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Abstract. This article addresses Béziau’s [11] vision that universal logic should
be capable of helping other fields of knowledge to build the right logic for the
right situation, and that for some disciplines mathematical abstract concep-
tualization is more appropriate than symbolic formalization. Hertz’s [67] dia-
grams of logical inference patterns are formalized and extended to present the
universal logic conceptual framework as a comprehensible science of patterns.
This facilitates those in other disciplines to develop, visualize and apply logical
representation and inference structures that emerge from their problématique.
A family of protologics is developed by resemantifying the sign for deduction,
→, with inference patterns common to many logics, and specifying possible
constraints on its use to represent the structural connectives and defeasible
reasoning. Proof-theoretic, truth-theoretic, intensional and extensional proto-
semantics are derived that supervene on the inference patterns. Examples are
given of applications problem areas in a range of other disciplines, including
the representation of states of affairs, individuals and relations.
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1. Introduction

Twenty years ago Jean-Yves Béziau [9] proposed that the notion of deduction in
any logical system should be studied within an integrative conceptual framework
that presupposes no particular axioms. He termed this framework universal logic
by analogy to Birkhoff’s [23] universal algebra. This approach encompasses all
logical systems and facilitates specifying each of their particular axioms whether
they are common to many logics, or peculiar to a few.

Logical systems have proliferated since the 1920s when Hilbert, Frege and
Russell extended the inference patterns of Aristotle’s syllogistic [7, 33] to provide
formal foundations for mathematics. Béziau’s proposal situates a wide range of
historical and ongoing studies of such systems within a coherent framework, and
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suggests significant directions for further research. His publications expounding
[11, 13, 14] and illustrating [10, 12, 19] the approach, and the fora he has provided
through editing books [15, 18], conference proceedings [22, 21], and the Logica
Universalis journal, have inspired a research community collaborating within the
universal logic paradigm.

Béziau [14, p.14] presents the study of logical structures as a mathematical
discipline in its own right, a Bourbakian [25] mother system “having the same
status as algebraic, topological and order structures”. However, like other sub-
disciplines of mathematics, it also provides foundational capabilities for many other
disciplines. A universal logic conceptual framework contributes to these disciplines
by providing techniques for tailoring logical systems to address the precise purposes
for which they are required. It helps build “the right logic for the right situation”
[11, p.19], making it possible to avoid the wholesale import of inappropriate axioms
of a logical system that may introduce artifacts by going beyond those deriving
from a conceptual analysis of the problématique.

In order to support other disciplines, Béziau [11, p.23] has suggested that
universal logic might be presented as a formal but comprehensible conceptual
framework that avoids unnecessary symbolism, that, for example, “the defini-
tions philosophers need involve mathematical abstract conceptualization rather
than symbolic formalisation.” However, most universal logic research has naturally
adopted the symbolism of formal logic and this, like mathematical symbolism in
general, can be a significant barrier to understanding [66].

This article addresses the question of whether the conceptual framework of
universal logic may be formalized and presented in a way that minimizes the use
of technical terminology and mathematical symbols. Its objective is to preserve
formal rigour while providing a useful and comprehensible tool for those applying
logic to problems of representation and inference in non-mathematical disciplines.
It adopts the perspective that views mathematics as a science of patterns [95],
and presents possible inference patterns in a logical system as two-dimensional
configurations of an arrow symbolizing deduction.

2. Logic as a science of patterns

The objective of this section is to develop the conceptual framework of universal
logic in a simple and comprehensible form as a science of patterns. The primitive
notion of deduction is represented as a process of recognizing a pattern within a
structure that licenses the addition of deletion of part of that structure. This pro-
cess is itself represented by metastructures termed inference patterns, a collection
of which will be said to constitute a protologic [79].

2.1. Foundations for a universal protologic

The genesis of what has come to be termed universal logic was in the philosophy
of Hilbert that he derived by reflecting on his experience in proving his basis theo-
rem [68] and rationally reconstructing Euclidean geometry [69], and the resultant
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controversy with Gordan [83, p.18] and Frege [49, p.1-24] about his innovations in
the logical foundations of mathematics.

Hilbert [70] evolved a new conceptual framework for axiomatic thinking that
involved reconstructing a formalized discipline by abstraction to a minimal set of
independent axioms, each having a meaningful interpretation in that discipline. His
methodology introduced notions such as logical existence [49, p.12] being equiva-
lent to lack of contradiction, and ideal elements [71] being introduced in order to
simplify the axioms even though they were not part of the original system.

Hilbert [70, p.413] emphasized that the axiomatic foundations of logic under-
pinned those of other disciplines and themselves needed to be made secure. When
he and his colleagues at Göttingen, such as Hertz, Bernays and Gentzen, worked on
this problem it was natural for them to adopt his principles of axiomatic thinking
and deconstruct logical deduction as a minimal collection of axioms, introduc-
ing ideal elements as necessary to simplify them, and focusing on freedom from
contradiction and the complete reconstruction of expected inferential outcomes.

The objective was to provide logical foundations for mathematics and the
axiomatic method rather than to characterize all possible logics. However, there
were already two contending logics for mathematics, classical and intuitionistic
[58], and it was natural for Hertz [67] in applying Hilbert’s axiomatic thinking
to logic to abstract as much as possible and consider inference patterns between
arbitrary sentences. He even abstracted from the notion of inference itself, stating
that there is no need to specify “what the symbol → linking the characters a→b
or the word ‘if’ in the corresponding linguistic formulation means” [67, p.247].

Bernays further extends Hertz’s level of abstraction when he used it to exem-
plify Hilbert’s philosophy of mathematics by reducing → to a sign rather than a
symbol : “If the hypothetical relationship ‘if A then B’ is symbolically represented
by A→B, then the transition to the formal position is that we abstract from that
the meaning of the symbol → and take the linkage by the ‘sign’ → itself as the
primary consideration.” [8, p.333].

In her analyses of the evolution of written language to include non-phonetic
technical material involving mathematical and logical symbology, Krämer [75] has
characterized such extreme abstraction as complete desemantification. Dutilh No-
vaes [38] adopted this terminology and situated the desemantification of logic
historically through her analysis of the use of the qualifier formal in the logical
literature. She [39, §6.1.2] introduces the term resemantification to describe the
process of reintroducing expected features of a desemantified system.

The following sections develop a universal protologic by commencing with
deduction as a desemantified sign, →, and incrementally resemantifying it by intro-
ducing common logical constraints as inference patterns represented by structures
based on →. The additional term semantification is used to distinguish various
extra-logical interpretations that add meaning without changing the underlying
logical system, including: those intrinsic to the logical system, such as truth values
(§4.2), and intensional (§4.3) and extensional (§4.4) reconstruction.
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2.1.1. Protosemantics. Whilst the protologic is itself a mathematical abstraction,
it is intended to have practical applications and terms have been adopted to name
abstract patterns that reflect those in the literature and seem natural to those
patterns. However, these terms are strictly technical and none of their possible
connotations beyond their formal definitions are used to draw inferences. That is,
the protologic semantifies the terms and not the terms the protologic.

For example, A→B is read as ‘A includes B’ and two complementary technical
terms are also introduced to provide an abstract protosemantics. The term content
is used to reference that which might be included. That is, A→B may be read as
‘the content of A includes the content of B.’ This terminology is consistent with
that of those who have proposed that logical entailment be explicated as meaning
[41], sense [90] or content [26] containment, and enables one to assess when that
notion is appropriate and when it is not.

The term context, is used to reference the effect of inclusion, of being within
the scope of the meaning. That is, A→B may be read as ‘the context of B encloses
the context of A.’ This terminology is consistent with Aristotle’s [1, 1061b30] use
of the term qua in his Metaphysics to introduce a context, for example, to consider
physical objects ‘qua moving’ rather than ‘qua bodies.’ However, any connotations
of the terms ‘content’ and ‘context’ derive explicitly from the constraints placed
upon the use of →, rather than from a priori intuitions.

2.1.2. Arrows, links and graphs. Béziau [9, p.85] introduces a minimal reseman-
tification of a deduction sign by going back to the Latin roots of the term and
interpreting it as leading away from premise to conclusion, that is we may regard
the arrow in A→B as a directed connective leading from the symbol ‘A’ at the
tail to the symbol ‘B’ at the head. The resulting structure may be termed a link
constituted by the triple (A,→,B). It may also be described as a link out of A
constituted by the pair (→,B) or a link in to B constituted by the pair (A,→).

A BA link is naturally represented in graphical form as two labelled
nodes with an arrow between them or, more generically, as an arrow
between two anonymous nodes. It is assumed that labels constitute
unique identifiers from some family of identifiers with an equality relation, and
that an anonymous node has an implicit label unique to that node.

The resemantification involved in labelling nodes is the assumption that the
entities linked by → may be identified, distinguished and equated. Node labels may
be chosen to suggest possible connotations but these make no formal contribution
to the logical structure represented by the links. They are logically meaningful
only to the extent that the linkage structure represents such connotations.

Nodes with identical labels will be taken to represent the same node shown
more than once, and may be merged to form a canonical graph-like structure with
no duplication of nodes. This allows structures to be split into substructures, pos-
sibly overlapping, that can be merged to reconstitute the original structure. It also
allows a structure to be merged with one of several other structures, each repre-
senting an alternative component, for example, a different ‘ontology’ or ‘theory.‘
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Figure 1 shows a number of links merged into a graphical structure, S, with
no duplication of nodes.

A B C D E

F G H S

Figure 1. Graphical structure specified by multiple links

Note that the graph representation adds no additional information to that of a
linear representation as the multiset, S ≡

[A→B, B→C, B→C, C→D, D→E, D→E, E→E, F→B, B→H, G→H, H→D, D→H]

It is only a more perspicuous representation of the structure represented by mul-
tiple links involving the same nodes.

Figure 2 shows the same links merged into three overlapping substructures,
S1, S2 and S3, representing the same structure in a modular way.

A B C

F

B C D E

G H

D

H

E

S1 S2 S3

Figure 2. Same structure specified modularly as three substructures

The linear representations are shown below and S is their multiset sum:

S1 ≡ [A→B, B→C, F→B]
S2 ≡ [B→C, C→D, D→E, B→H, H→D, G→H]

S3 ≡ [D→E, E→E, D→H]
S ≡ S1 ⊎ S2 ⊎ S3

The resemantification of the arrow sign so far is sufficient to support the
basic structures of graph theory. However, as evident in the examples, there are
no constraints to preclude parallel arrows between the same nodes or loops from a
node to itself. Hence, in graph-theoretic terms, the examples given are not strictly
directed graphs but rather nets [65, p.4-7] or directed pseudographs [4, p.4].

