useful (Gaines, 1994). 

3.1 Rational Teleological Models of Persistent Systems 
The most fundamental properties which we impute to any system are its existence and 
persistence over time. A system is identifiable as not having existed before some time, of 
definitely existing after some later time, of persisting in existence until some later time, and of 
not existing again after some later time. This coming into existence, persisting for while, and 
going out of existence again is a common property of all systems. It applies to both living and 
non-living systems, and in living systems it applies at all levels from cell to species. 
What characterizes living systems are the recursive activities of self-replication underlying their 
persistence, that they actively and continually create the conditions for their persistence. 
Maturana (1975) has proposed that this is the fundamental distinction between living and non-
living systems. Autopoietic systems: 

“are systems that are defined as unities as networks of production of components that (1) 
recursively, through their interactions, generate and realize the network that produces 
them; and (2) constitute in the space in which they exist, the boundaries of this network 
as components that participate in the realization of the network...a living system is an 
autopoietic system in physical space.” (Maturana, 1981) 

However, there is no notion of goals or knowledge in Maturana’s definition, and no ascription of 
intentions to living systems. A reactive persistent system in itself has no goals or intentions. It 
reacts to its environment through mechanisms that tend to maintain its persistence despite 
changes in its environment. An external observer may model this behavior as goal-directed 
because that provides a simple predictive explanation. That is, if an autopoietic system when 
disturbed, regardless of what state it is triggered into, seems to return to its original state, it is 
naturally modeled as goal-seeking. If the system’s environment happens to contain other systems 
like itself and the system’s activities include observation and modeling, it may model the other 
systems as goal-directed, and then by analogy come to model itself as goal-directed. This is a 
natural outcome of autopoiesis in a social environment. 
As well as not reading too much into models of autopoietic systems, it is important to note that 
we can ascribe very little to their existence. A chaotic universe has a probability of producing 
any system including autopoietic systems. Once such systems exist and are modeled properties 
emerge (Sharif, 1978). As Peirce remarks: 

 “Law begets law; and chance begets chance...the first germ of law was an entity which 
itself arose by chance, that is as a First.” (Peirce, 1898) 

Jantsch (1980) and Prigogine (1984) have developed detailed models of how organization 
emerges from chaos. Gould (1989) has analyzed the fossil record and modeled the genesis and 
extinction of a wide variety of species as low probability random events. Monod (1972) has 
given a biochemical model of life as an improbable phenomena that, once it exists, follows 
deterministic laws. When a living system comes into existence it acts to persist, but, from the 
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systemic perspective advanced by Maturana, this is the definitional property by which we 
recognize its existence as a living system, not an additional property going beyond active 
persistence. 
Barrow and Tipler (1986) have analyzed the remarkably narrow physical conditions under which 
life as we know it can exist, and when one examines the mechanisms by which a living organism 
narrows these conditions even further in order to persist it is natural to ascribe purpose to its 
activity. For example, Cannon (1932),  terms such activity homeostasis and part of The Wisdom 
of the Body and Ashby (1952) in analyzing homeostasis as part of his Design for a Brain models 
it as a goal-directed process. However, he also shows how such apparently goal-directed 
behavior arises in any system with many states of equilibrium. The utility of an intentional stance 
stems from simple systemic considerations, and one has to be careful in reifying the notion of 
agency to realize that the additional assumption of the existence of some reified ‘agent’ is also a 
matter of utility, not of existential proof or necessity. 
In Ashby’s day a system that reacted to its environment by acting until it arrived in a new mode 
of equilibrium would be seen as not only counter-acting the effects of the environment but also 
arriving at some state that was determined by those effects, that is, apparently targeted upon 
them. Nowadays, with the realization that strange attractors are prevalent in all forms of 
physical system (Ruelle, 1989), and particularly in biological processes and their higher-order 
manifestations such as brains (Basar, 1990), societies (Dendrinos and Sonis, 1990) and cultural 
phenomena (Hayles, 1991), it would be realized that the final state may be one of very many that 
have the equilibrating effect but is neither determined by the effects of the environment nor 
targeted upon them. 
In particular, the definition of fitness of a species in evolutionary terms is merely a restatement of 
the species’ persistence in terms of the environment in which it persists. As Ollason argues: 

“Biologists use the concept of fitness as the explanation of the truly inexplicable. The 
process of evolution is exactly what the etymology of the word implies: it is an unfolding, 
an indeterminate, and in principle, inexplicable unfolding. (Ollason, 1991) 

A species is fit to exist in an environment in which it happens to persist. As noted in the previous 
paragraph, this does not mean it was targeted on that environment or that there is a determinate 
relation between the nature of the environment and the species that happens to have evolved. The 
environment acts as a filter of species and those that persist are fit to survive. There are no 
teleological implications, and this model does not give ‘survival-directed’ behavior any greater 
probability of leading to persistence than any other behavior. Gould (1989) details the random 
phenomena that have made particular species fit to persist for a while in the fossil record. 
Bickerton (1990) argues that there is no evidence for what we deem to be high-level human traits 
to have survival value—intelligence and language have at least as many disadvantages as 
advantages, and may be seen as of negative value to the survival of the human species. 

