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Abstract 
Semantic networks were developed in cognitive science and artificial intelligence studies as 
graphical knowledge representation and inference tools emulating human thought processes. 
Formal analysis of the representation and inference capabilities of the networks modeled them as 
subsets of standard first-order logic (FOL), restricted in the operations allowed in order to ensure 
the tractability that seemed to characterize human reasoning capabilities. The graphical network 
representations were modeled as providing a visual language for the logic. Sub-sets of FOL 
targeted on knowledge representation came to be called description logics, and research on these 
logics has focused on issues of tractability of subsets with differing representation capabilities, 
and on the implementation of practical inference systems achieving the best possible 
performance. Semantic network research has kept pace with these developments, providing 
visual languages for knowledge entry, editing, and presenting the results of inference, that 
translate unambiguously to the underlying description logics. This paper discusses the design 
issues for such semantic network formalisms, and illustrates them through detailed examples of 
significant generic knowledge structures analyzed in the literature, including determinables, 
contrast sets, genus/differentiae, taxonomies, faceted taxonomies, cluster concepts, family 
resemblances, graded concepts, frames, definitions, rules, rules with exceptions, essence and 
state assertions, opposites and contraries, relevance, and so on. Such examples provide important 
test material for any visual language formalism for logic. 
Keywords: Visual languages, description logics, semantic networks 

1 Introduction 
This paper reports on part of a long-term research program aimed at the development and 
application of knowledge acquisition tools for knowledge-based systems that has been concerned 
with formal visual languages representing logical models of knowledge structures. Our early 
studies in the 1980s targeted expert system shells as inference engines (Gaines and Linster, 1990) 
and found that many extraneous structures had to be added to manage what was not logically 
well-founded inference (Gaines and Shaw, 1993). With the development of logical foundations 
for KL-ONE semantic network systems (Brachman, 1977), leading through various 
implementations to the well-defined CLASSIC specification (Borgida, et al., 1989), it became 
attractive to target logically sound knowledge representation systems, and we implemented a 
formal visual language (Gaines, 1991b) for the semantics of CLASSIC, and a knowledge 
representation server, KRS, that was a modular, extensible, C++ implementation of CLASSIC 
based on an algebraic model of the logical semantics (Gaines, 1993). 

Since CLASSIC did not support negation or disjunction, we developed an integrated inference 
engine for rule-based reasoning, focusing particularly on rules with exceptions since these 
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proved to be natural to our experts (Gaines, 1991a). This system was used extensively to develop 
a number of knowledge based systems solving a range of types of problem (Gaines, 1994), and 
versions of it are in widespread use to support constructivist educators and our current research 
on the representation of knowledge structures in the arts, sciences and engineering (Gaines, 
2003; Gaines, 2004).  
As CLASSIC-like systems evolved through the formalization of description logics (Donini, 
2003), the development of sound and complete algorithms for those supporting negation and 
disjunction (Horrocks, 1998), and the implementation of inference engines for them, such as 
Racer (Haarslev and Moller, 2001) and Pellet (Parsia and Sirin, 2004), we extended and changed 
the visual language to provide a knowledge acquisition front-end to any description logic 
inference engine. This has involved many design decisions between competing visual 
representation schema, each having some merits, and requiring trade-offs between different ways 
of representing the same underlying logical knowledge structure. 

This paper analyzes the design issues involved in specifying a visual language that supports 
semantic network representations of knowledge structures which map precisely into description 
logic primitives, providing them with formal semantics and a two-dimensional logical notation 
that translates to standard logical expressions. The issues are illustrated using a visual language 
editor supported by scripts that translate visual specifications of logical structures into a range of 
standard description logic notations, but the emphasis is not so much on a particular visual 
language as on the family of possible visual language and the issues involved in the design 
decisions relating to them. The overall objectives are to present a logico-linguistic analysis of the 
syntactic, semantic, pragmatic and semiotic issues involved in the design of visual languages for 
description logics, and to demonstrate that semantic networks, rigorously formalized in logical 
terms, provide useful tools for ontology engineering activities in a wide range of applications 
including education, psychology, philosophy, modeling conceptual change, and developing 
knowledge-based systems. 
Section 2 discusses eight major issues in designing visual language formalisms for logics. 
Section 3 details the design requirements for each logical construct in a semantic network visual 
language, illustrating their use to represent significant generic knowledge structures and the 
translations to description logic formalisms that are generated. Section 4 summarizes the way in 
which the issues of Section 2 are addressed in Section 3, and outlines future research directions. 

2 Issues in Designing Visual Languages for Description Logics 
In analyzing the design of visual languages for description logics, it is useful to clarify a number 
of issues. 

2.1 Relationship of Semantic Networks to Other Logical Formalisms 
Semantic networks of labeled nodes of various types connected by lines of various types to 
represent knowledge were seen in the early years of natural language processing (Richens, 1956; 
Quillian, 1967) not only to represent knowledge but also as providing extra-logical inference 
mechanisms. Such connotations were criticized by Hayes (1977) who argued that “modern 
formal logic is the most successful language ever developed to express human thought and 
inference...yet recent writers in the AI field have been almost unanimous in their condemnation 
of logic as a representational language.” He demonstrated that the frame structures of semantic 
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networks could be seen as syntactic variants of standard FOL formulae (Hayes, 1979). Woods 
(1975) had already criticized the early semantic network literature for lack of unambiguous 
interpretations, and for logical confusions between intension and extension. He notes that, “there 
is currently no theory of semantic networks,” and “even the question of what the networks have 
to do with semantics is one which takes some answering.” 
Brachman (1977) addressed Woods’ criticism by developing logical foundations for interpreting 
semantic networks, in particular making a clear distinction between the intensional logic of 
terminological definitions, and the extensional logic of asserting properties of individuals. This 
distinction led to the separation of the ‘T-box’ and ‘A-box’ in later implementations of 
representation and inference systems deriving from semantic networks. It became accepted in the 
1980s that semantic networks should be treated as a visual language for some subset of FOL 
without any extra-logical inference capabilities, and that inference systems based on them should 
be assessed in terms of soundness and completeness in the same way as an any other proof 
system for a formal logic. 
The studies reported in this paper have taken the position that semantic networks should be 
treated as a formalism for a subset of FOL, and hence one design issue is: 

Design issue 1: There should be unambiguous translations from a semantic network visual 
language to standard logical formalisms. 

2.2 Value of Semantic Network Formalisms 

If semantic networks provide a formalism for a subset of FOL, given the existence of well-
established and widely used logical formalisms, one has to make a case for introducing yet 
another one, in particular taking into account that all logical formalisms are difficult to learn and 
employ effectively. The effort to learn to use a visual language needs justification in terms of 
added value, which, as Fricke (2003) has noted in the context of Hyperproof, is extra-logical and 
does not increase logical power. The issue becomes a psychological one, of whether a two-
dimensional diagrammatic presentation of logical expressions is useful to people. This in turn 
raises further questions about: ease of learning, ease of understanding and ease of creation; 
interaction with preferred modes of cognition, appropriate to everyone, or just to ‘visual 
thinkers’; different applications to expressing knowledge, understanding arguments, proofs, 
explanations, and so on; and the pragmatic and semiological aspects of existing practices in the 
use of diagrams: 

Design issue 2: The design of semantic network visual language constructs needs to take into 
account the human factors of individual users, and the pragmatic and semiological aspects 
of their use for communication in user communities.  

There is a rich literature on the psychology (Bauer and Johnson-Laird, 1993) and semiology 
(Bertin, 1983) of diagrams, their roles in logical and mathematical proofs (Jamnik, 2001; 
Stenning, 2002), and knowledge visualization (Keller and Tergan, 2005), the educational merits 
of visual presentations (Williams, 1983), and so on, but it largely addresses visual images and 
geometric constructions that are more naturalistic than the artificial constructions of semantic 
networks. A smaller literature does specifically address semantic networks in applications such 
as professional communication (Khalifa and Liu, 2006), education (Jonassen, 2005), 
experimental cognitive modeling (Barsalou, 1992), modeling conceptual change in the history of 
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science (Andersen, et al., 2006; Hyman, 2007), the use of concept mapping tools (which are 
essentially semantic networks without formal semantics) to express knowledge (Novak, 1998), 
and so on. However, so far, operationalization of the results through the computational 
application of the networks is uncommon. 