There is also, as yet, no support for the inferential processes of logic. However,
in the continuing resemantification inference pattern are introduced such that →
represents a partial order underlying a logical system (§2.5).

2.1.3. Inference patterns and invariance under logical interpretations. While it
is convenient to use the terminology of graph theory to describe the nets that
represent collections of links, logical theory focuses on the dynamics of change in
such collections. This is not a primary concern of graph theory [64].

The logical dynamics of nets will be captured in terms of inference patterns
in which an abstract subnet of a particular form is recognized as licensing the
addition or deletion of one or more links while leaving any ‘logical interpretation’
of the net invariant. These notions are formalized in the following sections.

A logical interpretation of a net is defined to be an inference-preserving con-
servative translation [29] of the net into statements of a logical system supporting
some notion of inference. To state that it is invariant under a change to the net
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is to assert that, within that logical system, the translation of the changed net
will have the same inferences as that of the original net. Two nets with the same
logical interpretations will be termed logically equivalent.

This is a constraint upon appropriate translations, that the target logical
system must implement within its own framework the inference patterns of the
protologic, and this must be verified for each translation. It is also intended that
the inference patterns in the protologic can be understood in their own right
and that the graphical language can be used to represent the form of knowledge
structures and and the dynamics of inference.

An inference pattern may be seen as an analytic invariant of a net in that
it can dynamically expand a net by adding logical inferences implicit in its links,
and hence can also delete them as being superfluous, contracting the net, possibly
to a minimal form. Additions or deletions that maintain the net logically invariant
will be termed conservative expansions or conservative contractions, respectively.

2.2. Inclusion inference pattern

A significant example of resemantification through a logical inference pattern is
that transitivity of → which is common to its usage in most logical systems and has
been taken to be a characteristic feature of ‘a logic’ [101]. Figure 3 shows Hertz’s
[67, fig.1] diagram to specify the transitivity of → on the left, and, in the centre,
its representation by an inclusion inference pattern in a net.

Figure 3. Inclusion inference pattern

A metalogical distinction has been made in the inference pattern by showing
the pattern-defining arrows as solid lines and the inferred arrow as a dotted line.
The inference pattern indicates that if the pattern-defining links are found then an
inferred link may be added, or any existing inferable link may be deleted, without
changing the logical interpretation of the net of which the pattern is part.

The same pattern is drawn differently on the right to show that the inclusion
inference pattern might be visualized either as the copying, or inheritance, of a
horizontal inclusion link downwards from the head to the tail of a vertical inclusion
link, or of a reverse horizontal inclusion link upwards from the tail to the head of
a vertical inclusion link.

If x , y and z are links, S a multiset of links, and ≡ indicates identical logical
interpretations, an equivalent linear representation might be:

for any x, y, z, S, [S, x→y, y→z] ≡ [S, x→y, y→z, x→z]

One advantage of using the two-dimensional structure of the page to provide
a nonlinear graphical presentation is that, as Shönfinkel [99, p.17] has noted, the
introduction of variable names is distracting because they serve merely to link mul-
tiple occurrences of the same logical entity. This linkage may be specified formally
in a net without requiring an artificial label for a generic node.
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However, the graphic representation has introduced no additional constructs
beyond those of a conventional linear representation. It is a formal specification
with no dependence on visual intuitions that avoids a proliferation of symbols.

2.2.1. Cycles and node equivalence. A cycle of mutual inclusion between two
nodes, as shown in Figure 4 left, may be treated as a single symmetric link with
the directional arrow heads omitted as shown in the centre.

Figure 4. Cycles and node equivalence within cycle

As shown on the right, such a cycle induces an equivalence between nodes because
the inclusion inference pattern implies that any nodes which includes, or is included
in, one node includes, or is included in, the other node.

This generalizes to larger cycles because the inclusion inference pattern im-
plies that all nodes in a longer cycle are also linked pairwise in simple cycles, and
hence all nodes in a cycle are equivalent (Figure 5)—Hertz’s [67, def.10] web.

Figure 5. Inference of node equivalence within a longer cycle

It will be noted in introducing other arrows and their link types that, as they
are defined in terms of →, the node equivalence induced by a cycle generalizes to
commonality of links of any type. Any nodes in a cycle have the same incoming
and outgoing links of all types and are equivalent in this respect, and their labels
may be regarded as aliases for one another under this equivalence.

2.2.2. Equivalence and loop inference patterns. Another commonly expected log-
ical constraint on → is that should it be reflexive so that every node has an
associated loop (as illustrated by node E in Figures 1 and 2). Rather than be-
ing introduced as an ad hoc assumption, reflexivity can be derived from a more
specific requirement, that nodes equivalent to any node may be added or deleted
without change of logical interpretation. This corresponds to the equivalence in-
ference pattern shown on the left of Figure 6, which may be explained in terms of
nodes always being able to have more than one label.

Figure 6. Equivalence inference pattern and derived loop



8 Brian R. Gaines

As shown on the right, application of the inclusion inference pattern to the
equivalence inference pattern implies that the node has an arrow to itself, a loop.
These results may be used to derive the loop inference pattern corresponding to
reflexivity through the inference sequence shown in Figure 7.

Figure 7. Derivation of loop inference pattern

From left to right: the equivalence inference pattern is used to add an equiv-
alent node to an isolated node; the inclusion inference pattern is used to infer that
the original node has a loop; and the equivalence inference pattern is used to delete
the equivalent node resulting in the loop inference pattern on the right.

Reflexivity is significant in the theoretical development of logics but irrelevant
to practical applications where, whatever an inclusion link represents, it is unlikely
to be useful to infer that a node includes, or is included in, itself—the epitome of
a circular argument.

2.3. Repetition inference pattern

Another significant example of resemantification through a logical inference pat-
tern is that for adding or deleting parallel arrows between nodes. For many logical
interpretations multiple links of the same type in the same direction between two
nodes do not affect the logical interpretation of a net. Their addition or deletion
is a conservative expansion or contraction.

This could be implemented by requiring a collection of links to be a set rather
than a multiset or by requiring the graph to represent a relation rather than a net.
However, in some logical systems such as linear logic [59], the repetition of a
statement may be significant, and the lack of significance in other logics is best
represented explicitly as an repetition inference pattern (Figure 8).

Figure 8. Inclusion repetition inference pattern

2.4. Protoconjunctions and protodisjunctions

When a node includes, or is included by, two or more other nodes, it is common
in interpretations of nets in other logical formalisms to shorten the representation
by collecting the labels of the other nodes separated by conjunction or disjunction
symbols, respectively. For example, a description logic [3] translation of the nets
in Figure 9 might be:

A ⊑ (B ⊓ C) (A ⊔ D) ⊑ B

B

A DA

B C

Figure 9. Protoconjunction and protodisjunction
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However, the nets might equally well be translated without the introduction of
conjunction and disjunction symbols as:

A ⊑ B A ⊑ C D ⊑ B

The use of conjunction and disjunction symbols in the first translation, intro-
duced only to collect terms rather than compose them to define an ideal node, will
be characterized as specifying a protoconjunction or protodisjunction. Protocon-
junctions and protodisjunctions satisfying certain extremal conditions to define an
additional ideal node as a composition of links will be termed structural conjunc-
tions (§5.1) and structural disjunctions (§5.2), respectively. Similar considerations
lead to a distinction between protonegations and structural negations (§2.8.2).

The significance of these distinctions is that the semantics, ontological com-
mitments and inferential complexity of the protoconnectives is substantially sim-
pler than that of the structural ones, and that the representation of many signifi-
cant generic knowledge schemata requires only the protoconnectives [51]. However,
the linguistic usage of ‘and,’ ‘or’ and ‘not’ does not give a clear indication of the
type of connective intended and neither do most logical symbolisms.

2.5. The resemantified → as a preorder or partial order

Given any net, if one conservatively contracts it by merging it to canonical form,
using the inclusion inference pattern to equivalence the nodes in a cycle, the equiv-
alence inference pattern to delete all but one node in the cycle, and the loop
inference pattern to delete any loops, the resultant net is a directed graph [4, §1.2].

It can be further contracted by using the inclusion inference pattern to delete
all links that can be inferred from it resulting in the transitive reduction [4, p.177]
of the cycle-free graph as the minimal canonical form of the original net (unique
up to the node label chosen to represent all the nodes in a cycle). Figure 10 shows
Smin, the minimal canonical form of the net specified in Figure 2.

A B C D E

F G Smin

Figure 10. Net from Figure 2 reduced to a minimal canonical form

The transitive, reflexive relation defined by the repetition, inclusion and
equivalence inference patterns indicates that, if → complies with these patterns,
it specifies a preorder on the nodes. If the node equivalence of §2.2.1 is taken to
define equality of nodes then the preorder becomes a partial order.

A preorder has been taken by Straßurger [101] to answer the question “what
is a logic?” As the remaining constructions in this article are defined in terms of
the preorder it might seem that the preceding sections have already resemantified
→ adequately to specify a logical system. The sign → has become the symbol for
an abstract copula [36, p.104] capturing the essential features of deduction.

However, the preorder alone offers limited representation and reasoning ca-
pabilities. The additional metalogical definitions that follow significantly extend
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the representation and inference capabilities of the protologic. Because they are
always available as constructions within the protologic (as constraints on the usage
of →), one could argue that they are inherent in the order relation. One could also
argue that their definition is a significant additional resemantification of the sign
→ leading to a richer notion of what it is to be a logic.

2.6. Definition of an exclusion arrow and link

In representing logical inference, what is most obviously missing in the structures
discussed so far is the notion that they may be structurally unsound or inconsistent.
Every net based on the inclusion link, and every net derived from it using the
various inference patterns, is a legitimate logical structure. Nodes and links may
be added to any net without logical constraint. There is support for the notion that
derived links are logically necessary but none for the notion that some potential
links may be logically impossible.

The exclusion arrow [→ supports the addition of a different type of link to
a net that constrains what further links may be added to it. An exclusion link is
defined in terms of the inclusion arrow:

Definition: an exclusion link may be constituted with [→ iff any node that includes
the tail is excluded from also including the head.

The meta-inference pattern for this definition is shown in Figure 11. A red cross
is used as a metalogical symbol to indicate that an inclusion link is prohibited.

Figure 11. Exclusion link definition

The tail node of an exclusion link is said to exclude the head node, and the
head node to be excluded by the tail node. The head node may also be termed
opposite to, contrary to or incompatible with the tail node.

2.6.1. Exclusion inference patterns. Three inference patterns may be derived from
the metalogical definition of the exclusion link. First, it complies with a repetition
pattern, the exclusion repetition inference pattern (Figure 12 left).