3.2 Emergence in Knowledge Management 
This conceptual framework, emphasizing opportunistic rather than goal-directed behavior, is 
already a major component of the knowledge management literature. One of Bridges’ 
recommendations in Managing Transitions is to Let Go of Outcomes: 
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“we cannot ultimately control outcomes, and when we try to, we either alienate others or 
drive ourselves crazy.” (Bridges, 1991) 

Johansson and Nonaka use related criteria to differentiate Western and Japanese companies in 
their approach to marketing: 

“Whereas strategic planning in the West typically cascades down in logical steps from 
broad mission statements to more specific objectives to the enumeration of tasks, the 
assignment of responsibilities and the fixing of a time schedule, the Japanese approach is 
fuzzier. The intuitive incrementalism of the Japanese means essentially experience-based 
learning, a natural or ‘organic’ process.” (Johansson and Nonaka, 1996) 

Barabba’s (1995) introductory chapter in Meeting of the Minds is entitled The Late Great Age of 
Command and Control and critiques the normative approach to business based on predefined 
objectives rather than an adaptive one based on learning from the market place, the 
organization’s natural environment. 
There is an interesting parallel on this emphasis on openness to experience in Gadamer’s 
discussion of what it is to be an expert: 

“The nature of experience is conceived in terms of that which goes beyond it; for 
experience can never be science. It is in absolute antithesis to knowledge and to that kind 
of instruction that follows from general or theoretical knowledge. The truth of experience 
always contains an orientation towards new experience. That is why a person who is 
called ‘expert’ has become such not only through experiences, but is also open to new 
experiences. The perfection of his experience, the perfect form of what we call ‘expert’, 
does not consist in the fact that someone already knows everything and knows better than 
anyone else. Rather, the expert person proves to be, on the contrary, someone who is 
radically undogmatic; who, because of the many experiences he has had and the 
knowledge he draws from them is particularly equipped to have new experiences and 
learn from them.” (Gadamer, 1972)  

One can paraphrase the knowledge management texts cited above as stating that an ‘expert 
organization’ is one that satisfies Gadamer’s notion of what it is to be an expert person. 
However, it is important to note that he contrasts knowledge and expertise. While a rational 
teleological model may naturally emerge when modeling a persistent agent as actively involved 
in ensuring its persistence, the knowledge imputed is a by-product of the modeling process not 
the cause of the persistence. Modeling the openness and adaptivity of expertise involves multiple 
levels of modeling, and the observer has to introduce notions of ‘meta-knowledge’ or ‘deep 
knowledge’ in order to account for the processes whereby the knowledge imputed to account for 
specific short-term behavior changes through experience. 
In particular, the notion that an expert possesses ‘tacit knowledge’ is misleading since ‘making 
the knowledge overt’ by modeling the expert will generate a knowledge-level model of some 
aspects of the expert’s behavior but there is no assurance that such a model captures the essence 
of the expertise. It is in the interplay of human resource management, the technological support 
of expertise, and the essential community processes of an organization that the true subtleties of 
real-life ‘knowledge management’ arise. Any realistic model of knowledge processes in 
communities of intelligence, adaptive agents must account for the intrinsic uncertainties of the 
modeling processes involved. 
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3.3 Summary and Implications 
In conclusion, in adopting an intentional stance one is selecting a modeling schema for its 
simplicity, convenience and utility. Newell’s notions of rationality, goals and knowledge have no 
epistemological content and are circularly derivable from one another as definitions of what it is 
to adopt an intentional stance. The knowledge level can be reified only through our first being 
satisfied that it has predictive capabilities, and then through our further presupposing that there 
must be some real phenomenon out there that makes that prediction possible. 
We have to be very careful in testing both of these conditions: the reflexivity of social 
interactions means that changes in our behavior based on assumptions about another’s intentions 
may lead to contingent behavior on the part of the other (Levis, 1977) giving rise to apparent 
predictive validity; and the predictive capabilities of a cybernetic model of a black box place 
very few constraints on what structure actually exists within the box. 
We also have to distinguish those aspects of an agent’s behavior that an observer is attempting to 
model. For example, modeling the agent’s current skills, it capability to use those skills in 
specific contexts such as in a team, and its capabilities to learn to improve its skills, are three 
different modeling requirements that place different constraints on knowledge level modeling. 
The following three sections investigates each of these requirements in turn. 