At the human factors level, we have found that it is important to provide users with a clear and 
simple model of the meaning of each graphical construction used in a semantic network. There 
may be several possible explanations of the meaning of a particular construction in a particular 
situation, only one of which generalizes to all situations in which it is used. 

Design issue 3: Each graphical construction used in a semantic network should have a well-
defined meaning that can be simply explained and applies in all situations. 

The research on description logics that evolved as part of the formalization of semantic networks 
has become focused on logical, complexity and inference algorithm issues, and is now 
indifferent to the form of language used to represent logical formulae. Semantic network tools 
continue to be developed as adjuncts to description logic servers, and used: to provide a visual 
language for knowledge entry (Eisenstadt, et al., 1990; Clark, et al., 2001; Gennari, et al., 2003; 
Ernst, et al., 2005; Hayes, et al., 2005; Fox, et al., 2007); to display the subsumption structure 
computed by inference systems; and to explain the inference processes and display the inferences 
by annotation and animation of the semantic network (Gaines and Shaw, 1999). This suggests: 

Design issue 4: The design of visual languages for semantic networks needs to take into 
account the various roles that diagrams in the language will play in problem solving 
activities, such as knowledge entry, knowledge base representation and the explanation of 
inference.  

One needs to assess alternative design choices by comparing their impact on the visual 
representation of a range of significant knowledge structures. One way of doing this in a 
principled fashion that is not domain specific is to take the various fundamental generic 
knowledge structures studied in metaphysics, and compare these in different semantic network 
and conventional logical formalisms. This suggests:- 

Design issue 5: The design of visual languages should be tested by comparing alternative 
representations, both for realistic examples and for generic knowledge structures such as 
determinables, contrast sets, genus/differentiae, taxonomies, facets, cluster concepts, family 
resemblances, graded concepts, frames, definitions, rules, rules with exceptions, essence 
and state assertions, opposites and contraries, relevance, and so on. 

2.3 Description Logics as Subsets of FOL with Known Tractability 
Another question that arises relates to why one should target description logics rather than FOL 
in general, and this relates to another parallel development in the history of description logics. 
While Hayes’ arguments for FOL as a knowledge representation language were highly 
influential (Charniak and McDermott, 1986), its undecidability made it an unrealistic model for 
the emulation of human cognitive processes and even for attempting to go beyond them with 
artificial intelligence. Moreover, studies of computational complexity had raised issues of 
computational intractability with similar implications to undecidability (Cook, 1971; 1983). 
Brachman and Levesque (1984) showed that the tractability of subsumption in description logics 
was highly sensitive to small changes in the representational capabilities of the language, and 
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“even a seemingly simple frame-based description language can pose intractable computational 
obstacles.” 
The research strategy for the semantic network community became: to define semantic networks 
with limited representation capabilities such that an inference system could be developed that 
was sound and complete; for each possible combination of representation capabilities to 
determine the worst case computational complexity; to implement representation and inference 
systems with optimal performance given the complexity bounds; and to use them in artificial and 
real-world test cases to see if meaningful problems could be solved (Donini, 2003). It is this rich, 
and still developing, formal framework for the tractability of subsets of FOL as knowledge 
representation languages, coupled with available inference engines, such as the open-source Java 
implementation of Pellet (Sirin, et al., 2007) and advances in first order extensions of the Davis-
Putnam-Logemann-Loveland (DPLL, Davis, et al., 1962) theorem prover algorithms 
(Baumgartner and Tinelli, 2008), that makes description logic subsets of FOL an attractive target 
for semantic networks. All the designer of the network formalism need do is ensure that there is 
unambiguous mapping between the visual formalism and that of the description logic system, 
and soundness and completeness of inference become issues for that system, not the semantic 
network. 
However, where semantic networks are used for knowledge structure entry it would be useful to 
encourage users to avoid representation capabilities that lead to increased computational 
complexity if it is possible to do so. 

Design issue 6: The design of visual languages and their support systems should encourage 
the use of representational capabilities that minimize the complexity of inference and, if 
possible, discourage the use of those that increase such complexity. 

2.4 Support of Services Beyond Deduction: Abduction, Induction, Analogy 
There are debates about the appropriateness of standard logic as a basis for metaphysics (Mason, 
2000), psychology (Macnamara, 1986; Hanna, 2006) and artificial intelligence (McDermott, 
1987), which are relevant to the decision to target a subset of FOL. If an inference system for 
what appeared to be a more appropriate deviant logic became available it would be simple to 
amend the translator from semantic networks to target it. What one would require of any 
inference system is that it can compute whether a set of logical propositions is coherent or not. 
Other deductive services can be based on this, and it also provides the foundation for a range of 
other reasoning activities, such as abduction, induction, analogy, planning, counterfactual 
creative imagination, and so on. Human reasoning uses inconsistency to manage knowledge 
processes, never accepting ex falso quodlibet, but adjusting the knowledge structure to avoid it. 
If these paraconsistent procedures are axiomatized as an integral part of the proof system of an 
underlying logic then that logic will deviate from FOL but still be based on it and revert to it 
when there are no inconsistencies in the knowledge structure. A good example is the adaptive 
logic (Meheus, 2000), that has been used to model the management of inconsistency in scientific 
innovation (Meheus, 2003). These considerations suggest:- 

Design issue 7: The design of visual languages for semantic networks needs to take into 
account not only their roles in supporting processes of deductive inference, but also their 
roles in managing and explaining the use of such inference in abduction, induction, 
analogy, and so on.  
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2.5 Support of Modularity 
The adjustments to knowledge structures to achieve paraconsistency may be regarded as the 
replacement of one module of the knowledge structure by another. Those for defeasability may 
be viewed as including knowledge modules if they are coherent with the known facts. Many 
other applications to planning, design, and so on, may be modeled as a search over combinations 
of knowledge modules to determine one or more that are coherent and satisfy some additional 
criteria. Similar processes occur in the study of conceptual change in science (Andersen et al., 
2006) or developmental learning (Pearsall, et al., 1997), where one module of a knowledge 
structure may be modified, leaving the remainder unchanged. They also arise in the integration 
of ontologies from different sources (Grau, et al., 2007). This suggests:- 

Design issue 8: The design of visual languages for semantic networks needs to take into 
account the need for modularity such that knowledge structures may be readily split and 
recombined. The visual language support system should be able to manage such 
recombination taking into account feedback from the inference system. 

3 Design of Semantic Network Formalisms 
This section discusses in detail the design of semantic network formalisms taking into account 
the issues noted above. It introduces the visual constructs used in networks in the context of their 
use to support the various fundamental knowledge structures noted in design issue 5 above. This 
makes it clear what can be achieved with each construct, and motivates the incremental addition 
of other constructs for what cannot be achieved. Examples are given of the translation to a 
standard logical formalism so that the visual expression can be compared with a conventional 
one. For the purposes of this paper the abstract syntax of description logics will be used since it 
is more succinct than the normal syntax for FOL and readily translates to it (noting that, since the 
description logic syntax has extensional connotations implication is represented to indicate 
inclusion, i.e. ⊑ corresponds to ⊃ which can be confusing). 
The ensuing discussion will use philosophical and psychological examples to exemplify issues in 
the design of visual languages for knowledge representation. To the extent that it comments on 
the associated literature it is only doing so to illustrate language issues, not attempting to 
encompass the massive literatures on the philosophical and psychological issues involved, but 
suggesting that visual representation may be useful in clarifying such issues. 

