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Abstract

Object-oriented class libraries offer the potential for individual researchers to manage the large
bodies of code generated in the experimental development of complex interactive systems. This
article analyzes the structure of such a class library that supports the rapid prototyping of a wide
range of systems including collaborative networking, shared documents, hypermedia, machine
learning, knowledge acquisition and knowledge representation, and various combinations of
these technologies. The overall systems architecture is presented in terms of a heterogeneous
collection of systems providing a wide range of application functionalities. Examples are given
of group writing, multimedia and knowledge-based systems which are based on combining these
functionalities. The detailed design issues of the knowledge representation server component of
the system are analyzed in terms of requirements, current state-of-the-art, and the underlying
theoretical principles that lead to an effective object-oriented implementation. It is shown that
modeling the server through intensional algebraic semantics leads naturally to an open-
architecture class library into which new data types may be plugged in as required without
change to the basic deductive engine. It is concluded that the development of a principled class
library targeted on complex interactive applications does empower the individual researcher in
the rapid prototyping of experimental systems. However, it is noted that much of the power of
the approach stems from the cumulative evolution of the class library through successive
applications, and hence the results may not generalize to team projects where greater rigidity is
required in the class library in order to facilitate project management and inter-member
coordination.

1 Introduction

One of the most difficult problems that faces researchers experimenting with complex interactive
systems for real-world applications is the management of the large bodies of code generated in
developing the systems. Personal computer users now commonly experience rich, multi-
functional networked environments involving the integration of a wide range of applications. As
the scope and functionality of such environments increase, it is becoming problematic to
experiment with innovative applications since the development effort required can be very
substantial while the utility of the research may be uncertain until empirical studies can be
undertaken with a prototype system.

The object-oriented programming paradigm has been presented in the literature as providing
capabilities for managing large bodies of code through structured modular decomposition that
simplifies code generation and maximizes the possibilities for reuse (Booch, 1991). However,
the effectiveness of the paradigm in providing support for large-scale software development
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through modularity and reuse has not yet been proven (Biggerstaff and Perlis, 1989a,b). It is to
be expected that an object-oriented approach alone will not make a major difference to the
problems of managing large-scale software development involving many people. The human
factors of such projects often dominates the technological factors in determining factors critical
to success, and it is now generally accepted that technology can only be used effectively when a
high level of human process management has been achieved (Humphrey, 1989). For researchers,
however, different questions apply since the development resources available are generally small
and the requirement is for powerful tools to support the individual researcher in rapidly
prototyping complex systems that have to be sufficiently stable for purposes of experiment but
do not, initially at least, require the full support of a commercial product.

This article describes experience in the application of the object-oriented paradigm to the
development of knowledge support systems involving a wide range of complex, interactive
technologies. The results suggest that a researcher, or small research team, can develop a class
library that supports the rapid prototyping of a very wide range of systems including
collaborative networking, shared documents, hypermedia, machine learning, knowledge
acquisition and knowledge representation, and various combinations of these technologies. That
is, the class library approach to development does empower the individual researcher and enable
complex systems to be developed rapidly for purposes of experimental testing.

The following section gives an overview of the types of system that have been developed around
the class library described, and the remainder of the paper focuses on one major application, that
of the development of a principled, open architecture knowledge representation server (KRS)
used to support many of the other applications. The server development is of particular interest
because it demonstrates the links between the underlying theory of an application and its object-
oriented implementation. It also exemplifies a technology that is of widespread application in
many knowledge-based interactive systems.

2 Knowledge Support Systems

Expert systems, intelligent tutoring systems, knowledge acquisition systems, and a range of other
knowledge-based systems, are examples of technologies supporting human knowledge
processes. So are many other more routine technologies, such as electronic mail and desktop
publishing. In system development we are moving towards the integration of a wide variety of
such knowledge support systems developed by different research communities (Gaines, 1990b),
for example:
• The knowledge acquisition community has generated requirements for systems to incorporate

knowledge elicitation and analysis modules automating expertise transfer (Boose and Gaines,
1988; Gaines and Boose, 1988).

• The machine learning community has generated requirements for systems to incorporate
inductive modeling modules automating empirical induction (Michalski, Carbonell and
Mitchell, 1986).

• The case-based reasoning community has generated requirements for systems to incorporate
comparison modules automating analogical reasoning (Kolodner, 1988).

• The natural language and machine translation communities have generated requirements for
systems to incorporate linguistic analysis and generation modules automating language
understanding (Cullingford, 1986; Lehrberger and Bourbeau, 1988).
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• The knowledge representation, explanation-based learning and symbolic reasoning
communities have generated requirements for systems to incorporate deep reasoning modules
automating reductionist derivation (Hobbs and Moore, 1985; Cercone and McCalla, 1987).

• The intelligent tutoring community has generated requirements for systems to incorporate
user modeling modules automating individualized knowledge transfer (Wenger, 1987).

• The electronic mail and teleconferencing communities have generated requirements for
systems to incorporate communication modules automating inter-person communication
(Hiltz, 1984; Vervest, 1988).

• The electronic publishing  community has generated requirements for systems to incorporate
typographic and graphic modules automating knowledge presentation (Vliet, 1988).

• The information retrieval community has generated requirements for systems to incorporate
knowledge indexing modules automating contextual retrieval (Oddy, Robertson, Rijsbergen
and Williams, 1981).

• The visual programming community has generated requirements for systems to incorporate
interactive graphic modules automating visual interaction (Shu, 1988).

• The hypermedia community has generated requirements for systems to incorporate
knowledge linkage modules automating associative thinking (Barrett, 1989).

• The computer support of cooperative work community has generated requirements for
systems to incorporate knowledge-sharing modules automating group collaboration (Greif,
1988).

Each of these research communities has its own major specialties, conferences, literature and
deliverables, and yet from a knowledge support systems perspective they are all closely
interrelated in providing support of human knowledge processes. Moreover, from a user
perspective the systems developed that provide services in each of the specialist sub-disciplines
are complementary tools to which access should be provide through an integrated environment.
One requirement of the research program of which the work described in this article is part has
been to provide a software environment for research on knowledge support systems spanning the
range of applications listed above, and their various combinations.

Figure 1 shows the architecture of the family of knowledge support systems for the Apple
Macintosh supported by the class library discussed in this paper. It is shown as a ‘jigsaw puzzle’
of loosely coupled components because that is the way the individual major sub-components
have been designed, implemented and used. That is, in terms of overall functionality the system
consists of a number of relatively independent applications that operate effectively as stand-alone
programs, but can also be coupled together through inter-application protocols in various forms
of integrated system. Underlying all the applications is a common class library with modules that
are reused in different ways in various applications. The class library provides all user interface
functionality and hence supports the provision of a uniform style of access to all applications. It
also provides filing, networking, inter-application communication protocols, and the wide range
of data structures required by the different applications, and hence it exemplifies the possibility
of factoring out common modules from many different applications and reusing them in
apparently distinct implementations.
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Figure 1 Architecture of a general knowledge support system

At the center of Figure 1 is the implementation of knowledge support systems serving specific
user communities and each operating through a particular integration system that draws upon the
services of the surrounding application sub-systems. A wide variety of knowledge support
systems can be created with comparatively little effort by programming different integration
systems. All of the application systems are themselves programmable through the Apple high-
level object event protocol (Apple, 1993a), can be driven by any of the scripting languages in
Apple’s open scripting architecture such as AppleScript (Goodman, 1993), Frontier (Winer,
1992) and TCL (Ousterhout, 1994), and can themselves run scripts from within the application.
The development of a specific knowledge support system generally involving writing scripts to
provide the required functionality by drawing upon existing application sub-systems. Highly
innovative applications may require the existing applications to be extended or new ones to be
written using the underlying C++ class library, and sometimes this may involve enhancement of
the class library itself. However, as the family of application sub-systems has grown during the
past four years, the prototyping of new experimental knowledge support systems has become
increasingly a matter of writing a relatively small integration system as a script.

Reading around Figure 1 clockwise from the lower left corner, the major application systems are:

Networking and Electronic Mail System

The networking and mail sub-system supports both local and wide area networks through
protocols such as AppleTalk and TCP/IP (Hunt, 1992). It also implements the Unix protocols
(Krol, 1992) for telnet, ftp, smtp, gopher and world-wide web http, to allow integration with
networked information retrieval and mail systems (Quarterman, 1990). An example application
of this system is RepGrid-Net, a group knowledge elicitation and modeling tool that integrates
knowledge elicitation methodologies with electronic mail (Shaw and Gaines, 1993).

Agent System

The agent sub-system supports independent light-weight processes across the network that can
perform specific tasks such as transport of data for processing through specialist facilities at
remote sites. It also implements the protocols for inter-agent communication such as Apple
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object events (Apple, 1993a) and KQML (Finin, Weber, Wiederhold, Genesereth, Fritzson,
McKay, McGuire, Shapiro and Beck, 1992). An example application of this system is Mediator,
a networked enterprise integration tool for coordinating the product life cycle in intelligent
manufacturing systems (Gaines and Norrie, 1994).

Active Document and Group Writing System

The active document and group writing sub-system supports the production and editing of
documents with full typography and embedded pictorial material. It provides word processing
and page layout features comparable with those of commercial applications. The documents are
active in that they support embedded panes from other applications, and they are versioned at the
paragraph and document levels to support collaborative writing. Example applications of this
system are KWrite, a multi-media document preparation system (Gaines and Shaw, 1993c)
which also supports embedded knowledge bases and hence can be used to run expert systems
(Gaines and Shaw, 1992), and GroupWrite a collaborative writing system (Gaines and Malcolm,
1993).

Hypermedia System

The hypermedia sub-system supports the acquisition, editing, linking and navigation of
multimedia materials both within the computer and through control of external systems such as
videodisks. An example application of this system are studies of the relative efficacies of books
and hypermedia in the presentation of knowledge-structures for sports coaching material
(Vickers and Gaines, 1988).