Figure 12. Exclusion inference patterns

Second, because any node that includes the lower node also includes that to
which it is linked (inclusion pattern), it cannot have a link to the node on the right.
Hence the lower node satisfies the exclusion link definition and has an exclusion
link to the node on the right. The resulting pattern is the exclusion inference
pattern (Figure 12 second from left).
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Third, any node that includes the right hand node cannot also include the left
hand node since the exclusion link definition would be contravened. Hence there
is a also an exclusion link from right to left, resulting in the exclusion symmetry
inference pattern (Figure 12 second from right). This pattern marks a major dif-
ference in the inferential dynamics of the two link types, that the exclusion link is
symmetric and can be represented by the single undirected link on the right.

The undirected link has repetition and exclusion inference patterns derived
from those of the exclusion link (Figure 13 left). The right two nets show a reverse
exclusion inference pattern that also follows from the exclusion inference and sym-
metry patterns. The variant on the far right shows how this may also be seen as
a reverse inclusion inference pattern such that an exclusion link to the tail of an
inclusion link may be inferred from one to the head.

Figure 13. Exclusion link and reverse exclusion/inclusion patterns

The exclusion inference pattern implies that if two nodes are in a cycle then
any node which excludes, or is excluded by one node, excludes, or is excluded by
the other. This generalizes the equivalence between nodes in a cycle defined in
§2.2.1 to exclusion as well as inclusion links.

From the perspective of meaning containment, an exclusion link between
two nodes signifies that the contents of the two nodes are incompatible and their
contexts are disjoint. That is, some part of the content of one node cannot be
included with some part of the content of the other node, and no node may be
enclosed in the context of both the nodes.

From an inferential perspective the directed exclusion link can always be
replaced by the undirected one with no change in logical interpretation; exclusion
is always mutual exclusion. However, from a semantic perspective the metalogical
distinction between the specification of the net and the inferences ensuing from
that specification may be significant. There may, for example, be significance to the
notion that the specified direction of the arrows depicts how a new node depends
on existing nodes. Hence the symmetry of the exclusion link is, for some purposes,
best represented as an inference rather than an intrinsic feature.

2.6.2. Inconsistency inference pattern. The definition of an exclusion link in §2.6
introduces a metalogical constraint that an inclusion link is not allowed between
two nodes. If this constraint is violated in the net, either by specification or by
inference, the outcome will be that two nodes are connected by both inclusion and
exclusion links as shown in Figure 14 (the exclusion link is shown in symmetric
form to encompass all cases of parallel inclusion and exclusion links).

Figure 14. Inconsistent link
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Such a pair of links will be considered as constituting a single link combining
conflicting link types and termed an inconsistent link from the tail of the inclusion
link to its head. The tail node will be termed an inconsistent node, and the net of
which it is part an inconsistent net.

The inconsistency inference pattern shown in Figure 15 derives from inclusion
and exclusion inference patterns. If one node has an inconsistent link to another
then any node that includes it also has an inconsistent link to it and to that node,
as will any down a path to it. Since any node is down a path from itself, any node
with an inconsistent link also has an inconsistent link to itself.

Figure 15. Inconsistency inference pattern

An inconsistent link in a net, whether specified or inferred, implies that the
exclusion link definition has been violated by the specification of a node that
includes both the tail and the head of an exclusion link. It derives from the speci-
fication of net and indicates a structural inconsistency in that specification.

2.6.3. Paraconsistency. In translations of the protologic to some logical systems
inconsistency cannot be represented and is treated simply as an error in the speci-
fied logical structure. In a paraconsistent system [91, 20] meaningful inference will
generally still be possible, and the protologic supports both possibilities. Whether
the inconsistency corresponds to an intrinsically inconsistent entity or to an er-
roneous specification is an extra-logical issue that does not affect the inference
patterns involved in representing inconsistency.

An inconsistent link in a net is localized in that it can only propagate through
the inclusion and exclusion patterns to a node which includes the tail of its inclu-
sion link. Inconsistency of some links in a net does not ‘explode’ to inconsistency
of all links in the net. Thus, the logical inference schemata that have been defined
are paraconsistent in their containment of inconsistency. It is possible to reason
normally both about the parts of the net which are not inconsistent and about the
propagation of the inconsistencies themselves. The principle of non-contradiction
continues to apply, but, if the specification of a net violates it, the adverse impact
of the violation is localized to a sub-net.

For example, the net shown in Figure 16 illustrates the inferences when the
definition of the exclusion link specified between nodes A and B is violated by node
C which is specified to include both. C is inferred to have inconsistent links to A
and B. These propagate to node D which is specified to include C. However, the
exclusion link between A and E propagates without inconsistency to C and D, as
does the inclusion link from B to F. An inconsistent entity can still exhibit normal
patterns of inference for aspects unrelated to its inconsistency, and inconsistency
itself propagates in a meaningful way.
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A B

C FE

D

A B

C FE

D

Figure 16. Localization of inconsistency

2.7. Generic inference patterns for the kernel protologic

The protologic based on the resemantification of → with the inference patterns
defined so far will be termed the kernel protologic. It is constituted through infer-
ence patterns constraining → to represent the partial order expected of derivation
relations together with a further constraint [→ restricting the placement of → to
represent inconsistency.

The kernel protologic is extremely simple yet logically powerful enough to:
illustrate the dynamics of logical systems that differentiate them from other mathe-
matical structures (§3); provide protosemantics underlying a wide range of seman-
tic interpretations of many logics (§4); and to support the representation of a
wide range of common knowledge representation schemata, such as determinables,
graded scales, taxonomies and frames [51].

Structural connectives may be defined through constraints on nodes defined
in terms of the basic inference patterns, but only very restricted forms of them
are needed for much practical reasoning (§5). Nonmonotonic inference may be
represented through a preference relation between nodes (§6).

The inference patterns for the kernel protologic have similarities that allow
them to be condensed to a generic form. For example, the exclusion inference
pattern mimics the inclusion inference pattern. If one shows them together (Figure
17), Fahlman’s [44] process of virtual copying is apparent. Both inclusion and
exclusion links out of the top centre node are ‘copied’ by inference to the lower
node so that the links do not need to be shown explicitly but can be treated as
‘implicit,’ ‘virtual’ or ‘inherited.’

Figure 17. ‘Virtual copying’ of links

The inference patterns for → and [→ are common to six link types, inclusion,
equivalence, exclusion (in both directions and symmetric form), and inconsistent.
These links may be treated as parametrized instances of a generic link, symbolized
by ⇢, allowing the inference patterns to be represented generically (Figure 18).

From an algebraic perspective, the inference patterns for ⇢ signify: left, that
the instances represent relations; right, that the relations are idempotent when
residuating→ on the right. That is, in the Boolean algebra of binary relations,→/⇢
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oris or or or

Figure 18. Generic inference patterns

= ⇢ for the six substitution instances of ⇢ that are shown. This is the algebraic
basis of notions of ‘copying’ and ‘inheritance’ and foundational to studies of logics
as residuated lattices [53].

2.8. Definition of a coexclusion arrow and link

One may interpret the inference pattern for an inclusion link (Figure 3 centre) as
requiring that any node with an inclusion link to the tail also has an inclusion
link to the head, and for an exclusion link (Figure 12 second left) that it has an
exclusion link to the head. There are also two obvious complementary link types
where an exclusion link to the tail node requires either an inclusion or exclusion link
to the head node. The latter is already available as the converse of an inclusion
link (Figure 13 right) but the former is a new link type that will be termed a
coexclusion link and represented by an arrow with two bars [ [→.1

The formal definition of a coexclusion link is:

Definition: a coexclusion link may be constituted with [ [→ iff any node that ex-
cludes the head must include the tail.

This definition is illustrated in graphical form in Figure 19:

Figure 19. Coexclusion link definition

From the perspective of meaning containment, a coexclusion link specifies
that if the content of the head is excluded then that of the tail is included, and if
a node is not within the context of the head then it is within the context of the
tail. One might also interpret this definition as specifying that the content of the
tail of a coexclusion link is included in the content of the tail of any exclusion link
with the same head, and that the tail of a coexclusion link provides a context for
the tail of such an exclusion link.

2.8.1. Coexclusion inference patterns. Figure 20 shows derived inference patterns
for coexclusion links. From left to right, coexclusion links: have a repetition pat-
tern; are symmetric allowing the arrow heads to be dropped (subject to semantic
considerations) to provide an equivalent line form; and have a downward inheri-
tance pattern similar to that of the reverse inclusion link (Figure 3).

1Coexclusion is a neologism reflecting the duality between exclusion and coexclusion links. In the
ancient logical literature the terms subpares (Apuleius) and subcontarias (Boethius) have been
used for a coexclusion relation in the metalogic of the syllogistic.
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Figure 20. Coexclusion inference patterns

Figure 21 shows a generic representation of the coexclusion inference patterns.

is or or or or

Figure 21. Generic inference patterns for inclusion and coexclusion

From an algebraic perspective, the inference patterns for ⇠ signify: left, that
the instances represent relations; right, that the relations are idempotent when
residuating → on the left. That is, in the Boolean algebra of binary relations, ⇠/→
= ⇠ for all the substitution instances of ⇠.

2.8.2. Negation inference patterns. Exclusion and coexclusion links may coexist
between the same nodes without inconsistency, and the combination of exclusion
and coexclusion links acts as a structural negation in the protologic. Figure 22
shows some of the possibilities, all of which are logically equivalent but may be
semantically distinct in indicating different origins of the negation.

Figure 22. Structural negation as paired exclusion and coexclusion

The negation aspects of the combination are apparent in the inference pat-
terns shown in Figure 23. On the left it can be seen that an inclusion link to one
node results in an exclusion link to the other, and vice versa.

Figure 23. Structural negation inference patterns

In the centre it can be seen that a node which includes one node excludes the
other, and one that is included coexcludes the other. The lower exclusion inference
captures Brandon’s [27, p.126] definition that a contradiction is that which is
entailed by any contrary, and Dunn [37, p.10] and Brady’s [26, p.20] that it is
a disjunction of all possible contraries. The upper coexclusion inference provides
dual definitions: that a negation entails any coexclusion and is the conjunction
of all possible coexclusions. The inference pattern may also be seen as splitting a
negation into its exclusion and coexclusion components.
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On the right is shown the inference pattern for double negation, that if two
nodes have negation links to the same node then they are equivalent. The inferred
inclusion links derive directly from the coexclusion definition of Figure 19. This
pattern also shows that the negation of a node is unique modulo equivalence.

The exclusion and coexclusion link types may be seen as a protonegations:
that the inclusion of some content is incompatible with the inclusion of some other;
or that the exclusion of some content requires the inclusion of some other.