The semantic network tool used in the examples is KNet, which is part of the Rep IV family of 
knowledge acquisition and inference tools (Gaines and Shaw, 2007). The RepNet graphic tool 
used to implement KNet allows node and line types to be defined and assigned shapes and 
colors, which enables one to emulate existing node-link formats such as semantic networks, 
concept maps, conceptual graphs, bond graphs, and so on (Gaines and Shaw, 1995). An 
associated script language with a just-in-time compiler that receives events from user interaction 
with the graphic tool enables semantic networks to be created, managed in relation to one 
another, exported through translation scripts to inference engines, and the results of inference to 
be shown in the networks. It also supports a DPLL inference engine written in the script 
language that enables simple expert system problems to be solved and explained without use of 
more powerful external services. 
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3.1 Families of Properties, Constructs, Contrast Sets 
A fundamental knowledge structure that is discussed in Aristotle’s Categories and has been 
given many different terminologies in later literatures is that of a family of disjoint concepts all 
of which imply some superordinate concept that names the family. Carnap (1950) in his work on 
the foundations of probability terms it a family of properties. Kelly (1955) in his work on the 
foundations of constructivist psychology terms such a family a construct, with the superordinate 
concept being the construct’s range of convenience, and the subordinate concepts being its poles. 
In the cognitive anthropology literature the set of disjoint concepts is called a contrast set (Frake, 
1969), and Kuhn uses such sets to model Wittgenstein’s family resemblances in terms of a 
combination of similarity and dissimilarity (Andersen, 2000). 
Figure 1 shows part of a taxonomy of color naming as a hierarchy of two families of properties, 
with the top two levels being a contrast set of chromatic and achromatic modes of diffuse 
reflection, and the lower two levels being a contrast set of shades from white to black describing 
achromatic diffuse reflection (Hardin, 1989). The diagram adopts the usual conventions for 
drawing taxonomies, using undecorated text for nodes, nodes in contrast at the same vertical 
level, descending lines to lower levels of the taxonomy, and a tacit assumption that all nodes in a 
contrast set represent disjoint predicates. 

achromaticchromatic

white blackgray

diffuse
reflection

 
Figure 1 Contrast sets in part of a color taxonomy 

These conventions make the logical structure of the diagram clear to people and could be 
translated automatically to logical form. To represent the structure as semantic network two 
cosmetic changes are desirable: to box the concepts (predicates) in some way since unboxed text 
is generally used to indicate a binary relation; and to replace the undirected lines with arrows of 
implication so that the spatial relationships are not part of the formal representation, giving 
greater freedom in layout. A more significant change is to make the disjoint relations between 
concepts explicit, not only to avoid encoding it in a spatial relationship, but also because the 
imposition of such a relationship is a feature of scientific taxonomies which are designed to be 
disjoint, and is only partially present in folk taxonomies (Kay, 1975). 
The encoding of disjointness requires an indication that one concept implies the negation of the 
other. One could indicate a negated concept graphically through a different surround, or lexically 
through a symbol for negation before the concept name. However, this requires both negative 
and positive forms of the concept to be included in the diagram which clutters it, and also 
introduces the general negation of any concept which is a problematic notion that is more 
powerful than needed to express disjointness or opposition (Horn, 1989). Hence, it seems better 
to introduce another arrow symbol indicating that one concept implies the negation of another. 
This is a symmetric relationship and at one time we used an undecorated line for disjointness 
(Gaines, 1991b). However, the logical symmetry masks an underlying cognitive asymmetry that 
is reflected in linguistics as the distinction between the marked and unmarked sides of a contrast 
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(Lyons, 1968), and in Kelly’s (1955) psychology as the distinction between the implicit and 
emergent poles of a construct. Hence, we have introduced an arrow with a line across it to 
indicate that one concept is the antonym of other, that is implies its negation, and explain this to 
users as an arrow of opposition. Figure 2 shows the contrast sets of Figure 1 in a semantic 
network. 

achromaticchromatic

blackwhite

gray

diffuse
reflection

 
Figure 2 Semantic network for part of a color taxonomy 

The description logic propositions output by the description logic translator script for this 
network are:- 

chromatic ⊑ diffuse_reflection 
achromatic ⊑ diffuse_reflection ⊓ ¬chromatic 
white ⊑ achromatic 
black ⊑ achromatic ⊓ ¬white 
gray ⊑ achromatic ⊓ ¬black ⊓ ¬white 

Or, by the Racer translation script: 

(in-knowledge-base Determinables2 Determinables2) 
(implies chromatic diffuse_reflection) 
(implies achromatic (and diffuse_reflection (Not chromatic))) 
(implies white achromatic) 
(implies black (and achromatic (Not white))) 
(implies gray (and achromatic (Not black) (Not white))) 

Note that the contrast set under achromatic can be expanded indefinitely by adding additional 
concepts that have a normal arrow to achromatic and opposition arrows to the prior concepts in 
the set. This procedure is logically sound but does not encode some additional relationships 
expected in a contrast set, such as gradability, and better ways of achieving this will be illustrated 
in the following sections. 
The user may make inferences from this network by setting concepts to be true (for some 
implicit individual), false, open, or open and of interest. The user interface is illustrated in Figure 
3. Clicking on a concept node activates a popup menu with options dependent on the state of the 
concept. The truth value is indicated by a vertical bar for true, a horizontal one for false, neither 
for open, and a dot (not shown) for the concept being of interest. This last state places the 
concept on the agenda of the inference process which normally will not compute the truth value 
of a node unless it is relevant to some inference goal. These features are used to demonstrate to 



 

9 

students how taxonomic structures may be used to manage relevancy in such a way as to 
minimize inferential effort. 

 
Figure 3 User interface controlling inference 

Left: popup menus for setting truth values when clicking on a concept node 
Right: popup menu for controlling inference when clicking outside all nodes 

Clicking outside all nodes activates the popup menu shown on the right which controls the 
inference process: Infer propagates truth values; Infer All makes all nodes of interest and 
propagates truth values; Explore activates full inference in which possible worlds are explored 
by hypothesizing possible truth values for open nodes relevant to inference; Explore All does this 
for all open nodes; Clear Inferences and Clear All set the states of concepts to open; Explanation 
On outputs a logical trace of the inference process; Debug On outputs a more detailed trace; 
Structure outputs the logical graph structure in textual form; Unlock makes the network editable. 
Figure 4 is a screen dump of the inferences when the concept “gray” is set true in Figure 2 and 
Infer All is selected in the inference menu. Nodes whose truth value has been inferred are 
highlighted with a thicker surround. 

achromaticchromatic

blackwhite

gray

diffuse
reflection

  
Figure 4 Inference with the semantic network for part of a color taxonomy 

The system explains its reasoning in terms of the inferences made: 
Infer from: gray 
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    gray ⊑ achromatic ⊓ ¬black ⊓ ¬white [gray] 
    achromatic ⊑ diffuse_reflection ⊓ ¬chromatic [achromatic] 

It lists the nodes with truth values on the initial line, and then lists each inference made. The 
concept indicated in square brackets on the right is that being investigated when the inference is 
made. In this example it is a node whose truth value is being propagated but in other examples it 
may be an open node whose truth value is being inferred.  

3.2 Taxonomies, Determinables, Genus and Differentiae, Frames, Faceted Taxonomies 
Figure 2 show how taxonomies normally represented as in Figure 1 can be encoded in a semantic 
network, and the construction clearly extends to taxonomies of any width or depth. The inference 
process is not of particular interest because nodes in contrast sets in scientific taxonomies are 
mutually exclusive and a node being applicable entails that other members of the contrast set are 
not applicable, and the node above it in the hierarchy is applicable. However, this is a design 
feature characterizing scientific taxonomies, and hierarchical structures of implication and 
opposition may be built from the graphic constructs defined above that are not fully taxonomic 
and model features of ‘folk taxonomies’ (Conklin, 1969). They can also be used to model non-
taxonomic relationships such as comparability and gradability between members of a contrast set 
as will be illustrated in section 3.4. 