Text Analysis System

The text analysis sub-system supports the analysis of text through a variety of tools for lexical
analysis, assignment of parts of speech, assignment of affective loading (Whissel, 1989), and
collocation analysis (Reed, 1984). An example application of this system is the Texan concept
extraction and clustering tool used as a front-end to knowledge elicitation (Shaw and Gaines,
1987), and to model the conceptual structure of documents specifying the objectives of
collaborative communities (Gaines and Shaw, 1994).

Knowledge Elicitation System

The knowledge elicitation sub-system supports the development of conceptual structures through
interaction with human experts using extended repertory grids. An example application of this
system is the suite of knowledge elicitation tools comprising KSS0 (Gaines and Shaw, 1993b).

Conceptual Induction System

The conceptual induction sub-system supports the development of conceptual structures through
empirical induction from datasets of cases using the Induct algorithm (Gaines, 1989). It can
derive a variety of structures including rules with exceptions such as Compton’s ripple-down
rules (Compton, Edwards, Kang, Lazarus, Malor, Preston and Srinivasan, 1992). An example
application of this system is the modeling of a large data set of some 47,000 medical cases
comprising ten years data from a thyroid treatment clinic (Gaines and Compton, 1993).
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Visual Language System

The visual language sub-system supports the specification and application of arbitrary visual
languages comprising graphs of nodes and links with a wide variety of node and link types
available. It enables a system developer or an end-user to create customized tools for concept
mapping, semantic networks, bond graphs, Petrinets, and so on, without having to develop code.
Example application of this system are the KDraw semantic network tool (Gaines, 1991b) and
the KMap concept mapping tool (Gaines and Shaw, 1993d).

Knowledge Representation and Inference System

The knowledge representation and inference sub-system supports knowledge bases and object-
oriented and deductive databases. An example application of this system is the solution of the
Sisyphus room allocation problem (Gaines, 1994).

3 Examples of Implemented Systems

The jigsaw puzzle diagram of Figure 1 indicates how complex system architectures may be
developed by integration of a heterogeneous collection of specific application sub-systems.
However, it does not show the functionality of a particular application or how much of this is
drawn from the standard modules in the object-oriented class library. This section describes three
example applications to illustrate the use of the class library.

3.1 Group Writing Example Application

The active document and group writing system at the center left of Figure 1 provides an
illustration of the issues involved in developing a particular module, particularly since it involves
encapsulating major assembly language modules that are not part of the object-oriented
architecture. The design requirements for this module are to provide a word processing and page
makeup system that has similar functionality to commercial word processors, a user interface
that is familiar to users of such systems, and enhanced capabilities for hypertext, hypermedia,
versioning and active components that are accessible through natural extensions to the interface.

GroupWrite (Malcolm, 1991; Gaines and Malcolm, 1993) is a word processor built using this
module which was designed to support a geographically dispersed community of collaborating
authors. The users are assumed to be jointly producing documents through simultaneous editing
but exchanging material by email or through disks without the interlocks that require continuous
network communication. GroupWrite versions documents at both the document and at the
paragraph level such that one document may be opened in the context of other versions of it, and
the editing and alternative versions are naturally visible and simply accessible to the user. It also
provides facilities for textual and sound annotations attached to paragraphs.

Figure 2 shows a screen dump of an author editing a document in GroupWrite and requesting
that the resulting of merging two different versions of the same paragraph be shown. Note that
the word processor interface itself is similar to those of commonly used systems, providing
control over typography, margins, indentation, tabs, justification, and so on. Authors can use the
word processing facilities in a standard way with no need to be aware that there are additional
features. Documents can be opened in the normal way through an ‘Open’ dialog in the ‘File’
menu, or through a graphic document version browser as shown in Figure 2 that utilizes the
visual language module at the center right of Figure 1.
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Figure 2 GroupWrite paragraph version markers and popup menu access

The document shown in Figure 2 has been opened by clicking on a previous version shown in
reverse video in Figure 3 and then double clicking on a later version to open it in the context of
the selected version or versions. GroupWrite compares the version information stored with the
documents and indicates with a side marker any paragraph in the open document that has one or
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more alternative version in the contextual documents. The appearance of the line varies
depending on what types of annotation are present, and whether alternative paragraphs are
present. The mouse pointer changes shape when moved over the line, to indicate that a popup
menu is available. This menu may also be accessed by holding down the option key while
clicking the mouse in the marked paragraph.

Figure 3 GroupWrite document version browser

The popup menu provides a number of operations that may be performed on annotations and
alternative paragraphs. They may be displayed in a separate window by the Show operation;
inserted into the document text by the Place Before, Place After, or the Replace operations;
removed by the Remove operation. Sound annotations may be heard by selecting the Play
operation. Annotations and alternative paragraphs are selected from the sub menu, with
annotations appearing below the dotted line.

Figure 4 shows the implementation architecture of GroupWrite as a three layer architecture with
top layer comprising modules specifically written to support GroupWrite features, the center
layer comprising modules common to most applications, and the lowest level the assembly
language modules of the word processing engine.
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Figure 4 GroupWrite implementation architecture

The top-level functionality is provided by GroupWrite-specific sub-classes of the class library,
which may be grouped into four major components:
• Document management supporting the users’ concept of a single document file as the basic

unit which is edited and communicated
• Editor support through a simple and natural user interface that, as well as maintaining the

content of the document and its annotation, also keeps track of what paragraphs have been
changed for versioning purposes

• Filing facilities that, as well as storing the document and annotation, also store tables of
version information as separate resources in the same file as the document

• Interchange facilities that allow the import and export of documents in RTF format allowing
users to move files between GroupWrite and commercial word processors.

The middle-level functionality is provided by the standard class library, and in particular four
classes of functionality significant to the GroupWrite implementation:
• Multi-media document support providing an open architecture word processor as a text

editing module that supports full typography, picture placement, pagination and paragraph
version tracking

• Graphic user interface support for drawing and keyboard and mouse interaction with text
editing windows, dialogs, and interactive graphics

• Complex data structures support for a wide range of variable-size abstract data types
including arrays of variable-size structures
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• General operating system support making available the range of managers available in the
Macintosh Toolbox encapsulated as classes, including filing and inter-application
communication.

The bottom-level functionality is the provision of the word processing facilities which is
implemented at the lowest level in terms of calls to a commercial software product, Datapak’s
Word Solution Engine (Crandall, 1990). This is written in M68000 assembly language for speed
and provides a very comprehensive set of word-processing functions through a basic module and
a series of add-on modules providing additional functionality. The main modules are:
• Typographic text module supporting display and editing of text with varying fonts and sizes
• Virtual memory filing module supporting the buffering of large documents to be editable

within a specified memory allocation
• Ruler indents and tabs module supporting variable paragraph width, line spacing, tab

placement and boxing
• Graphic module supporting the placement and sizing of graphics placed in the text
• Pagination module supporting the display and output of text pages
• Search and spelling modules supporting the normal word processor capabilities of searching

for and replacing phrases, and checking the spelling of words.

The assembly language modules are encapsulated by C++ wrapper code so that users of the class
library see a normal class structure with data structures and methods that can be sub-classed, and
are unaware of the underlying low-level implementation.

3.2 Multimedia, Visual Language and Documentation Example Application

The integration of multiple heterogeneous modules to provide a single application can be
illustrated in the context of document systems by a multimedia application that combines the
visual language, multimedia and active document systems. The class library provides an abstract
‘pane’ class which generally supports the visual presentation of material within a window. The
word processing class allows such panes to be embedded within a document in such a way that
each pane component is relatively independent of the text functionality. The text is laid out to
run around or hop over pane areas but is not otherwise affected by them.

The embedded panes may be used to display graphic material embedded in the document
including making them available to other applications as if each were a drawing pane in an
arbitrary window. This enables them to be used to support visual activity ranging from bit map
and line graphics to QuickTime (Drucker and Murie, 1992) or laserdisk videos, through
simulation and animation, to graphic editors for visual languages representing programs, concept
maps, and formal knowledge structures. Mouse down clicks within a pane are reported to the
associated application rather than to the document software, and hence user interaction can be
supported in a completely different environment. Such functionality is now becoming commonly
available through the OLE 2 (Microsoft, 1994) and OpenDoc (Apple, 1993b) operating system
extensions and allows many applications to be combined in a compound document.

Figure 5 shows a concept map of a knowledge structure developed for coaching ice hockey
(Vickers, 1990) embedded in a document together with a QuickTime video showing the relevant
activities. The material relates to some earlier studies providing a detailed comparison of
laserdisks and books as media through which to present the coaching material (Vickers and
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Gaines, 1988). When the multimedia document technology became available some of the video
material was digitized and incorporated together with text and active knowledge structures in
documents that emulate sections of the existing books and laserdisk material. At the top of
Figure 5 is the relevant part of the overall knowledge structure as an active concept map. As the
user mouses over a node in the map a popup menu symbol appears. Clicking on this sends a
message to a script associated with the document that determines the menu items, in this case the
capability to play a video clip. The selection of an item sends a message to the script which then
plays the appropriate section of the QuickTime movie below the knowledge structure.

Figure 5 Concept map of coaching knowledge structure linked to video exemplars
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Producing the document shown in Figure 5 is a simple matter of selecting the ‘Place’ dialog in
the ‘File’ menu and selecting the files for the concept map and the video respectively. The
concept map is automatically active and can be edited in place, including entering the links to the
appropriate sections of the movie. The underlying script for the multimedia documents provides
a generic linkage facility and does not have to be edited by the document producers. However, it
is accessible to them if they wish to enhance the facilities in some way.

3.3 Semantic Network, Expert System and Documentation Example Application

The embedded active concept maps of the multimedia example extend naturally to provide a
visual language for KL-ONE knowledge structures (Gaines, 1991b) providing formal knowledge
representation that can be compiled and run within the knowledge representation and inference
system at the bottom right of Figure 1. This provides an illustration of the integration of the
multimedia and artificial intelligence components of Figure 1, and also provides a bridge to the
detailed analysis of the knowledge representation part of the class library in the remainder of this
paper.

