WebGrid Evolution through Four Generations 1994-2007

Brian R. Gaines and Mildred L. G. Shaw

University of Victoria and University of Calgary
gaines@uvic.ca, mildred.shaw@ucalgary.ca

WebGrid is a port of a highly interactive conceptual modeling application to operate effectively as a web service
available through any web client. It was developed in 1994, has been available as a service on the web on a 24/7
basis since January 1995, and has been used by over 20,000 different sites. A tutorial on porting interactive
applications to the web using WebGrid as an example was presented at the Fourth International World Wide Web
Conference in 1995. This article updates that material in the light of a decade of further experience, describing the
significant lessons learned in designing and evolving WebGrid through four major generations as the underlying
web technologies have evolved from the initial implementation of HTML forms through cascading style sheets and
Javascript to dynamic HTML and Ajax, and as user requirements have themselves evolved.

1 Introduction

The initial concept (Berners-Lee, 1989) of the World Wide Web was that of providing ease of access
through the Internet to a network of documents navigated through embedded hypertext links in a
standard hypertext markup language (HTML). This concept was greatly extended when Marc
Andreessen and Eric Bina in August 1993 supported embedded Motif widgets in the Mosaic browser
and later used this to support HTML+ forms. The capability from HTML 2 onwards of being able to
implement active documents having embedded within them the full range of basic user interface widgets
enabled a wide range of interactive applications to be ported to the web. In essence, HTML came to be
used as a graphic user interface programming language, and web browsers as universal interactive
interfaces to a wide variety of applications.

The attractions of porting interactive applications to the web were that: they became available to any
user having a web browser on any platform connected to the Internet; there was no need to distribute and
update code to all users; code need be developed for only one platform; only the server code needed to
be maintained and enhanced; usage could be monitored remotely, problems noted and fixed;
collaborative applications could be developed as all users were on a common network; typographic,
multimedia and hypertext features were automatically available; and the document model was familiar
to most users.

Problems in porting interactive applications in the early days arose largely from the stateless nature of
the hypertext transport protocol (HTTP), the limited range of user interface widgets supported, and the
lack of local interactivity. Later developments such as Unicode which supports symbols and non-Roman
fonts, cascading style sheets (CSS) that separate the document content from the way it is presented,
embedded Javascript and dynamic HTML (DHTML) that together allow a document to be modified
interactively, and Ajax technology that allows further material to be downloaded from the server without
having to download a complete document, have alleviated many of these issues. However, it has also
been surprising how much could be achieved with technologies dating from 1993, over a decade before
these later enhancements had evolved.

mailto:gaines@uvic.ca
mailto:shaw@ucalgary.ca

1.1 WebGrid

WebGrid was one of the first ports of a highly interactive application to operate as a web service
(Gaines, 1995; Shaw, and Gaines, 1995). It was part of a series of ports across platforms and
programming language of a suite of programs developed by Shaw (1978; 1980) for eliciting conceptual
models from people. Kelly (1955) had developed personal construct psychology as a theory of the way
in which people construe their past experience in order to anticipate future experience. He also describes
a technique, the repertory grid, through which an individual’s construct systems can be elicited,
modeled and compared, and this has been widely used to elicit conceptual models in a number of areas
such as market research, clinical psychology, education, management, conflict resolution and knowledge
acquisition. In 1975 Shaw automated and enhanced the process of elicitation through computer
programs that used continuous online analysis to guide the elicitation process, and presented the results
of grid analyses and comparisons in a graphic form.

Shaw’s programs were originally written for the PDP12 and later ported to a PPD10 timesharing service,
the Apple II, Macintosh and IBM PC to make them more widely available for remote access and on
personal computers. In 1980 it was suggested (Gaines, and Shaw, 1980) that they could be used to elicit
knowledge from experts in developing knowledge-based systems, and by the mid-1980s repertory grids
had become a standard tool for knowledge acquisition for expert systems (Boose, 1984; Boose, 1986). A
knowledge acquisition version with extended data types and rule induction, known as Knowledge
Support System, KSSO (Gaines, and Shaw, 1993a; Gaines, and Shaw, 1993b), was licensed to Neuron
Data and sold by them as Nextra, a knowledge engineering front-end to their expert system shell,
Nexpert.

The development of Andreessen’s Mosaic web browser in 1993 supporting embedded user interface
widgets for inline images and interactive forms made it feasible to offer the functionality of
KSSO/Nextra across the Internet. This was attractive because there was demand for a port of
KSSO/Nextra to Microsoft Windows, knowledge acquisition was generally a distributed team effort, and
our integrated knowledge acquisition and modeling system involved extensive hypermedia support to
manage documents, audio transcripts and images as knowledge sources (Gaines, Rappaport, and Shaw,
1992; Gaines, and Shaw, 1993a). The release of Mosaic for Unix in 1993 and for Windows and
Macintosh in 1994 meant that users on most platforms could access web-based knowledge acquisition
tools through similar interfaces across a common network with extensive multimedia support.

The development of Schotton’s MacHTTP web server in 1993 enabled us to experiment with the use of
a new release of KSSO, KSSn ported to C++, as a server extension through its common gateway
interface (CGI). The only major code additions required was a module to convert the graphic outputs to
graphic interchange format (GIF) images and another to manage the web page generation and form
decoding. The initial prototype had some clumsy features in the user interface because different
“Submit” buttons were not distinguishable in early versions of Mosaic, but once the HTML+/HTML
level 2 specifications were developed and supported it became possible to offer conceptual modeling as
a web service. Early in 1995 WebGrid was made available at http://tiger.cpsc.ucalgary.ca and has
continued to operate as a 24/7 service ever since.

The initial usage was much higher than we had expected as users in a wide range of disciplines
discovered that a conceptual modeling service was freely available on the web. In the period July-
December 1995 WebGrid was accessed from 674 different sites in 30 countries. However, we had little
contact with individual users since the service was robust and the online documentation appeared

http://tiger.cpsc.ucalgary.ca

adequate. Occasionally users contacted us for advice and we learned more of their particular activities.
For example, a graduate student in Holland studying operators’ models of nuclear reactors who came
across the grid elicitation system on the web in September 1995, used it with his experts to elicit their
conceptual models, and included these in an additional chapter in his thesis for examination in October
1995; the web certainly accelerates research processes! Since then we know of over forty masters and
doctoral theses around the world that have used WebGrid for their primary data collection, and the
service has been accessed from over 20,000 user sites.

WebGrid has evolved through four major releases, each with substantial increases in functionality but all
backwards compatible so ongoing users have not had to change their mode of usage unless they wish to
do so. To support universal access from sites world-wide in the early years when there were major
discrepancies between browser implementations, the first two releases in 1994 and 1998 were designed
to rely on only HTML level 2 capabilities. WebGrid III released in 2001 made use of basic Javascript
functionality to enhance the interactivity of the user interface. WebGrid IV was completely re-coded in
2006 to make full use of the latest standardized capabilities supported by a wide range of modern
browsers, notably Unicode, HTML level 4, DHTML, Ajax and the Prototype cross-browser Javascript
framework (Prototype, 2006). The server is script-driven with scripts in a full programming language
that is incrementally compiled, so that end-users can customize its operation as they see fit.

This article discusses the design objectives established for WebGrid, their implementation, operator and
user experience with a long-term web service, the evolution of the service as web technology and user
requirements themselves evolved, and the current state of the art.

2 WebGrid Design Objectives

There were three major design objectives for WebGrid: in terms of overall utility, to make available
through the web all of the functionality of KSSO/Nextra; in terms of software engineering, to ensure the
reliability, lack of memory leaks, etc, necessary for continuous 24/7 operation and to be able to sustain
this through the evolution of the service; in terms of human factors, to support users having minimal
computer literacy while also enabling advanced users to customize the application and integrate it with
their own applications, all this with the minimum of individual support. We were acutely conscious that
making a complex interactive application open to anyone with web access might lead to a deluge of
support requests, and that we needed to be highly defensive against this possibility.

The underlying application had already been ported across eight platforms with different operating
systems and to three different programming languages, and each time we had done so it had been
refactored for increasing modularity. The object-oriented implementation of KSSn in C++ made the
software engineering objectives relatively easy to achieve.

2.1 Porting Rating Scale Functionality

Porting the full functionality at first appeared problematic because repertory grid elicitation involves
eliciting the constructs, the conceptual dimensions of a person’s models of experience, by rating
elements, entities in the domain of experience under investigation, along a rating scale. A major feature
of KSSO/Nextra was a specialist rating scale widget that enabled this to be done by dragging elements to
locations along construct dimensions as shown in Figure 1.

However, the popup menus available in HTML 2 provided similar functionality in that one could show
the points on the scale and allow the user to drag the cursor to an appropriate rating as shown in Figure

2. This proved to be simple and natural to understand, particularly as popup menus came into common
usage in most applications, and the advantages of a specialist widget became balanced by those of user
familiarity with a standard widget. It also proved advantageous when we extended the repertory grid for
purposes of knowledge-based system development with additional data types such as labeled categories,
numbers, dates, etc, and found it simple to support them through HTML menus and text input fields.

[I=————"~—— Houses-Elicit

choosing a new house” | Done l

Editing the evaluations on selected quality Cancel
— " " ifs
Thiz display shows the ratings of all the houses on one quality. =

ou can click on any of the houzes and drag thern to the rating bar to change their Fatings.
‘fou can double click on the house or quality names to select themn for editing.
Click in this box to remove this advice.