In the above example the disjointness in the contrast sets is modeled as explicit opposition. This 
is necessary for what Johnson (1921) termed a determinable with determinates, where the 
determinates are the contrast set and the determinable its superordinate concept. He contrasts this 
with Aristotle’s construction of taxonomies where the superordinate concept is termed the genus 
and contrast set members are disjoint because they have mutually exclusive properties termed the 
differentiae. Color is the stereotypical example of a determinate with determinables, for example, 
the colors of the rainbow, each of which may itself be a determinate of more specific colors in a 
contrast set below it (Funkhouser, 2006). 
The examples above are of determinable/determinate taxonomies, but the graphic primitives 
defined can also be used to represent genus/differentiae taxonomies. For example, Figure 5 
shows the tree of Poryphry, a representation of Aristotle’s taxonomy of substance from the third 
century used by Sowa (2000) as an early example of a semantic network. 
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Figure 5 Tree of Poryphyry (Sowa, 2000) 

Figure 6 shows this taxonomy of substance represented as a semantic network. The disjointness 
of concepts at each level of the taxonomy, body and spirit for example, is not represented 
directly but through the disjointness of their differentiae, material and immaterial. 

material

substance

irrationalrationalanimate inanimateimmaterial

animation

sensitive insensitive

sensitivity rationalitymateriality

spirit

immaterialanimation

body

material

animate

living insensitive mineral

inanimate

animal irrational plant

beast
human

rational

Socrates Plato Aristotle

rationalitysensitive

sensitivity

materiality

 
Figure 6 Tree of Poryphyry as a semantic network 

The description logic translator script outputs:- 
material ⊑ materiality immaterial ⊑ materiality ⊓ ¬material 
animate ⊑ animation inanimate ⊑ animation ⊓ ¬animate 
sensitive ⊑ sensitivity insensitive ⊑ sensitivity ⊓ ¬sensitive 
rational ⊑ rationality irrational ⊑ rationality ⊓ ¬rational 
substance ⊑ materiality 
spirit ⊑ substance ⊓ immaterial body ⊑ substance ⊓ material ⊓ animation 
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living ⊑ body ⊓ animate ⊓ sensitivity mineral ⊑ body ⊓ inanimate 
animal ⊑ living ⊓ sensitive ⊓ rationality plant ⊑ living ⊓ insensitive 
beast ⊑ animal ⊓ irrational human ⊑ animal ⊓ rational 
human(Socrates) human(Plato) human(Aristotle) 

I have shown the differentiae at the top not just as oppositions but as determinables under a 
determinate. This may seem anachronistic but, as Salmieri (2007) has noted, Aristotle had 
already discussed the notions underlying Johnson’s determinable/determinate construction in his 
Categories, and it seems intrinsic to the semantics of contraries. The disjunction of opposite 
concepts is itself a concept that may be explicit in the lexicon or covertly implied (Berlin, et al., 
1968). This has the consequence of adding the determinables as superordinate concepts in the 
taxonomy where they may be seen as dispositions (Mumford, 1998), for example substance has 
the potential to be material. This knowledge structure may be historically and philosophically 
debatable, and the determinable dispositions can be removed without affecting the logical 
structure of the taxonomy, but it illustrates the kind of issues that the formal logical expression of 
a knowledge structure can raise. Even more interesting is the possibility of the four dispositional 
concepts being at other levels in the hierarchy, for example Figure 7 shows them as all being 
dispositions of substance. 

animation sensitivity rationalitymateriality

substance  
Figure 7 Possible dispositions of substance 

Again this does not change the logical structure qua taxonomy, but it highlights many 
metaphysical issues that are debated in the literature, and similar issues arise in modern 
developments of taxonomies for knowledge-based systems. 
Figure 7 also illustrates another important knowledge structure, that of a frame (Minsky, 1974), 
having slots for the four determinables to be filled by values from their corresponding 
determinates. Since each of the determinables could also be expanded to have underlying 
taxonomic structures, not just a simple opposition, it also illustrates another significant 
knowledge structure, that of faceted taxonomies which are important in library science 
(Broughton, 2006). They are common in all cognitive systems as structured frames (Barsalou, 
1992). Kelly (1955) uses the term constructs for psychological constructions having the form of 
the four at the top of Figure 6, and models those at the bottom as a hierarchical construct system 
based on these constructs. 

3.3 Cluster concepts 

Cluster concepts were introduced as a way of modeling Wittgenstein’s family resemblances 
which cannot be defined in terms of necessary and sufficient conditions (Cooper, 1972). The 
notion is that the presence of one of many subsets of a range of possible properties is sufficient to 
define a concept, although no particular property is necessary. They have been used in the 
philosophy of art to provide a knowledge structure for the concept of an art object (Gaut, 2000), 
which is a stereotypical example of what Weitz (1977) terms an open concept, subject to change 
and supposedly lacking formal definition. 
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A model of a cluster concept is a frame of determinables some or all of which have preferred 
determinates that are normally, or usually, expected in exemplars of the concept. This could be 
turned into a formal definition in terms of the determinables themselves being the defining 
properties, as will be discussed in Section 3.5. However, there is a more psychologically realistic 
model in terms of abductive processes where the assertion that an individual has certain 
properties leads to the deductive inference that it comes under the determinable concepts for 
those properties which in turn leads to the abductive inference that it comes under a frame 
concept characterized by those determinables. This inference can be validated by checking 
whether it comes under the remaining determinables. 
For example, Figure 8 presents Gaut’s (2000) account of art as a cluster concept in semantic 
network form. The concept art object is represented as a frame based on eleven determinables 
providing dimensions along which to assess an art work. The concept stereotypical art object is 
represented as a concept implying all the positive determinates of the determinables. Note that 
the determinables can be seen as dispositions, that if something is construed as an art object then 
it is also construed as having the potential to be aesthetically positive or negative, to evoke an 
emotional response, and so on. 
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Figure 8 Art as a cluster concept 

In terms of an entity being construed as an art object, the abductive reasoning path might be that 
someone described it as ‘creative, beautiful and complex in meaning’. These would be seen as 
determinates of the determinables imagination, aesthetics and meaning, which form part of the 
frame for an art object, suggesting abductively that it is being construed as an art object, and 
raising questions about its status on the other dimensions. If those questions are regarded as 
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reasonable then the abductive inference is confirmed. but, even if not, the mistake will be seen to 
be a reasonable one, not a category error. For some philosophers or historians of art, the art 
object frame may require some specific links at a lower level, for example, that it is essential that 
the intention be to create art. The network provides a framework in which to clarify and discuss 
such issues. 
The stereotypical art object is of interest because, while many art objects will conform to the 
stereotype, there will also be many exceptions that are of particular interest just because they 
exemplify the boundaries of the norm. People will use the stereotype to model that something is 
an art object but not, say, very challenging or aesthetically pleasing. “But not” can be modeled as 
the dynamic generation of a concept that has a common superordinate with stereotypical art 
object and is subordinate to art object. One will usually not wish to populate a knowledge base 
with all such possible concepts, although some of them may become so commonly used as to be 
given specific names. This potential explosion of “but not” concepts is one reason why the 
original cluster concept notion has been criticized (Boër, 1974), but the dynamic creation of 
transient concepts may be an appropriate model for cognitive systems. 

3.4 Graded Concepts 

One important aspect of determinates under a determinable is that they are not only disjoint but 
also that “determinates under the same determinable admit of comparison in a way unavailable to 
pairs of properties with no determinable in common” (Funkhouser, 2006). For example in 
Figures 1 and 2 gray may be seen as more similar to black and white than they are to one 
another. It is ‘between’ them and this is shown in the diagram. It can also be modeled in the 
logic. If we take each determinate to be characterized by the set of salient predicates implied by 
it, and black, achromatic and white to be those predicates in this case then the sets generated are: 

white ⊑ achromatic ⊓ white ⊓ ¬ black 
gray ⊑ achromatic ⊓ ¬white ⊓ ¬black 
black ⊑ achromatic ⊓ ¬ white ⊓ black 

The cardinality of the symmetric difference between these sets is a distance measure, δ, such 
that: δ(white,gray) = 2, δ(gray,black) = 2, δ(white,black) = 4, which places them along a graded 
scale from white through gray to black. This construction models graded or fuzzy concepts (Lu, 
et al., 2008) through the existing logical structure without introducing additional concept types. 

