
i
J_

Proceedings of the

KNOWLEDGE ACQUISITION FOR

KNOWLEDGE-BASED SYSTEMS

WORKSHOP

Ban(fConference Centre
Banff, Alberta, Canada

Noven1ber 2-7, 1986

Sponsored by the

American Association for

Artificial Intelligence

Workshop Co-chairs:
John H. Boose, Boeing Computer Services

Brian R. Gaines, University ofCalgary

Proceedings of the
KNOWLEDGE ACQUISITION FOR

KNOWLEDGE-BASED SYSTEMS WORKSHOP

Banff Conference Centre, Banff, Alberta, Canada

November 2-7,1986

Sponsored by the American Association for Artificial Intelligence

These proceedings are prov1ded b)' Boeing Computer Services in a limited

distribution for workshop participants. Please do not reproduce any portion of this

work without written permission from the authors.

KNOWLEDGE ACQUISITION FOR KNOWLEDGE-BASED SYSTEMS WORKSHOP
Sponsored hy the American Association for Artificial Intelligence

Banff, Canada, 'Jovember2-7, 1986

CONTENTS

Program

List of Participants and Authors

Technical Papers (listed alphabetically by author)

"The KREME Knowledge Editing Environn11·nt,"
Glenn Abrett, Mark H. Burstein, BBN Laboratories

"Ontological Analysis: An Ongoing Expertment,"
James H. Alexander, Michael J. Freiling (speaker), Sher:· l J. Shulman, Steven Rehfuss

and Steven L. Messick, Tektronix Laboratories

"Knowledge Elicitation Using Discourse Analysis,"
NicholasJ. Belkin, Rutgers l.J,tiversity; H. M. Brooks, The City University, London;

P. J. Daniels, Ministry of Defense, U.K.

"On the Structure of Expository Text· Preliminari... • Building an Expert System
from Manuals,"

Genevieve Berry-Rogghe, Templf' I ntversity, Randy ;\1. Kaplan

"Expertise Transfer and C•uuplPx Prohlemg G !';ing A Ql:J]'; AS as a Knowledge
Acquisition Workbench for Rxpert Sy ... t~rtl'• "

John H. Boose, Jeffrey M Hradshaw r -:p• akerJ, RM•int tifH:·ial Intelligence Center ...

"Induction of Horn Clauses: Methud,. and !hP Plausible Generalisation Algorithm,"
Wray Buntine, New South Wales Institute of Technology and Macquarie University

"Generic Tasks in Know ledge-Based Reasoning: The 'Right' Level of Abstraction for
Knowledge Acquisition,"

Tom Bylander, B. Chandrasekaran, Ohio State University

"Acquisition ofUncertain Rules in a Probabilistic Logic,"
John G. Cleary, University ofCalgary

"Cognitive Biases and Corrective Technigues; Proposals for Improving Elicitation
Procedures for Knowledge-Based Systems,"

David A. Clea ·. ts, CSDA Forest Service

"The Application of Psychological Scaling Techmques to Knowledge Elicitation for
Expert Systems,"

Nancy M. Cooke,James E. McDonald, New Mexico State University

"A Foundational Approach to Autonomous Knowledge Acquisition ir·
Knowledge-Based Systems,"

James P. Delgrande, Simon Fraser lJ niversity

"KRITON: A Knowledge Acquisi1•on Tool ior Expert Systems,"
Joachim Diederich, Ingo Ruhrnann, Mark May, German Research Institute for

iv

ix

1-0

2-0

3-0

4-0

5-0

6-0

7-0

8-0

9-0

10-0

11-0

Mathematics and Data Proce-.smg 12-0

"MOLE: A Tenacious Knowledge Acqutsitwn Tool,"
Larry Eshelman, Damien Ehret, John VfcDermott, and Ming Tan,

Carnegie-Mellon Uni.,;ersity 13-0

/
I

"An Overview of Knowledge Acquisition and Transfer,"
Brian Gaines, University ofCalgary . . 14-0

"Knowledge Based Knowledge Acquisition for a Statistical Consulting System,"
William A. Gale, AT+T Bell Laboratories . 15-0

"A Conceptual Framework for Knowledge Elicitation,"
Chaya Garg-Janardan and Gavriel Salvendy, Purdue University

"Design for Acquisition: Principles of Knowledge System Design to Facilitate
Knowledge Acquisition,"

Thomas Gruber, Paul Cohen, University of Massachusetts

"Structured Analysis of Knowledge,"
Simon A. Hayward, STC Technology Limited; B. J. Wielinga and J.A. Breuker

University of Amsterdam

"Specification of Expertise: Knowledge Acquisition for Expert Systems,"
Paul E. Johnson, School ofManagemPnt; Sharon Gruber, 3M Company

"Knowledge Acquisition for Fault Isolation Expert Systems,"
Kenneth De Jong, George Mason University, and The Navy Center for Applied

Research in AI

"An Intelligent Mixed-Initiative Workbench for Knowledge Acquisition,"
Gary S. Kahn, Edwin H. Breaux, Robert L. Joseph, and Peter DeKlerk,

Carnegie Group Inc.

"Heuristics for Expertise Transft>r- The Automatic Management of Complex Knowledge
Acquisition Dialogs,"

Catherine M. Kitto, ,John H. Boose, Boeing Arttficiallntelligence Center

"KNACK- Report Driven Knowledge Acqmsition,"
Georg Klinker, Joel Bl·ntolila, Serge Genf>tet, Mirhael Grimes, and John McDermott,

Carnegie .Mellon l'niversity

"Generalization in a Noisy Fnvironment: 'rhe Need to Integrate Symbolic and Numeric
Techniques in Learnit .•.

Yves Kodratoffand Michel Manago, Laboratoire de Recherche en Informatique,
U niv. Paris-Sud and CNRS; Jim Blythe and Clive Small man, GEC Research,
Thierry Andro, Cognitech

"YAKYAK: Yet Another Kit !or Your Acquisition of Knowledge,"
James Kornell, General Research Corp.

"The Knowledge Acquisition Grid: A Method for Training Knowledge Engineers,"
Marianne LaFrance, Boston College

"On Competence and Performance Notions in Expert System Design· A Critique of Rapid
Prototyping"

Otto E. Laske, Arthur D. Little, Inc.

"Mode ling Human Expertise in Knowledge Engineering: Some Preliminary Observations,"
David C. Littman, Yale University

16-0

17-0

18-0

19-0

20-0

. 21-0

22-0

23-0

24-0

25-0

26-0

27-0

28-0

"Taking Backtracking with a Grain of SALT,"
Sandra Marcus, Boeing Artificial Intelligenc.e Center . 29-0

11

"Measurement ofDeclarat.ivP and Procedural Knowledge in the Development of a
Knowledge-Based Media Planning System "

Andrew A. Mitchell, University ofToronto . 30-0

"INFORM: An Architecture for Expert-Directed Knowledge Acquisition,"
Eric A. Moo re, Schl umberger I Appl icon, Alice. M. Agogino,

UniviversityofCalifornia, Berhley . 31-0

"Acquiring Domain Models,"
Katharina Morik, Technische Universitat Rerlin

"Using A Domain Model to Drive an Interactive Knowledge Editing Tool,"
Mark A. Musen, Lawrence M. Fagan, David M Combs, Edward H. Shortliffe,

Stanford University School ofMedicinP

"Explanation-Based Learning for Know ledgt> based Systems,"
Michael J. Pazzani, The Aerospace Corp. and the

UCLA Artificial Intelligence Laboratory

"Analysis of the Performance of a Genef., Algorithm-Based System for Message
Classification in Noisy Environments,"

Elaine J. Pettit, Merit Technology, Inc.; Michael Pet.tit, University of Texas at Dallas

"Simplifying Decision Trees,"
J. R. Quinlan, New South Wales Institute ofTechn •. lngy

32-0

33-0

34-0

35-0

36-0

"Multiple Problem Spaces in the Knowledge Design Process,"
Alain Rappaport, Neuron Data and the Robotics Institue, Carnegie-Mellon University 37-0

"Ontology and Inventory: A Foundation for a Knowledge Acquisition Methodology,"
Steven Regoczei, Trent University; Edwin P. 0. Plantinga, University of Toronto 38-0

"Techniques for Knowledge Acquisition and Transfer,"
Mildred L. G. Shaw and Rrian R Gaines, UnivPrsity ofCalgary . ······· ... 39-0

"Knowledge Base Debugging l;sing Apprf'.•ticeship Learning Techmques,"
David C. Wilkens, Stanford University 40-0

"Case Generation fo1 Rule Synthesis,"
Edward Wisniewski, Brown University; Howard Winston, Reid Smith, \1ichael Kleyn,

Schlumberger Doll Research . 41-0

"MappingCognit1 ve Demands and Activities in Complex Problems Solving Worlds,"
David D. Woods, Westinghouse Research and Development Center; Erik Hollnagel,

Computer Resources International, Copenhagen . 42-0

'"

PROGRAM
KNOWLEDGE ACQUISITION I<'OR KNOWLEDGE-BASED SYSTEMS WORKSHOP

Sponsored by the American A:5sociation for Artificial Intelligence
Banff. Canada, "l ovember 2-7, 1986

eo-chairmen:
John H. Boose, Boeing Artificial Intelligence Center
Brian R. Gaines. l niversity ofCalgary

Program Committee
Jeffrey Bradshaw, Boeing Computer Services
William Clancey, Stanford C ni vet·si ty
Cathy Kitto, Ro~ing Compu!Pr Services
Janusz Kowahk. Hoeing .,ompttterServices
John McDermott, Carnegie-Mellon University
Ryszard Michalski, Cniversity of Illinois, Urbana
Art Nagai, Boeing Computer Services
Mildred Shaw, University ofCalgary

DAILY SCHEDULE

Workshop sessions will be held in the residence building. There will be coffee andjuice breaks each
morning and afternoon, and lunch will be served from 12:00 -1:00. Lunches and continental
breakfasts will be served in the residence building; hot breakfasts and dinnf>r!'; will be available in a
separate Centre building.

2:00-9:00:

7:00:

Registra tio11

Reception

SCHI<:UULE OF EVENTS

Sunday, November 2

Monday, November 3

Plenary Sessions

Plenary speakers will describt: the state ofthe art from their point of view, and give a short synopsis
of each paper being presented in their topic area.

8:30-9:30: "An Overview of Knowledge Acquisition and Transfer,"
Brian Gaines, University ofCalgary

9:30- 10:30: "Cognition and Expertise,"
William Clancey, Stanford University

10:30- 11:00: Break

11:00-12:00: "Interactive lnterviewmg Tools I,"
John McDermott, C'arnegie- :\llp\lon University

12:00-1:00: Lunch

1:00- 2:00: "Interactive InterviE•\\ ing Tools Il,"
John Boose, Boeing Artificial Intelligence Center

2:00 3:00: "Approaches to the Analysis of Knowledge Structures,"
Gavriel Salvendy, Purdue Cniversity

3:00 · 3:30: Break

3:30- 4:30: "Learning,"
Ryszard Michalslu, t.:niversily of Illinois at Urbana

Dinner 6·~ /L~/) &f-/5'

IV

Tuesday, November 4
(Note: presenters should allow at lt>a!'lt 10 minutes for questions during their presentation time.)

Room A
Cognition and Expertise

8·30- 9:00· "Modeling Human Expertise in Knowledge Engineering: Some Preliminary
Observations,"

9:00 9:30

9:30 10:00

10:00- 10:30

10:30- 11:00:

11:00-11:30:

11:30- 12:00:

12:00- 1:00:

DavidC. Littman, Yale University

"Cognitive Biases and Corrective Techniques; Proposals for Improving Elicitation
ProcPdures for Knowledge-Based Systems,"
David A Cleaves, USDA Forest Service

"Mapping Cognitive Demands and Activities in Complex Problems Solving Worlds,"
David D Woods, Westinghouse Research and Development Center; Erik Hollnagel,
Computer Resources Inlt!rnational, Copenhagen
HrNJ.k

"Explanation-Based Learrung for Knowledge-based Systems,"
Michael J. Pazzani, The Aerospace Corp. and the UCLA Artificial Intelligence
Laboratory

"Ontology and In,entory: A Foundation for a Knowledge Acquisition Methodology,"
Steven Regoczei, Trent University; Edwin P. 0. Plantinga, University of Toronto

"Acquiring Domain Models,"
Katharina Morik, Ter:hnisr.:hP U niversitat Berlin

Lunch

Approaches to the Analysis of Knowledge Structures
1:00- 1:30: "Knowledge Elidtatwr. L ;,. i?; Discourse Analysis,"

Nicholas J. Belk ir. R ..• ;.;. • . ~~niversity; H. M. Brooks, The City University, London;
P. J. Daniels, \fini,l ;"Dtft-trse, U.K.

1:30-2:00:

2:00-2:30:

2:30-3:00:

3:00-3:30:

3:30-4:00.

4 00 4:30

4:30-5:00:

"Specification of E l(.p~rt, . ~ Knowledge Acquisition for Expert Systems,"
Paul E. .Johnson. School of \1anagement; Sharon Gruber, 3M Company

"The Applicatton ut Psychological Scaling Techniques to Knowledge Elicitation for
Expert Systems,"
Nancy M. Cooke, James E. McDonald, New Mexico State University

Break

"A Conceptual Framework for Knowledge Elicitation,"
Chaya Garg-Janardan and Gavriel Salvendy, Purdue University

"Structured Analysis of Knowledge,"
Simon A Hayward, STC Technology Limited; B. J. Wielinga and J A Breuker,
University of Amsterdam

"Measurement of De<'laratJ .;e and Procedural Knowledge in the Development of a
Knowledge-Based Media Planning System,"
Andrew A. Mitchell, l"niversity ofToronto

"On the Structure of Expository Text Preliminaries to Building an Expert System
from Manuals,"
Genevieve Berry-Rogghe, Temple University; Randy M. Kaplan

RoomB

Interactive Interviewing Tools I

8:30-9:00: "The KREME Knowledge Editing Environment,"
Glenn Abrett Mark H. Burstein, BBN Laboratories

9:00- 9:30: "MOLE: A Tenacious Knowledge Acquisition Tool,"
Larry Eshelman, Damien Ehret, John McDermott, and Ming Tan, Carnegie-Mellon
University

9:30- 10:00: "Knowledge Based Knowledge Acquisition for a Statistical Consulting System,"
William A. Gale, AT+T Bell Laboratories

10:00- 10:30: Break

10:30- 11:00:

11:00-11.30:

11:30 -12:00·

12:00- 1:00:

1:00-1:30:

1:30-2:00:

2:00-2:30:

2:30-3:00:

3:00-3:30:

Learning I

3:30 4:00:

4:00. 4:30:

Room A

Learningll

8:30-9:00:

9:00-9:30:

9:30- 10:00:

10:00- 10:30:

"An Intelligent Mixed-ln1tiative Workbench for Knowledge Acquisition,"
Gary S. Kahn, Edwin H Breaux, Rol:v·rt. L. Joseph, and Peter DeKlerk, Carnegie
Gr<,up Inc

"KNACK- Report-Driven Knowledge Acquisition,"
Georg Klinhr, Joel Bentolila, Serge Genetet, Michael Grimes, and John McDermott,
Carnegie-Mellon University

"Y AKY AK. Yet Another Kit for Your Acquisition of Knowledge,"
James Kornell, General Research Corp.
Lunch

"Taking Backtracking with a Grait. ofSALT,"
Sandra Marcus, Boeing Artificial Intelligence Cent.er

"Using A Domain Model to Drivt> <tr• Interactive Kuo''" 1.-dg•· hl•t ing Tool,"
Mark A. Musen, Lawrence M Fagan, David M. Combs, l•:dwarri H "hortliffe,
Stanford University School ofMerlir ne

"Multiple Problem Spaces in the Knowledge Design Process,"
Alain Rappaport, Neuron Data and t 'te Robotics Inst it ue, Carncg1e Mellon
Unhersity

Br""•k
"Techni<tues for Knowledge Acquisition and Transfer,"
Mildred Shaw and Brian Gainesx sz, University ofCalgary

"Knowledge Base Debugging Using Apprenticeship Learning Techniques,"
David C. Wilkens, Stanford University

"Case Generation for Rule Synthesis,"
Edward Wisniewski, Brown University; Ho ward Winston, Re id Smith, Michael
Kleyn, Schlumberger-Doll Research

Dinner J. 0 0 f ¥V- tt(r;-

Wednesday, November 5

"Simplifying Decision Trees "
J. R. Quinlan, New South Wales Institute ofTechnology

"Induction of Horn Clauses M~t hods and the Plausible Generalisation Algorithm,"
Wray Buntine, New South Wales Institute of Technology and Macquarie University

"Acquisition of U nCf~rtam Rules in a Probabilistic Logic,"
John G. Cleary, Uni .-rsity ofCalgary

Break

vi

10:30-11:00: "A Foundational Approach to Autonomous Knowledge Acquisition in Knowledge
Based Systems,"
James P Delgrande, Simon Fraser University

11:00-11:30: "Generalization in a Noisy Environment: The Need to Integrate Symbolic and
Numeric Techniques in Learning,"
Yves Kodratoffand Michel Manago, Laboratoire de Recherche en lnformatique, Univ.
Paris-Sud and CNRS JimBlythe and Clive Smallman, GEC Research; Thierry
Andro, Cognitech

11:30 · 12:00: "Analysis of the Performance of a Genetic Algorithm-Based System for Message
Classification in Noisy Environments,"
Elaine J. Pettit, Merit Technology, Inc.; Michael Pettit, University of Texas at Dallas

RoomB

Interactive Interviewing Tnols 11
8:30-9:00 "KRITON· A Knowledge A('quisih \fl Tool for Expert Systems,"

Joachim Diederich, lngo Ruhmann Mark May, German Research ' ·stitute for
Mathematics and Data ProcessinP

9:00- 9:30: INFORM: An Architectur< for Ex:pen-Directed Knowledge Acquisition,"
Eric A. Moon", Schlumberger 1 Applicon; Alice M. Agogino, Univiversity of California,
Berkeley

9:30- 10:00: "Design for Acquisition: Principles of Knowledge System Design to Facilitate
Knowledge Acquisition,"

10:00- 10:30:

10:30- 11:00:

Thoma:- r:,·ulw!' Pau1 r.,:. rIll versity of Massachusetts

Break
"Expertise 1'ransff'r and l. :: :J:plex Problems: Using AQUINAS as a Knowledge
Acquisition Workbench for Expert Systems,"
John H Bt•· .1. Jeffre_; \1. Bradshaw (speaker), Hoeing Artificial Intelligence Cente1

11:00-11:30: "Heuristics r,,, E"'perti~e Transfer: The Automatic Management of Complex
Knowledg ... Actlui!-;itinn Dialogs,"
CatherinP M Kitto, John H Boose, Hoeing Artificial Intelligence Center

11:30-12:00: "KnowledgP Al'quisition for Fault Isolation Expert Systems,"
Kenneth DeJong, George Mason University, and The Navy Center for Applied
Research i~. AI

Lunch, afternoon, evening- Local Atn•osphere Enjoyment and Bear Patrol

Morning

8:00- 10:00·

8:00-8:30

8:30-9:00:

9:00-9:30:

9:30- 10:00:
10:00- 10:30:

Thursday, November 6

Panel Discussions

Panel I- "Knowledge Acquisition Methodology and Training"
"Generic Tasks in Know kdge Based Reasoning: The 'Right' Level of Abstraction for
Knowledge Acquisition,"
Tom Bylander, B Chand1a::;ekaran, Ohio State University

"Ontological Analysis· An Ongoing Experiment,"
James H. Alexander, \11, !1ael J. Freiling (speaker), Sheryl J. Shulman, Steven
Rehfuss and Steven L. Messick, Tektronix Laboratories

"The Knowledge Acquisitwn Grid: A Method for Training Knowledge Engineers,"
Marianne LaFra ce. Boston College

Discussior
Break

vii

10:30-12:00: Panel 11 · .. Reasoning with Uncertainty: Implications for Knowledge
Acquisition"

Moderator: Ryszard Michalsk1, with Bnan Gaines andJ R Quinlan

12:00- 1:00: Lunch

Afternoon Working Groups

Attendees will participate in one of several small working groups that will attempt to define
the state-of-the-art and future research directions in their topic area

Cognition and Expertise, William Clancey, e1 q 1

Interactive Interviewing Tools I, John McDermott, et al.

Interactive Interviewing Tools 11, John Boose, et al.

Approaches to the Analysis of Knowledge Structures, Gavriel Salvendy, et al

Learning, Ryszard Michalski, et al.

Knowledge Acquisiton Methodology and Training, B. Chandrasekaran, et al

Reasoning with Uncertainty and Knowledge Acquisiton, Brian Gaines, J. R. Qumlan, et al.

Friday, November 7

Working Group Presentations

A spokesperson will present results from each working group

8:00- 8:20: Cognition and Expertise

8:20- 8:40: IntPractive Interviewing Tools I

8:40-9:00:

9:00-9:20:

9:20-9:40:

9:40- 10:00:

10:00- 10:30:

10:30- 11:00

Summary

11:00 - 12:00:

12:00- 1:00:

Int• .-vi~>wingTools 11

Approaches to the Analysis of Knowledge Structures

Learning

Knowledge Acquisiton Methodology and Training

Break

Reasoning with Uncertainty and Knowledge Acquisiiton

Workshop Summary, Brian Gaines

Lunch

V ill

LIST OF PARTICIPANTS AND AUTHORS

KNOWLEDnF. ACQUJSJTON FOR KNOWT..F.Df;E-RASED SYSTRJVTS
WORKSHOP

Sponsored by the American Association for Aritificial Intelligence
Banff, Canada, November 2-7, 1986

Co-chairs: John H. Boose, Brian R. Gaines

- Glenn Abrett, Mark H. Burstein
BBN Laboratories, 10 Moulton St., Cambridge, MA, 02238, USA

Alice M. Agogino
Expert Systems Laboratory, Department of Mechanical Engineering
University of California, Berkeley, 5136 Etcheverry Hall, Berkeley, CA, 94720, USA

-- James H. Alexander, Michael J. Freiling, Sheryl J. Shulman, Steven Rehfuss and Steven L. Messick
Computer Research Laboratory, Tektronix Laboratories, P.O. Box 500, Beaverton, Or., 97077, USA

Thierry Andro
Cognitech, 167 rue du Chevaleret, 75013, Paris, France

Nicholas J. Belkin
The School of Communication, Information, and Library Studies
Rutgers University, New Brunswick, NJ, 08854, USA

Genevieve Berry-Rogghe .
Temple University, Department of Computer Science
Philadelphia, Pa., 19122, USA

Jim Blythe and Clive fimallman
GEC Research, West Hanningfield Rd., Great Baddow, Chelmsford, England- CM2 8NH

·· John H. Boose
Boeing Artificial Intelligence Center, Boeing Computer Services
P.O.Box24346,Seattle, WA 98124, USA

Jeffrey M. Bradshaw
Boeing Artificial Intelligence Center, Boeing Computer Services
P.O. Box 24346, Seattle, Wa., 98124, USA

H. M. Brooks
Department oflnformation Science, The City University
Northampton Square, London, EC1 V OHB, U.K.

·. Wray Buntine
New South Wales Institute ofTechnology and Macquarie University, Computing Science, N.S.W.I.T.,
P.O. Box 123, Broadway, NSW 2007, Australia

··· William Clancey
Stanford University, Stanford, CA, USA

_ B. Chandrasekaran and Tom Bylander
Laboratory for Artificial Intelligence Research,
Department of Computer and Information Science, 2036 Neil Ave. Mall,
The Ohio State University, Columbus, Ohio, 43210, USA

John G. Cleary
Department of Computer Science, U ni versi ty of Calgary
Calgary, Alberta, Canada T2N IN4

ix

- David A. Cleaves
USDA Forest Service, 4955 Canyon Crest Rd., Riverside, Ca., 92507, USA

Bruce Conrad, Morris Sharp, Brian Woodward
Department of Computer Science, Uni·,rer::;ity ofCalgu.ry, Ca!g~ry, l\.lb~rta, Canadr.. T2N 1N4

Nancy M. Cooke, James E. McDonald
Computing Research Laboratory and Department ofPsychologv
New Mexico State University, Las Curces, NM, 88003, USA ·

P. J. Daniels
Admiralty Research Establishment, Ministry ofDefense, Teddington, U.K.

-James P. Delgrande
School ofComputing Science, Simon Fraser University, Burnaby, B.C., Canada, V5A 1_S6

·· Joachim Diederich, Ingo Ruhmann, Mark May
Research Division "Expert Systems", Institute for Applied Information Technology
German Research Institute for Mathematics and Data Processing, Schlof3 Birlinghoven
Postfach 1240, D-5205 Sankt Augustin 1, West Germany

DonaM.Erb
Mitre Corporation, 1120 NASA Road One, Houston, Texas, 77058, USA

···- Larry Eshelman, Damien Ehret, John Mc.E>ermott, and MingTan
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 15213, USA

· · ·Brian R. Gaines
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1 N 4

William A. Gale
AT&T Bell Laboratories 2C278, 600 Mountain Ave., Murry Hill, NJ, 07974, USA

·- Chaya Garg-Janardan and Gavriel Salvendy
School oflndustrial Engineering, Purdue University, West Lafayette, Incl., 47907, USA

Sharon Gruber
3M Company, USA

Thomas Gruber and Paul Cohen
Experimental Knowledge Systems Laboratory, Department of Computer and Information Science
University of Massachusetts, Amherst, Massachusetts, 01003, USA

....... Simon A. Hayward
STC Technology Limited, Six Hills House, London Road, Stevenage, Herts, SG 1 1 YB, U.K.

Erik Hollnagel
Computer Resources International, Copenhagen, Denmark

Paul E. Johnson
School ofManagement, 27119th Ave. South, Minneapolis, Minn., 55455, USA

Kenneth De J ong
Computer Science Department, George Mason University, Fairfax, VA, 22030, USA, and
The Navy Center for Applied Research in AI, Code 5510
Naval Research Laboratory, Washington, D.C., 20375

~ Gary S. Kahn, Edwin H. Breaux, Robert L. Joseph, and Peter DeKlerk
Carnegie Group Inc., 650 Commerce Ct., Station Square, Pittsburgh, Pa., 15219

Randy M. Kaplan
812 Halvorsen Dr., West Chester, Pa., 19382, USA

X

Catherine M. Kitto
Boeing Artificial Intelligence Center, 7L-64, Boeing Computer Services
P.O. Box 24346, Seattle, Wa., 98124, USA

Micnael Kieyn, Howard Vvinston, Reid Smith
Schlumberger-Doll Research, Old Quarry Rd., Ridgefield, CT, 06877, USA

· · Georg Klinker, Joel Bentolila, Serge Genetet, Michael Grimes, and John McDermott
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 15213, USA

-- · Y ves Kodratoff
Inference and Learning Group, LRI (Laboratoire de Recherche en Informatique)
Univ. Paris-Sud and CNRS, Bat. 490- 91405 ORSA Y, France

James Kornell
General Research Corp., PO Box 6770, Santa Barbara, Ca., 93111, USA

R. Koubek
Purdue University, School oflndustrial Engineering
Grissom Hall, West Lafayette, Indiana, 47907, USA

Rick Koubek
School oflndustrial Engineering, Purdue University, West Lafayette, Incl., 47907, USA

. Marianne LaFrance
Department of Psychology, Boston College, Chestnut Hill, Massachusetts, 02167, USA

Otto E. Laske
Arthur D. Little, Inc., Artificial Intelligence Center, Acorn Park, Cambridge, Mass., 02140, USA

David C. Littman
Cognition and Programming Project, Department of Computer Science
Yale University, New Haven, CT, 06520, USA

Michel Manago, c/o Bruce Buchanan
Knowledge Systems Laboratory, Stanford University
701 Welch Rd., Bldg. C, Palo Alto, CA 94304, USA

-- Sandra M arcus
Boeing Artificial Intelligence Center, Boeing Computer Services
P.O. Box 24346, Seattle, WA 98124, USA

- Ryszard S. Michalski
Department of Computer Science, University of Illinois, Urbana, Ill., 61801, USA

Andrew A. Mitchell ;
University of Toronto, Faculty of Management Studies
246 Bloor St. West, Toronto, Canada, M5S 1 V 4

- Eric A. Moore,
Schlumberger/Applicon, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA

Katharina Morik
Technische Universitat Berlin, Institut fur Angewandte Informatik
Computergestiitzte Informationssysteme, Projekt KIT-Lerner, Sekr. FR 5-8
Franklinstr. 28/29, D-1000 Berlin 10, West Germany

Robert Muller
System Designers, Pembroke House, Pembroke Broadway, Camberley, Surrey GU15 3XD, U.K.

- Mark A. Musen, Lawrence M. Pagan, David M. Combs, Edward H. Shortliffe
Medi~al Computer Science Group, Knowledge Systems Laboratory
Stanford University School of Medicine, Stanford, CA, 94305-5479, USA

xi

Arthur Nagai
Boeing Artificial Intelligence Center, 7L-64, Boeing Computer Services
PO Box 24346, Seattle, W A 98124, USA

Michael J. Pazzani
The Aerospace Corporation, P.O. Box 92957, Los Angeles, CA, 90009, USA, and
UCLA Artificial Intelligence Laboratory, 3531 Boelter Hall, Los Angeles, CA, 90024, USA

Elaine J. Pettit
Merit Technology, Inc., 17770 Preston Rd., Dallas, Texas, 75252, USA

Mitchael J. Pettit
Department of Computer Science, University ofTexas at Dallas, Richardson, TX, 75083, USA

Edwin P. 0. Plantinga
Department of Computer Science, University ofToronto, and
Redeemer College, (Hamilton, Ontario), Canada

,.. J. R. Quinlan
Artificial Intelligence Laboratory, Massachusetts Institute ofTechnology
545 Technology Square, Cambridge, MA, 02139, USA, and
New South Wales Institute of Technology (permanent address)
School of Computing Sciences, New South Wales Insittute of Technology
Sydney, NSW 2007, Australia

.;.... Alain Rappaport
Neuron Data, 444 High Street, Palo Alto, CA, 94301, USA, and
The Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA, 15213, USA

· Steven Regoczei
Computer Studies, Trent University, Petersborough, Ontario, Canada K9J 7B8

Mildred L. G. Shaw
De.Partment of Computer Science, University ofCalgary, Calgary, Alberta, Canada T2N 1N4

Joan Vickers
Faculty ofPhysical Education, University ofCalgary, Calgary, Alberta, Canada T2N 1N4

B. J. Wielinga andJ.A. Breuker
University of Amsterdam, Nerengracht 196, 1016 BS Amsterdam, The Netherlands

David C. Wilkens
Department of Computer Science, Stanford University, Stanford, CA, 94305, USA

Edward Wisniewski, Howard Winston, Reid Smith, Michael Kleyn
Schlumberger-Doll Research, Old Quarry Road, Ridgefjeld, CT, 06877-4108, USA

David D. Woods
Westinghouse Research and Development Center, Pittsburgh, PA, 15235, USA

Maria Zemankova
University of Tennessee, Department of Computer Science
Ayres Hall, Knoxville, Tenn., 37996, USA

xii

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

The KREME Knowledge Editing Environment
Glenn Abrett and Mark H. Burstein

BBN Laboratories
10 Moulton Street

Cambridge, MA 02238

Abstract

One of the major bottlenecks in large-scale expert system development is the problem
of knowledge acquisition: the construction, maintenance, and testing of large
knowledge bases. This paper provides an overview of the current state of development
of the KREME Knowledge Representation Editing and Modeling Environment. KREME is
an extensible experimental environment for developing and editing large knowledge
bases in a variety of representation styles. It provides tools for effective viewing and
browsing in each kind of representational base, automatic consistency checking,
macro-editing facilities to reduce the burdens of large scale knowledge base revision

and some experimental automatic generalization and acquisition facilities. 1

1. INTRODUCTION

1.1. The Knowledge Acquisition Problem

The creation of the large and detailed bodies of knowledge needed to substantially
improve the performance of expert systems has proven to be an extremely difficult
task. We have identified several factors which make building these very large
knowledge bases impractical using current technology:

Knowledge comes in many forms. Human knowledge about the world comes in many
forms. Squeezing all the knowledge that an expert system needs into one, or at best
two, representational formalisms (e.g rules and frames) is difficult, time consuming, and
usually an inadequate solution to the task at hand.

Managing large knowledge bases is difficult. As knowledge bases grow in size and
complexity they strain the capacities of software tools for knowledge editing,
maintenance, and validity checking. Viewpoints at the right level of detail are hard to
construct, consistency checking takes up more and more time, and global
reorganizations and modifications become virtually impossible to accomplish.

Previously encoded knowledge is not re-used. It is customary to start building a new
expert system with an empty knowledge base. even though the completed knowlF>dge
base will contam at least some general knowledge about the world. To make matters

1This research was supported by the Oefense Advanced Research Projects Agency of the
Department of Oefense and was monitored by RAOC under contract number F30602-85-G-0005.

l-0

worse, this general world knowledge is
manner. If general knowledge about the
gradual accumulation of detail and
performance of most expert systems.

usually entered in a fragmentary and sketchy
world could be transferred across systems, the
precision would tremendously enhance the

1.2. Overview of the BBN Knowledge Acquisition Project

Our goal has been to develop an environment in which the problems of knowledge
acquisition faced by every knowledge engineer attempting to build a large expert
system are minimized. To this end, we have organized the task of developing
knowledge acquisition tools into two stages. During stage one, we have been
developing a knowledge representation, editing and modeling environment, dubbed
KREME. We believe both knowledge engineers and subject matter experts with some
knowledge of basic knowledge representation techniques will find easy to use KREME to
acquire, edit, and view from multiple perspectives knowledge bases that are several
times larger (i.e., 5-10,000 concepts) than those found in most current systems.
During phase two of the project, we will be considering more directed kinds of
automatic knowledge acquisition; techniques for generating controlled acquisition
dialogues, procedures to automatically transforming previously acquired knowledge for
use in new tasks, techniques for learning by analogy and learning from examples.

The current version of KREME provides, within a uniform environment, a number of
special purpose editing facilities that permit knowledge to be represented and viewed
in a variety of formalisms appropriate to its use, rather than forcing all knowledge to
be represented in a single, unitary formalism. In addition to a general editing
environment, KREME provides tools to do the kinds of validation and consistency
checking so essential during the development or modification of knowledge bases. As
the size of knowledge bases grows, and more people become involved in their
development, this aspect of knowledge acquisition becomes increasingly important. In
the hybrid or multi-formalism representational systems that are becoming prevalent
[Rich 82, Brachman 83, Vilain 85], techniques must be provided for consistency

checking not only within a single representational system, but between related
systems.

Our approach to consistency maintenance has been to develop a knowledge integration
subsystem that includes an automatic frame classifier and facilities for inter-language
consistency maintenance. The frame classifier automatically maintains logical
consistency among all of the frames or conceptual class definitions in a KREME frame
base. In addition, it can discover implicit class relatiOnships, since it will determine
when one definition is logically subsumed by another even when the knowledge
engineer has not explicitly stated that relationship. The inter-language consistency
maintenance facility checks for inconsistencies in references to frames in knowledge
bases specified using other representation languages (e.g., rules, procedures).

A second important area of investigation in developing the KREME editing environment
has been the attempt to provide facilities for large-scale revisions of portions of a
knowledge base. Our experience indicates that the development of an expert system
inevitably requires systematic, large scale revisions of portions of the developed
representation. This is often caused by the addition or redefimtion of e task the
system is to perform. These kinds of systematic changes to a knowledge base have, to
date, only been possible by painstaking piecemeal revision of each affected element,
one at a time. Our initial approach has been to provide a macro-editing facility, in
which the required editing operations can be demonstrated by example and applied to
specified sets of knowledge structures automatically. We plan to provide a library of
such generic macro-editing operations for the most common and conceptually simple
(though potentially difficult to describe) operations during phase two of the project.

Finally, we have begun to investigate techniques for automat;.: generalization of
concepts defined in a knowledge base. We will briefly describe these experiments as
well, in the section on knowledge extension.

t-1

2. OVERVIEW OF KREME

KREME attempts to deal with the inextricably related problems of knowledge
representation and knowledge acquisition in a unified manner by organizing multiple
representation languages and multiple knowledge editors inside of a coherent global
environment. A key design goal for KREME was to build an environment in which
existing knowledge representation languages, appropriate to diverse types of
knowledge, could be integrated and organized as components of a coherent global
representation system. The current KREME Knowledge Editor can be thought of as an
extensible set of globally coherent operations that apply across a number of related
knowledge representation editors, each tailored to a specific type of knowledge. Our
approach has been to integrate several existing representation languages in an open
ended architecture that allows the extension of each of these languages. In addition,
we have provided for the incorporation of additional representation languages to
handle additional types of knowledge.

KREME currently contains knowledge editors for four distinct representation languages;
one for frames, one for rules, one for procedures. and one for attached behaviors or
methods, defined as functions. The rule editor, the procedure editor and the functional
method editor are accessible through a global mechanism that treats these types of
knowledge as forms of procedural attachment to frames. In the immediate future we
plan to add a language for representing causal and other qualitative constraint
systems, and several types of instantiation mechanisms, including a truth maintenance
system for prepositional representations.

Underlying the entire system is a strong notion of meta-level knowledge about
knowledge representation and knowledge acquisition. The representation languages
were implemented based on a careful decomposition of existing knowledge
representation techniques, implemented as combinable objects using FLAVORS [Keene
and Moon 85]. By organizing this meta-level knowledge base modularly, behavioral
objects implementing such notions as inheritance and subsumption could be "mixed in"
to a variety of representational subsystems making the incorporation of new
representations and their editors a reasonably straightforward process. That is, each
object in the meta-knowledge base encodes some aspect of a traditional
representational technique, and is responsible for its own display, editing and internal
forms.

3. THE KREME KNOWLEDGE EDITING ENVIROMENT

The KREME Knowledge editor currently consists of three major editor modules; a frame
editor, a procedure editor, and a rule editor; and a large tool-box of editing
techniques that are shared among the editor modules. Th1s section will describe the
global environment and toolbox, later sections will describe the individual editors.

3.1. Basic Editing Environment

Each distinct type of representation included m the system (currently concepts, roles,
procedures methods and rules) has defined for it one or more editor views. A view is
a configured collection of windows appearing together on the screen, each of which
displays some aspect of the particular piece of knowledge being edited and/ or a set of
editing operations on it. When the user desires to enter or edit a specific piece of
knowledge, the system opens the most appropnate view for the type of knowledge and
the editing operation requested. Typically, any aspect o!" the chunk of knowledge
being edited can be changed or viewed in more detail simply by pointing at it. Th1s
organization allows knowledge to be viewed by the user from multiple perspectives at
the level of . ::le tail required.

The editor maintains a level of indirection between the knowledge being edited and the
representation of that piece of knowledge in the knowledge base. This is accomplished

~- .l

by a mechanism like that of text editor buffers. Changes are always made to editor
definition objects which are distinct from the corresponding objects in the actual
knowledge base. A stack or list of the active definition objects is always visible to the
user. The top item in this list is the definition currently being viewed and edited.
The user is free to modify this definition in any way without directly effecting the
knowledge base. When the modified definition is to be placed into the knowledge base
a defining function appropriate to the type of knowledge (e.g., classification for
concepts and roles), is executed and the knowledge base is modified.

Since the editor stack is always visible, it provides one convenient method for
browsing. The user may make any definition item currently in the stack the top,
visible item by pointing at it. The object will be displayed in the same editor view as
when it was last edited.

3.2. Window Editing Tools

There are a number of window subsystems or tools that have been developed and
incorporated into the KREME editor to make editing, viewing and browsing in knowledge
bases easier and faster. We will now briefly describe some of the most important of
them.

The Grapher

The KREME grapher is a powerful, generalized facility that rapidly draws lattices of
nodes and links. Specific kinds of graphs appear, when appropriate, in a number of
editor views. At present, dynamically updated graphs display the parts of the
subsumption hierarchy surrounding (i.e., all of the objects subsuming and subsumed
by) the concept or role currently being edited in the frame editor. Other concepts
may be added to the displayed graph at any time simply by pointing at a node that is
already present and requesting all of its parents or children be displayed as well.
The presence of these graphs greatly facilitates browsmg, since any visible node can
be pointed at and made the top, current definition being edited. Alternatively, the
lisp form of the object's definition can be temporarily displayed over the graph. In
addition to these graphs, a graph can be "popped up" to display networks other than
the one normally presented.

One extremely convenient feature of the KREME grapher is that it routinely displays
graphs that are much larger than the window through which it is viewed. Simply
clicking and dragging the mouse across the graph window causes the grapher to
smoothly pan in the direction of mouse motion, making previously obscured portions of
the graph instantly visible as though one was moving a wmdow across a larger page.
Graphs can also be displayed vertically or horizontally. in a number of different fonts
and sizes, and with or without a dynamic overview that provides another convenient
method for scrolling. Graphs can also be hardcopied automatically.

Tabular Display Windows

For editing lists of structured features of objects, we have incorporated into our
toolbox a sophisticated kind tabular display window facility. Information displayed in
tabular windows can be scrolled both vertically and horizontally, and edited by
pointing at a component or a whole row of the table. These windows appear in a
number of editor views.

Structure/text Editing Windows

Another style of editing commonly found in LISP environments is structure editmg.
Some KREME Editor views contain windows of this variety, including the macro editing
view (See section 7). When editing functional methods, the structure editor can also
be toggled to act as a ZMACS style editor.

1-3

3.3. Files and Multiple Language Support

All definitions manipulated by the editor are read and stored in lisp-readable text
files of defining forms. Since these files contain formatted lisp forms, they are user
readable, and can be edited offline using an ordinary text editor. In fact, KREME can
as easily read files that were developed independently using a text editor or some
other frame editor.

Files are read in using the LOAD command. A file can be loaded into a blank KREME
knowledge base or can be loaded on top of an already existing knowledge base. This
mechanism, which relies heavily on the the frame classifier (see section 5) to maintain
consistency, enables KREME to organize information from multiple knowledge bases to
create a single unified whole.

KREME currently reads and writes definitions in either its own frame language syntax
or NIKL syntax, the language upon which it was largely based. This flexibility has
made it possible for KREME to be used regularly to examine and update a knowledge
base of approximately 1000 roles and concepts for a natural language query system
that was built using NIKL. KREME can also read files of MSG (the frame language of
the STEAMER [Williams et al. 81] system) defining forms, providing us access to the
extensive STEAMER knowledge base of concepts and procedures. We are currently at
work in building an interface to files of KEE frame definitions, .~s well.

We feel that this multiple language handling facility is a crucial feature of KREME and
are committed to extending it, where possible, to other representation languages. A
rich library of input translation programs will enable a knowledge base builder,
working in KREME, to draw upon many previously existing knowledge bases to create a
larger and more detailed whole. It is our opinion that this kind of flexibility will be
crucial if knowledge bases developed in different languages are ever to be combined
and conveniently modified to create larger ones.

4. THE KREYE FRAME EDITOR

Much of the work done in the current implementation of KREME has been focused on
building a knowledge editor for a frame representation language. This section will
describe the language that the editor works with, its basic structure and operations.
Section 5.1 will describe the classifier mechanism that is used within the editor to
help maintain correctness and consistency of frame knowledge bases developed with
the editor.

4.1. The KREME Frame Language

A number of frame languages have been developed in recent years to support AI
systems (Roberts and Goldstein 77, Bobrow et al 77, Sidner 81, Moser 83, Brachman
83, KEE 84, KnowledgeCraft 85]. These languages have been well researched and
extensively tested, and while we had to have some frame language on which to base
our initial editor, we did not want to design and implement a new one completely from
scratch. Our most important criteria for a suitable frame representation language
were that it:

1. Allowed multiple inheritance
2. Was a logically worked out mature language.
3. Had some mechanism for internal consistency checkmg.
4. Was built on a modular object oriented base so that the language could be

decomposed in such a way as to make it easily extensible.

NIKL (the defimtional or frame language component of KL-TWO) [Moser 83. Schmolze
and Israel 83, Vilam 85] seemed an ideal candidate. It ·1s a fully worked out frame
representation language that allows multiple inheritance. is reasonably expressive and,
perhaps most importantly, was designed to work effectively with an automatic

classification algorithm that could be easily adapted to provide a powerful mechanism
for consistency checking and enforcement during knowledge base development.
However, no object-oriented implementation of NIKL existed, and the NIKL classifier
was not designed to allow modification and reclassification of previously defined
concepts. A second frame language, known as MSG, had been built as part of BBN's
STEAMER project and was readily available. MSG is object oriented in both of the above
senses but it has no classifier and is not as mature or thoroughly specified a
language as NIKL.

To develop KREME, we elected to reimplement NIKL as an object oriented language
using MSG as a guide. The NIKL data structures were decomposed into a modular
hierarchy of flavor definitions, and the KREME frame language was then built out of
these flavors. This enabled us to incorporate a great deal of the fairly sophisticated
instantiation mechanism of MSG with minimal effort. In the process, we were also able
to re-implement the NIKL classifier algorithm to in a more modular fashion, both to
provide the kind of reclassification capability required for a knowledge editing
environment, and in anticipation of extending the classifier to deal with the richer
semantics of languages like Intellicorp's KEE [KEE 84].