Figure 6 shows a screen dump from KWrite editing a paper that was published in the
proceedings of the British Computer Society Expert Systems Conference in December 1992
(Gaines and Shaw, 1992). The paper puts into active document form a knowledge-based system
developed as a solution to a ‘challenge’ problem circulated by Project Sisyphus, an initiative of
the European Knowledge Acquisition Workshop. The problem is one of room allocation derived
from an ESPRIT project (Voß, Karbach, Drouven, Lorek and Schuckey, 1990), and a major part
of the EKAW’91 program was devoted to reports on the solution of these problems using
different approaches and techniques (Linster, 1991).
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Figure 6 Interaction with knowledge structures in an active document

The abstract of the BCS paper describes the form of publication:

“This paper is written in a document production tool that appears to a user as a word
processor but also acts as an expert system shell with frame and rule representations
supporting deductive inference. The electronic version of the document is active,
providing typographic text and page layout facilities, versioning, hypermedia sound and
movies, hypertext links, and knowledge structures represented in a visual language. It
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can be read as a hypermedia document and also interrogated as a knowledge-based
system for problem-solving. The paper version of the document, which you are now
reading, is produced by printing the electronic version. It loses its active functionality but
continues to act as a record of the knowledge in the document. The overall technology
has been developed as an alternative approach to the dissemination of knowledge bases.
It also provides a different interface to knowledge-based systems that emulates document
interfaces with which many users are already familiar.” (Gaines and Shaw, 1992)

The electronic version of the paper was made available through anonymous ftp and as a CD-
ROM. It demonstrated parallel publication of the paper version as a camera-ready copy, book
copy and the electronic version, identical in appearance, as a full working demonstration of the
problem solution. What is particularly significant is that there were no hidden data structures.
The semantic networks in the paper were the complete knowledge structures and operated
directly in the inference engine to solve the problem. Thus, the document was also the
knowledge base and editing the knowledge structures within the document can change the
ontologies, rules or data, and hence the outcome of inference.

The editing facilities for embedded components are provided through a class library facility that
allows dialogs that would normally appear at the top of a window associated with editing a
particular component to be accessed as a floating dialog when that component is embedded in a
document. Thus, the page shown in Figure 6 appears as a normal word processing document
page until the user double clicks in one of the semantic network ‘pictures’. Then the floating
dialog appears enabling the network to be edited in place exactly as if it were in the visual
language tool that originally produced it.

The multimedia and popup menu linkage facilities remain available, and, for example, the user is
shown at the bottom right of Figure 6 as having accessed the popup menu associated with a
particular node. One of the facilities this makes available is access to annotation for that node,
and, since the script has full operating system access, this may be within the same document, in
another application on the machine such as HyperCard (Goodman, 1990), or in another
application across the network, possibly in another country.

4 Knowledge Representation

The article so far has presented the application level and its relation to the underlying class
library. The remaining part will focus on the detailed design of a significant part of the class
library, that associated with knowledge representation. This part was selected for detailed
discussion for a number of reasons. First, because class libraries for graphic user interfaces are
already discussed in depth in the literature (Pinson and Wiener, 1990; Wisskirchen, 1990; Bass
and Dewan, 1993). Second, because knowledge representation is a basic service that may be
factored out of virtually all knowledge support systems, and plays a major role in both artificial
intelligence and human-computer interaction. Third, because the design of the knowledge
representation of the class library shows the deep interplay between the theoretical issues of
formal representation and the practical issues of implementation. It seems likely that such
relations between theory and practice will become increasingly significant as formal methods are
applied to the routine development of interactive systems (Thimbleby, 1990).
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The initial requirement for a knowledge representation module in the knowledge support system
class library originated in 1988 as part of studies of repertory-grid and induction-based
knowledge acquisition tools. The repertory grid is a constructivist conceptual modeling
methodology that was proposed by Kelly (1955) in the mid 1950s as a clinical technique, became
widely applied in psychology, education and management (Shaw, 1981), was implemented
through interactive computer programs in the mid 1970s (Shaw, 1979, 1980), and proposed as a
technique for knowledge elicitation for expert systems in 1980 (Gaines and Shaw, 1980). In the
early 1980s the technique became used for knowledge acquisition (Shaw and Gaines, 1983;
Boose, 1984), but the simple underlying entity-attribute representation of the original grid was
also substantially enhanced (Boose and Bradshaw, 1987; Boose, Bradshaw, Kitto and Shema,
1989) in ways that gave new insights into both the underlying personal construct psychology and
the general principles of knowledge representation (Gaines and Shaw, 1993a). Such studies led
to a requirement for an open-architecture, principled knowledge representation server that could
provide knowledge representation services to a wide range of knowledge acquisition tools.

The objective of knowledge acquisition research in the 1980s has been primarily to develop
knowledge structures that could be transferred to expert system shells such as NEXPERT
(Gaines, Rappaport and Shaw, 1992) and Babylon (Gaines and Linster, 1990), and the obvious
basis for a knowledge representation server was some form of expert system shell. However,
commercially available shells have been developed to satisfy the wide ranging requirements of a
diverse community of customers, and did not offer principled architectures which could be
understood in terms of underlying logical processes. The most appropriate starting point
appeared to be the work on KL-ONE-like systems, variously called term subsumption or
terminological systems, or description logics, since they focus on the formal definition of
conceptual structures and on the deduction of the subsumption relations between them (Nebel
and Smolka, 1990; Schmolze and Woods, 1992).

The KL-ONE family of knowledge representation has its origins in early representation schema
in the mid-1960s in terms of semantic networks (Quillian, 1968) which were attractive in terms
of their visual representation of knowledge structures but had problems of imprecise semantics
which were analyzed by Woods (1975) and Brachman (1977) in the mid-1970s. In the 1980s the
formal foundations of such systems were developed in terms of intensional logics (Maida and
Shapiro, 1982) and complexity theory (Brachman and Levesque, 1984), and during the 1980s
increasingly principled system designs were developed such as KL-ONE (Brachman and
Schmolze, 1985), KRYPTON (Brachman, Gilbert and Levesque, 1985), BACK (Nebel, 1990),
LOOM (MacGregor, 1991), CLASSIC (Borgida, Brachman, McGuiness and Resnick, 1989) and
KRIS (Baader and Hollunder, 1991). Deep theoretical foundations have been developed for such
technologies in recent years (Aït-Kaci, 1986; Nebel, 1990). The availability of these foundations
makes it possible to develop general-purpose knowledge representation services that are well-
principled, space and time efficient, and embeddable as sub-systems in a wide variety of
applications.

Since complexity analyses show inference in knowledge representation systems with normally
expected representational capabilities is intractable (Brachman and Levesque, 1984; Nebel,
1988; Schmidt-Schauß, 1989), it has been suggested that the representational and deductive
capabilities of knowledge representation services should be limited for the sake of tractability
(Levesque and Brachman, 1987). The reasons for and against this have been surveyed by Doyle
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and Patil (1991) who conclude that, while there are sound arguments for such limitations, the
capabilities of the resultant systems will often fail to satisfy reasonable application requirements.
One impact of this is that system designers may add functionality that provides the missing
capabilities in ways that are less principled than those of a general server. A second is that
problems may have to be represented in unnatural ways that are conducive to poor performance.
A third is that the effect of the limitations on deductive capabilities may not be apparent to users,
leading to errors.

These arguments were very relevant in the context of knowledge acquisition and knowledge
support systems since it was precisely the need to extend existing knowledge representation
schema that motivated the design of a knowledge representation server, and yet it was important
that the system designed be fast and efficient for interactive application on personal computers.
These considerations motivated an open-architecture server design in which the kernel system
would provide basic capabilities known to be both time and space efficient, but to which
functionality might be added in a principled fashion. This in turn motivated implementation as an
object-oriented class library with well defined interfaces to new classes supporting additional
data types. In particular, the knowledge acquisition experience led to requirements for the data
types common in databases, such as integers, floating point numbers, dates and strings, which
were not treated in a principled fashion in the theory of KL-ONE-like knowledge representation
systems. It became apparent that a constraint-theoretical model provided theoretical foundations
for both the original KL-ONE features and the extensions to new data types, and this was taken
as the basis for a principled design (Gaines, 1993).

The remainder of this paper describes the design and implementation of the knowledge
representation and inference system shown at the bottom right of Figure 1 as an open
architecture class library in C++.

5 Knowledge Representation Server (KRS) Design Requirements

The basic requirement was for a knowledge representation and inference system that could
represent abstract concepts and their subsumption relationships, concrete cases with attributes,
values and relationships, and inference rules for deriving further information about cases from
their asserted properties. This broad requirement is satisfied by three convergent forms of
technology currently: object-oriented databases (Gupta, 1991) ; deductive databases (Minker,
1988) ; and a variety of knowledge representation schema based on semantic networks (Sowa,
1991) such as KL-ONE (Brachman and Schmolze, 1985), conceptual graphs (Sowa, 1984) and
SNePS (Kumar, 1990). CLASSIC (Brachman, McGuiness, Patel-Schneider, Resnick and
Borgida, 1991) was selected as a starting point for design because it was well-defined in syntax
and semantics, had major real-world applications (Devanbu, Selfridge, Ballard and Brachman,
1989; Wright, Weixelbaum, Vesonder, Brown, Palmer, Berman and Moore, 1993), defined a
well-integrated set of kernel features that were an adequate foundation for knowledge
acquisition, and could be regarded as an extended object-oriented database (Borgida et al., 1989)
or a restricted knowledge representation system (Patel-Schneider, McGuiness, Brachman,
Resnick and Borgida, 1991). The initial implementation of KRS with the full set of CLASSIC 1
capabilities using a published paper (Borgida et al., 1989) as a design specification took five
person-weeks in C++ (Gaines, 1990a).
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CLASSIC 1 (Resnick, Borgida, Brachman, McGuiness and Patel-Schneider, 1990) has a
compositional semantics in which complex knowledge structures are composed from eight
simple semantic structures:
• Concepts are abstract objects, each defined completely by its compositional semantics.
• Primitive concepts are concepts in which the overt definition is incomplete and an additional

non-overt component is assumed. A relation between the non-overt components may be
specified to be such that two primitive concepts are disjoint, i.e. such that their composition
is incoherent.