Note that the three concepts white, gray and black are identical in their relative structures, and 
that it is the choice of salient concepts that introduces the differentiation in the metric which 
places gray between white and black and generates a three-point scale. There is a psychological 
or ontological choice involved in the selection of the salient concepts that determine the nature of 
the scale. 
This three-point model can be extended to more gradations by increasing the levels in the 
taxonomy. For example, Figure 9 shows an additional level introducing five determinates at the 
lowest level, white, light gray, mid gray, dark gray and black, in terms of four salient concepts, 
white, very light gray, achromatic, very dark gray, and black. A computation similar to that 
above places the five lowest determinates along a five point linear scale. It also places very light 
gray and very dark gray on the same scale, between white and light gray, and dark gray and 
black respectively, indicating the potential use of a seven point linear scale. 
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Figure 9 A graded concept with five or seven points on a linear scale 

One can also add two additional concepts between light gray and mid gray, and mid gray and 
dark gray, respectively as shown in Figure 10, which shows how the scales are derived. Such 
constructions seem to underlie the gradability of the majority of concepts (Rosch and Lloyd, 
1978). 

 
Figure 10 A graded concept with up to nine points on a linear scale 

The topology of a linear scale is just one example of a graded concept. Other topologies can be 
generated by alternative structures, for example a circular scale appropriate to hues. 
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3.5 Definitions, rules, exceptions 
The issue of definitions has been left to a late stage in this paper because, while they are 
fundamental to mathematical logic, and description logics were developed to provide a 
mechanism for the logical definition of terminology, their role in human knowledge structures is 
much debated (Fodor, et al., 1980; Pitt, 1999). None of the examples given so far has been 
definitional, but, nevertheless, they show that many significant knowledge structures can be 
modeled, and that abductive processes, supported and validated by deductive processes, may 
account for many apparently definitional constructions. 
However, any visual language for description logics must also be able to represent definitions, at 
the very least, conjunctive definitions, for example of the form: Woman ≡ Female ⊓ Person, that it 
is not only necessary for a woman to be a female person, but that is also sufficient to define a 
woman as a female person. In earlier versions of the visual language we made a distinction 
between base, or primitive, concepts and defined concepts by using different surrounds (Gaines, 
1991b). This seemed appropriate because CLASSIC made this distinction. However, as 
description logics came to encompass disjunction and negation, and it became possible to 
represent rules directly rather than as an additional specialist inference process, it also began to 
make sense to distinguish the necessary and sufficient links from the ones that were necessary 
only. That is to use two forms of arrow of implication, one of which was definitional and the 
other only implicational, and to distinguish a primitive concept as being one with no definitional 
links. 
This is illustrated in Figure 11 where the structure on the left is implicational generating Woman ⊑ 
Person ⊓ Female, that in the center definitional generating Woman ≡ Female ⊓ Person, and on the 
right rule-like generating Pensionable_woman_rule ≡ Woman ⊓ Over_pensionable_age_for_women 
and Pensionable_woman_rule ⊑ entitled_to_pension. The heavier arrow with the head to some extent 
pointing back is explained to users as providing part of a concept definition together with any 
other such arrows from the concept. 

Female

Woman
Person

Woman

Person

Woman entitled to
pension

Pensionable
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Over
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for womenFemale

 
Figure 11 Implicational (left), definitional (center), and rule-like knowledge structures 

Negative definitional arrows enable complements and negated concepts to be defined. Figure 12 
shows man defined as the complement of woman as defined in the center of Figure 11, 
translating to Man ≡ Person ⊓ ¬Woman and Not_Man ≡ ¬Man. From these definitions the system can 
infer that a man is not female and that a person must be either a woman or a man. Negations 
concepts also be defined, such as “not man” shown, but these, as noted by Aristotle (Horn, 
1989), convey little information as concepts per se, and their use in an ontology is usually an 
error in not defining a more restricted complement through relative negation. 
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Man

Person

Woman

Not man  
Figure 12 Complement and negation 

Definitional arrows could be used to replace the implicational arrows for “art object” and 
“stereotypical art object” in Figure 8 making the concepts involved jointly sufficient as well as 
necessary. There would be no change in the psychological and logical processes described in the 
use of these concepts, that is, given the number of defining concepts involved, an abductive 
inference would be made that the defined concept might reasonably be the explanation why some 
of the dimensions were being used, and then the applicability of the others would be checked. 
This helps to clarify the sense in which cluster concepts can be regarded as definitional (Boër, 
1974), and provide further interpretation of psychological studies of concepts and their necessary 
and sufficient features (Pothos and Hahn, 2000). 

People often use rules with exceptions, that a general rule applies except in particular 
circumstances, and representing knowledge in this way can make the structure more 
comprehensible (Gaines, 1996), and also supports default reasoning where a general rule is 
applied when it is not known if the exception applies provided this does not lead to a 
contradiction (Besnard, 1989).  
Figure 13 shows a simple expert system based on rules with exceptions derived from data in the 
UCI machine learning repository (Asuncion and Newman, 2007). 
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Figure 13 Contact lens prescription problem as semantic network of rules with exceptions 
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The problem is one of prescribing hard or soft contact lenses for a client having certain attributes 
(Cendrowska, 1987), and the four determinables under “person” at the upper left are those whose 
determinates are necessary to characterize the client and allow the appropriate determinant of the 
determinable, “prescription,” at the upper right to be inferred. The “prescription context” frame 
at the middle right activates the determinables, making their determinates relevant to the 
problem. The definitions/rules at the bottom solve the problem, and this particular rule set is 
activated by the “prescription rules” concept at the bottom. Setting this concept true of a client 
brings these rules into play and also sets the relevant determinables true raising the question as to 
which of their determinates applies. Providing truth values for the determinates appropriate to the 
client and running inference enables the prescription to be inferred. 

The description logic translator script outputs (indentations added for clarity):- 
astigmatism ⊑ person 

astigmatic ⊑ astigmatism not_astigmatic ⊑ astigmatism ⊓ ¬astigmatic 
tear_production ⊑ person 

normal ⊑ tear_production reduced ⊑ tear_production ⊓ ¬normal 
presbyopia ⊑ person 

young ⊑ presbyopia old ⊑ presbyopia ⊓ ¬young 
presbyopic ⊑ old pre-presbyopic ⊑ old ⊓ ¬presbyopic 

myopia ⊑ person 
myope ⊑ myopia hypermetrope ⊑ myopia ⊓ ¬myope 

prescription ⊑ person 
lens ⊑ prescription none ⊑ prescription ⊓ ¬lens 

hard ⊑ lens soft ⊑ lens ⊓ ¬hard 
prescription_context ⊑ astigmatism ⊓ tear_production ⊓ prescription ⊓ myopia ⊓ presbyopia 
prescription_rules ⊑ prescription_context 
prescribe_soft ⊑ soft 

prescribe_soft ≡ not_astigmatic ⊓ normal ⊓ prescription_rules ⊓ ¬exception_soft 
exception_soft ≡ myope ⊓ presbyopic 

prescribe_hard ⊑ hard 
prescribe_hard ≡ astigmatic ⊓ normal ⊓ prescription_rules ⊓ ¬exception_hard 

exception_hard ≡ old ⊓ hypermetrope 
prescribe_none ⊑ none 

prescribe_none ≡ prescription_rules ⊓ ¬prescribe_hard ⊓ ¬prescribe_soft 

The default rules are simple, that a patient whose tear production is normal will be prescribed a 
hard lens if astigmatic and a soft lens if not. However, there is an exception to the soft 
prescription if the patient is presbyopic and myopic, and to the hard if hypermetropic and old. 
This example is a nice one for tutorial purposes since the dataset of 24 cases is small enough to 
be understood, and yet was problematic for early machine learning algorithms using greedy 
uncertainty reduction heuristics (Cendrowska, 1987). Students can identify the default rules 
fairly readily, test them on the dataset, and then add the appropriate exceptions. They can 
examine default reasoning by setting the exception concepts false and finding that they solve 21 
cases correctly. They can also see possible worlds search in action by setting “prescription rules” 
and “lens” true and running inference to determine that the tear production must be normal in all 
possible cases where a lens is prescribed as shown in Figure 14. 
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Figure 14 Results of inference for lens problem shown on network 