4.1.1. Frame Language Syntax

The remainder of this section will briefly describe the basic definitional syntax of the
KREME Frame language. As this syntax closely resembles the formal syntax of NIKL
interested readers are referred to [Moser 83] for more detail.

Following NIKL, a KREME frame is called a concept. Collections of concepts are
organized into a rooted inheritance or subsumption lattice sometimes referred to as a
taxonomy of concepts. A single distinguished concept, usually called THING, serves as
the root or most general concept of the lattice. A concept has a name, a textual
description, a primitiveness flag, a list of concepts that it specializes or is subsumed
by, a list of slots, a list of slot equivalences, and a list of concepts that it is disjoint
from

The lists of slots, slot equivalences and disjoint concepts are collectively referred to
as the features of a concept. If each concept can be thought of as defining a unique
category, then features of the concept define the necessary conditions for inclusion in
that category. If a concept is not marked as primitive, the features also constitute
the complete set of sufficient conditions for inclusion in that category. 2 A concept
inherits all features from those concepts above it in the lattice (those cQncepts that
subsume it. and, thus. are more general) and may define additional features that serve
to distinguish it from its parent or parents.

Slots (sometimes called role restrictions) consist of a role or slot name, a a value
restriction, a number restriction and an (optional) default form. The value restriction
specifies the class of concepts allowed as values for that slot. As in NIKL, value
restrictions usually specify a particular concept. We are currently in the process of
extending the value restriction language to permit more complex forms containing
conjunctions, disjunctions and negations, based on the restriction language for KEE
frames [KEE 84]. This effort should result in an extended classifier, as well, capable
of maintaining consistency among frames in the KEE class of frame languages.

Slot Equivalences describe slots (and slots of slots) that by definition must always
refer to the same entities.

2concepts marked os primitive (sometimes referred to os Natural Kinds) hove no complete
set of sufficient conditions. For example, an ELEPHANT must, by necessity, be a MAMMAL, but
without on exhaustive list of the attributes that distinguish it from other mammals, it must
be represented as a primitive concept. The class of WHITE ELEPHANTs, on the other hand,
might be completely described as a ELEPHANT, with slot COLOR restricted to WHITE.

l-5

The role name specified for each KREME slot refers to an object called a role. Roles in
KREME, as in NIKL and several other frame languages like KRYPTON [Brachman 83], and
KnowledgeCraft [KnowledgeCraft 85], are actually distinct, first class objects that form
their own distinct taxonomy, rooted at the most general possible role, usually called
RELATION. Roles describe two place relations between concepts. A role restriction at
a concept is thus a specification of the ways a given role can be used to relate that
concept to other concepts.

4.2. Frame Editing Views

The frame editor is used to create, edit and browse around in a knowledge base of
KREME frames. The current KREME frame editor has 4 views, each a fixed
configuration of windows appearing at once on the screen. Three windows (screen
regions) are common to all of these views; the global command window, the editor
stack window, and the state window. Figure 4-1 shows the main concept editing view,
which contains most of the windows used for editing portions of a concept's definition.
The descriptions of each window below will refer to the numbers superimposed on that
figure.

1. The global command window contains commands that operate on the
network as a whole. It is always visible.

2. The editor stack window, which is also always visible, shows the names of
the things being edited and some information about their current edit state
(e.g., whether they have been modified). Items in the stack window can be
removed from the editor, made the currently visible edit item, or
reclassified (if modified) by pointing at them.

3. The state window, which is visible in all views for concepts and roles,
displays the name, textual description, primitive class flag, parents and
information on the classification state of the item.

4. The concept graph window displays a dynamically updated graph of all of
the abstractions and specializations of the current concept. This view
provides constant visual display of the relative position of the concept
being edited in the subsumption hierarchy.

5. The tabular feature window ordinarily displays a table of (all or just the
locally defined) slots for the current concept. Columns in the table show
the source of the slot (where it was inherited from), its role name, value
and number restrictions, default value, and a description. Th1s window can
also be used to display the the concept's slot equivalences, disjomt
concepts, or a list of all behaviors (rules, methods and procedures) defined
for the concept (See section 6).

6. The slots command window contains various commands for editing and
displaying the slots of the concept.

7. The Editor Interaction Window is a Lisp Listener which can be scrolled
backward and forward through a history of the current session.

Three other views are currently defined for concepts, and one view is defined for
roles. Two of the other concept views are somewhat different configurations of the
above windows, the last is the the macro and structure editing view described in
section 7. A separate view exists for editing role defimtions. It contains wmdows
showing a graph of the role taxonomy, highlighting the currently visible role, a wmdow
displaying the concepts that restrict the role and a third window displaying the role's
domain, range and parents.

l-~

"zj
OQ
.::: ..,
IJ

of>.
I

~
D"
Cl)

3:::
Ill ...
;::!

()
0
;::!
0
Cl)

'0
M

T ~
-.J 5

IJQ

5
Cl)

~

INORGANIC-08JECl
O~JECT

08JECl
OBJECT
08JECl
O~JECl MASS
08.JfCT lOCATION
06Jlt:l SIZE
MAN-MAOE-08JECl MAOE-8Y

Role Restrictions

Editor Interaction Pane

01:24:25 MARKS

Exactly 1
At least 1
E.act ly 1
Exactly 1
Exactly 1
Exactly 1
Exactly 1
Exactly 1

H:

i Mechanical Pan

INORGANIC-SUBSTANCE)
(A DENSITY)
(A CDLOR)
(AN AGE)
(A SHAPE)
(A MASS)
(A LOCATION)
(A SIZE)
(A PERSON)

]y;

Machine

(AN INORGANIC-SUBSTANCE)
(A DENSITY)
(A COLOR)
(AN AGE)
(A SHAPE)
(A MASS)
(A LOCATION)
(A SIZE)
(A PERSON)

Herring

Mobile Machine

me

4.3. Frame Editing Operations

Space does not permit a full description of the functionality of the KREME frame editor
so we will very briefly touch upon a few of its more important operations.

Making new concepts. The New Concept command in the global command menu initiates
the definition of a new concept that is (1) fully specified by the user, (2) similar to
some already defined concept, or (3) a specialization of one or several other defined
concepts. When the initial form for the new concept has been specified the system
creates a new concept definition for it and shows this new definition in the main
concept view. The user is then free to add details (slots, equivalences, additional
parents, etc.) to the new concept definition, classify it, or edit other concepts.

Adding and modifying slots. Whenever the window displaying slots is visible, slots can
be added or modified. A new slot is added to the defined slots of the concept with
the Add Slot command. Any portion of a slot's definition can be entered by typing or
by pointing to a visible reference to the desired item. When a role or concept name
that is not defined is specified, the system offers to make one with the name given.

Users may modify any locally defined slot or inherited slot. Slots shown in table
windows are modified by pointing at the appropriate subform and then either typing in
or pointing to a replacement form. Modifying an inherited slot causes the new
definition to be locally defined.

Adding and Deleting parents. The system displays the classifier determined parents of
a concept in two places. The concept graph displays them as part of the abstraction
hierarchy of the concept, and the state pane indicates both the defined and direct or
computed parents of the concept after the word "Specializes:". Since the classifier
may have found that the concept being edited specializes some concepts more specific
than those given as its defined parents, defined parents that are not direct parents
are preceded by a "-", while classifier determined parents that were not defined
parents are preceded by a "+".

Adding new defined parents to a concept's definition is done by clicking on the word
"Specializes:" in the state window and typing a concept name or pointing to any visible
concept. Parents can be deleted by clicking on their names in the list of parents
displayed in the state window.

Changing names and killing concepts and roles. KREME allows the user to change the
names of concepts and roles or to delete them completely. Name changing is
accomplished simply by pointing at the concept or role's name in the state window and
entering a new name. The Kill command splices a concept out of the taxonomy by
connecting all of its children to all of its parents. There are several complicating
issues relating to how concepts are deleted from taxonomies that we do not have time
to discuss here.

5. KNOWLEDGE INTEGRATION AND CONSISTENCY MAINTENANCE

One of the most time consuming tasks in building large knowledge bases is maintaining
internal consistency. Modification, addition or deletion of knowledge in one part of a
knowledge base can have wide ranging consequences to both the meaning and
structure of the knowledge stored in other parts of the knowledge base. A central
component of the KREME system design was that it incorporate tools for consistency
maintenance both within and across representallon languages. These tools are
collectively referred to as the knowledge integrator. When new knowledge is entered
or existing knowledge modified it is the task of the knowledge integrator to propagate.
throughout the knowledge base, the changes that this new or modified knowledge
entails, and to report any_ inconsistencies that have been caused by the change.

In essence, the knowledge integrator takes each new or changed chunk of knowledge
(e.g., a frame, role, rule or procedure) and determines, first, how the new definition

l-~

fits into the knowledge base and, second, which other definitions depend on the
current one for their meaning within the knowledge base. These dependencies are
placed on an agenda and which, in turn, causes them to go through essentially the
same process.

The knowledge integration subsystem for frames is basically an extension of the
classification algorithm developed for the NIKL representation language. The NIKL
classifier correctly inserts new frames into their proper spot in a taxonomy, by finding
the most speCific set of concepts whose definitions subsumed the definition of the new
concept. The KREME classifier was designed to additionally allow existing concepts and
roles to be modified and and then reclassified, so that the effects of redefinitions are
automatically propagated throughout the entire frame network. This was accomplished
by redesigning the original NIKL classifier to take advantage of the meta-level
descriptions of KREME Frames and implementing the new classifier using the
dependency directed agenda mechanism of the overall knowledge integrator.

5.1. The Frame Classifier

The remainder of this section will give a brief description of the frame classification
part of the knowledge integrator, which is the most completely developed portion of
the system. For a formal description of the NIKL classifier algorithm see [Schmolze
and Israel 83, Schmolze and Lipkis 83]. For a more complete description of a
somewhat simpler classifier for an editing environment, see [Balzac 86].

The frame classifier works in essentially two stages, starting from a concept or role
definition, as supplied by the editor or read from a file. The first stage, called
completion, refers to the basic inheritance mechanism used by KREME Frames to install
all inherited features of a concept or role in its internal description. The completion
algorithm, when given a set of defined parents and a set of defined features for an
object determines the full, logically entailed set of features of that object. The second
stage is the actual classification or reclassification of a role or concept. That is, the
determination of the complete, most specific set of parents of the object in its
respective subsumption hierarchy.

5.1.1. Completion

The completion algorithm is broken up into modular chunks that correspond to the
decomposition of the frame language. There is a distinct component that deals with
slot inheritance, another component that deals with disjoint class inheritance, a third
that deals with slot equivalence inheritance and so on. This organization makes it
quite straightforward to extend the language with new features that handle
inheritance in different ways.

Figure 5-l shows some of the complexities of slot inheritance. In 5-lA, the most
specific value restriction for the slot LIMBS at 4-LIMBED-ANIMAL is inherited from one
parent (ANIMAL) while the most specific number restriction, EXACTLY 4, is inherited
from 4-LIMBED-THING. The completion algorithm determines that the restriction for
the role UMBS at the concept 4-UMBED-ANIMAL must be EXACTLY 4 LIMBS.

Figure 5-IB shows one case for which the effective value restriction must logically be·
the conjunction of several concepts. Since ANIMAL- WITH- LEGS is both an ANIMAL, and
a THING-WITH-LEGS, all of its LIMBS must be both ORGANIC-UMBs and LEGs. If the
concept ORGANIC-LEG, specializing both ORGANIC-LIMB and LEG, exists when ANIMAL
WITH-LEGS is being classified, the integrator will find it and make it the value
restriction of the slot LEGS at ANIMAL-WITH-LEGS. If 1t does not exist, the integrator
stops and asks if the user would like to define it (that is, define a concept that is
both an ORGANIC-LIMB and a LEG).

l-4

A. Inheriting different number and value restrictions.

B. Conjoined Value Restrictions.

Figure 5-l: Two Examples of Slot Completion

5.1.2. Classification

The second stage of the frame classification algorithm finds all of the most specific
subsumers of the concept being defined of redefined. This is the actual classification
stage, and is essentially a special-purpose tree walking algorithm.

The basic classifier algorithm takes a completed definition (that is, a definition plus all
its effective, inherited features) and determmes that definition's single appropriate
spot in the lattice of previously classified definitions. The result of a classification is
a unique set of the most specific objects that subsume the definition and a unique set
of the most general objects that are subsumed by the definition. When the classified
definition is installed in the lattice all the concepts that subsume its features will be
above it in the lattice and all the concepts that are subsumed by its features w1ll be
below it.

The classifier is built around a modularly constructed subsumption test that compares
the completed sets of features of two objects. The object being classified is
repeatedly compared to other, potentially related, obJects in the lattice to see whether
its completed definition subsumes or is subsumed by those other objects. For one
definition to subsume the other, its full set of features must be a subset of the
features of the other. As with completion, subsumption testing is partitioned by
feature type (i.e slot, disjoint-class etc). One object subsumes the other when all of
its individual feature-type subsumption checks return EQUIVALENT or SUBSUMES. and
there is at least one vote for SUBSUMES. The advantage of this kind of modular
organization is extensibility. If a new feature type is added to the language one need
only define a subsumption predicate for that feature, and objects having that feature
will be appropriately classified.

5.2. An Example of Reclassification

The power of frame reclassification in an editing environment can be illustrated w1th
the following relatively simple example. Suppose a knowledge base developer he.d
defined both GASOLINE-POWERED-CAR and INTERNAL-COMBUSTION-POWERED-CAR as
specializations of CAR, but had inadvertently defined INTERNAL-COMBUSTION-ENGINE as
a kind of GASOLINE-ENGINE. In this situation. the classifier would deduce that

t-lo

INTERNAL-COMBUSTION-POWERED-CAR must be a specialization of GASOLINE-POWERED
CAR. as shown in figure 5-ZA, since the former restricted the role ENGINE to a
subclass of the latter's restriction of the same role.

A. Before Reclassification

B. After Reclassification

Figure 5-2: An Example of Reclassification

Redefining INTERNAL-COMBUSTION-ENGINE as a kind of ENGINE (rather than a
GASOLINE-ENGINE), and then reclassifying, causes all of INTERNAL-COMBUSTION
ENGINE's dependents to also be reclassified, including INTERNAL-COMBUSTION
POWERED-CAR. Since GASOLINE-ENGINE no longer subsumes INTERNAL-COMBUSTION
ENGINE. the restrictions for GASOUNE-POWERED-CAR no longer subsume those of
INTERNAL-COMBUSTION-POWERED-CAR. and the class1fier therefore finds that
GASOLINE-POWERED-CAR does not subsume INTERNAL-COMBUSTION-POWERED-CAR. This
1s shown in figure 5-2B.

The combination of inconsistency detection durmg the completion phase and the
automatic propagation of classification changes that occurs during reclassification
makes KREME a powerful and extremely useful tool for knowledge base development and
refinement. Since the effects of reclassification are immediately made apparent to
users via the dynamically updated graph of the subsumption lattice, they sometimes
find that the definitions they have provided have some unanticipated logically entailed
effects on their taxonomy. Sometimes these effects are surprising, ai ·hough correct.
Other times, they lead to changes and additions which make the knowiedge base more
complete and correct.

6. EDITING BEHAVIORAL KNOWLEDGE

KREME embodies a set of mechanisms for representing and editing behav1oral
knowledge. One mechanism revolves around the not1on of attaching chunks of
behavior to frames. Since frames can also be associated with flavors (see above)
individual behav1oral chunks can be (and are) compiled into flavor methods.

l-l \

A click of a mouse button and the tabular features window in the main concept view is
turned into the toplevel behavior editor. All behaviors currently defined for the
concept are shown. Each has a name and a type. There are three types of behaviors
currently allowed; Rules, Procedures, and Methods. Existing behaviors can be edited
or new ones defined. A modified form of the Symbolics flavor examiner can be
accessed to show various useful information about method combination and derivation.

Methods are simply flavor methods. Editing a method throws up a text editor window
which can be interacted with in normal (Symbolics) editing style or in structure
editing style. Eoiting or inputing a new rule packet accesses the Rule Editor. Editing
or inputing a new procedure accesses the Procedure Editor.

6.1. Editing Rules

The rule language used by KREME is a language called FLEX [Shapiro 84], based in
large part on the LOOPS rule language. FLEX allows rules to be defined in rule
packets, which organize sets of rules that are meant to be run together. In the
KREME environment, rule packets can be attached to concepts, just as if they were
functional methods. In addition, they may be inherited by more specialized concepts.
FLEX incorporates a mechanism for dealing with uncertainty, based on EMYCIN [van
Melle 79]. The FLEX runtime environment also provides an elementary history and
tracing mechanism, and an explanation system that produces pseudo-English
explanations from rule traces. For efficiency, FLEX also provides a means for rule
packets to be compiled as LISP code, and run without the rule interpreter present.

The KREME rule editor is built on top of the KREME structure editor. One defines and
edits rules by specifying and filling out portions of rule templates. The user refines
these templates either by using the mouse to copy parts of existing rules or by
pointing at slots to be filled and typing in the desired values. Once a rule-set has
been developed, the rule editor provides commands to run packets and debug them. It
can also generate traces or rule histories paraphrased in pseudo-English.
Mechanisms are also provided for deleting and reordering rules, and loading and
saving them from files.

The rule editor is also tied to the KREME's knowledge integration subsystem (see
section 5 above). At present, all references to slots of frames made in rules are
checked for validity by the knowledge integrator. If invalid, the user is alerted, and
may switch, if necessary to the editing the associated frame. If the problem was simply
that he/she named a non-existent slot, a valid one may be selected from a menu. In
the near future, the knowledge integrator will also check such cross-references in the
opposite direction, as when a slot referred to by some rules is deleted or changed in
the frame editor.

6.2. Procedures in the KREME Environment

An obvious weakness of many knowledge representation languages is their inability to
handle declaratively expressed knowledge about procedures as partially ordered
sequences of actions, particularly if that knowledge is represented at multiple levels of
abstraction. Although a number of systems have been developed that do various forms
of planning, [Ernst and Newell 69, Sacerdoti 74, Sacerdoti 75, Stefik 81], most have not
encoded their plans in an entirely declarative or inspectable fashion. Certainly the
current generation of expert system tools does not provide mechanisms geared to the
description of th1s kind of knowledge. Although it is clear that much of an expert's
knowledge about a domain is about procedures and their af)plication, little work has
been done on devising ways to capture that information directly.

The STEAMER project [Williams et al. 81] began to address ·the issue of declarative
representations for procedures in the course of developing a mechanism to teach valid
steam plant operating procedures. The representation system developed for this task

\- \2.

had to be directly accessible to the students who were the system's users, and it had
to serve as a source of explanations when errors were made. STEAMER was able to
describe these procedures, decompose them, show how they were related to similar
procedures and, in general, deal with them at the "knowledge level" [Newell 81] rather
than as pieces of programs or rule sets. Although the syntax of the language was
quite primitive, with no provisions for branching or iteration; the mechanisms for
procedural abstraction, specialization, and path or reference reformulation that
formed the heart of the language seemed to form the kernel of an extremely useful
representational facility.

The KREME representation language family includes a descendant of the STEAMER
procedure language, built using KREME's library of knowledge representation primitives.
Each KREME procedure has a name, a description, an action that the procedure is
meant to accomplish, a list of steps, and a list of ordering constraints that determine
the partial ordering of the steps. Steps have an action and an object which names the
conceptual class of things that step acts upon. Procedures are attached to specific
frames and can be "compiled" into flavor methods.

Each step in a procedure may either be a primitive action or another procedure. If
the object of a step defines a procedure for the action of that step then this
procedure is said to be a sub-procedure of the enclosing procedure. For example,
.the ALIGN procedure attached to the concept SUCTION-LINE could have a step ALIGN
<PUMP>. If the concept CENTRIFUGAL-PUMP, which is the object of this step for
SUCTION-LINEs, defined a procedure for the action ALIGN, then the step ALIGN <PUMP>
could be expanded into the steps of the procedure for aligning a centrifugal pump.

6.2.1. Procedural abstraction and structure mapping

For knowledge acquisition purposes, it would be very useful if procedures were
represented in an abstraction hierarchy like that for frames. In a strong sense, it
seems difficult to define exactly what it means for one abstract procedure to subsume
another. However, from an acquisition standpoint, much power can be gained by
allowing abstract procedures to form templates upon which more specific procedures
can be built, and eventually providing tools for automatic plan refinement like those
found in NOAH [Sacerdoti 75]. For example, if you have some idea about how to grow
plants in general, and you want to grow tomatoes, you will use your knowledge about
growing plants in general as a starting point for learning about growing tomatoes.
The final procedure for growing tomatoes will include some (presumably more detailed)
versions of steps in the more general procedure, and may also include steps that are
analogous to those used in growing other plants for which more detailed knowledge
exists. 3

The KREME Procedures editor has a mechanism for building templates of new
procedures out of more abstract procedures. When a new procedure is being defined
at a concept, the procedural abstraction function determines whether any of that
concept's parents have a procedure for accomplishing the same action. If so, an initial
procedure template is built by combining the steps and constraints of all the
inherited. more abstract procedures. The paths (objects) of the steps are adjusted,
using the concept's slot equivalences, to use "local" slot names, as much as possible,
As yet this facility does not have the ability to do detailed reasoning with constraints
on steps, as NOAH does. We expect to greatly expand this capability in the future.

The KREME Procedures language is currently being refined for use in the development
of a new training system at BBN. That system will teach diagnostic procedures for the

3For a detailed discussion of related issues see Carbonel I [Carbonel I 86] on derivational
analogical planning.

1-13

maintenance of a large electronics system. We expect that KREME will greatly ease the
knowledge acquisition problems faced by the developers of that system. It will also
provide the first serious test of the effectiveness of the KREME acquisition
environment in general.

7. LARGE-SCALE REVISIONS OF KNOWLEDGE BASES

It seems. fairly clear that as knowledge bases grow larger, and the sets of tasks that
expert systems are called upon to perform expands, system developers will need
better, more automatic methods for revising and reformulating their accumulated
knowledge bases of representations. Toward this end, we feel that it is important to
find ways of expressing and packaging conceptually clean reformuLations of sets of
frames and other representations, and begin developing facilities supporting the
generation of new representations from old ones.

We are taking two different approaches to this problem. First. we have developed a
macro facility for reformulations that can be expressed as sequences of standard,
low-level editing operations. This facility allows users to define editing macros that
can be applied to sets of frame definitions by giving a single example. Second, we are
building a small library of functions providing operations that cannot be defined
simply as sequences of low level editing operations. Our main purpose is to collect
and categorize these utilities, and explore their usefulness in a working environment.
Our hope is that a large fraction of these operations can be conveniently described
using the macro facility, as it is more accessible to an experimental user community
than any set of "prepackaged" utilities, and can be more responsive to the, as yet,
largely unknown special needs of that community

7 .1. The Macro and Structure Editor

One of the views available when editing concepts in KREME is the macro and structure
editor. This view (See figure 7-1.) provides display and editing facilities for concept
definitions, based loosely on the kind of structure editor provided in many LISP
environments. The view provides two windows for the display of stylized defining forms
for concepts. The current edit window displays the definition of the currently edited
concept (the top item on the editor stack). The display window is available for the
display of any number of other concepts. Any concept which is visible in either
window can be edited, and features can be copied from one concept to another by
pointing. Both windows are scrollable to view additional definitions as required.

There is a menu of commands for displaying and editing definitions that includes the
commands Add Structure, Change Structure, Delete Structure, Display Concept and
Clear Display. Arguments (if any} to these commands may be described by pointing or
typing. Thus, to delete a slot, one simply clicks on Delete Structure and the display
of the slot to be deleted. Adding a structure is done by clicking on Add Structure, the
keyword of the feature class of the concept one wishes to add to (e.g., Slot:). The new
slot itself may be copied from a displayed concept by pointing. or a new one may be
entered from the keyboard. Changing (that is, replacing) a structure can be done by
pomting m success10n at the Change Structure command, the item to be replaced, and
the thing to replace it with. In most cases, Change Structure can also be invoked
simply by pointing at the structure to be replaced, without the menu command.

The last two commands in the structure view's main menu provide the means to change
what is displayed in the display window. Pointing at Display Structure and then at
any visible concept name places the definition of that concept in the display window.
Clear Display removes all items from the display window. Individual concepts can be
deleted from the display window by pointing at them and clicking. The Edit Concept
command is used to change wh&t 1s displayed in the current edit window. Editing a
new concept moves the old edit ' :Jncept to the bottom of the display window.

l-\t

u!.rd in furl oi 1 cit·cuit

;I.IJ •JUAf.(J(,;,H•VALVE
{(;11) ··•.:oL'.;£
{1: ;IIJ fLIJICI·f'O'-T

(: (• .. ,l.lJ ::.·F'UF:f·fLUI"·(•f.'· I•. f.
E'. ~· . !. . .. ·=. ·' ... ,:·

... Add st;UCtme~ Change Structur~ , Delete- Struc.turEP: .. , _# • Otsplay;: Concept'-_~-.~-. " Clear.: O•splaY!"
~"'r.~·r .. ·.·~·

Concept FUEL·OIL·CIPCUli-3-WA'o -I.IHLVE
Pr'irut'ive: llo
i).e.!-•:l'lpi;IOI"t: .j Ll~'.' ••tJve V!oe-•:i 1n fveJ 1)11 •: lf•:•.•lt.:

AbHr-t.:t wons: '3·wtr.·-~:AL.~tE 1

Pwle Pe!-trlct'io•H: [fl.trte IIF' · .. !f· Oct ~ ... olr:]

so

HFLOII·PAJH:; E .. ·><< I·.·~,;, FLU![•·f·o1JH• •H FLU!D-f'ftiH!i
'IIILET E.·.·t.: t.: 1·.· t 'H FLu I o-F·o~·r .• , H FLIII t•-r·oF·r 1 ••

\ OUJLETS £ .. ~.:t 1·.· :: •. H FLt)l[l·f'(IF'T 1 1. H FLUH•-f'•)F'f) J

iFUEL·OIL·f·EJUPII-OUILEI E.-.~cr. 1·.· 1 oil FLliiD-f·•jl'li
t A FLU I [1-f'OF·f • •

i COIIIAM!IIAI ED-FUEL ·ljUJ LE I E...oc t 1·.· 1 • 11 FLI.II D-f'l)f'l!
'·" FLUIO-f't)~··, I J

~ t ~ i FLOW-PHJH::. ~ Otlf LE r I I .:.•:.111 H11I tu1fE[t·FUEL -out LET .• ~
~<iJUJLETS 2i ~(.OUIHM!IIHTEC•-FUEL-t)UILEJ:•.•
i iFLOII-f'AIH:; 1 OliiLEI• • FI.IEL-OIL·F·EJI;f·IH)UILEI;;
(tOUILETS 1.1 iFIJEL·OIL-F'[IUF·ft-(IIJILEl I'
t 'OUILEJ I 'FIJEL-OIL-J:·EfliF'fi-OUILEJ .I;

_, ... ·~ '··. ;. 11'

Cor,.;ept FLUI[I-POPJ
F·r 1t'l1t.: 1'"!·: ·,·e~

[lo!::<S•:I'1PI:l•:•••: G:u:Oft. f•:or r.r~ro:!ier •:·f flo..tt•j
ftb!t.•· :.•: t: t•Jn!: ~ F'OF-'1 ~
Po:ole f'o!!l:l"l.;t. iOI'I!.;

e.~ ... i·-···~ I en·:~~:
Ot~J·:.t~-.r:. C.h·~~e!:

C:vn.:er•~t 2·POPT-FLUID-DE'JilE
f'r 11'11 t 1'.11!: ·,·e!
flte:CI'1Piti•)n: 1:ill!:•:l•:o! '-lltl"• l:t.IIJ flvt•j j:•O:•t't!
Hb!t:l .~.; r. i•::.•··~: \ 2-POF·J -ltE•.,tl CE FLUI [1- (tEUICE 1

f'·:.le F'eHI"lO:t.:lOt'IS: [lhnc IIF' 'JF· ~o!t' :.vlt)
(• UtLET E.·~(t 1•.: 1 I A FLVUt-F't)F'l i i 11 FLIJI [1-F'OF·T ! I

iQUJLET E.·.~~tlo.· 1 tH fLUIO·F'(IF·Jj il1 FLIJID-F·IJF'J'I,II
£,~._., .. ,~ l~r·,.;e !-:
[I,~JOII'•t •:1.~!-~e~:

~':", -1 Define Macro,.., Run. Macro._ ~- ~ 01s.ptay MacrO! - Load Macros,;.. Map. Edit.:;:
.\f.,",. ,

Figure 7-1: The Macro Structure Editor View

7.2. Developing Macro Editing Procedures

These operations. together with the globally available commands for defining new
concepts and making specializations of old concepts essentially by copying their
definitions, provide an extremely flexible environment in which to define and specify
modifications of concepts with respect to other defined concepts. Virtually all
knowledge editing operations can be done by a sequence of pointing steps using the
current edit window and the display window. This style of editing is also used in the
rule editor (See section 6.1.). The combination of editing features and mouse-based
editor interaction style provides an extremely versatile environment for the
description, by example, of a large class ·Of editing macros.

In order to have macros, defined essentially by example, work on concepts other than
those for which they were defined. the operations recorded cannot refer directly to
the concepts or objects which were being edited when the macro was defined. This is
handled by a kind of implicit variablization, where the objects named or pointed to are
replaced by references to their relationship to the initially edited object. In most
cases, these indirect references can be thought of as references to the location of the
object in the structure editor's display windows. In fact, each new obJect that is
displayed or edited in the course of defining a macro is placed on a stack called the
macro items list, together with a pointer to the command that caused the item to be
displayed. The utility of this form of reference will become clearer with an example.

7.2.1. Macro Example: Adding Pipes Between Components

When the STEAMER [Williams et al. 81] system was developed, a structural model of a
steam plant was created to represent each component in the steam plant as a frame,
with links to all functionally related components (e.g., inputs and outputs) represented
as slots pointing at those other objects. So. for example, a tank holding water to be
fed into a boiler tank through some pipe that was gated by a valve was represented as

l-15

a frame with an OUTPUT slot whose value was a VALVE. The OUTPUT of that VALVE was
a BOILER-TANK. The pipes through which the water was conveyed were not
represented since they had no functional value in the simulation model. If it had
become important to model the pipes, say because they introduced friction or were
susceptible to leaks or explosions, then the representational model that STEAMER
relied on would have required massive revision. Each component object in the system
would have needed editing to replace the objects in its INPUT and OUTPUT slots with
new frames representing pipes that were in turn connected by their OUTPUT slots to
the next component in the system.

r: ·:·•··-:o!~:•t I=' I PE Cl
l='r· l~"'~it: i·.·e: \'e:.
Ab~t:r!o:t:ion!!: !PIPE)
Al 1 Pole Pe!t:ri.::tion!!: [fl:3ne rtP ' . ..'P Def!._•lt:]

((IltPIJT E.·.!•:t 1·.· 1 •. A TAIU 1 J (A TAll~ 1 :• ·'
•. MA~:.:; E.·.-3-: t 1 ·.· 1 '·A MA":.::.! (A HA·:.:::.! .i

'COLOP-OF E . ::t•: t: 1·.· 1 i A COLOP! •. A COLCtP ·, !
•.OUTPUT E ... ,•:tl·.· 1 'A TH!IIG-1-I!TH-!IIF'I.IT •

I A T Hlll(~-l.II T H-I IIPI_IT :• :· ·,
Ec•_,, ·:al~n·:e!:

Di!j~int Cla~:~!:

. Define< Macro..-.--~-- Run Macro

[Uncla5sified; Modified]

('.,n.:ec-t TAll! 1
Pr-il'"dt:i• ... ·~: llo
~b!!t:r.!o:ti•:.n!: (lAin)
P.:.lt! F'~·:.tr1·:t:ion:.: [fl.!f"lt! flP !_.IF' Def:;p_,lt]

I. '· (OLOP-OF E.·.:,.: t: 1 '.' 1 I R ·,·EL LOl-l·, '·A '•'ELLOt.J ·, I

E·::1•.d·.·-311:2~1::1;1T E.-.. ;,•:t 1-~, A '.)AL' .. :E.:·.· I A : ... 'i=IL'.:E.:: .' ·1.·

D1~joir1t Cl~~!e~:

'ICE

(1, TA!H 1 (·:•.•rr~t"ll'.: ·:·:·r":"!'Pt:]
1. PIPED (op~r:rtiQn 1]

1. !"1:r~"!' ~ '""!'·' -:on~I!:Pt •.•Mio:h ~OI!!:•:i:tll:!l!:'t PIPE .• n:rMed b•.• •,;~ener3tin9 a n•.n"'ber :,_,ffi.,
:.. (h:rr···~'!' the IllPIJT • .. •al•.Je r·e!t:r·i.:t::i·~n ·~f it::e"' 1 t:o iteM 0,
:::. Gh:r····~'!' the OIJTPI)T 'l·!ll•."e re!t•·;.:tic•r• of iteM 1 t•' t:he I)IJTPIJT ·:~l•.•e re!t:t·i·:t:i•:-n of HeM 0.

t.l;·:• ·,-.,..,.,.,::or

While Editing TANK!:
Click on Define Macro. (Makes Macro Item 0 = TANKt).

1. Make a new concept which specializes PIPE. (Creates PIPEO as item 1).
2. Change the INPUT value restriction of item 1 (PIPEO) to item 0 (TAN Kt).
3. Change the OUTPUT value restriction of item 1 (PIPEO) to the OUTPUT value

restriction of item 0 (OUTPUT of TANKt = VALVEt).
4. Classify the current edit concept (Defines PIPEO).

5. Change the OUTPUT value restriction of item 0 (= VALVEt) to item 1 (PIPEO).
6. Classify item 0 (TAN Kt).

7. Edit the OUTPUT value restriction of item 1 (Creates item 2 = VALVEt).
8. Change the INPUT value restriction of item 2 (INPUT of VALVEt = TAN Kt) to item

1 (PIPEO).

9. Classify all items.

Figure 7-2: Steps in PIPE Macro

One of our goals in developmg the KREME macro editor was to be able to make such
changes, which are simple to describe but require many tedious editing operations to
accomplish, given the number of concepts affected. Figure 7-2 shows a macro that
can be applied to all objects in a system with INPUT and OUTPUT slots, in order to
generate and insert PIPEs into those slots. The macro also sets the OUTPUTs of those
PIPEs to be the concept that was the old value of the OUTPUT slot in the concept
edited, and similarly redoes all INPUTs.

Figure 7-2 shows how the macro is defined, by editing a representation of a tank
(TANK!) connected (by role OUTPUT) to a valve (VALVE2). The sequence of steps
required, defined only using the mouse, is shown in figure 7-2, as they would appear
in the Macro Definition window of the editor.

Work on macro editing has really just begun. However, it already shows promise as a
method for accomplishing a number of large scale restructurings of knowledge bases
which are relatively simple to describe, but tedious to perform. As it stands, the
system is already powerful enough to describe a number of transformations between
semantically equivalent though functionally and syntactically distinct representations.
Macros can also make use of the knowledge integrator to discover relationships in the
knowledge base and exploit them. We are building a library of these macro operations
so that other users of KREME will not be required to reinvent them.

We see our investigation of macro editing as only the first step in developing a
knowledge reformulation facility that will have and make use of more understanding of
the logical structure of the represented knowledge as well as providing a basic means
of describing procedures to manipulate the syntactic structure of knowledge
representations.

8. KNOWLEDGE EXTENSION

One of the tasks faced by knowledge engineers in developing robust computerized
knowledge bases is getting experts to express their often unconscious generalizations
about their domains of expertise. While much of the detailed information about
particular problems can be accessed and represented by looking at specific examples
and problems, the expert's abstract classification of problem types and the abstract
features he uses to recognize those problem types are less readily available.
Experienced knowledge engineers are often able to discover and define useful
generalizations that help organize the knowledge described by a human domain expert.
The expert, although not previously aware of such a generalization, will often
immediately perceive its relevance to and existence within his own reasoning
processes, going so far as to suggest improvements, related generalizations, more
abstract generalizations and so forth.

Our initial experiment in knowledge-base extension has been the development of a
frame generalization algorithm which we will briefly describe. The building of a robust
knowledge extension system that can deal with hybrid representation systems in
intelligent and useful ways will form the bulk of the work to be done in the next
generation KREME system. With our current generalizer, potentially useful
generalizations are found by searching for sets of concept features that are shared by
several unrelated concepts. Finding concepts with a given set of features is relatively
easy since KREME indexes all concepts under each of its features.

When the generalizer finds a set of at least k features shared by at least m concepts.
where k and m are user settable parameters, the system forms the most specific
concept definition that would enclose all of the features but would still be more
general than any concept in the set. Since our simple algorithm has no other
external notion of "interestingness" it simply displays this potential new concept
definition to the user. For example, given three concepts that are all ANIMALs and
independently define the slot WINGS, the generalizer would suggest forming a
s,pecialization of ANIMAL with the slot WINGS, that these concepts would all specialize.
If the user wanted to introduce this concept, he would respond by naming the new
generalization, call it FLYING-ANIMAL, which would then be classified and integrated
with the network. The features that are enclosed by this new, more general concept,
are automatically removed from each of the more specific concepts being generalized.

9. CONCLUSION

The goal of the BBN Labs Knowledge Acquisition Project is to build a versatile
experimental computer environment for developing the large knowledge bases which
future expert systems will require. We are pursuing this goal along two complementary
paths. First. we have constructed a flexible, extensible, Knowledge Representation,
Editing and Modeling Environment in which different kinds of representations (initially
frames, rules, and procedures) can be used. We are now using this environment to
investigate acquisition strategies for a variety of types and combinations of knowledge

. representations. In building and equipping this "sanc,ibox", we have been adapting and
experimenting with techniques which we think will make editing, browsing, and
consistency checking for each style of representation easier and more efficient, so
that knowledge engineers and subject matter experts can work together to build with
significantly larger and more detailed knowledge bases than are presently practical.

Now that we are well along in constructing a first, experimental version of the editing
environment, we are beginning to address the second aspect of our research plan, the
development of more automatic tools for knowledge base reformulation and extension.
An important part of this endeavor is the discovery, categorization and use of explicit
knowledge about knowledge representations; methods for viewing different knowledge
representations, techniques for describing knowledge base transformations and
extrapolations, techniques for finding and suggesting useful generalizations in
developing knowledge bases, semi-automatic procedures of eliciting knowledge from
experts, and extensions of consistency checking techniques to provide a mechanism for
generating candidate expansions of a knowledge base.

Our ultimate goal is to explore a number of approaches to knowledge acquisition and
knowledge editing that could be incorporated into existing and future development
environments, not to develop the definitive knowledge editing environment. AI is still a
young field, and new knowledge representation techniques will continue to be
developed for the foreseeable future. We are attempting to prov1de a laboratory for
experimenting with new representation techniques and new tools for developmg
knowledge bases. If we are successful, many of the techniques developed in our
laboratory will be adopted by the comprehensive knowledge acquisition and knowledge
representation systems required to support the development and maintenance of AI
systems in the future.

ACKNOWLEDGEMENTS: We would like to thank Richard Shapiro for his major
contributions to the KREME project. Rich was largely responsible for the rule editor,
the macro and structure editor and most of the user mterface tools m the current
version of the frame editor. We would also like to thank Dr. Ed Walker for his
comments and contributions to several earlier drafts of th1s paper.

References

1. Balzac, Stephen R. A System for the Interactive Classification of Knowledge.
Thesis, M.I.T. Dept of E.E. and C.S., 1986.

M.S.

2. Bobrow, D .. Winograd, T. and KRL Research Group. Experience with KRL-0: One
cycle of a knowledge representation language. Proceedings of the Fi~~h International
Joint Conference on Artificial Intelligence, Cambndge. MA., August. 19 1 1

•

3. Brachman, R.J., Fikes, R.E .. and Levesque, H.J. "Krypton: A Functional Approach to
Knowledge Representation". IEEE Computer, Special Issue on Knowledge Representation

(October 1983).

l-1~

4. Carbonell. Jaime G. Derivational Analogy: A theory of reconstructive problem
solving and expertise acquisition. In Machine Learning: Volume /1, Michalski, R. S.,
Carbonell, J. G. and Mitchell, T. M .. Ed., Morgan Kaufmann Publishers, Inc., Los Altos,
CA, 1986, pp. 371-392.

5. Ernst, G.W. and Newell, A.. GPS: A Case Study in Generality and Problem Solving.
Academic Press, New York, 1969.

6. IntelliCorp. KEE Software Development System. IntelliCorp, 1984.

7. Keene, Sonya E. and Moon, David. Flavors: Object-oriented Programming on
Symbolics Computers. Symbolics, Inc.

8. Carnegie Group, Inc.. KnowledgeCraft. Carnegie Group, Inc., 1985.

9. Moser, Margaret. An Overview of NIKL. Section of BBN Report No. 5421, Bolt
Beranek and Newman Inc., 1983.

10. Newell, A. "The knowledge level". AI Magazine 2, 2 (1981), 1-20.

11. Rich, C. Knowledge Representation Languages and Predicate Calculus: How to Have
Your Cake and Eat It Too. Proc. AAA!, 1982, pp. 192-196.

12. Roberts. B. and Goldstein, I. P. The FRL Manual. A.I. Lab. Memo 409, M.I.T., 1977.

13. Sacerdoti, E. E. "Planning in a Hierarchy of Abstraction Spaces". Artificial
Intelligence 5, 2 (1974), 115-135.

14. Sacerdoti, Earl D. A structure for plans and behavior. 109, SRI Artificial
Intelligence Center, 1975.

15. Schmolze, J. and Israel, D. KL-ONE: Semantics and Classification. In Research in
Knowlege Representation for Natural Language Understanding. Annual Report: 1
September 1982 to 31 August 1983,
BBN Report No. 5421. 1983.

16. Schmolze. J.G., Lipkis, T.A. Classification in the KL-ONE Knowledge Representation
System. Proc. 8th IJCAI. 1983.

17. Shapiro. Richard. FLEX: A Tool for Rule-based Programming. 5643, BBN Labs .. ~
1984.
18. Sidner, C.L.; Bates, M.; Bobrow, R.J.; Brachman. R.J.; Cohen, P.R.; Israel. D.J.;
Webber, B.L .. and Woods. W.A. Research in Knowledge Representation for Natural
Language Understanding: Annual Report. BBN Report No. 4785, Bolt Beranek and

Newman Inc., November, 1981.

19. Stefik. Mark. "Planning with Constraints: MOLGEN". Artificial Intelligence 16. 2

(1981). 111-169.

20. van Melle. W. A domain mdependent production-rule system for consultation
programs. Proceedings of IJCAI-6. August, 1979, pp. 923-925.

21. Vilain. Marc. The Restricted Language Architecture of a Hybrid Representation
System. Proceedings. IJCAI-85, International Joint Conferences on Artificial
Intelligence. Inc., August. 1985, pp. 547-551.

22. Williams. M., Hollan. J .. and Stevens. A. "An Overview of STEAMER: An Advanced
Computer-Assisted Instruction System for Propulsion Engmeermg". Behavior Research

Methods and Instrumentation 14 (1981). 85-90.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Ontological Analysis: An Ongoing Experiment

lames H. Alexander, Michael J. Freiling, Sheryl J. Shulman,
Steven Rehfuss and Steven L. Messick

Computer Research Laboratory
Tektronix Laboratories

P0Box500
Beaverton,OL97077

ABSTRACT

Knowledge engineering is a complex activity which is permeated with with prob
lems inherent in the difficulties of choosing the correct abstractions. Knowledge
level analysis has been suggested as a technique to help manage this complexity.
We have previously presented a methodology, called ontological analysis, which
provides a technique for performing knowledge level analysis of a problem
space. This paper presents the experiences we have gained with knowledge level
analysis. Our experiences are reported and the criteria for a formal knowledge
level analysis language are discussed.

1. KNOWLEDGE LEVEL ANALYSIS

We have found that neophyte knowledge engineers often "don't know where to start." This
roadblock is not usually the result of a lack of understanding about expert systems or representa
tion schemes; but is due to confusion about the appropriate classification of the individual
knowledge elements of a domain.

Currently, a knowledge engineer must rely on an intuitive, informal approach to collecting and
organizing expert knowledge for a knowledge-based system. Newell (1982) proposed that there
should be a knowledge level analysis to guide the development of AI systems, such as expert sys
tems. Recently (Alexander et al., 1986; Freiling et al., 1986), we proposed a language and an
informal methodology (ontological analysis) for use during knowledge level analysis, to allow us
to study knowledge engineering. The goal of ontological analysis is to facilitate the high-level
analysis of problem spaces.

We believe most development problems encountered in knowledge-based systems derive from ad
hoc selection of abstractions. Ontological analysis provides a principled means to analyze and
decompose a domain of interest. With the development of our technique, we have identified
major conceptual areas which must be represented in a knowledge level analysis language and
have gathered experience on the characteristics of the methodology of knowledge level analysis.
In this paper we present some of the lessons we h:.1ve learned. These include the advantages and
disadvantages of ontological analysis, as well a.s some features to consider in a language for
knowledge level analysis.