Original condition
127 Realta Court N

22080 120th Road
—435 Ryrnan Eztate Drive Ny —

k 92 Lexington dwenue MW
223 Daklands Drive Nw

4227 Ranch Whee! Road M
1 Abraham Point

STTE Melina Drive Nw
Ideal house
Extensive modernization

0]
< B

Figure 1. KSS0/Nextra click and drag rating scale interface

S|OA WebGrid-1V home rating
™
Rﬁn Rumpole's Realty
Extensive modernization
? F$) 325, Oaklands Drive NW
? F%) 4227, Ranch Wheel Road NW
.7 } 5778, Melina Drive NW
1 Extensive modernization l 127, Realta Court N'W
; l 92, Lexington Avenue N'W
436, Ryman Estate Drive NW
5 Original condition 23,080 120th Road, NW
"1 Extensive modernization | #] 1, Abraham Point, N'W
5 Original condition | #] Ideal home
Original condition
Annotation for Extensive modernization--0Original condition
¢
When you have finished click on / Cancel \ / Show sorted \ / Done \ *
€ 3 o

Figure 2. WebGrid click and drag rating scale interface

4

2.2 Context-sensitive Help

We had intended our user community originally to be those already familiar with our standalone
application on a personal computer. However, it was quickly apparent that WebGrid was developing a
new community of users for whom it was their first introduction to repertory grid techniques, and that
there was a need for online support integrated with the application. For WebGrid II, we developed a
context-sensitive ‘help’ module that was called through a small “?” icon displayed in each significant
sub-section of the user interface as shown in Figure 3.

s Hala)l WebGrid-1V Elicitation

Rumpole's Realty

You are considering @ homes and 8 qualities in the context of choosing a new home (Continue | B

The qualities Friendly--{ppressive and (zood decorations--Needs redecorating are very similar - click
here if you want to enter another home to distinguish them F Distinguish H

The homes 1, Abraham Point, NV and Ideal home are very similar - click here if vou want to enter
another quality to distinguish them f Distinguish H:

You can elicit another gquality nsing a pair or triad of homes (Pair) (Triad) B

If you want specific homes included, check this box [_] and select them in the list below

You can delete, edit, sort, add and show matches among homes

325, Daklands Drive NW
4227, Ranch Wheel Road NW
5778, Melina Drive NW
127, Realta Court NW
92, Lexington Avenue MW
436, Ryman Estate Drive NW
1, Abraham Point, NW
23,080 120th Road, NW
Ideal home

(‘Delete) (Add) (Edit) (Edit note) (‘Sort) (Show matches | B

You can delete, edit, sort, add and show matches among qualities

Extensive modernization--Criginal condition
Mall near--Long way from stores
Mountain views--Town views
Friendly--Oppressive
Cood study--Poor study
Completely remodeled--0Older style
Price top end--Price low end
Needs redecorating-—Good decorations
(Delete) (Add ") (Edit) (Editnote) ("Sort) (Show matches | B

Analyses f Display Y (Cluster) [Map Y Selected = H

(Edit status) [Save/Exchange Y (send comment | (7 off | H

Figure 3. Integrated context-sensitive help

For example, if the “?” icon next to the “Triad” button in the fourth section down is pressed then a help
screen with relevant information pops up as shown in Figure 4.

5

8O A WebGrid: "Triad" or "Pair” buttons

Elicitation of quality from a triad or pair of homes

The "Pair" and "Triad" buttons are used to develop a new quality by considering a group of 2 or 3 elements,
respectively.

Triadic elicitation is a standard repertory grid technique, and clicking on “Triad) will take Vou to & screen
showing three homes and requesting that vou think of some way of distinguishing them such that two are
alike vet differ from the third.

Pairwise elicitation is less commeon, and clicking on “Pair) will take vou to & screen showing two homes
and requesting that you think of some way of distinguishing them.

Web(rid normally selects the homes at random. However, you can specify the homes to be used by clicking
in the checkbox | on the line below the buttons, and selecting the homes in the list that is shown &t the top

of the following section.

Figure 4. A help window

Some of the help screens contain links to online documentation and published papers enabling users to
investigate issues in greater depth if they wish.

2.3 Support of the “Back” Button as “Undo”

As is apparent in Figure 3, WebGrid provides the user with a rich range of complex functionality, which
can be daunting if users feel that any of their actions may be irreversible. We needed to provide them
with the reassurance of an unlimited “undo” capability whereby they could revert to any previous state.
The natural way to do this in a web browser is to support the back button and history menu as undo
capabilities. That is, if one goes back to a previous screen then the state of the system is precisely that of
the system when that screen was created.

We achieved this by fully adopting the stateless protocol of HTTP in that all the data elicited from the
user for the repertory grid was stored in hidden fields in the document on the screen. This was feasible
because even quite large grids involved only a few kilobytes of data. If the datasets had been larger then
the use of a hidden field for a state-identifier linking back to state dumps at the server would have
achieved the same end, but it was not necessary in this application.

Some years later we found that the scalability of this approach was being severely tested by a few users
who were entering very large datasets into WebGrid for data analysis purposes. However, by that time
the browsers and server were coping with over 100 kilobytes of hidden field data without problems.

Some interesting design decisions became necessary as we began to enhance client-side interactivity,
initially with Javascript and in WebGrid IV with Ajax techniques. Changes could be made to the local
document that could only be undone as a whole by use of the back button. However, such a situation
existed in the earliest versions since, for example, in the rating screen shown in Figure any ratings
entered are lost when one reverts to a previous screen. That is, our use of the back button was more akin
to that of the cancel button shown in Figure 2 in that it undid all changes made since the new page was
loaded. This behavior had been accepted by our users without comment or problems, and, from
discussions, with a sample of them it was clear that the user model of WebGrid interaction was that each
page was, in a sense, a modal dialog that once either completed to effect a change, or cancelled with no
effect.

We have supported this user model in WebGrid IV development and ensured that each of the twenty
WebGrid interface documents is distinctive and its functionality clear and monolithic, a transaction-
oriented model. The back button essentially cancels an ongoing transaction with no side-effects. This
model is also supported from a software engineering perspective in that each document is managed
through its own script with one function that generates it and another that analyzes the data returned
from it and carries out the transaction.

2.4 Porting Graphic Functionality

A major feature of KSSO/Nextra was the availability of graphic analyses of the data showing the
conceptual structures elicited in a readily understandable form. We supported these in WebGrid by
converting the outputs to GIF (later PNG) format, caching them at the server, and embedding the cached
images in the documents returned to the user as shown in Figure 5. Profiling the WebGrid I system
showed that the image generation was the dominant use of processor resources, and we wrote a graphics
to GIF generator with highly optimized inner loops that reduced the time to a fraction of a second even
on the processors of 1995. Nowadays it is no longer an issue.

a00 WebGrid-1V PrinGrid Map of John & Mary (house choice)

RE_R Rumpole's Realty

PrinGrid John & Mary (house choics)
“choosing a new homa"

Poor study

Mall near Original condition
92, Lexington Avenue NW ex = 127, Realta Court NW
L
= Older style
: Ideal home
| Good decorations
Mountzin views = =438, Ryman Estate Drive NW
1. Abraham Point, NW s Friendly = xPrice top end
1: 30,1
Price low end x o NBES?FE?EDH&I]HQ
4227, Ranch Whesl Road NW
* x Town views
| 23,080 120th Road, NW = ¥ Oesshs
| Extensive modemization *
Cood Sidy « 5778, Malina Drive NW
Compietaly remodeled x = * Long way from stores

325, Oaklands Drive NW 2.237%

F varianca in each
1:301% 2:237% 3:17.0% 4:129% 5 5.4% 6:1.9%

Click on title, homes or qualities to edit them

’_ComI Image_\ (Continue \

¥ PrinGrid Map Parameters (PrinGrid Map)

™ Titte [Numbers # Axes ™ Dimensions # Variance ™ Fit Scale 100

Plot Components to plot: [1: 39.1% [+) Horizontal | 2: 23.7% 4] Vertical
Show Reverse Notes
Homes ¥ Qualities] Horizontal | Vertical] Homes _| Qualities

Homes

— Text @ Components @ Home loadings [Quality loadings

CAral 8] 9 | pt [B&W

Style Title 004000 [l] Home [caoooo] [l Quaiity [o0o0so] [l value foos000] [l

Figure 5. Graphic data analysis

7

The analyses were made interactive by embedding them in the forms and using the clickable input
images, and using the x-y data returned from them to return to the user the appropriate document for
editing the data associated with the element or construct that had been clicked.

The graphic output in Figure 5 was generated in RepNet, the interactive vector graphics component of
Rep IV. In the stand-alone application the user is able to drag the labels to different positions in order to
improve the appearance beyond that provided by the automatic layout algorithm. For WebGrid the
graphic output is converted to a portable network graphics (PNG) file, and the only interactivity we have
so far been able to provide is that clicking elements and constructs in the image accesses the appropriate
editors as noted above. There are other components of Rep IV that require full user interaction with the
graphics in a way that web technology until very recently has not supported. Section 4 discusses some of
these components and our plans to port them.

2.5 Supporting Multimedia Annotation

We had supported multimedia annotation in KSSO/Nextra through links to material in separate
hypermedia applications such as HyperCard. In WebGrid II we used the inbuilt hypermedia support of
web browsers by allowing users to annotate the data they entered with comments that were then
embedded in the document where appropriate. Figure 6 shows the entry of such annotation (where the
use of HTML to embed images may require facilitator support), and Figure 7 its effect in an elicitation
document.