The explanation generated for these inferences is:- 
Explore from: lens ⊓ prescription_rules 
    lens ⊑ prescription [lens] 
    prescription_rules ⊑ prescription_context [prescription_rules] 
    lens ⊑ ¬none [?none] 
    prescription ⊑ person [prescription] 
    prescription_context ⊑ astigmatism ⊓ myopia ⊓ presbyopia ⊓ tear_production [prescription_context] 
    ¬none ⊑ ¬prescribe_none [?prescribe_none] 
    Explore Level 1.1:  ⊦prescribe_hard ⊑ ¬prescribe_none 
        prescribe_hard ⊑ astigmatic ⊓ hard ⊓ normal ⊓ ¬exception_hard [prescribe_hard] 
        astigmatic ⊑ ¬not_astigmatic [?not_astigmatic] 
        hard ⊑ ¬soft [?soft] 
        ¬not_astigmatic ⊑ ¬prescribe_soft [?prescribe_soft] 
        Explore Level 2.1:  ⊦¬old ⊑ ¬exception_hard 
            ¬old ⊑ ¬presbyopic [?presbyopic] 
            ¬presbyopic ⊑ ¬exception_soft [?exception_soft] 
            Possible World 1: astigmatic ⊓ hard ⊓ normal ⊓ prescribe_hard ⊓ ¬exception_hard ⊓ 

¬exception_soft ⊓ ¬not_astigmatic ⊓ ¬old ⊓ ¬presbyopic ⊓ ¬prescribe_soft ⊓ ¬soft 
        Explore Level 2.2:  ⊦¬hypermetrope ⊑ ¬exception_hard 
            Possible World 2: astigmatic ⊓ hard ⊓ normal ⊓ prescribe_hard ⊓ ¬exception_hard ⊓ 

¬hypermetrope ⊓ ¬not_astigmatic ⊓ ¬prescribe_soft ⊓ ¬soft 
    Explore Level 1.2:  ⊦prescribe_soft ⊑ ¬prescribe_none 
        prescribe_soft ⊑ normal ⊓ not_astigmatic ⊓ soft ⊓ ¬exception_soft [prescribe_soft] 
        not_astigmatic ⊑ ¬astigmatic [not_astigmatic] 
        soft ⊑ ¬hard [soft] 
        ¬astigmatic ⊑ ¬prescribe_hard [?prescribe_hard] 
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        Explore Level 2.1:  ⊦¬myope ⊑ ¬exception_soft 
            Possible World 3: normal ⊓ not_astigmatic ⊓ prescribe_soft ⊓ soft ⊓ ¬astigmatic ⊓ ¬exception_soft 

⊓ ¬hard ⊓ ¬myope ⊓ ¬prescribe_hard 
        Explore Level 2.2:  ⊦¬presbyopic ⊑ ¬exception_soft 
            Possible World 4: normal ⊓ not_astigmatic ⊓ prescribe_soft ⊓ soft ⊓ ¬astigmatic ⊓ ¬exception_soft 

⊓ ¬hard ⊓ ¬presbyopic ⊓ ¬prescribe_hard 
Exploration Inferences: normal 
    ¬prescribe_none ⊑ prescribe_hard ⋁ prescribe_soft [¬prescribe_none] 

The system generates the first five inferences listed by truth value propagation and, when it can 
make no further inferences in this way, starts making hypotheses to resolve unresolved 
disjunctions and hence explore possible worlds. Firstly, asserting “prescribe hard” is true in order 
to infer “prescribe none” is false, and then propagating truth values until it needs a second 
hypothesis, that “old” is false in order to infer that “exception hard” is false. This is sufficient to 
infer a complete set of truth values for “Possible World 1.” 

It then backtracks to its second hypothesis and hypothesizes that “hypermetrope” is false in order 
to infer that “exception hard” is false, which is sufficient to generate “Possible World 2.” It 
backtracks again to its first hypothesis, hypothesizing instead that “prescribe soft” is true in order 
to infer “prescribe none” is false, and through these processes generates a set of four possible 
worlds that cover all relevant situations. It then outputs as “Exploration Inferences” any concept 
whose truth value has not been inferred by truth value propagation but has been inferred to be the 
same in all possible worlds, in this case that “normal” is true. Finally it outputs any unresolved 
disjunctions, in this case that “prescribe none” being false implies either “prescribe hard” or 
“prescribe soft” is true. 

The following sections introduce the remaining graphic primitives needed to support description 
logics. 

3.6 Individuals  

Individuals are represented by a rectangular surround as already shown at the bottom left of 
Figure 6. An arrow from an individual to a concept indicates that the concept applies to the 
individual, that is the concept as a predicate is true of the individual. In the lens example above 
one could enter a case graphically as an individual with its properties as shown in Figure 15, for 
the example of a client known to have been prescribed contact lenses as in Figure 14 on the left 
and a client for whom a prescription is required on the right. These translate to (lens ⊓ 
prescription_rules)(client_known_to_have_been_prescribed_lenses) and (prescription_rules ⊓ astigmatic 
⊓ normal ⊓ presbyopic ⊓ myope)(client_needing_a_contact_lens_prescription), respectively. 
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Figure 15 Properties being asserted of individuals 
The semantics of individuals is that their labels are unique identifiers of an existing individual. 
As Zalta (1988) nicely expresses it: individuals exemplify properties whereas concepts encode 
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them. The properties exemplified can be factored into those that are essential, being rigid 
designators across all possible world, and those which are state descriptions and can vary across 
possible worlds. We use the definitional arrow for the essential properties and the implicational 
one for the state properties as shown in Figure 16. 

Charles

person has red
hair

 
Figure 16 Distinguishing essence and state 

The semantics of essential properties is that they, together with its unique identifier, define the 
individual qua concept, that is the concept of the individual includes its essence as well as its 
identification and is satisfied by the individual, and only that individual, in any state. This model 
serves to distinguish ‘kinds’ or ‘sorts’ as rigid designators in an ontology, helping avoid some of 
the issues that Guarino and Welty (2004) have documented in the original WordNet and CYC 
upper-level ontologies. It is also useful for student exercises on the metaphysical nature of 
individuals, through inference that the knowledge structure is incoherent when the state violates 
the essence, indicating that the existence of the individual should no longer be asserted, the 
essence is inappropriate or the state erroneous.  

3.7 Binary relations, roles 
One restriction that description logics place on subsets of FOL is that they support only binary 
predicates, termed roles, originally treating these in impoverished fashion as having no inter-role 
inferential constraints, and now usually supporting role inclusion specification but not role chain 
inclusions or equalities since these are known to lead to undecidability (Donini, 2003). Roles 
have been classically shown in semantic networks as unboxed text and we have adopted this 
convention as illustrated in Figure 17. On the left “Mother without daughter” is defined as a 
mother none of whose children are female, translating to Mother_without_daughter ≡ Mother ⊓ 
∀has_Child.¬Female. On the right Mary is shown as having two children, Susan and Arthur, 
translating to has_Child(Mary, Susan), has_Child(Mary, Arthur), or, for export to Racer, (related Mary 
Susan has_Child), (related Mary Arthur has_Child). 
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Figure 17 Binary relations as roles 

One design decision apparent in Figure 17 is that a role is treated as a node in its own right, not 
as a label on a link. This avoids the clutter of having multiple links to represent multiple role 
constraints or fillers, and makes the grouping of aspects of the domain of a role visually 
apparent. 
Figure 18 illustrates how relationships between roles are represented. 
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Figure 18 Binary relations as roles 