2. AN OVERVIEW OF ONTOLOGICAL ANALYSIS.

As a preliminary step, we chose an analysis language loosely based on denotational semantics
domain equations. The main goal of this exercis,~ was to gain experience with knowledge level
analysis and to determine how it differs from simply chasing a representation language. This

1-0

section details ontological analysis as it currently exists and is followed by an evaluation of the
method and language.

Ontological analysis, is a technique for the preliminary analysis of a problem solving domain
(Alexander et al., 1986; Freiling et al., 1986). An ontology is a collection of abstract and con
crete objects, relationships and transfonnations that represent the physical and cognitive entities
necessary for accomplishing a task. Corn plex ontologies are constructed in a three step process
that concentrates first on the (static) physical objects and relationships, on the (dynamic) opera
tions that can change the task world, and finally on the (epistemic) knowledge structures that
guide the selection and use of these operations. To this end, we are developing a family of
languages collectively called SPOONS (SPecification Of ONtological Structure).

The most useful and concise of the SPOONS languages is SUPE-SPOONS (SUPErstructure
SPOONS; Freiling et al., 1986), which is based on the domain equations of denotational seman
tics (Gordon 1979; Stoy 1977) and algebraic specification (Guttag and Homing, 1980). SUPE
SPOONS consists of two basic statement types:

• Domain equations: Site= Building x Campus. These statements define domains, or types
of knowledge structures.*

• Domain function declarations: add.Jneeting: Meeting ~ [Meetings ~ Meetings].
These statments declare the type of specific domain elements.

The right hand side of statments can be composed of one or more domains or constant elements
with operators relating these elements. Four primitive domains, STRING, BOOLEAN,
INTEGER and NUMBER, are always assumed to be defined. Other primitive domains can be
defined by explicit enumeration of their elements, or by open assignment to some collection of
atomic elements.

The operators in the domain equations are of five types:

• Discriminated Union: D + E. Discriminated union of two domains defines that domain
composed of each member of D and E, where original domain identity is preserved. (Gen
eralization)

• Cross Product: D x E. Cross product of two domains describes a domain composed of all
ordered pairs whose first element is a member of domain D and second element is a member
of domain E. (Aggregation)

• Domain mapping: D ~ E. Mapping of one domain onto another creates a domain consist
ing of all functions which map domain D onto domain E.

• Collection of Sets: 2**D. The domain consisting of all subsets of D.

• Collection of Ordered Sets: D*. The domain of all ordered sequences of D.

2.1 Building an Ontology

In addition to the fonn~l notation, ontological analysis has a taxonomy of knowledge types which
clarifies the function of each of the member statements. The statements fall into three groups:

Static Ontology- De tines the physical 'objects, or primative objects in a problem space, their
propenies and relation~ :1ips. Ontological analysis begins with enumeration of physical objccLs in
the problem space and :Jenti11cation of their inherent properties and relationships. At the level of

*For most purposes, :· .uifkcs to think of domains as sets. A more complex semantics is needed if domains are
defined recursively (S:. ·;: l S/77) or with multiple equations.

1-\

the static ontology, the analysis performed is quite similar to the entity-relationship model of
Chen (1976).

Dynamic Ontology- Defines the state space of the problem solving domain, and the actions that
transfonn the problem from one state to another state. Problem solving is often characterized as
search through a state space (Simon, 1981; Newell and Simon, 1972). Solution of a problem con
sists of selecting operators whose application transfonns the current state into another. The
dynamic ontology defines a problem space in terms of configurations of elements from the static
ontology, and then defines problem operators as transfonnations built on the domain of problem
states. The dynamic ontology defines which knowledge is unchanged throughout the problem
solving process (i.e., organizational charts, see the Appendix) and which knowledge changes as
the problem is solved (i.e., schedules and meeting plans).

Epistemic Ontology- Defines the constraints and methods that control the use of knowledge
applied to the Static and Dynamic Ontologies. The epistemic ontology defines knowledge struc
tures to guide the selection and use of these operations. The epistemic ontology usually contains
two different types of knowledge structures. Some are used to select which operation should be
perfonned. Others control the actual performance of certain operations. In fact, the only
knowledge structures that do appear are those needed to guide the operations classified as heuris
tic operations in the dynamic ontology.

3. EVALUATION OF ONTOLOGICAL ANALYSIS

We have performed analyses on a wide range of domains including a system troubleshooting
Tektronix Oscilloscopes (Alexander et al., 1985; Rehfuss et al., 1985; Freiling et al., 1986),
MYCIN's medical knowledge domain (Shortliffe, 1984), design rule checking for nMOS circui
try (Lob 1984), oscilloscope operation and an Intelligent Electronic Calendar (IEC, Staley, in
press- an ontology is presented in the Appendix). With each analysis, our understanding of the
domain was greatly enhanced; similarly our general understanding of the guiding principles of
analysis was more focused.

3.1 Experiences Gained Using Ontological Analysis

The following are features of ontological analysis that have proven useful in the analysis of prob
lem spaces.

1. Technical vocabulary is the primary source of base entities, properties and relation
ships key to the problem space. We begin our analysis with a paper knowledge base (Freiling
et al., 1985); a description of the task domain in plain English. The paper knowledge base may
come from verbal protocols (Ericsson and Simon, 1984), a textbook, a training manual or any
convenient source. The technical vocabulary used in the paper knowl~dge base provides the ini
tial elements of the static ontology. Physical entities are the starting point, their properties and
relationships are derived later. This allows for a quick start from a concrete foundation.

2. Objects are assigned either atomic or derived status in order to clarify intended
representations. Two types of object appear in an ontology: atomic and derived objects.
Atomic objects (surrogates in database tenninology; Codd, 1979) cannot be individuated by their
properties. Instead they are individuated by identifying tokens (<at:omic> in SUPE-SPOONS).
For a meeting scheduler, for example, meetings can be atomic objects:

Meeting= <atomic>
Time_OLMeeting = [Meeting --7 Time_j)escription]

Properties of atomic objects are expressed via functions which map the objects into their property
values.

'2.-2..

Derived objects refer to those elements of an ontology that represent aggregations of other ele
ments. Derived objects are individuated solely on the basis of common components. For exam
ple, consider the following derived object:

Gregorian_TimeJ'oint = Year x Month x Day x Hour x { 00, 15, 30, 45 }

Any two calendar dates are equal if they consist of the same year, the same month, hour and quar
tile. Only when their composite attributes are identical, are the elements themselves identical.

This distinction ameliorates the problem of representation of identity and partial specification.
To be specific, derived objects must be fully specified to allow proper representation in a formal
system. Conversely, atomic objects can exist, and be uniquely identified, even when nothing is
known about them. Thus, objects which a system only gradually learns facts about should be
represented in an atomic manner.

3. A clear distinction between intensional and extensional entities can be established.
There are many cases in knowledge engineering where it is important to distinguish between
representatives for the physical objects (the extension), and for descriptions or viewpoints of
those objects (the intension). For the Intelligent Electronic Calendar problem (Staley, in press) it
was necessary to define units of absolute time, and relate them to descriptions of time units with
respect to one of many calendars (for example, to represent the following two descriptions of the
same time interval: Gregorian 1986, and Japanese Showa 60).

A common way to achieve the distinction between extensional representatives of real world
objects and intensional representatives of descriptions or classes of such objects is to define
representatives for the extensional objects with only the bare minimum of structure. In the IEC,
for instance,

ReaLT"rmeJ'oint =INTEGER
ReaLTimeJnterval = (ReaLTime_Foint X ReaLTime_Foint)

The primitive points in time are integers; point 0 is associated with 12 midnight on 1/1/1901, by
the Gregorian calendar. The points are 15 minutes apart. Intervals of time can then be
represented simply as a pair of points. (There is actually a bit more complexity for dealing with
unbounded intervals, see Appendix).

Intensional descriptions with respect to various calendars can be constructed as necessary from
different parts of the description.

IntensionaLTime_Foint =
Gregorian_TimeJ'oint + JapaneseJmperiaLReign_TimeJ'oint

Gregorian_ TimeJ'oint =
Year x Month x Day x Hour x { 00, 15, 30, 45 }

Japanese_lmperiaLReign_TimeJ'oint =
Era x Year x Month x Day x Hour x { 00, 15, 30, 45 }

Finally, intensional description can be related to extensional descriptions by the use of various
interpretation functions.

interpret: [IntensionaLTimeJ'oint ~ ReaLTimeJ'oint]

Extensional identity of descriptions of var-'ing sorts can then be defined as equality of the image
under the relevant interpretation functions.

4. Most relevant abstractions are built through the use of generalization and aggrega
tion. Generalization and aggregation (Smith and Smith, 1977) are common techniques for build
ing large knowledge structures. These have a direct manifesta.tion in our formalism as discrim
inated unions and Cartesian Products:

l-3

GENERALIZATION: Car= (Compact+ Luxury_Car +Truck)
AGGREGATION: Car-Assembly = (Engine x Chassis x Body x Drive_
Train)

It is also possible to create implicit aggregations through the use of functions. Thus, the proper
ties of an atomic object are implicitly aggregated through the fact that some particular function
defines values for each.

Car= <atomic.>
Type= [Car~ { Compact, Luxu:ry_Car, Truck }]
Has_Engine = [Car ~ Engine]
Has_Chassis = [Car ~ Chassis]
Has_Body = [Car ~Body]
Has_Drive_Train = [Car ~ Drive_Train]

Note also that generalizations are implicit in the properties of objects as well. Instances of the
domain Car, for example, can be decomposed into Compacts, etc. on the basis of common images
under the Type function.

rr===============================~
Table 1

Glib FraJ!ment

<signal value> ::'= 'illGH1 'LOW'
<signal>::= 'SIGNAL·'<integer>
<atomic signal predicate>::= <signal> IS <signal value>
<signal predicate> ::= <atomic signal predicate>

I <atomic si~>nal_medicate> 'when' <atomic siltTial predicate>

5. The structures built through ontological analysis highlight consistency or inconsistency
of the lower level structures. (Alternatively, compositionality is an important general criteria.)
An example of this concept illustrates the usefulness of our methodology. We first encountered
the following problem in the process of building a semantic grammar (GLIB; Freiling et al.,
1984) for use in collecting knowledge about electronic instrument behavior. Table 1 shows a
fragment of GLIB that can generate the following atomic signal predicate.

SIGNAL-3 IS HIGH

Initially we assumed that this signal predicate would map signals into Boolean values. However,
the semantics of two such statements combined with the connective when was not at all clear. If
when was assumed to produce a Boolean itself, then the result would be returned by one of the 16
truth function of two Boolean values, clearly not what we had intended.

SIGNAL-3 IS HIGH when SIGNAL-4 IS LOW

Using domain equations to analyze the problem,

Signal= [Time~ Value]
SignaLPredicate = [(Signal x SignaL Value)~ BOO LEAN]

= [([Time~ Value] x SignaL Value)~ BOOLEAN]

we discovered that our signal predicate as defined was dropping the temporal information to and
perfonning a global comparison with the threshold value. This problem was solvec by creating a
more appropriate description of the class for Signal-Predicate, which follows:

SignaLPredicate =
[(Signal x SignaL Value) ~ [Time ~ BOO LEAN]]
=: [([Time~ Value] x SignaL Value)~ [Time~ BOOLEAN]]

when: ([[Time ~ BOO LEAN] x [Time ~ BOOLEAN]] ~ [Time ~BOO LEAN]]

Thus, the comparison made by the SignalJredicate is made at each instant .if time, so that the
result is not a single truth value computed from the whole signal, but a truth value for every time

2.-~

unit of the signal. This makes it possible for when to preserve its when functional character, since
the truth function (logical and) is now applied on a point by point basis. The compositional
analysis of this type of problem is common to researchers familiar with the techniques of seman
tics and model theory (Alien, 1981). Techniques like ontological analysis make it available to
knowledge engineers.

6. Use of multiple domain equations points to abstraction difficulties. Often, in the process
of creating ontologies, we noticed a tendency to create multiple equations for the same domain,
with each equation representing a different emphasis on the meaning of the domain. Invariably,
we found that this flagged an ·improper description of the domain. There were three fonns of of
this problem:

• Equations representing successive refinement:

A: Name ->Person
A: (First x Second) ->Person

These equations imply that domain Name can be further refined to (First x Second). The two
fonns must be reconciled so that they are identical. In this trivial example, the solution would
simply be to define Name as (First x Second) and then have A use Name.

• Orthogonal definitions of a domain:

A:B->C
A:D->E

In this case, A is a function which takes a B into a C, and/or a D into an E. This is not necessarily
the same as:

A:(B+D) -> (C+E)

since this would also allow two other combinations:

A:B->E
A:D->C

Orthogonal definitions may occur for several reasons:

1. B is a refinement of D and C a refinement of E. In this case the above example is another
instance of refinement.

Workstation: Employee-> Desk
Work.station: Executive -> Office

2. B and D are not directly comparable, but the function A is intended to apply to both. This
implies a unifying abstraction, F, already exists or should be created. B and C are
refinements of F. The same argument applies to the relationship of C and E, with a unifying
abstraction G. An example could be:

2-5'

pay_taxes: person-> dollars
pay _taxes: corporation -> dollars

taxable_entity: person + corporation
(a unifying abstraction)

pay _taxes: Taxable_entity -> dollars

3. B and D are not comparable at all and no unifying abstraction seems appropriate (their join
is Top). In this case the semantics of the function A is unknown. It may be intended to be a
polymorphic function.

However, if B and D cannot be rephrased as a common domain (unifying abstraction), and simi
larly for C and E, then the function A cannot be typed correctly using both domain equations. In
that case, A has been over-generalized and should be rephrased as two functions, Al and A2.

Al: B->E
A2:D->C

The appropriateness of polymorphism may be further investigated in the future.

The above cases could be viewed as constraints. Each of the equations must hold true. The
ambiguity must be resolved without invalidating either one.

• Different views of the same object:

Syntactic rule: R: <if part> x <then part>
Operational rule: R: matching_condition -> executable_part
Semantic rule: R: premise-> action
Rule abstraction: R: class_of_premise x class_of_action

In this case, a rule is typed differently depending on its use. The syntactic rule is the sense
needed for parsing. The operational rule is the sense needed for the inference engine. The
semantic rule is the sense needed for the knowledge base. The rule abstraction is the sense
needed where the knowledge base itself reasons about its own rules.

This example has an implied abstraction which incorporates the different rule senses, for exam
ple:

Rule: Syntactic_fonn x Operational_fonn x Semantic_fonn x Data_form

The implied abstraction should be made explicit, and the appropriate fonn extracted where
needed. This forces attention as to which rule sense subsequent domains must incorporate. It
also identities the parts of the system and allows their relationship to be made explicit.

3.2 Disadvantages to Ontological Analysis

The SUPE-SPOON language provides the facility to enumerate basic types, compose new types,
provide typing for functions which operate on domains, etc. However, it has several deficiencies.

1. Types are not first class objects. While types can be constructed and referenced, the type
itself is not a value. Because the issue of typing is so closely involved in the abstraction process,
types as values is particularly important.

2. The type hierarchy is not available for inspection. This structure defines the existing
abstraction environment and needs to be available for inspection, modification, etc.

3. There is no operational component identified. The operations of a type are necessary for
fully identifying a type. We have no way to define the behavior of an object, only its structure.
Which leads to:

4. There is no facility for identifying inheritance. Subtypes are commonly identified so that
types may inherit operations, structure, or other relevant aspects of the type.

5. The abstraction process must allow for contradictory typing while the knowledge level
analysis is in progress. Some of the issues mentioned on multiple domain equations arise
because we use the multiple domain equations to represent the ongoing definition of the domains.
As our knowledge becomes more precise, we create new (perhaps multiple) equations which must
be reconciled.

3.3 The Next Generation Knowledge Level Analysis Language

This preliminary knowledge level analysis language has provided several pointers as to the next
generation. The ultimate goal of knowledge level analysis is to identify the appropriate abstrac
tions to the domain. While none of the above deficiencies is insurmountable, it is unlikely that
they can be solved solely in a language. The solution to many of these problems must lie in a
hybrid system of a formal language with a supporting computer environment.

The formal language and support environment must address the above disadvantages. In particu
lar, our current thoughts are that an analysis system should include:

1. Formal and/or mechanized support for abstraction creation. Types appear to be a convenient
formal mechanism for abstraction. Using a type system as a formal base, tools can be created to
support the abstraction process. For example, the maintenance of a type hierarchy and the incor
poration of incremental type definitions.

2. Support for managing change. Because the abstraction process is iterative, the system needs to
provide support for changing abstractions, maintaining different versions, analyzing the existing
abstraction structure (type hierarchy), etc.

3. Support for moving from the analysis stage (the type hierarchy) to a target representation
language.

These areas are currently under investigation.

4. CONCLUSIONS

We have presented a technique, ontological analysis, that has provided us with much needed
experience in a knowledge engineering methodology. There are weaknesses with the Ontological
Analysis technique as currently defined as discussed above. Even so, we have found the metho
dology useful for conceptualizing a knowledge engineering problem, and creating a forum for
cogent discussion. We hope that methodologies of this type will release the discipline from ad
hoc descriptions of knowledge and provide a principled means for a knowledge engineer and
expert to analyze the elements of a problem space and communicate the analysis to others. The
abstract level at which domain equations characterize the semantics of structures and procedures,
w~thout specifying too much detail, help in this regard.

The effectiveness of a technique depends critically on the formulation of more and better princi
ples to guide its use as well as a well founded language and support system. We arc currc:nly
working on the formal language, tools, and environment. We invite other knowlcd::,~ ~ugin..:crs
to try this approach and relate their experiences.

2-7

5. REFERENCES

Alexander, J.H., M.J. Freiling, S.L. Messick & S. Rehfuss. Knowledge Level Engineering: Onto
logical Analysis. Applied Research Technical Report CR-86-16, April 1, 1986; Tektronix,
Inc., Beaverton, OR.

Alien, J.F. An Interval-Based Representation of Temporal Knowledge. 1981 International Joint
Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, August, 1981.

Chen, P.P. The Entity-Relationship Model -- Toward a Unified View of Data. ACM Transac
tions on Database Systems, 1, 1, March, 1976.

Oancey, W.J. Heuristic Oassification. Artificial Intelligence, 27,289-350,1985.

Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM TODS
4:4, December 1979, 397-434.

Ericsson, K.A. & H.A. Simon. Protocol Analysis. MIT Press; Cambridge, MA, 1984

Freiling, M.J., J.H. Alexander, S.L. Messick, S. Rehfuss & S. Shulman. Starting a Knowledge
Engineering Project-- A Step-by-Step Approach. A.!. Magazine, 6, 3, Fall, 1985.

Freiling, M.J. & J.H. ·Alexander. Diagrams and Grammars: Tools for the Mass Production of
Expert Systems. First Conference on Artificial Intelligence Applications, IEEE Computer
Society, Denver, Colorado, December, 1984.

Freiling, M.J., J.H. Alexander, D. Feucht & D. Stubbs. GLIB-- A Language for Describing the
Behavior of Electronic Devices. Applied Research Technical Report CR-84-12, April 6,
1984; Tektronix, Inc., Beaverton, OR.

Freiling, M.J., S. Rehfuss, J.H. Alexander, S.L. Messick, & S. Shulman. The Ontological Struc
ture of a Troubleshooting System for Electronic Instruments. First International Conference
on Applications of Artificial Intelligence to Engineering Problems, Southampton University,
U.K., April, 1986.

Gordon, M.J.C. The Denotational Description of Programming Languages. Springer Verlag;
New York, NY, 1979.

Guttag, J. & J.J. Homing. Formal Specification as a Design Tool. Xerox PARC Technical Report
CSL-80-1, January, 1980.

Hayes, P.J. Naive Physics I: Ontology for Liquids. In J.R. Hobbs & R.C. Moore (Eds.), Formal
Theories of the Commonsense World. Ablex Publishing; Norwood, NJ, 1985.

Hobbs, J.R. Ontological Promiscuity. 23rd Annual Meeting of the ACL, Chicago, July, 1985.

Lob, C. RUB/CC: A Rule-Based Expert System for VLSI Integrated Circuit Critique. Electronic
Research Laboratory Memo UCB/ERL M84/80, University of California, Berkeley, 1984.

Newell, A. The Knowledge Level. Artificial Intelligence, 18, pp. 87-127, 1982.

Newell, A. & H.A. Simon. Human Problem Solving. Prentice-Hall: Englewood Cliffs, N.J.,
1972.

Rehfuss, S., J.H. Alexander, M.J. Freiling, S.L. Messick & S.J. Shulman. A Troubleshooting
Assistant for the Tektronix 2236 Oscilloscope. Applied Research Technical Report CR-85-
34; Tektronix, Inc.; Beaverton, OR; September 25, 1985.

2-B

Simon, H. A. The Sciences of the Artificial. The MIT Press; Cambridge, MA; 1981.

Quine, W.V.O. From a Logical Point of View. Harvard University Press; Cambridge, MA;
1980.

Shortliffe, E.H. Details of the Consultation System. Rule-based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project, Addison-Wesley; Reading, MA,
1984.

Smith, J.M. & D.C.P. Smith. Database Abstractions: Aggregation and Generalization, ACM
Transactions on Database Systems, 2:2, June, 1977.

Staley, J.L. An Intelligent Electronic Calendar: A Smalltalk-80® Application. Tekniques, in
press, Information Display Group, Tektronix, Wilsonville, OR.

Appendix:
An example ontological analysis:

The Intelligent Electronic Calendar

The IEC (Staley, in press) is an calendar sys
tem designed to automatically schedule
meetings and rooms. A more complete
description of the system and analysis can be
found m Alexander et al. (1986).

Static Ontology

Person = <atomic>
Persons = 2**Person
Project = <atomic>
Department = <atomic>
Schedule<L\feeting = (Meeting x Person)
Meeting...Room =<atomic>
Name= <string>
Group= <atomic>

Meeting...Room..Accessory =(blackboard, screen, ovcrhea<Lprojector}
Chair..ArrangemenLType= (confcrence_table, classroom, auditorium}

Meeting= <atomic>
Meetings = 2 •• Meeting
RequirecU'articipations =[Meeting~ Person..Description]
Purposes = [Meeting ~ Meeting..Purpose]

Meeting..Purpose = One_Timc...\feeting..Purpose
+ Repetitive,..\feeting..Purpose

One_Time...Meeting..Purpose = (discuss, plan, review} x Project
Repetitive,..\feeting..Purpose = (staff, reading, project } x Department

Meeting..Proposal =
Time_Proposal + Location..ProP.,sa! + ParticipanLProposal

Time..Proposal = Time..Description
Location..Proposal = Location...Description
ParticipanLProposal = Persons

Reflection= [Scheduled...Meeting ~ Meeting]

Pcrson..Name = [Person ~Name] = [Name-+ Person]
Person..Attribute =

Name+ [Name x HierarchicaLLink]
+ [(rep_of) x Group]
+ [{resp...rep_of} x Group]
+ [{head_of} x Group]

Person...Description = 2**Pcrson..Attribute

Hierarchical..Link = {boss..of, subordinate_of} •
Organization..relation_of..Pcrson = HierarchicaLLink

Concession_Type= {lime, location, ... }?????
Owes..Concession_To =[(Person x Person) -+Concession.. Type*]
negotiating_.points :

[(Person x Person x Concession_Type*
x Organization...Relation.:.Of..Person) -+!!\TIGER

Group_Contained...By = [Group ~ Group]
Membcr_Of_Group = [Person ~ Group]
Project..Name =[Project-+ <string>]

Location..Description = (Room..Capacity} x INTEGER x (blackboard, no_board}
Room.Jias = Meeting...Room ~ 2**Meeting...Room..Accessory
Roorn..Capacity = Meeting...Room -+ L."'TEGER
Chair..ArrangementJn...Room = Meeting...Room -+ Chair..Arrangement_Type
Building • <atomic>
Campus • <atomic>
Site= Building x Campus
At= [Meeting...Room -+ Site]

Static Ontology: Time Description

ReaLTime..Point = !!';TIGER
Time.. Quantum= Il\'TEGER ; in quarter hours
Quarter= (00, 15,30, 45}
Hour= (0 .. 24}
Date= (1..31}
Month= (1..12}
Year= (·BB .. +BB}
Cycle= (·BB' .. +BB')
Year'= (000, 100, ... , 900}
Ap= (1..13}
Day= {1..28}

Identified_Time..lnterval = [ReaLTime..Point-+ INTEGER]
; interval 0 is 12 mid-12:15 on l/1/1901

Calendar= [ReaLTime..lnterval -+ Ca1endarJnterva1]

1.-4

ReaLTime.Jnterval =
[ReaLTimc..Point x ReaLTimc..Point]
+ [ReaLTunc..Point x {unbounded]]
+[{unbounded] x ReaLTimc..Point]
+[{unbounded} x {unbounded}]

EvenLDcscription = IntervaLDescription x Meeting...Description
IntervaLDescription =

[{between} x CalendarJ>oint x CalendarJ>oint]
+ [(before} x IntervaLDescription]
+[(after} x IntervaLDescription1
+ [(before, after, during) x EvenLDescription]

Calendar..Region = ??????
CalendarJ'oint = GregorianJ>oint + Japanesc..Point
CalendarJnterval = CalendarJ>oint x Calendar_Foint
PoinLDescription =

CalendarJ>oint+ [(after} x CalendarJ>oint1
+[(before} x CalendarJ>oint]
+ [(within] x IntervaLDescription]

GregorianJ>oint =Year x Month x Day x Hour x Quane:r
JapaneseJ'oint =Era x Year x Month x Day x Hour x Quane:r
express...as : (Calendar -+ [ReaLTunc..Point -+ CalendarJ'oint1
interpret...as : (Calendar -+ (CalendarJ>oint -+ ReaLTunc..Point]

Event= SchedulecL.\feeting + Block..Schedu!e
Events= 2**Event
Assignments = [Event -+ ReaLTuneJnterval]
Schedule= Events x Assignments
BlocLSchedulc = (read, errand, li!LoutJonn} x Timc...Quantum

Dynamic Ontology

~eeting..Plan = (~eeting_Proposal -+ Signoffs 1
Signoffs = Persons
Arbitrator= Person
Reviewer = Person
Participant = Person
Old...\1eeting_Plan = ~eetingJ'lan
!'<ew_\feeting_Plan = ~eetingJ>lan

State= Meetings x Purposes x RequiredJ'articipations
x (Meeting -+ Arbitrator] x (~eeting -+ Reviewer 1
x (Meeting -+ :\feetingJ'!an] x (Person -+Schedule 1
x (Room-+ Schedule]

Operation= Heuristic_ Operation +Algorithmic_ Operation
+Autonomous_ Operation+ { schedulc...new....meeting)

H euristic_Opcration = (select_arbitrator , select_.reviewer ,
select....meeting_to..act..on }

Algorithmic_Operation = { create..new....meeting, reserve , assimilate)
Autonomous_Operation = { signoff_or_propose , assent , arbitrate ,

initiaLproposa! }

schedule....meeting = (Purpose xRequiredJ'articipation) -+(State-+ State 1
creatc...new....meeting : (PurposexRequiredJ'articipation) -+;Meeting
select_arbitrator : ~eetingxPurpose -+ Arbitrator
select....meeting_to..act..on : State -+ Meeting
select..reviewer : ~eeting -+ (State -+Reviewer 1

initiaLproposal : (Arbitrator -+ Meeting..Plan 1

(Meeting xReviewer)) -+
(State -+ State])

Epistemic Ontology

Arbitrator-.Selection..Rules =
2 ** (Pwpose xPerson..Description)

Meeting-.Selection..Rules =
2 ** Meeting_PlanJ>attem

Reviewer...Selcction..Ru!es =
2 ** (MeetingJ>!anJ>attem xPerson.J)escription)

Meeting_PlanJ>attem =
((TliileJ'attem xSignoffJ>attem)

{LocationJ>attem xSignoffJ'attem)
{ParticipantJ'attem xSignoffJ>attem))

Timc..Pattem = Timc...Description + { anytime)

LocationJ'attem = 2 ** Location..Description + (anywhere }

Participattt..Pattem = 2 ** Person..Description + (anybody }

SignofLPattem = 2 ** Pcrson.J)escription + (anybody } +
(nobody..but..proposer }

signoff_or_proposc : (Reviewer-+ (Old_\feeting..Plan -+ New__:\feeting..Plan 1
arbitrate : (Old_\feeting..Plan xNew_\teetingJ'lan) -+ (MeetingJ'lan xContinue)
c,mtinue = BOOLEAN

Jssent : Meeting..Plan -+ ((Person+ Room)-+ Schedule 1
assimilate :

((Meeting xMeetingJ'!an) +
((Person +Room) xSchedule) +
(Meeting xArbitrator) +

2-{V

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

KNOWLEDGE ELICITATION USING DISCOURSE ANALYSIS

N.J. Belkin
The School.of Communication, Information, and Library studies

Rutgers University, New Brunswick, N.J. 08854 U.S.A.

H.M. Brooks
Department of Information Science, The City University

Northampton Square, London EClV OHB U.K.

ABSTRACT

P.J. Daniels
Admiralty Research Establishment

Ministry of Defense, Teddington, U.K.

This paper is concerned with the use of discourse analysis and
observation to elicit expert knowledge. In particular, we des
cribe the use of these techniques to acquire knowledge about
expert problem solving in an information provision environment.
Our method of analysis has been to make audio-recordings of real
life information interactions between users (the clients) and
human intermediaries (the experts) in document retrieval situ
ations. These tapes have then been transcribed and analysed
utterance-by-utterance in the following ways: assigning utter
ances to one of the prespecified functional categories; identi
fying the specific purposes of each utterance; determining the
knowledge required to perform each utterance; grouping utterances
into functional and focus-based sequences. The long-term goal of
the project is to develop an intelligent interface for document
retrieval systems based on a distributed expert, blackboard
architecture.

1. INTRODUCTION
We are concerned with the problem of designing intelligent auto
mated interfaces to mediate between people who feel they require
information, and the (usually) computer-based knowledge resources
which might contain information which could be of use to them.
These three elements: user; intermediary; and knowledge resource,
and the relations among them, consitute the general information
system which is our focus of attention. The intermediary and
knowledge resource elements together constitute the information
provision mechanism (IPM). Such systems arise in, for instance,
social security benefits offices, student advisory services and
bibliographic retrieval systems·. At present, almost all such
information systems require a human intermediary. We assume that
any automated interface will need to perform at least some of the
functions that human intermediaries perform (as well as being

3-0

capable of recogn~s~ng situations when human intermediaries are
necessary): such an interface would perforce be intelligent.

Human intermediaries are required in such systems for a number of
reasons. Generally speaking, the users in such systems are un
familiar with the contents, structure and access mechanisms of the
data base, nor should they be required to be, for they are at best
intermittent participants in any one such system. The inter
mediary's role in this respect is to use hisjher knowledge to
choose the appropriate data base(s), to structure the search
appropriately to the data base, and to formulate and apply the
relevant query. These tasks might seem somewhat mechanical and
requiring relatively little creative 'intelligence•. However, the
knowledge required for this performance is substantial, and the
reasoning processes complex. More important, however, is that
these tasks depend upon a specification of the user's information
requirements that is unlikely to be forthcoming.

The typical situation in information systems, and indeed in many
decision support systems, is that the users are unable to specify
the information which might be useful in managing the problem
which prompted them to enter the system. That is, they may recog
nise that their state of knowledge with respect to their problem
or task is anomalous (see Belkin, 1980), but are usually unable to
say what it will take to resolve the anomaly. Thus it appears
that much of the human intermediary's task in the information
interaction between user and intermediary is concerned with the
building up of models of the user, the user's situation and the
user's problem, which can be used as the basis for the subsequent
tasks of database interrogation. This kind of activity is without
doubt highly complex, requiring a wide range of learning capabi
lities and sophisticated reasoning mechanisms, within the context
of a highly motivated and complicated interaction with the user.
The advisory systems considered by Coombs and Alty (1984),
although concerned with a slightly different problem domain,
exhibit the same level of complexity, and the same type of inter
action pattern.

In order to achieve our goal of an intelligent interface in the
information system, we will need to discover and specify the
necessary and sufficient functions of the intermediary, the
knowledge necessary for performing those functions, and the
dialogue structure in which those functions are performed. For
implementation, we will need to use these results to determine
representational schemes for knowledge, retrieval strategies and
general system architecture, including interactions among the
functions. These tasks cannot be accomplished by asking inter
mediaries and users what they are doing, or by requiring them to
state their rules of action, because of the the nature of the
situation in which they find themselves. Rather, it appears that

3-1

the most reasonable approach is a detailed, multi-faceted obser
vation and analysis of the information system in action.

NAME OF FUNCTION

Problem State (PS)

Problem Mode (PM)

User Model (UM)

Problem Description (PD)

Dialogue Mode {DM)

Retrieval Strategy (RS)

Response Generator (RS)

Explanation (EX)

Input Analyst (IA)

Output Generator (OG)

DESCRIPTION

Determine position of user in
problem treatment process, e.g. for
mulating problem, problem well
specified, etc.

Determine appropriate mechanism
capability, e.g. document retrieval

Generate description of user type,
goals, knowledge, etc., e.g.
graduate student, dissertation, etc.

Generate description of problem
type, topic, structure, subject,
etc.

Determine appropriate dialogue type
and level for situation, e.g. menu

Choose and apply appropriate retrie
val strategies to knowledge resource

Determine prepositional structure of
response to user

Describe mechanism operation,
restrictions, etc., to user as
appropriate

Convert input from user into
structures usable by functional
experts

Convert prepositional response to
form appropriate to user, dialogue
mode, etc.

Figure 1. The functions of an intelligent interface for document
retrieval. (After Belkin, Seeger, Wersig, 1983)

The knowledge we wish to elicit relates to the goals as specified.
That is, we wish to know what intermediaries ·do, what knowledge
they need and how they apply that knowledge. We need to discover
how they model users and problems, what their interaction stra
tegies are, and responses to the user. We believe, indeed, that

3-Z

contrary to usual advice on expert system construction, it will be
necessary to spend a great deal of time and energy developing a
realistic model and deep understanding of the situation before
attempting implementation.

Our primary method of acquiring (or eliciting) the knowledge we
require has been through functional discourse analysis of real
information interactions, between human users and human inter
mediaries in operational information systems. This technique was
based initially on a set of functions for information interaction
derived from an abstract analysis of the information situation,
and from our experience and observation of information interaction
(Belkin, Seeger, and Wersig, 1983) and by a simulation (Belkin,
Hennings, and Wersig, 1984), but the functions have been empiri
cally confirmed through the discourse analysis itself.

The identification of these functions has led to a proposal for a
'distributed expert• architecture for the IPM (Belkin, Seeger, and
Wersig, 1983), and the general notion of functional distribution
and blackboard architecture, and some of the specific functions
themselves, have been also suggested independently by Croft
(1985). In the remainder of this paper, we explain why we chose
discourse analysis as our method of knowledge elicitation, and
describe the results this method has achieved.

2. METHODS OF KNOWLEDGE ELICITATION
Buchanan (1983) defines knowledge acquisition as:

the transfer and transformation of problem solving
expertise from some knowledge source to a program.
Potential sources of knowledge include human experts,
textbooks, databases and even one's own experience.

What appears on the surface to be a relatively straightforward
task turns out in practice to be extremely difficult, time con
suming and complex (Buchanan, 1982; Welbank, 1983). Within the
field of Artificial Intelligence there is little in the way of
methods or techniques that could be used to facilitate knowledge
elicitation. Attention has been turned, therefore, to other
disciplines where knowledge transfer is of interest, e.g. cogni
tive psychology.

The main techniques for knowledge elicitation can be summarized as
follows:

(a) Interviewing the expert: either informally or making use of
structured interviewing techniques.

(b) verbal protocol analysis: that is, analysing recordings of
experts thinking aloud as they carry out a task.

(c) Observational studies: observing and recording the behaviour
of the expert as sjhe works on a real problem, in their
normal working environment, in as unobtrusive way as
possible.

A review of Knowledge Acquisition methods is presented by Welbank
(1983). Gammack and Young (1985) propose a number of
"psychological" techniques including Personal Construct Theory
(Kelly, 1955), and concept sorting. The use of Personal Construct
Theory to acquire knowledge for expert system construction has
also been investigated by Shaw (e.g., 1984).

Interviewing the expert is a commonly used technique. It has a
number of disadvantages though, and may not be useful in areas
where experts have particular difficulty in articulating their
knowledge (Welbank, 1983). The use of verbal protocol analysis is
also very common (e.g., Kuipers and Kassirer, 1983). Frequently
the task given to the expert is a standard case study or an
artificial problem. A comprehensive survey of the use of verbal
protocol analysis has been carried out be Ericsson and Simon
(1980). Verbal protocol analysis has also been used to investi
gate various aspects of the functional behaviour of librarians
(Ingwersen, 1982). Observational techniques are probably the
least used because they tend to be extremely time consuming and
require complex, indepth analysis (Welbank, 1983). However, they
do have the advantage that they can be used to discover what the
expert actually does and are useful for extracting information
about the role of the expert, ordering of tasks, etc. (Kidd,
1985b). One example of the use of observational techniques in the
expert system context is the investigation into student-advisor
interactions carried out by Coombs and Alty, with a view to
developing an expert system advisor (Alty and Coombs, 1980; Coombs
and Alty, 1984).

Current thinking tends towards the use of multiple techniques,
with certain methods seen as more appropriate for particular types
of knowledge (Gammack and Young, 1985; Kidd, 1985b). In other
contexts, this has been done for some time e.g. the detailed study
of librarian-user interaction carried out by Ingwersen and Kaae
made use of both verbal protocol analysis and interviews (1980).
Perhaps the most important factor is that whatever technique is
used, it should elicit knowledge at the level of granularity
required for that particular expert system application. That is,
the more detailed and complex the knowledge to be elicited, the
more detailed and complex the analysis must be to extract that
knowledge (Clancey, 1983; Kidd and Cooper, 1985; Kidd, 1985a).

3. DISCOURSE ANALYSIS FOR KNOWLEDGE ELICITATION
3.1 Introduction ---
The long-term aim of this project is to produce an intelligent
information system interface which will simulate the functional
performance of a good human intermediary. There are a number of
possible methods which could be used to achieve our objective.
Our approach has been to employ the methods which seemed best
suited to developing a particular specification, given the
problem-solving environment under investigation. These methods
include:

(a) functional analysis of real interactions between human
experts (search intermediaries) and clients (information
system users);

(b) interviews with experts;

(c) system simulation, using humans to play the roles of the
various system functions;

(d) classification of problem and knowledge types.

The nature of the problem domain and the expert-client interaction
has meant that most of our efforts have concentrated on the first
of these methods, i.e. functional analysis of expert-client
interactions. This method produces an extremely detailed analysis
of what is, in any case, a highly complex situation, in a way that
is as unconstrained as possible by pre-conceived ideas.

3.2 General methodology
The general method in most of our research has been to collect
data consisting of natural language human-human interactions. The
collection of data took place at two academic online information
retrieval services at London University with four different
trained intermediaries, who carry out searches of biliographic
databases. The users of these services are primarily postgraduate
students, but also include academic staff, and other types of
researchers, for example, from industry and research centres.
Having obtained the permission of both participants, audio
recordings were made of six presearch interviews, from the point
that the user entered the service until the beginning of the
online search, when the intermediary logged onto the system.

The interviews were then transcribed from the tapes according to a
specific format. The transcription of each dialogue was then
checked by another of our team of three people, the transcript was
divided into utterances, which are the units for analysis, and
this division was again checked by another person (Daniels, Brooks
and Belkin, 1985).

An utterance can be defined as a speech sequence by one partici
pant during the conversation. It may or may not comprise of
complete grammatical entities, and may be terminated by a contri
bution made by the other participant. If the contribution of one
participant takes the conversational turn, the previous speech
sequence is regarded as a completed utterance (Brooks and Belkin,
1983; Price, 1983). The six interview transcripts together com-
prise some 3,000 individual utterances. ·

Two interviews were subjected to separate analyses by three
different people, each of whom attempted to identify and cate
gorise the tasks or functions performed by utterance by both
parties during the dialogue (see sections 3.3 and 3.4). The
results of this suggested that analysis according to focus, and
focus shift, was also possible.

The focus of a dialogue (Grosz, 1978) can be said to highlight
that part of the mutual knowledge of the participants relevant at
any given point in a dialogue, by grouping together those concepts
or themes that are in the focus of attention. The current focus
is likely to dictate the structure of the discourse, and the
topics to which reference can be made at that given moment. In
the analysis of our six interviews, shifts of focus wre generally
indicated by the occurrence of "frame" words (Sinclair and
Coulthard, 1975), often accompanied by pauses of varying duration.

Examples of frame words include:

Right OK (.) right (••) (Interview l90684HBA)

now the next thing is to get (,) our strategy
l90684HBA)

(Interview

Each interview was analysed in terms of foci and the goals, sub
goals and functions pertaining to these foci.

3.3 Adequacy of the functions
By function o~an utterance, we mean to indicate WHY the partici
pant said it; that is, what sjhe intended to gain or communicate
by it, what model-building activity it was relevant to, and so on.
A single utterance may serve more than one function. In several
successive studies we tested the adequacy of pre-determined
functional patterns by attempting to categorise all of the utter
ances in a number of dialogues using a number of coding schemes.
Each iteration used the previous results to add, delete or modify
the definition of specific functions until the classification
stabilized on the functions indicated in fig.l. Having analysed
the interactions in this way, it was possible to obtain time-line
displays of their functional structures over the course of the
dialogue.

3.4 Function specification
The individual functions necessary for successful information
interaction need to be specified at a level of detail which will
allow programming of each function. It is also necessary to
identify and specify the knowledge resources associated with the
functions, since they will require some knowledge in order to
achieve their goals.

I emm (.) what's the (.) the problem /1
U ok I 'm just beginning (.)

I mm hm /3
U a research project /2 (.) err (.) I'm a research student

I yeah /5
U at LSE j4a (•••) and um (•.•) working in the Geography

I
U Department /4b and I'm err (.) doing a (.) thesis (.)

I
U beginning a thesis on err (.) forestry (.) and err the

I interesting /6
U impact of recreation (.) of conflicts of recreation and

I oh that's interesting (.) mm (.5 sec)
U forestry j4c

I (inaud •••.•.••) /7
U and err (•..) one of the things I'm aiming

I
U to do (.) eventually is to look at the cost benefits of

I
U different err (.) management schemes (.) for recreation

I mm
u (o o 0) 1 /8

LEGEND: I = intermediary
U = user

jl = utterance number 1
(.) = 1/2 sec pause

Figure 2. Transcript of focus 1, interview 120684HBA.

"::r7

Each of the interviews was subjected to a detailed utterance-by
utterance analysis to identify and categorise the subfunctions and
subgoals that seem to be occurring. Two interviews (120684HBA and
No.4) were subjected to separate analysis by three people, inde
pendently. A sample transcript with its accompanying subgoal
analysis is presented above. Fig.2 is focus 1 from interview
120684HBA.

The subgoal analysis for each utterance is given below:

1: This is an open question from the intermediary directed
towards problem description, in some form, from the user.

2: The user's response to the intermdiary's opening question is
to describe the context of the problem, and the user's
position within the problem. This utterance seems concerned
with establishing the state of the user's problem.

4a: In this part utterance, the user describes his status, and
the college he is attending.

4b: This is concerned with further user description including
user status.

4c: This a composite, containing information about the user's
goals, a re-iteration of the state of the problem, and
finally an initial description of the user's research.

8: The last utterance in this focus involves further description
by the user of his research topic.

Each of the remaining four interviews was analysed by at least two
people independently. The results were cumulated for all six
interactions to produce an inventory of subgoals.

Most of the subgoals appear to contribute to a particular function
and could be grouped accordingly. The pattern of interaction
between the subgoals associated with the User Model and Problem
Description functions were analysed. Information contributed by,
or donated to, other external functions was noted. These inter
actions were diagrammed on a focus-by-focus basis. (Examples of
these interaction maps are given in Brooks, Belkin, and Daniels,
1985.)

Having identified the subgoals associated with the functions, we
attempted to identify the knowledge resources which the inter
mediary needs to access in order to accomplish the functions
during the information interaction. Utterances concerned with
User Model and Problem Description subgoals were analysed in

depth. Inferences were made about the knowledge which appeared to
be used. For example:

User Model Knowledge:

In the following extract, the intermediary is using her knowledge
of ways in which users can be classified by status and which of
these categories are important in the current exchange. In this
example, the intermediary knows that users can be categorised
according to whether they belong to London University or are
visitors and therefore, that information about this aspect needs
to be elicited.

(Taken from interview 190684HBA)

I: now I gather you're ••••• a visitor/3 yes are you part of the
university or /5

Problem Description Knowledge:

(Taken from interview No.4)

I: yeah now does it mean when people talk of community education
do they mean ••• primary, secondary, vocational, technical,
and universities, or d- do they really mean only a certain
level or type /22

The intermediary's question about the level of schooling implies
some internal knowledge by the intermediary about the meta
structure of the subject domain, (i.e. knowing that the topics of
research projects in this area tend to be limited to a particular
educational level). This knowledge of the domain meta-structure
provides a framework within which to question the user about her
research.