Nalala SEEGTH=IV- Ed b

R R Rumpole's Realty

You may edit the home on the qualities

1 Extensive modernization |3 Extensive modernization—Original condition

1 Mall near ! #] Mall near—Long way from stores

1 Mountain views |3 Mountain views—Town views

2 f# Friendly—Oppressive
3 F# Good study—Poor study

Z -#] Completely remodeled—CQlder style

5 Price low end |'§) Price top end—Price low end

5 Good decorations |'#] Needs redecorating—Good decorations

Annotation for| 1, Abraham Point, NW Weight | 100

| [<P ALIGN="CEMTER"=
<|MG SRC="http:repgrid.comebGrid/RealEstate/H563.gif">
<|MG SRC="http:repgrid.comWebGrid/RealEstate/R4 32 gif"=<BR=>
Mary—very isolated. John—good hunting in own garden!<BR=

When you have finished click on (Cancel) { Done)

Figure 6. Hypermedia annotation in HTML

8

N WebGrid-IV Elicit quality from a triad of homes

Rﬁa Rumpole's Realty

Think of the following three topics in the context of choosing a new home

In what way are two of them alike and different from the third?

Select the one which is different B

e et 3 - . L el s ‘_
Mary--very isolated. John--good hunting in own garden!
i

s 1, Abraham Point, N'W

Mear the Alberts, but long way from anyone else. Mary--would needa gardener. John--stdio would
make magnificent stdy.

() 23,080 120th Road, NW

() 127, Realta Court NW

Enter a term characterizing the way in which the selected home is different

Enter & term characterizing the way in which the other two homes are alike

If_[am:elj [.&.dd quariw}

Figure 7. Hypermedia annotations embedded in a document

9

The implementation of this feature involved dynamically encoding the annotation in three different
formats: one for storing in the hidden fields; another for display as editable text; and another for use as
embedded HTML.

2.6 Saving Data

Our users needed to be able to save, edit and analyze their saved data, but we did not wish to manage a
central storage facility requiring them to register and requiring us to be responsible for their data. This
requirement was addressed through the same mechanism as that described in the previous section. Since
all the data was stored in the current document, it was only necessary to save that document as HTML
on the local machine to preserve the data locally. Opening the document at any time re-established the
link to the server and enabled the elicitation to continue or the data to be edited and analyzed. We also
made the Rep IV standalone application able to open the saved web documents and extract the data from
them, so that data collected through the web could be analyzed together with data collected by other
means.

Interestingly, the very simplicity of this way of saving data led to this feature requiring the most support
in terms of user explanation. In most web applications users do not need to save the HTML documents
on their local machines, and the notion that doing so with WebGrid documents would preserve their data
was not a natural one. Once experienced it became a simple feature, but it was not the obvious thing to
do.

There were some features of KSSO/Nextra that did require data storage at the server, notably the
capability to compare conceptual models in two different repertory grids. We supported this in WebGrid
II, as shown in Figure 8, by allowing a grid to be stored in a cache at our server for later use,
automatically returning to the user a uniform resource locator (URL) containing a unique identifier for
the grid. We specified that the cached data would be kept for 90 days but might expire thereafter, but in
practice have never deleted such cached data.

As our user community evolved it became apparent that we needed further support for some major users
who were using WebGrid to elicit conceptual models from distributed communities through the Internet,
and who needed some form of centralized automatic data collection at the server. We again wanted to be
able to do this without having to provide explicit control or support. Hence in WebGrid 111, released in
early 1998, we added the facility for users to register their own password-protected cache directories at
our server, and to save and access grids in them.

10

BOe WebGrid-IV Save /Exchange

Rﬁn Rumpole's Realty
|

Y ou are considering % homes and 8 qualities in the context of choosing a new home

Saving and restoring your data to continue session later

All of vour data is stored in this document. H
Save it on vour local computer as an HI'ML source file.

You can continue the interaction by loading this file and clicking on "Continue”.

Check that you can save vour data before any major nse of Yeb{zrid I’_r Continue 1_\' |

Downloading your data for use in other programs

You can download vour data as a Rep IV grid file that can be saved locally, opened in Rep IV,
of imported mto a spreadsheet as tab-separated data. H

i !
| Download |

Caching a grid for use by others
Y ou can temporarily cache the grid on our server for use by others. H
.’_’ Cache T'
Caching a grid in an allocated cache directory
Specify your cache directory if yvou have been allocated one: H

.’_’ Access directory '_'. I,.. Cache in directory ‘_‘.

&

Figure 8. Facilities for saving and caching data

We programmed WebGrid III such that if a cached grid was used as the basis of further elicitation then
the resultant grid was automatically added to the cache. We also provided multiple grid analysis
facilities available when the primary user accessed his or her password-protected cache as shown in
Figure 9. This supported automatic data collection from remote users, and protected access and analysis
of the collected data. This facility has been widely used in a number of market research and other group
conceptual modeling studies, and has been particularly attractive to researchers wishing to collect data
from geographically dispersed sites.

11

WebGrid-IV Show Cache Geog

WebGrid-IV Show Cache Geog

010 fue

y oy
[O]O]fpee

f y
‘Mm

(O] chme]

F i
[O][O]t

ol
‘Mm

Ty oy
[O]Ofpee

Ty i
[O]Ofpee

[O]OJamest]

y oy PEIEI
‘

(O] tan

(O[O chmte] [Agret echies

" y PEIEI
‘

Hngmuwcmuqum

| 19-Aug- 1937” l-1:3!]”lucal

F i
[O]O e

H Peter (Agreed techniques) exchange ||]9-.-‘\ug-]9ti’f||]5:]3Hlocal

(O] O]t

HAgrwuwcmuqum

[5]

|2ﬂ-Aug- IQH?” l4:49”lucal

Ty
‘Mm

HMary (Apgreed techniques) exchange ||20-.-\ug-]98?||]SESHHlﬂcal

[O][O]G grnt et

13 |2[-Aug- IQE?” 16:33 HJDcal

‘Charli.eHCha:li.e (Agreed wchnlqu.es}exchange||2]-.-\ug-]9ﬂ?||]b:jSHlocal

1y Peter
‘

H.ﬁg:ree-dtech.m.ques

|T-Aug-l‘:1‘90 ” 13:43Hlocal

Contents of specified cache, Geog
[A][8][Name | Note [E][c]|Date][rime [Location]
H ||E||E||2-Jun-]9ﬂ]‘ ||]U:Sﬁ”lccal |
H ||E||2~Iun-]93? ”]2:29”[0@1 |
H ||E||2~Iun-]93? || 13:41 chcal |
||E||E||3=Iun-]93? ”]U:S‘.-]Hlﬂcal |
‘M“Pmemhmge ||E||3-Iun-]‘:}ﬂ? ” 1]:2‘.-1”[0631 |
‘MHM&F}"EWME& ||E||3-Iun-]9ti? ”]Z:USHch:al |
HPeIe:emhmge ||E||3-Iun-]9ti? ”]j:mHlocal |
HCI[arl'Leemhange ||E||3-Jun-]98? ”]5!4?”[0::31 |
HMaryexchange ||E||4-Jun-]98? ”]2!03”[&:31 |
H(_':l'larl'Leexs:hange ||E||4-Jun-]9ti? ”]2:]9”[0::31 |
||E||E||4~Jun-]9ti? ||]5:3“”[0{:31 |
H.ﬁglmdtech.n.i.ques |4-.Iu11-l‘.-15? || 15:36Hlncal |
H.ﬂgmedtectm.i.quss |4-.Iu11-l'.-15? ” lﬁ:-‘lEHlncal |
.|5-.Iu11-l'.-15? ” ll:lﬁ”lncal |
|
|
|
|
|
|
|
|

‘Peter HPete.r[Agmedtechnlques}exchange ||T-Aug-]990 ”]5:58”[0631

Click on a grid to view and analyze it in a separate window

i F P P . ¥
You can: Update the table [Update | Download a grid [Download A

Analyze or compare grids [Displayh} Ii[lusrern} [Map A} Ii[ompareAwith B:I

You can create a derived grid {RD'E A} I:Cumr A:I {E:u:hange A:l (Cumpare constructs A} I:Compare elements A:I

Commands

Script

Figure 9. Access to cached data

mi.yfw—wm-—ww—wmﬂ

2.7 Supporting Collaboration

One of the most important forms of grid analysis is the comparison of two or more grids from different
people construing the same domain or from the same person at different times as their construct system
develops and changes. Our standalone application provided extensive facilities for the graphic
presentation of grid comparisons, and these were ported to WebGrid I to support some of its earliest
applications to facilitating collaborative learning (Shaw, and Gaines, 1995).

As shown in Figure 8, the Save page offers the capability to cache a grid for others, and when this option
is selected the grid is cached and the user is presented with a set of URL’s to access the cached grid in
various forms as shown in Figure 10. These may be copied and made available in web pages or sent by
email, so that other people can be invited to develop related grids and compare them with those of others
to see the similarities and differences in their construct systems. This capability has been used
extensively to support collaborative learning in distributed communities.

8Ne WebGrid-|V Cache

Rumpole's Realty

Cached grid
Your grid has been cached at our server and will be retained for 3 months. ©
If the cache expires and you still wish to make the grid available you may save it again.