• Roles capture the semantics of attributes and relations.
• Individuals are concrete objects, each defined by their specified identifier, and each having a

variable state specified by asserting that the individual is an instance of a concept.
• Cardinality concepts are specified in terms of lower or upper bounds on the size of sets.
• Explicit extensional concepts are specified in terms of sets of individuals as lower or upper

bounds upon other sets.
• Implicit extensional concepts are specified in terms of equality relations between sets of

individuals (coreference in CLASSIC).
• Rules are specified as a pair of concepts such that when the premise concept applies to the

state of an individual the conclusion concept may also be asserted to apply.

KL-ONE implementations group the conceptual definitions into a terminology module, the T-
box, the assertions about individual states into an assertional module, the A-box, and the rules
into a rule module, the R-box. If the implementation reasons over possible different states it is
necessary to introduce a fourth module tracking possible worlds (Filman, 1988), and this may be
termed a W-box.

CLASSIC 1 made provision for additional data types such as numbers by allowing them to be
specified as “host individuals” and providing a test concept that allows an arbitrary test to be
applied to an entity, such as a number, that is not representable in terms of the basic semantic
structures defined above. Knowledge acquisition applications typically require representation of
integers, reals, dates, and so on, and these were so fundamental to the representation that is was
undesirable to capture them through arbitrary tests that fell outside the well-defined semantics of
the other representational structures. Hence, the possibility of extending CLASSIC’s
representation to encompass additional data types was investigated, and the way in which this
was done and its implementation in the class library are described in the next section. The
theoretical foundations for adding concrete domains to knowledge representation languages have
been developed by Baader and Hanschke (1991), and CLASSIC 2 (Resnick, Borgida, Brachman,
McGuiness, Patel-Schneider and Zalondek, 1993) supports concepts expressing interval bounds
on numbers.

Other extensions were made to CLASSIC 1 that were found necessary in knowledge acquisition
applications. First, the inverse relation between roles was made definable, that, for example,
“child” is inverse to “parent.” Second, the specification of sets through negation was added, that,
for example, “Not Fred or Mary” defines a set. This addition is important to support non-closed-
world semantics where the complements of well-defined sets cannot be enumerated, so that one
cannot specify “Not Fred or Mary” positively by enumerating all the individuals who are not
Fred and not Mary. Third, recognition of individuals as instances of concepts was extended to
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take into account the properties of other individuals filling roles in those concepts. Fourth,
provision was made for conceptual constraints to be applied to concrete data types such as
Integers in order to specify units, such as amount in $, or weight in Kilos. Fifth, the specification
of implicit extensional concepts by equality (coreference) was extended to specification by
inclusion, for example, that the friends of one individual include the friends of another. However,
it should be noted that reasoning with implicit extensional constraints in the current
implementation of the T-box in KRS is incomplete. It should also be noted that inverse roles, and
other features such as role hierarchies, have been added to CLASSIC 2 (Resnick et al., 1993),
and Borgida and Patel-Shneider (1994) have published an algorithm for subsumption
computation in CLASSIC 2 that is proved to be complete under certain restrictions.

Inference in CLASSIC consists of propagating conceptual constraints by composing those that
form the state of an individual through assertions made about the individual and the rules that
apply to it. There are two major relations between concepts that may be computed:
• Subsumption, that one concept subsumes another if their composition is the same as the

second concept.
• Incoherence, that two concepts are mutually incoherent if their composition is logically

contradictory.

The definition of subsumption may seem converse to the colloquial usage of the term. This is
because the technical usage is in terms of extensional semantics. If one concept subsumes
another then the set of the individuals whose states are subsumed by the first concepts includes
those whose states are subsumed by the second. Whereas, from an intensional perspective, the
properties of the first concept are included in those of the second.

The computation and caching of the subsumption relation between concepts is significant to the
speed of rule-based inference. It speeds up the detection of individuals whose state is such that a
rule applies. It is also important in knowledge acquisition systems such as KREME (Abrett and
Burstein, 1988) as a basis for re-representing a conceptual structure to display conceptual
relations that may not have been intended by the expert and may indicate errors.

The computation and caching of the incoherence relation between concepts is significant to the
speed of constraint-based inference. It speeds up the detection of individuals whose state has
become incoherent through assertions that are thereby deemed unacceptable and have to be
retracted. This is important in applications of CLASSIC-like systems to managing the software
engineering process (Devanbu et al., 1989), or to the management of the relation between
activities and objectives in large-scale projects (Gaines and Shaw, 1994). It is also important in
knowledge acquisition systems such as MOBAL (Morik, 1989) as a basis for detecting
inconsistencies in a conceptual structure or its usage which may indicate errors.

6 KRS Implementation Architecture and Class Library

The initial class library for an implementation of KRS on the Apple Macintosh was developed as
an extension of the THINK class library, originally using object-oriented extensions to C which
was later extended by Symantec provide a full C++ level 3 compiler. The THINK library is
designed to support graphic user interfaces and operating system access, and provides only the
few data types necessary to do this. The major part of the KRS development consisted of
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developing appropriate data structures and was thus relatively independent of the existing
library.

Figure 7 shows the main data structures in KRS:
• Concept records hold the constraints defining a concept: its primitives and those disjoint

from them; its extensions as the subsets of individuals that must be, and may be, included in
any subset recognized; its cardinality and inclusion constraints on any subset recognized; its
rule concept, if any, which will be asserted of any individual recognized; and, for each role
constrained in the concept, the concept constraining it.

• Individual records hold the templet concept defining intensional constraints upon an
individual and, for each role constrained in the templet or filled in the individual, a
specification of the set of role fillers.

• Filler records hold sets of individuals that fill roles.
• Dictionaries recognize concept, role and individual names and generate an accession number

used to index other structures. Syntactically there is a clear separation between concepts,
roles and individuals and a lexical item can occur in more than one dictionary with different
meanings.

• Extension records  hold subsets of individuals, typically those that may occur in a role filling
set and those that must occur in it.

• Data records  hold subsets of external individuals that are explicitly recognized by the server,
notably integers, reals, dates and strings.

• Inclusion records hold relations between role chains expressing inclusion and coreference
constraints.

• Rule records keep track of exception relationships between rules (Gaines, 1991a).
• Inverse records keep track of inverse relations between roles.
• Subsumption records hold computed subsumption and incoherence relations on a three-

valued basis, that one concept subsumes another, does not, or cannot.
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Figure 7 Data structures in the knowledge representation server

The implementation of the A-box separates facts, individual conceptual constraints, and
inferences. This makes rule propagation and retraction fast and simple, and enables light-weight
‘possible worlds’ to be supported. It is also very significant in the knowledge acquisition context
in enabling the sources of responses to queries to be shown clearly to users. For example, it
makes it clear when an assertion about an individual has been both asserted directly and derives
from a rule so that the retraction of the direct assertion will not change the state of the individual.

A number of optimizations are applied in the implementation to minimize storage and maximize
speed. For example, special codes are used for the empty, universal and singleton sets such that
the set objects never store them, and subsumption is calculated in such a way that only a fast
lookup is needed to check subsumption between role concepts rather than a recursive call. One
advantage of the object implementation is that these optimizations can be put in override
methods in sub-classes so that the kernel implementation is small and easily checked but
potentially slow, and the full implementation can be checked against the kernel for correctness
and optimized for speed.

Figures 8a and 8b show the sub-class structure in the THINK class library together with the
additional classes written for to implement the knowledge support systems of Figure 1. The
classes discussed are tinted so that they may be more easily distinguished. The classes particular
to KRS are primarily those Figure 8a that sub-class the Data class on the left.

KBParse at the lower center right is a KRS knowledge base with the sub-class chain:
Object—the THINK class library top level class of objects definition
Data—a class for variable length data structures
longVec—variable length vectors of longs
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Items—variable length vectors of variable length items
KB—variable length vectors of KRS concept definitions
KBIO—adding input/output functionality
KBParse—adding language parsing functionality

KBParse uses component objects that are sub-classes of Items such as:
KBIndividuals—KRS individual data
KBInfer—dependencies between KRS objects (for rapid retraction)
Sets—set data records as shown in Figure 7
Alias—dictionaries of names as shown in Figure 7

It also uses component objects that are sub-classes of Data such as:
KBRoles—inverse roles and role chains
KBRules—rule data structures
KBBitArr—subsumption tables (for rapid recognition of objects in classes)

A significant user interaction class in the top half of the diagram is KBEditDoc at the top right
of Figure 8b. It implements KRS’s knowledge visualization sub-system shown at the right of
Figure 1. KBEditDoc is at the end of a long sub-class chain:

Object—the Think C top level class of objects definition
Collaborator—a class for objects that have mutual dependencies
Bureaucrat—a class for objects that manage other objects
DirectorOwner—a class for objects that manage directors
Director—a class for objects that manage a window
Document—THINK class for managing a file and associated window
Document—override class for managing documents with extra features
DocPICT—managing a graphic file and associated window
DocNodes—managing an interactive graphic drawing file/window
KBEditDoc—specializes this for graphic editing of KRS knowledge structures
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Figure 8b Knowledge support system class library—user and operating system interface

One important conclusion that can be drawn from Figure 8 is the relative paucity of classes that
are specific to KRS, namely KSSApp, KSSDoc, KB, KBIO, KBParse, KBIndividuals,
KBInfer, KBRoles, KBRules, KBBitArr. Other classes are highly generic to any interactive
graphic application or to general data processing, and are used in a range of applications such as
hypermedia and groupware. For example, the BitArr class which supports subsumption caching
is also used in the implementation of attribute-value data records for high-speed empirical
induction, and for graph processing in text analysis and analogical reasoning. The DocNodes
class was designed to support the interactive click and drag repertory grid knowledge elicitation
techniques developed for KSS0, and supports a wide variety of visual language and graphic
interaction applications.