In order to verify the subgoals and knowledge resources identified
for the User Model function, interviews were arranged with two
experienced intermediaries at the search services from which the
original data was collected. A questionnaire was devised which
first asked the intermediaries to comment on the appropriateness
and accuracy of the five User Model subgoals, and secondly asked
for further information, confirmation, etc. of various problem
areas. Each question was accompanied by a concrete example in the
form of an excerpt from a transcript or a played-back recording.
The information gained in these interviews confirmed the User
Model analysis and clarified the problem areas.

3.5 Dialogue structure
Previous work (Belkin and Windel, 1984) suggested that a general
problem structure for the information system domain could provide
a means for driving and guiding a human-computer dialogue in this
domain. We have assumed that any appropriate human-computer
dialogue should follow the functional structure of the analagous
human-human dialogue.

Discourse analysis of the human-human interactions was used to
identify and define a problem structure associated with the infor
mation system. This identification and specification of the
problem structure depended crucially on the analysis of the dis
course into foci, on the specification of the goal of each focus
and on an investigation of the factors initiating a shift in focus
(Daniels, Brooks, and Belkin, 1985).

4. RESULTS
4.1 Introduction
Whilst the main emphasis of this paper is on the methodology we
are using to develop the design and specification of an intelli
gent, distributed expert-system based interface, we would like to
indicate to what effect these methods have been employed.
Although the results were obtained primarily within a document
retrieval environment, they also seem to apply in other sorts of
advisory interaction we have studied.

4.2 Adequacy of the functions
Functional analysis of the six interviews has elicited a common
set of functions which appear to be the minimum required for an
intelligent interface in the document retrieval environment, and
perhaps for information systems in general. There appears to be
no obvious single order in which these functions are, or should
be, performed, but rather that any sequence is circumstance
driven.

Comparison of the functional structure of individual interviews
has enabled us to indicate the extent to which model-building
activities are carried out by both parties. In particular, the
significance of the Problem Description, Problem State and User
Modelling functions to the success or failure of an interaction
can be demonstrated (Brooks and Belkin, 1983; Price, 1983).

4.3 Function specification
For each function, it is necessary to specify the subgoals
concerned with the accomplishment of that function, the knowledge
resources required by that function in order to achieve its goal
and the information contributed to and acquired from the other
functions. Most of our efforts have concentrated on the specifi
cation of the User Model (Daniels, in press), Problem Description
and Retrieval Strategies functions (Brooks, in press).

The majority of the 24 subgoals we have been able to identify in
the interviews are concerned with the accomplishment of some
particular function. For example, the subgoals associated with
User Modelling comprise:

UGOAL - Determining the user's goals

USER - Determining the status of the user

KNOW - Determining the user's state of knowledge in the field

IRS - Determining the user's familiarity with Information
Retrieval Systems

BACK - Determining the user's background

A complete listing of the subgoals is given in Daniels, Brooks,
and Belkin, 1985.

The types of knowledge needed by the User Modelling function tend
be categorical in nature. The specific knowledge used embodies a
finite, restricted range of possibilites and tends to be qualita
tive rather than quantitative. In contrast, the knowledge needed
by the Problem Description function appears much more varied and
to be closely connected with the subject domain of the search
topic. The knowledge elicited by the analysis for these two
functions is described in more detail in Brooks, Belkin, and
Daniels (1985); Daniels (in press); and Brooks (in press).

4.4 Dialogue structure
Given the nature of reference interviews, it must assumed that the
problem structure driving the expert-client interaction in this
situation is similarly complex. A uni-dimensional model would be
too simplistic, and so general as to have little or no predictive
value. Instead, we propose a single structure but one which is
multi-dimensional and capable of representing individual aspects
of an interaction whilst retaining a commonality of form (see
Daniels, Brooks, and Belkin, 1985). The foci can be seen as
concentrating the participants' attention on the accomplishment of
a particular goal, with shifts of focus moving attention from goal
to goal across the problem structure.

5. DISCUSSION
As Welbank (1983) says, interviews alone cannot produce a detailed
context of real behaviour; rather, they need to be backed up by
observational studies. our methodology concentrates on observa
tional techniques supported by interviews. We define our methods
as observational since they involve recording the expert at work

~-11

on real problems in her normal environment. Verbal protocol
analysis, on the other hand, requires the expert to verbalise her
thoughts and actions as she carries out what is often an arti
ficial task. Although this method has been used to study
librarian-user interactions (Ingwersen and Kaae, 1980), it would
have been inappropriate in our situation. We considered that
interviews with intermediaries would not be productive as the
principal method of knowledge elicitation either. Experts
typically are unable to articulate their problem-solving expertise
and this is particularly true for information provision environ
ments where the tasks and goals of intermediaries are not well
formulated, well-defined or static. Unlike medical diagnosis for
example, there is no metalanguage for describing problem-solving
procedures.

We view the information interaction between user and intermediary
as consisting to a large extent of model building by both partici
pants within a cooperative dialogue. Therefore, the knowledge to
be elicited must concern the way in which the participants use
discourse to carry out their tasks. It is necessary then to
analyse the recorded observations at the discourse level. This is
the level of granularity required. The analysis that we have
carried out goes beyond an analysis of broad concepts and beyond a
simple functional analysis. Discourse analysis provides a
"microlevel" of representation which will allow complete, complex
and accurate interface implementation.

Using the methods outlined, we can also take account of the co
operative nature of the interaction, e.g. user inputs and contri
butions. Moreover, we have been able to outline a dialogue
structure which could drive the computer half of such a dialogue.
This will provide the basis for the development of a true mixed
initiative discourse component for the interface. Kidd (1985) has
noted that one of the main problems with current expert systems is
their rigidly constrained system-oriented dialogues.

We have also been able to propose a representation for the user
model and the problem description. The user model representation
consists of frames embodying information about the user's status,
goals, level of knowledge, previous information system experience
and general background (Daniels, in press). It is suggested
(Brooks, in press) that the problem description is represented as
several layers of interconnected partitioned semantic networks
(Hendrix, 1979).

From the methodological point of view, we have taken great care
with intercoder reliability and cross-checking. These are common
procedures in psychological and sociological research but we have
found very little evidence of their use in the knowledge
engineering literature.

3-12

Finally, it should be noted that this is an extremely time
consuming method of analysis. The whole process, from recording,
through transcription, to the analyses, involved a team of re
searchers over many months. On the other hand, it has provided us
with sufficient detail to begin to implement an interface which
will exhibit complex behaviour and be capable of sustaining mixed
initiative discourse.

6. CONCLUSION
The outcome of this project has not merely been to identify and
specify the functions required for an intelligent interface for
document retrieval systems. In addition, we feel that contri
butions have been made to the following:

- Knowledge elicitation methodology: Detailed discourse analysis
of recorded interactions between expert and client has not been,
up to now, well explored as a method for eliciting expert
knowledge.

- The application of expert system techniques to complex domains:
Many expert systems have been confined to very restricted, well
defined domains. The application we are investigating, however,
involves multi-dimensional problem-solving in a complex domain.
This has implications for methodology and system architecture.

- Cognitive modelling: We regard the knowledge elicitation task
as serving not only to develop an operational system but also to
further our understanding of what human intermediaries do and how
they do it. Interaction between human intermediaries and users
involves complex cognitive modelling. Thus our research has
offered insight into the development and use of multiple models by
more than one party.

In conclusion, we believe that knowledge elicitation is of prime
importance to expert system development and should not be regarded
as secondary to the implementation of an operational system.
Unfortunately eliciting knowledge at a detailed and comprehensive
level is time-consuming and mitigates against the immediate
implementation of expert systems.

7. REFERENCES

Alty, J.L. and Coombs, M.J. (1980). Face-to-face guidance of
university computer users - I: a study of advisory services.
Internation Journal of Man-Machine studies, 12, pp.390-406.

Belkin, N.J. (1980). Anomalous states of knowledge as a basis for
information retrieval. Canadian Journal of Information Science,
5, pp.133-143. --

3-13

Belkin, N.J., Hennings, R-D., and Wersig, G. (1984). Simulation
of a distributed expert-based information provision mechanism.
Information Technology: Research, Development, Applications, 3,
pp.l22-141.

Belkin, N.J., Seeger, T., and Wersig, G. (1983). Distributed
expert problem treatment as a model of information system analysis
and design. Journal of Information Science, 5, pp.l53-167.

Belkin, N.J. and Windel, G. (1984). Using MONSTRAT for the
analysis of information interaction. In: Dietshmann, H.J. (Ed.),
pp.359-382. Representation and Exchange of Knowledge ~a Basis
of Information Processing. Amsterdam: Elsevier Science.

Brooks, H.M. (in press).
descriptions. In: IRFIS
the information society.
Holland.

Developing and using problem
6: Intelligent information systems for
Frascati, Italy, Sept., 1985. North

Brooks, H.M. and Belkin, N.J. (1983). Using discourse analysis
for the design of information retrieval mechanisms. In: Research
and Development in Information Retrieval. Proceedings of the
Sixth Annual International ACM SIGIR Conference, Washington, D.C.,
1983, pp.31-47. New York: ACM.

Brooks, H.M., Belkin, N.J., and Daniels P.J. (1985). Problem
descriptions and user models: developing an intelligent interface
for document retrieval systems. In: Informatics ~ Advances in
Intelligent Retrieval, pp.l91-214. London: ASLIB.

Buchanan, B.G. (1982). New research in expert systems. In:
Hayes, J.E., Michie, D., and Pao, Y.H. (Eds.), pp. 269-299.
Machine Intelligence 10. Edinburgh: Edinburgh University Press.

Buchanan, B.G., et al. (1983). Constructing an expert system.
In: Hayes-Roth, F. and Waterman, D.A. (Eds.), pp.l27-168.
Building Expert Systems. Reading, Mass.: Addison-Wesley.

Clancey, W.J. (1983). The epistemology of rule-based expert
systems: a framework for explanation. Artificial Intelligence,
20, pp.215-251.

Coombs, M. and Alty, J. (1984). Expert systems: an alternative
paradigm. International Journal of Man-Machine Studies, 20,
pp.21-43.

Coombs, M. and Alty, J. (1980). Face-to-face guidance of
university computer users - II: characterizing advisory
interactions. International Journal of Man-Machine Studies, 12,
pp.407-429.

Croft, W.B. (1985). An expert assistant for a document retrieval
system. In: RIAO 85. Actes of the conference: Recherche
d'Informations Assistee par Ordinateur, Grenoble, France, 18-20
March, 1985, pp.l31-149. Grenoble: I.M.A.G.

Daniels, P.J. (in press). The user modelling function of an
intelligent interface for document retrieval systems. In: IRFIS
~ Intelligent information systems for the information society.
Frascati, Italy, Sept. 1985. North Holland.

Daniels, P.J., Brooks, H.M., and Belkin, N.J. (1985). Using
problem structures for driving human-computer dialogues. In:
RIAO 85: Actes of the conference: Recherche d'Informations
Assistee par Ordinateur, Grenoble, France, 18-20 March, 1985,
pp.l31-149. Grenoble: I.M.A.G.

Ericsson, K.A. and Simon, H.A. (1980). Verbal reports as data.
Psychological Review, 87(3), pp.215-251.

Gammack, J.G. and Young, R.M. (1985). Psychological techniques
for eliciting expert knowledge. In: Bramer, M.A. (Ed.), pp.l05-
112. Research and Development in Expert systems. Proceedings of
the 4th Technical Conference of the B.c.s. Specialist Group on
Expert Systems, University of Warwick, 18-20 December, 1984.
Cambridge: Cambridge University Press.

Grosz, B.J. (1978). Discourse knowledge. In: Walker, D.E. (Ed.),
pp.229-346. Understanding Spoken Language. New York: Elsevier
North Holland.

Hendrix, G. (1979). Encoding knowledge in partitioned networks.
In: Findler, N.V. (Ed.), pp.305-326. Associative Networks:
Representation and Use of Knowledge in Computers. New York:
Academic Press.

Ingwersen, P. (1982). Search procedures in the library analysed
from the cognitive point of view. Journal of Documentation,
38(3}, pp.l65-191. --

Ingwersen, P. and Kaae, s. (1980). User-Librarian Negotiations
and Information Search Procedures in Public Libraries: Analysis
of Verbal Protocols. Final Research Report, DB-TEK-50.
Copenhagen: Royal Copenhagen School of Librarianship.

Kelly, G.A. (1955). The Psychology of Personal Constructs. New
York: Norton.

Kidd, A.L. (1985a). The consultative role of an expert system.
In: Johnson, P. and Cook, s. (Eds.), pp.248-254. People and
Computers: Designing the Interface. Proceedings of the B.C.S.
HCI Specialist Group Conference, University of East Anglia, 17-20
Sept. 1985. Cambridge: Cambridge University Press.

Kidd, A.L. (1985b). Knowledge elicitation. B.c.s. Specialist
Group on Expert Systems Lecture, London, October, 1985.

Kidd, A.L. and Cooper, M.P. (1985). Man-machine interface issues
in the construction and use of an expert system. International
Journal of Man-Machine studies, 22, pp.l05-ll2.

Kuipers, B. and Kassirer, J.P. (1983). How to discover a
knowledge representation for causal reasoning by studying an
expert physician. In Proceedings of the 8th International Joint
Conference on Artificial Intelligence, Karlsruhe, 18-20 August,
1983, pp.49-56.

Price, L.E.T. (1983). Functional and Satisfaction Analyses of
Information Interaction Dialogues. M.Sc. Thesis, Department of
Information Science, The City University, London.

Shaw, M.L.G. (1984). Knowledge engineering for expert systems.
In: Interact 1 84. Proceedings of the IFIP Task Group on Human
Computer Interaction, Imperial College, London, 4-7 Sept., 1984,
pp.328-332.

Sinclair, J.McH. and coulthard, R.M. (1975). Towards an Analysis
of Discourse. The English Used E1 Teachers and Pupils-.- Oxford:
Oxford University Press.

Welbank, M. (1983). A review of knowledge acquisition techniques
for expert systems. British Telecom Research Laboratories Report,
December 1983. Martlesham Heath: Martlesham Consultancy Services.

3-l&

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

On The Structure Of Expository Texts;
Preliminaries to Building An Expert System From Manuals

Genevieve Berry-Rogghe
Randy M. Kap 1 an

Abstract

PRAFI

One task facing any knowledge engineer constructing a knowledge base and
expert system is the extraction of knowledge from the domain expert and other
sources. If any of thi-s process could be automated the process of knowledge
base and expert system construction would be improved. In this paper we present
a framework for extracting the base or elementary knowledge present in a
knowledge base from textual material. In particular, we describe how textual
structure may be ·used for constructing predicates representing the meaning of
the text being processed. Our initial source of material is an encyclopedia for
children. This was chosen for several reasons. First, the sentences contained
in this text do not require complex syntactic processing. Second, very little a
priori knowledge on the part of the reader is assumed. These characteristics
have provided a sufficiently constrained environment so as to yield some
interesting advances towards automatically creating a knowledge base.

Keywords

Knowledge Engineering
Expert Systems
Natural Language Understanding
Kno ... ,l edge Rase

Authors Address

Genevieve Berry-Rogghe
Temple University
Department of Computer Science
Philadelphia, PA 19122
(215) 787-7000

Randy M. Kap 1 an
812 Halvorsen Drive
West Chester, PA 19382
(215) 436-4570

.
-"I

On The Structure Of Expository Texts;
Preliminaries to Building An Expert System From Hanuals

Genevieve Berry -Rogghe
Randy H. Kaplan

Temple University Department of Computer and Information Science

1. INTRODUCTION

One of the major difficulties in constructing an
expert system is the process of extracting knowledge
from a human expert and encoding it in a form which is
suitable for use in an expert system. A desirable goal
for the future is the automatic construction of a know-
1 edge base from techn ica 1 manuals - at least for the
encoding of basic general knowledge. The major purpose
of this investigation ;s to give insight into the var
ious processes involved fn this task and to collate the
efforts in text analysis'and models for knowledge repre
sentation and memory processing that have been proposed
in linguistics, psychology and artificial intelligence.
The second part of this paper outlines an approach to
text analysis for simple scientific expository texts.

In artificial intelligence, the area of natural
language proessing is vastly growing and some success
has been -achieved in the construction of natural
language interfaces to database retrieval systems. It
should be pointed out, however, that the task involved
here ;s primarily one of "transformation", namely from a
sen:ence in English, to a formal database query, which
only minimally involves real understanding of the tex
tual material. In addition, these interfaces primarily
operate on the single sentence level ignoring the
complexities of connected discourse. (\-le should mention
here some attempts to extract a knowledge base from
texts, for instance [3,8] these systems are in essence
also "transformation systems" working in a highly
constrained te~tual environment.)

;. sys:er~ -..hich will construct a ~nowledge t:-'lse fer
an exper-t syster, fror.1 technical prose must recogr~iz~ the
o·terall scructure of the text; <1istinguish between facts
and rul~s and detect the relationships between sentences
and between paragraphs. Ho re re 1 evant to this project
is tne res ea rc:h in story understanding as in Rume 1 hart,
Schan~ and Charniak et al (4,16,19]. The research in
this area has been primarily with the aim of explaining
the inferencing mechanism and is based on matching of
the text against generic knowledge schemata. Expository
tex:, however, aims at creating icnowledge schemata and
hence re! i es to a much lesser extent on prior world
knowledge. A more detailed account of the Charac
teristics of expository text as compared to narrative
text will be given in a later section.·

Recently, linguists and psycho-logists have begun to
analyze the structure of expository and tutorial te.<t:s;
the aim of the psychological research has been primarily
to explain the process of reading understanding in
humans, whereas the 1 i ngui sts have studied the 1 i ngui s
tic properties of such texts per _se.

[n analyzing discourse, two major levels of analysis
must be distinguished: the descriptive level and the
processing level. The descriptive level deals with the
analysis of the structure of expository texts: how the
text is segmented into elementary units and how these
units combine into higher level structures.

The processing level deals with the process of text
understanding: how the information is organized ~nd
stored in memory, combining it to already existing
knowledge structures and how the information may be

retrieved for a 'specific task. The next section gives
an overview of various mode 1 s that have been proposed
for the descriptive analysis of expository texts.

2. THEORIES OF DISCOURSE STRUCTURE

Host researchers in discourse analysis would agree
that the descriptive analysis of a text canprises at
least three levels:

the symbolic representation level,
the microstructure level, and
the macrostructure level.

The symbolic representat)on level deals with the
choice of the formal representat1on language for indivi
dual sentences. An obvious choice would be the predi
cate calculus. This choice has advantages, particularly
the fact that it provides a well-defined semantic
interpretation and offers the possibility of applying
formal deductive r.ll!chanisms. The major disadvantage is
that for the time being there has been no generally
satisfying solution to the problem of how to represent
arbitrary natural language sentences in this formalism.
Notoricus are difficulties with natural language quan
tifiers and mass tems, lloth constructs occurring fre
quently in scientific texts. tn addition, programs that
at ter.tpt to r..or!e 1 understanding es tab 1 i shed the necessity
for the representation of deeper semantic relations at
the lexical and clausal level. This led to the introdu
ci~on of case :;ranmer - \•lhich is the most widely adopted
model by ;lSycho1ctjiSts - and the theory of "conceptual
dependc:ncy" (see Schank, Abelson (18]) which became the
paradig:~ for-~ -;i<;nificant school in artificial inte11i
ge:1c~. '~IHJt•H!'" ;:>l•Jcion 1·A1ich seems attrac~ive - and
~1hicn ·.-;i i 1 ::;; d<!~.::!'ibed in greater detail in Section 5 -
is to encode :hu text as elementary "prooositions".
Propositions consist of a predicate followed by a number
of arguments; there is no quantification and there are
no lol)ical connec:i'les. Propositions are connected to
each otite r throu gi1 the use of propositi on a 1 va ri ab 1 es.

This •:-et hod •·:a s chosen in the work of I< i ntsch and
van Oijk [10] 1-:ho are probably the rost proninent
researc!1ers in tilt: psychological text analysis area.

The microst-ructural le•tel deals with the semantic
relations :Jet·.-1een ~arious clauses in a sentence or bet
ween two suc:.ceed l ng sentences. For ex amp 1 e, the two
sen~ences "Clouds form, because •11ater vapor in the air
condenses" and ":-Ja;:er vapor in the air condenses so
clouds form" express the same kind of causal relation
be:11een t:1o propositions. How the relation between two
propositions is represented depends to some extent on
the adopted theory for the macrostructural level. Three
major approaches rnay be di st i ngui shed: the 1i ngui st ic
coherence approach, the 1 ogical-rhetorical approach and
the con:ent-based approach. The former approach seeks
to elucidate the coherence of a text uniquely through
the analysis of its external linguistic properties such
as the presence of certain clue words, representation to
lexical iterns and how referential expressions are used.
A major propagator of this approach is the linguistic
work by Ha 11 i day and Hasan (9].

The logical-rhetorical approach examines the rela
tion between t·.-~o sentences in terms of logical and rhe-

4-\

torical concepts such a "causation" {marked·· by the
connectives "because, since, as" •••), "contrast" (mar!ced
by "but''). "collection• {marked by "and"), "sequence"
(marked by "after, before, when, whenever" ...),
"condition • (marked by "if ... then") and so on. This
approach is the most common and exemplified, among
others, in the psychological research by Meyer and in
the artificial intelligence research by Weiner [19] and
Fox (7].

The content-based approach is . exemplified by
Kintsch-van Dijk [10] and Kintsch-Miller [13]. No
explicit distinction is made here between the micro and
macro structural levels. Text analysis conshts of the
construction of a "proposition graph". The information
and relation present in the surface form the sentences
is encoded as propositions (see above). The higher
order conceptual ideas derived fran the text are repre
sented by a coherence graph, lolhich is constructed as
follows. First a number of related propositions
(normally corresponding to a canplex sentence or two
sentences at the miccrostructural level) are grouped
together. Then from this set one proposition is
selected on the basis of its conceptual central fty and
stands at the top of the graph structure. The other
propositions in the set are linked to this superordinate
proposition and to each other through their shared argu
ments. The aim of this model was primarily to account
for the limitations in short term memory processing in
recall tasks. Since the major coherer.ce establishing
factor is lexical repetition, the model is less well

• suited to explain larger connections on the macrostruc
tural level. The method may be termed "content-based"
because it explains primarily how the ideas and concepts
in _the text are related.

The macrostructural level deals with relatior.shi;Js
among ideas represented in complexes of sentences or
paragraphs; it explains what the major theme of the text
is and how this theme is dev~loped. Two kinds of
theories about the mechanisms to determine the
mac~ost~ucture of a text have been proposed. These
::retnocs may be broadly cl a ss ifi ed as ei tner "exter~a 1 "
or "i::~:rnal".

::;.;~<!,.na1 theories rely uniquely on the infonnaticn
in the t~xt as a source. In this ea tegory fa 11 the
linguisti: theories by Halliday and Hasan and the propo
sition a l graph theory explained above. Interna 1
theories posit the existence of cognitive generic
knowledge structures or scherr.as. Schemas are natural
pac::ets of highly structured generic knowledge which may
be about world knowledge, pragmatic knowledge and
knowledge about language. (Schemas have !leen variously
referred to as •frames~ - see Minsky [14] and Charniak
[l), "scripts" see Schank ana Abelson [18]
"stereotypes" et cetera.)

At the macrostructural level of analysis, two types
of schemata are relevant: world knowledge and text
structure schemata. The frame and script based theories
cited above fall into the former category whereas propo
sals for text grammars (see, for instance Rumelhart
[18]) fall into the latter category. World knowledge
schemata represent knowledge about human act ions and
their effects as well as specific knowledge about proto
typical events in the world. This model has been rtuite
successful in the processing of narratives and was also
applied to a scientific text (about the launching of a
rocket) by de Beaugrande (6]. Even though speci fie
world lcnowledge may play a role in the understanding of
tutorial texts especially in specialized texts
designed for experts, it would seem to be of less
importance for the processing of texts imparting simp I e
knowledge about the world - which is the kind of text it
seems most appropriate to tackle initially.. In the fra
mewor:C of our research project, we are examining in more

detail proposals about textual schemata representing
genertc i nfonnat ion about the structure of expos f tory
texts, with the intention of constructing a •grammar"
for macro-level analysis of such texts.

A text grammer is a schema that represents frequent
configuraitons of textual elements. The basic units of
the grammar may be rhetorical categories. For example,
Meyer [11] proposed a text be analyzed at the macropro
positional level in tenns of the following five basic
rhetorical categories which, recursively applied, sub
sume the entire macrostructure of a text:

collection: related ideas or events on
the the basis of some
c anmona 1i ty

causation: a. causal relation between
an antecedent and a con
sequent

response: a problem statement
fo 11 owed by a so 1 ut ion
(such as question - answer)

co•~pa ri son: differences or s imil a ri ties
between two concepts

description: giving more information·
about a topic (maybe by
giving an example)

In Section 6.1 we shall give an example of how a
text gr~r-:-.~:- ·~03Y be constructed out of basic rhetorical
predi.:cHes. ~:ext, •··'e ~~ant to examine some of the evi
dence ghen for tlte psychological :-eat ity of the
existence of text schet~ata. Even though it might be
argue<! that d syHem to construct a knowledge base for
an expert system need not be psychologically motivated,
the choice be~l'leen an "external• and "internal" approach
needs ~:} h~ justified l'li~h respect to explanatory ade
qL;acy i:•':.l ;:o!"ucessing ease.

Ps:.··:hol.)~;i·:-'11 ex;:eri:~ents have validated the
exi s::~~:;: ~:f ~ex:: structure sche~nata on at least two
ac-:<Jur.:.;. :'1n the cne ~and, it •.-Jas shown that the role
of con~~n: :.1:n~iledge is li~~ited when subjects are asked •
to pici: o•:~ tile central proposition fron a text. Even
11ith very little understanding of the subject matter,
subjec:s are usually able to recall the main statements
of a ::ext. ~"elying on surface level linguistic and
typog:-!hpica 1 clues which confirm their expecctat ions
generacad by tile internalized structure schemata. (It
would appear that it is part of the self-training of
college students, to cultivate the ability to process
complex verbal matel"'ial withOut fully understanding
it •••) In another experiment reported in Meyer [12],
the same prepositional content was encoded in two dif
ferent :'lolys: in the one case using the surface clues
that dCJuld signal a narrative and in the other case
using clues that would signal an expository text. The
t:1o texts, although having the same content, were repor
tedly i)rocessed differently by the subjects.

One final note on the descriptive analyses proposed.
Hone of the ilbove levels of analysis have been fully
automa:ed. Ev~n at the symbolic representation level,
there exists no i!lgorithm to convert an arbitrary
English sentence into a canonical representation. The
main reilson being that some of the major stumbleblocks
in natural language processing, notably, the resolution
of referential expressions has not been solved in a
general way. At the microstructural level, it might
seem tt1at a syster.t such as Kintsch 's would be par
ticularl:t amenable to algorithmization. In fact, the
selection of the top level predicate in the graph -
which is to represent the "central idea• ls not easily

4-2

I . '

mechanizable and is hand-coded although a computer
program exists to complete the graph.

Leaving aside text understanding research based on
world knowledge schemata - for the reason that we do not
propose to use such a scheme, for the time be i nCJ the
only relevant study is the story grammar proposed by
Rumelhart.

Rumelhart 1S work is relevant to the work presented
in this paper because it attempts to mechanize the pro
cess of textual understanding by encoding the textual
structure· and world knowledge components into a gra~r.
The result of this process is a grammar which can be
used to "parse" a story structure just as a sentence
grammar can be used to parse a sentence. It is our
belief that textual grammars are extremely useful in
determining the structure and meaning of textual
materials for the construction of knowledge bases.

Rumel hart 1 s research has concentrated on story gram
mars. Our interest lies in the area of technical
(expository} text. Rumelhart's grammar, as shown below,
depicts a story as consisting, at the highest level, of
a setting and an episode. ·

Rl: Story - Setting + Episode

R2: Setting - (State)*

RJ: Episode - Event + Reaction

R4: Event - (Episode I
Change-of-state I
Event + Event)

RS: Reaction) Internal Response + Overt
Response

R6: rnternal Response) {Emotion I Desire)

R7: Overt Respo~se) (Action l (Attempt)"'

RR: ~ttempt) ?lan +Application

RO· ~pplication) (Preaction)* + {Action +
Consequence)

RlO: Preaction) Subgoal + {Attempt)*

Rll: Consequence) (Reaction I Event)

As in any other grammar, the non-terminals Setting
and Episode are defined by other productions. A grammar
of similar sort could be constructed for an expository
text. An example of a grammar for this purpose is shown
below.

Rl: tutorial > {process-tutorial I device-tutorial}

RZ: process-tutorial) introduction +
description+
conclusion

RJ: device-tutorial> (description)*

R4: introduction)' title

RS: definition)' tenn

R6: process)' tenn

R7: conclusion) tenn

RS: reason)> term

Rg: term)' (sentence)" + (description)•

RlO: relation~ term

Rll: description) {process I
tenn I
definition I
reason I
example I·
conclusion}
term + description

Rl2: example:> term

Comparing the grammars we see some differences. As
would be expected, the terms in the expository grammar
differ from the terms of the story grammar. Si nee each
textual type serves a different purpose this 1oo0ul d be
expected. Structurally the grammars also differ. The
purpose of an expository text, to explain a concept as
phenomena, is reflected in the grammar. A story ·grammar
may include some expository ~ext, but its structure
requires additional components for fabricating the
story.

3. PROPERTIES OF EXPOSITORY TEXT

Before analyzing a text ~ should consider some of
the properties of expository text which make it exposi~
tory. Remember, our eventual goal is to be able to
automatically analyze textual material. To do so we
need to be able to formalize as nuch about the text as
possible.

1<ieras [20] notes that one of the distinguishing
features of expository text is their noun phrase struc
t:.~re. Specifically, in technical writing, plural nouns
seem to be used to refer to concepts and few determiners
are used. And there are a lack of use of indefinite
noun phrases .~nd •1hen one does occur it usually indi
cates a new concept being introduced into the text.

Another property of expository text seems to be its
inherent hi er.!rCh ica 1. structure as described earlier.
A 1 though named di ffe ren tly by Ki eras 1 three leve 1 s of
infon:tation are discerned; the text grammar; content
sche::~e: :or.tt~nt facts. Roughly these correspond to the
r.:acros::-~•c:•:ral. r:ticros:ructural, and symbolic levels
a 1 so t::escr i!:~t!ti ?.arl i er.

4. A SAMPLE TEXT ANALYStS

This secti11rt of the paper rnak.es a preliminary propo
sal for a descriptive analysis of simple tutorial texts.
A selecticr. i> mN;! arnong the various suggestions pre
served r.n t:,e ~asis of the characteristics of textual
materia 1 M! ha•1e chosen and on the ultimate aim we have
in mina, nar:~ely the automatic generation of a knowledge
base for an exj)ert system. SOiile rrodi fications will be
made tc adopted r•ode 1 s and some new ins ights liill be
derived fro:~ ::he experience ~1ith our own textual
r:taterial. ihe processing level will not be dealt ·~tith
in this paper, as ~lE! believe descriptive modelling
should ;:rec<!de process modelling.

ihe descriptive model has two aspects: (i) what
structures should be distinguished at the different
levels of descriptive analysis and (ii) how can the
discove,.y of these structures be algorlthmatized. The
latter aspect has tly. and large not been considered in
the lite~"3ture.

S. A DESCRIPTIVE MODEL OF nJTOR!AL TEXTS

The :'!;(ts ·,1e h;we chosen as a basis for our investi
gation __,,.,.~ ::.al<~on from the encyclopedia for children~
ihings ,,,.t~ [1], -.hich aims at ~xplaining element:arJ
naturai ;Jrocesses to 8th-9th grade chit dren. This
choice ,,as ''lOt ivated by several considerations, the

4-3

. ..

major one being that these texts presuppose very 1i tt 1 e
prior knowledge, so that we can constrain our analysis
to text structure schemata rather than world knowledge
schemata. ln addition, the texts are short and couched
in relatively simple language. Little sophistication
about complex text structure· is expected from the
reader. As an example, to illustrate our analysis let
us consider the following text:

Sl) A cloud is made up of tiny droplets of
water.

S2) When a cloud forms the invisible water
vapor fn the air condenses into visible
droplets of water.

SJ) All air contains water.

S4)

SS)

S6)

57)

SS)

$9)

Warm air can hold more water vapor than
cold air.

If the air cools down it cannot hold so
much water vapor and it turns into tiny
droplets of water.

You can see this happen when the hot steam
from a kettle cools down in your kitchen.

A lot of the water vapor turns into a
cloud of water droplets.

Air cools down when it rises because the
higher it goes in the atmosphere the
cooler it gets.

tn the diagram below the picture on the
1eft shows air rising on a hot day above a
city.

510) The air rises and cools and the water
vapor condenses into droplets to form
clouds.

Sll) Towering clouds· more than 10 mi 1 es high
can form in less than an hour on a very
hot day.

Sl2) Air rising over mountains will cool and
ciouds will form.

SlJ) Clouds also form when warm moist air rises
over a layer of cold air.

On a purely intuitive basis this text seems to
be structured on a question-answer pattern, very
much in the fashion young children would ask
questions of adults, namely "Why is A?", "Because
a•, "Why is 8", "Secause C" and so on ••• Thus, we
might summarize the main gist of the text as
follows:

0: Why do clouds fo.rm?

0: What are clouds?

A: Clouds are made up of water droplets.
Clouds form because water vapor in the air
condenses into water droplets.

0: How does ·~~ater condense?

A: Warm air contains more water vapor than
cold air. When the air cools down, the
water vapor condenses.

0: Why does the air cool down?

A: \~hen the air rises, it cools down because
the higher in the atmosphere the cooler.
Hence, the air rises and cools, the water
vapor condenses and clouds form.

The fo 11 ow i ng iS a more rigorous ana 1 ys is of the
text at the var:ous levels of descriptive analysis.

. Apart from the 3 I eve 1 s distinguished above, it se erns
appropriate to distinguish an additional top-level
structure. This top-·level subsumes the overall struc
ture of the text. According to Meyer [11] a very common
top-level structure is in terms of the rhetorical rela
tion "response" which can take the form of •question -
answer" or "problem statement - solution•. As suggested
above, our text is clearly of the form "question
answer".

The fo 11 owing diagram shows the top-level structure
of our te>:t: resron .. ./ ----·-•1 (SIO,Sli,Si2,SI3) le•el o: /

le•el 1: 01

, , 2:

l~•el 3:

""'' ''' tlouds?

lttJwet>l~
(SI.SZ,S7o "-..._

I"IIISftOI'Se

az/ nswerZ
H"" -~ ... ter {S3.S4,SS,S6)
"'"or co,.dense? \

res pOll'"

03/ ns•erl
Wfty doe< •lr (S8,S9)
coal dOWft?

I: may
corresponds
text.

'~ noted that the top-level structure
nroadly to the paragraph structure of the

At the o1acro-structural level , we analyze each
response/ans11er in terms of its component rhetorical
struct•Jres.

t t wou 1 •1 se!!:, that each paragraph (or each leve 1) is
composed of ;:.he fo 11 owing units:

definition or statement of fact
explanation of process or statement of process
conclusion or sunwnary
exa:nple(s)

The concl•Jsion and the examples are optional but
first two units occur universally (except at the top
level). rliilgrammatically, the following is the struc
ture displayed ilt the macro-structure level:

le•el 1:

• l:

7\
J

-·~

'i
_)

. . '

rhe microstructural level deals with the relation
between clauses in a sentence and between two successive
sentences. As it happens, in ·our sample text, there are
no sentence connectives ,.,ich denote relations between
two sentences, we only have complex sentences containing
subordinate conjunctions. We shall ignore the structure
of the examples in this initial investigation. Hence,
the only complex sentence we need to describe at this
level are SZ,SS and sa. At the macro level we
classified S2 as being a process statement and S 5 and sa
as being process explanations, the latter being rnore
complex than the former. Even though the surface
linguistic structures of ss and sa are very different,
they have the same conceptual structure, which is "fact.
BECAUSE process statement", or !Rlre explicitly: "A hap
pens. because process B c:auses A to happen". This
structure is explicit in sa and may be made explicit in
SS if we reformulate it as

"Water vapor turns into tiny droplets of water,
because if the air cools down it cannot hold so
muc:h water vapor".

Process statements can have different forms: causa
'tion in SZ and SS and sequence in sa.

At the microstructural level we also define the
kinds of logical conceptualizations that different
clauses may exhibit. The following is a preliminary
list:

definition
fact
causation
comparison
sequence
condition
enumeration

Each of the sentences in our text - excluding the
e:c:amp 1 es ~ can now be categori ZP.d in terms of these
concepts:

Sl:
52:
53:
54:
SS:
S7:
SR;
SlO:

definition
causation
definition
comparison
fact, because causation
fac:t
sequP.nce, because causation
enumeration

The difference between definition and fact is that
the former states a general rule about a generic:
cateogry, whereas the latter states a speci fie fac:t.
(This distinction being highly relevant for an expert
system.)

At the symbolic represl!ntation level we propose to
rP.presen t tr.e senter.c:es by means of "propositions ·•,
namely as constructs consisting of a predicate follo~~ed
by a nur;ber of argur.rents. In doing so, it has to be'
decided how much decomposition of lexical units should
be carried out. For example should the noun phrase
"microscopic plant life• ~e represented as a single
constant, such as "microscopic-plant-life" or be decoon
posed in~o its lexical unit by means of a "modifier"
predicate, such as (MOO microscooic plant} and (MOO
plant life). '.le have opted for the latter forrn as it
results in greater ability to recognize textual pat
terns. Some guidelines as how to build propositions
from sentences are contained in Bovair and Kieras [2],
which are broadly followed here. The following show
some prepositional representations for sample sentences
from our text:

Sl: Pl (M;\OEUPOF) clouds droplets)
PZ (1·100 droplets water)
P3 (MOO droplets tiny)

S 2: ?4 (1·/HEN PS P6}
PS (FORM clouds)
P6 (CONDENSE INTO water-vapor drop 1 ets)
P7 (MOO water-vapor invisible)
PS (IN air water-vapor)
P9 (MOD droplets water)
PlO (1400 droplets visible)

SS: Pll (IF Pl2 PlJ)
Pl2 (AND Pl4 PlS)
Pl3 (COOLOOWN air)
Pl4 (NEGATE Pl6}
Pl5 (CANHOLD air water-vapor)
P 16 (At40UNTOF water-vapor less)
Pl7 (TURNSINTO water-vapor droplets)
PIS (MOO droplets water)
Pl9 (MOO droplets tiny)

It should be noted that the representation of SS
follows the surface syntactic structure of the sentenc:e
and not its reformulized version as suggested above.
The nricrostructure algorithm should be able to recognize
this structure as an instance of the appropriate concep
tual category. It should also be noted that pronouns
have been replaced by their referents. This again would
be done by a special module in the conversion algorithm.

6. ALGORITHMS

6.1 A Concise Description of the Problem

In order to construct a program that will process an
expository text .:tnd create from it a knowledge base it
is necessary to produce all of the structures desc:ribed
in the previous sections of this paper. Having
construc~ed these structures a subsequent processing
step woo.~ld uSP. ther:t to produce the desired knowledge
base. The jus~ i fication for requiring the macrostruc
ture, ~icrostruc~ure, and sy~bolic level structures is a
direct result of cur goal .to create a knowledge base -
that is in ortH:!r to know what the text is about we need
the macr~Js ~rt.C~..Jre. To instantiate eau sa 1 , problem/
solution, and explanation relations we require the
microstrtrcture 1-lhen these relationships exist between
sentences. Finally the symbolic level is needed to
instantiate s~ntence level propositions.

The prob I en is to transform the raw text into these
structures so that the knowledge base can be built. In
the next sec~ ions we propose how this process can be
mechanized.

6.2 Grammars

As shOwn earlier, grammars give us a way to describe
textuai struc:ures. ;~e propose a grammar be written for
each structural le·tP.l. Thus, we ha·te a macrostructure
grammar, a rnicroscructure grammar, and a symbolic grarn
mar. in addition, ·..e have the standard phrase structure
or transfonnational grammar to produce the sentential
c:onstitt.en:s. The macrostructure grammar is shown
below:

4-5

ex pes i tory text ~ collection I
causation I
response j
coonparison I
description

collectil)n -) (expository text) ..

..

causation -:> antecedent + consequent I
explanations

response :;> prob.lem + solution

comparison :;> alternative I
adversative
analogy

adversative :;> favored + unfavored

descriptive ;> expository text

antecedent ;> expository text

consequent ~ expository text

explanation ~ expository text

problem :;> expository text

solution ~ expository text

alternative ~ expository text

favored ~ expository text

unfavored ~ expository text

analogy ~ expository text

This grammar depicts the highly recursive nature of
expository texts - nearly any component can again he a
piece of expository text. Having this grammar is not
·enough since there is no connection between it and the
raw structures of a text. In the next section, assuming
we have all the necessary grammars we suggest an
algorithm for accomplishing the transformation.

6.3 Algorithms for Processing

The fo 11 owing algorithm reprsents the topmost 1eve 1
of ;Jrocessi.ng in our text-to-knowledge l:lase system.

l) Create constituent le~el representation of
sentences (phrase structure/transform-
ational grammar)

2) Build prepositional structures (as
described in (2])

3) Build microstructures from step 2 struc-
tu res

4) Make macrostructures from step 3 struc-
tu res

5) Use step 2 , 3 & 4 structures for bui 1 di ng
knowledge base.

Heedless to say, this algorithm suggests, only in
the most abstract way how an expository textual material
can be processed. A major part of each step is the
pausing process that takes place to produce each step's
structures. Each gramillar consists of the production
rules and a lexicon (specific to the input for the
grammar). Both components of the grammar are used in
this the recognition process. One assumption of this
approach is that all or the categorizations can be
determined as a result of surface level features. This
may not be the case because some features of expository
text are created by inference in the reader. Thus the
parsing/recognition n-echanism must have the ability to
carry out this function.

7. CONCLUSION

In this· paper we have barely scratched the surface
of what is neected to transform expository text into a
knowl ed!Je tla se. He have suggested representations and
briefly how they might be created. Sy using grammars
which describe textual structures we can arrive at
structures using pausing techniques taht can more
readily be processed into a knowledge base. Fin4lly we
have suggested what the overall processing scheme is for
the program that processes texts. This investigation
provides the foundation for our processing program.

REFERENCES

[1] Ardley, rt., et al, Why Things Are, Simon &
Schuster, New York, 1981.

[2] Bovain, S., Kieras, D.E., A Guide to Prepositional
Analysis for Research on Technical Prose, in B.K
Sritton, J .B. Black, Understanding Expository
Text, Lawrence Erlbaum Associates, Hillside, N.J.,
1985, pp 315-362.

[3] Charniak, E., On the· use of framed knowledge in
language co~prehension, Artificial Intelligence,
11, 1978, pp 225-266.

(4] Charniak, E., To~1ards a 1o!Qdel of Children's Story
Coonprehension, Ph.D. Thesis, t~tT AI Laborat?ry,
l9i2.

(5] Cowie, .J.R., Automatic Analysis of Descriptive
Texts, Proceedings, Conference on Applied Natural
La~guag~ ?roc~ssir.g, February, 1983, pp 117-123.

[6] de ~f!.l•.,!)rande, R., Text, Oiscourse, ar.d Process
Toward a i·~u 1 t id i se i pl i nary Source of Texts, Ab lex,
Nor1~ood, ''· J. , 1.980.

(7] Fox, 13., Oi scourse Structure and Anaphora in
Written and Conversational English, Ph.O. Thesis,
University of California, 1984.

(8] Grishal'l, r.., Hirschmann, L., Question Answering
fr()ll Natural Language Medical Data Bases, Volume
7, 1973, pp 333-444.

(9] Halliday, r1.A.K., Hasan, R., Cohesion in English,
Longman, London, 1975.

(lO] Kintsch, W., van Oijk, T.A., Toward a Model of
Text C0111prehension and Production. Psychological
Review, 197~, 1985, pp 363-394.

[11) l~eyer, B.J.F., Prose Analysis: Purposes,
Procedures and Problems in Understanding, S.K.
Sritton, J.B. Slac~. Understanding Expository
Text, Lawrence Erlbaum Associates, Hillside, N.J.,
1985, pp 11-64.

4-0

. .

(lZ]

3. (13]

Meyer, B.J.F., Freedle, P.O., The Effects of
Different Discourse Types of Recall, American
Educational Research 1984 Journal, 21, pp 121·143.

Miller, J.R., Kintsch, w., Knowledge-based aspects
of prose comprehension and readability of text.
1981, 3, 215-23Z.

g-.. ,.._,
' . .

(14] Hinsky, H.,
Knowledge, in
ed. Wfnston,
211-277.