The latter is a less natural constraint than the former and may be seen as the
source of the semantic fragmentation [45] that led to Plato and Aristotle’s critiques
of a bare negation used as if it generated a meaningful concept. For example, that,
whilst ‘being Greek’ is a meaningful concept, use of the term ‘barbarian’ for ‘not
being Greek’ does not define a concept having a coherent meaning [89, 262d].

2.8.3. Coexclusion squares and hexagons of oppositions. Figure 24 left shows a
square net with coexclusion links on the diagonals and an exclusion link on the
top side such that inclusion links may be inferred on the left and right sides and
a coexclusion link on the bottom side. Similar structures have been studied in the
logical literature, both ancient [78] and modern [22, 21], as squares of oppositions.

Figure 24. Coexclusion squares of oppositions

The inferred implications on the left and right of the square are derived
directly from the coexclusion definition. The inferred coexclusion link is derived
because any node with an exclusion link to one of its nodes will also have an
exclusion link to the node above (exclusion inference pattern) and hence an inclu-
sion link to the other node (coexclusion inference pattern) and hence satisfies the
coexclusion definition.

In the net on the left, having only coexclusion links as diagonals, the addi-
tional inclusion and coexclusion links may be derived from these and the exclusion
link at the top. However, if this link is omitted, it cannot be derived by specifying
one of the links previously derived.

However, if exclusion links are added to the coexclusion links on the diagonals
to make them negations then specifying the link on any side allows those on the
other three sides to be derived (Figure 24 right). These are the classic squares of
oppositions that are common to many logical systems [21].

The net on the left demonstrates that the main phenomena of interest in
squares of oppositions derive from the co-exclusion component of the negations on
the diagonals, that a node that excludes a node at one end of the diagonal must
include that at the other end.

Blanché [24] extended the square of oppositions with nodes to a hexagon of
oppositions by adding the disjunction of the top nodes and the conjunction of the
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bottom ones. His construction has proved significant in a universal logic framework
in representing the relations between major constructs in a wide range of logical
systems [17, 19], and is interesting to see how it may be represented in the kernel
protologic with coexclusion.

Figure 25 left shows the basic square extended to a hexagon with a proto-
conjunction at the bottom and a protodisjunction at the top, and that one may
be inferred from the other. On the right this is extended to a full hexagon of op-
positions by adding an exclusion link between the top two nodes of the square and
inferring the other links on the sides of the square. As already shown in Figure 24
any of the four links on the sides of the square could be added to infer the others.

Figure 25. Inferences in a square extended to hexagon

Thus the logical derivations involved in the Blanché hexagon may be factored
through the inclusion, exclusion and coexclusion links involved in their derivations,
and only protodisjunction and protoconjunction nodes are required for the top and
bottom nodes that he added, not the ideal nodes of structural definitions (§5).

3. Dynamics of logical structures

As noted in §2.1.3, although logical structures may be represented in graph-
theoretic form, logic goes beyond graph theory in its emphasis on the dynamics of
change in those structures. This encompasses not only the addition and deletion
of links in nets through inference patterns but also various ways of restructuring
nets, splitting and merging of nets, the specification of additional nodes and links,
and the consequences for the logical interpretations of the nets involved. It also
involves considerations of effective means of communicating the dynamics to those
developing and using knowledge structures represented in nets.

3.1. Minimal and maximal canonical forms

In has been noted (§2.5) that a net with inclusion links can be reduced to a min-
imal canonical form having the same logical interpretation. The exclusion and
coexclusion inference patterns support a similar deletion of exclusion and coex-
clusion links that may be regarded as superfluous because they can be inferred
from others. However, the symmetry of these links means that the direction in
which they are specified is inferentially irrelevant and it is appropriate to treat
the symmetric form as canonical in deriving a unique canonical form. Similarly
the repetition inference pattern for all links means that it is appropriate to treat
reduction to a single link as canonical for the sake of unicity.
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These considerations lead to a minimal canonical form for a net with that is
unique up to the choice of node label used to represent all the nodes in a cycle,
and has the same logical interpretation as the net from which it was derived. The
inclusion, exclusion and coexclusion inference patterns may be used to expand this
minimal canonical form to a unique maximal one. Figure 26 illustrates the minimal
and maximal canonical forms of a specified net of inclusion and exclusion links.

Specified MaximalMinimal

Figure 26. Example of minimal and maximal canonical forms

The inference patterns of §2 and their use to expand or contract the net as
discussed in this section exemplify net dynamics through the addition or deletion
of links. The following sections extend this to expansion and contraction of nets
through the addition or deletion of other nets (including single nodes). Since some
expansions do not change the logical interpretation of the net, this allows for
further expansion beyond the maximal canonical form to a net that is logically
equivalent modulo added nodes.

3.2. Consistent and conservative imports and merges

Nets are dynamic, not only through inference patterns that do not change their
logical interpretation, but also though the addition of links that are not implicit
in the inference patterns and hence change the interpretation, and through the
addition of nodes and associated links that may have a variety of effects.

When nodes are added they may already be named and/or linked, and the
general case may be considered as one where one net is imported by another, either
through merging nodes with the same names, or by linking nodes in one net with
nodes in the other, or both.

One major consideration is whether the resultant net has additional incon-
sistent links. An import is termed consistent if it does not. Usually the focus is on
the import of a consistent net by a consistent net to produce a consistent net, but
it can be appropriate to consider situations where the importing or imported net
is inconsistent.

Another major consideration is whether the import is conservative in that no
additional links may be inferred between the nodes in the imported net. This is of
concern, for example, in many computational applications where the imported net
is intended to be a generic module representing a ‘library,’ ‘ontology’ or ‘theory.’
The intent is to generate additional inferences in the importing net but not in that
which is imported [62].
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A conservative import may impact the dynamics of the importing net by
making inconsistent potential links that could have been added to that net, that
is, constraining it more strongly. An import that imposes no such constraints is
termed ultra-conservative.

An import of one net by another may also be regarded conversely as an
import by the second net of the first. If both imports are conservative, or ultra-
conservative, it may be termed a conservative, or ultra-conservative, merger of the
nets.

Since the inference patterns are such that only inclusion or coexclusion links
from nodes in one net to nodes in another can generate new links within the first
net, importing a net such that there are no inclusion or coexclusion links from the
imported net to the importing one is always a conservative import, but generally
not ultra-conservative.

Conservative imports are reversible through deletion of the imported net
provided this deletion is from the maximal canonical form. This restriction is
necessary because the purpose of some imports is to simplify the net by reducing
the number of links in the minimal canonical form and, hence, the links removed
from the original net must be restored before the imported net is removed, (for
example, in the factoring expansion pattern of §3.4).

3.3. Single node and link expansion patterns

Adding an additional anonymous node as an ideal element with up to one link
to a node in a net is an ultra-conservative merger, and the single node and link
expansion patterns of Figure 27 are always available.

Figure 27. Single node and link expansion patterns

Thus, nets are extensible by an anonymous node with a single link without logical
constraint. However, extra-logical or metalogical constraints may be applied such
as a node being specified to be a bottom or top node.

Expansion patterns based on ultra-conservative mergers provide a symmetric
contraction pattern, similar to those of the inference patterns, in that the anony-
mous node may be removed without affecting the logical interpretation of the
original net. The addition of a labeled node is conservative if there are no nodes
with that label in the net, but generally not conservative if this is not so unless
the link is one that may already be inferred.

3.4. Factoring expansion patterns

The minimal canonical form (§3.1) minimizes the number of links whilst keeping
the number of nodes constant (treating nodes in a cycle as a single node). There
are other forms of restructuring that can further reduce the number of links at the
expense of adding additional nodes. For example, one can factor several links with
a common tail or head and add an additional node to group them.
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Figure 28 left shows a net having 8 nodes and 12 links, with the links at the
top having common tails and those at the bottom having common heads. In the
centre is shown a net with 10 nodes and 10 links where two anonymous nodes
have been interpolated to factor out the commonality. The two nets have the same
logical interpretation with respect to the nodes in the original net. The import of
the anonymous nodes is ultra-conservative, and the original links are implicit, or
virtual, in that they may be inferred from the inference patterns.

A B C

I J

A B C

I J

K L LK

A B C

LK
β

A B C

α
I J

Figure 28. Example of factoring a net

On the right the factored net has been split into modules and the added nodes
have been named. The interface nodes between the modules have been duplicated
to separate the net into two simpler components.

The factoring pattern is analogous to introducing the middle term of a syllo-
gism, and Vaihinger [104, p.212-3] discusses it as an illustration of the introduction
in logic of fictions, abstract notions that are treated ‘as if’ they were real. Hertz
[67, p.248-9] uses this pattern to simplify systems of axioms and notes that the
interpolated node may be regarded as an ideal element.

Factoring clusters some collection of links in a way that reduces the arrow
crossings making common structures more apparent. In an application the result-
ing sub-structures may well suggest labels for the anonymous nodes that have been
created as significant entities in the domain of the application. It generally does
not lead to a unique canonical form as there may be several possible factorings
having the same logical interpretation as the original net.

The increased perspicuity that can result from factoring is not an artifact of
the graphical presentation of the net. If one represents the structures in Figure
28 as multisets of links then the more modular representation of the net after
factoring is also apparent.:

[I [→A, I→B, I→C, J [→A, J→B, J→C, A→K, B→K, C→K, A [→L, B [→L, C [→L]
[[I→α, J→α], [α [→A, α→B, α→C], [A→β, B→β, C→β], [β→K, β [→L]]

[[[I→α, J→α], [α [→A, α→B, α→C]], [[A→β, B→β, C→β], [β→K, β [→L]]]

The description logic translation makes the protodisjunctions and protocon-
junctions represented graphically by the interpolated nodes more apparent:

(I ⊔ J) ⊑ α ⊑ (¬A ⊓ B ⊓ C) (A ⊔ B ⊔ C) ⊑ β ⊑ (K ⊓ ¬L)

From a meaning containment perspective the factoring is innocuous because
the logical interpretation of the the original net is unchanged; the links between
the original nodes are unchanged. The ideal nodes which have been introduced
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derive content only through their links. Their lack of intrinsic content may be rep-
resented logically by making the protoconjunction or protodisjunction structural
(§5), defining the ideal nodes in terms of their links. If this is not done and they
are named to introduce additional content then extra-logical criteria are involved.

3.5. Existential status of added nodes

Vaihinger’s analysis raises the issue of the existential status of added nodes. One
may distinguish at least five aspects of the notion of existence in the protologic:
being a node (conceptual existence, daseinfrei [81, p. 51]); being a consistent node
(logical existence, [49, p.12]); being specified as an essentially top node representing
a maximally generic entity (categorical existence); being specified as an essentially
bottom node representing a single entity (singular existence); and being a bottom
node representing an entity within a specified universe of discourse (situated exis-
tence), such as a state of affairs, phenomenon, event, experience or individual, in
some situation, world or time interval specified in logical terms.