The class library shown in Figures 8a and b, while large, is not unreasonably so in supporting the
wide range of applications shown in Figure 1. It has been very simple to write and is easy to
maintain. Most importantly of all, it has been very easy to develop new applications by extension
and reuse of the existing library. However, it is important to note that this ‘reuse’ has been
evolutionary. Major parts of the library have been rewritten with each new application in order to
accommodate new requirements whilst preserving existing functionality. This is not problematic
for an individual researcher working with, amending, and controlling the class library. It would
be a source of problems in a team environment where changes in a common class library would
have to be communicated to each team member, and might result in major changes to existing
applications involving considerable effort with no perceived benefit.

Even in local collaboration with others using the class library for particular projects, it has been
found appropriate to avoid issuing updates as the library evolves so as not to disrupt the activities
of other users. In general, it has been possible to manage the existence of several versions
without excessive effort using standard source control tools, but is problematic when major new
features are added that have to be propagated to older versions. Thus, it is proper to qualify the
evaluation of an object-oriented class library development approach as described in this paper
with the reservation that the experience is primarily in relation to the individual researcher, and
additional issues arise when development teams are considered.

It is also important to note that the class library design predated the availability in C++ of
multiple inheritance supporting mixins, and of templates supporting parametric polymorphism
(Waldo, 1993), and this restricted sub-classes to a tree and led to the duplication of classes
differing only in basic data types. KRS is currently being reimplemented for C++ compilers that
support multiple inheritance and templates, and the new class library structure is substantially
more flexible, comprehensible and compact.

7 Theoretical Basis of Open-Architecture KRS Class Library

One of the most interesting and important side-effects of the object-oriented class library
implementation of a knowledge representation server was the theoretical insights that it
generated into the nature of knowledge representation. As already noted, for purposes of
practical knowledge acquisition it was essential to extend the CLASSIC representation model to
include standard database data types such as numbers and dates. Initially this was done in an ad
hoc fashion, but it became clear in interfacing new classes to the class library that there were
general principles involved, and that the implementation of KRS could be restructured to support
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all the existing data types and provide an open architecture allowing new data types to be
included simply and naturally. This was important to the future extension of KRS for use in
different domains where new data types might be required. The reimplementation of CLASSIC’s
concepts, roles, individuals, extensional and cardinality constraints, and so on, however, led to a
different theoretical model of KL-ONE-like knowledge representation systems than that common
in the literature.

The most widely used framework for the formal analysis of knowledge representation has been
the standard model and proof theory of first order logic. However, there are alternative algebraic
models for first and higher order logics that are becoming increasingly used in programming
language semantics because they represent abstract data types simply and naturally. For example,
Boolean algebras that model propositional logic generalize to cylindric algebras (Henkin, Monk
and Tarski, 1971), that model first order logic and have been used to analyze relational data
bases (Imielinski and Lipski, 1984). Weaker algebraic models based on non-distributive lattices
have been shown to give a comprehensive account of computational data types (Scott, 1976). An
algebraic formalization of set theory without variables has been shown to provide adequate
foundations for set theory and arithmetic (Tarski and Givant, 1987), and has been used to model
description logics (Brink and Schmidt, 1992). A number of precise characterizations of
algebraizable logics have been developed (Blok and Pigozzi, 1989). In the mid-1980s Aït-Kaci
(1984, 1986) gave a lattice-theoretic model of knowledge base languages with operational
semantics through term rewriting that resolved many of the issues of complexity and deduction
algorithms for term subsumption knowledge representation systems. This ψ-calculus is
particularly interesting because it provides foundations for complex object representation in
deductive databases, for type computation in functional programming languages, and for
knowledge representation in artificial intelligence. An experimental programming language,
LIFE (Aït-Kaci and Podelski, 1991), has been developed (Aït-Kaci, Meyer and Roy, 1992) that
combines the paradigms of logic programming, functional programming and object-oriented
programming, and may be seen as a form of constraint logic programming.

The merits of algebraic, type-theoretic semantics for knowledge representation are that they
provide formal models and complexity analyses that relate closely to the features and issues of
existing knowledge representation systems. For example, they provide simple accounts of
common constraints, such as cardinality, extensional inclusion and numeric ranges. Clearly,
these are questions of naturality rather than logical power, since accounts of set theory and
arithmetic can be developed in first order logic, and algebraic feature constraint logics may be
translated into first-order formulae (Smolka, 1992). However, natural models giving minimal
formulations of representational requirements are valuable in both the software engineering of
knowledge representation servers, and the effective presentation of the services offered to those
using them.

The model for knowledge representation used in the open architecture implementation of the
KRS class library is that the computational units are: for the T-box, concepts, identified with
collections of constraints indexed by roles; and for the A-box, individuals represented as unique
identifiers, each of which has an associated state whose value in any particular world is a
concept. This has the normal semantics for KL-ONE systems that concepts are precisely a
composition of constraints—changing the constraints changes the identity of the concept,
whereas individuals are precisely identities of objects—changing the associated constraints
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changes the state of the individual, not its identity. In Zalta’s (1988) terminology, abstract
objects (concepts) encode properties whereas concrete objects (individuals) exemplify them.

This model makes the computational structure underlying theory and implementation an algebra
of constraints, but leaves the nature of the constraints undefined. That is, from a theoretical
perspective, any data type can be used in representation and deduction provided it can be
modeled as a constraint algebra. From a practical perspective, this becomes the implementation
objective—to support arbitrary families of constraints. In the KRS implementation constraint
data types and their operations are implemented as separate classes, and ‘plugging in’ new data
types involves adding a new class with four associated operations (composition, subsumption
test, input and output). The kernel deduction systems for constraint propagation, for rule, inverse
role and coreference application, and for model checking search, remain unchanged.

8 Constraint Algebras for Representation and Inference

The semantics of constraints may be developed directly from informal requirements to a formal
model. The key notions are that the composition of two constraints should be a well-defined
constraint (binary function), that it makes no difference to compose a constraint with itself
(idempotency), that grouping of multiple constraints in resolving them to binary compositions
makes no difference (associativity), and that the order of application of constraints makes no
difference (commutativity). Without these requirements, one would have the semantics of
general operators rather than constraints. Together they imply that composition generates a semi-
lattice in which it is the join operation. There is a natural order relation of subsumption of
constraints, defined as one constraint subsumes another if their composition equals the second
constraint. The semi-lattice can then be extended to be a full lattice by defining a dual, order-
inverting meet operation (which, as a side effect, adds the lattice adsorption identities (Grätzer,
1971)). A unique lowest element, or zero, can be defined in the lattice corresponding to the
composition of incompatible constraints. A unique greatest element, or unit, can be defined
corresponding to a universally applicable constraint.

Thus, the lattice structures common to all knowledge representation systems arise in general out
of the basic primitive of a constraint. Any mathematical or logical formulation is a representation
of the properties of this primitive, and any representation schema with reasonably normal
semantics will have a constraint algebra interpretation. Historically, this lattice-theoretic model
of knowledge representation may be attributed (Simons, 1987) to Brentano’s theory of judgment
developed in his Würzburg logic letters in the early 1870s, and Simons (1982) has shown how
Lesniewski’s ontology (Luschei, 1962) arises naturally out of this approach. Birkhoff (1948)
showed that the deductive closures of an arbitrary logic under the consequence operator form a
complete lattice, and Wojcicki (1988) has developed an extensive theory of classical and non-
classical logics based only on the properties of the consequence operator. Thus, lattice-theoretic
algebraic semantics offer a complete alternative to the standard proof-theoretic and model-
theoretic semantics of standard logics, and have the advantage that they extend naturally to the
arbitrary constraint systems needed in real-world inference systems.

The detailed semantics of KRS and CLASSIC-like systems in terms of constraint algebras have
been presented elsewhere (Gaines, 1993). Some concrete examples of the constraint algebras
implemented in KRS are useful in understanding the principles involved. Figure 9 shows the
basic constraint algebra on which KRS representation and inference is based, together with the
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way in which new data types are plugged in. The basic constraints are those shown in the four
element lattice on the left of Figure 9 in which O is the zero element, I the unit element, and A
and N are complementary elements distinct from them. The semantics of this lattice in terms of
role constraints is:

Indeterminate: I corresponds to a role possibly existing.
Overdeterminate: O corresponds to a role existing but unfillable.
Applicable: A corresponds to a role definitely existing.
Nonapplicable: N corresponds to a role definitely not existing.
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Figure 9 The basic constraint algebra and insertion of data types

This lattice supports no data types in itself but it can be extended to support any arbitrary
combination of data types by inserting their constraint lattices between A and O such that their
unit elements represents the relevant types and their zero elements are mapped to O. Figure 9
center shows two mutually incompatible constraint lattices inserted in this way. Figure 9 right
shows two compatible lattices inserted such that one is a sublattice of the other, corresponding to
type coercion.

9 Set-Theoretic Constraint Algebras

It has been shown elsewhere that the representation and inference capabilities of CLASSIC 1
may be implemented through a single set-theoretic data type that manages extensional and
cardinality lower and upper bounds on sets of individuals (Gaines, 1993). Many other data types
can be implemented by similar constraints on other set domains, for example point and interval
integer, real and date types, and KRS provides a generic set constraint data type that
encompasses all of these.