A Framework for Representing
The Psychology of Computer Vision,
P.H., HcGraw-Hill, New York, pp

(15] Rumel hart, D., Schemata: The Building 81 ocks of
Cognition, In R.J. Sprio, 8.C. Bruce, & W.F.
Brewer (eds.) Theoretical Issues in Reading
Comprehension. Hillsdale, N.J., Lawrence Erlbaum
Associates, 1980.

(16] Rumelhart, 0., Notes on a Schema for Stories, in

(17]

Representation and Understanding, Studies in
Cognition, 1975, pp 211-235.

Schank, R.,
Understander,
Linguistics,
13-30.

Lebowi tz, H. , An Integrated
American Journal of Computation

Volume 6, January-Harch 1980, pp

[l8] Sc:hank, R., Abelson, R.P., Scripts, Plans, t.oals
and Understanding, Erlbaum, Hillside, N.J., 1977.

(19] Weiner, J.L., 81ah, A System Which Explains Its
Reasoning, Artificial Intelligence, Volume 15,
Number lZ, November 1980, pp 19-48.

(20] Kieras, D.E., Thernatic Process in the
C0111prehension of Technical Prose, in B.K. Britton,
J.S. Rlack, Understanding Expository Text,
Lawrence Erlbaum Associates, Hillside, N.J., 1985,
pp 89-107.

4-7

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Expertise Transfer and Complex Problems: Using AQUINAS as a

Kn~wledge ~cquisition Workbench for Expert Systems

John H. Boose and Jeffrey M. Bradshaw
Knowledge Systems Laboratory, Boeing Advanced Technoloay Center

Boeing Computer Services, P.O. Box 24346, Seattle, WA
0

98124

ABSTRACT

Eliciting knowledge from a human expert is a
major problem when building a knowledge-based
system. The Expertise Transfer System has been
expanded into a knowledge acquisition
workbench (Aquinas) that combines ideas from
psychology and knowledge-based systems
research. Aquinas interviews experts and helps
them analyze, test, and refine their knowledge.
Expertise from multiple experts or other
knowledge sources can be represented and used
separately or combined. User consultations are
run by propagating information through
hiera~chies. Aquinas delivers knowledge by
creatmg knowledge bases for several different
expert system shells. Help is given to the expert
by a dialog manager that embodies knowledge
acquisition heuristics.

Aquinas contains many techniques and tools for
expertise transfer; the techniques combine to
make it a powerful testbed for rapidly

prototyping portions of many kinds of complex
knowledge-based systems.

EXPERTISE TRANSFER

The Expertise Transfer System (ETS) has been
in use in Boeing for more than three years.
Hundreds of prototypical know ledge-based
systems have been generated by ETS. The
system interviews experts to uncover
vocabulary, conclusions, problem-solvincr traits
trait structures, trait weights, and "' '
inconsistencies. It helps build very rapid
prototypes (typically in less than two hours)
assists the expert in analyzing the adequacy' of
the knowledge for solving the problem, and
creates knowledge bases for several expert
system shells (S.1, M.l, OPS5, KEE, and so on)
from its own internal representation (Boose,
1984, 1985, 1986).

ETS has been expanded significantly (Aquinas)
to overcome limitations in knowledae 0

representation and reasoning (Figure 1). Due to

Features of AQUINAS

• lntegrat~d testing a!"ld feedback during the knowledge elicitation process
• Very rap1d prototypmg of knowledge-based systems

-fast ~easibility analysis
-multiple ~lt_ern.ative testing with little resource expenditure

• Case-based ei1C1tat1on and reasoning
-ease of maintenance
-comprehensibility

• T?ols for comparing knowledge from different experts to show similarities and
differences

• Consultation systems giving comensus and dissenting opinions from multiple sources of
knowledge

• ~ul~iJ?Ie methods_ for dealing with uncertain information
• S1gn1f1c~nt ex~ens1ons t? personal construct methodology

- man1 pulat1on of ratmg grids in hierarchies
-multi pi~ variab_le scale types
-mteract1ve t~stmg a0d d~bugging of rating grid knowledge
-many analytiC tools m a smgle framework

Figure 1. Aquinas is a knowledge acquisition workbench that provides a variety of capabilities.

5-D

previous limitations, the system was usually
abandoned sometime during the knowledge
acquisition process. Typically it was used to
explore project approaches and assess feasibility
for several days or a week, and then development
continued in some other expert system shell.
While the use of the tool in this way saved
substantial time (typically 1 or 2 calendar
months from a 12- to 24-month project), it was
desirable to make the system more powerful.

AQUINAS

Aquinas is a collection of integrated tool sets.
They share a common user interface (the dia1og
manager) and underlying knowledge
representation and data base (Figure 2l. The
tools include:

• ETS (Expertise Transfer System) -a set of
tools used by the expert to elicit, analyze, and
refine knowledge as rating grids.

• Hierarchical tools help the expert build, edit,
and analyze knowledge hierarchies and
lattices. Currently, hierarchies are organized
around solutions, traits, knowledge sources
(i.e., experts), and cases.

• Uncertain knowledge, preferences, and
constraints may be elicited, represented, and
applied using combinations of several
different methods. Methods are selected
based on the cost of elicitation, the precision
of the knowledge needed, and convenience.

• A reasoning engine allows consultations to
be run on the knowledge in Aquinas. Several

inheritance, specialization, and
generalization techniques are employed to
propagate knowledge through hierarchies
and reach conclusions.

• Various trait (attribute) scale types can be
elicited, analyzed, and used by the reasoning
engine.

• Several types of tools make inductive
generalizations about existing knowledge.
Generalizations can be examined by the
expert and used to refine the knowledge, and
are used by the reasoning engine.

• Knowledge from multiple experts (or other
knowledge sources) can be analyzed to find
similarities and differences in knowledge,
and the degree ofsubsumption of one expert's
knowledge over another. The reasoning
engine uses knowledge from user-specified
and weighted sources and gives consensus
and dissenting opinions.

• A dialog manager makes recommendations
to the user about how to use Aquinas.

• Knowledge common to all tool sets is stored
in frames in an object-oriented system.

Knowledge in Rating Grids

Aquinas can display part ofits problem-solving
knowledge as a rating grid (Figure 3). Problem
solutions- elements- are elicited and placed
across the grid as column labels, and traits of
these solution elements- constructs- are listed
alongside the rows of the grid. Traits are elicited

Dialog manager

ETS

Repertory Hierarchical Uncertainty Internal Multiple Induction Multiple
grid tools structure tools reasoning scale type tools expert tools

tools engine tools

Object-oriented DBMS

Commonloops/ Commonlisp

Figure 2. The Aquinas workbench is a collection of integrated tool sets.

5-\

LANGUAGES LANGUAGE-TRAITS

"""
I
I RATING

/f----
I GRID
I

AOA LISP PROLOG COBOL FORTRA N

SOLUTIONS (elements)

~

5 1 1

5 5 5

1 1 1

1

ATTITUDE AVAILABILITY APPL. AREA

TRAITS ,
Scale: 1/5

5 5 1 1. ATTITUDE:
Symbolic I Numeric

2 1 1 2. AVAILABILITY:

5 1 1
Widely avail./ Not widely avail.

3. APPLICATION AREA:
Scientific/ Business

l \oE
FORTRA

AL-LANGUAGE
N

COBOL
PRO LOG

LISP
ADA

Figure 3. Rating values in different hierarchies combine to form rating grids. The children of a node
in a solution element hierarchy supply the elements along the top of the grid; the children of a
node in a trait hierarchy supply the traits down the side of a grid.

by presenting groups of elements and asking the
expert to discriminate among them. Following
this, the expert gives each element a rating
showing where it falls on the trait scale. The
interviewing techniques used in building a
rating grid are extended from ideas in George
Kelly's Personal Construct Psychology (Kelly,
1955) and the PLANET system (Gaines and
Shaw, 1981; Shaw and Gaines, 1986). Aquinas
can analyze a rating grid in many ways to help
the expert refine its problem-solving capability.
It uses ratings in the grid to drive user
consultations in which the knowledge is tested
for necessity and sufficiency.

Single rating grids from Personal Construct
Psychology are a fairly weak form of knowledge
representation for problem-solving. Although
they may be derived quickly, they lack precision
and depth:

• A single rating grid can represent only
"flat" relations between single elements
and traits. No deep knowledge, causal
knowledge, or relationship chains can be
shown.

• Only elements or traits at the same level
of abstraction can be used comfortably in
a single grid. Mixing abstraction levels
leads to problems during refinement and
when the grid is used to make decisions
(Boose, 1986).

• Complex problems may be represented
only in large grids, which can be difficult
for the expert to manipulate and
comprehend.

• Hierarchies with multiple experts,
several reasoning strategies, and
multiple domain models cannot be
represented within a single grid.

• It is inconvenient to represent ·ertain
types of problem-solving infor:c:<ttion
solely using Kelly's constructs.

5-2

U nordered variables, such as a ,-et of
computer types, must each be
represented as a series of bipolar •raits
(VAX/ ~OT-VAX, IBM! NOT-W.\1...)
when it would be easier to to combine
them into a single nominal trait (a

COMPUTER trait whose values are
V AX, IBM, and so on).

• ETS only reasons with ratings on a scale
from 1 to 5, not probabilities or exact
numeric values (e.g., dollars or
temperature).

APPROACH

Aquinas attempts to overcome these limitations
as follows:

• By helping experts structure knowledge
into solution, trait, expert, and case
hierarchies. These hierarchies allow the
expert to break up complex problems into
chunks of convenient size and similar
levels of abstraction.

• By allowing traits to take on unordered
or exact numeric rating values when
appropriate.

Hierarchical representation and reasoning will
be described first, followed by a discussion of
trait value types. Then parts of a session
typescript for building a Programming Language
Advisor will be presented.

Hierarchical Knowledge Representation

In eliciting knowledge for complex problems it is
sometimes difficult for the expert to identify
conclusion sets whose members are at similar,
useful levels of granularity. For instance, in an
engine diagnostic system, the expert may include
the repair elements "engine," "battery,"
"ignition coil," and "electrical system." "Engine"
and "electrical system" are at more general
levels of structural and functional abstraction
than "battery" and "ignition coil." Mixing more
general and more specific elements in the same
rating grid causes problems during trait
elicitation, since traits useful in differentiating
"engine" from "electrical system" problems are
not necessarily those useful in discriminating
"ignition coil" from "battery" problems.

A knowledge acquisition system should allow
experts to represent and reason about elements
and traits at appropriate levels of generality.
Aquinas uses hierarchies to represent rating
grids at varying levels of abstraction and to
break up problems into subproblems.

Nodes in four hierarchies combine to form rating
grids. In the most simple case, the children of a
node in a solution hierarchy supply the elements

along the top of a grid; the children of a node in a
trait hierarchy supply the traits down the side of
a grid. Rating values within the grid provide
information about the solutions with respect to
each trait (Figure 3, taken from the
Programming Language Advisor).

Solution hierarchies. Solutions are grouped
into specialization hierarchies within Aquinas.
This structure aids experts in organizing large
numbers of solution elements that may exist at
different levels of abstraction. For example, a
solution class named "vehicle" is a superclass
(parent or prototype) to "car" and "truck"
subclasses. The "car" class can serve in turn as a
parent to a class of specific car models or to a
particular instance of a car.

Trait hierarchies. Characteristics of a
particular level in the solution hierarchy can be
structured in trait hierarchies. For instance, in a
knowledge base for a Transportation Ad visor,
the solutions exist in hierarchies of vehicles.
Each level in the solution hierarchy has a trait
hierarchy that contains information needed to
select solutions at that level. A trait hierarchy
attached to the "vehicle" abstraction level of a
solution hierarchy, for instance, may contain
information about general use type, relative
speed, cost, and so forth for the types of vehicles
in the hierarchy. The "car" subclass is attached
to a car trait hierarchy that contains information
useful in selecting a particular car.

Two other hierarchies are formed in Aquinas
(Figure 4):

Expert hierarchies. Expert hierarchies
represent multiple knowledge sources as
structured groups. Each node in the expert
hierarchy may represent an individual, an aspect
of an individual, a group, or an independent
knowledge source. Information from multiple
experts may be independently elicited and
analyzed, then weighted and combined to derive
joint solutions to problems. Analyses can be
performed that show simibrities and differences
among experts. Experts each have their own
solution and trait h ;,c!·;.:·chies, which may or may
not overlap thost:: ,J; '.J<.i":ers. An expert's unique
problem-sol ·:ing str::ttegies and information are
preserved.

Case hierarchies. CJ.se hierarchies define
subsets of the knowlerige base appropriate to
solving a particular c:ass of problems. For

5-3

example, in a knowledge base of information
about vehicles, a user may want to include
different knowledge for selecting a vehicle for
going over land than for going over water. An
land case and a water case may be created, each
drawing on a subset of the expert pool
knowledgeable in those areas. Additional levels
may be created for short or long land trips, cost
considerations, and so on. A hierarchy of cases
allows the knowledge base to be developed,
modified, and maintained based on specific
classes of situations.

A rating grid is buiit by combining values
associated with nodes in each of the four basic
hierarchies. Relationships between nodes do not
have to be strictly hierarchical; lattices may be
formed when more than one parent points to the
same child. The expert defines the current rating
grid by selecting appropriate nodes in the
hierarchies.

Figure 5 shows selected map nodes (case:
K-ACQUISITION, expert: WEC, solution: WEC.
ELEMENT, trait: WEC. ELEMENT. TRAIT)
that describe the rating grid of Figure 3. Each
different collection of nodes (at least one from
each hierarchy) describes a rating grid. A rating
grid could be a single column or row, or even a
single cell. Inversely, each cell in a rating grid is

uniquely described by its location in the four
hierarchies. ,

In a sense, each rating grid is four dimensional.
Any two of these dimensions are shown at once
as rows and columns in a given grid. Usually
solutions and traits are shown, but sometimes it
is useful to show other combinations. For
instance, a grid could display the ratings of
several experts across the top with particular
elements down the side. The associated trait and
case nodes would be shown to the side of the grid.

Often the ratings displayed summarize or
generalize information from different nodes in
the hierarchies; this issue is discussed later.

Reasoning within Knowledge Hierarchies

The model of problem-solving currently used in
Aquinas is that of multiple knowledge sources
(experts) that work together in a common
problem solving context (case) by selecting the
best alternatives for each of a sequential set of
decisions (solution elements). Alternatives at
each step are selected by combining relevant
information about preferences (relativistic
reasoning), constraints (absolute reasoning) and
evidence (probabilistic reasoning).

For many structured selection problems, a more
specialized version of this model seems adequate.
After analyzing several expert systems for

SOLUTIONS RATING
GRID

TRAITS

EXPERTS L.---..1

Figure 4. Values from expert and case hierarchies as well as solution element and trait hierarchies
are combined in many ways to form rating grids. Relationships between nodes do not have to be
strictly hierarchical; lattices may be formed when more than one parent points to the same child.

5-4

AQMU

ATTJTIJ[oE

/
_,. MIJLTI·H..::..F\O'N . .O.F\E --/ _.,.- .A.V . .e.ILA.61LITY ..;::::._ MI.ILTI·O:OMPILEF;:~

.....-----, ././~ -._._._,:C•MF·.A.tliE·S

1 ' .. \"EC TRAIT it::.
• ' '>!;_~:::-- .ll.PPLIC . .r:..Tio)r-J.AP.E.A.

'' '-., '\.'-..'- OEVEL•JPMENT·ENVIR•~HMEHT

'\~ IJ~·GoJVT
,, LE.:.:.f,I.· . .:>.E·ILIT'·t'

Figure 5. Each cell in a rating grid is described by a unique set of hierarchy nodes. Aquinas users
specifY rating grids by selecting sets of nodes (either the nodes themselves or their children).

classification, Clancey (1986) suggested that
many problems are solved by abstracting data,
heuristically mapping higher level problem
descriptions onto solution models, and then
refining these models until specific solutions are
found (Figure 6). This is similar in spirit to the
establish-refine cycle used in CSRL (Bylander
and Mittal, 1986; Chandrasekaran, 1986). In the
version of Aquinas described in this paper, data
abstraction is carried out within hierarchies of
traits, and solutions are refined as information is
propagated through solution hierarchies.

Information can be propagated in several ways.
In addition to the certainty factor scheme used by
ETS, Aquinas makes use of the Analytic ·
Hierarchy Process (AHP; Saaty, 1980) and
simple absolute constraint propagation
techniques. In the future, probabilistic and user
defined methods will be employed.

Multiple Rating Value Types

In Personal Construct methodoL~y. ratings are
typically represented as ordinal ·:alues between
1 and 5. Aquinas extends this id<.: a and allows
experts to use other types of rati~:g scales.
Assigning each trait its own typt: .md range of
legal values permits experts to d, al with

situations where values are unordered or where
greater precision is necessary.

In Aquinas, traits are currently described
according to the level of measurement of their
rating scales, which is determined by the expert.
The level of measurement depends on the
presence or absence of four characteristics:
distinctiveness, ordering in magnitude, equal
intervals, and absolute zero (Coombs, Dawes, and
Tversky, 1970). These four characteristics
describe the four major levels of measurement, or
types of traits: nominal (unordered), ordinal,
interval, and ratio (Figure 7). The additional
information about trait types gives increased
power to analytical tools within Aquinas.

Ratings may be generated through several
methods:

1. Direct. An expert directly assigns a rating
value for a trait and an element. If an exact value
is unknown, Aquinas helps the expert derive an
estimate (Beyth-Marom & Dekel, 1985). If fine
judgments are needed, Aquinas can derive a set
of ratio scaled ratings from a series of pairwise
comparisons (Saaty, 1980). Aquinas also
contains tools for encoding of probability
distributions on specific values.

~ Trait Classes

I Abstraction
I
I
I
I
I
I
I
I

Traits

Solution Classes

> Mapping

Solutions

Figure 6. Clancey studied structured selection systems and built an abstraction and refinement
model (1986). Inference in Aquinas typically occurs in a bottom-up fashion through the trait
hierarchies and in top-down fashion through the solution hierarchies.

~ DESCRIPTION
SCALE

Nominal Unordered set

Ordinal Ordered set

EXAMPLES

-LANGUAGE:
{ADA CO SOL LISP}

-COLD/HOT: {1 2 3 4 5}
-SIZE:

{SMALL MEDIUM LARGE}

Interval Ordered set with -SMALL-INTEGERS:
measurable intervals { 1 2 3 4 56 7}

- F-TEMP: {32 .. 112}

Ratio Ordered set with -HEIGHT: {0.0' 1.0' ... }
measurable intervals
and an absolute origin

Figure 7. Aquinas expands the knowledge
representation capability of rating grids from
Personal Construct Theory by allowing the use
of several types of rating scale values. Scale
types are selected for convenience, precision,
or efficiency of value entry.

2. Derived. Incomplete grids can be
automatically filled through propagation of
rating values from another grid through the
hierarchies (e.g., from lower to higher level grids,
different experts, or different cases).

Increased precision and specificity in knowledge
acquisition allow increased problem-s<Hving
power but usually at some cost (Michalski &
Winston, 1985). This cost is reflected in both the
amount of work needet.i to elicit the additional
information and increased complexity and greater
number of steps in the teasoning process.
Aquinas tries to r-:-:inimize this cost by eliciting

more precise information only when it is needed
to solve critical portions of the problem. If, for
example, Aquinas finds that it cannot
sufficiently discriminate between solutions from
simple rating values between 1 and 5, it will
suggest that the user perform a series ofpairwise
comparisons to increase the sensitivity of
judgments.

USING AQUINAS: BUILDING A
PROGRAMMING LANGUAGE ADVISOR

Aquinas is written in Interlisp and runs on the
Xerox family of Lisp machines. Subsets of
Aquinas also run in an Interlisp version on the
DEC Vax and a "C/UNIX"-based portable
version. The Aquinas screen is divided into a
typescript window, map windows showing
hierarchies, rating grid windows, and analysis
windows (Figure 12). Experts interact with
Aquinas by text entry or by mouse through pop
up menus.

A subsystem called the dialog manager contains
pragmatic heuristics to guide the expert through
knowledge acquisition using Aquinas. Its help is
important in the use of Aquinas, given the
complexity of the Aquinas environment and the
many elicitation and analysis methods available
to the expert. The dialog manager makes
decisions about general classes of actions and
then recommends one or more specific actions
providing comments and explanation if desired.
This knowledge is contained in rules within the
dialog manager in Aquinas. A session history is
recorded so that temporal reasoning and

learning may be performed (Kitto and Boose,
1986).

Following are the steps in a Aquinas session in
which an expert is building a Programming
Language Advisor. Novice software engineers
and project managers would use such a system to
help select programming languages for
application projects. Aquinas guides the expert
in transferring knowledge into Aquinas's
knowledge base, and continues through the
making of a knowledge base for the S.1 expert
syste~ shell. These steps are:

1. Elicit cases and the initial grid (elements,
traits, and ratings). The expert is first asked to
specify the behavior of Aquinas's dialog
manager. Then the expert enters several
problem test cases and selects one for analysis.
The knowledge acquisition language case is
selected (satellite tracking, accounting, and
government transaction cases are also entered).
The cases are added to the case hierarchy and
appear in the map window (Figure 12; upper
right corner). Eventually experts may be able to
select and modify grids and cases from a library;
we hope that in several years this library will
contain hundreds of hierarchies of grids.
Building this library bears a modest resemblance
to the CYC project at MCC (Lenat, 1986).1

The expert chooses to think about a language for
developing a knowledge acquisition testbed, and
enters potential candidates (Figure 8). After five
languages are entered, Aquinas adds an ideal
language for this problem. This would be an ideal
solution for the knowledge acquisition case. The
languages are added to the solution hierarchy as
children. Then Aquinas asks the expert to enter
traits based on differences and similarities
between languages. This is the heart of Kelly's
interviewing methodology; Aquinas uses it in
several different ways as knowledge is expanded
through elicitation and analysis.

Aquinas initially assumes that traits will be
bipolar with ordinal ratings between 1 and 5.
The expert is asked to rate each element with
regard to each trait, but the expert may specify
different rating scales (unordered, interval, or
ratio). Aquinas later assists in recognizing and
changing types of rating scales.

1 Lenat is attempting to build a very large knowledge
base containing both common sense and expert
knowledge to overcome prob !ems ofbrittleness and
tabor intensity in designing large software systems.

Aquinas also elicits information about the
importance of each trait. This knowledge is used
later in the decision making process

2. Analyze and expand the initial, single grid.
Once a grid is complete, an analysis is performed
to show implications between various values of

-ELICITING ELEMENTS--
Please enter a list of LANGUAGE elements forK
ACQUISITION, one to a line. When you're done.
enter a RETURN. Try to include at least one
LANGUAGE that would NOT be good forK
ACQUISITION (a counter example).
AQU** ADA
AQU** [i5j)
AQU,.. PROLOG
AQU"* COBOL
AQU** FORfifAN
AQU**@
Can you 1magine a new ideal LANGUAGE forK
ACQUISITION?
AQU** YES
For now-;i'twill be called IDEAL-K-ACQUISITION
LANGUAGE.

--BUILDING TRAITS BY TRIADS---
When answering the following questions,
remember to keep the K-ACQUISITION case in mind.

Think of an important attribute that two of ADA,
LISP, and PRO LOG share. but that the other one does
not. What is that attribute?
AQU""' SYMBOLIC
What is that attnbute's opposite as 1t applies in this
case?
AQU*" NUMERIC
What is the name of a scale or concept that descnbes
SYMBOLIC/NUMERIC?
AQU** ATTITUDE

Think of an important trait that two of LISP.
PRO LOG, and COBOL share. but that the other one
does not. What is that tra1t?
AQU** WIDELY AVAILABLE
What is that tra1t's oppos1te as it applies in this case?
AQU** NOT AS WIDELY AVAILABLE
What IS the name of a scale or concept that describes
WIDELY-AVAILABLE/NOT-AS-WIDELY-AVAILABLE?
AQU** AVAILABILITY

-FILLING IN RATINGS--
Please rate these things on a scale of 5 to 1, where 5
means more like SYMBOLIC and 1 means more like
NUMERI<;:. If neither one seems to apply, enter
N(either), If both seem to apply, enter a S(oth). If you
would like to change the range or type of scale. enter
C(hange scale).
SYMBOLIC(S) NUMERIC(1)

ADA ** 5
LISP*" 1
PROLOG** 1
COBOL** 5-
FORTRAN *" 5
IDEAL-K-ACQUISITION-LANGUAGE .,. !

Figure 8. Aquinas asks the expert for an initial
set of potential solutions to the first problem
case. Then, the solutions are presented in
groups of three, and the expert gives
discriminating traits. Ratings are entered for
each solution for each trait.

5-7

traits (see the lower right-hand window in
Figure 12). Implications are read from left to
right, and the thickness of the arc shows the
strength of the implication (HARDER. TO.
LEARN implies POOR. DEVELOPMENT.
ENVIRONMENT). A method similar to ENTAIL
(Gaines and Shaw, 1985) derives implications:
rating grid entries are used as a sample set and
fuzzy set logic is applied to discover inductive
implications between the values. This method
uncovers higher-order relationships among
traits and later helps build trait hierarchies. The
expert can also use an interactive process
(implication review) to analyze and debug this
information; the expert may agree or disagree
with each implication. If the expert disagrees,
the knowledge that led to the implication is
reviewed, and the expert can change the
knowledge or add exceptions that disprove the
implication (Boose, 1986). Certain types of
implication patterns are also uncovered.
Discovery of ambiguous patterns, for example,
may mean that traits are being used
inconsistently (Hinkle, 1965; Boose, 1986).

After the initial grid is complete, the dialog
manager suggests a method to help the expert
expand the grid. The method depends on the size
of the grid, analysis ofinformation in the grid,
session history, and so on. The dialog manager
inserts the appropriate command on the screen.
The expert may change this recommendation or
accept it by entering RETURN.

3. Test the knowledge in the single grid. The
dialog manager next recommends that the grid
knowledge be tested. The expert is asked to
provide desirable values for the traits associated
with an instance of the case under consideration.
These values may be appended with a certainty
factor and/or the tag ABSOLUTE to show an
absolute constraint. Performance is measured by
comparison of experts' expectations with
Aquinas consultation results.

Two methods are available in Aquinas for
turning rating values in grids into solution
recommendations. One approach involves
mapping this information onto certainty factor
scales. Each rating in the grid is assigned a
certainty factor weight based on its relative
strength (a 5 is stronger than a 4), the relative
weight the expert has assigned to the trait, and
any absolute constraints that the expert has
specified for the trait. In the test consultation,

EMYCIN's certainty factor combination method
combines the certainty factors in the grid
(Adams, 1985). The result is a rank-ordered list
of solutions with certainty factor assignments.
These certainty factors are also used when rules
are generated for expert system shells.

Another approach used by Aquinas to handle
uncertainty employs Saaty's Analytic Hierarchy
Process to order a set of possible solutions. Grid
information obtained through pairwise
comparisons or through regular rating grid
methods is mapped onto judgment matrices. The
principal eigenuector is computed for each
matrix; the eigenvectors are normalized and
combined to yield a final ranking of the
solutions. Each solution has a score between 0.0
and 1.0. In a knowledge base consisting of
multiple grids, these values are propagated
through the hierarchies.

4. Build hierarchies (structured as elements
and traits in multiple grids) from the first
grid. Next, the dialog manager recommends that
the expert expand the trait and solution
hierarchies by performing a cluster analysis
(Figure 9). Aquinas uses a method of single-link
hierarchical cluster analysis based on FOCUS
(Shaw and Gaines, 1986) to group sets of related
solutions or traits. The junctions in the clusters
can be seen as conjectures about possible new
classes of solutions or traits. These more general
trait or solution classes may be named and added
to the hierarchies.

Figure 9. Solution element and trait clusters are
formed from information in rating grids. The
expert is asked to label nodes and expand
clusters; new traits are used to expand the
hierarchies.

5-B

Laddering is also used to find traits at varying
levels of abstraction (Boose, 1986). "Why?"
questions are used to find more general traits:

What is a new trait that says why you think GOOD

DEVELOPMENT-ENVIRONMENT should be true of a

LANGUAGE forK-ACQUISITION?

AQU** FASTER SYSJEM DEVELOPMENT

"How?" questions help find more specific traits:

In what ways could a language forK-ACQUISITION be

characterized by WIDELY-AVAILABLE?

AQU** RUNS ON MULTIPLE HARDWARE

AQU'"* MANY COMPILERS AVAILABLE

AQU""" MANY COMPANIES OFFER

Generally, experts stop expanding the trait
hierarchies when they are able to provide direct
grid ratings at these more specific trait levels.
Ratings need not be explicitly given at each level
of the trait and solution hierarchies, but can
often be inferred form other grids in the
knowledge base (e.g., induction from more
specific examples or inheritance from more
general ones) (Lieberman, 1986).

5. Use several rating value types (transform
ordinal ratings to nominal and interval
ratings) to represent knowledge. Aquinas
helps the expert convert a trait with ordinal
values (DELIVERY-COST: HIGH-COST(5) I
LOW-COST(!)) into a trait with ratio scaled
rating values (DELIVERY-COST: (1500- 60000)
DOLLARS-US). The expert re-rates the solutions
in terms of the new values and these values
appear on the grid. Aquinas provides several
forms of estimation help. Four estimation
procedures are provided: START-&-MODrFY,
EXTREME-VALUES, DECOMPOSITION, and
RECOMPOSITION (Beyth-Marom & Dekel,
1985). In this instance, the EXTRE:VIE-VALUES
procedure first asks for the least and greatest
DELIVERY-COST one could imagine for the
type of Lisp being considered. Through a series of
questions, Aquinas helps shrink this range until
a satisfactory estimate is given.

Aquinas also helps the expert change trait scale
types by checking values associated with
particular kinds of traits. For instance, bipolar
traits that receive only extreme ratings (e.g.
RUNS. ON. VAX/RUNS. ON. IBM) maybe
better represented with an unordered trait (e.g.
COMPUTER. TYPE).

6. Test knowledge in hierarchies; test
knowledge from multiple experts. Another
expert adds knowledge about programming
language selection to the knowledge base and
tests it. In the first consultation (Figure 10), the
user is interested in selecting a particular
version of Lisp, Prolog, or ADA for a knowledge
acquisition project. Because of the many
potential solutions, the user is given the
opportunity to specify a subset for consideration.
The solutions in this subset are called solution
candidates.

Aquinas then asks for a set of trait values for this
consultation. The user enters the absolute
constraint that only languages with a delivery
cost ofless than $30,000 will be considered. The
user may accept default values entered in a
previous consultation by pressing the RETURN
key. If a default value has not been previously

·-TEST CONSULTATION-
Would you like to run an EXISTING or NEW consultation?
AQU** EXISTING
What is the name of this existing consultation?
AQU** LISP-PROLOG-ADA-ONL Y
This test consultation is named K-ACQUISITION.LISP
PROLOG-ADA-ONL Y.

Which K-ACQUISITION alternatives you would like to
consider in this consultation (LISP-PROLOG-ADA-ONL Y).
Enter them one to a line. If you wish all solutions to be
considered, type ALL. When done, press RETURN.
AQU** MACLISP·LM
AQU**INTERLISP
AQU** COMMON-LISP
AQU** QUINTUS-PROLOG
AQU** ADA-1
AQU** ** {Q!1
The following experts know about MACLISP·LM.
INTERLISP. COMMON-LISP. QUINTUS-PROLOG, and ADA-
1: WEC JCA. Would you like to exclude or weight any of
these experts?
AQU**NO

Please indicate the desired trait select1on values for LISP·
PROLOG-ADA-ONL Y solutions. Press RETURN to indicate
agreement with the default values. onype in a new
value. Values may be appended with a certainty factor in
the form ·.a· and/or the word ABSOLUTE to indicate that
the value is an absolute constraint when selecting a type
of LANGUAGE forK-ACQUISITION
(WIDELY·AVAILABLE(S). 1.0)u (CR)
(GOOD-DEVELOPMENT-ENVIRONMENT(S), 1 0)** {Q!1
(LOW-COST(<45000 DOLLARS-US). 1.0. ABSOLUTE)
(NOTE: THIS INCLUDES HARDWARE FOR A
WORKSTATION) ** <30000 DOLLARS-US 1.0 ABSOLUTE

Figure 10. The expert tests the knowledge by
running a consultation. The expertise of two
experts is used and consensus and dissenting
solutions are given (see Figure 11).

specified and the user types RETURN, that trait
will be ignored in the inference process for this
consultation. The user's preference for
HARDWARE type is partitioned among three
manufacturers by pairwise comparison (Figure
11), which generates a ratio scaled set of
preferences (Saaty, 1980).

The results of the consultation are presented to
the user. For each solution, the consensus
recommendation of the experts consulted is
_presented, followed by the weight of each expert
that contributed to the recommendation. With
multiple experts, it may sometimes be useful to

(COMPANIES(VAX .33,1BM .33, ATT .33). 1.0)** PAIRWISE
Please compare these values of HARDWARE with regard
to their importance in contributing to an overall high
score for a particular type of LANGUAGE forK
ACQUISITION in the context of LISP-PROLOG-ADA-ONLY.
Please compare VAX and IBM. Enter:
VAX =IBM if VAX and IBM are equally important
VAX>IBM or VAX<IBM if one of the pair is weakly more
important
VAX> >IBM or VAX< <IBM if one is strongly more
important
VAX> >>IBM or VAX< <<IBM if one is demonstrably
or very strongly more important
VAX> >>>IBM or VAX <<<<IBM if one is absolutely
more important
AQU** VAX<IBM

Please compare VAX and ATT. Enter:
VAX =ATT 1f VAX and ATT are equally important
VAX>ATT or VAX<ATT if one ofthe pair is weakly more
important
VAX> >A TT or VAX< <ATT if one is strongly more
important
VAX> > >ATT or VAX< < <ATT if one is demonstrably
or very strongly more important
VAX> > > >ATT or VAX< <<<A TT if one is absolutely
more important
AQU"'* VAX>>>>ATT

Results for test consultation K-ACQUISITION.LISP
PROLOG-ADA-ONL Y:
1: INTERLJSP (.47: (WEC .5, JCA .5))
2: QUINTUS· PROLOG (.40: (WEC 1.0))

Would you like to see the dissenting opmion for this
consultation?
AQU** YES

The following dissenting opinion was given by WEC:
Overall agreement with consensus: .79
1: QUINTUS PRO LOG (.40)
2: INTERLISP (.39)

Figure 11. Test consultation (continued). The
expert specifies "run-time" values for traits,
entering an absolute cost constraint, and
performing a pairwise comparison task to
derive relative values for hardware.

examine a set of recommendations from a
dissenting expert or group of experts. Since
WEC's recommendations differed most from the
consensus, these are listed as a dissenting
opinion.

A general model illustrating the inference
propagation path was shown in Figure 6. For
each expert consulted and for each level in that
expert's solution hierarchy, a partial problem
model is constructed, evaluated, and abstracted
in a bottom-up fashion through the trait
hierarchy of that solution level. Through this
process the solution is refined as the children of
the best solutions are chosen for continued
evaluation. Bottom-up abstraction takes place
again in the trait hierarchy at the new solution
level, and the cycle continues until all remaining
solution candidates have been evaluated. Then
an ordered list of solution candidates is obtained
and combined with the results from other
experts. This information from a single case may
then be combined, if desired, with information
from other cases to derive a final ranking of
solution candidates. Users may override this
general model of inference propagation by
specifying explicit inference paths and
parameters.

Selection of the best solution at a given level
requires that Aquinas use two main types of
inference through the associated trait hierarchy:
absolute and relativistic.

Absolute reasoning. Absolute reasoning
involves judgments made with no significant
reservations. It "typically depends on relatively
few facts, its appropriateness is easy to judge,
and its result is unambiguous" (Szolovitz and
Pauker, 1978). For example, in selecting a
programming language, users may be able to sa:,v
with certainty that they would be interested only
in languages that run on an Apple Macintosh or
that they will not consider a language that costs
more than $400, regardless of other desirable
characteristics. Experts can also build these
types of absolute constraints into an Aquinas
rating grid. Absolute reasoning in Aquinas is
somewhat similar to solving a set of linked
decision tables (Hurley, 1983; Michalski, 1978).
Some of the inductive genenlization rules
described by Michalski (1983) prove useful in
this context.

Relativistic reasoning. Unfortunately, not all
judgments can be absolute. Many involve

5'-{0

significant trade-offs, where information and
preferences from several sources must be
weighed. Even if criteria for the ideal decision
can be agreed on, sometimes it can be only
approximated by the available alternatives. In
these cases, problem-solving information must
be propagated in a relativistic fashion. Aquinas
incorporates a variety of models and approaches
to relativistic reasoning, including MYCIN-like
certainty factor calculus (Adams, 1985), fuzzy
logic (Gaines and Shaw, 1985), and the Analytic
Hierarchy Process (AHP, Saaty, 1980).

Probabilistic and user-defined reasoning.
Future versions of Aquinas will have models for
the elicitation (Alpert and Raiffa, 1982; Spetzler
and von Holstein, 1984; Wallsten and Budescu,
1983) and analysis ofprobabilistic information
including Bayesian (Howard and Matheson,
1981; Cheeseman, 1985; Henrion, 1986: Pearl
1986; Spiegelhalter, 1986), Dempster-Shafer
(Shafer, 1976; Gordon and Shortliffe, 1985), and
other related approaches approaches (Shastri
and Feldman, 1985). We also plan to allow user
defined methods for combining and propagating
information.

The availability of different inference methods
within a single workbench allows users and
experts flexibility in adapting Aquinas to the
problem at hand. Most knowledge engineering
tools do not allow experts to specify how
information should be combined. They tend to
use fixed, global numeric functions to compute
values. Future research will suggest heuristics
for selecting appropriate methods and designs for
particular types of questions (e.g., Shafer and
Tversky, 1985). These heuristics will be
incorporated into Aquinas's dialog manager.

7. Edit, analyze, and refine the knowledge
base, building new cases. Once the experts
have entered information about one case, they
describe additional cases. They could start from
scratch by entering a list of relevant solutions
and traits, but that would be inefficient if there
were significant overlap in those required by a
previously entered case and a new one (Mittal,
Bobrow, and Kahn, 1986). Aquinas allows an
expert to copy pieces of hierarchies (and,
optionally, their associated values) between
cases. Information copied in this way can be
modified to fit the new context. This facility may
also be used to copy pieces of hierarchies between
experts.

8. Generate rules for expert system shells.
The expert is the judge of when the point of
diminishing returns has been reached within
Aquinas. When such a point is reached, a
knowledge base is generated for an expert
system shell, and development continues directly
in that shell. Similarity and implication analyses
allow experts to determine whether traits or
solutions can be adequately and appropriately
discriminated from one another. The system
provides correlational methods for comparing the
order of Aquinas recommendations to an expert's
rankings.

Aquinas can generate knowledge bases for
several expert system shells. The knowledge
contained in grids and hierarchies is converted
within Aquinas into rules, and the rules are
formatted for a particular expert system shell.
The appropriate control knowledge is also
generated. Rules are generated with screening
clauses that partition the rules into subsets. An
expert clause is used when expertise from
multiple experts is weighted and combined
together. A case clause controls the focus of the
system during reasoning.

Four types of rules are generated:

1. Implication rules are generated from arcs in
the implication graph and conclude about
particular traits. The conclusion's certainty
factor is proportional to the strength of the
implication. The use of implication rules
restricts search and lessens the number of
questions asked of users during
consultations.

2. Solution rules conclude about a particular
solution or solution class. The conclusion's
certainty factor is derived from a
combination of the grid rating strength and
the trait weight.

3. Absolute rules are generated when the expert
places an absolute constraint on the value of
a trait. Sometimes information about
absolute constraints is included elsewhere
when knowledge bases for expert system
shells are generated.

4. Specialization I Generalization rules are
derived from information :n the hierarchies
and are used to propagate hierarchical
information.

5-11

9. Further expand and refine the knowledge
base. Hierarchies and rating grids continue to be
used during the session to expand and refine the
knowledge base. Work in progress is shown in
Figure 12. Aquinas contains a variety of other
tools to help analyze and expand the knowledge
base:

Comparison of Experts (Sources). The
MINUS tool (Shaw and Gaines, 1986) compares
grids from different experts on the same subject
and points out differences and similarities. This
information has been used to manage structured
negotiation between experts (Boose, 1986).
SOCIOGRIDS features (Shaw and Gaines, 1986)
will be available in the future to display
networks of expertise. Nodes and relations in
these networks show the degree of subsumption
of one expert's grid over grids from other experts.

Incremental Interviewing. Aquinas can use an
incremental dialog to elicit new traits and
solutions, one at a time, from the expert (Boose,
1986). This is useful when the expert does not ·
have a list of elements to start a grid and in other
situations during knowledge refinement.

Trait Value Examination. New elements can
be identified by asking the expert to "fill in
holes" in the values of trait ranges. For instance,
no element may exist with a rating of2 on some
ordinal trait scale; the expert is asked if such an
element can be identified:

What is a new LANGUAGE that would receive a value of 2

on the scale SCIENTIFIC(S)/ BUSINESS(1)?

New traits can also be identified by forming
triads based on ratings: if LISP and PRO LOG are
rated 5 on SCIENTIFIC(5) I BUSINESS(I), and
ADA is rated 4, the expert is asked,

What is a new trait having to do with SCIENTIFIC I

BUSINESS that makes LISP and PROLOG similar yet

different from ADA?

Trait Range Boundary Examination.
Important traits can frequently be identified by
exploring the boundaries of trait ranges:

You said that the range of DELIVERY -COST for LISP for the

K-ACQUISITION case was 1500 to 60000 DOLLARS-US. Can

you think of any conditions in the future that might make

DELIVERY-COST LESS THAN 1 500?

AQU*" YES

Enter conditions in terms of traits, one to a line; enter a

RETURN when done.

AQU** HARDWARE BREAKTHROUGH· LISP ON A CHIP

AQU*"~

Can you think of any conditions in the future that might

make DELIVERY-COST GREATER THAN 60000?

AQU** YES

Enter conditions in terms oftraits, one to a line; enter a

RETURN when done.

AQU"* VERY POWERFUL HARDWARE

AQU** PARALLEL ARCHITECTURES AVAILABLE

AQU"*~

Completeness Checking. A single grid can be
used as a table of examples. If the table is
incomplete, the expert is asked to fill in other
examples.

Combine Similar Traits. Sometimes different
labels are used for the same underlying concept.
This can be discovered when a similarity
analysis is performed (functionally equivalent
traits with different labels may be uncovered). If
the expert cannot think of a new element to
separate identical traits, then the traits may be
combined into a single trait.

DISCUSSION

General Advantages and Disadvantages of
Aquinas

Aquinas inherits the advantages ofETS: rapid
pro to typing and feasibility analysis, vocabulary
and trait elicitation, testing and refinement
tools, implication discovery, conflict point
identification, expert system shell production,
and generation of expert enthusiasm (Boose,
1986).

Over 30 prototype systems have been built
during the development of Aquinas (an AI Book
Consultant, an AI Tool Advisor, a Course
Evaluation System, a Customer Needs Advisor, a
Database Management System Consultant, an
Investment Advisor, a Management Motivation
Analyzer, a Personal Computer Advisor, a
Personality Disorder Advisor, a Product Design
and Impact Advisor, a Robotic Tool Selector, a
Seattle Travel Agent, and a Wine Advisor,
among others). The Programming Language
Advisor session took less then 2 hours with eacn
of the two experts.

Aquinas offers a rich knowledge representation
and reasoning environment. We believe that
Aquinas can be used to acquire knowledge for

-.:6 i

-.:e.
HAPC•EP. TO LEAPtl

=~r:::.::.----'·LAI!o;l).o•lE • PF:OLO•i \ .;:6 1

If: L~~l'.tiAbiLIT"i • EA:;IER. TO .LE.:.P.N
n,_.,., :::ELE•:Tlu(, .A .LAN•li.Lo:.•lE • H•EAL ~"E·: ELEMEIIT

-: .:::6 :·
rul~.

11. LEI.I'tJt.l'l!Ll Tt • HMI'C•EI-: 10 LE.:.F.tJ ..
ThM: ·;:ELE•:TII·I•> A LAIJo;r_l.oo;E • H•E-"L. ~"E• •. ELEMEIIT

-.;21))

1\QUINI\S

.:~.TTIT•.•C•E

.... n•:~ll :'f-Pc-· .. ,_,.,t
.. ;:,l,'AIL.of\llfT\ :·:.~:· r.tiiLTt·(t)"al~·:mtE~

KA Workbench 4.9 :f,--~:c~:o-:-:.,.-.~.~ J:•:••:•P. C.(" .. fl,~·~l-tf:trr !ll••lt,o)IIUEIIT ~'.''.:!11(:::

1qht .-,:; 19::as .
e.-: .. ;.1 r . .;J r~r..rnpar.· ... ·.
P.l•Jhf 3 F:e-:~r··-t-;.:f

. "'"'L"~::;o::;c;c;f"EL0ooFni''iio~oi,·;;;;;~~=~ fo', .O.>f'l I

Figure 12. Aquinas screen showing developing hierarchies, a rating grid, and an implication analysis
graph of the grid.

significant portions of most structured selection
expert system problems. Hierarchies help the
expert break down problems into component
parts and allow reasoning at different levels of
abstraction. Varying levels ofprecision are
specified, with multiple types of rating scales
when needed.