4 Knowledge as an Imputed State Variable 
The previous section having warned against reading too much into knowledge level models, the 
current one will build such a model based on a sequence of plausible assumptions largely 
concerned with cognitive ergonomics—of building models that require as little effort to develop 
as possible. The starting point is Newell’s notion that the knowledge level originates in one agent 
attempting to model another, and hence is essentially a product of a social process. One can ask 
the question “why should it be valuable to model another agent” and come to the conclusion that 
the human species is characterized by its social dependencies, the divisions of labor whereby 
many of the goals of one agent are satisfied through the behaviors of others. In these 
circumstances one agent will model another in instrumental terms, in terms of its capabilities to 
carry out tasks that will lead to the modeling agent’s goals being satisfied—and, vice versa, the 
other agent will model the first in a reciprocal fashion. 

4.1 Modeling Agents’ Capabilities to Perform Tasks 
Consider a set of agents, A, and a set of tasks, T, such that it is possible to decide for each agent, 
a∈A whether it can carry out a task t∈T. Assume, without loss of generality, that this is a binary 
decision in that performance at different levels is assumed to define different tasks, and that we 
can write   a o t  for the truth value that agent a can carry out task t. We can then characterize an 
agent’s competence, C(a), by the set of tasks which it can carry out: 
 

  C(a) !{t"T : a o t} (1) 

If one agent knows C(a) for another agent, a, then it knows its competence in terms of the tasks it 
can carry out and can plan to manage its goals by allocating appropriate tasks to the other agent. 
However, keeping track of the competencies of relevant agents in terms of extensive sets of tasks 
for which they are competent is inefficient both in knowledge acquisition and storage if there are 
many dependencies between tasks such that the capability to carry out one task is a good 
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predictor of the capability to carry out another. A partial order of difficulty on tasks, ≥, may be 
defined such that the capability to carry out a task of a given difficulty indicates the capability to 
carry out tasks of lesser difficulty in the partial order: 
   !t,u "T, t # u $ !a"A,a o t % a o u  (2) 

If, there is a rich partial order on tasks independent of agents then it becomes reasonable to 
attempt to represent the partial order as one embedded in the free lattice generated by some set, 
K, which we shall term knowledge. Since the free lattice generated by a set of cardinality, n, has 
2n distinct members, there is potentially an exponential decrease in the amount of information to 
acquire and store about an agent if it is characterized in terms of its set of knowledge rather than 
the set of tasks it can perform. This decrease will be realized to the extent that the embedding of 
the task dependencies in a free lattice involves tasks corresponding to all elements of the lattice. 
Thus, we posit a set of knowledge, K, such that a task, t, is characterized by the set of 
knowledge, K(t), required to carry it out, and the order relation between tasks corresponds to 
subset inclusion of knowledge: 
 !t,u "T, t # u $ K(t) % K(u)  (3) 

An agent, a, is characterized by the knowledge it possesses, K(a), and this determines its 
competence in terms of tasks: 
 C(a) !{t"T : K(a)# K(t)} (4) 

The development to this stage parallels that of knowledge spaces as defined by Falmagne, 
Koppen, Villano, Doignon and Johannesen (1990), and applied by them to testing a student’s 
knowledge. However, the move from an extensional specification in terms of tasks to an 
extensional specification in terms of knowledge is inadequate to account for situations where the 
capability to carry out one task may indicate the capability to carry out an infinite number of 
lesser tasks. Extensionally, this involves indexing the lesser tasks as involving an infinite set of 
knowledge, but, as Newell (1982) notes it is better represented by a schema in which knowledge 
is generated from knowledge. 
If x is a subset of knowledge then G(x) may be defined as the subset which can be generated 
from it subject to the obvious constraints that:- 
—the original knowledge is retained: 
 x ! K " x ! G(x)  (5) 

—all of the knowledge that can be generated is included: 
 x ! K "G(G(x))! G(x)  (6) 

—additional knowledge generates additional knowledge: 
 x ! y ! K "G(x) ! G(y)  (7) 

Tarski (1930) noted that the consequence operator of any deductive system has these properties, 
and Wójcicki (1988) has used it conversely to characterize any closure operator satisfying (5) 
through (6) as a logic. As Rasiowa and Sikorski (1970) remark: 