The inverse relationship between roles is symmetric and represented through an undecorated line 
between them, as shown for “has child” and “has parent”, translating to has_parent ≡ has_child¯ or 
(define-role has_parent (inverse has_child)). The inclusion relation is represented as for concepts, as 
shown for “acquaintance” as a binary relation including both “friend” and “co-worker” and 
translating to friend ⊑ acquaintance, co-worker ⊑ acquaintance. The definition of “uncle” as someone 
who is a male sibling of a parent shown on the right, which translates to uncle ≡ has_parent ○ 
has_brother or (define-role uncle (compose has_parent has_brother)), is not currently supported by 
most decision logics because the role chain equality construction can lead to undecidability 
(Donini, 2003). This is a problem for the semantic web applications of description logics and has 
led to the ad hoc addition of the Semantic Web Rule Language (SWRL) to OWL, the Web 
Ontology Language (Horrocks, et al., 2005). SWRL enables one side of the definition of uncle to 
be expressed in DATALOG form as parent(?a, ?b) ∧ brother(?b, ?c) → uncle(?a, ?c). However, as 
already noted, rules modeled by additional necessary properties of a definition can already be 
modeled by description logics and it seems unfortunate that modeling those involving role chains 
requires the addition of a completely different framework. 
The problems with role constructs in semantic networks and description logics may be seen as 
resulting from the separation of unary predicates as concepts from binary predicates as roles, and 
we have experimented with visual language representations that treat n-ary predicates in a 
uniform fashion. However, this results in more complex graphical representations which seem 
less natural than those of Figure 18. At this stage, it is reasonable to conclude that the 
representation of some aspects of relations is problematic both for practical inference systems 
and visual languages, and that this is an area where further research is required. 

3.8 Cardinality constraints, concrete domains 

Many description logics support cardinality constraints on the number of fillers of a role, and 
concrete domains of sets of strings, integers, ranges of integers, sets of ranges of integers, and 
equivalent constructs for numbers in general, dates, and so on, ordered by set inclusion. They can 
be modeled for purposes of representation, inference and implementation as operations upon 
arbitrary, ‘plugged-in’ lattices of subsets of differing types (Gaines, 1993), and general 
complexity results have been derived for inference with different classes of operation in such 
domains (Baader and Sattler, 2003). 
As illustrated in Figure 19, a rectangle with doubled vertical sides is used for cardinality 
constraints and concrete domain specifications, and explained to users as representing set-
theoretic constraints. The symbol, “∃” is supported as an alias for “≥1”, and values in a concrete 
domain are represented by the same rectangular surround that is used for individuals. 
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Figure 19 Cardinality constraints and concrete domains 
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The description logic translator script outputs:- 

Parent ≡ ∃has_Child Person ⊑ [Integer 0≤150] age 
Person(Fred) age(Fred, 45) 

Further examples of cardinality constraints in use in ontologies are given in Figures 20 and 21. 
Figure 20 is a semantic network representing an example a SNePS case study (Shapiro, 1991), a 
puzzle where 4 people each hold two of eight jobs, no job is held by more than one person, and 
various constraints are given on who can hold what. It shows the use of cardinality constraints 
and an inverse role relationship to capture the problem, together with other constraints such as no 
person is both chef and police officer, no male is a chef, Pete is not a nurse or police officer, and 
so on.  
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Figure 20 Semantic network representing a puzzle 

The description logic translator script outputs:- 
job ⊑ ∀held_by.person ⊓ =1 held_by.(Roberta ⊔ Steve ⊔ Thelma ⊔ Pete) 
person ⊑ ∀hold_job.job ⊓ =2 hold_job.(guard ⊔ nurse ⊔ telephone_operator ⊔ police_officer ⊔ boxer ⊔ 

teacher ⊔ actor ⊔ chef) ⊓ ¬(∃hold_job.chef ⊓ ∃hold_job.police_officer) 
male ⊑ ⊓ person ⊓ ¬female ¬∃hold_job.chef 
female ⊑ person ⊓ ¬∃hold_job.actor ⊓ ¬∃hold_job.telephone_operator ⊓ ¬∃hold_job.nurse 
hold_job⁻ ≡ held_by 
female(Thelma) male(Steve) (male  ⊓ ¬∃hold_job.police_officer ⊓ ¬∃hold_job.nurse)(Pete) 
(female ⊓ ¬∃hold_job.boxer ⊓ ¬∃hold_job.police_officer ⊓ ¬∃hold_job.chef)(Roberta) 
job(chef) job(guard) job(nurse) job(telephone_operator) 
job(police_officer) job(boxer) job(teacher) job(actor) 



 

24 

KNet’s DPLL inference system readily solves the problem to infer that Roberta is a guard and 
teacher, Thelma is a chef and boxer, Pete is a telephone operator and actor, and Steve is a nurse 
and police officer, and the trace of its solution can be compared by students with their own. 

3.9 Disjunction 

Disjunctively defined concepts are represented by a concept oval with a doubled boundary, and 
inference with disjunctive definitions is the dual of that with conjunctive definitions. 
Disjunctively defined concepts may be seen as propagating falsity in the same way as 
conjunctive ones propagate truth. However, they present interesting issues because they are very 
problematic for human reasoning (Johnson-Laird and Byrne, 1991), and, while we provide them, 
we discourage their use in ontologies because it is often possible, and clearer, to define them 
non-disjunctively. For example Figure 21 shows a family ontology used as an example in the 
Description Logic Handbook (Donini, 2003). “Parent” is defined disjunctively as “Mother” or 
“Father”, and, as shown below, the translator outputs this as Parent ≡ Father ⊔ Mother, or 
(equivalent Parent (or Father Mother)). However, the logically equivalent non-disjunctive definition 
shown at the top left of Figure 19, which translates to Parent ≡ ∃has_Child, is better since it 
captures the essence of the notion of parent without introducing the complication of inferring this 
from the disjunction of mother and father. 
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Figure 21 Family ontology 

The description logic translator script outputs:- 
Woman ≡ Female ⊓ Person 
Man ≡ Person ⊓ ¬Woman 
Wife ≡ Woman ⊓ ∃has_Husband.Man 
Mother ≡ Woman ⊓  ∃has_Child.Person 
Father ≡ Man ⊓ ∃has_Child.Person 
Grandmother ≡ Mother  ⊓ ∃has_Child.Parent  
Mother_Without_Daughter ≡ Mother  ⊓  ∀has_Child.¬Woman 
Mother_With_Many_Children ≡ Mother ⊓ ≥3 has_Child 
Parent ≡ Father ⊔ Mother 
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3.10 Modularity, management of ontology integration  
It will already be apparent that the visual language constructs shown support modularity in much 
the same way as a linear notation, in that a concept can be defined in one place and used in 
another, as exemplified, for example, in Figures 6 and 8. The visual language supports the 
definition of necessary and/or sufficient conditions in one place and their use in others, and also 
the partial definition of such conditions in several places and the management of the 
consequences of merging the partial definitions. 
The KNet visual language support system allows knowledge structures defined in one file to be 
combined with those defined in others, and the combinations to be changed to experiment with 
alternative definitions or to model conceptual change. A visual symbol is provided for links to 
external knowledge structures. Figure 22 shows a variant of Figure 13 where the determinable 
structures at the top of the figure are kept in an external knowledge structure, and a link is 
provided to the knowledge base containing it. This is implemented as a URL to the knowledge 
base kept in the hidden annotation field of the node designed to hold URL’s and associated data 
in hypermedia applications (Gaines et al., 1995; 2007). 

tear
production

astigmatism prescription

myopia

presbyopia
Contact lens

variables

prescription
context

 
Figure 22 Link to definitions in another knowledge base 

Thus, any concept used in one knowledge structure may be defined or further refined in another. 
This enables ontologies to be entered with concepts that are initially treated as primitives but 
later have necessary and/or sufficient conditions defined for them. For example, the concept “has 
body” on the left of Figure 23 may later be given more explicit meaning through a role constraint 
as shown in the center, and the concept “body” may itself be attributed properties elsewhere as 
shown on the right. 

has body brainhas partbody
has

body

has
body

person  
Figure 23 Use of a concept in one knowledge structure and refinement in others 

Abbreviation of concept labels may well make the original label misleading, for example “body” 
instead of “has body”, and lead to the kind of problems in the ontology that Guarino and Welty 
(2004) have documented in their development of OntoClean or some variant of what Bennett and 
Hacker (2003) have termed the “mereological fallacy” in the neurosciences of attributing to a 
part of a system that which can only meaningfully be attributed to the whole. 