Knowledge from multiple experts may be_
combined using Aquinas. Users may rece1ve
dissenting as well as consensus opini.;ns from
groups of experts, thus getting a full range of
possible solutions. Disagreement between the
consensus and the dissenting opinion •:an be
measured to derive a degree of conjL· t Cor a
particular consultation. The system c:.tn be used
for cost-effective group data gathering 1 Boose,
1987).

The growing collection of rating grids and case
knowledge represents an important resource for
building a variety of knowledge-based systems.
Knowledge is stored explicitly with associated
problem cases, making knowledge bases easier to
update and maintain.

Currently, a user may copy and change any
portion of the Aquinas knowledge base during a
consultation. In the future, each expert will be
able to protect areas of knowledge. The expert
may believe protection is necessary because some
knowledge should not be changed or because the
knowledge has commercial value.

Aquinas is not as easy to use as was ETS using
single grids. There are many elicitation and
analysis tools for a novice to understand; the
decision-making process and inference engine

can be set up to work in several different ways.
We expect that continuing improvements in the
dialog manager will help make the system more
comprehensible and decrease the learning time
for new users.

Theoretical Issues- Knowledge Elicitation

Personal Construct Psychology methods provide
no guarantee that a sufficient set of knowledge
will be found to solve a given problem. Aquinas
attempts to expand the initial subset of solutions
and traits based on problem-solving knowledge
for specific cases. The goal is to solve enough
cases so that the knowledge is sufficient to solve
new cases. This is the methodology of knowledge
engineering in general; Aquinas helps make the
process explicit and manageable.

Hierarchical decomposition can be used to build
intuitive, comprehensible models that seem to
behave in reasonable ways. One disadvantage is
that some problems do not easily fit the
hierarchical model. It also may be true that a
particular problem would best be represented by
a collection of confiicting hierarchies (hierarchies
for mechanical problems tend to model structure
or function, not both, and both may be
necessary).

The use of multiple rating value types provides
more flexibility, convenience, and precision in
representing knowledge. However, deciding a
particular type of variable to use can be a
complex task. The dialog manager offers some
assistance, but the expert usually must learn
appropriate usage of rating types through
experience.

Experts develop Aquinas knowledge bases
serially. In the future, we would like to build a
participant system in which many experts could
dynamically share rating grids and hierarchies
(Chang, 1985).

Analysis and Inference

Multiple analysis tools and elicitation methods
in Aquinas help the expert think about the
problem in new ways and tend to point out
conflicts and inconsistencies over time. Lenat
argues that knowledge representations should
shift as different needs arise (Lenat, 1983). This
should lead to better problem and solution
descriptions, and, in turn, to better problem
solving.

Inference in Aquinas is efficient because the
problem space is partitioned. Information in the
trait hierarchies is attached to particular levels
of solution elements. Although no formal studies
have been conducted, consultation results using
the methods described above seem reasonable.

Rule generation for expert system shells is
straightforward. Development of the knowledge
base can continue in an expert system shell that
may offer advantages of speed, specialized
development and debugging facilities, and
inexpensive hardware.

Future Directions

We intend to build a knowledge acquisition
environment that includes specific domain
knowledge for specialized application areas and
can acquire knowledge for synthetic problems,
combining features from other knowledge
acquisition tools such as MDIS (Antonelli, 1983),
DSPL (Brown, 1984), MORE (Kahn, Nowlan,
and McDermott, 1985), and PRIDE (Mittal, Dym,
and Morjaria, 1986).

Presently Aquinas works best on those problems
whose solutions can be comfortably enumerated
(analytic or structured selection problems such as
classification or diagnosis) as opposed to
problems whose solutions are built up from
components (synthetic or constructive problems
such as configuration or planning). Simple
classification can be thought of as a single
decision problem (handled by ETS). Complex
structured selection problems may require a set
oflinked data abstraction/solution refinement
decisions (Aquinas). The next step may be to
generalize this process to acquire and represent
knowledge for planning, configuration, and
design problems where the order of linked
decisions in solution hierarchies may represent
precedence of events or goals rather than just
solution refinement. In these problems
hierarchies may be assembled at consultation
time rather than constructed totally in advance
as they are currently. Grid cells might
sometimes contain an arbitrary computation
rather than a rating. These would include results
of functions (such as found in spreadsheets) or
database retrievals. Deeper models of the
structure and function of physical systems could
be modeled.

An important step in expanding the knowledge
acquisition workbench concept is the linking

5-l4

together of other specialized tools. At the Boeing
Knowledge Systems Laboratory we are
investigating ways of integrating diverse
knowledge representations from different
Laboratory projects so that this may be more
easily accomplished. In the domain of knowledge
acquisition, we feel that the approach used in
SALT (Marcus, McDermott, and Wang, 1985:
Marcus and McDermott, 1986) is particularly
promising. SALT is a system that interviews
experts to build knowledge bases for certain
types of constructive problems (its first use was
to configure elevators). We are also interested in
generating knowledge sources for BBB, a
blackboard system that has been successfully
applied to a variety of problems (Benda et al.,
1986).

Development of the Aquinas workbench will
continue in an incremental fashion. Techniques
will be continuously integrated and refined to
build an increasingly more effective knowledge
acquisition environment.

ACKNOWLEDGEMENTS

Thanks to Roger Beeman, Miroslav Benda,
Kathleen Bradshaw, William Clancey, Brian
Gaines, Cathy Kitto, Ted Kitzmiller, Art Nagai,
Doug Schuler, Mildred Shaw, David Shema,
Lisle Tinglof-Boose, and Bruce Wilson for their
contributions and support. Aquinas was
developed at the Boeing Artificial Intelligence
Center ofBoeing Computer Services in Seattle,
Washington.

BIBLIOGRAPHY
Adams, J., Probabilistic Reasoning and
Certainty Factors, in B. Buchanan and E.
Shortliffe (eds.), Rule-Based Expert Svstems:
The MYCIN Experiments of the Stanford
Heuristic Programming Project, Reading, MA:
Addison-Wesley, 1985.
Alpert, M., and Raiffa, H., A Progress Report on
the Training of Probability Assessors, in D.
Kahneman, P. Slovic, and A. Tversky (eds.),
Judgment Under Uncerta~ntv: f!e~rist~cs and
Biases New York: Cambndge U mvers1ty Press,
1982. '
Antonelli D., The Application of Artificial
Intelligen'ce to a Maintenance and Diagnostic
Information System (MDfS), in the Proceedings
of the Joint Services Workshop on Artificial
Intelligence in Maintenance, Boulder, CO., 1983.
Benda, M., Baum, L. S., Dodhiawala, R. T., and
,Jaaannathan, V., Boeing Blackboard System, in
th; Proceedings of the High-Level Tools
Workshop, Ohio State University, October, 1986.

Beyth-Marom, R., and Dekel, S., An Elementarv
Approach to Thinking Under Uncertaintv,
London: L. Erlbaum Assoc., 1985.
Boose, J. H., Personal Construct Theory and the
Transfer of Human Expertise, in the Proceedings
of theN ational Conference on Artificial
Intelligence, Austin, Texas, 1984.
Boose, J H., A Knowledge Acquisition Program
for Expert Systems Based On Personal Construct
Psychology, Int. J. Man-Machine Studies, 23,
1985.
Boose, J H., Expertise Transfer for Expert
Svstem Design, New York: Elsevier, 1986.
Boose, J. H., Rapid Acquisition and Combination
of Knowledge from Multiple Experts in the Same
Domain, Future Computing Systems Journal, in
press, 1987.
Brown, D. E., Expert Systems for Design ·
Problem-Solving Using Design Refinement with
Plan Selection and Redesign, unpublished Ph. D.
dissertation, Ohio State University, CIS
Department, Columbus, Ohio, Aug., 1984.
Bylander, T., and Mittal, S., CSRL: A Language
for Classificatory Problem-Solving and
Uncertainty Handling, AI Magazine, Aug., 1986.
Chandrasekaran, B., Generic Tasks in
Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design, IEEE
Expert, Fall, 1986.
Chang, E., Participant Systems, Calgary,
Alberta: Alberta Research Council Advanced
Technologies, Unpublished manuscript,
December 1985.
Cheeseman, P., In defense of probability, in the
Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los
Angeles, California, 1985.
Clancey, W., Heuristic Classification, inJ.
Kowalik (ed.), Knowledge-Based Problem
Solving, New York: Prentice-Hall, 1986.
Coombs, C. H., Dawes, R. M., and Tversky, A.,
Mathematical Psvchology, Englewood Cliffs, NJ:
Prentice-Hall, 1970.
Gaines, B. R., and Shaw, M. L. G., New
Directions in the Analvsis and Interactive
Elicitation ofPersonai Construct Systems, in M.
L. G. Shaw (ed.), Recent Advances in Personal
Construct Technologv, New York: Academic
Press, 1981.
Gaines, B. R., and Shaw, M. L. G., Induction of
Inference Rules for Expert Systems, Fuzzy Sets
and Systems, August, 1985.
Cordon, J. and Shortliffe, E., The Dempster
Shafer Theory of Evidence, in B. Buchanan and
E. Shortliffe (eds.), Rule-Based Expert Svstems:
The MYCIN Experiments of the Stanford
Heuristic Programming Project, Reading, MA:
Addison-Wesley, 1985.
Henrion, M., Propagating Uncertainty by Logic
Sampling in Bayes' Networks, in the Proceedings

5-t5

of the Second Workshop on Uncertainty in
Artificial Intelligence, Philadelphia, PA, 1986.
Hinkle, D. N., The Change of Personal
Constructs from the Viewpoint of a Theory of
Implications, Ph. D. dissertation, Ohio State
University, OH, 1965.
Howard, R. A. and Matheson, J. E., Influence
Diagrams, in R. A. Howard and J. E. Matheson
{Eds.), Readings on the Principles and
Applications of Decision Analysis, Menlo Park,
California: Strategic Decisions Group, 1984.
Hurley, R., Decision Tables in Software
Engineering, New York: Van Nostrand
Reinhold, 1983.
Kahn, G., Nowlan, S., and McDermott, J.,
MORE: An Intelligent Knowledge Acquisition
Tool, in the Proceedings of the Ninth Joint
Conference on Artificial Intelligence, Los
Angeles, CA, August, 1985.
Kelly, G. A., The Psvchology of Personal
Constructs, New York: Norton. 1955.
Kitto, C., and Boose, J. H., Heuristics for
Expertise Transfer: The Automatic Management
of Complex Knowledge Acquisition Dialogs,
Proceedings of the IEEE Expert Systems in
Government Conference, McClean, VA, October,
1986.
Lenat, D., TheN ature of Heuristics, Artificial
Intelligence, 19 (1983) and 21 (1983).
Lenat, D., Prakash, M., and Shepard, M., CYC:
Using Common Sense Knowledge to Overcome
Brittleness and Knowledge Acquisition
Bottlenecks, The AI Magazine, 6 (4), 1986.
Lieberman, H., Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented
Systems, in the Proceedings of the Object
Oriented Programming Systems, Languages, and
Applications Workshop, Portland, Oregon (and
special issue of SIGPLAN Notices, Nov., 1986).
Marcus, S., McDermott,J., and Wang, T.,
Knowledge Acquisition for Constructive
Systems, in the Proceedings of the Ninth Joint
Conference on Artificial Intelligence, Los
Angeles, CA, August, 1985.
Marcus, S., and McDermott, J., SALT: A
Knowledge Acquisition Tool for Propose-and
Revise Systems, Carnegie-Mellon University
Department of Computer Science technical
report, forthcoming.
Michalski, R. S., Designing Extended Entry
Decision Tables and Optimal Decision Trees
Using Decision Diagrams, Urbana, IL.:
Intelligent Systems Group, Artificial
Intelligence Laboratory, Department of
Computer Science, University of Illinois, 1978.
Michalski, R. S., A theory and Methodology of
Inductive Learning, in R. Michalski, J.
Carbonell, and T. Mitchell (eds.) Machine
Learning, Palo Alto, CA: Tioga Publishing, 1983.

Michalski, R., and Winston, P., Variable
Precision Logic, Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, MIT AI Memo 857, 1985.
Mittal, S., Bobrow, D., and Kahn, K., Virtual
Copies: At the Boundary Between Classes and
Instances, in the Proceedings of the Object
Oriented Programming Systems, Languages, and
Applications Workshop, Portland, Oregon (and
special issue ofSIGGPLAN Notices, Nov., 1986).
Pearl; J., Fusion, Propagation and Structuring in
Belief Networks, technical report CSD-850022,
R-42-VI-12, Cognitive Systems Laboratory,
Computer Science Department, University of
California, Los Angeles, CA, April1986.
Saaty, T. L., The Analvtic Hierarchv Process,
New York: McGraw-Hill, 1980.
Shafer, G., and Tversky, A., Languages and
Designs for Probability Judgment, Cognitive
Science, 9, 1985, 309-339.
Shastri. L., and Feldman, J., Evidential
Reasoning in Semantic Networks: A Formal
Theory, in the Proceedings of the Ninth
International Joint Conference on Artificial
Intelligence, Los Angeles, CA, August, 1985.
Shaw, M. L. G., and Gaines, B. R., PLANET: A
Computer-Based System for Personal Learning,
Analysis, Negotiation and Elicitation
Techniques, in J. C. Mancuso and M. L. G. Shaw
(eds.), Cognition and Personal Structure:
Computer Access and Analvsis, Praeger Press,
1986, in press.
Slater, P., Dimensions ofinterpersonal Space.
Vol. 2, London: Wiley and Sons, 1977.
Spetzler, C., and Stal von Holstein, C.,
Probability Encoding in Decision Analysis, in R.
Howard and J. Matheson (eds.), Readings on the
Principles and Applications of Decision Analysis,
Volume 2, Palo Alto, CA: Strategic Decisions
Group, 1983.
Spiegelhalter, D. J., Probabilistic Reasoning in
Predictive Expert Systems, in L. N. Kanal and J.
Lemmer (Eds.), Uncertaintv in Artificial
Intelligence, Amsterdam: North-Holland, 1986.
Szolovits, P., and Pauker, S., Categorical and
Probabilistic Reasoning in Medical Diagnosis,
Artificial Intelligence, 11, 1978.
Wallsten, T., and Budescu, D., Encoding Subject
Probabilities: A Psychological and Psychometric
Review, Management Science, 29:2, 1983.

5 -lC;,

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

INDUCTION OF HORN CLAUSES:
METHODS AND THE PLAUSIBLE GENERALISATION ALGORITHM

Wray Buntine
New South Wales Inst. ofTech. and Macquarie University

Computing Science
N.S.W.I.T.

P.O. Box 123, Broadway, 2007
Australia

Abstract We are considering the problem of induction of uncertainty
free descriptions for concepts when arbitrary background knowledge
is available, to perform constructive induction for instance. As an
idealised context, we consider that descriptions and rules in the
knowledge-base are in the form of Horn clauses. Using a recently
developed model of generality for Horn clauses, we argue that some
induction techniques are inadequate for the problem. We propose a
framework were induction is viewed as a process of model-directed
discovery of consistent patterns (constraints and rules) in data, and
describe a new algorithm, the plausible generalisation algorithm, that
tackles the sub-problem of discovering rules. The algorithm raises a
number of interesting questions: How can we identify and constrain
irrelevance during the generalisation process? How can our
knowledge-base answer queries of the form: "what do (objects) X and
Y have in common that is relevant to (situation) S?"

1. INTRODUCTION

A key technique for use in any semi-automatic acquisition system for knowledge-based
systems is concept induction (Michalski, 1983; Michie, 1986; Quinlan, 1986a). By concept
induction, we mean the discovery of a description for a concept when only positive and
negative examples of the concept are known (Dietterich et al., 1982; Rendell, 1986). In
practice, such induction may proceed in the presence of a rich body of background knowledge,
for instance allowing new descriptors to be derived about examples. So constructive induction,
induction incorporating the derivation of new descriptors (Michalski, 1983), may well be
required.

In this paper we are considering the induction of logical, uncertainty-free descriptions (logic
based induction) in the presence of logical background knowledge, and consequently,
constructive induction. Our treatment is incomplete, however, as it makes only passing
mention of the roles that credibility of hypotheses and noise have to play in logic~ based
induction or of the heuristic search of a space of hypotheses (see for example Quinlan, 1986b;
Cheeseman, 1984, 1986; Rendell, 1986).

We consider the idealised context where the concept is to be described by Horn clauses (the
language on which Prolog is based; see for example Robinson, 1979; Lloyd, 1984) and
arbitrary background knowledge has been expressed in Horn clause form. Arguments
supporting the use of Horn clauses to pursue logic-based induction are given in the next
subsection. Additionally, we believe that by having a good understanding of inductive learning
and its applications in the context of Horn clauses, we can improve our understanding of
comparable problems in more extensive knowledge representations, for instance, ones
incorporating uncertainty with deduction or using a more complete subset of 1st-order logic.

<0-D

In the third section we review a number of existing AI logic-based induction methods, showing
they are inadequate for the more extensive context considered here, that is incorporating
background knowledge/constructive induction. This analysis is made on the basis of a recently
devised model of generality for Horn clauses (Buntine, 1986a, 1986b) presented in the second
section.

We then propose a new framework for the induction of concepts when logic-based description
languages are to be used. Basically, we view induction as a process of model-directed
discovery of consistent patterns in the data observed from the standpoint of our relevant
background knowledge. By noting patterns in the form of constraints and rules, such
induction would gradually converge to a single hypothesis (or more precisely- a class of
equivalent hypotheses). This framework allows for instance a much cleaner formulation of the
factoring technique (Subramanian and Feigenbaum, 1986).

In the fourth section we present a new algorithm for constructing generalisations· that addresses
the problem of discovering rules from the data. The plausible generalisation algorithm, based
on a method of constructing most specific generalisations in the presence of arbitrary Horn
clause background knowledge, accounts for the need for constraining irrelevance when
generalisations are made utilizing the background knowledge. The algorithm can be easily
tailored for instance to perform a search of a class of models applicable to a particular sequence
prediction induction problem. The importance of relevance to this algorithm is highlighted and
the basic techniques for determining relevance reviewed.

1 .. 1. Horn Clauses as a Language for Induction
We believe that Horn clause logic provides an ideal framework for the investigation and
practice of logic-based induction. A good deal of previous work can be rephrased into the
language of Horn clauses. For example, Bundy et al. (1985) compare a number of very
different induction techniques by describing them in this unifying context Similarly, Mooney
(1986) uses Horn clauses when analysing a related learning technique, Explanation-Based
Learning.

Both disjunctive and conjunctive concepts can be described in the language. Background
knowledge provides the means for additional descriptors to be derived about any example.
Recursion is an important feature in any language requiring to solve sequence prediction
problems and is also essential to conveniently express concepts about recursively defined
structures such as trees, lists and language grammars. The language also has a well
understood means of performing inferences (Lloyd, 1984), essential to derive relevant
descriptors from background knowledge during the induction process. This is critical to the
development of a computational model of generality.

The techniques for incorporating negation into this language have not been considered here (see
for example Lloyd, 1984). Negation should be a fundamental component of any general
concept description language. One method of induction that allows negation has been
suggested by V ere (1980). However, to the author's current knowledge, a complete analysis
of the effects of negation on the induction process has not yet been made.

2. A MODEL OF GENERALITY

To perform logic-based induction, certain tools are required. Induction is usually considered a
process of searching for descriptions consistent with the background knowledge and known
examples (Michalski, 1983). The search space for descriptions can be partially ordered by the
generality of possible descriptions (Mitchell, 1982; Dietterich et al., 1982). So to practice
induction of Horn clauses, we need tools that can manipulate the generality of Horn clauses
and move around in the resultant search space.

Only recently has a thorough analysis been made of this search space for Horn clauses based
on a model of generality incorporating arbitrary Horn clause background knowledge (Buntine,
1986a, 1986b). This was inspired by the work of (Sammut and Banerji, 1986). In this
section, we introduce this model; it is used throughout the paper.

(Q-1

Previous models of generality have considered the case where (1) background knowledge is in
the form of facts (Plotkin, 1971; V ere, 1977); (2) in the form of equalities on predicates, type
hierarchies and some additional forms (Kodratoff and Ganascia, 1986); and (3) in the form of
concept hierarchies (Mitchell et al., 1981). Background knowledge of an equivalent kind to
that considered here has been employed in conceptual clustering (Michalski and Stepp, 1986).
Michalski (1983) stresses the importance of background knowledge for practical induction and
mentions a number of generalisation and specialisation rules.

Before describing the notion of generality considered here, we introduce the terms used.

2. 1. Preliminaries
Corresponding to a pure Prolog rule, a Horn clause, usually abbreviated to clause or called a
rule, is in the form

'v'x(Ao~AlA ··· Au)
where ~0. the .Aj_'s are atoms (predicate symbols applied to some arguments, see the examples
below) and X is the set of variables occurring in the Ai's. The universal quantification is
usually implicit The atoms on the right hand side of a rule are referred to as the conditions for
the rule.

For n=O, a clause is called afact and written simply as A0•

The description of a concept takes the form of a predicate definition, a se~ of clauses with the
same predicate symbol on the left hand side of the rule. This predicate symbol is used to give
examples of the concept. For instance, the concept "friends", denoting who is friends with
whom, could be specified by the following defmition for the two place predicate friends.

friends(bob,mary)
friends(mary,bill)
friends(X,Y)~friends(Y ,x)

Informally, the task of induction is to construct a predicate defmition such that all and only
positive examples of the concept will be proven true by a series of successful applications of
the clauses in the predicate definition and in the current Horn clause background knowledge.

A second kind of knowledge construct used here is a constraint. Constraints are introduced
because they are a useful kind of knowledge about concepts that can feasibly be induced from
data and, as we shall see, they can also be used to simplify the induction of rules. The model
of generality in its current state is not able to account for constraints computationally however.

In this paper, we consider constraints of the form

'v'x(Ao~3yt(Al,l" ··· A1.n1) v ··· 3ym(Aro,t" ··· Am,nm)) or 'v'x(-Ao)
where: A0 and the AiJs are atoms; X is the set of variables occurring in A0; the number of

conjuncts in the disjunction on the right hand side of the constraint, m, ~1; and for the i-th

conjunct, Yi is the set of remaining variables and ni~l. Again, the quantification is usually
implicit. In the database literature these would be refered to as tuple generating dependencies
(Sagiv, 1986) when m=l. These constraints could, for instance, be checked at each step of a
computation.

Each constraint is actually the converse of a ,Particular set of rules. To see this, swap the
direction of the arrow in the constraint form given above then distribute "v" over"~". For
instance, consider the following predicate definition which may be suggested to explain
instances of the sort predicate. N.B. sort(X,Y) is true if the list Y is a sorted version of the
non-empty list X.

sort(X,Y)~X= Y =[U]
sort(X,Y)~ Y =[A,BIL]A.kffi

Giving "sort" its usual interpretation, this description of sort is incorrect as the second rule says
sort([3,4],[1,2]) is true. The description is logically equivalent to

sort(X,Y)~(X=Y=[U]) v (Y=[A,BIL]AA$B)
and taking the converse we get the constraint

sort(X,Y)~3u(X=Y=[U]) v 3A.B,L(Y=[A,BIL]AA$B)
which is a useful constraint on the sort predicate.

2. 2. The Model

We adapt Mitchell's view of "more general" (1982) as follows. For a fuller treatment of the
model refer to (Buntine, 1986b).

Informally, a first description is more general than a second if it is possible to explain, using
the current background knowledge, that the first description will apply to some example
whenever the second description does. We give three different but equivalent views of this
notion below.

A predicate defmition Rl is more general than another R2 with respect to given background
knowledge, if, in any possible world (sometimes refered to formally as an extension or
interpretation) consistent with the background knowledge, whenever a clause from R2 can be
successfully applied to show, in the possible world, an example of the concept should be a
positive example, then a clause from Rl must be able to be successfully applied to show the
same. We say a clause Cl is more general than another clause C2 when the equivalent
condition for clauses occurs.

Alternatively, ifRl is represented in the form V'x(c(X)~Bl(X)) and R2 as V'x(c(X)~B2(X))
were "c" is the concept being described and Bland B2 represent the bodies of the descriptions
(in the case of predicate definitions, a disjunction of conjunctions), then Rl is more general
than R2 with respect to the background know ledge if and only if

V'x(B2(X)~Bl(X))
is a logical consequence of the background knowledge.

If a first clause or predicate defmition is more general than a second, then the second is also
said to be more specific than the first

To illustrate these views of generality and later ideas, we have concocted the following
background knowledge, labelled "the social knowledge-base".

likes(bill,mary)
likes(bob,jane)
right_handed(bill)
right_handed(bob)
friends(bill, paul)
friends(kate, bob)
friends(paul, sally)
friends(paul, mary)
friendsGane, kate)
friends(sally, kate)
friends(X,Y)~friends(Y ,X)
plays_tennis(mary)
member_tennis_social_clubGane)
member_tennis_social_club(X)~plays_tennis(X)
plays_social_tennis(X)~member_tennis_social_club(X)

Under this background knowledge, the description {likes(bill,mary), likes(bob,jane)} is more
specific than the description consisting of the single rule

likes(X,Y)~member_tennis_social_club(Y)Afriends(X,Z)Afriends(Z,Y) (1)

~-3

To justify this, we must show that rule 1 confirms likes(bill,mary) and lik:es(bob,jane) in any
possible world consistent with the "social knowledge-base". That is, we must show that for
(X,Y) set to (bill,mary) or (bobjane), the right hand side of rule 1 will be true in any possible
world consistent with the social knowledge base. In logic, this is equivalent to showing that
rule 1 together with the "social knowledge-base" logically implies lik:es(bill,mary) and
likes(bob,jane). ·

An operational view of generality follows·. In this view, background knowledge can only
consist of Horn clauses.

It has been shown (Buntine, 1986b) that, with respect to given Horn clause background
knowledge, a predicate definition R1 is more general than another, R2, if and only if for every
clause in R2, there exists a clause in R1 more general than it. That is, to test the comparative
generality of two predicate definitions, we only need compare the generality of their component
rules.

Furthermore, a test of the comparative generality of two clauses consists of a single query to
the logic program representing the background knowledge (Buntine, 1986b). Effectively, a
rule is more general than another with respect to given Horn clause background knowledge if
the more general rule can be converted to the other by repeatedly turning variables to constants,
adding conditions or partially evaluating by applying some rule in the background knowledge
to the R.H.S. When the background knowledge is absent, the test degenerates to a test of 8-
subsumption. (Plotkin, 1970). Clause C 8-subsumes D if there exists a set of replacements for
the variables in C (a substitution) making the atoms in C a subset of those in D. That is, clause ·
C can be converted to clause D by turning some variables to constants and adding conditions.

This model of generality then formalises and considerably extends the work of Plotkin
(1970,1971), V ere (1977), and to some extent Kodratoff and Ganascia (1986). We denote this
model of generality generalised subsumption.

3. APPLICATIONS

3.1 Knowledge Maintenance
Redundancy detection is one of a number of knowledge maintenance tasks. It has been argued
(Kitakami et al., 1984) that knowledge maintenance should be a task performed by an
integrated knowledge acquisition system. Recent experiences with XCON indicate (Pundit,
1985) that knowledge maintenance will become a key task in the future.

In (Buntine, 1986b) it is shown that the model of generality given previously has applications
to the detection of redundancy in rule bases. We are currently developing techniques for
detecting unused rules and redundant rules, for removing redundant conditions from a rule's
right hand side and for generally cleaning-up the form of a rule. These techniques are based on
a stronger model of generality than generalised subsumption, a model incorporating
background knowledge in the form of constraints as well as rules. Related results derived
using a different technique, based on the notion of equivalence rather than generality , appear in
the deductive database literature (Sagiv, 1986).

What does the model have to say about the search space for induction?

3.2. Induction
A number of techniques have been devised by the AI community for searching a space of
descriptions ordered on generality. Some of these techniques allow a description to consist of
only a single conjunctive rule, others allow disjunction.

Some of the techniques are based on a specific to general search, for instance climbing the
generalisation hierarchy (Sammut and Banerji, 1986), constructing maximally specific
generalisations of individual pairs of rules in the current description (V ere, 1977) and hybrid
techniques (V rain, 1986; Kodratoff and Ganascia, 1986).

The second technique above is based on the notion of a most specific generalisation (MSG).
For instance, the MSG of two clauses Cl and C2 with respect to background knowledge Pis a
clause that is a generalisation of both Cl and C2 with respect toP but is more specific than any
other such generalisation. In the context of a number of different representations, MSGs have
been employed in various ways as a useful induction tool (Vere 1977, 1980; Mitchell et al.,
1981; Fu and Buchanan, 1985).

Other search techniques are based on a general to specific search (Langley, 1981; Shapiro,
1981, 1983). The process of specialising a rule found to be inconsistent with new negative
examples, performed during general to specific search, is called discrimination (Langley, 1981;
Bundy et al., 1985). A number of different search styles have been suggested. Mitchell
(1982), Langley (1981) and Shapiro (1981) use a breadth first search, Michalski (1983) a
beam search and Bundy et al. (1985) suggest a depth first search.

As specific to general search has the effect of constructing plausible rules suggested by the data
whereas general to specific search constrains potential rules from being overly general, it is
now well accepted that these complementary search strategies be coupled together. The two
most widely known techniques are Version Spaces (Mitchell, 1982) and Focusing (Bundy et
al., 1985). A recent improvement to the Version Spaces algorithm, justifying that the space
can be split into independent components, is the technique of factoring (Subramanian and
Feigenbaum, 1986). This splitting is already found in the Focusing algorithm.

A further kind of search is model-directed search, discussed and applied to the induction
problem by (Dietterich et al., 1986).

In the following subsections, we consider the two search strategies general to specific and
specific to general in the light of the generalised subsumption model and practical experience.
For the discussion, it is sufficient to consider Version Spaces and Focusing in their decoupled
form.

Performing Specific to General Search. We first consider the problem of performing a
specific to general search of the space of predicate definitions.

Given any background knowledge expressed as Horn clauses, there exists a method of
climbing the corresponding generalisation hierarchy (Buntine, 1986a). The Marvin system

· (Sammut and Banerji, 1986) demonstrates a practical induction method based on a similar
technique.

However, many of the techniques mentioned in the previous subsection use a potentially more
powerful method of performing specific to general search - constructing MSGs. This allows
much larger jumps up the generalisation hierarchy to be made, jumps that are well justified
given that the search space contains a correct hypothesis. This is done for instance in the
specific to general component of the Version Spaces algorithm.

In its usual sense, the MSG of two predicate definitions is, simply, the union of the sets of
clauses they are constructed from. For example, the MSG of the two descriptions

{member(l,[l])}
{member(2,[2,3]), member(2,[3,2]}

is
{member(1 ,[1]), member(2,[2,3]), member(2,[3,2])}.

As this achieves no induction gain, we can instead form a generalisation by additionally
constructing the MSG of some pair of clauses from the predicate definitions. For instance, the
previous two could be generalised to

{member(X,X.Y), member(2,[3,2])}
The first atom in this set is the MSG ofmember(l,[l]) and member(2,[2,3]) with respect to no
background knowledge.

This is the idea behind the control strategy of V ere's Thoth (1977). In this way, MSGs of
clauses can be usefully employed when performing specific to general search of the space of
predicate definitions. In effect, we concurrently perform several specific to general searches of
the space of rules.

C;,-5

·>·
'.·.·.

Recently, an algorithm for constructing the shortest MSG of two clauses, in the presence of
arbitrary Horn clause background knowledge, has been developed (Buntine, 1986c). This was
based on some ideas presented in (Buntine 1986a). Experiences with the algorithm brought to
light various problems which we show below.

One problem occurring is that an MSG does not always exist, in which case it can be thought
of as existing but being an infinite clause. This happens in quite common situations.

For example, an MSG of the example facts member(4,[3,4]) and member(2,[5,1,2]) with
respect to the background knowledge

list(O)
list(X. Y)f-list(Y)
member(X,X. Y)f-list(Y)
member(4,[3,4])
member(2,[1 ,2])
member(3,[5,3])
member(2,[5,1,2])

is actually an infinite clause. The trouble here is that ab infinite number of facts can be inferred
from the background knowledge which are able to be associated directly or indirectly with the
two examples. For instance, the following clauses are some successive partial results of the
MSG algorithm mentioned.

member(X,Y.Z.W).
member(X,Y.Z. W)f-list(W)Amember(X,Z.W)Amember(X,[A.x]).
member(X,Y.Z.W)f-list(W)Amember(X,Z.W)Amember(X,[A.x:J)

Amember(2,[B,2])Amember(B, 1. W)Amember(C,[1 ,B])
Amember(X,[D,B])Amember(C,[1 ,2])Amember(X,[D ,E])
+ 8 more terms

A variation on this theme is that an abundance of irrelevant knowledge (using the term in a
similar sense to Michalski, 1983) can be inferable from the background knowledge. An MSG
of the known facts likes(bill,mary) and likes(bobjane) with respect to the "social knowledge
base" is:

likes(A,B)f-friends(A,C)Afriends(C,B)Afriends(C,sally)
Amember_tennis_social_club(B)Aright_handed(A)

Right-handedness is not usually a property causing one person to be attracted to another.
Commonsense tells us it is irrelevant in this situation. So this rule could be made more
plausible by removing the condition about right-handedness. When a larger less· selective
knowledge base is used the small amount of irrelevance in the above clause could become
considerably greater.

To get around these problems and still retain the power of the MSG approach, we can modify
the algorithm to constrain some of the possible conditions that could be included on the right
hand side of the constructed clause. The aim is to make generalisations which are as specific as
can be consistent with an acceptably terse solution and information about relevance. This
results in the Plausible Generalisation Algorithm (PGA), discussed in some detail in the fourth
section.

The control of any such constructive generalisation algorithm approximating MSGs requires
extra care however. Because MSGs do not always exists, this complication is necessary.

When performing specific to general search of a space of rules using an algorithm
approximating MSGs, the exact control regimes used by methods such as Version Spaces or
Focusing in their specific to general component will not be appropriate. The use of such an
algorithm will require backtracking when the approximations made are more general than
needed. When using an algorithm approximating MSGs to generalise descriptions consisting
of several rules, in a similar manner to V ere's Thoth mentioned previously, additional control
will again be required

Specific to general search in the presence of background knowledge has a feature already
mentioned however that further complicates this problem of control - the problem of
constraining irrelevance. That is, of the multitude of facts that can be derived from the

background knowledge about given examples, which should not be used when constructing
generalisations? And, how do we identify them?

This involves providing a facility to constrain the derived facts that can be used when
constructing generalisations. As it happens, this also provides a convenient mechanism on
which to build a flexible model-directed search for rules. The facility is discussed in the fourth
section. Experience with PGA indicates that its use is essential for practical induction when a
body of sometimes irrelevant background knowledge has been supplied.

Though we have left a number of problems unsolved, the following can be said with certainty.
To generalise a description, a set of rules, we can approximate the MSG of a pair of rules in the
description. Sometimes the MSG can be constructed exactly, othertimes we need to constrain
its construction using notions of relevance and/or of size. Unfortunately, this confounds the
problem of control. Further related issues will be considered in the fourth section.

Performing General to Specific Search. We next consider the problem of general to
specific search of the description space.

Firstly, we will argue that, unlike soine logic-based methods used, a heuristic and/or model
directed general to specific search is required in practice. Evidence is presented below, based
on the work of Shapiro. Utgoffs approach of revising the description language (1986) is
founded on a related premise - the enormity of the inductive search space.

Experiences with Shapiro's Model Inference System indicate that a breadth first search, in the
case of Horn clauses, is highly impractical. Shapiro was actually working with a model of
generality incorporating no background knowledge (called subsumption, mentioned in section
3). But in this case of general to specific search it has sufficiently similar characteristics to the
stronger model used here. The generalisation hierarchy, the general to specific search space,
still has a huge branching factor. A relevant point is that the search spaces considered by
Bundy et al., Langley, and Mitchell et al. (1981) are smaller by comparison due to the
restricted languages/generality models used.

Shapiro effectively employed a model-directed technique to attempt to overcome the problem of
a huge branching factor. For instance, many of the examples given by him used a model
where no constants appear in the conditions of clauses (see appendix II, PDSREF, in Shapiro,
1983). Instantiating constants is of course one of several rule specialisation steps so this had
the effect of reducing the generalisation hierarchies branching factor considerably. Another
model he used is definite clause grammars (DCGREF).

This model-directed technique is useful in the situation where we have a prior belief that the
description should belong to a particular class of hypotheses (for a related discussion, see
Dietterich et al., 1986).

Another technique possible is the heuristic search of the general to specific space. It is at this
point where the credibility of hypotheses plays an important role (Rendell, 1986). A key factor
for success in Quinlan's ID3 (Quinlan, 1986b) and its more recent version C4 (Quinlan,
1986a) is their techniques for determining how to expand the decision tree. They tend to, but
not always, develop a shorter tree, sometimes trading off accuracy for a decrease in size
(Quinlan, 1986a). There are strong arguments to suggest that without any other source of prior
information, this produces a more creditable hypothesis (Georgeff and Wallace, 1985;
Cheeseman, 1984). Likewise, heuristic techniques for the more extensive search problem
considered here need to be developed.

These two techniques, model-directed and heuristic are not at odds with each other. We
· believe they should work together in collaboration.

Secondly, we note that a general to specific search of the space of rules can also be thought of
as a specific to general search of the space of constraints. This alternative view allows a much
cleaner formulation of the search problem.

This change in formulation is allowed because of the following property. We say a predicate
definition is overly general if it can be used to prove true all possible positive examples of the
concept, and in addition some negative ones as well. All members of the 0-set for the Version

{g-7

Spaces algorithm for instance are overly general. If a predicate definition for a concept is
overly general, then its converse actually represents a constraint that must be true of the
concept A proof of this is quite straight forward.

Therefore, the technique of coupled specific to general and general to specific search can also
be thought of as a specific to general search of the space of rules together with a specific to
general search of the space of constraints. Constraints balance rules and vice versa, as in the
coupled paradigm. Induction then, becomes a process of searching for and generalising
consistent patterns in the data, regardless of whether those patterns are expressed as rules or
constraints.

One advantage of phrasing the search in terms of constraints is that the the question "What is
the strength of your belief that constraint C applies to conceptS?" is more natural to consider
than the question "What is the strength of your belief that clause C is overly general for concept
S?" Heuristic search of the general to specific search space of descriptions essentially involves
repeatedly asking this question. The mathematician Polya, whose work was a prime
inspiration behind the AM program (Lenat, 1983), demonstrates that reasonable heuristics may
exist on a search for constraints (Polya, 1954). He gives a number of examples, with suitable
heuristics, in the domain of number theory.

Another advantage is that search of the space of constraints can be made more efficient as
search can proceed independently for different constraints. Any number of constraints induced
can later be combined to produce a single more powerful constraint. This result rests on the
following property: Given two valid constraints about concept "c"

'Vx(c(X)~3y1(A1,1A •.. A1,ru) v 3ym(Ant,1A ... Am.n.,))

'Vx(c(X)~3y1(Bl.1A ... B1,n1) v ... 3yP(Bp,t" ... Bp,np))
then the following is also a valid constraint

'Vx(c(X)~ ((3y1(Al,lA ... At,ro) V ••• 3ym(Am,tA .•. Arn,nm))

A (3yl(Bl,l" ... Bl,nl) V ••• 3yp(Bp,l" ... Bp,n))))
but stronger than the previous two. Considering that the converse of these constraints
represent sets of rules about concept "c", this means that the general to specific search can be
decomposed into independent components. In the case where neither constraint has a
disjunction, the resultant technique mimics facto ring, an improvement to the Version Spaces
algorithm proposed independently by Subramanian and Feigenbaum (1986).

In summary, we suggest that the notion of a general to specific search of the description space
be also considered as a specific to general search of the space of constraints. This can
potentially improve search efficiency as many constraints can be searched for independently.
Whether search is of the space of descriptions or constraints, it needs to be model-directed and
heuristic - guided by a prior beliefs about hypotheses and their current credibility in view of
known examples.

4. THE PLAUSIBLE GENERALISATION ALGORITHM

Having discussed the induction problem in general, we now consider a particular sub-problem:
generalising plausible rules from examples.

This section introduces and discusses the Plausible Generalisation Algorithm (PGA). Using
this algorithm, the useful generalisation

member(X, Y.Z.W)~member(X,Z.W)Alist(W)
for the member example introduced in section 3.2 can be quickly constructed using a notion of
relevance such as allowing only smaller lists to appear in the R.H.S. of the rule.

The algorithm is intended to be used in the following way (similar to Vere's Thoth). We
initialise the description of the concept to the set of positive examples. We repeatedly apply
PGA to pairs of rules in the description to obtain a more general description, backtracking
when over generalisation occurs. We do not consider, in this paper, how this process would
be controlled or when it would be terminated

~-B

Before introducing the algorithm, an important practical issue must frrst be covered. An MSG
by generalised subsumption is, strictly, never unique. However, all possible MSGs are
equivalent to one another under the partial order "generalised subsumption". A kind of
canonical form (called reduced- after Plotkin, 1970, see Buntine 1986b) exists for these
possibilities that represents the shortest possible clause. A longer version of the most specific
generalisation oflikes(bill,mary) and likes(bob,jane) given previously is

likes(A,B)f-friends(A,C)Afriends(C,B)Afriends(C,sally)
Amember_tennis_social_club(B)Aright_handed(A)
Aplays_social_tennis(B)Afriends(B,C)Afriends(C,D)

The condition plays_social_tennis(B) would be a consequence of the condition
inember_tennis_social_club(B) so is a redundant condition in the clause. Likewise for the two
conditions following it. Fortunately, these conditions can often be detected during the
generalisation process (in step 2c of the algorithm in figure 1, see also Buntine, 1986c).

4.1 An Informal Introduction
Below, we describe the algorithm informally, applied to the common situation where the
clauses being generalised are merely positive examples of the concept. We consider the
situation of finding a plausible generalisation of the positive examples likes(bill,mary) and
likes(bobjane) with respect to the social knowledge base.

We will have to consider the following kinds of arguments. These have a certain psychological
appeal about them suggesting they may be useful for a broader class of induction problems
coping with background knowledge.

To find some common reason for bill liking mary and bob liking jane, we must find potentially
relevant statements common about both bill and bob and/or mary and jane. To do this we need
to query the knowledge base to find out for instance "what do bill and bob have in common?''

Of course not all answers to this query will be relevant to the simation that bill likes mary and
bob likes jane so we will need some relevance constraints to prune obviously irrelevant details.
Such a constraint would prevent such details as bill and bob's right-handedness from being
considered. For instance, we may only allow facts concerning social-life of people to be
considered relevant here (the acmal mechanics of checking relevance is in step 2b of the
algorithm in figure 1)

Furthermore, some answers will be a joint consequence of existing facts we have already
found and so be redundant. We notice that mary and jane are both members of the tennis social
club and so add this to the conditions on the right hand side of the rule. But because it is a
consequence of this that they also both play social tennis, we don't need to consider their
playing social tennis in the constructed rule.

Finally, as we are concerned with constraining the size of the clause constructed, certain
controls are provided. A bound is provided on the depth that inference can go when searching
for relevant statements (mentioned in step 2a of the algorithm in figure 1). Another bound is
provided on the depth of nesting of existential quantification (mentioned in step 2e).

4.2 The Algorithm
The acmal algorithm proceeds as follows.

We frrst construct the left hand side of the final generalisation (step 1 of the algorithm). This is
done by fmding the most specific atom which has likes(bill,mary) and likes(bob,jane) as
instances of it. This is called the atom generalising the two facts. We construct it using
Plotkin's algorithm to find the least generalisation of terms (Theorem 1, 1970). In this case it
is the atom likes(A,B) where the variables A,B could take the values bill and mary or bob and
jane. The ordered pair (bill,bob) is called the conflict pair for A and (mary,jane) likewise for
B.

Our task of induction is to find potentially relevant statements common to both bill and bob
and/or mary andjane, that is, common to corresponding members of a conflict pair. So far,
our rule must look as follows.

likes(A,B)~{some conditions on A and B}
The conditions on the right hand side must currently be known to hold true when A and B take
the values bill and mary or bob and jane, so that the rule can be shown to be a generalisation of
the initial examples.

From the background knowledge it can be seen that
member_tennis_social_club(mary), member_tennis_social_clubGane)
and friends(bill, paul), friends(bob, kate)

are potentially relevant statements. Before using these, we must check to see if they are
relevant (step 2b) and that they wont be redundant in the final clause (step 2c).

We construct the atoms generalising the pairs of facts found and link them to the rule to
produce

likes(A,B)~member_tennis_social_club(B)Afriends(A,C)
1\ {further conditions on A, B and now possibly C}

Notice that when generalising the atom we create a new conflict pair (paul,kate) associated with
the variable C. Common statements about paul and kate could indirectly effect bill and bob so
these must also be considered.