“the consequence operation in a formalized theory T should also be called the logic of T” 
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that is, every generator defines a formal logic. 
The closure operator makes it natural to stratify a set of knowledge into distinct subsets closed 
relative to the closure operator such that some unions of the subsets are open. That is, combining 
knowledge from certain pairs of the stratified subsets allows addional knowledge to be inferred. 
This is the basis for Klir’s (1976, 1985) epistemological hierarchy of knowledge levels in 
modeling that can be used to model processes of knowledge transfer between agents in terms of 
the level of transfer (Gaines, 1989, 1994). 
The development of this section has arrived at a characterization of the knowledge level that 
corresponds to the folk psychology notion that agents can be modeled as possessing something 
termed knowledge, and the cognitive science notion that the capability to generate knowledge 
from knowledge corresponds to a formal deductive logic. What presuppositions have been 
involved in this development? 
• P1: Agents have a reasonably stable competence such that it is well-defined whether an agent 

can carry out a task. 
• P2: There is a rich order relationship of difficulty on tasks that is reasonably independent of 

particular agents. 
• P3: Knowledge is not just possessed but can be generated in a principled fashion from other 

knowledge. 
These are strong presuppositions but ones that seem to work reasonably well in characterizing 
human agents—we are acutely aware of the exceptions and treat them as anomalies. 

4.2 Organizational Knowledge 
The previous section constrains knowledge level models to be predictive of individual agent’s 
performance of tasks. However, agents generally work together in organizations and it is 
reasonable to suppose that a further constraint upon such models is that they should be predictive 
of the aggregate capabilities of agents operating in organizations and in conjunction with 
technological support. 
A useful perspective from which to examine organizations is a collective stance (Gaines, 1994) 
in which humanity is viewed as a single adaptive agent recursively partitioned in space and time 
into sub-systems that are similar to the whole. In human terms, these parts include societies, 
organizations, groups, individuals, roles, and neurological functions (Gaines, 1987). 
It is reasonable to add a further constraint to the generative function G, that:- 
— an agent’s knowledge includes that of its components: 
 a !b" G(K(a)) # G(K(b))  (8)  

A stronger constraint may be stated as a compositional hypothesis: 
• P4: The knowledge of a compound agent can be derived from the knowledge of its parts and 

their organization. 
In practice, this may be an irrefutable hypothesis whereby we assume that if such a derivation is 
incorrect it is due to inadequate characterization of the agents’ knowledge or of the way in which 
they are organized. For example, if we put together a team of people with apparently adequate 
knowledge between them to perform a task, and they can not do so, then we are likely to say that 
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they lacked the skills to work together or that the situation did not allow them to. That is, we 
ascribe the failure of compositionality to a failure to have properly modeled the knowledge 
required or to an inadequate organization. We reevaluate the knowledge model of the agents 
rather than ascribe the problem to a failure of the compositionality hypothesis, thus making it an 
axiomatic constraint upon the notion of a complete knowledge model. 
One interesting possibility is to extend the notion of knowledge to the organizational aspects of a 
compound agent by assessing the difference between the knowledge of an agent and that of its 
components, and ascribing this to its organization:- 

 
  

O(a) ! G(K(a)) " G(K (x)
x#a

U  (9)  

That is, O(a) is the additional knowledge resulting from the organization of the agents into an 
organization. 

4.3 Impact of Technology on Knowledge 
The measurement of the impact of organizing agents in equation (9) may be generalized to apply 
to any contextual variables that impact the capabilities of an agent or agents. For example, an 
agent, a, together with a book, a tool, or computer support, may be regarded as an enhanced 
agent a’, and one may measure the enhancement at the knowledge level as: 
 E(a,a' ) ! G(K (a' )) "G(K (a))  (10)  

That is, E(a,a’) is the additional knowledge resulting from the book, tool, computer support or 
other contextual variables. 
This analysis may be applied to give an instrumental view of the effect of one agent 
collaborating with another. For example, that when I help you then I am an instrument 
contributing to your capability. This is the form of analysis we use to explicate the notion of a 
coach. 
One can derive a relationship between equations (9) and (10): 

 
  

O(a) = E( x,a)
x!a

U  (11)  

That is, the organizational knowledge is the union of the enhancements that each agent 
contributes to the organization. 

4.4 Summary and Implications 
This section has developed a detailed model of the knowledge level and its properties based on 
the notion that agents model other agents as resources capable of carrying out tasks. What the 
development does not do is characterize the nature of knowledge, other than as an arbitrary index 
set used in modeling. It would be reasonable to suppose that our actual definitions of knowledge 
elements would be closely related to our definitions of, and terminology for, tasks—for example, 
that someone capable of adding numbers might be said to have “knowledge of addition.” 
However, too close a link to tasks would reduce the benefits of representing capabilities through 
subsets of knowledge rather than subsets of tasks, and hence we would expect an attempt to 
characterize knowledge in a way that abstracts away from tasks and looks for more general 
knowledge elements that underlie a range of tasks. 