The semantification involved in naming ideal elements is not a resemantifi-
cation of the underlying logical system. It is the extra-logical semantification pro-
vided by attaching domain-specific meanings to abstract patterns within that sys-
tem that represent concepts in the domain.

3.6. Adding a bottom node, probes

A simple but important structure is a probe, a bottom node that is added to a net
but not regarded as part of it and has an inclusion or exclusion link to some of
the nodes constituting the net. Two probes will be termed distinct if they have
different sets of links.

A probe is compatible if it is in maximal canonical form, having all the links
that may be inferred from the net. A probe is admissible if it is compatible and
has no inconsistent links other than those resulting from a link to an inconsistent
node; that is, it has no unnecessary inconsistent links. If the net itself is consistent
then an admissible probe is also consistent.

Figure 29 illustrates these distinctions for a simple net with a single link
between two nodes: P1 is consistent, admissible and compatible; P2 is incompatible
because the inferable inconsistent links are not shown; P3 is inconsistent but still
incompatible because only one inconsistent link is shown; P4 is compatible but not
admissible since the inconsistent links do not derive from an inconsistent node; P5
is admissible because its inconsistent links derive from one in the net.

A B

P1

A B

P2

A B

P4

A B

P5

consistent
admissible
compatible

consistent
inadmissible
incompatible

inconsistent
inadmissible
compatible

inconsistent
admissible
compatible

A B

P3

inconsistent
inadmissible
incompatible

Figure 29. Examples of different forms of probe
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A full probe is one with a link to every node in the original net, otherwise it
is a partial probe. If there are n nodes with distinct labels in the net then there
will be 2n distinct full probes having different combinations of link types, but not
all of them may be consistent. A set of all possible distinct admissible probes is
said to saturate a net.

A probe is not unique and there is no way of specifying it to be so within the
protologic so far defined. Unicity can be specified in the metalogic by defining it
relative to its links as being the greatest node in the preorder that has those links.
The general form of this additional constraint is analyzed in §5.1 and, if pushed
down to the protologic, is shown to provide a structural conjunction [73, ch.13].

3.7. Admissible probes characterizing possible links between two nodes

The four possible probes for the two nodes A and B are:

P0: A [← [→B P1: A← →B P2: A [← →B P3: A← [→B

There are sixteen possible combinations of consistent probes and these may be
used to distinguish between the sixteen nets having two nodes linked by all possible
types of link or link combination. Figure 30 shows the admissible probes (including
the inconsistent probe Pi) for all possible links between A and B. It can be seen
that each net has a distinct characteristic set of consistent probes, and hence that
such a set may be used to identify the link between the two nodes.
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(1) (2) (3) (4) (5) (6) (7) (8)
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Pi Pi Pi

Figure 30. Admissible probes for sixteen link types

More generally, one can reconstruct the nets from functions, π and π, asso-
ciating with each node the set of admissible probes that include or exclude that
node, respectively. There is an inclusion link from A to B if the set of probes with
inclusion links to A, πA, is a subset of that with inclusion links with B, πB, and
the set of probes with exclusion links to B, πB, is a subset of that with exclusion
links to A, πA, that is πA ⊆ πB and πB ⊆ πA. There is an exclusion link from A
to B if πA ⊆ πB and πB ⊆ πA, and a coexclusion link if πA ⊆ πB and πB ⊆ πA.

The conjunction of the two tests is necessary to allow for inconsistent nodes
that would otherwise lead to spurious links because a probe has an exclusion link
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to every exclusion inconsistent node and an inclusion link to every coexclusion
inconsistent node. Unless both nodes are inconsistent the conjunction of the two
tests ensures a correct reconstruction.

As shown in Table 1, for the sixteen nets of Figure 30 the links are correctly
reconstructed from the relations between the sets of consistent probes. The final
example for net (16) is a pseudo inference pattern; all completely inconsistent
nodes are both equivalent to and contradictory to one another, playing no useful
role in inference processes.

Table 1. Reconstructing links from probe sets

πA πB πA πB πA ⊆ πB πB ⊆ πA πA ⊆ πB πA ⊆ πB

πB ⊆ πA πA ⊆ πB πB ⊆ πA πB ⊆ πA
A→B B→A A Z—B A Z Z—B

(1) {1,3} {1,2} {0,2} {0,3} false false false false

(2) {1} {1,2} {0,2} {0} true false false false
(3) {1,3} {1} {0} {0,3} false true false false

(4) {1} {1} {0} {0} true true false false
(5) {3} {2} {0,2} {0,3} false false true false

(6) {i} {i,2} {0,i,2} {0,i} true false true false

(7) {i,3} {i} {0,i} {0,i,3} false true true false
(8) {i} {i} {0,i} {0,i} true true true false

(9) {1,3} {1,2} {2} {3} false false false true

(10) {i,1} {i,1,2} {i,2} {i} true false false true
(11) {i,1,3} {i,1} {i} {i,3} false true false true

(12) {i,1} {i,1} {i} {i} true true false true

(13) {3} {2} {2} {3} false false true true
(14) {i} {i,2} {i,2} {i} true false true true

(15) {i,3} {i} {i} {i,3} false true true true

(16) {i} {i} {i} {i} true true true true

In §4.4 it is shown that this technique scales up to nets with any number of
nodes and provides extensional semantics for the paraconsistent protologic.

4. Protosemantics

The notion of semantics in the logical literature is based on translations between
a logical system and some other systems, either formal or informal. If one side
of the translation is regarded as better founded than the other then it may be
used to provide ‘foundations’ for the other. If not, then both sides may provides
insights into aspects of the other. If one system is naturalistic and informal then
the more formal system may be seen as providing an explicatum of the less formal.
Conversely the naturalistic system may be seen as providing a test of the adequacy
of its representation by the formal one.

For a universal protologic one would expect there to be a very wide variety
of significant translations between it and many other systems, providing protose-
mantics underlying each of the wide range of approaches to semantics for various
logical systems. Some of these have already been mentioned such as the algebraic
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interpretations in terms of graph theory, residuated relations and preorders. Others
have been suggested in terms of potential formalizations of notions of content and
context. The possibility of the reconstruction of nets from probes, bottom nodes
that may be regarded as representing states of affairs acting as protoindividuals,
provides extensional semantics.

This section addresses basic semantic interpretations for the kernel protologic
that are common to many logical systems, and later sections examine how they
extrapolate to further patterns of inference as they are introduced. Examples of
meaningful knowledge structures represented in the protologic are provided in §7.

4.1. Proof-theoretic semantics

Gentzen [57, §II 5.1.3] provided proof-theoretic foundations for logical systems
when he extended Hertz’s [67] approach to the definition of logical systems by
defining natural deduction inference schema comprising paired rules for the in-
troduction and elimination of logical constants. He remarks that the introduction
rules could be seen as definitions of the constants and the elimination rules as
consequences of those definitions.

The protologic has a foundational proof-theoretic semantics though its spec-
ification in terms of inference patterns, each of which licenses the addition and
deletion of a link (including some to an additional node). The patterns form com-
plementary pairs where the addition of a link defines a feature of a logical con-
stant, such as transitivity, and deletion is in harmony with addition, because the
link deleted remains ‘virtually’ present, always available to be reintroduced.

This leads to two levels of meaning for the protologic connectives: at the
logical level it has operational semantics in terms of the inference patterns; at the
metalogical level it has conceptual semantics in terms of phenomena induced by
the operations such as the idempotence, transitivity, reflexivity, and symmetry.

4.2. Truth-theoretic semantics

The graphical representation of inference used so far is to indicate inferred links
and nodes with dotted lines. However, as Figure 26 right illustrates, in larger
nets the inferred links may become difficult to discriminate. The graphic language
provides an alternative way of displaying the same information by allowing one or
more nodes to be marked and then marking the other nodes to show what kind of
specified or inferred link the marked nodes have to them.

A vertical mark placed in a node results in all those it includes being marked
with a vertical bar, and those it excludes, or exclude it, by a horizontal bar. A
horizontal mark placed in a node results in all those nodes that include it being
marked by a horizontal bar, and all those that it coexcludes, or coexclude by it,
being marked with a vertical bar.

Figure 31 shows a net in which the centre node labelled ‘A’ has different links
to five other nodes, and the effect of marking that node with a vertical mark, a
horizontal mark, or both.
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Figure 31. Propagating marks from one node to linked nodes

The marks are coloured similarly to the links to indicate the nature of the
source: brown for an asserted mark; black for a vertical bar inferred from an inclu-
sion link; blue for a vertical bar inferred from a coexclusion link; grey for a hori-
zontal bar from an inclusion link; and green for a horizontal bar from an exclusion
link (with grey having priority). It is apparent from Figure 31 that propagation
of a vertical mark through negation is through its exclusion component, and a
horizontal mark through its coexclusion component.

One can recover a familiar logical vocabulary by terming a vertical mark
logically true and a horizontal one logically false. The inference patterns shown
can then be interpreted as: ‘if A is true then B and G are true, C and D are false;’
‘if A is false then D and E are true, F and G are false;’ ‘if A is inconsistent (both
true and false) then B and E true, C and F are false, D and G inconsistent.’

When a node is marked false all those nodes included in its context are also
inferred to be marked false, and this may be viewed as the context determining
their relevance. One might prefer to say that the node has become irrelevant be-
cause its context is inapplicable rather than that it is simply false. The grey colour
of a horizontal bar for falsity distinguishes this type of inference from the other
two possibilities of the node being asserted to be false (brown), or being inferred
to be so from a node with an exclusion link being inferred false (green).

This explication of logical truth in the protologic is simply an alternative way
of representing the inference patterns in a net, a deflationary account according
to Gupta’s definition [63, p.57]. The complexity of more profound notions of truth
[76] beyond those of logic is epistemological, the consideration of issues of the
extra-logical justifications for making assertions.

The paraconsistency of the protologic corresponds to it not being bivalent and
supporting inference from nodes that are incoherent in being marked both ‘true’
and ‘false.’ The inference patterns of Figure 31 are those of Belnap’s [6] useful
four-valued logic based on ‘told true’ and ‘told false’ as independent assertions.

4.3. Intensional semantics

The set of links having the same tail node provides an intensional characterization
that node in terms of those of other nodes. A node includes itself, and this link is
part of its intension. This corresponds to nodes in the protologic so far developed
being primitive, constrained by their links to other nodes but not defined by them.