The following URL's give access to your grid:-

To load the Grid
http:/192.1668.1.108:1500/MWebGrid/Open/Cache/0H1032FFABA6S . rarid

This will load the complete grid.
To exchange the grid

http:/192.168.1.109:1500/\WebGrid/Exchange/Cache// 1032 FFBB969. rarid

This will load the grid without the ratings and ask you to rate all of the homes on each of the
qualities.

To compare qualities with those in the grid

hitp:192.168.1.109:1500/\WebGrid/Elements/Cache/01032FFB8969.rgrid

This will load the grid with homes only and commence triadic elicitation of qualities that may
then be compared with the original qualities.

To compare homes with those in the grid

http:92.168.1.109:1500/MebGrid/Constructs/Cache/0/1032 FFBB969.rgrid

This will load the grid with qualities only and allow entry of homes that may then be
compared with the original homes.

Giving access to others

You may make these URL'S available to others to enable them to access your grid.

= .
Continue

Figure 10. Accessing a cached grid

13

Grid comparisons are also significant research tools in studying various communities of practice where
commonalities are expected in construing but their extent may be difficult to assess (Gaines, and Shaw,
1994; Shaw, and Gaines, 1999). The support of user-managed caches introduced in WebGrid III enables
a facilitator or researcher to collect grids automatically from a distributed community and analyze them
online for discussion within that community. The cached data shown in Figure 9 was gathered in a study
of a small professional community of geographers studying spatial mapping techniques. The radio
buttons on the left enable any pair of grids to be selected and compared as illustrated in Figure 11.

& Y WebGrid-1V Compare Peter I{Aére.éd .l.,esj with .Mary (Agreed techniﬁu.es.) .

techniques)

Compare Pater (Agreed technigues) come:
“To evaluate spatial interpalation techniques®

from Mary {Agreed technigues) 81.51

- WebGrid-IV Compare Peter (Agreed
techniques) with Mary (Agreed

100 80 80 70 8D 5
local | 6§ 4 3 5 8 1 1 5 2 & & 9| Gobs
ocal |4 6 6 4 49 1 3 4 1 9 9 9 gloos
Lowleveldata | 8 & 5/41 & & & 4 & 4 @ High level data
nominaldata | 9 9 S5081 9 9 5§ 9 & 9 @ nierval or ratio data
Does nothonourdatapoints | ¥ 6 9 ¥ 2 9 8 ¥ & 1 1 1| Honours data points
dossnthonourdatapoints | 8 3 82 7 1 8 § 7 8 1 1 2| honours dals poinds
Mew geographical technique | 2 ¥ 9 1 &5 4 8 3 2 2 ¥ 4| Gid geographical technigue
notwidalyused | 2 7 8 1 3 6 5 2 3 4 8 3| widelyused
Snortdistance autocorrelation | 5 4 2 5 & 1 1 5 1 @ @ 9| Long distance autocorrelation
ocal |4 6 5 4 8 1 3 4 1 9 9 3] glooal
Motwidelyused | &8 8 9 1 3 7 3 & 3 2 & 3| Widelyused
motwidalyused | 2 ¥ 8% 1 3 68 5 2 3 4 B 3| widelyussed
Discontmuous | 3 3 5 3 8 3 1 3 F 9 9 9| Conbmuous
ocal | 4 & 5 4 9 1 3 471 & 9 9| glooal
Mathematically complex | 1 7 8 1 4 3 8 1 2 1 5 1| Mathemabically simple
mesvycomputngload | 1 ¥ 8 3 4 3 8 2 4 § & ¥ | nocomputing load
Does notrequire spatelsearch | 8 8 2 8 1 4 1 &8 5 1 1 1| Requires spatial search
eshmates suscepbide toclusters | 8 4 7 B 3 & 8 & 2 2 2| notassusceplible to clusters
Hard to adapt to multvariate | 3 5 & 2 1 4 1 3 1 & 3 1| Easytoadaptto mullivanate
usually one variable consideredt | 1 1 1 1 1 1 1 1 8 1 1| multipde vanables considered
Fewpoints | 1 '3 1 3 8 & 1 4 2 & 2| Manypoints
notwidalyused | 2 78 1 3 68 5§ 2 3 4 B 3| widelyused
Does notrequire aprioimodel | ¥ 2 3 7 7 1 1 ¥ 2 & @ 9| Reguires a prion model
ocal | 4 6 5 4 04§ 3 4 1 9 9 9| glooal
Does notuse polynomial | 1 1 1 11 1 1 1 & @ @ 9| Usespoynoma
doesn't fit a mathematicalcuree | § 2 1 218 1 2 9 & & 6| mathemalical curve fitting
Motweryeffective | @ ¥ 4 4 3 4 & 3 4 3 4| Veryeffective
notveryeffective | & 3 8 8 4 7 8 2 & 5 4] veryeffective
Motweryimportant | 8 9 8 2 2 9 1 F 4 3 9 3| Veryimoorant
notwidalyused | 2 7 9 1 3 8 5 2 3 4 8 3| widelyused
Modelstnestationanty | 4 & & & & & & 9 & 1 1 1| Assumes stationanty
autocorrelation notconsidered | 8 5 7 893 2 4 0§ 2 autncorreiation considensd
00 S0 80 70 60 S
Pro ty mapping |
surface analysis |
\
L}
|
Proatimal mapgping |
Triangulation I|
Double Fourier series '|
Nonparametric knging L\
Hend contouring
Distence weighted averaging \I
Universal kriging

Comparison of 2 grids with 12 technigues and 4 [of 16) characteristics in common

Figure 11. Comparing grids

14

2.8 Supporting Customization

For WebGrid II, we wished to allow users to customize WebGrid in the general appearance of pages and
with their own headers and trailers. The general status page allowed users to replace the BODY tag,
which controls the background colour or image in each page, and the header and trailer of each WebGrid
document with their own HTML code. This been used, for example, in the real estate pages shown
above to change the background color and to substitute a customized header.

The BODY tag substitution was intended originally to support different background colors and images.
However, it also enables user-specified HTML to be inserted at the end of the HEAD section and the
beginning of the BODY section, and this has proved very powerful as HTML features have evolved. For
example, when cascading style sheet support became available in browsers it was used to insert STYLE
specifications customizing the interpretation of individual HTML tags, and Javascript supporting user-
designed interactivity. This has made the consistency of usage of all HTML tags within WebGrid
documents particularly important so that users specifying styles see precisely the effects they expect.

In WebGrid IV the BODY tag substitution has been generalized to the capability to insert arbitrary
HTML in the HEAD and at the end of the BODY sections of every page. Each page has a distinct ID tag
in its BODY statement and is designed such that every element within it is readily accessible through its
class, its ID and through document object model (DOM) navigation. Through use of these facilities
users can re-style all the WebGrid pages together or selectively, and incorporate new elements and
functionality as they see fit, purely through the interface with no access to the underlying scripts or
application code. Use of the Prototype (2006) Javascript framework buffers users from inconsistencies
in DOM functionality across browsers.

Additional data collection can be incorporated in an integrated fashion by using these facilities to
include additional DOM input elements whose names begin with an underline character, since the
WebGrid server treats such data as part of the grid meta data and preserves it through all transactions,
including caching and data downloads/uploads.

Figure 12 shows the customization fields in use for replacing the header, restyling pages selectively, and
adding an additional field for debugging Javascript interacting with the DOM by adding a text area at
the bottom of each page together with an “Execute” button that will execute any Javascript typed into
that text area.

15

WebGrid-IV Grid Status =

Rumpole's Realty

You are considering 8 homes and B8 qualities in the context of choosing a new home

The name of the person from whom the grid is being elicited
Name John & Mary Mote house choice

The topic about which the grid Is being elicited B
Topic Homes

The purpose for eliciting this grid B
Purpose choosing a new home

Annotation - Comments on this grid

When you are ready click on [Done)

¥ Grid Parameters

Singular and plural terms for elements and constructs, and rating scale range B

Element home Elements homes
Construct quality Constructs |qualities Scalefrom 1 |[to 5

Types: Ratings[| Categories | Integers | Numbers] (basicgrid if no types set) B

Meta values: Open(?) | Unknown ()] Any(*)] Mone(*)] Notapplicable(~) | B

¥ WebGrid Customization
You may customize WebGrid {including HTML tags If you wish) B
Check the following to embed the notes on the homes as HTMLE

This will replace the heading at the top of each page

<H1 ALIGN="center">Rumpole's Realty</H1=>

=DV CLASS="HR"/>

<BR CLEAR="left"=

This will be inserted at the end of the HEAD section, supporting different styles
<STYLE=

BODY {background: #DDFFDD}

#Main, #5ave {background: #FFEEEE}

#Main * {color: blue}

</STYLE=

This will be inserted at the end of the BODY section, allowing modifications to the pages

<HR=><TEXTAREA ID="DEBUG" ROWS=30 COLS=80></TEXTAREA><P=>
<BUTTON onclick="eval(${DEBUG".value);">Execute</BUTTON>

Figure 12. Customizing WebGrid

16

Further customization is possible because the generation of web documents in WebGrid is from scripts
that may be modified by the administrator of the server. The behavior of versions I through III was
driven by scripts in a macro substitution language with variable data from the grid being available as
macro parameters. WebGrid IV offers substantially more power since the entire server operation is
programmed through administrator-accessible scripts in a full object-orientated programming language
supported by an incremental compiler. The application programming interface (API) accessing all the
grid functionality appears to the programmer as an integral library of specialist functions and datatypes.
All of the HTML generation and analysis of GET and POST requests is programmed through scripts
which may be modified by the server administrator. A wide range of general-purpose libraries are also
available through the script language including an XML parser/generator, an SQL database manager,
and graphic generation capabilities.