 

11 

However, P1 above is counter to another major reason why one agent may wish to characterize 
the capabilities of another. Human agents are not created with innate knowledge but instead 
learn to undertake an ever increasing set of tasks. Agents expect C(a) to increase with experience 
and they manage the learning environments of other agents so as to maximize the rate of increase 
in directions appropriate to the needs of society. Thus, there is another major aspect to the 
characterization of an agent’s knowledge—”how does it relate to the management of their 
learning—their training and education?” 
The following sections develop a theory of the management of learning which gives further 
insights into the properties of a useful characterization of the knowledge level, particularly the 
granularity of knowledge. 

5 Learning 
Presupposition P1 in Section 4.1, that agents have reasonably stable competence is in 
contradiction to our expectations that agents will improve their competence with experience. In 
particular, it is antithetical to Gadamer’s notion of an expert as one who learns from experience. 
To take into account learning, one can weaken P1 to the presupposition that agents do not lose 
competence: 
• P1’: Agents have a monotonically increasing competence such that if an agent can carry out a 

task it will always be able to carry out that task. 
and treat C(a) as lower bound on an agent’s competence. The knowledge level analysis of 
Section 3 then follows but with the set of knowledge characterizing the agent’s state being a 
lower bound on the agent’s knowledge. 
The analysis of Section 4 of the enhancement brought about by some supporting system may 
then be applied to the state of the agent: before support, with support, and after support. The after 
support enhancement defines the learning brought about by the experience of having the support. 
For example, what tasks one can perform before reading a book, while having access to it, and 
after having read it. 
This analysis provides a basis for modeling various forms of knowledge transfer mechanisms, 
differentiating them from knowledge support systems (Gaines, 1990). It also making it clear that 
what at one time was termed ‘expertise transfer’ is better termed ‘knowledge transfer’, and that 
the ‘transfer’ is not explicit, but rather a way of describing and agent’s change of state. 
It is tempting to apply knowledge level analysis to the learning capabilities of an agent through 
the presupposition:- 
• P5: The capability of an agent to become competent to carry out a task can be predicted from 

its learning knowledge. 
The notion of meta-knowledge that is predictive of an agent’s capabilities to acquire knowledge 
is consistent with the educational literature on study skills and learning to learn (Novak and 
Gowin, 1984; Borenstein and Radman, 1985). However, a knowledge level analysis of learning 
is incomplete in that it cannot account for many of the phenomena of learning and training such 
as the probabilistic nature of trial and error learning and the management of training through 
performance feedback with no model of an agent’s exact knowledge state (Gaines, 1972a,b). 
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5.1 Uncertainty at the Knowledge Level 
There is a fundamental uncertainty at the knowledge level in distinguishing between phenomena 
ascribable to the incompleteness of a model of an agent and those ascribable to the agent’s 
learning. If the agent is in the situation of undertaking a new task and proves capable of 
performing it then we can ascribe this either to the agent’s existing knowledge that had not been 
modeled or to the agent having acquired the knowledge in attempting to perform the task. 
As already noted, similar considerations apply to predictions of the capabilities of a team from 
models of the knowledge of the agents forming the team. A full treatment of the knowledge level 
has to take into account that the modeling is subject to intrinsic uncertainties and that the 
modeled system is subject to change with experience. 
This uncertainty leads to a knowledge management perspective whereby the capabilities of an 
agent, such as an organization, must be managed as part of the modeling process. Knowledge 
modeling is an active process of creating a model through action as much as it is one of fitting a 
model through observation. 
The practical question then becomes one of how good a model needs to be for effective 
management. That is, we are not concerned with completeness of models but only their adequacy 
for particular purposes. 