The general form of constraint on a sub-set X of a set S is defined by lower and upper bound
sub-sets, L and U, and lower and upper bound measures, l and u, such that:

Ø ⊆ L ⊆ X ⊆ U ⊆ S (1)
0 ≤ l ⊆ MX ≤ u ≤ MS (2)

where Ø is the empty set and M is a mapping from a subset of S into a total order, a monotone
measure (Oxtoby, 1971) such that the empty set maps to 0 and a larger set maps to a larger value
in the order. The measure will typically be the cardinality of point sets and the total interval for
interval sets. Its semantic role is to support constraints that limit sets by measure rather than
content, for example number of members or total time spent. It is also significant in an open-
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world in enabling a set to be known to have become completely specified, or “closed” in
description logic terminology, because it has reached the maximum measure specified.

Constraints defined by quadruples (L, U, l, u) form a natural constraint algebra relative to a set S
under the rule of composition that, if c = (L, U, l, u) and d = (L', U', l', u'), then the composition
of c and d is:

c  d = (L∪L', U∩U', max(l, l', M(L∪L')), min(u, u', M(U∩U'))) (3)

with the associated rules for the unit I and zero O of the constraint algebra:
x = ({}, S, 0, MS) ⇔ x = I (4)
x = (L, U, l, u), L ⊄ U ∨ l > u ⇔ x = O (5)

which allows it to be inserted into basic constraint algebra as an instance of Figure 9. For
example, Figure 10 shows an example of a constraint algebra for the extensional and cardinality
constraints on a set of two elements inserted in the base lattice of Figure 9.

U = {X, Y}

U ={}

N

I

A

O

U = {X, Y}
l = 1

U = {X, Y}
u = 1

U = {X, Y}
l = 1
u = 1

L = {X}
U = {X, Y} U = {X} U = {Y}L = {Y}

U = {X, Y}

L = {X, Y}
U = {X, Y}

L = {X}
U = {X}

L = {Y}
U = {Y}

Figure 10 Example type lattice for set valued roles

The specification of the set upper bound U contains a flag which indications whether the set or
its complement is being specified. This allows sets to be specified negatively, such as “Not Fred
or Mary”. The unions and intersections of positive and negative sets and their combinations are
well-defined and simple to compute. As already noted, this is significant for the open-world
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semantics of CLASSIC-like systems. It is also used to implement disjoint primitives as described
later.

To provide the functionality of CLASSIC 1, KRS supports constraints over sets of individuals
specified by unique identifiers, and constraints over sets of uniquely labeled items other than
individuals, with the measure being the cardinality of the set in each case. The labeled items are
used to support sets of arbitrary values of attributes, such as {red, green, blue}, that do not need
to be represented as individuals with roles of their own. They are also used to implement
primitive and disjoint primitive concepts as described later.

KRS also supports constraints over point sets of integers, reals and dates, and over interval sets
of integers, reals and dates. The measure for point sets is the cardinality and for interval sets the
total interval involved. The constraints are specified as sets of intervals. For example, a
constraint on a point set of integers might be ({3}, {1, 2, 3, 4, 7}, 1, 2) which can also be written
as ({3}, {1≤4, 7}, 1, 2) and constrains a value to be either the integer 3, or two integers one of
which is 3 and the other is 1, 2, 4 or 7. A constraint upon an interval set of dates might be ({},
{3-Jan-92≤10-Jan-92, 5-Feb-92≤9-Mar-92}, 2, 5) which constrains a value to be between 2 and 5
days that are not necessarily consecutive in the periods 3-Jan to 10-Jan or 5-Feb to 9-Mar 1992.

The generic set constraints described encompass a wide range of requirements in their own right
and are routinely available for all domains. More complex constraints may be appropriate to
specific domains, and this motivates the open architecture of KRS so that additional constraint
algebras may be ‘plugged in’ in a principled fashion as required.

10 Roles as Indices to Products of Constraints

In terms of data structures, KL-ONE roles may be seen as corresponding to the fields of a record
structure. Concepts are defined through constraints on the fields in a concept definition.
Individual states are asserted as values (atomic constraints) of the fields in an individual state.
Such record structures may be represented through a constraint algebra which is itself a product
algebra of constraint algebras.

The construction is to take any constraint algebra, L, and consider an indefinite product of such
algebras, X = L × L × L…, indexed by a set of projections, Π, such that π ∈ Π, x ∈ X ⇒ πx ∈ L.
There is a natural constraint lattice formed by X under the definitions:

x, y ∈ X, π ∈ Π ⇒ π(x  y) = πx  πy (6)
πI = I (7)
πO = O (8)

That is, composition is done on a component by component basis. The base algebra L may be
treated as part of X by defining a specific     π     ∈ Π and the mapping, µ: A→X:

a ∈ A ⇒ πµa = a if π =     π    , else πµa = I (9)

The implementation follows the theory except that it conserves space in the usual way for record
structures by omitting roles that are unconstrained (constrained by I) and explicitly listing the
roles that are constrained. A concept record has the format shown in Figure 11.
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Role Identifier

Unique Identifier

Base Constraint

Concept Record

Type

String

Index

Array of Role/Concept Pairs

Index to Concept Record

Figure 11 Structure of a concept definition record

The identity of a concept as an abstract object is determined by the constraint defined (Zalta,
1988). Hence the identifier has to be different for different concepts, and it is an error to give a
second definition for the same identifier. Also, a concept defined with a different identifier but
computed to define the same constraint is represented not by another concept record but by
making the second identifier an alias for the first.

The ‘base constraint’ corresponds to that for     π     in (9), and the role/concept pairs to those for the
other projections in Π which have non-I constraints. Note that, if each concept is regarded as a
node in a directed graph, then each role/concept pair may be regarded as defining an arc in the
graph. Each arcs is a directed link from concept node to concept node and is labeled by the role
involved. It is this ‘concept definition graph’ that is the basis of theoretical analyses of
subsumption computations and the correctness and completeness of reasoning in description
logics (Nebel, 1990; Borgida and Patel-Shneider, 1994). Its direct implementation as a ‘visual
language’ also provides a natural interface for specifying, querying and receiving results from
description logics (Gaines, 1991b).

An individual record has the format shown in Figure 12. The identity of an individual as a
concrete object is determined by its unique identifier (Zalta, 1988). Hence, different assertions
about individuals with the same identifier are treated as assertions about the same individual and
composed to give the individual’s state. KRS also supports individuals (Skolem individuals)
where the identifier is not yet known, for example “a person” rather than “Fred Smith”. These
arise naturally through existential quantifiers represented as lower bound cardinality constraints.
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Unique Identifier

Templet Concept

Individual Record

String

Array of Values (with role identifiers and
  value types determined by the templet)

Index to Concept Record

Value or Index to ValueClose Flag

Figure 12 Structure of an individual record

KRS follows CLASSIC in distinguishing conceptual assertions about an individual which are
composed into a ‘templet concept’, and value assertions which are composed into an array of
values. The templet concept is also used to specify the relevant roles and the types of the values
in this array. The term is chosen to correspond with Kelly’s (955) constructivism “Man looks at
his world through transparent templets which he creates and then attempts to fit over the realities
of which the world is composed”, and the development of knowledge representation in terms of
personal construct psychology (Gaines and Shaw, 1993a). Since many role fillers are single-
valued, to optimize space utilization a coding scheme is used whereby a value consisting of a set
with zero or one member may be packed directly into the array of values, but sets with 2 or more
members are referenced through an index into a separate array of sets. The ‘close flag’ is used to
indicate whether a set value has been asserted to be fully specified (closed) or whether it is still
open to the addition of more members.

Since the values may themselves be sets of individuals, an individual record also has a natural
representation as a graph structure which is somewhat more complex than that for a concept
definition. The ‘recognition’ of an individual as being an instance of a concept corresponds to
determining whether the individual graph is an instance of the concept graph, and the algorithm
is essentially one of graph matching. KRS follows CLASSIC in not taking account of individual
states when computing subsumption relations between concepts. However, it takes full account
of these states when computing whether an individual is an instance of a concept. This involves
careful consideration of whether value sets are fully specified. For example, Fred with friends
John and Mary both having red hair would be recognized as an instance of an individual all of
whose friends have red hair only if it had been asserted that the set of Fred’s friends was closed,
or this be computed from some other consideration such as Fred having a maximum of 2 friends.

The instance recognition algorithm in KRS is quite separate from and rather more complex than
the concept subsumption algorithm because it is targeted to be complete in reasoning about cases
in order to ensure that individual classification and rule firing are logically complete. Concept
subsumptions are computed and cached, and used to speed up instance recognition. However, the
impact of concept subsumption being incomplete in most applications of KRS is that reasoning
about individuals is slower than it might be. Indeed, if one turns off concept subsumption
completely the only impact in the ‘expert system’ types of application for which KRS is
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designed is that reasoning slows down. This corresponds to Vilain’s (1991) rationale for the
utility of KL-ONE-like systems, despite problems of intractability, being that practical uses
involve reasoning about finite worlds of individuals, and Doyle and Patil’s (1991) critique of the
limited value of subsumption computation in description logics. If the applications primarily
involve concrete cases rather than general theorem proving then the critical algorithms are those
concerned with the recognition of instances rather than the subsumption of concepts.

11 Implementation of CLASSIC Capabilities in KRS

The descriptions in the previous sections indicate how some of the eight semantic structures of
CLASSIC are represented in the KRS implementation. Concepts, roles and individuals are
represented through the record structures described in the previous section. Cardinality and
explicit extensional concepts are represented through the set constraints described in the section
prior to that. This section describes how the other semantic structures are implemented. It also
gives some concrete examples of KRS record structures corresponding to specific concept
definitions and individual assertions.

Primitive concepts and disjoint constraints on them are represented through a hidden role whose
fillers are the names of the primitive concepts, and where the disjoint constraint is a negative
extensional set constraint. For example defining a primitive concept “Animate” and a concept
“Inanimate” disjoint to it, both of type ‘Individual’ (as shown at top of Figure 6) results in the
concept record structures shown in Figure 13.