The family of scripts in use is specified as a parameter of the URL used to access WebGrid. This has
enabled us to customize various versions of WebGrid for specific users with whom we are working
closely, including translating the dialog into other languages. For example, Figure 13 shows the same
grid as in Figure 3 with the URL amended to call a family of Spanish language scripts.

S[I=———— Netscape: WebGrid Elicitation =—0————-01=
e

Rumpole's Realty

Usted esta considerando @ homes v 8 qualities en el contexto de choosing a new home

Los gualities Needs redecorating--(rood decorations 7 Town views--Mountain views
gon muy 3imilares - Oprima agui 3 Uated desea afiadir algun otro home para diferenciarlos

Loz homez 1, Ahyaham Point, NW v Ideal home zon mny similaves - Oprdma aqoi ai

Uated desea afiadir algun otro qualite para diferenciarlos

Usted puede generar otvo quality wilizando un tvoe de homes
#1 deaea incluir o homes especifico, Uated podrd seleccionarlo de la siguisnte lista

Figure 13. Customizing WebGrid through a script family

In recent years the availability of Unicode support in all the major browsers has made it feasible to use
non-Roman languages in grids, and WebGrid IV was designed to be fully Unicode-compliant as
illustrated in the test ‘grid’ incorporating many different fonts shown in Figure 14. This enables grid
data to be entered in any language of the world, and the scripts for the interaction to be translated into
non-Roman languages.

All these features have gone a long way to making WebGrid IV both a complete grid elicitation and
analysis system, and an extremely flexible, open-architecture porting environment for interactive
applications.

17

800 RREGrid=IV Eciatisn —

WebGrid-1V Elicitation

You are considering 10 elements and & constructs in the context of [Continue) 2]

The constructs Wi #& & H5 o flo] £~08 = ofZE2] fob 8 and sufiunssantA-uadladn1n
DI are very similar - click here if you want to enter another element to distinguish them [Distinguish) H

The elements FHESF BEEI0 A5 T and AZ galiv valgyti stiklg ir jis mangs nefeid#ia are very similar -
click here if you want to enter another construct to distinguish them [Distinguish) H

You can elicit another construct using a pair or triad of elements [Pair | [Triad | H
If vou want specific elements included, check this box [] and select them in the list below

Youn can delete, edit, sort, add and show matches among elements
A Mory ecTh CTEKND, OHO MHE HE BREOMT

Gl ey S ke gy e D Laf gAlS e

lh Y ey playdl J8 e pli

HAES THIEM 851

BEHAZAERNGHET, FhEAEEDITEEA

MrTopus Voo (i oTTeopEve Yookl xeplc wo TraBw TimoTo.
Puedo comer vidrio, no me hace dafo.

Dji pou magni do vére, coula m' freut nén ma.

A% galiv valgyti stiklg ir jis manes nezeidZia

4 ka ®e glass uhen at det go ma2 naue.

{Derete_:'l [Add:'l If'_Edit:'l {Edit nute:l If_Surt:'l [Shuw matchesl‘lﬂ

Youn can delete, edit, sort, add and show matches among constrocts
L REE HE 7 UAHR .-~z ol =X oot
mafuwnTean A -—u AL v ARG

20w B LS ilS) e (S g ST e

[Fi =T AT §--0E TE A w0 e AR, gt

1I|'|I.||..u.|l wigpuilgh nunky ==l pligh whtwlichuwe 3 plikp

MTTOPU Vo (i TTTOTHEVO-—UmALE ¥wple va mabw TimoTo

I':_'Derete} [ﬁu:ld_‘:l I':Edit_:'l {Edit nute_‘:l I':_'E::-rt} [Ehuw matches}ﬂ

= . =
Analvses {Dmpra? :'I {Clusterl'l { Map :'I Selected | | H

{Edit status :'I {53\!&} Excharrge_:'l {5end cur‘r‘rment:l I:'_? nﬂ‘:l H

Figure 14. Unicode support of non-Roman fonts

18

2.9 Integration with Other Applications

KSSO/Nextra was designed to integrate with knowledge-based and hypermedia systems in such a way
that a user experienced a single, relatively seamless application (Gaines, and Linster, 1990; Gaines,
Rappaport, and Shaw, 1992). We planned for WebGrid to offer similar capabilities and built facilities
into the server for communication with other applications across the Internet. However, most of the
integration was achieved by linking additional applications to WebGrid at the server. For example, we
ran our rule induction (Gaines, 1994) and description-logic inference engines (Gaines, 1996) on the
same server as WebGrid and linked them through inter-application communication protocols to provide
a integrated knowledge acquisition and inference capability integrated with documents (Gaines, and
Shaw, 1999) that has been widely used in computer science teaching (Gaines, and Shaw, 1997).

An interesting approach to integration with WebGrid was adopted by Tennison in the development of
APECKS, tool for collaborative ontology construction (Tennison, O'Hara, and Shadbolt, 2002).
APECKS, as well as providing internal knowledge acquisition (KA) support, was designed to interface
with web-accessible KA tools, thereby allowing theoretically unlimited KA support for users. The sytem
used WebGrid-II for external KA support, and the paper cited discusses issues involved in integrating
APECKS and WebGrid in detail.

Tennison wished to show that her approach could be used to integrate web-based KA services with
APECKS without any modification to those services, even if they had been designed primarily for
human interaction and there was no collaboration with their designers. She packaged APECKS
ontologies as if they were grids embedded in WebGrid forms and posted them to the WebGrid server
using the HTTP protocol. She re-packaged the document returned as an APECKS document for
presentation to her users. Figure 15 shows an example of WebGrid being used to compare two APECKS
ontologies.

WebGrid IV incorporates script-driven XML encoders and decoders supporting the offering of web
services targeted on computer-computer interaction that make it simpler to achieve the kind of
integration that Tennison developed, as well as to offer access to a far wider range of web services based
on the knowledge acquisition, modeling and management tools available on the WebGrid server.
However, the capability that Tennison demonstrated, of being able to re-purpose one web service in
order to integrate some of its capabilities into another web service even if the service used was not
designed with this in mind, remains an important option.

19

ok grainsize = small grain (RFFF oot T e
rocks :grain size = fine grain size (¥373)
oyt BeRtire = i DI BRI Lot e
rocks :grain size = fine grain size (¥373)
minerals present nepheline (#3031} = minerals present-napheline. ... oo AT
olivine content:ranges = 9

rovks grainsize = large grain (R337 | 1a sm sm

rocks (grain size = coarse grain size (¥321) |co fi i oo

perphytitic tewture = pot-in-perphyritic texture | 1

rocks :grain size = coarse grain size (#3510

minerals presentinepheline (#3011 = minerals present-not-nepheline
alivine content ranges = 1

rrinerals presend mics (BI00Y = minersls present-not-rics rrinerals presentiica (RTO0Y = rinerals Bresert=mied o L b

alivine content ranges = 1 alivine sontent:ranges = 9
minersls present biotite {RITT} = minersls present-biotite

alivine sontent:ranges = 9

mingials present biotite (RETF} = minersls present-not-biotite

olivine content ranges = |
rinerals present plagioctase feldspar (%2417 = minarals present-plagioclase feldspar ... L. i
olivine content:ranges = 9
Frinerals presentolivine (HERIX = minerals present-olivine ..
| 2lkeai feldspar content = alkali feldzpar poor
Fooks Filica content = ultrabasic roeks (BIRIF . e LR
silica content ranges = 9
ok crleur melancratic (datk) = rock celour ARG atE CBERT e e b
shade = dark - relanocratic

2
Ti
1
1
1
1
1
1
minersls present plagieclise feldspar (%2917 = minersls present-not-plagioclase feldspar 2
olivine content ranges = | 1
mrinerals present olivine (¥ 223 = minerals present-not-clivine 1
alkali feldzpar content = alkali feldzpar rich
rocks :silies content = seid rooks (RIRQY
=ilica content Tanges = 1
ook solour melanoratic (darki = rock eolour—not-melanoratic (darki
=hade = light - leucocratic

rrinerals presentialkali feldspar (276} = minersls present-alksl feldspar. .
shade = Tight - leucocr atic

inerals present alkali feldspar (276} = minerals present-potalkali feldspar
shade = dark - melanecratic

grainsize ranges = 0

alivine content ranges = 1

RIS PRGOS = MT 1+ ettt et e e b
| otivine sontent ranges =9

mineials presentistinspyronens (292) = minerals presenteelRapyonene Lo
rocks (grain size = fine grain size (#373)

ok colour Meucocatic (Hohth = rook colounleucoaratic (lighth
shade = light - Teusocratic

minerals presenticlinepyronene (#222) = minerals present-pot-clinapyroxene
rocks (grain size = cosrse grain size (¥381)

rock colour Jeucocatic (Hpht) = ook colour—rot-leucocratic (light?