5.2 Coding, Priming and Training—The Management of Learning 
Early research on learning machines (Gaines and Andreae, 1966) saw these machines as 
computational modules that could be programmed indirectly through experience, and focused on 
the manipulation of the modules through coding, priming and training (Gaines, 1968). 
Coding is concerned with appropriate input and output interfaces which are known to be critical 
to the learning capabilities of both machines and people—minor changes in information 
encoding can change a task from one which is very easy to learn to one which is virtually 
impossible. 
Priming is concerned with the transfer of knowledge not through learning from experience but 
through other mechanisms such as mimicry, analogy and language (Gaines, 1969). It was shown 
that mechanisms for the linguistic transfer of control strategies to perceptron controllers could 
decrease their learning time in a way similar to that for human controllers given the same 
instructions (Gaines, 1972a), and make the difference between a task being very easy or virtually 
impossible to learn. These result led to experiments with the use of linguistic fuzzy hedges 
(Zadeh, 1973) for priming learning machines with the surprising result that priming alone was 
sufficient to induce excellent performance in some situations (Mamdani and Assilian, 1975), 
triggering the development of fuzzy control (Sugeno, 1985). 
Training is concerned with the sequence of learning environments presented to the learning 
system in order to maximize its rate of learning. It was shown that for both learning machines 
and people a ‘feedback trainer’ that adjusted the difficulty of a task to keep performance constant 
greatly increased the speed of learning, and that tasks which were virtually impossible to learn 
under conditions of fixed difficulty could be learned rapidly with feedback training (Gaines, 
1968; Gaines, 1972b). 
The effects of coding, priming and training are basic phenomena in any learning system. Now 
that the aspirations of the 60s are beginning to be filled by the intelligent adaptive agents of the 
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90s, it is timely to revisit some of these phenomena. In particular, research in distributed artificial 
intelligence (Bond and Gasser, 1988), artificial life (Langton, 1995), and cultural evolution 
(Boyd and Richerson, 1985), raises issues of how a society of agents interacts to provide one 
another with mutual training environments. 

5.3 Positive Feedback Leads to Functional Differentiation 
A useful perspective from which to examine learning phenomena in agent societies is a collective 
stance (Gaines, 1994) in which the society is viewed as a single adaptive agent recursively 
partitioned in space and time into sub-systems that are similar to the whole. In human terms, 
these parts include societies, organizations, groups, individuals, roles, and neurological functions 
(Gaines, 1987). Notions of expertise arise because the society adapts as a whole through the 
adaption of its individual agents. The phenomena of expertise correspond to those leading to 
distribution of tasks and functional differentiation of the individual agents. 
The mechanism for functional differentiation is one of positive feedback from agents allocating 
resources for action to other agents on the basis of those latter agents’ past performance of 
similar activities (Gaines, 1988). Distribution and differentiation follow if performance is 
rewarded, and low performers of tasks, being excluded by the feedback mechanism from 
opportunities for performance of those tasks, seek out alternative tasks where there is less 
competition. 
The knowledge-level phenomena of expertise, such as meaning and its representation in 
language and overt knowledge, arise as byproducts of the communication, coordination and 
modeling processes associated with the basic exchange-theoretic behavioral model. The 
collective stance model can be used to account for existing analyses of human action and 
knowledge in biology, psychology, sociology and philosophy (Gaines, 1994). 
Simple simulation experiments of a competitive environment for two agents can illustrate the 
formation of expertise through positive feedback (Gaines, 1988). For example, let the rules of a 
basic phenomenological simulation be that: each problem requires certain knowledge; if the 
agent does not have the knowledge necessary it guesses with a probability of success, learning if 
it succeeds; the society chooses the expert for a problem with equal probability initially, 
gradually biasing the choice according to success or failure; there is no communication of 
knowledge between experts. Figure 1 graph A plots the probability that one agent will be always 
preferred and shows that this rapidly approaches 1.0—a best ‘expert’ is determined. Graph B 
shows the expected knowledge of the better expert and graph C that of the rival—one goes to 
100% rapidly and the other is asymptotic to about 36%—there is objective evidence of the 
superior ability of the chosen expert. Which of the two agents becomes the ‘best expert’ is, of 
course, completely chance. 
The simulation shown is not Monte Carlo but based on the calculation of the exact probability 
distributions involved. It can easily be adjusted to take into account differences between the 
experts: that one starts with greater knowledge; that one learns faster; that one is favored initially 
(the prima facie credibility or ‘well-dressed consultant’ phenomenon). Similar simulations have 
been made of different positive feedback mechanisms; for example, if both experts are given the 
same problem but the problem difficulty is adjusted upwards if either gets it right—the situation 
of keeping up in the scientific ‘rat race.’ Effects have been introduced of the loss of knowledge 
through inadequate opportunities for its application, the growth of scientific knowledge so that 
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there is always more to be acquired, and differential access to priming through cultural 
knowledge transfer processes such as education. All the simulations bear out the expected 
qualitative result, that a range of different positive feedback mechanisms in an agent society are 
adequate to account for differential expertise in a sample with initially equal knowledge and 
capabilities. 
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Figure 1 Simulation of the effects of positive feedback on the formation of expertise 

There is evidence that these processes occur in human communities. Sociologists have noted 
positive feedback processes in the dynamics of the scientific community (Hagstrom 1965). 
Merton (1973) coined the term the “Matthew effect” for those features of the reward system in 
research that were biased towards allocating greater credit for the same discovery to those with 
an already established reputation. In medicine, a key learning resource is access to medical 
problems, and the ‘owner’ of such a problem has a keen personal interest in only allowing 
someone of very good reputation to handle it. The system, including considerations of legal 
liability, funnels problems to those who are regarded as experts. It is, however, precisely these 
problems from which new knowledge is generated. Similar considerations apply to the award of 
scholarships, invitations to scientific congresses, and so on (Blume 1974). They also apply not 
only to individuals but also to social units such as a company subject to government procurement 
procedures that are heavily biased to contractors with ‘prior experience’ and with whom the 
government agency has ‘prior experience.’ 