A good example of modular knowledge structures are the differentiae associated with the 
different species in a biological taxonomy. It is customary to show the bare taxonomy 
diagrammatically as in Figure 1, and to document the differentiae as cluster concepts in 
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voluminous associated material. This documentation describes the complex knowledge structures 
supporting the recognition of members of each species throughout their life cycles, and paying 
particular attention to cases that are difficult to distinguish. 
Modularity does not apply only to the conceptual relationships. The assertion of the properties of 
individuals is a modular aspect of the knowledge structure, subject to change when states change 
or inconsistencies are found. The choice of what determinate to assign to an individual is a 
human decision subject to constraint by its consequences, but otherwise open as reflected in 
Kelly’s (1970) choice corollary that “A person chooses for himself that alternative in a 
dichotomized construct through which he anticipates the greater possibility for the elaboration of 
his system.” When people are faced with an inconsistency they often prefer to change the 
previously asserted ‘facts’ rather than the ontology being used (Revlis and Hayes, 1972). 
Adding an additional knowledge structure may be conservative in not changing the consequences 
of the knowledge structures to which it is added, but only defining new ones. Or it may result in 
changes to what was already inferable, including those leading to inconsistency. Such changes 
may be precisely what is of interest when one is examining conceptual change or the impact on 
innovation of the inconsistencies resulting from combining ontologies. A good example is the 
instability inferred for the orbiting electron model of the atom when Newton’s ontology for 
motion and Maxwell’s for electrodynamics were combined, which Bohr resolved by introducing 
quantized energy levels (Heilbron and Kuhn, 1969). In other applications it may be a design 
requirement that the merging of ontologies is conservative and constraints must be applied to 
achieve this (Grau et al., 2007). 
Ontologies are intrinsically incremental, distributed, subject to variation, and to the availability 
of many alternative structures dependent on factors such as the context of use, for example, 
social and legal notions of “family,” and individual and cultural knowledge, preferences and 
milieu. The visual language support system must be able to support the management, and 
tracking, of such variations. Some consequences of integration may be made immediately 
apparent by an analysis of whether syntactically new definitions of already defined concepts are 
introduced. However, these need not necessarily involve semantic change if, for example, they 
repeat existing definitions, and there may also be semantic consequences beyond those the 
syntactic analysis indicates. Managing this requires close integration of the visual language 
system and the inference engine services and is a topic requiring substantial further research. 

In the context of this paper, the grouping of related knowledge structures in the visual language 
seems to support human comprehension of the possibilities, and the consequences, of bringing 
together various knowledge modules. 

4 Conclusions 
This is a practice and experience paper attempting to highlight issues that will need to be 
addressed by any designer of a semantic network-like visual language for some subset of FOL. 
The general design issues have been discussed in Section 2 in the context of semantic networks 
but stated as generally as possibly to make them relevant to other visual languages for logic. 
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4.1 Addressing the Design Issues 
Section 3 presents a detailed example of the design of a visual language for description logics 
illustrating how the design issues may be addressed. Issue 1, of unambiguous translation from 
the visual language to standard logical formalism, is addressed by algorithms that translate any 
diagram in the visual language to statements in one of the standard description logic formalisms. 
Issue 2, of taking into account current practice in user communities, is addressed by the use of 
existing conventions for semantic networks wherever possible. Issue 3, of each construction in 
the visual language having a well-defined and simply explained meaning, has been addressed 
through examples of how the constructions described are explained to users. Issue 4, of taking 
into account the different roles the visual language will play, has been addressed by designing a 
single language that can be used for knowledge entry, knowledge base representation and, 
through visual annotation generated in the inference process, for explanation of inference. 

Issue 5, testing the design through a wide range of test cases, including both real problems and 
generic knowledge structures, has been addressed through the diversity of examples given to 
illustrate various visual language constructs in Section 3. Issue 6, encouragement of the use of 
representational capabilities that minimize the complexity of inference has been addressed in 
terms of the provision of relative negation, depreciation of disjunction, and so on. Issue 7, the 
need to take into account the use of the visual language not only in deductive reasoning but also 
in various ampliative reasoning patterns has been addressed by examples where, for example, 
abductive reasoning based on partial definitions provides a better model of human practice than 
would deductive reasoning based on full definitions. Issue 8, the need for modularity, has been 
addressed by a design which allows diagrams to be split into components and recombined as 
needed. 
These issues are relevant to the design of other forms of visual languages for logics, such as 
those based on Venn and Euler diagrams, with issues 1 through 4 being normally addressed but 
consideration of issues 5 through 8 perhaps providing some interesting research issues. The 
examples of visual language constructs and their applications given in Section 3 also provide 
useful test cases for other visual languages. For example, the representation of disjointness and 
the differentiation of sufficient and necessary properties in definition through different arrow 
types provide interesting approaches to the representation of important constructs in knowledge 
representation, and also raises the question of how these would be represented in other visual 
languages. 

4.2 Future Directions 

The exact expression of human knowledge, its communication, understanding and use in 
inference are difficult tasks at the apex of human achievement. Linguistic, visual and logical 
formulations of knowledge are complementary rather than competitive. All three require a high 
degree of skill to be fluent in their application. Natural language is not particularly ‘natural’ 
when it is used technically and precisely, and translations between equivalent expressions in 
linguistic, visual and logical forms can provide insights in relation to knowledge structures and 
argument forms beyond those of any single mode of expression. 
I believe that the most significant issue for visual languages for logic is what contribution they 
make to the human understanding of knowledge structures. In this they are not so much to be 
compared with other logical formalisms as with natural language representations which are the 
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common way in which people think and communicate about knowledge. The capability of the 
visual language to translate precisely to a logical formalism which itself can be used for 
automatic inference needs to be evaluated for its possible contribution to conventional linguistic 
discussion about knowledge. 

This paper has drawn upon a range of philosophical literatures for its examples of fundamental 
knowledge structures and shown that the visual representation and its precise logical 
consequences may be helpful in discussing the issues raised in those literatures. This is 
reminiscent of Leibniz’s notion that the arithmetization of syllogistic logic would enable 
philosophical disputes to be resolved in a friendly fashion by computation (Sotirov, 1999). 
Perhaps it is an idea whose time, with the advances in modern theorem provers, has come, and 
visual languages may provide the bridge between the verbal expression of ideas and their logical 
explication. Perhaps not, but it is still an interesting and worthy objective. 
In many disciplines such as electronic, mechanical and chemical engineering, diagrams have 
long played a central role in design, not just as aids but as ‘truth bearers’ (Perini, 2005). One can 
see analogies between electronic circuit or molecular structure diagrams and semantic networks. 
The generic knowledge structures discussed in this paper are similar to electronic modules built 
of basic components, or molecules built of atoms. In these other disciplines, once basic structures 
have been designed, fabricated and tested, they are used as modules to build larger sub-systems 
and eventually particular systems. Computer-aided design systems for engineering application 
operate with sub-systems as units and can show the structure of the underlying modules, and so 
on, down to the components. Alternative modules and sub-systems can be developed to achieve 
the same functionality or improve existing functionality. 

This is an attractive model for the design of knowledge structures, whether they represent 
philosophical arguments, models of human reasoning, or improved modes of accessing 
knowledge at large such as the semantic web. Research on knowledge entry through the 
graphical assembly of components (Clark et al., 2001) and design patterns for semantic web 
content (Gangemi, 2005) are already moving in this direction. We need further research on visual 
languages that can match the capabilities of the knowledge representation and inference systems 
we now have, and keep pace with and support their ongoing evolution.  
We also need to facilitate the adoption and use of formal visual languages and their associated 
inference capabilities in scholarly communities that may have little knowledge, or sympathy 
with, formal logic, but might find the insights it can provide of value to their own endeavors. 
This is certainly a worthy and realistic objective, and one to which this paper is intended to 
contribute. 
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