Proceeding in this fashion, we gradually build up potentially relevant conditions on the left
hand side of the rule, discarding irrelevant or redundant ·conditions as we go. The fmal rule
would look as follows:

likes(A,B)~friends(A,C)Afriends(C,B)Amember_tennis_social_club(B)

We summarise the algorithm in figure 1. A more exact account of the algorithm and the theory
behind it occurs in (Buntine, 1986c).

1. Construct the left hand side and find the initial set of conflict pairs.
e.g. likes(A,B) with conflict pairs (bill,bob) and (mary,jane) for
variables A and 8 respectively.

2. Construct the right hand side:
Repeat

2a. Look for a pair of facts inferable from the background knowledge
{searching to some depth n) possibly relevant to corresponding members
of a conflict pair.

e.g. the pair friends(bill,paul) and friends(bob,kate) are
possibly relevant to bill and bob.
e.g. the pair friends(bill,paul) and friends(kate,bob) are not as bill and
bob do not occur in corresponding positions.

2b. Disregard the pair (so back to 2a) if they are considered irrelevant by
the relevance constraints.
2c. Disregard the pair (so back to 2a) if they have been derived using
exactly the same rule {this is a sufficient condition for them to be
redundant in the final rule constructed).
2d. Construct the atom generalising the pair of facts.

e.g. friends(A,C).
2e. Add the atom to the conditions accumulated so far. Add any new
conflict pairs found to the set of conflict pairs if they are not too indirect.

e.g. (paul,kate) is a new conflict pair .for C.
Until step 2a fails to find a pair of facts that hasn't already been considered.
3. Strip away any redundant conditions from the right hand side of the
constructed rule.

Fig. 1 - The Plausible Generalisation Algorithm

0-{0

4.3 Features of the Algorithm
The algorithm has several noteworthy features we outline below.

Constraining Irrelevance. It is our experience with the algorithm, in a number of small
scale experiments involving induction of simple list concepts (union etc.) and simple sequence
prediction problems, that the control of irrelevant knowledge by providing relevance
constraints is vital for the algorithms effective use. Support for the use of relevance constraints
comes from successful experiences reported with ID3 (Quinlan, 1984), its descendent C4
(Quinlan, 1986a) and various commercial offspring (Michie, 1986; Hart, 1985). Using the
ID3 paradigm, it has been found that experts usually have the ability to articulate knowledge in
the form of tutorial examples and relevant attributes (usually, features about examples that are
true or false). If their same ability scales up to the induction problem as it is phrased in Horn
cla11se logic, then experts should also be able to provide knowledge about relevance of the
kind suggested here.

Some useful relevance constraints we have found handy for inducing list related concepts say
to only use facts about: lists of smaller length; sub-lists; or lists containing only constants
occurring in the given example. Relevance constraints for sequence prediction problems can
for example specify that the current member in the sequence is dependent on only the previous
L elements (termed lookback by Dietterich et al., 1986), or is periodic with some specified
period.

Thus, relevance constraints are also a means of specifying a particular model in which to
perform induction. In our system, written in Prolog, a new model can be specified simply by
redefming the relevance predicate. This provides great flexibility for performing model
directed search using classes of predefined and indeed user defined models.

Commonality Queries. Critical to the algorithm's performance are queries to the
knowledge-base of the form "What statements are known common to both (objects) X and Y?"
occurring in step 2a. In our system we currently use a brute force approach. We refer to these
as commonality queries. Knowledge-base systems can feasibly be tuned to answer this basic
style of query.

Of course, potential answers can be further constrained by the need for relevance. So one
could also ask: "What statements are known common to both (objects) X and Y that are
potentially relevant to the statements (or areas of concern) Sand T?" This is asking "what is of
interest to the current induction problem?" We believe efficient answering of such queries will
be an important pre-requisite for practical inductive inference systems sourcing knowledge
from a knowledge-base.

Determining Irrelevance. Central to the use of relevance constraints or the asking of
commonality queries is the ability to determine what facts are actually relevant. Clearly,
relevance is related to the notion of statistical dependence. Relevance is also strongly tied to the
notion of causality. If all events in the world have some cause, then the occurrence of one
event can only be relevant to the occurrence of another if they share, directly or indirectly, a
common cause.

Sufficiency of the Knowledge. A feature of generalisations found by PGA is that one
consistent with the intended concept can only be constructed if sufficient knowledge is
available (can be derived in step 2a of the algorithm) from which the generalisation can be
justified.

"-ll

This can be a problem with recursively defined concepts. For example, the MSG of
member(4,[3,4]) and member(2,[5,1,2]) with respect to the background knowedge

list(D).
list(X. Y)~list(Y).
member(X,X. Y)~list(Y).
member(4,[3 ,4]).
member(2,[5,1,2]).

is member(X,Y.Z.W)~list(W) which would be inconsistent with most negative examples as it
says anything is a member of a list with more than 1 element. The problem here is that the fact
member(2,[1,2]) is not available so the valid generalisation

member(X,Y.Z.W)~member(X,Z.W)Alist(W).
can not be justified from the existing knowledge.

This kind of problem occurs whenever the concepts on which a predicate defmition is to be
based are themselves not fully known. Of course, this can be used to advantage i.e. to
constrain irrelevance.

Operation of PGA then must proceed underthejustifiability asswnption (Buntine 1986b). That
is, it is assumed that the instructor has supplied sufficient knowledge from which valid
generalisations of at least some seed facts can be justified and hence constructed.

4.3. Comparison with other Generalisation Frameworks
A method of constructing common generalisations also using background knowledge is
presented by Vrain (1986). The notion of relevance constraints provides an alternative to
Utgoffs approach for specifying bias (1986).

As an aside, it is interesting to compare this technique with Explanation-Based Learning
(DeJong, 1986; Mitchell et al., 1985). Explanation-based Learning proceeds in a knowledge
rich environment where the generalisation steps can be plausibly if not fully justified. This
occurs in situations where the system has more knowledge of what is being learnt than just
positive and negative examples (as is the case here). Background knowledge is being used by
PGA to implicitly suggest explanations. Though these explanations cannot be justified by
PGA, they can be kept from being implausible by careful use of relevance constraints.

5. CONCLUSION
We have based the paper on a theory of generality for Horn clauses where generality is set in
the context of background knowledge in the form of facts and Horn clauses.

Guided by this, we have shown that some existing induction techniques are inadequate for the
induction of descriptions in the extended context where background knowledge is available.
This is due to a number of reasons. In the presence of background knowledge, most specific
generalisations, often calculated by these methods, may be infinite or weighted down with
irrelevant conditions. Furthermore the full Horn clause search spaces, for the general to
specific search particularly, are huge and search needs to be model-directed and/or heuristic.
These problems can only be magnified when more extensive knowledge representations are
used.

Though we haven't presented a completed replacement technique we have rephrased and
redirected the existing techniques. We view induction as the model-directed discovery of
patterns, i.e. constraints and rules, in the data. The problem of heuristic search of the space of
constraints can be factored into independent searches for constraints and necessarily raises the
kinds of questions "How strongly do you believe constraint C is valid?" The problem of
heuristic search of these inductive search spaces remains an open problem.

We have also presented an algorithm, the Plausible Generalisation Algorithm that is intended to
form the basis of a technique for discovering rules in the data. The algorithm has been
implemented in Prolog and experiments performed on small scale induction problems illustrate
the basic problems involved with this approach.

~-12

The algorithm generalises examples to form rules. The algorithm accepts additional input in the
form of relevance constraints that allow a trainer to focus the algorithm on relevant information
rather than all possible information inferable from the knowledge base. Success in simpler
induction frameworks indicates that relevance is one kind of knowledge an expert can articulate
more readily than actual rules. These constraints also allow simple and flexible specification of
a model in which a model-directed induction could proceed.

Finally, we have identified problems that must be considered if induction is to be performed
drawing on a body of background knowledge i.e. constructive induction. One is the problem
of determining irrelevance. The second is the answering of queries of the form "What do
(objects) X and Y have in common that is relevant to situation Z?"

Acknowledgements
Thanks to Ross Quinlan and Prof. Donald Michie for their suggestions about an earlier draft of
this paper and Jenny Edwards, John Hughes and Graham Wrightson for their support.

References
Bundy, A., Silver, B., Plummer, D., (1985), "An Analytical Comparison of Some Rule

Learning Programs", Artificial Intelligence, 27.
Buntine, W.L., (1986a), "Towards a Practical Theory of Horn Clause Induction", Proc. of 9th

Annual Australian Computer Science Conf., Canberra.
Buntine, W.L., (1986b), "Generalised Subsumption and its Applications to Induction and

Redundancy", to appear Artificial Intelligence. This is an extended version of a paper with
the same title in Proc. European Conference on Artificial Intelligence, (1986), Brighton,
U.K.

Buntine, W.L., (1986c), "A Most Specific Generalisation Algorithm for Horn Clauses", draft
in preparation.

Cheeseman, P., (1984), "Learning of Expert Systems from Data", Proc. IEEE Workshop on
Principles of Knowledge-Based Systems, Denver.

Cheeseman, P., (1986), "Induction of Models Under Uncertainty", unpublished manuscript.
DeJong, G., (1986), "A Brief Overview of Explanatory Schema Acquitision", In: Mitchell,

T.M., Carbonell, J., Michalski, R., (Eds.), Machine Learning - A Guide to Current
Research, Kluwer Academic.

Dietterich, T.G., London, R., Clarkson, K. and Dromey, R., (1982), "Learning and Inductive
Inference". In: Cohen, P. and Feigenbaum E. (Eds.), The Handbook of Artificial
Intelligence, Morgan Kaufmann, Los Altos.

Dietterich, T.G., Michalski, R.S., (1986), "Discovering Patterns in Sequences of Objects", In:
Michalski, R.S., Carbonell, J., and Mitchell, T.M., (Eds.) Machine Learning- An Artificial
Intelligence Approach, Vol. Il, Morgan Kaufmann, Los Altos.

Fu, L.-M. and Buchanan, B.G., (1985), "Learning Intermediate Concepts in Constructing a
Hierarchical Knowledge Base". Proc. 9thint. Joint. Conf. Artificial Intelligence, UCLA.

Georgeff, M.P., Wallace, C.S. (1985), "A General Selection Criterion for Inductive
Inference", SRI Technical Note 372.

Hart, A., (1985), "The Role of Induction in Knowledge Elicitation". Expert Systems, 2.
Kitakami, H., Kunifuji, S., Miyachi, T. and Furukawa K., (1984), "A Methodology for

Implementation of a Knowledge Acquisition System". Proc. IEEE Int. Symp. on Logic
Programming, Atlanta City.

Kodratoff, Y., Ganascia J-G., (1986), "Learning as a Non-deterministic but Exact Logical
Process", In: Michalski, R.S., Carbonell, J., and Mitchell, T.M., (Eds.) Machine Learning
-An Artificial Intelligence Approach, Vol. l/, Morgan Kaufmann, Los Altos.

Langley, P., (1981), "Language Acquisition through error recovery", CIP working paper 43,
Carnegie-Mellon Uni.

Lenat, D.B., Davis, R., (1982), Knowledge-Based Systems for Artificial Intelligence,
McGraw-Hill.

Lloyd, J.W., (1984), Foundations of Logic Programming, Springer-Verlag.

~-13

Michalski, R., (1983), "A Theory and Methodology of Inductive Learning", Artificial
Intelligence, 20.

Michalski, R., Stepp, R.E., (1986), "How to Structure Structured Objects", In: Michalski,
R.S., Carbonell, J., and Mitchell, T.M., (Eds.) Machine Learning - An Artificial
Intelligence Approach, Vol. II, Morgan Kaufmann, Los Altos.

Michie, D., (1986), "Current Developments in Expert Systems". 2nd Australian Coriference on
Applications of Expen Systems, Sydney.

Mitchell, T.M., (1982), "Generalisation as Search". Artificial Intelligence, 18, pp203-226.
Mitchell, T.M., Mahadevan, S., Steinberg, L.I., (1985), "LEAP: A learning Apprentice for

VLSI Design". Proc. 9th Int. Joint. Conf Artificial Intelligence, Los Angeles.
Mitchell, T.M., Utgoff, P.E., Nudel, B., Banerji, R., (1981), "Learning Problem Solving

Heuristics through Practice". Proc. 7thint. Joint. Conf Artificial Intelligence, Vancouver.
Mooney, R., (1986), "A Domain Independent Explanation-based Generaliser", AAAI-86,

Proc. 5th National Conf.on Artificial Intelligence, Philadelphia.
Plotkin, G.D., (1970), "A Note on Inductive Generalisation". In: Michie, D., (Ed) Machine

Intelligence 5, pp153-163, Elsevbier North-Holland, New York.
Plotkin, G.D., (1971), "A Further Note on Inductive Generalisation". In: Michie, D., (Ed)

Machine Intelligence 6, pp101-124, Elsevbier North-Holland, New York.
Pundit, N., (1985), "On AI Applications", Invited Talk, Conf on Commercial Applications of

Expert Systems, (Sydney).
Quinlan, J.R., (1984), "Learning Efficient Classification Procedures and their Application to

Chess End games". In: Michalski, R.S., Carbonell, J., and Mitchell, T.M., (Eds.)
Machine Learning -An Artificial Intelligence Approach, Springer-Verlag.

_Quinlan, J.R., (1986a), "Inductive Knowledge Acquisition: A Case Study", 2nd Australian
Conference on Applications of Expen Systems, Sydney.

Quinlan, J.R., (1986b), "Induction of Decision Trees", Machine Learning, 1(1).
Rendell, L., (1986), "A General Framework for Induction and a Study of Selective Induction",

Machine Learning, 1(2).
Robinson, J.A., (1979), Logic Form and Function - The Mechanisation of Deductive

Reasoning, North-Holland, New York.
Sagiv, Y., (1986), "Optimizing Datalog Programs". In: Minker J. (Ed.),Workshop on

Foundations of Deductive Databases and Logic Programming, Washington.
Sammut, C.A. and Banerji, R.B., (1986), "Learning Concepts by Asking Questions". In:

Michalski, R.S., Carbonell, J., and Mitchell, T.M., (Eds.) Machine Learning -An Artificial
Intelligence Approach, Vol. II, Morgan Kaufmann, Los Altos.

Shapiro, E.Y., (1981), "Inductive Inference of Theories from Facts", TR 192, DCS, Yale
University.

Shapiro, E. Y., (1983), Algorithmic Program Debugging, MIT Press.
Subramanian, D., Feigenbaum, J., (1986), "Factorization in Experiment Generation", AAAI-

86, Proc. 5th National Confon Artificial Intelligence, Philadelphia.
Utgoff, P., (1986), "Shift of Bias for inductive Concept Learning", In: Michalski, R.S.,

Carbonell, J., and Mitchell, T.M., (Eds.) Machine Learning -An Artificial Intelligence
Approach, Vol. II, Morgan Kaufmann, Los Altos.

Vere, S.A., (1977), "Induction of Relational Productions in the Presence of Background
Information", Proc. 5th Int. Joint. Conf Artificial Intelligence, Cambridge MA.

V ere, S.A., (1980), "Multilevel Counterfactuals for Generalisations of Relational Concepts and
Productions", Artificial Intelligence, 14, pp139-164.

Vrain, C., (1986), "The use of Domain Properties Expressed as Theorems in Machine
Learning", Proc. I nt. Meeting on Advances in Learning, Les Arcs, France.

~-\4

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Generic Tasks for Knowledge-Based Reasoning: The
"Right" Level of Abstraction for Knowledge Acquisition*

Tom Bylander and B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio, USA 43210

Abstract

Our research strategy has been to identify gener£c tasks -- basic combinations of
knowledge structures and inference strategies that are powerful for dealing for
certain kinds of tasks. Our strategy is best understood by considering the
"interaction problem," that the representation of knowledge strongly interacts with
the inference strategy that is applied to the knowledge and with the task that the
knowledge is used for. The interaction problem implies that different knowledge
acquisition methodologies will be required for different kinds of reasoning, e.g., a
different knowledge acquisition methodology for each generic task. We illustrate
this using the generic task of hierarchical classification. Our proposal and the
interaction problem call into question many generally held beliefs about expert
systems, such as the belief that the knowledge base should be separated from the
inference engine.

Introduction

Knowledge acquisition is the process that extracts knowledge from a source (e.g. a
domain expert or textbook) and incorporates it into a knowledge-based system.
Because a knowledge-base representation is its target, knowledge acquisition cannot
be separated from a broader theory of knowledge-based reasoning. A solution to
knowledge acquisition must be compatible with a solution to the general problem of
knowledge-based reasoning.

For some time now, we have been developing a theory of generic tasks that
identifies several types of reasoning that knowledge-based systems perform and
provides a overall framework for the design and implementation of such

* Research supported by Air Force Office of Scientific Research, grant 82-0255, National Science
Foundation grant MCS-8305032, and Defense Advanced Research Projects Agency, RADC Contract
F30602-85-C-0010.

7-o

systems [Chandrasekaran 83, Chandrasekaran 84, Chandra 86 86]. In this paper,
we present our theory as a way to exploit the interaction problem. Because each
generic task exploits it differently, each one should be be associated with a different
knowledge acquisition methodology.

First: we pose and discuss the "interaction problem. 17 Next, we review our theory
of generic tasks: the characteristics of a generic task and the generic tasks that
have been identified so far. In view of the interaction problem, we propose our
theory of generic tasks as a framework for identifying different knowledge
acquisition methodologies. We illustrate this using the generic task of hierarchical
classification. Finally, we reflect on a number of beliefs that have driven much of
the past research on knowledge acquisition and knowledge-based reasoning.

The Interaction Problem

The interaction problem is this:

The representation of knowledge strongly interacts w£th the inference
strategy that is applz"ed to the knowledge and with the task that is performed
with it.

In other words, knowledge representations have a close relationship to how they are
used to solve problems. Knowledge is dependent on its use. The interaction
problem is not a new concept. Minsky, in his famous frame proposal, argues that
"factual and procedural contents must be more intimately connected to explain the
apparent power and speed of mental activities" [Minsky 75 - p. 211]. Marr has
noted that "how information is represented can greatly affect how easy it is to do
different things with it" [Marr 82 - p. 21]. Our argument takes a different
perspective, that the inference strategy and task influence what knowledge that is
represented, i.e., we will represent knowledge so that it takes advantage of how we
are going to use it.

The interaction problem, if true, has serious implications for how knowledge
acquisition should be done. Because some knowledge representation must be the
target of knowledge acquisition, knowledge acquisition methodologies must take the
interaction problem into account. Also, if different kinds of reasoning have
different kinds of interactions, there is a need for a different knowledge acquisition
methodology for each kind of reasoning.

The Interaction Problem for General Knowledge Representations

Each of the major forms of knowledge representation - rules, logic, and frames -
are subject to the interaction problem. Knowledge is affected by the task (different
tasks requi~e different knowledge) and by inference strategy (knowledge is adapted
to the strategy). In addition to giving examples of the interaction problem, we

7-l

also wish to emphasize that the generality of a representation does not make the
interaction problem disappear.

The Interaction Problem in Rules. The idea of rules is to explicitly map situations
to actions. Naturally then, the focus is on determining what conditions characterize
the situations and what conclusions characterizes the actions. The result is that
two different tasks in the same domain can have different rules representing the
"same" knowledge. For example in diagnosis, rules of the form "symptom -->
malfunction" will be implemented, while in prediction of symptoms, the rules will
be in the form "malfunction --> symptom". In each case, the rules will be tuned
to the task that is being performed. One might argue that there is no problem
with keeping both tasks in mind, and so both kinds of rules can be implemented
at the same time. Of course, given that one has already taken the interaction
problem into account, the knowledge base then will have rules appropriate for the
tasks to be performed.

Another source of interaction is that special programming techniques are needed to
encode task-specific inference strategies. For example, Rl [McDermott 82], which is
implemented in OPS5 [Forgy 81], performs a sequence of design subtasks, each of
which is implemented as a set of production rules. However, OPS5 has no
construct equivalent to a subtask, so the grouping of rules and the sequencing from
one set of rules to another are achieved by programming techniques. Clearly, Rl 's
task structure has had an significant effect on how knowledge was encoded in
OPS5 's production rule representation.

Different inference strategies for rules are also a source of interaction. If
EMYCIN's backward-chaining strategy is used, rules can combine with other rules
to increase or decrease confidence in a given conclusion [van Melle 79]. On the
other hand, if OPSS's recognize-and-act strategy is used, only one rule at a time
can fired, so that situations must be matched to actions much more exactly. Also,
the "context" must be carefully controlled to ensure that appropriate rules are
considered. Note that the difference is not whether EMYCIN does forward- or
backward-chaining, but that EMYCIN allows rules to act in parallel, while OPSS
applies rules in serial.

The Interaction Problem in Logic. Rule-based and logic-based representations are
fairly similar with respect to the interaction problem. Like rules, logic provides for
a direct way for drawing conclusions from situations. In the context of a specific
task, it is only useful to encode propositions that can make task-relevant
conclusions. Propositions for a diagnostic system would be like "if symptom A,
then maybe malfunctions X or Y or Z," while a prediction system would have
propositions like "if malfunction X, then maybe symptoms A or B or C." This
example also shows one danger in applying both kinds of propositions
indiscriminately. Given some confidence in malfunction X, then some confidence m
symptom A should be inferred, followed by inferring some confidence m
malfunctions Y and Z, which probably wasn't intended.

7-Z

Logic-based representations are also like rules with respect to implementing the
structure of a task and dealing with different inference strategies. To implement
Rl in predicate logic, for example, a subtask construct would also have to be
implicitly programmed. Two different inference strategies for logic, such as
PROLOG and resolution theorem proving, are quite different to use.

The Interact£on Problem in Frames. The emphasis in frame representations is on
describing the conceptual structure of the domain. However, different tasks might
need quite different conceptual structures. For example, classificatory problem
solving [Gomez and Chandrasekaran 81, Clancey 85] in general needs a
generalization hierarchy (hypothesis-subhypothesis), while routine design [Brown and
Chandrasekaran 84] in general needs a structural hierarchy
(component-subcomponent).

Frames are intended to flexibly interact with the inference strategy. After all, the
idea of procedural attachment is to embed procedures in the frames so that the
appropriate inferences are triggered.

Exploiting the Interaction Problem

The interaction problem will not go away no matter what representation is chosen.
Every knowledge-based system will be developed, debugged, and maintained so its
knowledge works with its inference strategy and so its knowledge in combination
with its inference strategy solves a certain set of problems. No one undertakes an
exhaustive study of a domain, i.e., acquires any and all the knowledge associated
with that domain. It would take too long and we humans are too lazy anyway.
We have learned that only a selected portion of domain knowledge needs to be
acquired to perform specific tasks.

Instead of trying to lessen the impact of the interaction problem, our research
strategy has been to exploit it. Our strategy is not new; exploiting the interaction
problem has been the "untold story" of knowledge-based systems, and perhaps of
AI in general. This should be obvious to anybody who has ever maintained a
knowledge-based system. To find and correct an error, one has to understand both
the problem solving and the knowledge base, and how they combined to cause the
error.

It should not be surpnsmg that different representations can be exploited in
different ways and are thus more applicable to certain kinds of tasks than others.
This is where our theory of generic tasks comes in. Our intent is to propose kinds
of reasoning in which the representation and the inference strategy can be exploited
to solve certain kinds of tasks. For a particular domain and task, our intent is to
encode a selected portion of domain knowledge into an efficient and maintainable
problem solving structure.

7-3

The Proposal

Intuitively one would think that diagnosis in different domains would have certain
types· of reasoning in common, and that design in different domains would also
have certain types of reasoning in common, but that diagnostic reasoning and
design problem solving will be generally speaking different. For example, diagnostic
reasoning generally involves malfunction hierarchies, rule-out strategies, setting up a
differential, etc., while design involves device/component hierarchies, design plans,
ordering of subtasks, etc. However, the formalisms (or equivalently the languages)
that have been commonly used for knowledge-based systems do not capture these
distinctions. Ideally, diagnostic know ledge should be rep resented by using the
vocabulary that is appropriate for diagnosis, while design knowledge should have a
vocabulary appropriate for design. Our approach to this problem has been to
identify generic tasks -- basic combinations of knowledge structures and inference
strategies that are powerful for dealing for certain kinds of tasks. The generic
tasks provide a vocabulary for describing reasoning tasks, as well as for designing
knowledge-based systems that perform them.

Characterization of a Generic Task

Each generic tasks is characterized by information about the following:

1. The type of task (the type of input and the type of output). What Is
the function of the generic task? What is the generic task good for?

2. The representation of knowledge. How should knowledge be organized
and structured to accomplish the function of the generic task?

3. The inference strategy (process, problem solving, control regime). What
inference strategy can be applied to the knowledge to accomplish the
function of the generic task?

4. The type of concepts that are involved in the genenc task. What
concepts are the input and output about? How is knowledge organized
in terms of concepts? How does the inference strategy operate on
concepts? In essence, we adopt Minsky's idea of frames as a way to
organize the problem solving process [Minsky 75].

The phrase "generic task" is somewhat misleading. What we really mean is an
elementary generic comb£nation of a task, representation, and inference strategy
about concepts. The power of this proposal is that if a problem matches the
function of a generic task, then the generic task provides a knowledge
representation and an inference strategy that can be used to solve the problem. It
should be noted that a problem might match the function of more than one generic
task, so that several strategies might be used to solve the problem, depending on
the knowledge that is available. Also, generic tasks can be composed for more

7-4

complex reasoning, i.e., a generic task may call upon another generic task to solve
a subproblem.

Examples of Generic Tasks

Our group has identified several generic tasks. Here, we briefly describe the
generic tasks of hierarchical classification [Gomez and Chandrasekaran 81] and
object synthesis by plan selection and refinement [Brown and Chandrasekaran 84].

Hierarchical Classzfication. Task: Given a description of a situation, determine
what categories or hypotheses apply to the situation.

Representation: The hypotheses are organized as a classification hierarchy in which
the children of a node represent subhypotheses of the parent. There must be
knowledge for calculating the degree of certainty of each hypothesis.

Inference Strategy: The establish-refine strategy specifies that when a hypothesis is
confirmed or likely (the establish part), its subhypothesis should be considered (the
refine part). Additional knowledge may specify how refinement is performed, e.g.
to consider common hypotheses before rarer ones. If a hypothesis is rejected or
ruled-out, then its subhypotheses are also ruled-out.

Important Concepts: Hypotheses.

Examples: Diagnosis can often be done by classification. In planning, it is often
useful to classify a situation as a certain type, which then might suggest an
appropriate plan. MYCIN [Shortliffe 76] can be thought of as classifying a patient
description into an infectious agent hierarchy. PROSPECTOR [Duda et al. 80] can
be viewed as classifying a geological description into a type of formation.

Object Synthesis by Plan Selection and Refinement. Task: Design an object
satisfying specifications. An object can be an abstract device, e.g. a plan or
program.

Representation: The object is represented by a component hierarchy in which the
children of a node represent components of the parent. For each node, there are
plans that can be used to set parameters of the component and to specify
additional constraints to be satisfied. There is additional knowledge for selecting
the most appropriate plan and to recover from failed constraints.

Inference Strategy: To design an object, plan selection and refinement selects an
appropriate plan, which, in turn, requires the design of subobjects at specified
points in time. When a failure occurs, failure handling knowledge is applied to
make appropriate changes.

7-5

Important Concepts: The object and its components.

Examples: Routine design of devices and the synthesis of everyday plans can be
performed using this generic task. The MOLGEN work of Friedland [Friedland 79]
can be viewed in this way. Also Rl's subtasks [McDermott 82] can be understood
as design plans.

Other Generic Tasks

Other generic tasks that have been identified include knowledge-directed information
retrieval [Mittal et al. 84], abductive assembly of explanatory hypotheses [Josephson
et al. 84], hypothesis matching [Chandrasekaran et al. 82], and state
abstraction [Chandrasekaran 83]. More detail on the overall framework can be
found in [Chandra 86 86].

Exploiting Classificatory Problem Solving

Each generic task exploits domain knowledge in a different way; it calls for
knowledge in a specific form that can be applied in a specific way. Because the
knowledge acquisition methodology must be able to extract and select the
appropriate knowledge, each generic tasks calls for a different knowledge acquisition
methodology. For illustration we consider the generic task of hierarchical
classification. In classification, the emphasis is on obtaining the classification
hierarchy that contains the hypotheses that are relevant to the task and adaptable
to the strategy. This section does not provide a complete knowledge acquisition
methodology for classification, but outlines a number of considerations that a
methodology must take into account. Additional guidelines for using classification
can be found elsewhere [Mittal 80, Bylander and Smith 85].

Determining Hypotheses of Interest

Classificatory problem solving is useful for determining the hypotheses that apply to
a situation. The first step then is to decide upon the hypotheses that the problem
solver. should potentially output. For example in diagnosis, the potential
malfunctions of the object should be considered. The goal here is to determine the
specific categories that should be produced, so if a general category is considered
(e.g. "something is wrong with X"), then more specific categories should be
generated (e.g. by asking "What types of problems can occur with X?").
Determining the usefulness of a category is discussed below.

Analyzing Commonalities among Hypotheses

Once a collection of classificatory hypotheses have been identified, one needs to
determine the commonalities among the hypotheses. These commonalities become
potential candidates for mid-hierarchy hypotheses in the classification hierarchy.

7-G

The easiest example to handle is when one hypothesis is clearly a subhypothesis of
another, i.e., it asserts a more specific category. In general, two hypothesis may
have commonalities along the following lines:

• Definitional - The two hypotheses share a definitional attribute, e.g.,
hepatitis and cirrosis are liver diseases. Rain and snow are forms of
precipitation.

• Appearance - The two hypotheses are recognized using common pieces of
evidence. Both cholestasis and hemolytic anemia have jaundice as a
common symptom. Wet grass is symptomatic of both rain and dew.

• Planning - The two hypotheses are associated with similar plans of
action. Both the common cold and allergies are reasons to take plenty
of facial tissue with you. Either lightning or strong winds are good
reasons for staying inside ..

The ideal hypothesis asserts some definitional attribute over all its subhypotheses,
has an appearance common to all its subhypotheses, and also provides constraints
on the plans associated with its subhypotheses.

In general, the hierarchy should follow a definitional decomposition whenever
possible. However, there are cases where appearance is an important consideration.
For example, the Dubin-Johnson syndrome is a benign hereditary disorder that
mimics key symptoms of cholestasis (jaundice, conjugated hyperbilirubinemia - high
amounts of conjugated bilirubin in the blood). Because it looks so much like
cholestasis, it is most useful to make it a subhypothesis of cholestasis.

Assessing Evidence for or against Hypotheses

The above two steps should generate a large number of hypotheses. However, not
all of them will be useful for classificatory problem solving, i.e., there is a need to
select a classification hierarchy that can be used to exploit the establish-refine
strategy, getting rid of any intermediate hypothesis do not provide additional
problem solving power. Because the language we have used for classification,
CSRL, requires a classification tree [Bylander and Mittal 86], we have become
familiar with some of the strategies for evaluating hypotheses. However, the
following questions are relevant whether a tree or tangled hierarchy is used.

• Are there sufficient criteria to distinguish the hypothesis from other
hypotheses? In other words, does this hypothesis have a different
appearance from other hypotheses?

• Is there evidence that distinguishes the hypotheses .from its siblings?
Because the establish-refine strategy does not consider a hypotheses
unless its parent (or one of its parents in a tangled hierarchy) is

relevant, evidence that distinguishes the hypothesis from its siblings 1s
especially important.

• Is the evidence normally available? Evidence for or against an
hypothesis is not very useful if is not likely to be available to the
system when it is running. For example in medical diagnosis, some
tests are relatively risky, expensive, or time-consuming to perform, so it
is best to use hypotheses that rely on outward signs and symptoms and
generally available laboratory data.

We have generally used another generic task, hypothesis matching, for mapping
evidence to confidence values in hypotheses [Chandrasekaran et al. 82]. However,
we do not want to complicate the central issue by considering combinations of
generic tasks. Examples of how hypothesis matching can be exploited are provided
in [Sticklen et al. 85] and [Bylander and Mittal 86].

Debugg£ng Hypotheses

An important part of knowledge acquisition is being able to find out what
knowledge was incorrect or left out when something goes wrong. In classification,
the following problem can occur.

• Wrong confidence value - Debug the knowledge that produces the
confidence value. Sticken et al. [Sticklen et al. 85] describes how
hypothesis matching can be debugged. The problems below assume that
the confidence values are reasonable in view of the evidence considered.

• Bad hierarchical structure - If a hypothesis was incorrectly considered or
incorrectly left unconsidered, the problem may be simply that the
hypothesis is in the wrong place in the hierarchy. The hypothesis is
not, by definition or appearance, a subhypothesis of its parent (or some
other ancestor).

• Failure to consider - Another reason why a hypothesis might not be
considered is because an ancestor was not refined. The problem might
be that there isn't enough evidence to support a high level of confidence
in the ancestor. In this case, a restructuring is necessary in order to
provide a way for establish-refine to reach the hypothesis. Less drastic
solutions are lowering the threshold for refining the ancestor or
considering more evidence for the ancestor.

• Establish-refine strategy is too simple - Sometimes a hypothesis should
not be considered even if its parent is established. For example, if one
of the hypothesis's siblings is confirmed, and the hypothesis is
incompatible with its siblings, then the hypothesis should not be
considered. . The solution here is to adapt the establish-refine strategy to

1-6

take this additional information into account. It should be noted that
this problem is not a defect of establish-refine. Instead, it shows that
establish-refine is really a family of strategies. The CSRL language, for
example, provides a default establish-refine strategy and allows other
establish-refine strategies to be defined.

The Point of Classzfication

The real reason for doing hierarchical classification is to obtain the hypotheses that
describe a situation. Therefore, we should adopt knowledge acquisition
methodologies that are intended to produce efficient and maintainable classification
systems. To do this, we need to exploit the interactions between the
representation, inference strategy, and the task. For classification, it means that
each potential hypotheses of a classification hierarchy must be evaluated with
respect to how well it interacts with the establish-refine strategy and whether the
task may need to output it.

A Reexamination of Past Beliefs

Some generally held beliefs about knowledge-based systems need to be reexamined
in light of the interaction problem and our proposal to exploit it. These beliefs
have served the first generation of knowledge-based systems well, especially in
stimulating much research and discussion. However, we believe it is the time to
reconsider them.

Belief #1: Knowledge should be umformly represented and controlled.

This belief denies the interaction problem and implies that there is nothing to be
gained by using different representations to solve different problems. Our
experience is that when the problems of a domain match the generic tasks, the
generic tasks provide explicit and powerful structures for understanding and
organizing domain knowledge.

Belief #2: The knowledge base should be separated from the inference engine.

This belief denies that the inference strategy affects how knowledge is represented.
However, its real effect has been to force implementors to implicitly encode
inference strategies within the knowledge base. Both MYCIN, whose diagnostic
portion is best understood as classification, and Rl, which is best understood as
routine design, show that this separation is artificial.

Belief #3: Control knowledge should be encoded as metarules.

Although metarules address the problem of how to have multiple, explicit strategies
in a rule-based system, the metarule approach ignores other aspects of the
interaction problem. The "separation of control knowledge from domain

7-4

knowledge" promotes the view that domain knowledge can be represented
independent of its use, i.e., that different sets of metarules can be applied as
needed. However, given a clear strategy (whether metarules or inference engine)
and a task to be performed, the domain knowledge will be adapted to interact with
the strategy to solve the task.

Belief #4: The ontology of a domain should be studied before considering how to
process it.

We believe that ontology should not be performed just for its own sake, but in
view of the tasks that need to be done. For example, to apply classification to a
domain, there is a need to focus on the hypothesis space and evaluate hypotheses.
Although other knowledge structures (e.g. component hierarchies, causal networks)
may be useful for other generic tasks, if classification is going to be performed,
then knowledge acquisition should concentrate on those aspects of the domain that
are relevant to classification. This is not to say that a domain shouldn't be
analyzed to identify what generic tasks are appropriate; however, this kind of
domain analysis does not require an exhaustive ontology of the domain.

Belief #5: Correct reasoning is a critical goal for knowledge-based systems.

Everything else being equal, being correct is better than being incorrect. However,
an emphasis on correctness detracts from more critical issues. One of those issues
is developing an understanding of the appropriate strategies to be applied to a
task. For example, there has been much research and debate about normative
methods for calculating uncertainty. The reasoning problem, though, is not how to
precisely calculate uncertainty, but how to avoid doing so. In diagnosis, e.g., there
is much more to be gained by using abduction (assembling composite hypotheses to
account for symptoms), then by independently calculating the degree of certainty of
each hypothesis to several decimal places of accuracy.

Belief #6: Completeness of inference is a critical goal for knowledge-based systems.

Everything else being equal, being complete is better than being incomplete, but an
emphasis on completeness ignores the fact that certain kinds of inferences will be
more important than others for a particular task. For example in our description
of classification, we did not mention that when a subhypothesis is confirmed, one
can infer that its ancestors are also confirmed. However, that inference is not the
crucial aspect of classification. The important inference is that when a hypothesis
is confirmed or likely, then its sub hypotheses should be considered.

Belief #7: A representation that combines rules, logic, frames, etc.· 1s what 1s
needed.

Such representations appear to be a good compromise since they let you represent
knowledge in the "paradigm" of your choice. Unfortunately, this is, at best, only

7-lo

an interim solution until something better is found. None of the individual
representations fully address the interaction problem, nor do they distinguish
between different types of reasoning.

Generic Tasks at the "Right" Level of Abstraction

The first generation of research into knowledge-based systems has conducted a
extensive search for a "holy grail" of representation, in which knowledge could be
represented free of assumptions of how it would be used. For any particular task,
though, certain kinds of inferences will become critical to the task, and
consequently, domain knowledge needs to be organized so those inferences are
performed efficiently. This is how the interaction problem arises, and why it will
never go away. Instead of futilely trying to avoid it, the interaction problem needs
to be studied and understood so that methods of exploiting it can be discovered
and applied.

Our theory of generic tasks is an attempt to provide the "right" level of
abstraction for this and other problems of knowledge-based reasoning. Each generic
task provides a knowledge structure in which knowledge can be organized at a
conceptual level. In classification, the concepts are hypotheses organized as a
classification hierarchy. Each generic task identifies a combination of a task
definition, representation, and inference strategy that exploits the interaction
problem. We have shown how the generic task of classification can be associated
with a knowledge acquisition methodology that takes advantage of the interactions
between domain knowledge and classificatory problem solving.

References

[Brown and Chandrasekaran 84]
D. C. Brown and B. Chandrasekaran.
Expert Systems for a Class of Mechanical Design Activity.
In Proc. IFIP WG5.2 Working Conference on Knowledge

Engineering in Computer Aided Design. IEEE Computer
Society, Budapest, Hungary, 1984.

[Bylander and Mittal 86]
T. Bylander and S. Mittal.
CSRL: A Language for Classificatory Problem Solving and

Uncertainty Handling.
AI Magazine 7(2):66-77, 1986.

[Bylander and Smith 85]
T. Bylander and J. W. Smith.
Mapping Medical Knowledge into Conceptual Structures.
In Proc. Expert System in Government Symposium, pages 503-511.

IEEE Computer Society, McLean, Virginia, 1985.

7- ,,

[Chandra 86 86] B. Chandrasekaran.
Generic Tasks in Knowledge-Based Reasoning: High-Level Building

Blocks for Expert System Design.
IEEE Expert 1(3):23-30, 1986.

[Chandrasekaran 83]
B. Chandrasekaran.
Towards a Taxonomy of Problem Solving Types.
AI Magazine 4(1):9-17, 1983.

[Chandrasekaran 84]
B. Chandrasekaran.
Expert Systems: Matching Techniques to Tasks.
Artificial Intelligence Applications for Business.
Ablex, Norwood, New Jersey, 1984, pages 116-132.

[Chandrasekaran et al. 82]

[Clancey 85]

B. Chandrasekaran, S. Mittal, and J. W. Smith.
Reasoning with Uncertain Knowledge: The MDX Approach.
In Proc. Congress of American Medical Informatics Assoc£ation,

pages 335-339. AMIA, San Francisco, 1982.

W. J. Clancey.
Heuristic Classification.
Art%jic£al Intelligence 27(3):289-350: 1985.

[Duda et al. 80] R. 0. Duda, J. G. Gaschnig, and P. E. Hart.
Model Design in the Prospector Consultant System for Mineral

Exploration.
Expert Systems in the Microelectronic Age.
Edinburgh University Press, 1980, pages 153-167.

[Forgy 81] C. L. Forgy.
OPS5 Users Manual.
Technical Report CMU-CS-81-135, Carnegie-Mellon University, 1981.

[Friedland 79] P. Friedland.
Knowledge-based Experiment Design in Molecular Genetics.
PhD thesis, Computer Science Department, Stanford University,

1979.

[Gomez and Chandrasekaran 81]
F. Gomez and B. Chandrasekaran.
Knowledge Organization and Distribution for Medical Diagnosis.
IEEE Trans. Systems, Man and Cybernetics SMC-11(1):34-42, 1981.

7-11.

[Josephson et al. 84]

[Marr 82]

J. R. Josephson, B. Chandrasekaran, and J. W. Smith.
Assembling the Best Explanation.
In Proc. IEEE Workshop on Principles of Knowledge-Based Systems,

pages 185-190. IEEE Computer Society, Denver, 1984.

D. Marr.
Vision.
W. H. Freeman, 1982.

[McDermott 82] J. McDermott.

[Minsky 75]

[Mittal 80]

R1: A Rule-based Configurer of Computer Systems.
Artificial Intelligence 19{1):39-88, 1982.

M. Minsky.
A Framework for Representing Knowledge.
The Psychology of Computer Vision.
McGraw-Hill, 1975, pages 211-277.

S. Mittal.
Design of a Distributed Medical Diagnosis and Database System.
PhD thesis, Dept. of Comp. and Info. Sci., The Ohio State

University, 1980.

[Mittal et al. 84]
S. Mittal, B. Chandrasekaran, and J. Sticklen.
Patrec: A Knowledge-Directed Database for a Diagnostic Expert

System.
Computer 17(9):51-58, 1984.

[Shortliffe 76] E. H. Shortliffe.
Computer-Based Medical Consultations: MYCIN.
Elsevier, New York, 1976.

[Sticklen et al. 85]
J. Sticklen, B. Chandrasekaran, and J. W. Smith.
MDX-MYCIN: The MDX Paradigm Applied to the MYCIN

Domain.
Computers and Mathematics with Applications 11(5):527-539, 1985.

[van Melle 79] W. van Melle.
A Domain Independent Production-Rule System for Consultation

Programs.
In Proc. Sixth Interational Conf. on Artificial Intelligence, pages

923-925. Tokyo, 1979.

7-13

Acquisition of Uncertain Rules in a Probabilistic Logic

John G. Cleary
Dept. Computer Science,

University of Calgary,
2500 University Dr.,·

Alberta T2N 1N4,
Canada.

uucp: cleary@calgary ARPA:cleary.calgary.ubc@csnet-relay CRNET:
cleary@calgary.cdn CSNET:cleary.calgary@ubc

ABSTRACT
The problem of acquiring uncertain rules from examples is considered. The uncertain rules
are expressed using a simple probabilistic logic which. obeys all the axioms of propositional
logic. By using three truth values (true, false, undefined) a consistent expression of
contradictory evidence is obtained. As well the logic is able to express the correlations
between rules and to deal both with uncertain rules and with uncertain evidence. It is
shown that there is a subclass of such rules where the probabilities of correlations between
the rules can be directly computed from examples.

UNCERTAIN RULES
Uncertainty is an important part of many ruled based expert systems. For example,
applications such as medical diagnosis do not allow anything but the weakest inferences to
be made from available evidence. To report certain conclusions is both incorrect and
misleading. A number of schemes for expressing and computing such uncertainties have
been developed. For example, in MYCIN and EMYCIN "certainty factors" are used
(Shortliffe, 1976). A certainty factor is a number between -1 and +1, -1 is intended to
express sure knowledge that something is false and +1 sure knowledge that it is true.
Intermediate values express varying degrees of ambivalence about the truth. For example 0
expresses a complete lack of knowledge about truth or falsity. Such certainty factors can
be used in a number of ways. For example a rule such as:

will-rain<= dark-cloud and falling-pressure with certainty 0.6;
says that it is almost certainly true that if there is dark cloud around and the barometric
pressure is falling then it will rain, although, there will be some cases where this is not
trUe. Certainty factors can be propagated through the system to evaluate the certainty of
conclusions. For example the conclusion 'will-rain' would be given a certainty factor
based on the certainty of the rule above and the certainties of 'dark-cloud' and 'falling
pressure'. Unfortunately there are grave problems with using certainty factors in this way.
Consider the additional rule:

will-rain <= lightning with certainty 0.4;
If both these rules fire then 'will-rain' is given a higher certainty factor than if only one of
them fires. Unfortunately the second rule is merely another way of saying that storm
clouds are present and the conclusion is not much more true as a result.

These problems can be seen more starkly by considering the expression '(dark-cloud or not
dark-cloud)' or the expression '(dark-cloud and not dark-cloud)' which are respectively
always true or false. However certainty factors ignore the fact that the two parts of the
expression are correlated (the same) and report intermediate values for both expressions.