Glashoff [60] has developed an intensional semantics for the categorical syl-
logistic in which a term, A, is characterized by an intensional interpretation com-
prising a pair of disjoint subsets of a set O, (s(A), σv(A)), such that the inclusion
and exclusion links may be recovered as:
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A→B iff s(A) ⊇ s(B) and σv(A) ⊇ σv(B)
A Z—B iff s(A) ∩ σv(B) ≠ ∅ or σv(A) ∩ s(B) ≠ ∅

He does not exemplify particular interpretations of members of O but it is
reasonable to suppose each member is a ‘merkmal,’ ‘mark,’ ‘feature,’ ‘property,’
‘quality,’ ‘characteristic’ or a similar term used technically or colloquially for a
component of content or meaning, or atom of intensionality.

The pair of sets may be reduced to a single set by using a syntactic marker,
such as an overbar, to distinguish each member of σv(A) from those of s(A), and
merging the two sets to represent the content of A, c(A). If content is defined
to be inconsistent if one pair of members has the same label both marked and
unmarked, then one can recover the links as:

A→B iff c(A) ⊇ c(B)
A Z—B iff c(A) ∩ c(B) is inconsistent

which nicely characterizes content inclusion as meaning containment, and content
exclusion as meaning incompatibility.

Glashoff’s construction provides the basis for the mereological explication of
the inclusion of content in the kernel protologic, complementary to Euler diagrams
as a mereological explication of context.

An intensional partition of a net in the kernel protologic (without coexclusion
links) is the set of subgraphs each constituted by a single node together with the
two sets of nodes at the head of the inclusion and exclusion links of which it is the
tail (corresponding to Glassoff’s [60, §1.2.2 ] sets of positive and negative terms).
If X is a node in a net:

s(X) = {Y: X→Y}
σv(X) = {Y: X [→Y}

defines an intensional partition where all links are included, and the recovery of
the net is a simple merger of the node sub-graphs equivalent to:

A→B iff B ∈ s(A)
A Z—B iff B ∈ σv(A)

When the net characterized is in maximal canonical form, Glashoff’s recovery
of the connectives may be seen as a consequence of the inclusion inference pattern
and the exclusion link definition. More complex intensional partitions satisfying
these definitions may be developed by following Glashoff and treating node labels
as designating non-empty sets which conform with the inclusion and exclusion
inference patterns and whose members represent atoms of intensionality.

Such sets may be subsumed within the protologic by representing their mem-
bers as additional nodes with links that have not been explicitly specified as part
of the net. The acceptance that node labels may designate implicit links provides
an intensional semantics in terms of the explicit and implicit structure of a net
that explicates notions of meaning and content within the protologic without intro-
ducing additional constructions. In particular, it recognizes that nodes may have
unspecified common content.
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Coexclusion adds a third link type to the kernel protologic and the intensional
partition of a net may be extended to encompass this by defining a third set, ω(X),
characterizing the coexclusion links of node X such that:

ω(X) = {Y: X [ [→Y}
The net can be recovered by the merger of the node sub-graphs, equivalent to
adding the recovery of coexclusion links through:

A [ [→B iff B ∈ ω(A)

4.4. Extensional semantics

Extensional semantics in which a logical structure is characterized through the
set-theoretic relations between the sets of individuals providing models that are
consistent with that structure play a central role in modern logic. They can be
studied in the protologic without introducing an additional construct to represent
an ‘individual’ by noting that the only feature required in a suitable entity is that
it be impredicable or noninstantiable [61], that is, specified to be a bottom node
in the protologic.

Thus, the question becomes one of whether a sufficient collection of bot-
tom nodes may be used to reconstruct the inclusion and exclusion links between
the non-bottom nodes in a net. Probes were introduced in §3.6 as bottom nodes
added to investigate a net from outside in order to infer its internal structure as
constituted by the links between its nodes.

Extensional semantics for syllogistic systems with essentially the same con-
nectives as inclusion and exclusion links have been developed [34] and the tech-
niques and results are applicable to the protologic. The standard result is that,
for a consistent net in the kernel protologic, a set of consistent full probes that
saturates the net by including all possible distinct examples of such probes, may
be used to reconstruct the inclusion and exclusion relations in the net [80]. If πA
is the set of probes that include node A, then:

A→B iff πA ⊆ πB
A Z—B iff πA ∩ πB = ∅

The algorithm is basically that of §3.6 illustrated in Table 1 since πA ∩ πB = ∅ is
equivalent to πA ⊆ πB if the net is consistent (since π is then the complement of π
relative to the set of admissible probes).

Coexclusion relations may be reconstructed in terms dual to those for exclu-
sion relations: A Z Z—B iff πA ∩ πB = ∅, which is equivalent to A Z Z—B iff πA ⊆ πB if
the net is consistent.

If the net is inconsistent, there will be one or nodes where the associated set
of consistent nodes is empty and the algorithm would infer that such nodes include
and exclude all others, that is, the structure of the links leading to inconsistency
would be lost. As noted in §3.6, the algorithm can be extended to recover the full
structure from the set of admissible probes some of which may be inconsistent.

The inference of A→B from the subset relation carries over, but that of A Z—B
and A Z Z—B from the disjoint relations does not; inconsistency arises because a node
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has been specified that violates the exclusion or coexclusion link constraints. How-
ever, these relations can be inferred through a slight extension to the definitions
(noting that π, the set of probes that exclude a node, is no longer the complement
of π in inconsistent nets). The extended reconstructions are:

A→B iff πA ⊆ πB and πB ⊆ πA
A Z—B iff πA ⊆ πB and πB ⊆ πA
A Z Z—B iff πA ⊆ πB and πB ⊆ πA

For consistent nets, where π is the complement of π, these definitions reduces to

A→B iff πA ⊆ πB A Z—B iff πA ∩ πB = ∅ A Z Z—B iff πA ∩ πB = ∅.

As an illustration of the reconstruction algorithm, consider the set of admis-
sible probes (Table 2) for the net of Figure 16, the last two probes of which are
inconsistent, one having a positive link to C and another to D. Table 3 shows the
π and π sets of probes associated with each node.

Table 2. Admissible probes for the net of Figure 16

A B C D E F
1 [→ [→ [→ [→ [→ [→
2 [→ [→ [→ [→ → [→
3 [→ [→ [→ [→ [→ →

4 [→ [→ [→ [→ → →

5 [→ → [→ [→ [→ →

6 [→ → [→ [→ → →

7 → [→ [→ [→ [→ [→
8 → [→ [→ [→ [→ →

9 [→→ [→→ [→→ [→ [→ →

10 [→→ [→→ [→→ [→→ [→ →

Table 3. Admissible probes associated with each node

π π

A {7,8,9,10} {1,2,3,4,5,6,9,10}
B {5,6,9,10} {1,2,3,4,7,8,9,10}
C {9,10} {1,2,3,4,5,6,7,8,9,10}
D {10} {1,2,3,4,5,6,7,8,9,10}
E {2,4,6} {1,3,5,7,8,9,10}
F {3,4,5,6,8,9,10} {1,2,7}

The subset relations for π and π reconstruct the maximal canonical form of
the net of Figure 16 as shown in Table 4.

Table 4. Extensional reconstruction of links for the net of Figure 16

A ( Z—,B), (← Z—,C), (← Z—,D), ( Z—,E)

B ( Z—,A), (← Z—,C), (← Z—,D), (→,F)
C (→ Z—,A), (→ Z—,B), ( Z—,C), (← Z—,D), ( Z—,E), (→,F)

D (→ Z—,A), (→ Z—,B), (→ Z—,C), ( Z—,D), ( Z—,E), (→,F)

E ( Z—,A), ( Z—,C), ( Z—,D)
F (←,B), (←,C), (←,D)
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5. Structural connectives

The focus of prior sections has been on logical structures based on the basic inclu-
sion and exclusion connectives in order to demonstrate the representational and
inference capabilities of the foundational logical connectives. This contrasts with
specifications of logical systems that take structural connectives as primitive.

Structural connectives may be introduced in the protologic as ideal elements
[71, 7] represented by the addition of nodes that are extremal relative to a set of
links in the order relation associated with →. Koslow [73, 74] uses this approach
to generalize Gentzen’s introduction and elimination rules for logical connectives.
He considers a general implication relation subject to the normal axioms for a
consequence operator [14] and defines the usual structural connectives as extremal
structures in the order relation of implication/consequence.

5.1. Structural conjunction

The inclusion and exclusion links out of a node may be viewed as specifying a
protoconjunction (§2.4) in that, if a probe includes that node then, from the inclu-
sion and exclusion inference patterns, it will also include or exclude all the linked
nodes. In the terminology of §4.2, if the node is marked true all the nodes that it
includes will be marked true and those it excludes false.

However, the converse does not apply. One cannot infer that the node is true
if some or all of the nodes to which it has outgoing links are marked appropriately.
One can, however, define a constraint that specializes a node to be a full structural
conjunction through an inference pattern that specifies this.

Definition: a node is the conjunction of a set of outgoing links iff any node with
the same links includes it.

Figure 32 is a graphical representation of this definition. The outgoing links
defining the conjunctive node at the bottom left are distinguished by conjunctive
variants of the inclusion and exclusion arrows that have a heavier head. Any node,
such as that at the bottom right, that has the same set of outgoing links may be
inferred to include the conjunctive node.

· · ·

isis or or
generic arrows to same node are of same type

ellipsis symbol, · · ·, indicates one or more conjucts

Figure 32. Structural conjunction inference pattern

If the bottom node on the right is regarded as a probe then the inference
pattern implies that any probe that marks the nodes to which the conjunctive
node has inclusion links true, and those to which is has exclusion links false, also
marks node the conjunctive node as true. These are the converse truth conditions
defining a full structural conjunction.
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The inference pattern of Figure 32 parallels Koslow’s [73, §13.1] approach to
the definition of conjunction but takes into account exclusion as well as inclusion
links. It specifies that, in terms of the order relation associated with →, the con-
junctive node is maximal among all nodes having the outgoing links specified by
the heavier arrows.

Arbitrary conjunctive nodes may be freely added as ideal elements to any net
but they will not always be consistent; for example, if inclusion links are specified
to nodes between which there is an exclusion link. In terms of content containment,
these ideal nodes are defined by their conjunctive links and have no other content.
However, if additional links are added such that they include or exclude additional
content then the nodes become rules imposing meaning constraints upon the net
that reflect extra-logical normative or empirical contingencies.

5.2. Structural disjunction

The inclusion and coexclusion links into a node may be viewed as specifying a
protodisjunction (§2.4) in that, if a probe excludes that node then, from the ex-
clusion and coexclusion inference patterns, it will also exclude or include all the
linked nodes. In the terminology of §4.2, if the node is marked false all the nodes
that it includes will be marked false and those it coexcludes true.