shade = dark - melanooratic

Frinerals present ugite (#IGTT = MIRrSls BEESERT-FUGHE .. oo L
rocks (grain size = fine grain size (#272)
FrinErals present quatts (R RG] T RriRerals DreseRtQuarTE. AT
shade = Tight - leucocratic
12 11 | minerals present orthopyroxenes (RI0ET = minerals present-or thapytowenes ...l
______ o | rocks (grain size = fine grain size ($Z7E)
minerals present hornblende (#ETS] = minerals present-hornblends ...l L WU

oliwine content ranges =9
G GOl i Soiate (et = ek GO MR SO ETE CRREARINIR e L
tupe icategories = Andesite (¥215)

rninewals present sugite (R30I = minerals present-not- sugite

rocks (grain size = coarse grain size (¥221)

Frinerals present iquarts (R ERET = minerals present-not-guarts

shade = dark - melanocratic

inerals present ovthopyroxenes (BI0ZY = mineials present- not-oF Bhopyiexene:
Focks |grain size = coarse grain size (#2321 [

minerals present horablende (* ETS} = minerals present-not-hornblends

olivine content ranges = 1

ook colour mesecratic {mediuml = reck colour— ot mesearatic {mediuml

tupe :categories = Rhyolite (#228)

rrineirals ot (#3523 = et 2 1 11 raineals ot (#3023 = inerale-orth SRRURUU DU L
alkali feldspar content = alkali feldspar rich 3.1, 2. 3 |akali feldspar content = alkali feldspar poor
socessory minerals sugite (BI0T} = scoessory minersle-nod-sugite 21 | socessory meinerals sugite (RI0TF = scoercory minersle- sugite
alkali feldspar content = alkali feldspar rich 9.1 2 3 |alkali feldspar content = alkali feldspar poor
minerals el (®2e2) = ineale=nod-cli 201 1 raineieals el (FIeZi= ineieale-cli
alkali feldspar content = alkali feldspar rich 2. F | alkali feldspar content = alkali feldspar poor
minerals (#3011 = rrinerals [SECINE

1 1

1.1 |elivine sontent:ranges = %
Fonessory minerals olivine (#ERE) = accessory minerals—olivine AU

olivine content:ranges = 9

olivine content ranges
Sonessory minerals olivine (#2235} = accessory minerals—not-olivine

alivine content ranges = 1 [HEERTIGES 1 it 2 1
aooessory minerals alkali feldspar (#2764} = scoessory minerals-pot-glkali feldspar 1 1 | socessory minerals alali feldspar (*ETE) = sooessory mineralsalali feldspar.. o
1 1

alivine content ¥anges olivine content ¥anges = 9

sosessory minerals mmics (F300] = acoessory MR al—mIGE. - oL o
oliwine content ranges =9

sowessory minerals mica (300} = scoessory mineralsaot-mic:
alivine content iranges = | [imigheags 1 40 201 1)

11 | socessory minerals plagioclase feldspar (#2417 = socessory mineraleplagioclase feldspa [b
1 1| oliwine content :ranges =2

secessory minersls plagioclase feldsps (2241 = accessory minerslsnotplagioclase feldspar

alivine content iranges = | [imsheegs 1 o4 201 1)

secessovy minerals quarts (#2396} = socessory mineralsnot-guarts socessory minerals quarts ($296) = aroessory MIRErSlS-QUATET. .o AN
alivine content ranges | otivine contentranges = 9

seoerrory minerals biotite (R2TF] = socessory minewals-not-biotite

olivine content ranges

minerals hovnblende (R27) = inerale-not-hornblend

olivine content ranges

dorinant mineral categories = plagiostase feldspar (%241

olivine content ranges

dominant feldspar = plagioclase feldspar (#2210

olivine content ranges =

1

1

22 2| accessory minerals bistite (RETT) = accessory minerslsbiotite

1 | otivine content:ranges =9
2

rainersls hornblende (F278) = iner-als-hornblend
alivine sontent ranges = 9
daminant mineral categories = orthopyroxenes (V302 ..
Tivine content:ranges = 9
dominant feldspar = aWal FEldspar (HETET . oooiiie b e
aliving content ranges = 3

TDI 6UI 30

o
M
Lo
|
=]

CBFANTEE CREZRD.. .o
L Granodiorite (223X, LR
Andesite (¥215)
- Peridotite (#227
- Diorite (#2127 ..
- Rhualite (#228).
- Bazalt (¥216)...
Gabbro (¥221)

L

Figure 15. WebGrid ontology comparison in APECKS

2.10 Instrumentation, Monitoring and Performance

Since WebGrid was developed initially as proof of concept in a research environment, we instrumented
it to track all performance parameters under various conditions of loading, and this has been useful in
optimizing all later developments. WebGrid I and II ran on a Mac II computer with a 16MHz, 6820
processor, 8 Mbytes main memory and an 80 MByte hard drive, that had been discarded as obsolete.
This was replaced in 1999 with WebGrid III running on a 15” flat panel iMac running OS X with the
MacHTTP (renamed WebStar) server and KSSO as a CGI running under the OS 9 emulator. WebGrid

20

IV is a cross-platform implementation with one version that runs as a universal application under OS X
and another than runs under Windows XP and Vista, all compiled from the same source code.

WebGrid I through III had a transaction time of less than one second and, from the server logs, typically
supported some six simultaneous users, with peak loads of 15 or so. Most transactions involve the user
in substantial local activity taking some 15 to 30 seconds so users saw little impact of server loading
with these loads. WebGrid IV running on current machines takes typically less than 100 msec a
transaction and can support higher loads, but since the server is now embedded in the stand-alone
application we expect much usage will be on local computers and small intranets and a major pattern of
use may become the support of collaboration among small groups, either local or distributed, with each
project having its own server.

Part of the instrumentation has been to keep a copy of each grid developed under WebGrid in a
password-protected cache. We have treated such material as protected by user privacy, and it has been
only used to monitor usage in terms of sizes of grid, topics, language used, and so on, and the data has
never been made available to third parties or published. However, as WebGrid became used by
researchers for distributed data collection we have been asked to provide facilities that go beyond the
caching of completed grids as described in Section 2.7, and allow the researcher to track the process of
grid development. In WebGrid 1V it is possible to collect each page delivered to a user in an SQL
database and review them as a series of snapshots of user interaction.

We have also been asked whether it is possible to provide such facilities in real-time. In classical
repertory grid elicitation, whether involving computers or not, the facilitator often works with the person
from whom the grid is being elicited, prompts them, and discusses the evolving grid. Shaw’s (1980)
PEGASUS elicitation program emulates some of this facilitation by continually feeding back matches
between elements and constructs and prompting further elicitation, and WebGrid implements this, but it
would also be useful for a human facilitator to be able to ‘look over the user’s shoulder’ and
communicate with the user at a remote location. We have done this with Timbuktu remote screen-
sharing software, but this requires specialist software to be installed on the client machine, and it would
be useful to be able to do it with standard web clients. We are experimenting with such a capability in
WebGrid IV using standard chat and voice over internet protocol (VOIP) facilities for communication
and an Ajax polling client for the facilitator that mirrors pages sent to the user on the facilitator’s
machine. There are obvious privacy issues that need to be addressed, but these are no different from
those of any other web usage since such monitoring at the server is always possible.

3 The Future: WebNet, Porting the RepNet Interactive Graphics Component

This paper has focused on what has been involved in porting the repertory grid representation of
conceptual models, which was feasible in 1994 with existing technology, and the enhancements of that
port to date. However, there are components of the stand-alone application which it has not been feasible
to port so far because there has been no support for them within the web standards framework until very
recently. These components all involve interactive vector graphics which were not included in the
family of Motif user interface widgets that Eric Bina incorporated in Mosaic to support text entry, and
became the basis for HTML forms.

3.1 Graphic Representation of Conceptual Models

In the stand-alone application the RepNet tool provides a generic shell for many different knowledge
representation networks allowing different types of nodes and links to be defined and styled for

21

presentation, with the logical structure and the appearance being separately managed. We have used the
tool across many disciplines to represent bond graphs, PERT charts, concept maps, conceptual graphs,
semantic networks and construct nets. Figure 16 shows RepNet representing a concept map from a
classic educational study (Novak, and Gowin, 1984; Gaines, and Shaw, 1995b).

i SESNS) Novak

Label:
Idaa B

Cn:lea::l Example Group | ((Note] Tithe

Mote:

B |
e

nealed
mada of

changes

&) <::.i =r)

-E"BII'I delarmenes
{ %—--@
gy —
'IC": :.l:llll:l l_:' i-’l 134 ;,)

Y S X

e.0.
'

MOre
falling (:

in
o

=]
Ly
(&
W2

-

s
m
b
i

e

(= |
1]
Ly
[
(i)
-
i

Figure 16. Concept map in RepNet

RepNet graphics are interactive in two distinct ways: first, in their creation as graphical structures; and
secondly in their continuing detection of user actions such as clicks, the response to which is fully
scriptable based on the same open-architecture scripting system used to program WebGrid. The various
grid elicitation and analysis programs in Rep IV all use RepNet for their graphic output, and, as noted in
Section 2.4, ongoing interaction with this output is important to understanding, exploring and using it.

For example, SocioGrids, the multiple grid analysis components of Rep IV, which is important to
supporting collaborative usage, make major use of RepNet interactivity. We have been able to port the
comparison of pairs of grids as illustrated in Figure 11, but the full SocioGrids analysis relies on user

22

interaction with the graphic output in order to explore and understand it fully. Figure 17 shows a
socionet in RepNet generated by SocioGrids, where the links between grids represent the modeled
capability of the conceptual structure represented in one grid to be used to construe the world in the
same way as that represented in another (Shaw, 1980).