Concepts 1 and 3 are generated as ‘anonymous’ concepts to hold the set-theoretic constraints
upon the hidden role “Primitive” in the defined concepts. Concept 2 is a simple primitive
definition of a concept “Animate” whose base constraint is that it applies to sets of individuals
but is otherwise unconstrained by extensional or cardinality constraints. It is made primitive by
concept 1 being specified as a constraint upon its “Primitive” role, that is that the set filling this
role must contain the label “Animate”. Concept 4 is a disjoint primitive definition of a concept
“Inanimate” whose base constraint is that it applies to sets of individuals but is otherwise
unconstrained by extensional or cardinality constraints. It is made primitive and disjoint from
“Inanimate” by concept 3 being specified as a constraint upon its “Primitive” role, that is that the
set filling this role must contain the label “Animate” and cannot contain the label “Inanimate”.
This ensures that the composition of concepts 3 and 4 is incoherent. Note the asymmetry in the
concept definition which corresponds to concept 2 being defined first and concept 4, disjoint to
it, being defined in terms of it. This corresponds to the avoidance of recursive definitions in KL-
ONE-like systems. It also allows further concepts disjoint to “Animate” or “Inanimate” to be
defined later without involving changes to the existing concept definitions.

The use of a hidden role for primitives is ontologically significant since it is often appropriate to
represent natural kinds by an explicit role with labels as fillers having a complex pattern of
disjoint relations that might correspond to a rating scale (Gaines and Shaw, 1993a). What are
initially represented as simplistic binary disinctions, such as male—female, often turn out to have
a richly differentiated ontological structure (Lorber, 1994).
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"Primitive"

Unique Identifier

Base Constraint

Concept 2

Individual

"Animate"

1

None

Unique Identifier

Base Constraint

Concept 1

Label

"(2)"

1

"Primitive"

Unique Identifier

Base Constraint

Concept 4

Individual

"Inanimate"

3

None

Unique Identifier

Base Constraint

Concept 3

Label

"(3)"

2

({"Animate"}, Any, 1, ∞)  

({"Inanimate"}, Not {"Animate"}, 1, ∞)  

Figure 13 Concept records generated by a pair of disjoint primitive definitions

Implicit extensional concepts, or coreference constraints, are different from the constraints
defined so far because they involve equality constraints between different role fillers. For
example, that the set of friends of Fred is the same as the set of friends of Fred’s wife. Such
constraints are implemented in KRS by attaching records of equivalent roles chains to concepts
as part of the concept definitions. The equivalence of the role chains is taken into account by
merging the constraints specified at the end of each role chain, and taking role chain
equivalences into account in subsumption computation. When implicit extensional concepts are
asserted to apply to individuals the fillers of the equivalent roles are merged and a single index to
the merged set placed as a value in the equivalent roles in the individual. KRS does not allow
coreference constraints to apply between two points in the same role chain since this leads to the
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same problems as recursive definitions; CLASSIC 2 does allow such constraints (Borgida and
Patel-Shneider, 1994).

Rules are represented in KRS as a pair of concepts such that if the first concept applies to an
individual then the second one is asserted to apply to that individual. A list of the rules that
should be triggered by a concept is stored as part of the concept record. KRS also supports rules
with exceptions such that one rule being applicable prevents another rule being applicable
(Gaines, 1991a). The proper implementation of this involves a careful distinction between an
individual being an instance of a concept, being definitely not an instance, or it being open that
the individual may with further assertions become either an instance or a non-instance. Reports
on whether rules apply, do not apply, or are open, are very useful in explaining the reasoning of
KRS to users or in requesting additional information in order to clarify whether open rules apply.
The support of default reasoning is another important extension required of description logics
(Baader and Hollunder, 1992) and rules with exceptions may be used to provide normal defaults
(Reiter, 1980) by assuming that open rules will not fire. However, a prioritization of defaults
(Quantz and Royer, 1992; Giordano and Martelli, 1994) is also required since, otherwise, the
rules that are allowed to fire as a result of their exceptions not firing may lead to an incoherent
state of the knowledge base.

12 A Concrete Example of KRS Data Structures

To provide a concrete example of KRS data structures, Figure 14 is a representative knowledge
structure represented in the visual language of KDraw.

At the top left, an “employee” is defined to be a primitive concept with a role “salary” whose
filler is constrained to be an integer in the range 15,000 to 160,000 and a primitive concept “US
$” (note that basic data types such as integers can be given more specific semantics in this way),
and with a role “division” constrained to be a “division”.

Below “employee”, a “foreman” is defined to be a primitive concept inheriting the properties of
“employee” and having the additional constraint on the role “salary” that it is in the range 35,000
to 70,000, and the additional constraint on the role “division” that it is single-valued and its role
“classification” contains the label “manufacturing”.

At the top right, a “division” is defined to be a primitive concept with a role “revenues” whose
filler is constrained to be an integer and a primitive concept “US $000”, and with a role
“classification” constrained to be one label from “sales”, “marketing”, etc.

At the center left, a rule “senior employee” is defined whose premise is the concept “senior
foreman” defined to be a “foreman” with a “salary” of at least 45,000 and a “division” whose
“revenues” are at least 1,000. The conclusion is that any individual recognized to be an instance
of “senior employee” will be asserted to be a “senior employee” with at least 1 “assistant” who
will be asserted to be a “senior employee’s assistant”.

At the bottom left, the individual “Fred Smith” is asserted to be a “foreman” with “salary”
50,000, “division” role filled by the individual “Body Works” and “assistant role” filled by “Sam
Jones”. At the bottom right, the individual “Body Works” is asserted to have “revenues” of
3,000.
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When the “Compile” button in Figure 14 is clicked the code shown in Figure 15 is generated
which represents the same knowledge structures in a textual description language. In practice,
users do not see this code because expressions in the visual language can be selected, copied and
pasted directly into the knowledge representation server.

If the knowledge structure of Figure 14 or 15 is loaded into KRS then the “senior employee” rule
fires for “Fred Smith” and he is asserted to be a “senior employee” and his assistant “Sam Jones”
is asserted to be a “senior employee’s assistant”. Figure 16 shows a listing from the server of all
the concept records generated by this knowledge structure. The ‘anonymous’ concepts generated
by KRS rather than defined by the user are identified by the record number in parentheses.

Figure 14 Visual representation of a knowledge structure in KDraw
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As an explanation of a typical record, record 14 corresponds to the definition of “division” in the
knowledge structure. Its type is ‘Open’ because no particular type was specified. An ‘Open’ type
will become a specific type when the concept is asserted to apply to an individual. The
“Primitive” role is constrained by concept record 13 which specifies a set of type ‘Label’
including “division”. The “classification” role is constrained by concept record 11 which
specifies a set of type ‘Label’ with exactly one member in the set {sales, marketing, accounting,
manufacturing}. The “revenues” role is constrained by concept record 12 which specifies an
Integer with its role “Primitive” constrained by concept record 5, that is, including a label “US
$000”, meaning the unit is 1,000’s of dollars.

Figure 17 shows a listing from the server of all the individual records generated by this
knowledge structure. The first concept record specified in the Templet field is that prior to any
rules firing, and the second is that applying after inference is complete. Thus, “Fred Smith” was
initially an instance of concept record 35 and became an instance of concept record 41. From
Figure 16 it can be seen that concept record 35 specifies that “Fred Smith” is an instance of the
primitive concepts “employee” and “foreman”, has a “salary” which is an Integer in the range
35,000 to 70,000, and so on. Concept record 41 updates this to specify that he is an instance of
“senior employee” also, and his “assistant” is an instance of “senior employee’s assistant”.

Primitive(US $)
Primitive(US $000)
Primitive(senior employee)
Primitive(senior employee’s assistant)
Primitive(division
  (All classification, (Label One sales, marketing, accounting, manufacturing))
  (All revenues, US $000, (Integer))
)
Primitive(employee
  (All salary, US $, (Integer 15000≤160000))
  (All division, division)
)
Primitive(foreman, employee
  (All salary, (35000≤70000))
  (All division, (1), (All classification, (Include manufacturing)))
)
Concept(senior foreman, foreman
  (All salary, (45000≤))
  (All division, (All revenues, (1000≤)))
  (Rule senior employee)
)
Rule(senior employee, senior employee
  (All assistant, senior employee’s assistant, (1≤))
)
Individual(Fred Smith, foreman
  (Fills salary, 50000)
  (Fills division, Body Works)
  (Fills assistant, Sam Jones)
)
Individual(Body Works
  (Fills revenues, 3000)
)