However, the converse does not apply. One cannot infer that the node is
false if all the nodes from which it has incoming links are marked appropriately.
One can, however, define a constraint that specializes the node itself through an
inference pattern that allows this to be inferred.

Definition: a node is the disjunction of a set of incoming links iff it includes any
node with the same links.

Figure 33 is a graphical representation of this definition. The incoming links
defining the disjunctive node at the top left are distinguished by disjunctive vari-
ants of the inclusion and coexclusion arrows that have a double head. Any node,
such as that on at the top right, that has the same set of incoming links may be
inferred to be included in the disjunctive node.

isis or or
generic arrows to same node are of same type

ellipsis symbol, · · ·, indicates one or more disjuncts

· · ·

Figure 33. Structural disjunction inference pattern

If a probe has exclusion links to the tail nodes of the inclusion links, and
inclusion links to the tail nodes of the coexclusion links, defining the disjunctive
node then it may, without inconsistency, have an exclusion link to a an arbitrary
node with inclusion links from these nodes such as that at the top right. Such a
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node also has an inclusion link from the disjunctive node so that an exclusion link
may be inferred from the probe to the disjunctive node. That is, if the tail nodes
of the incoming links defining the disjunctive node are all marked to propagate
false then the disjunctive node is false. This is the converse condition defining a
full structural disjunction.

The definition of structural disjunction specifies that, in terms of the order
relation associated with→, the disjunctive node is minimal among all nodes having
the incoming links specified by the double arrows. This differs from Koslow’s [73,
§13.1] definition which specifies the maximality of a different construction, but the
two definitions are equivalent.

An important application of structural disjunction is to represent abduction
as inference to those abducibles consistent with a state of affairs [47]. If the dis-
juncts in Figure 33 are bottom nodes representing possible states of affairs, such
as Millikan’s [82] substance templets, asserting the disjunction true for a particu-
lar state of affairs represents the abductive hypothesis that one or more of those
templets must fit that state. Disjunctive inference then derives the consequences
of this hypothesis.

5.2.1. Material implication and other sentential calculus formulae. The inclusion
link, →, is appropriate to represent entailment, necessary, rather than material,
implication. It specifies relations between terms prescribing their proper usage,
conventions of language rather contingencies of a world. In addition the implicative
conditional is not represented in a form subject to inference; it may only be used
in the protologic, not mentioned.

The disjunctive inference pattern may be used to represent a material im-
plication as a logical structure in which the implication is itself represented as a
node subject to inference. Figure 34 left illustrates the simplest case. If node M is
asserted true then at least one of its disjuncts may be inferred to be true. Thus ¬A
∨ B is true, the classical interpretation of A ⊃ B as material implication. However,
the conditioning on M means that what is represented is M ⊃ (A ⊃ B).

... ... ... ...

... ...
M

A B
M

AnA1 NnN1 BnB1 MnM1

Figure 34. Representing material implication in the protologic

This non-truth-functional representation in terms of implication rather than
equivalence avoids the so-called ‘paradoxes of material implication’ [42, §2.3]. The
only situation in which the truth value of M is determined by those of A and B is
that it is inferred false if A is asserted true and B false, that is when the material
implication does not hold.

Figure 34 right shows a more general form of material implication where there
are multiple disjuncts of nodes with multiple outgoing links. This represents:

M ⊃ (((A1 ∨...∨ An) ∧...∧ (N1 ∨...∨ Nn)) ⊃ ((B1 ∧...∧ Bn) ∨...∨ (M1 ∧...∧ Mn)))
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Thus a disjunctive node together with inclusion/exclusion links may be used to
represent a material implication between complex clauses with premises in con-
junctive normal form and conclusions in disjunctive normal form.

6. Defeasible inference

Paraconsistency in a logical system is desirable in that an inconsistency is local-
ized and does not undermine reasoning outside that locale. However, such contain-
ment alone is inadequate to support reasoning within the logical system about the
sources and consequences of the inconsistency. These aspects of the inconsistency
remain at the metalogical level.

Reasoning about inconsistency can be pushed down to the logical level by
introducing nodes representing potential inconsistencies as anomalies, and playing
no role unless nodes representing normal states of affairs do not apply. This may be
implemented through a preference relation between possible states of affairs rep-
resented as disjuncts of a disjunction such that, when that disjunction is asserted
true, a disjunct is inferred to be false if any preferred disjunct is not false.

If an anomalous state of affairs is represented as a disjunct that is less pre-
ferred than the other disjuncts, it will be inferred false and play no role unless all
the other disjuncts are false (non-applicable). Then, being the only non-false node,
it will be inferred to be true (applicable).

6.1. Preferential defeasible inference

A B

The preference relation allows a partial order to be specified between
the nodes of a structural disjunction. It is represented textually by
the symbol, <, with A<B specifying that node B is preferred to node
A, and in a net by a preference link as shown on the right.

The associated inference patterns are shown in Figure 35: left, transitivity of
preference; right, exclusion if a preferred node is included or not linked (that is, it
is not excluded).

......

Figure 35. Preference inference patterns

In terms of contextual semantics, if the context of a node is part of that of
a node that has sub-contexts then it is assumed to be disjoint with that of a less
preferred sub-context if it is not disjoint with that a more preferred one.

These inference patterns are only applicable once all other inference patterns
have been applied. They, and ensuing inferences, are defeasible because they are
based on the preference relation. The source of the defeasibility is apparent in the
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inference pattern on the far right which licenses an inference to be made when the
truth value of a node is unspecified.

6.1.1. Normal defaults. The preference inference patterns may be used to repre-
sent the normal defaults [94, 77] used in applications of nonmonotonic reasoning,
that a proposition is true unless there are grounds for it being false. Figure 36
from left to right shows nets representing, from left to right: :A, that A is nor-
mally true; A:B, that A normally materially implies B; A:B and ¬B:¬A, Lehman’s
[77, §6] preferred representation of a default material conditional that also incorpo-
rates default modus tollendo tollens; and a more complex combination of defaults
such that: A is normally true; B false; A normally implies C; but A and B normally
implies not C.

:A

A

A:B

BA

A:B ¬B:¬A

BA

:A :¬B A:C A⊓B:¬C

CBA

Figure 36. Normal defaults

Figure 37 from left to right illustrates default reasoning: (1) when no truth
values are asserted for A and B, no inferences are made about them (the nodes
inferred false by the preference inference patterns are coloured mauve); (2) when
A is asserted true, B is defeasibly inferred true; (3) if B is also asserted false, this
is accepted and an anomaly is inferred (anomalous node is coloured red as an
inference from the disjunctive definition); (4) if B is asserted false, A is defeasibly
inferred false (if the inference is overridden then (3) results again).

A:B ¬B:¬A

BA

A:B ¬B:¬A

BA

A:B ¬B:¬A

BA

A:B ¬B:¬A

BA

(1) (2) (3) (4)

Figure 37. Inference from normal defaults

This implementation of defeasible reasoning encompasses the test cases in
the literature collected in [77], and more complex ones such as Stalnaker’s [100]
combinations of classical and default inference. It also encompasses abductive, or
case-based, reasoning where the disjuncts represent states of affairs templets to be
fitted to a particular state of affairs.

7. Some illustrative applications

A major objective of this article has been to address Béziau’s [11] proposal that
universal logic should be able to support other fields of knowledge to build the right
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logic for the right situation. This section provides some brief illustrative example
of how the protologics developed above can be applied in other disciplines.

7.1. Merging biological taxonomies

Reasoning about taxonomies is important to biological science, for example in
analyses of the consequences of merging taxonomies of the same species from
different sources. There are literature studies of the use of powerful theorem provers
to reason about taxonomic merging [103], but the same results may be obtained
in the kernel protologic in a more perspicuous form.

Figure 38 presents an example of two simple taxonomies, their proposed
merging through the articulations shown, and queries arising about the outcome.

A

C B

D

E E

DA

taxonomies articulations

C E

queries

implied?

C D

consistent?

A E

consistent?

B

Figure 38. Some taxonomy articulation queries [103, p.198]

The three nets on the left of Figure 39 shows the inferred links corresponding
to the to the three queries: there is no inferred link from C to E; equivalencing C
and D makes the net inconsistent; but doing so for A and E does not.

A

C B

D

E

A

C B

D

E

A

C B

D

E

A

C B

D

E

A

C B

D

E

A

C B

D

E

Figure 39. Inferred responses to the taxonomy articulation queries

The nets on the right provide the same information in terms of true-false
marking: if C is marked true there is no propagation to E; if C is equivalenced
to D then node D is marked false in all consistent truth-assignments, that is,
inconsistent; if A is equivalenced to E there are no such inferences.

The study cited represents the taxonomic data by similar diagrams but treats
inferences from them as informal and resolves the queries through logical symbol-
ism and a first-order logic theorem prover. However, the diagrams themselves can
be used to provide formally well-founded responses to the queries.

7.2. An expert system

Figure 40 shows a net implementing a simple expert system [32] that prescribes
hard or soft contact lenses for a client having the attributes the four determinables
shown at the top left leading to one of three prescriptions shown at the top right.

The solution is specified in terms of conjunctions specifying rules and excep-
tions: a client whose tear production is normal should be prescribed a hard lens
if astigmatic and a soft lens if not; however, there is an exception to the soft pre-
scription if the patient is presbyopic and myopic, and to the hard if hypermetropic
and old. The inferences are shown when the state of affairs representing a client
at the bottom of Figure 40 is activated by marking it true.
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State of Affairs

myopiaastigmatism

prescription

presbyopia

tear production
contact

lens clientFrame
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Figure 40. Inference from rules with exceptions in an expert system

7.3. Defining an art object

The problem of defining what it is to be an art object has been a continuing
issue for the philosophy of art community since ancient times [35, 30]. It is gen-
erally accepted that a definition in terms of necessary and sufficient conditions is
not appropriate [106], and a variety of other classificatory techniques have been
investigated such as family resemblances [28] and cluster concepts [55].

Gaut [56] has defined the notion of an art object as a cluster concept, and
one may argue [51] that the definitional aspects of his model lie in the frame
constituted by the eleven determinables that he uses to characterize art objects.
Figure 41 illustrates the use of the kernel protologic and default reasoning to
analyze aspects of his classificatory structure.

At the top are shown: left, four of Gaut’s determinables; right, the frame for
an art object that represents the relevance of these determinables. Beneath these
are shown templets for five types of art of art object including, on the left, that
for an ‘ideal art object’ that includes all the positive determinates. These together
capture the essence of Gaut’s analysis of art as a cluster concept.