® O O SocioNets Geog

47938 » Gr——) < | >

Figure 17. Socionet in RepNet generated by a Rep IV SocioGrids analysis

All links are possible at some level of comprehension, and those actually displayed are determined by
the cut off applied to the strength of the links. This is adjustable through control at the bottom left,
letting the user see the links come and go as the cut off is adjusted, and hence explore the structural
relationships in the community represented, perhaps producing a composite graphic showing this as
illustrated in Figure 18. We would like to port these capabilities to the web.

e 06 Ceog Socionets
Label:

Examgple | Link | Group || Mote | Title Cut off

First link Sacond link Third link

Charlie Charlie

Fourth link Fifth link:

Charlie

T ——

Figure 18. Socionets composite

23

3.2 Construct Nets

There are also important graphic representations of conceptual structures that Rep IV supports, and that
we wish to port to the web. For example, a complementary representation to that of the grid is that
through construct nets in which the conceptual model comprises labeled nodes connected by directed
links (Shaw, and Gaines, 1992b; Gaines, and Shaw, 1993b). Such nets are used informally as concept
maps in education (Novak, and Gowin, 1984) and with well-defined semantics as semantic networks in
formal knowledge representation (Gaines, 1991). We have demonstrated the wide range of uses of such
graphic network representations in many stand-alone and web-based applications (Gaines, and Shaw,
1995a), and the stand-alone Rep IV application provides the capability to represent construct systems in
both grids (RepGrid) and networks (RepNet).

Figure 19 shows a construct net derived from a repertory grid representing a set of sample cases of
contact lens prescriptions based on the well-known study of rule induction by Cendrowska and Bramer
(1987). The popup menu is a scripted response to the event generated by clicking in the net outside a
node. Clicking within a node generates a different scripted menu that enables the node to be assigned a
truth value of true or false. Selected “Infer” in the popup menu shown triggers a scripted description
logic inference engine to infer from the truth values of some nodes the truth values of other, thereby
operating as an ‘expert system.” The inference network shown may also be tested on the repertory grid
holding the cases to make inferences about each case. The details are described in the description logic
literature (Gaines, 2004).

SdO6 Clens-NoCon-Rul2
-+ —* 1+ Worlds=1 Inference calls=0 Time=0.081 msec

¢ Base) Relation (Relabonal) [Cont=>t | Titlg Note

Mote:
—— — ErE—
~ T Explore

Show Met Structure H
presbyopic_)—+—3~young Explore All

Clear Inferences

Clear All
Explanation On
. . Debug On
exceplion exception
<"°" ’E_> Structure
Unlock

Figure 19. Construct net solving the contact lens prescription problem

24

3.3 Porting the Interactive Graphic Component

Although the current WebGrid port has been very heavily used and has supported a wide range of
research activities, we shall not regard it as complete until we have also ported the graphic functionality
shown in Figures 16 through 19. This requires some form of interactive scalable vector graphics on the
web that has not been so readily available as the form widgets and static bitmap graphics used to
implement the repertory grid component. RepNet can output its networks as a PNG file and this is how
the images shown in Figures 5 and 11 were generated for WebGrid. It can also output a client-side
clickable map data structure allowing any net to be used on the web and a URL to be accessed when a
node is clicked. The WebGrid server does all this dynamically when it services a request to fetch a
RepNet file. However, while this is useful, it only makes the static end-product of the process of
developing a graphic representation available, not the interactive development or use.

In the early days of Java applets, which allowed one to run Java applications within a web document, we
experimented with the implementation of our graphic network tools as interactive applications on the
web, but found the applet support in the major browsers was unreliable. Now with improved applet
support, or alternative techniques such as W3C’s (2007) scalable vector graphics standard that is
beginning to be supported in some browsers, Adobe’s Flash technology, and Zorn’s (2005) Javascript
vector graphics library that uses standard HTML elements to provide a graphic drawing environment in
web pages, it is possible to support interactive graphic applications on the web as demonstrated by the
Open-jACOB workflow editor (Open-jACOB, 2007). We plan to use these technologies to make the
RepNet tool in Rep IV available interactively on the web integrated with the WebGrid environment. We
expect this implementation to evolve as vector graphics become an increasingly standardized feature in
web browsers, with the underlying graphic data structures used in RepNet being presented in improved
ways as the web’s graphic technology evolves.

When this port is completed it will provide the capability on the web to induce inferential knowledge
structures from grids and use them to emulate human anticipation, inference and problem solving (Shaw,
and Gaines, 2005). It will be possible to take an informal concept map such as that of Figure 17 and
evolve it to be a formal knowledge structure from which inferences may be drawn, modeling the
processes whereby informal human idea become increasingly formally defined in the process of
scientific development (Nersessian, 1989). We have used a combination of grids and nets in many
courses to facilitate students clarifying their ideas, comparing them others, and studying their
consequences (Shaw, and Gaines, 1992a; Shaw, and Gaines, 1998). Our overall objective is to make all
these capabilities available on the web to distributed communities, anytime, anywhere.

4 Conclusions

When we decided to experiment with the porting of our repertory grid and other knowledge acquisition
tools to operate through the World Wide Web in 1994 it was primarily a curiosity-driven venture with
little expectation of achievement. Web browsers were still fairly primitive and unreliable, and the
potential to support highly interactive applications with the basic widgets available seemed very limited.
We proceeded with the venture in major part because others in our field, such as the Ontolingua research
team at Stanford (Rice, Farquhar, Piernot, and Gruber, 1996), were pursuing the development of web-
based interaction with their tools with great enthusiasm.

However, WebGrid when we released it as a proof of feasibility demonstration early in 1995 came into
widespread use very rapidly, and that usage has continued and grown during the past decade. We had to

25

accept very early on that we were serving a large and diverse, world-wide community of users who were
largely anonymous to us, and that we needed to focus on supporting them with a reliable, self-
explanatory service that necessitated little direct interaction with our users. This article has described
some of the major lessons learned in designing a service with these objectives in mind.

The success of the approach adopted is probably most evinced in the periods when the workload of other
projects has led to us neglecting to monitor WebGrid usage for periods of a year or more. What
generally reminds us to take note of the WebGrid service after such a period is email from a user
concerned about disruption of their research or teaching through failure to access the server, usually
during the Calgary winter when power outages may disrupt the network through which the server is
connected to the Internet.

4.1 WebGrid IV

WebGrid has gone through three major upgrades since its release in 1994. WebGrid II was released in
January 1998 and offered multimedia annotation, user-defined customization, caching grids for use by
collaborators, and rule induction and inference facilities. WebGrid III was released in February 2001 and
offered advanced analysis features, improved expert system capabilities, and the capability to register
password-protected caches for remote data collection and analysis. Each new version has been
completely backwards compatible with earlier versions so that data collected by them can be aggregated
with later data and analyzed using later tools.

WebGrid IV, released for testing in June 2006, was completely re-written using current web
technologies within a Web 2.0 conceptual framework with aspirations to play a significant role in the
evolution of Web 3.0. It is completely script-driven and this, together with its support of Unicode, makes
it easy to re-program it to operate in any of the languages of the world without modification to the
application source code. Its documents have a modular structure supporting CSS styling so that
customization of its appearance is simple for end users. Interactivity has been improved through the use
of Javascript and dynamic HTML.

For example, in the original stand-alone application the relative positions of elements along a rating
scale was immediately visible as shown in Figure 1. The use of HTML menus as shown in Figure 2 was
effective for individual ratings but lost this relative positioning information, and a “Show Sorted” button
was added that reordered the elements to regain this feedback to the users. In WebGrid IV, Javascript is
used to restructure the DOM so that the ratings are always sorted immediately after a new rating is
entered. This and similar enhancements, have made the web application more supportive of its users.

WebGrid IV is one module in Rep IV (http://repgrid.com/), a new cross-platform implementation of our
repertory grid, concept mapping, and other conceptual modeling tools. All the applications were
refactored yet again and built on an object-oriented library of classes that simplify the development,
maintenance and enhancement of these types of tools (Gaines, 1994). A web server having the
architecture described in Section 3 and a web browser based on the HTML widget of the underlying
platform are part of Rep IV.

The wheel has now come a complete circle in that the standalone application is cross-platform to
Macintosh OS X and Microsoft Windows, so that a web service is no longer necessary to achieve cross-
platform access. However, the need to support distributed communities of users across the Internet, and
the advantages of HTML as a graphic user interface language remain and are highly significant. The
standalone application can act as its own client/server combination and also as a server to standalone

26

http://repgrid.com

web browsers on the same machine or across the Internet. The application also provides modes of
knowledge elicitation and analysis on the local machine that are not yet readily supported through
existing HTML widgets, but which we plan to port to the web as its underlying technology continues to
evolve.

4.2 Lessons Learned and Future Directions

Looking back over the decade of the web application and the three decades of porting the repertory grid
tools, the most obvious lesson learned are the need to cope with the limitations of the technology of each
era, and to evolve the applications to take advantage of the rapidly evolving features of information
technology. As the Red Queen informed Alice, one has to run very fast to keep still. In the early years of
the standalone application we had to make major efforts to fit the programs into the small memories of
the computer and to optimize them to be reasonably interactive given low processor speed. In the early
years of the web port we had to keep image data small so as not to overload limited communication
facilities, and to limit the use of HTML features to the relatively small subset supported by virtually all
browsers. Until recent years the technologies for cross-platform implementation were complex,
expensive and unreliable, and became rapidly obsolete. The ease of implementation nowadays is
astonishing and the only limits seem to be human imagination.