5.4 Performance-Based Feedback Linearizes the Learning Curve 
The effect upon individual agents of the social feedback processes described in the previous 
section is to regulate the learning experiences available to the agent in such a way that agents 
with historically better performance get the tasks judged to be more difficult. In a world with a 
wide range of tasks of varying difficulty and with agents having limited capacities and lives, the 
overall effect is that each agent’s performance is kept roughly constant as it is given tasks of 
increasing difficulty commensurate with its learning as indicated by its performance on previous 
tasks. The agent is learning to cope with tasks of increasing difficulty so that its skills are 
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increasing, but being constantly presented with tasks just beyond its capabilities so that its 
performance is not. 
It is interesting to attempt to develop a qualitative model of the learning phenomena involved 
using as weak assumptions about the adaptive agent as possible so that the model is widely 
applicable. Consider again the universe of tasks and a universe of knowledge such that an agent 
can perform a task if it has some, not necessarily unique, collection of knowledge. Assume that 
the difficulty of a task can be estimated in terms of the cardinality of a set of knowledge that 
allows an agent to perform it. 
Assume that when an agent is given a task for which its knowledge is inadequate that the 
probability of it guessing each missing item of knowledge is q and that if it guesses all the 
missing items it performs the task and learns the knowledge, but otherwise learns nothing. 
Assume that the training system can select a task at a given level of difficulty but does not know 
either the knowledge required to perform it or the state of the agent’s knowledge. 
Assume that the probability that the agent knows a randomly selected item of knowledge is p, 
and that the probability that it learns an unknown item during a task necessitating it is q. 
Then the probability that an agent will perform a task of difficulty d is: 
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and the expected rate of learning is: 
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If one selects a task difficulty that optimizes the rate of learning by maximizing L(n) with respect 
to n then: 
 dopt = !1/ ln(p + (1! p)q)  (14) 

and the expected performance to achieve this is: 
 Popt = 1/ e ! .37  (15) 

and the expected maximum rate of learning is: 
 Lopt = !(1 ! p)q /(e( p + (1 ! p)q)ln(p + (1 ! p)q))  (16) 

which is such that as agent learns and p approaches 1: 
 Lopt

p!1

= q / e(1" q)  (17) 

The implication of equation (15) is highly significant because it implies that a training system 
that adjusts the task difficulty to keep performance constant will achieve a linear rate of learning 
that is the fastest possible. 
One can also deduce from equation (15) that the optimum performance involves the learning 
agent being correct 37% of the time—i.e. an error rate of 63%. However, this result is misleading 
unless one does a sensitivity analysis. Such an analysis shows that the learning rate drops to half 
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optimum when the error rate decreases to 20% or increases to 80%—i.e. that the optimum 
learning performance is relatively insensitive to the performance set-point chosen. The reason for 
this is that there is a lower chance of learning more with tasks of higher difficulty, and a greater 
chance of learning less with tasks of lower difficulty. 
Thus a feedback trainer that adjusts task difficulty to maintain performance constant can induce 
optimum learning in an adaptive agent, and achieve something close to this even if the 
performance fluctuates over a 5 to 1 range. 
What happens if an adaptive agent is given tasks to perform of constant difficulty. One would 
expect the learning rate to be sub-optimal initially because the task is too difficult, become 
optimal for a period as the performance improves to a level where the difficulty is optimal, then 
decline again as the performance improves to a level where the task is too easy. Figure 2 shows 
this results of integrating equation (13) for fixed n compared with the results of integrating (16), 
with q = 0.5 and full knowledge being 25 items. It can be seen that feedback training achieves a 
speedup in learning by a factor of 2 compared with the best fixed-difficulty training, that the 
learning curves have the expected sigmoidal shape, and that training on tasks of high difficulty 
involves very long learning periods. 
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Figure 2 Learning curves for adaptive agent under various training conditions 