The defaults at the bottom capture expectations when one is told that some
entity is an art object: that, by default, it should have the characteristics of an
ideal art object. The markings illustrate the reasoning when it is asserted that
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Figure 41. Default reasoning about art objects

something is an art object but not created with the intent that it be one, such
as Duchamps’ readymades [40]. The default inferences are that it has the other
characteristics of an ‘ideal art object’ but is only an ‘incidental art object.’

A similar structure of defaults may be used to represent logical aspects of
fiction such as Ryan’s [98] principle of minimal departure from expectations cor-
responding to those of a world appropriate to the fictional genre.

7.4. Representing states of affairs, individuals and relations

The notions of states of affairs [2, 72] and their constituent individuals and rela-
tions are important to most applications of logical systems but their appropriate
definition raises many deep philosophical issues [43] leading to a range of different
approaches to their representation. A universal logic framework needs to be able
to represent these adequately whilst making no commitment to any in particular.

The protologic as developed above does not require the definition of indi-
viduals as primitive entities for any of the technical purposes for which they are
normally required. Set-theoretic extensional semantics have been provided in §4.4
based on probes simply defined as bottom nodes in §3.6. Bottom nodes satisfy
Gracia’s impredicability criterion for an individual and could be termed proto-
individuals but they need not satisfy Strawson’s [102, p.214] criteria that they
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be distinct and reference some other entity. Extensional semantics are a technical
feature intrinsic to the protologic involving no other connotations or denotations.

Figure 42 is a simple illustration of the representation of a state of affairs
referencing an individual based on the well-known example that Ramsey [92] pro-
vided to counter Russell’s [97] argument that there was an essential logical distinc-
tion between universals and particulars. The anonymous bottom node represents
a templet for a state of affairs in which an individual named ‘Socrates’ exhibits
behaviour that can be characterized as ‘wise.’

Socrates wise

Figure 42. Representation of an individual

The nature of the Russell-Ramsey debate may be analyzed in terms of Figure
42. Ramsey’s position corresponds to the anonymous node being symmetrically
‘some Socrates’ entity and ‘some wise’ entity. However, in its role of representing
reference to the state of an individual, it may be distinguished from the other nodes
in being an impredicative bottom node corresponding to the focus in Russell’s
article on singulars as states of affairs.

The bottom node satisfies Gracia’s criterion for an individual if it is intended
to represent a particular situation. If it is intended as a generic substance templet
[82] that applies to particular states of Socrates then it does not, but those in-
stances of which it is predicated will satisfy the criterion. That is, impredicability
is not an absolute distinction but rather a pragmatic feature of use.

Strawson’s criterion of reidentification captures the essence of the intent be-
hind the use of proper names, to track what is imputed to be the ‘same’ individual
in different situations. That is, reference to an individual is intended to be a rigid
designator and this is also a pragmatic rather than logical distinction [5].

The bottom node will satisfy Strawson’s criterion of distinctness if the term
‘Socrates’ is always used to identify what is intended to be a single individual,
but, if it is applicable to several individuals, then additional identifying terms may
be required to track the intended individual. That is, proper names may require
contextual information to disambiguate their intended application [87, p.295].

As Engel [43, §3.3.2] notes, Ramsey’s argument concerns the logical, rather
than ontological, status of particulars and universals. The distinction between a
node being used to reference an individual and to ascribe a property to one still
needs to to be representable, but not necessarily as a logical primitive.

Castañeda [31] models individuation as requiring an individuator operator
providing indexical access. One can model the individuator operator as one that
infers which bottom nodes would make the specified indexical nodes true, and this
is implemented in the protologic through the form of abductive inference discussed
in §5.2. That is, given the assignment of truth values to the indexical nodes, one
considers the disjunction of all the bottom nodes representing states of affairs that
have not been inferred to be false and draws the inferences common to them.



38 Brian R. Gaines

This corresponds to Perry’s [88, 93] analysis of proper names as function-
ing to index mental files of information about an individual, it may be that a
combination of name and context is required to disambiguate the file access. One
may generalize this to any combination of terms, including names, being used to
provide a context sufficiently constrained to identify a particular individual, as in
Orilia’s [84] contextual descriptivist account of singular reference.

7.4.1. Venus as morning star and evening star. To illustrate the representation of
states of affairs, Figure 43 represents the two perceived states of Venus that Frege
[48] used to exemplify his distinction between sense and reference. The planet
appears as a bright celestial object near the rising or setting sun at dawn or dusk.
Early Greek astronomers regarded the phenomena as arising from different celestial
bodies and named them differently [105, n.23]. As shown, abductive inference over
the bottom nodes marks the common features as defeasibly true.

VenusMorning
Star

Evening
Star

dawn dusk

time of day

duskdawn

celestial object

bright

Morgenstern Abendstern
near sun

Ἓσπερος

HesperusPhosphorus

Φωσφόρος

Figure 43. Representation of perceived states of Venus

The net illustrates the major issues. Many names may be used to reference
the same physical entity, and someone may not be aware that they do not refer to
different ones; removing the node for Venus illustrates this. Someone may know
some of the names and that they have a common referent but not know those
names in another language; removing some state-specific names illustrates this.

Abductive inference after marking the nodes representing dawn or dusk as
true leads to all the morning star names and Venus being marked true but none of
the evening star names, and vice versa. That is, it is reasonable to have different
names that reference the same entity in different contexts.

7.4.2. Representing relations and structural universals. While the representation
of individuals requires no additional constructs in the protologic, that of relations
requires distinguishing the states of affair that are related. One version imple-
mented in the protologic is based on Orilia’s [85] representation of neutral relations
[46] in terms of onto-thematic roles.

As shown in Figure 44, relations are represented by nodes having relational
links represented by arrows having distinctive tails that serve to group relational
links of the same type. There may be any number of types of relational links.
Nodes with only one type of relational link represent symmetric relations, and
those with two or more asymmetric relations. On the left are inference patterns
through which relational links interact with inclusion links.
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Anthony Cleopatra
loving

loves loved
personal

relationship

personperson

agent patient

is or or ...

individual

Anthony Cleopatra

Figure 44. Relation inference patterns and example relation

At the bottom centre ‘Anthony’ and ‘Cleopatra’ are typed as two distinct
individuals, with the node ‘individual’ making Castañeda’s individuator operator
available as needed. On the right, the state of affairs where there is a loving
relationship between them is represented as a personal relationship having two
thematic roles, ‘loves’ as agent and ‘loved’ as patient. Inferences from the patterns
are shown with dotted lines.

This representation avoids many of the known issues of representing relations
[46, 85, 54]. There is a single relation and the notion of converse is a matter of
its linguistic expression. Subordination of relations is represented. The relational
arrows have no ontological role but serve only to link the constraints on each
component of a relation. The components are distinguished by their thematic
roles, not their positions or types. The roles themselves are simply nodes that
may be part of a net representing their logical interrelationships. The generic
linguistic roles mark those that include them as relational roles, providing similar
functionality to an individuator operator. Additional types of relational arrows
may be added to represent other roles such as ‘instrument.’

Figure 45 exemplifies Armstrong’s [2] structural universals in terms of a tem-
plet of the states of affairs and their relationships in a water molecule.

Atom

Oxygen HydrogenO H

D Deuterium

T

Chemical
bond

DO—H

16O—D

O H

16O—1H

Atom Atom
O—H

Tritium

Atom Bond Water Molecule

Figure 45. Relational structure of a water molecule

From left to right: the determinable, atom, is represented with oxygen, hydrogen
and their isotopes as determinates; the hydroxyl chemical bond is represented
together with some of its forms; the structure constituting a water molecule is
represented as a structural universal having two hydroxyl bonds with a common
oxygen atom and two distinct hydrogen atoms [86].



40 Brian R. Gaines

8. Conclusions

Over the past two decades, Béziau’s [9] notion of universal logic as an integrative
conceptual framework for all logical systems that presupposes no particular axioms
has provided a focal point for a wide range of historical and ongoing studies of
foundational issues in logic and the nature and relationship of logical systems, as
did Birkhoff’s [23] notion of universal algebra for foundational studies of algebras.

Béziau also envisioned [11] that the universal logic conceptual framework
could help many fields of knowledge build the right logic for the right situation,
noting that for some disciplines mathematical abstract conceptualization is more
appropriate than symbolic formalization. This idea has so far had less impact al-
though Béziau has exemplified it in his own research, for example, on the diverse
interpretations of the square of oppositions and the special issue of Logica Univer-
salis on ‘Is logic universal?’ [16] raising a range of cross-disciplinary issues [52].

One should not expect a significant impact of the conceptual framework of
universal logic on other disciplines to develop rapidly because the diffusion of
knowledge and techniques between different fields of knowledge is known to be
intrinsically slow [96]. In particular, the symbolic formalism of the normal exposi-
tions of logic may be an impediment to diffusion and it might help expedite wider
adoption if the conceptual framework of universal logic could be presented in a
way that is more accessible whilst remaining formally sound.

This article has provided an alternative formalism that avoids mathematical
symbolism by extending Hertz’s [67] original graphic presentation of the principles
of logical deduction to encompass the sequent calculus that he, Gentzen [57], and
others developed. The approach is based on past research on the formal representa-
tion of semantic networks as a practical tool applicable to the development, repre-
sentation and application of knowledge structures in diverse applications [50, 51].

One side-effect of the techniques used to avoid mathematical symbolism is
that the knowledge structures used in various disciplines become represented in a
graphical form that often mimics the informal diagrams used in those disciplines
yet allows formal logical inference patterns to be applied.

The conceptual and computational tools illustrated in this article have proved
useful in several disciplines, and should, hopefully, contribute to the wider adop-
tion of Béziau’s visionary ideas. Universal logic can provide a mathematical abstract
conceptualization that is logically sound, readily comprehensible and practically
useful in the clarification, communication and evaluation of ideas, theories and as-
sociated controversies in many fields of knowledge. Facilitating this is a significant
and challenging research objective for the universal logic community.
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2007.

16. , Preface: Is logic universal?, Logica Universalis 4 (2010), no. 2, 161–162.

17. , The power of the hexagon, Logica Universalis 6 (2012), no. 1-2, 1–43.

18. , Universal logic: An anthology, Birkhäuser, Basel, 2012.
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71. , Über das Unendliche, Mathematische Annalen 95 (1926), no. 1, 161–190.

72. Mark Jago, Setting the facts straight, Journal of Philosophical Logic 40 (2011), no. 1,
33–54.

73. Arnold Koslow, A structuralist theory of logic, Cambridge University Press, Cam-
bridge, 1992.

74. , Structuralist logic: implications, inferences, and consequences, Logica Uni-
versalis 1 (2007), no. 1, 167–181.
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