Figure 15 Textual representation of the knowledge structure compiled from Figure 14
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0: Concept: (0)
  Type: Open
1: Concept: (1)
  Type: Individual
2: Concept: (2)
  Type: Label ({US $}, Any, 1, ∞)
3: Concept: (3)
  Type: Label
4: Concept: US $
  Type: Open
  Primitive | (2)
5: Concept: (5)
  Type: Label ({US $000}, Any, 1, ∞)
6: Concept: US $000
  Type: Open
  Primitive | (5)
7: Concept: (7)
  Type: Label ({senior employee}, Any, 1, ∞)
8: Concept: senior employee
  Type: Open
  Primitive | (7)
9: Concept: (9)
  Type: Label ({senior employee’s assistant}, Any, 1, ∞)
10: Concept: senior employee’s assistant
  Type: Open
  Primitive | (9)
11: Concept: (11)
  Type: Label ({}, {sales, marketing, accounting, manufacturing}, 1, 1)
12: Concept: (12)
  Type: Integer:
  Primitive | (5)
13: Concept: (13)
  Type: Label ({division}, Any, 1, ∞)
14: Concept: division
  Type: Open
  Primitive | (13)
  classification | (11)
  revenues | (12)
15: Concept: (15)
  Type: Integer: 15000≤160000
  Primitive | (2)
16: Concept: (16)
  Type: Integer:
  Primitive | (2)
17: Concept: (17)
  Type: Label ({employee}, Any, 1, ∞)
18: Concept: employee
  Type: Open
  Primitive | (17)
  salary | (15)
  division | division
19: Concept: (19)
  Type: Integer: 35000≤70000
  Primitive | (2)
20: Concept: (20)
  Type: Label ({manufacturing}, {manufacturing}, 1, 1)
21: Concept: (21)
  Type: Open ({}, Any, 1, 1)
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  Primitive | (13)
  classification | (20)
  revenues | (12)
22: Concept: (22)
  Type: Open
  Primitive | (13)
  classification | (20)
  revenues | (12)
23: Concept: (23)
  Type: Label ({foreman}, Any, 1, ∞)
24: Concept: (24)
  Type: Label ({employee, foreman}, Any, 2, ∞)
25: Concept: foreman
  Type: Open
  Primitive | (24)
  salary | (19)
  division | (21)
26: Concept: (26)
  Type: Integer: 45000≤70000
  Primitive | (2)
27: Concept: (27)
  Type: Integer: 1000≤
  Primitive | (5)
28: Concept: (28)
  Type: Open ({}, Any, 1, 1)
  Primitive | (13)
  classification | (20)
  revenues | (27)
29: Concept: (29)
  Type: Open
  Primitive | (13)
  classification | (20)
  revenues | (27)
30: Concept: senior foreman
  Type: Individual
  Rules: senior employee
  Primitive | (24)
  salary | (26)
  division | (28)
31: Concept: (31)
  Type: Open ({}, Any, 1, ∞)
  Primitive | (9)
32: Concept: (32)
  Type: Individual
  Primitive | (7)
  assistant | (31)
33: Concept: (33)
  Type: Individual ({}, Any, 1, 1)
  Primitive | (13)
  classification | (20)
  revenues | (12)
34: Concept: (34)
  Type: Individual
  Primitive | (13)
  classification | (20)
  revenues | (12)
35: Concept: (35)
  Type: Individual
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  Primitive | (24)
  salary | (19)
  division | (33)
  assistant | (1)
36: Concept: (36)
  Type: Integer:
37: Concept: (37)
  Type: Individual
  revenues | (36)
38: Concept: (38)
  Type: Label ({senior employee, employee, foreman}, Any, 3, ∞)
39: Concept: (39)
  Type: Individual ({}, Any, 1, ∞)
  Primitive | (9)
40: Concept: (40)
  Type: Individual
  Primitive | (9)
41: Concept: (41)
  Type: Individual
  Primitive | (38)
  salary | (19)
  division | (33)
  assistant | (39)

Figure 16 Concept records generated for knowledge structure of Figure 14 and 15
0: Individual: Fred Smith
  Templet: (35), (41)
  Primitive =  (senior employee, employee, foreman)
  salary = 50000
  division = Body Works
  assistant = Sam Jones
1: Individual: Body Works
  Templet: (37), (34)
  Primitive = (division)
  classification = (manufacturing)
  revenues = 3000
2: Individual: Sam Jones
  Templet: (1), (40)
  Primitive = (senior employee’s assistant)

Figure Figure 17 Individual records generated for knowledge structure of Figure 14 and 15

The asserted values filling other roles are showing without parentheses, and the inferred ones in
parentheses. This corresponds to KRS keeping track of the distinction between what is asserted
and what is inferred. Figure 18 illustrates this is the output graph that KRS generates to show the
state of the individuals in the knowledge base after inference. The inferences made are clearly
visible. For example, it has been inferred that all fillers of the assistant role of “Fred Smith” must
be classified as “senior employee’s assistant”, and, in particular, that “Sam Jones” must be thus
classified. The output grapher links related individuals and hence tends to make the relationship
clearer than is done with input graphs which may be entered piecemeal.



39

Figure 18 States of individuals graphed by KRS

13 Plug-in Data Types in KRS

The relation between the inference mechanism and the plug-in data types of KRS is shown in
Figure 19. The T-box and the A-box support the normal features of KL-ONE-like systems in
allowing concepts to be defined, and assertions to be made about individuals in terms of these
concepts. What is essentially type propagation inference can then be used to deduce the
consequences of the assertions through reference to the definitions. The R-box supports the rule
schema of CLASSIC, extended to handle rules with exceptions, such that an individual
recognized as satisfying one concept has another automatically asserted of it. This integrates
production rule and frame-based reasoning. The W-box supports model checking (Halpern and
Vardi, 1991) or “puzzle mode” reasoning in which, if necessary, after propagation of type and
rule constraints a search of possible worlds is carried out to determine whether additional
conclusions can be drawn because not to do so would lead to absurdity. A wide variety of data
types is supported through a data type manager accessing separate modules through a uniform
interface such that constraints supported, such as interval bounds on numbers, enter fully into
concept definitions, individual assertions and deductive inference.
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Figure 19 Plug-in data types in relation to the KRS inference mechanisms

The algebraic model of knowledge representation leads directly to the open architecture class
library structure illustrated in Figure 20. The knowledge base class has two main instance
variables, one holding individual records and the other holding concept records. The base
knowledge base class implements the type lattice on the left of Figure 9, having codes for
indeterminate, applicable, non-applicable and overdeterminate values and constraints. It also
supports other constraints by reference codes containing a type code and pointer. The type code
is used to access a list of data type support objects which is initially empty. For each data type
implemented an object is added to the list that supports it by providing storage for values and
constraints of that subtype, and methods to compute and support input/output with such values
and constraints.
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Figure 20 Plug-in data types in relation to the knowledge base class library structure

Figure 20 at the bottom left also illustrates another important feature of the class library
construction. Type subsumption computation for record structures is very simple when expressed
recursively. However, to attain the known complexity lower bound requires that already
computed subsumption relations be cached to avoid duplicate computation. This caching is
implemented in a sub-class in KRS, allowing the simple recursive computation to be called as a
sub-class method during debugging as a check on the correctness of the caching algorithm.

When examined in relationship to the algebraic semantics described previously, Figures 19 and
20 show the close relationship between the class library implementation and the theoretical
foundations of the knowledge representation server. The basic constraint algebra of Figure 9 is
sub-classed to support various set-based constraint algebras that are extensions of it,. However,
the additional inference mechanism required are encapsulated within the sub-class objects so that
the overall inference schema shown in Figure 19 remains unchanged.

It is reasonable to expect that a constraint-theoretic architecture for a KL-ONE-like description
logic provides a basis for the implementation of systems that incorporate recent developments in
constraint logic programming (Benhamou and Colmerauer, 1993) and general representation and
inference based on constraint satisfaction (Tsang, 1993). The constraint satisfaction literature
now subsumes so much information processing, numerical and logical, within a well-principled
framework that it appears to offer the strong possibility of a unified foundation for all aspects of
representation and inference.

It is also to be expected that the graph-theoretic foundations of algorithms for concept
subsumption and instance recognition in general description logics will provide a basis for the
implementation of systems that incorporate recent developments in graph-based representation
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and inference (Ellis and Levinson, 1994). These developments already underlie the most
promising high-speed and yet richly-featured description logic implementations such as PEIRCE
(Ellis and Levinson, 1992) and KRIS (Baader, Hollunder, Nebel and Franconi, 1992).

14 Conclusions

Object-oriented class libraries offer the potential for individual researchers to manage the large
bodies of code generated in the experimental development of complex interactive systems. This
article has analyzed the structure of such a class library that supports the rapid prototyping of a
wide range of knowledge support systems including collaborative networking, shared
documents, hypermedia, machine learning, knowledge acquisition and knowledge representation,
and various combinations of these technologies. The overall systems architecture has been
presented in terms of a heterogeneous collection of systems providing a wide range of
application functionalities. The use of the class library to develop complex interactive and
knowledge-based systems has been exemplified through applications to group writing,
multimedia and knowledge-based systems.

In terms of the theme of this special issue, the implementation of KRS is particularly interesting
because KL-ONE-like representation schema may be regarded as themselves object-oriented,
with concepts corresponding to classes, and individuals corresponding to objects. How does the
object-oriented implementation interact with the object-oriented application? From one
perspective, as already noted in the literature (Troyer, Keustermans and Meersman, 1986), the
object-oriented implementation contributes nothing directly to the object-oriented knowledge
representation system being implemented. That is, the C++ classes are not in themselves the
KRS conceptual structures. This is to be expected because the KRS conceptual structures are
dynamic at run time whereas the C++ class structures are static. From this perspective, what is
contributed, as noted in the literature comparing C++ and Lisp (Trickey, 1988), is a superb
software engineering environment supporting extremely well-structured and transparent
implementation of conceptually difficult artificial intelligence knowledge representation and
inference processes. The two levels of object-oriented system in KRS are independent in their
object-oriented functionality, but the lower level is pragmatically highly important to the design
and implementation of the upper level.

However, as analyzed in the latter part of the article, there are deep theoretical relations between
the algebraic model of the knowledge representation system and its class library implementation.
It has been shown that modeling the server through intensional algebraic semantics leads
naturally to an open-architecture class library into which new data types may be plugged in as
required without change to the basic deductive engine. This may still be viewed as a software
engineering feature of the implementation, but there is more to it than that. The data types in
KRS are being reimplemented through common classes that are specialized through parametric
polymorphism using templates (Stroustrup, 1991). In this construction the C++ features are
closely identified with the algebraic semantics of the knowledge representation system. This is
consistent with the evolution of C++ which has continually moved towards higher-level
representation features (Waldo, 1993). If C++ types were dynamic at run-time then even more of
the functionality of KRS could be identified with that of its implementation language.

The experience reported in this article shows that the development of a principled class library
targeted on complex interactive applications does empower the individual researcher in the rapid
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prototyping of experimental systems. However, as already noted, much of the power of the
approach stems from the cumulative evolution of the class library through successive
applications. The class library is itself a vehicle for recording and operationalizing the increasing
knowledge and experience of its primary user, rather than a static foundation for development.
This implies that the positive results may not generalize to team projects where greater rigidity is
required in the class library in order to facilitate project management and inter-member
coordination.
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