For the future, the port of interactive graphics as discussed in Section 4 is our first priority, and
thereafter we envision the next major refactoring and implementation as being one where the
components of WebGrid IV are separated as individual services communicating through standardized
protocols and able to operate in a distributed fashion on multiple platforms across a network. This would
address one of our long-term objectives of supporting heterogeneous integration of a wide range of
knowledge acquisition, modeling and management tools.

Research progress is generally much slower than it could be because individual projects across the world
result in a plethora of systems whose operation generally cannot be sustained in the long-term. Research
could be systematically accelerated if the significant advances in such systems could be factored into
highly specific modules designed to interoperate with other modules across a network through well-
defined protocols. This would facilitate the rapid prototyping of new, experimental systems, and would
help to make the outcomes of research much more cumulative.

The underlying technologies of the web and the Internet are structured in this way, and we need to
accelerate the movement towards structuring application technologies in the same fashion. This applies
both to tools such as WebGrid and to content, for example, educational materials when it is used in
constructivist learning environments. We envision WebGrid in its increasingly modular and
customizable implementation as becoming an integrated component of many online learning
environments where learners can, at any time, elicit their conceptual models of a domain, use them for
problem-solving and compare them with those of their peers and subject matter experts.

We welcome collaboration with colleagues having related objectives.

Acknowledgements

Over the past thirty years the development of our conceptual modeling programs has benefited from
interactions with colleagues who have collaborated with us in various ways, used them in their own
studies, and provided insights that have contributed to their evolution. It is impossible to mention them
all but, in our retirement, we treasure the memories and the contributions they have made. Thank you.

27

5 References

5.1 Web Access

Papers by Gaines or Shaw may be accessed at http://www.cpsc.ucalgary.ca/~gaines/reports/
Rep IV may be accessed at http://repgrid.com/ReplV/

WebGrid III may be accessed at http://tiger.cpsc.ucalgary.ca/

The current beta of WebGrid IV may be accessed at http://gigi.cpsc.ucalgary.ca :1500/WebGridIV.html

5.2 Bibliography

Berners-Lee, T. (1989). Information Management: A Proposal (Report Number
http://www.w3.org/History/1989/proposal.html). CERN, Geneva.

Boose, J. H. (1984). Personal construct theory and the transfer of human expertise. In Proceedings
AAAI-84, pp. 27-33. American Association for Artificial Intelligence, California.

Boose, J. H. (1986). Expertise Transfer for Expert Systems. Elsevier, Amsterdam.

Cendrowska, J. (1987). An algorithm for inducing modular rules. International Journal of Man-
Machine Studies 27, 349-370.

Gaines, B. R., and Shaw, M. L. G. (1980). New directions in the analysis and interactive elicitation of
personal construct systems. International Journal Man-Machine Studies 13, §1-116.

Gaines, B. R., and Linster, M. (1990). Integrating a knowledge acquisition tool, an expert system shell
and a hypermedia system. International Journal of Expert Systems Research and
Applications 3, 105-129.

Gaines, B. R. (1991). An interactive visual language for term subsumption visual languages. In
LJCAI’91: Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pp. 817-823. Morgan Kaufmann, San Mateo, California.

Gaines, B. R., Rappaport, A., and Shaw, M. L. G. (1992). Combining paradigms in knowledge
engineering. Data and Knowledge Engineering 9, 1-18.

Gaines, B. R., and Shaw, M. L. G. (1993a). Eliciting knowledge and transferring it effectively to a
knowledge-based systems. IEEE Transactions on Knowledge and Data Engineering 5, 4-14.

Gaines, B. R., and Shaw, M. L. G. (1993b). Basing knowledge acquisition tools in personal construct
psychology. Knowledge Engineering Review 8§, 49-85.

Gaines, B. R. (1994). Class library implementation of an open architecture knowledge support system.
International Journal Human-Computer Studies 41, 59-107.

Gaines, B. R., and Shaw, M. L. G. (1994). Using knowledge acquisition and representation tools to
support scientific communities. In AAAI’94: Proceedings of the Twelfth National Conference
on Artificial Intelligence, pp. 707-714. AAAI Press/MIT Press, Menlo Park, California.

Gaines, B. R. (1995). Porting interactive applications to the web. In 4th International World Wide
Web Conference Tutorial Notes, pp. 199-217.

Gaines, B. R., and Shaw, M. L. G. (1995a). Concept maps as hypermedia components. International
Journal Human-Computer Studies 43, 323-361.

Gaines, B. R., and Shaw, M. L. G. (1995b). Collaboration through concept maps. In Proceedings of
CSCL95: Computer Support for Collaborative Learning (Schnase, J. L., and Cunnius, E. L.,
eds.), pp. 135-138. Lawrence Erlbaum, Mahwah, New Jersey.

Gaines, B. R. (1996). Transforming rules and trees into comprehensible knowledge structures. In
Knowledge Discovery in Databases II (Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R., eds.), pp. 205-226. AAAI/MIT Press, Cambridge, Massachusetts.

28

http://www.cpsc.ucalgary.ca/~gaines/reports
http://repgrid.com/RepIV
http://tiger.cpsc.ucalgary.ca
http://gigi.cpsc.ucalgary.ca
http://www.w3.org/History/1989/proposal.html

Gaines, B. R., and Shaw, M. L. G. (1997). Knowledge acquisition, modeling and inference through the
World Wide Web. International Journal of Human-Computer Studies 46, 729-759.

Gaines, B. R., and Shaw, M. L. G. (1999). Embedding formal knowledge models in active documents.
Communications of the ACM 42, 57-63.

Gaines, B. R. (2004). Understanding ontologies in scholarly disciplines. In Proceedings 2004
International Workshop on Description Logics, DL.2004 (Haarslev, V., and Mdller, R., eds.).
CEUR-Workshop Proceedings, http://CEUR-WS.org/, Whistler, B.C.

Kelly, G. A. (1955). The Psychology of Personal Constructs. Norton, New York.

Nersessian, N. J. (1989). Conceptual change in science and in science education. Synthese 80, 163-184.

Novak, J. D., and Gowin, D. B. (1984). Learning How To Learn. Cambridge University Press, New
York.

Open-jACOB. (2007). Open-jACOB web based workflow editor.
http://www.openjacob.org/draw2d.html.

Prototype. (2006). Prototype JavaScript Framework. http://www.prototypejs.org/.

Rice, J., Farquhar, A., Piernot, P., and Gruber, T. (1996). Using the web instead of a window system. In
Proceedings of CHI'96, pp. 103-117. ACM, New York.

Shaw, M. L. G. (1978). Interactive computer programs for eliciting personal models of the world. In
Personal Construct Psychology 1977 (Fransella, F., ed, pp. 59-67. Academic Press, London.

Shaw, M. L. G. (1980). On Becoming A Personal Scientist: Interactive Computer Elicitation of
Personal Models Of The World. Academic Press (now only available from http://repgrid.com
or http://www.gallowglassbooks.com), London.

Shaw, M. L. G., and Gaines, B. R. (1992a). Mapping creativity with knowledge support tools. In AAAI-
91 Workshop on Creativity: Models, Methods and Tools, pp. 32-45. AAAI, Menlo Park,
California.

Shaw, M. L. G., and Gaines, B. R. (1992b). Kelly's 'Geometry of psychological space' and its
significance for psychological modeling. New Psychologist 23-31.
Shaw, M. L. G., and Gaines, B. R. (1995). Comparing constructions through the web. In Proceedings of

CSCL95: Computer Support for Collaborative Learning (Schnase, J. L., and Cunnius, E. L.,
eds.), pp. 300-307. Lawrence Erlbaum, Mahwah, New Jersey.

Shaw, M. L. G., and Gaines, B. R. (1998). A research-based masters program in the workplace.
Proceedings of WCCCE'98: Western Canadian Conference on Computing Education

Shaw, M. L. G., and Gaines, B. R. (1999). Modeling the social practices of users in Internet
communities. In UM99: User Modeling: Proceedings of the Seventh International
Conference (Kay, J., ed, pp. 77-86. Springer, New York.

Shaw, M. L. G., and Gaines, B. R. (2005). Expertise and expert systems: emulating psychological
processes. In The Essential Practitioner's Handbook of Personal Construct Psychology
(Fransella, F., ed, pp. 87-94. Wiley, Chichester, UK.

Tennison, J., O'Hara, K., and Shadbolt, N. R. (2002). APECKS: using and evaluating a tool for ontology
construction with internal and external KA support. International Journal Human-Computer
Studies 56, 375-422.

W3C. (2007). Scalable Vector Graphics (SVG) 1.1 Specification. http://www.w3.org/TR/SVG11/.

Zorn, W. (2005). High Performance JavaScript Vector Graphics Library.
http://www.walterzorn.com/jsgraphics/jsgraphics_e.htm.

29

http://CEUR-WS.org
http://www.openjacob.org/draw2d.html
http://www.prototypejs.org
http://repgrid.com
http://www.gallowglassbooks.com
http://www.w3.org/TR/SVG11
http://www.walterzorn.com/jsgraphics/jsgraphics_e.htm