In practice there may be complications that make the effects shown even more pronounced. For 
example, the universe of simple tasks may be incomplete in that some knowledge items may 
only be brought into use in relation to more complex tasks. Such dependencies between 
knowledge items make feedback training essential. 
Returning to the model of the knowledge level developed in Section 4, it is reasonable to 
hypothesize that if our knowledge level models are effective in terms of training, such that 
optimum training leads to linear increase in knowledge with time then the natural units of 
knowledge are those of improvements per unit time in adaptive behavior. That is, the granularity 
of knowledge should tend to be such that the feedback training strategy is effective in linearizing 
the learning curve. This is the transition that society undergoes in new areas of knowledge 
between the era of the “inventor” when the learning curves are long and sigmoidal, to the era of 
the “textbook” when learning curves are comparatively short and linear. The transition is one of 
developing knowledge structures that make learning manageable. 
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5.6 A Corollary: Flow as an Optimum Learning State 
This article has emphasized the social provision of the optimal training conditions for learning. 
However, what motivates the learner to seek out these conditions? Csikszentmihalyi’s (1990) 
concept of flow as the phenomenon underlying the psychology of optimal experience provides a 
model of the learner dynamics. Hoffman and Novak (1995) summarize the concept as:- 

“Flow has been described as ‘the process of optimal experience’ achieved when a 
sufficiently motivated user perceives a balance between his or her skills and the 
challenges of the interaction, together with focused attention.” 

The likeability of a task correlates with a flow state in which a motivated user undertakes a task 
whose level of difficulty is at some particular level that suits their individual needs. Too low a 
level results in boredom and too high a level in anxiety, and the optimal level results in the 
intense satisfaction with the activity that Csikszentmihalyi terms flow. 
As the agent learns a flow state can be maintained only by increasing the task difficulty to keep 
the performance constant. As shown in Section 5.5, this also maximizes the rate of learning, and 
this suggests that the flow process may have evolved phylogenetically as a mechanism 
reinforcing an agent which is maximizing its rate of learning. If the reinforcement center in the 
brain is stimulated by conditions that optimize learning, then individuals will be attracted to 
socially created learning environments. 

6 Conclusions 
In a society of agents the knowledge processes of an individual agent can become critically 
dependent on knowledge processes in the society as a whole. It is useful to adopt a collective 
stance that views the overall society as a larger adaptive agent that is recursively divided into 
adaptive sub-agents. The resources for an agent include other agents, and some of an agent’s 
processes will be devoted to modeling other agents’ capabilities and others to developing those 
capabilities. 
An operational definition of knowledge has been developed through a knowledge level analysis 
of the emergence of the knowledge construct through modeling and management processes in 
societies of adaptive agents. The model for the knowledge level is based upon the notion that 
knowledge is a state variable imputed by one agent to another in modeling its capabilities to 
carry out tasks. This is a cognitively efficient model if there is a rich order relationship of 
difficulty on tasks that is reasonably independent of agents and enables competence on one task 
to be predicted from that on others. The analysis shows how knowledge becomes ascribed to 
agents, organizations and technologies, and how formal logics of knowledge, organizations and 
technologies emerge naturally from reasonable presuppositions in the modeling process. 
Task allocation between agents results in functional differentiation in an initially homogeneous 
society. A simple training strategy of keeping an agent’s performance constant by allocating 
tasks of increasing difficulty as an agent adapts optimizes the rate of learning and linearizes the 
otherwise sigmoidal learning curves. It is suggested that this is the basis for the human 
preference for a flow condition in which the challenge of a task is managed to remain between 
the extremes of boredom and anxiety. 
Intrinsic uncertainties in our models and the capabilities of agents to learn imply that knowledge 
modeling has to be an active process of knowledge management. We are as much creating a 
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model through action as fitting a model through observation. What has happened in recent years 
is the recognition that processes of organizational management, including personnel selection 
and placement, career development, team building, and so on, may all be subsumed within a 
single framework by knowledge level analysis of the organization as an agent with certain 
capabilities. 
The analysis of organization as agents requires existing knowledge level theories to be extended 
to take into account the relations between an agent and its parts, including other agents and 
technologies. It also requires the theories to be extended to take into account the uncertainties in 
models and the learning capabilities of agents. This article provides a preliminary account of 
such extensions as a first step towards principled foundations for knowledge management. 
In conclusion, it is suggested that the approach taken in this paper provides the foundations for a 
bridge between cybernetic, phenomenological models of adaptive interactions in societies of 
agents and knowledge-level modeling of the same phenomena. The simple model of knowledge 
as a state variable imputed by one agent in modeling another is sufficient to account for the 
performance-based training phenomena described. However, such training is powerful precisely 
because it is independent of exact knowledge of that state variable. If some knowledge is 
available then tasks may be selected that are specific to the state of knowledge of the trainee. 
Other knowledge transfer phenomena such as mimicry and language may also be modeled and 
controlled in similar terms. The higher-level knowledge processes in societies of adaptive agent 
may be modeled as natural extensions of the basic phenomena described. 
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