Another way to approach this is to use the probability that an expression is true rather than
certainty factors. Again problems arise that are similar to those above. For example, one
scheme used to compose such probabilities is obtained by assuming the various parts of an
expression are uncorrelated: ·

p andq =p x q
p or q = p + q- pxq
notp = 1-p

Let p=1/2 then (p and not p) = 1/4 and (p or not p) = 3/4, neither of which is correct.

A second evaluation scheme (Zadeh, ·1965) assumes that some correlation can occur
between expressions and lets:

p and q = min(p,q)
p or q = max(p,q)
not p = 1-p

Again let p=l/2 then (p and not p) = 1/2 and (p or not p) = 1/2 which are both wrong. This
scheme does not overweight rules which are similar but does underweight rules which are
independent.

Another weaker scheme (Quinlan, 1983) uses intervals of probabilities. It is based on the
principle that the following inequalities always hold:

max(0,1-p-q) s; (p and q) s; max(p,q)
max(p,q) s; (p or q) s; min(1,p+q)
not p=1-p

By only asserting that the probability for an expression lies in some range it never asserts
anything which is false. For example if p = 1/2 it deduces that:

0 s; (p and not p) s; 1/2
and 1/2 s; (p or not p) s; 1.
While true these inequalities are too weak to be generally useful.

A related problem is that some conclusions may have evidence both indicating that they are
true and indicating that they are false. It seems, intuitively, that the situation where there is
no evidence about something is different from the one where there is a known 0.5
probability that it is true and a known 0.5 probability that it is false. The schemes
mentioned above also have problems in consistently accomodating both positive and
negative evidence.

Considerations such as these show that it does not seem to be possible to provide a
quantitative theory of truth and falsity using just prob'!bility values for expressions. In the
next section an alternative is introduced which circumvents this by using (potentially
infinite) sequences of bits to represent the truth or falsity of a statement. Probabilities can

be extracted after reasoning is complete but the calculations cannot take place using just the
probabilites. Other attempts to provide a logical basis for uncertain reasoning have been
made (Shapiro, 1983), (van Emden, 1986) but because they are based on the probability
values of expressions they also are heir to the ills described above.

A PROBABILISTIC LOGIC
The technique used here is to assign each expression an infinite sequence of true/false
values rather than just one true/false possibility. This is trivially different from the normal
prepositional calculus. All theorems hold, for example, (p or not p) =(true, true, ...) and
(p and not p) = (false,false, ...). In order to make this useful a new family of logical
constants are introduced. Each constant is some infmite sequence of true/false values with
a fixed probability that it will be true. The constants are written in the form t(x) where x is
the probability that an item in the sequence is true. So, it is always true that t(1) = (true,
true, ..) and t(O) = (false, false, ...).

When evaluating a logical expression with these constants some actual value has to be
.assigned to them. There are a number of ways of doing this and it is convenient to assume
that different constants are uncorrelated. That is, the probability of a true in the sequence
(t1(x) and t 2(y)) is always xxy. In practice these infinite uncorrelated sequences are
likely to be approximated by finite sequences of pseudo-randomly generated bits.

To express an uncertain rule the constants can be used as follows:
will-rain <= dark-cloud and falling-pressure and t(0.6);

This says that if there is dark cloud and falling barometric pressure then in 0.6 of the cases
there will be rain. The second rule can be expressed as:

will-rain <=lightning and t(0.4);
This has still not solved the problem that the two rules are highly correlated but they can be
reformulated as:

lwill-rain <=dark-cloud and falling-pressure and t 1(0.75)
and
will-rain <= lightning and t 2(0.5)

J <= "'J(O.S)

This reformulation says that the two rules have a common cause which says that they are
true 80% of the time. As a result of this the probability of will-rain will only be weakly
augmented when both rules fire, solving the original problem of expressing the fact that the
two rules are not independent of each other. By rewriting these rules in the equivalent form
below it can be seen that the original t(0.6) has been replaced by (t1 (0.75) and t 3(0.8)) and
t(0.4) by (t2(0.5) and t 3(0.8)):

will-rain<= dark-cloud and falling-pressure and t 1 (0.75) and t 3(0.8)
will-rain<= lightning and t 2(0.5) and t 3(0.8)

In this way sets of rules with arbitrary correlations between them can be expressed.
However, it is not clear that all possible ways of using the logical constants are useful. The
form used above where sets of rules are enabled seems to be an intuitive way of expressing
such realtionships and, as will be seen later, it has some advantages when the probabilities
of the constants are acquired from experience. However, the acid test for such formalisms

is whether computer naive experts can express their intuitions in this form. No tests of this
have been done nor has there been exploration of possible ways of "sugaring" the syntax to
make it more palatable.

Probabilities can be extracted from our logical sequences by counting the number of true
values in the sequence and taking the limit. The result of all this is a probability logic
(Gaines, 1984), (~escher, 1963). The logic obeys all the usual logical axioms including
the tautology (x or not x).

Rule Sets
As is usual in rule based systems, it is necessary in practice to restrict attention to the Horn
clause subset of the logic. In the next section the logic and the types of allowable rules will
be extended to cater for negation and the possibility of evidence both for and against a
proposition.

. .
The normal situation in an expert system is a fixed body of rules (Horn clauses) which
encodes the invariant knowledge about the problem at hand, and a set of facts which
describes the current situation. The existence of a probabilistic logic allows some useful
extensions to this view. For example, a fact can be stated as an additional "rule" of the
form:

dark -clouds <= 't(1)
and additionally uncertain evidence (I think there is a 50% chance that those are dark
clouds) can be accomodated by a rule of the form:

dark-clouds<= 1:(0.5)
There is also nothing to stop the head of such a "factual" rule from from being an
intermediate deduction which is also computed elsewhere by a set of rules. For example
the user might say "it is going to rain with probability 0.5 although there is nothing in the
rules to support this." and enter this as a "factual" rule:

rain <= 't(0.5)

In order to effectively compute the consequences that result from such rule sets it seems to
be necessary to restrict them to those with fmite derivation trees (van Emden, 1986). That
is, no recursive rules are permitted. This accords well with the normal situation in rule
based expert systems. The use of the a-13 heuristic in such evaluations has been discussed
for truth-functional logics of uncertainty (ibid), and can also be used here.

Bit Sequences
Infinite sequences of bits can be made computationally tractable by approximating them
with fmite pseudo-random sequences of bits. The probabiliti~s are in turn approximated by
counting over these finite sequences. Tlie major question this approximation raises is the
accuracy with which the finite sequences represent the probabilities which would be
generated by infinite length sequences. The accuracy is dependent on both the number of
bits used and on the ability of the system to generate a large number _of uncorrelated
pseudo-random sequences. It is easily shown that the standard deviation of the estimated
probability is given by .Vp(1-p)/N, where N is the number of bits and p is the probability of

~-3

a bit being true. So for N=32 and p=1/2 the results will be accurate to ±10%, for N=1024
this is reduced to ±1.5%. Even the ±10% figure is well within the errors acceptable in
existing systems (Shortliffe, 1976, p183). Conversely, 1024 bits is only 32 32-bit words
so the logical operations required should not be too burdensome amongst all the other
activities of an expert system. It is necessary to generate a number of uncorrelated random
sequences for the different 't sequen~es. As noted in (Gaines, 1969, Sec. 4.16) it is easy to
generate a large number of uncorrelated sequences with p=l/2 using suitably long shift
registers. For example, with N=1024 a single 33 bit shift register can deliver "223

independent sequences. These are readily combined to deliver sequences with appropriate
probabilities. The stochastic computing systems described in (Gaines, 1969) are well
suited to performing the types of computations needed here.

NEGATION_
Negation poses problems for Horn clause logics in general. The essential problem is that
the statement of facts about particular situations must include information that some things
are true, that others are false and that some are just not known. The usual way of handling
this is to make the .closed world assumption that if something cannot be proven then it is
false. This is far too draconian for the current purposes as it makes it impossible to express
that a fact is unknown. It is ridiculous to conclude that because I do not know whether it is
sunny therefore it must definitely be cloudy.

A resolution of this is to extend the truth values to include undefined as well as true and
false and to introduce two distinct forms of negation. As above, the truth values are infinite
sequences (this will be ignored whenever convenient). The interpretation of true is
"provably true" and of false is "provably false". The two forms of negation are denoted by
- and,, Their truth tables are:

-1
t u f -,I t u f

f u t f t t

- should be interpreted as "provably not" and, as "not provable". So, corresponds to
the normal closed world notion of negation. The truth tables for the various connectives
are:

A t u f V t u f <= t u f

t t u f t t t t t t u f
u u u f u t u u u t u u

f f f f f t u f f t t t

Note that as a result of these definitions a <= b is equivalent to a v -b.

We would like the expression (x or not x) always to be true and (x and not x) always to be
false. These need to be restated carefully in the new logic but there do indeed exist

statements with the correct properties. For example, x v -,x is always true (x is provably
true or not provably false) and -x v xis never false. Similarly, -,(-,x 1\ x), -(-,x A x) and
-,(-x A x) are always true.

Extended Horn Clauses
To accommodate these new notions the form of clauses allowed in the rule set can be

· extended as follows. The general form of rules is:

where a, the head of the clause, can be a term of the form x or -x and the bi can be of the
form -x, -,x or x where xis some atomic formula. Also, the bi can be constants of the
form 't(p) or -'t(p). -,xis not permitted in the head of a clause. Because the 't constants
can only occur on the right-hand side of rules which will not "fire" if any of their terms are
undefmed, there is no need to allow for undefined values in the infinite constants. There is
no logical reason to exclude them, they just serve no useful purpose in this Horn clause
logic.

The operational interpretation of these rules is that whenever x appears in the head of a rule
whose body evaluates to true, then x is forced to true. Similarly if -x appears in the head
of a rule then this forces the truth value of x to false. A weaker form of the closed world
assumption is needed to completely define this procedure, that is, "if a value cannot be
proven true or proven false then it is undefined". This seems much more palatable than the
original form. These procedures ensure that none of the rules is provably false.

Contradiction
This opens the possibility that two rules will attempt to force the same conclusion to be
both true and false. In systems with a single truth value such a contradiction is
catastrophic, the rule set has to be rejected (or debugged). If an infmite sequence of values
is available the situation is not as bad. Any position along the sequence which generates a
contradiction on any value at the head of a rule will cause all con~lusions at that position to
be ignored. In a rule set where this happens a lot~ the precision of the inferred probabilities
will drop as a smaller number of positions are available to count from. Although any high
probability of contradiction will be untenable the system is at least graceful enough to allow
some degree of contradiction and not fail catastrophically.

ACQUISITION
Derivin& Constants From Observations
Putting logic aside briefly, we can consider the normal task of statistics which is
exemplified by the question "predict whether it will rain given the current observations".
Statistics tells us that what should be done is to count the number of times it has rained
when the values of all the observations are the same as the current situation. The fraction
of times that it has rained in these circumstances is the probability that it will rain again.
However, typically there are many observations that can be made and it is unlikely that
exactly the current situation has ever occurred in the past. This is now a form of the zero
frequency problem, "what is the probability that something which has never occurred in the

past will occur now". Statistics per se can give us no answer to this question; it must be
sought from other knowledge about the problem.

One way to do this is to select some subpart of the current situation which is judged to be
particularly relevant. If this subpart is sufficiently small then the current values will have
occurred before and statistics can now be brought into play. What results is effectively a
rule. For example, if the features judged to be relevant to rain are dark clouds and falling
barometric pressure then statistics tell us how often the rule:

will-rain <= dark-cloud and falling-pressure;
is true. More can be gained by reformulating this into a rule in probabilistic logic:

will-rain<= dark-cloud A falling-pressure A t 1(p)

p can be estimated by counting all the observations on which the statistics are based. To be
more precise the value of t 1 can be computed using the inverse rules:

and
- t 1 <=dark-cloud A falling-pressure A- will-rain ;

t 1 <=dark-cloud A falling-pressure A will-rain ;

The first of these is needed to avoid contradictions. The second is adopted to maximize the
utility of the rule and to avoid the trivial situation where t 1 is always false. The number of
instances where t 1 is (provably) true or false can be used to estimate p (the cases where it is

undefined need not be counted).

These two rules for computing t 1 are particulalry useful because they are in the Horn clause

form introduced earlier and so can be readily computed. Unfortunately, not all uses of
logical constants can be so readily inverted. I will first consider some useful cases where
the inversion is possible and then discuss some of the difficulties which arise in other
cases.

The general case is that which arises when using nested rules of the form

l
will-rain <= dark-cloud A falling-pressure A t 1

will-rain<= lightning A t 2

Following the same reasoning as above the requirement that the rules fire as often as
possible gives:

t 1 A t 0 <=dark-cloud A falling-pressure A will-rain
t 2 A t 0 <=lightning A will-rain

These two implications readily expand to the four Horn clauses
t 1<= dark-cloud A falling-pressure A will-rain
t 2 <=lightning A will-rain
t 0 <= dark-cloud A falling-pressure A will-rain
t 0 <= lightning A will-rain

The requirement that the rules not be contradictory gives the two implications:
-(t1 A t 0) <=dark-cloud A falling-pressure A -will-rain
-(t2 A t 0) <=lightning A -will-rain

These cannot be so readily handled as there is ambiguity as to which of the constants
should be set false when a rule fails. This ambiguity can be resolved by again saying that
the rules should fire as often as possible and so only setting 'to false when both rules fail
that is:

-1:1 <= dark-cloud A falling-pressure A -will-rain
-tz <=lightning" -will-rain
-to <= --r 1 " -'tz

Thus the original two Horn clauses give seven inverted Horn clauses for computing the
probabilities of the constants.

This procedure "is readily extended to any set of such nested rules where each constant
appears only once. The rule sets may also be nested more than one deep as in:

l
(a<=bA'tz
\c <= d" -r3

.e <= f" -r4

)<= 'tl

The relationships allowed by such rules are tractable in that their inverses give Horn
clauses. They also seem to be able to encompass a useful set of inter-relationships between
rules. It may be that a larger tractable class of rules is available but some simple examples
will illustrate the problems involved. Consider the following three rules:

a<= b A 't1
a<=cA'tz
d <=eA 't1

The naive inverse rules for this case are:

i) 't1 <= b A a
ii) -'t1 <= b " -a
iii) 'tz <= c " a
iv) --r2 <= c A -a
v) 't1 <= e A d
vi) --r1 <= e " -d

Because -r1 occurs twice in the head of a rule it may be forced into a contradiction. For
example, if a, b, and e are true and d is false then -r1 should be set to both true and false.

Presumably this is a signal that the rules should be debugged. However, the situation is
slightly more complex than this. Because a occurs twice at the head of two of the original
rules, i) and iii) together are too strong. If c is also true then the second rule will fire and it
is not necessary to force -r1 to be true. This situation can be resolved by the new weaker

inverse rule:

<8-7

Because of the very complex interelationships that can exist between the constants it is not
clear in general how to resolve such situations and in particular how to guarantee that there
are not circular realtionships in the inverse rules.

Examples
A particularly interesting way of constructing the 't constants is to use example cases
provided by the expert. These are presumably carefully chosen synthetic cases which are
important in practice. They can be handled in the same way as normal observations with
the extra possibility that the counts can be more heavily weighted than cases encountered in
day to day experience.

Observations where some of the facts are uncertain can also be handled in a similar way.
For example, it may be known only that it is cloudy with probability 0.4 and sunny with
probability 0.3 (leaving an uncertainty of 0.3). When cloudy is set true, one set of values
for the constants will be computed; if it is set false (or undefined) then another set will be
computed. So if a number of different pseudo-observations are made where cloudy is true
40% of the time and false 30% of the time then the counts for the various constants can be
incremented by a suitably small value each time. That is the same procedure can be used
for evaluating the inverse rules as is used for evaluating the original rules.

SUMMARY
The major contribution of this paper is to provide a logical framework within which
uncertain rules can be expressed and their uncertainties assessed from experience. The
logic on which the rules are based does not suffer from many of the problems which other
more ad hoc schemes are heir to. Most importantly the logic allows an automatic way of
updating uncertainties including the correlations and redundancies between different rules.

There are a number of unresolved questions. It is not clear how easily such rules and their
relationships can be expressed and understood by experts. Similarly, the subset of rule

types which can be easily inverted needs to be extended where possible and evaluated in
practice.

ACKNOWLEDGEMENTS
This work was supported by the Natural Sciences and Engineering Research Council of
Canada.

REFERENCES

van Emden, M.H. (1986) "Quantitative Deduction and its Fixpoint Theory,'' J. Logic
Programming, 3(1) 37-53. ·

Gaines, B.R. (1969) "Stochastic Computing Systems," in Advances in Information
Science Vol. ll. Tou, J. (Ed). 37-173. Plenum.

Gaines, B.R. (1984) "Fundamentals of Decision," Studies in the Management Sciences,
20, 47-65.

Rescher, N. (1969) Many-Valued Logic. New York, McGraw-Hill.

Shapiro, E.Y. (1983) "Logic Programs with Uncertainties," in Proc. 8th I.J.C.A.I.
Bundy, A. (Ed). 529-532. William Kaufman.

Shortliffe, E.H. (1976) Computer-Based Medical Consultations. New York, Elsevier.

Quinlan, J.R. (1983) "Inferno: a Cautious Approach to Uncertain Inference," The
Computer Journal, 26(3) 255-269.

Zadeh, L.A. (1965) "Fuzzy Sets," Information and Control, 8, 338-353.

Knowle<J.ge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986
Cognitive Biases and Corrective Techniques: Proposals for Improving

Elicitation Procedures for Knowledge-Based systems

By David A. Cleaves, Project Leader
Fire Economics and Management Research

USDA Forest Service
Pacific Southwest Forest and Range Experiment Station

4955 Canyon Crest Drive, Riverside, CA 92507

Expert system output is only as good as the expert judgments on which the
system is based. Expertise may be looked on as the ability to distinguish
causal from random occurrence. Judgments of expert and novice alike have been
shown to reflect systematic biases in cornp:irison with normative statistical
logic. These biases may be important where accuracy, consistency, and
coherence are important attrib.ltes of the required judgment. Several biases
and their cognitive origins are discussed in the context of J:uilding
knowledge-based systems for wildland fire control. Preliminary guidelines are
offered for recognizing and correcting biases during the knowledge elicitation.

The elicitation of knowledge fran experts is usually a bottleneck in the
develcpment of knowledge-based systems. It is a time-consuming process and is
usually conducted in the absence of a systanatic conceptual design. Few
guidelines are available to help the knowledge engineer map out his/her course
of inquiry to and pursue it efficiently. Improvements that are stlmlbled on in
knowledge elicitation practice may escape recognition or may be difficult to
transfer fran one system-building experience to another.

One goal of knowledge elicitation should be to insure that the process is
extracting the experts • best judgment because the progranming phase of
prototype development takes the quality of knowledge as given. This assumption
should be constantly reexamined in light of two questions. What does "best"
mean? can we elicit rules and judgments that fully reflect what the expert
knows?

The first question requires an understanding that expertise is
multi-dimensional and is accessible through a rigorous assessment of ~xpertise
that are most important for a :tarticular domain. Defining expertise ~s an
important prerequisite not only in selecting experts but also in choosing
approaches for knowledge elicitation. The proliferation of knowledge-based
systems has created a need for flexibility in these definitions. The best
expert for a :tarticular task probably exhibits an optimum mix of performance in
different dimensions. Different task domains require different mixes with
emphasis on certain dimensions. Basically, a knowledge-based system should
exhibit calibration, consistency, credibility, speed, understandability, and
compatibility with the values of the individual or organization that uses it.

Maintaining the quality of expertise represented in any of these dimensions
depends on fully capturing the best judgments and the important knowledge
responsible for them. Often overlooked is how to detect, avoid, and correct

errors in judgment by the expert. Errors can occur not only in making an
expert judgment, but also in explaining the underlying reasoning process.
These errors can be found in the representation of decision rules and
uncertainties in the prototype. For example, calibration, or the degree of
agreement between a judged value (or relationship} and a real value, is one
measure of expert performance. Lack of calibration can be caused by lack of
knowledge or skill or from contextual and cognitive factors which prevent the
expert from manifesting extant knowledge or skill on a particular problem.
Training and experience may be the difference between the skill levels of the
novice and expert. However, both may be subject to cognitive limitations.
Error that results from these limitations will be called expert bias. Research
comparing expert and novice performance has begun to identify knowledge
differences, but expert bias has been relatively unexplored in expert systems
development work.

Expert bias is a research topic in cognitive science and behavioral decision
theory where the focus has been on subjective assessments of uncertain
quantities and on perceptions of risk. Judgment research, as it is called, has
produced many findings that could be useful in building knowledge elicitation
systems or guidelines for manual interviewing techniques. The purpose of this
paper is to review some of these findings and relate them to the knowledge
elicitation process. The following questions will be addressed:

1. Are experts biased in their judgments?

2. Why do these biases occur?

3. Where would the knowledge engineer look for expert bias in the
judgment process being elicited?

4. What might be done to correct or adjust for expert biases?

The research on judgmental bias is somewhat controversial within the field of
psychology. Critics of the line of inquiry say that most biases have been
discovered in experiments using unmotivated subjects and that implications
drawn from such work have tended to overgeneralize. Not enough attention is
given to individual differences. Bias is defined in terms of deviation from
the normative logic of probabilistic reasoning, but fails to address the
variety of other cognitive tasks to which statistical reasoning is poorly
suited. Nevertheless, the evidence of bias in the form of different responses
to the way these questions are framed or information is presented has been
found in many replicated studies. The concept of expert bias is recognized by
the public and decisionmakers. Associated questions of expert trust may be
extremely important in future knowledge-based applications.

Why be concerned about expert biases? We need criteria for comparing and
selecting expertise. Some experts with great knowledge may produce judgments
so biased that better answers could be obtained from less "expert" subjects.
The building of systems from multiple experts may need levels of calibration or
measures on other dimensions of expertise on which to build portfolios of
expertise to minimize the risk of bias. Expert bias may also be important in
validating and evaluating expert systems. Better understanding of expert bias
may enhance the ability to provide knowledge elicitation procedures and systems
that improve, rather than merely mimic judgment processes. We may someday be

OJ-1

able to test and correct for biases within the expert system itself, perhaps
producing "purer" estimates on ~ consistent basis than the subject experts on
which they are based.

OUr perspective on these problems stern from our struggles in eliciting
subjective assessment from experts in wildland fire control. Earlier efforts
to model fire control processes involved decision analysis and real-time
sinulation, or fire gaming exercises. More recently, we have been developing
three knowledge-based systems. The first seeks to estimate first and second
order uncertainty of wildfire escapes on our controlled burn operations. The
second system is designed to use multiple expertise to diagnose fire prevention
problems in specific locations and to prescribe educational, enforcement, or
other activities to address the problem. The third system is being designed to
estimate how fast our crews and machinery can build fireline under various
conditions of terrain complexity, fatigue, and other factors.

Are Experts Biased?

Bias can occur in any of the generic cognitive tasks which comprise problem
solving. Fischoff (1984) describes four types of judgment tasks:
(1) identifying active elements, (2) characterizing interrelationships,
(3) assessing (estimating or predicting) parameter values, and (4) evaluating
quality. Each of these tasks require different cognitive skills and are
subject to different types of bias. In the expert system parlance, these tasks
translate into (1) hypothesis and solution generation,
(2) decision rule articulation, (3) assessing levels of uncertainty and
confidence, and (4) hypothesis testing.

We ndght expect the expert to be better than the novice in all cognitive
tasks. The defacto classification of expert is sometimes assigned to
individuals solely on the basis of degrees and professional longevity, not
necessarily on performance. However, we often do not know the conditions under
which bonafide experts in actual decision settings provide information and
reasoning or how to measure its reliability. Furthe.orore, the process of
knowledge elicitation forces cognitive tasks into formats that may be
unfamiliar to experts and novices alike. A prime example is probabilistic
reasoning, assessing probabilities, as well as using probabilities or other
uncertainty expressions in making inferences. The essence of expertise is to
distinguish between causal and random occurrence. However it does not follow
that the longer a person is exposed to chance processes, the better he/ she will
become at recognizing them. Research has shown basic differences between
clinical and probabilistic reasoning in diagnosis but that probabilistic
reasoning is often expected of many experts. Research (Wink1er and Murphy,
1968; Kahneman, Slovic, and Tversky, 1982) has shown that experts in sorne
fields do not produce any better estimates or forecasts in probabilistic terms
than do relative novices. In addition, the expert is nuch less likely to say,
"I don't know," which can have disastrous consequences in the decision

Expert bias that is defined for a particular dimension of expertise can be
understood by the nature of the cognitive process. Popular topics of judgment
research have been the degree and nature of calibration in the assessment of
uncertain quantities. Additional effort has been directed at understanding
human abilities in generating alternative hypotheses and problem solutions.
Much could be borrowed from these research areas and developed into operational

q .. z

concepts for building valid knowledge-based systems. Although the concept of
bias is based on some notion of a true or complete value, set of solutions,
probability or relationship, the true value is either not known or perhaps
revealed only after the expert judgment has been made. This often leads the
knowledge engineer to prematurely accept those values produced by the subject
expert or to validate them only against those of another "better" expert. This
develops the tendency to embed limitations of human performance in a~pert
systems without any knowledge of their influence on system performance.

Biases can occur in several ways (Table 1) • Bias can be introduced in the
method or the response format in which the judgment task is presented to the
expert. For example, eliciting judgments as decision rules or probabilities
may create bias if the expert doesn't really think about the problem in those
terms. Conceptual bias results either from motivational processes, such as
wishful thinking or other vested interests in the judgment's consequences, or
from cognitive processes which are the gears of the expert's intuition.
Motivational bias is very situational and can be difficult to detect and
interpret without a strong familiarity with the organizational environment. At
least some cognitive biases, on the other hand, tend to be systematic and can
be recognized. The following discussion will focus on cognitive rather than
task and motivational biases. Particular emphasis will be placed on the tasks
of assessing uncertain quantities (probabilities and consequences). This is an
important group of tasks because ultimately many quantities that enter into
expert judgment are treated as uncertain quantities.

Table 1

Biases in Judgment

Task

Conceptual

l·1.oti vational

Cognitive

Biases in Judgment.

Wb:Y Do Biases Occur?

Biases result from the human's use of cognitive heuristics (Tversky and
Kahnernan 1974, 1981) that allow shortcuts through complex tasks. These
heuristics should not be confused with the specific "if ••• then" decision
rules that are extracted during the knowledge elicitation process. Cognitive
heuristics are metalevel modes of judgment which occur outside the awareness of
the individual, but which drive reasoning and judgment. Described below are
several major cognitive heuristics which have been observed in experimental and
real-life judgments.

Anchoring: Individuals tend to search for a first approximation or natural
starting point and then to adjust judgments of subsequent outcomes or
probabilities using the initial estimate as a base. Available information

which would support extreme adjustments is seldom utilized {Tversky and
Kahneman, 1974).

Availability: Events, quantities, or relationships that are more easily
brought to mind are more apt to be judged as likely. Unlike purely
probabilistic reasoning, frequency is not the only determinant of how
psychologically available an event may be. Familiarity, saliency, and
llna.ginability strongly enhance the retrievability of an event, even though the
event itself may be rare. OVerreliance on availability may lead to systematic
disagreement with more objectively determined estimates of likelihood. Very
recent experiences and observations or those that are extremely vivid or
:meroorable have inordinate weight in expert responses, preventing the expert
from fully relying on the depth of long years of experience. Associated biases
include the preference of concrete over abstract information, extreme
sensitivity to present conditions, and illusory correlation among various
components and factors in a problem {Tversky and Kahneman, 1973).

Representativeness: Likelihoods of events and risks are judged by their
degree of similarity to familiar or stereotypic events rather than statistical
frequency. The human tends to extrapolate occurrences from a small sample of
events to what he/she perceives to be a similar, larger class of events. Even
those experts with deep knowledge of the subject area tend to predict outcomes
that are most representative of the evidence at hand with relative
insensitivity to its reliability or to what is generally known about prior
probabilities {Kahneman and Tversky, 1973). Representativeness can result in
stereotyping of outcomes, e.g., imagining that a set of conditions will result
in certain consequences because it exhibits "classic" characteristics. Bias
results when objective information is forsaken for a more narrowly defined set
of these characteristics. The more detailed a scenario is, the more likely it
seems, even though the combination of characteristics in an actual scenario is
less likely to actually occur.

Intennal COherence: Information or judgments consistent with an
individual's previous beliefs are favored over those that are less consistent
or suggest the need for additional testing. For example, the plausibility of a
scenario or an estimate of variability becomes more heavily weighted in its
perceived likelihood than its probability of occurrence. This effect is
especially pernicious when the expert has expressed the same judgment in the
past even without validation of his/her prediction. Experts may give short
shrift to conflicting evidence or scenarios outside their range of previous
experience and approval.

COnsistency: COnsistency of information sources can lead to increases in
the confidence in judgment, but not to increased predictive accuracy or other
performance. A small body of consistent data has much greater effect than a
larger body of less consistent data, especially where the task {e.g., planning)
is nonrepetitive and there is little feedback on the outcomes {Hogarth, 1980).
People may actually further collect information that is biased toward initial
preferences in order to increase the consistency.

Where in the Judgment Process Do Biases Occur?

Cognitive heuristics do not uniformly produce poor judgments. Indeed, these
are natural processes with which the expert develops his/her clinical

abilities. However, excessive reliance on certain heuristics can result in
systematic biases (Hogarth and Makridakis, 1981, Kahneman et al., 1982) •
Different cognitive tasks are prone to different types of biases (Table 2).
These biases have been identified in experimental and operational contexts.

Table 2

Hypothesis and
solution generation

Decision rule
articulation

o attribution errors

Uncertainty
assessment

o overconfidence

o option generation
deficiency

o illusory correlation o hindsight

o selection bias

o order effects

o information bias

o "law of small
nurrbers"

Cognitive Biases in Expert Judgment Tasks.

Hypothesis and SOlution Generation

o conservatism

o rare, conjunctive
event bias

o gambler's fallacy

o regression bias

o base rate ignorance

Hypothesis
evaluation

o selection pias

o information

o order effect

o hindsight

o overestimation
of completenes

Option Generation Deficiency: Qnitting important scenarios or elements of
in retrospect scenarios. Our fire experts complain roost bitterly about
scenarios that were totally unforseen during their planning process. Group
simulation techniques have somewhat alleviated this, but the problem is still
acute where single experts are unaided by divergent perspectives on a problem.

Selection: Limiting selection to only options that the individual has
experienced or expects to occur. Our experts have gained knowledge from
experience in local areas for which our systems are being built, as well as
experience gained from service in other geographical settings. Some base their
judgments almost entirely on local experience and tend to have great difficulty
translating their experience from other settings.

Decision Rule Articulation

Attribution Errors: Attributing too much responsibility to one condition
or factor; attributing success to skill and failure to chance, or vice versa.
Human error and the lack of proper firefighting resources are the two factors
influencing fire escapes that are most quickly cited by our experts. Without
prompting, they often fail to consider the influence of a variety of other
environmental conditions such as wind, air temperature, and the arrangement of
vegetative fuels.

Illusor:y Correlation: Belief that two or more variables eo-vary when in
fact they do not or that patterns exist in what is actually a random process.
Changes in fire occurrence patterns are especially difficult to diagnose.
There is a tendency for the fire prevention person to see causal patterns that
are not there, simply because fire incidence rna.y increase at: the same time
certain human activities do.

Order Effects: Assigning undue importance to the first items in a
sequential presentation of conditions (prirna.cy), or to the last items
(recency) • Because of the dynamics of wildland fire, firemen learn to treat
the most recent inforrna.tion as the most valuable, whether or not it is more
reliable. In the knowledge elicitation context, they respond strongly to new
pieces of inforrna.tion that may be, on further questioning, unimportant.

Information Bias: OVerweighting conditions described by inforrna.tion that
is concrete, absolute, and consistent with initial inferences while
underweighting conditions with abstract, relative, and conflicting evidence.

Iaw of Small ll:lllbers: Mistakenly expecting small samples to be highly
representative of a population, leading to undue confidence in early results,
premature truncation of the search process, and little appreciation for
variability in the sample of conditions given.

Assessment of lll.certainty and Confidence

OVerconfidence: Estirna.ting much higher discrete probabilities (levels of
certainty) or much tighter distributions (and intervals) than the actual.
Assessed probabilities of fire escape and distributions of fireline production
rates and escape levels are almost always higher and tighter than are shown in
data. Typically, our human assessors are keying their judgments on
representativeness to recent or vividly remembered catastrophes.

Hindsight: OVerestirna.ting the probability of events just because they have
occurred in the past. The mistaken belief that an event was inevitable leads
to undervaluing ne<tl facts and research. Experts \'lho have a long history in one
narrowly circumscribed area often weave their entire assessment around the
range in events they have personally experienced.

Conservatism: Failure to revise an opinion on receipt of new inforrna.tion.
Once a judgment is rna.de, some of our experts are extremely stubborn about even
considering new information. In their defense is the fact that survival has
depended on decisiveness and avoidance of constant revision. It is difficult,
ho~~ever, for the knowledge engineer to determine where and when the initial

judgment is made. Important information that is delivered late in the
assessment task is often given short shrift or completely ignored.

Rare and Conjunctive Events: OVerestimation of the probability of
infrequent single events or the joint probability of independent events.

Gambler's Fallacy: OVerestimation of the probability of one event or value
when an unexpected number of other events or values have occurred. Strings of
escapes or "hot streaks" (successes) are not often predicted although they may
be just as probable as the escape/no escape sequence.

Regression Bias: Using extreme values of a variable to predict extreme
values of the next observation (failing to allow for regression to the mean).
This can be especially active in sequential judgments. High performance is
often followed by lower performance even in the presence reward, merely because
of the random element, but individuals often mistakenly assume it is
cause-and-effect.

Base Rate Effects: Relying exclusively on specific, descriptive
information and neglecting prior probabilities (base rates) of the general
class of events or values.

Hypothesis Testing

Note: The process of testing hypotheses is subject to many of the biases
described above under other cognitive tasks. Most important are probably:

o overestimation of completeness
o order effects
o selection
o hindsight
o information bias

Monitoring and COrrective Procedures

COrrective procedures have been designed to combat biases in individual and
group judgment (Table 3) • OUr research is aimed at bringing valid procedures
into the realm of expert systems knowledge elicitation. Mechanical procedures
manipulate the task or adjust the judgments after elicitation. Behavioral
procedures use interviewing and group interaction techniques to encourage full
employment of the assessor(s)' knowledge. Most techniques have been developed
to address particular biases, so the knowledge engineer should have some
a priori notion of what types of biases may be more active at various stages in
the judgment task that is being modeled. Not all procedures have been
subjected to rigorous testing in knowledge elicitation practice, so caution and
exposure to a wide variety of techniques is urged. The literature on these
procedures is extensive, although the references cited herein provide a good
introduction.

9-7

Table 3

.f.1echanical

visual props

response mode

interaction*

Assessment

scoring rules

consensus weighting*

*Applies to group assessment.

Behavioral

focusing

decomposition

training

logic challenges

consensus

Corrective Procedures for Decision Rule and Uncertainty Assessment Biases.

Described below are some classes of corrective techniques which have been
applied to the tasks of articulating decision rules or uncertainty levels.
This listing is not an exhaustive comparison of techniques, but rather a
taxonomy to guide the interested knowledge engineer. This list does not
address techniques designed to improve hypothesis generation and selection.

Mechanical Techniques

Visual Props: Letting the individual select, create, and compare visual
patterns rather than verbal expressions to represent his judgment. An example
is the probability wheel (Spetzler and Stael Von Holstein 1975) which allows
the respondent to work with the concept of probability without having to
consciously wrestle with the numerical intricacies.

Response Mode <llanges: Varying the format of the requested judgment,
hypothesis, or uncertainty level can identify inconsistencies and find more
natural means of expression. For example, rare event assessments are less
biased when they are elicited as odds (1 in 1000) than when they are elicited
in probabilities or decimals (.001). People can more easily express larger
probabilities and quantities in an indirect mode by comparing or ranking
values. Indirect mode has been shown to be less biased than the direct
expression of each assessment, say in physical units. Also, asking for the
likelihood of a given value usually produces better calibrated answers than
asking for the value for a given likelihood level.

Scoring Rules: Using some function of the difference between actual and
assessed values either to motivate individuals· or to recalibrate assessments
expost facto.

Consensus Weighting: Corrbining judgments from several individuals by
creating weighted means of their responses on the same judgment task.
Weighting bases may include differences in technical ability, self-rating of
confidence, prior calibration, or other factors.

Behavioral Techniques

Focusing: Structuring both the task and the interviewing environment so
that specific biases are identified and corrected as they become symptomatic.
One focusing technique is providing "reminder" information on base rates and
requiring individuals to respond as to how they assimilated this information
into their assessments.

Decooposition: Breaking down the quantity or relationship into subevents
or important factors, each of which may be more probable and easier to assess
than the original conposite. These subconponents can be weighed individually
for their contribution to the overall strength of relationship or likelihood.
Assessment of rare or conjunctive uncertainties have been shown amenable to
this approach.

Training: Individuals can sometimes remove bias if they understand and can
manipulate the representation format (certainty factor, production rule,
frames, etc., themselves). Training in probability assessment has been
successful in improving calibration, especially when feedback on performance
was frequent, irranediate, and specific to the task.

Logic Challenges: Exhorting individuals to justify reasons (and to offer
owosing explanations or assessments) for their own answers. Biases are
sometimes revealed when an individual must list as many reasons for as those
against a (higher) best guess. Answers often change in response to this
upfront checking.

Consensus Interaction: Presenting, in a group setting, each individual
with feedback from the other rneni:>ers about his/her judgments. When the level
of controversy is controlled by the knowledge engineer, this can encourage
reconsideration and better judgments. The degree of face-to-face interaction
distinguishes the various techniques in this class. The two best examples are
Delphi and nominal group techniques. There is no best technique, but a
commonly recommended approach consists of nominal group application for initial
estimates, structured feedback to the group, and silent voting on two or three
estimates. This estimate-talk-estimate sequence works better than other
sequences for most tasks.

Expert judgment is human judgment and as such can be improved. Effective
knowledge elicitation should incorporate strategies for ensuring that the best
judgments are passed on to the knowledge representation stage. Unless this is
done, expert systems will perpetuate and perhaps exacerbate some of the
limitations of human judgment which have been recognized in research on
cognition. Recognizing potential flaws in judgment requires the knowledge
engineer to be familiar with the domain and to develop explicit performance and
selection criteria on the various dimensions of expertise. Some dimensions may
warrant more monitoring and debiasing than others.

Research on judgment has tested concepts and techniques for correcting
judgmental bias. Some of this work has used experts as subjects. Surprisingly
little has been done to apply these approaches in knowledge elicitation
practice, much less to integrate them into a framework for interviewing or

9-9

designing knO\~ledge elicitation tools. The cognitive heuristics that have been
identified in judgment research also appear to be the very mechanisms through
which expert performance is distinguished. Paradoxically, the same processes
may be responsible for expert performance and conrnon sense bias. Little
research has been done to determine what conditions under which this paradox
occurs. Using a model of judgment to guide the knowledge elicitation process
could help to identify where biases may lurk and during the codification of
knowledge structures.

During subsequent rounds of prototyping and elicitation, these biases could be
sought out with questions and corrective protocols. The utility of expert
systems could be enhanced through the development of enhanced or "leveraged"
intuition. Systems developed on experts for experts could incorporate
interactive procedures for cheating and correcting biases and inconsistencies
in judgmental inputs. Continued use of such systems in advisory roles or as
training devices could actually improve expert judgment in some domains.

We are testing various approaches for identifying and correcting biases in our
knowledge elicitation efforts. Our goal is to develop a set of general
guidelines for knowledge engineers to use in manual or automated elicitation.
Preliminary observations of our own knowledge elicitation experiences-have
pointed out the need to separate the knowledge elicitation and representation
phases and to delay prototyping until possible biases and knowledge structures
can be explored fully. Premature prototyping captures biases that may be
difficult for the expert or some truth-maintenance systems to detect.

Open-ended interviewing should be mixed with more highly structured styles as
the process converges on specific judgments. For example, overuse of anchoring
can be corcbated by asking the expert for extreme judgments before most of
his/her likely ones. Overreliance on representativeness appears to be
partially corrected by providing the expert with base-rate information and
actively seeking verbal consideration of it. Many scenarios should be
presented, including those with inconsistent information. care should be taken
not to let classic or well-publicized incidents or scenarios become prominent.
Confidence factor assessments should not be accepted without close scrutiny.
They can act as guides for more indepth questioning, but high confidence levels
can hide as many problems as low ones turn up, depending on the expert's
ability to introspect.

LITERATURE CITED

Fischoff, B., 1983. Judgmental aspects of risk analysis. Decision Research,
Eugene, OR. 42 pp.

Fischoff, B., 1984. Eliciting information from experts. In: Research Needs
for Human Factors, pf>. 33-48, Washington, D.C., National Academy Press.

Hogarth, R. M., 1980. Judgement and Choice: Strategies for Decision.
New York, Wiley.

Hogarth, R. M. and Makridakis, s., 1981. Forecasting and planning-an
evaluation. Management Science 27(2):115-138.

Kahneman, D. and Tversky, A., 1973. On the psychology of prediction.
Psychological Review 80:751-757.

Kahneman, D., S1ovic, P. and Tversky, A., 1982. Judgement Under Uncertainty:
Heuristics and Biases, cambridge, Cambridge University Press, 555 pp.

Spetz1er, C. s. and Stae1 Von Holstein, c. s., 1975. Probability encoding in
decision analysis. Management Science 22(3) :340-358.

Tversky, A. and Kahneman, D., 1973. Availability: a heuristic for judging
frequency and probability. Cognitive Psychology 5:207-232.

Tversky A. and Kahneman, D., 197 4. Judgments under uncertainty: heuristics
and biases. Science 185:1124-1131.

Tversky, A. and Kahneman, D., 1981. The framing of decisions and the
psychology of choice. Science 211: 453-458.

Wink1er, R. L. and Murphy, A. H. , 1968. "Good" probability assessors. Journal
of Applied Meteorology 7:751-757.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

The Application of Psychological Scaling Techniques to
Knowledge Elicitation for Knowledge-Based Systems

Nancy M Cooke and James E. McDonald
Computing Research Laboratory and Department of Psychology

New Mexico State University
Las Cruces, NM 88003 USA

ABSTRACT

A formal knowledge elicitation methodology that incorporates psychological scal
ing techniques to produce empirically-derived knowledge representations is dis
cussed. The methodology has been successfully applied in several domains and
overcomes many of the difficulties of traditional knowledge elicitation techniques.
Research issues pertaining to the use of scaling techniques as knowledge elicita
tion tools are outlined and a particular issue, the elicitation of levels of abstrac
tion in knowledge representations, is discussed in detail. Results from a study on
the elicitation of knowledge about levels of abstraction for a set of Unix com
mands from experienced Unix users indicated that the representations obtained
using this methodology can be used to obtain more abstract (i.e., categorical)
representations of that knowledge.

INTRODUCTION
Currently, the process of eliciting knowledge from human experts for the purpose
of transferring this knowledge to an ,expert, or knowledge-based, system suffers
from numerous problems. Not only is the process time consuming and tedious,
but the weak methods currently used (i.e., interviews and protocol analysis) are
inadequate for eliciting tacit knowledge and may, in fact, lead to inaccuracies in
the knowledge-base. Much expert knowledge is not available to conscious intros
pection (i.e., it is automatic or compiled) and consequently, experts may give
erroneous or incomplete accounts of their knowledge (Nisbett & Wilson, 1977).
Indeed, Ericsson and Simon (1984) contend that information must be in the focus
of attention (i.e., short-term memory) in order to be verbalized. One approach to
these problems has been to formalize interview and protocol analysis techniques
(Ericsson & Simon, 1984; Hoffman, 1986). Alternatively, several investigators
have suggested that psychological scaling techniques, such as cluster analysis and
multidimensional scaling, be used as a means of eliciting knowledge from domain
experts for the purpose of building expert systems (Butler & Corter, 1986; Cooke
& McDonald, 1986; Gammack & Young, 1985). It is generally believed that these
techniques are more objective and formal than traditional knowledge elicitation
methods.
We (Cooke & McDonald, 1986) have proposed the development of a tool kit of
scaling techniques that could be used to elicit and represent core components of
knowledge from an expert or group of experts. The core knowledge-base would
consist of basic concepts, relations, facts, rules, and procedures that are at the

· heart of the domain and could be used to either guide subsequent knowledge eH
citation (i.e., interviews, protocol analysis, or more scaling techniques) or act as a

\D-o

starting point for an automated system which continually refined the knowledge
base.1 In the following sections we discuss some of the scaling techniques compris
ing the tool kit.

SCALING TECHNIQUES
There are several psychological scaling techniques that produce structural
representations of knowledge based on human judgments. All of the scaling tech
niques discussed here require as input a matrix of distance estimates for all pairs
of items in a set to be scaled. The techniques differ largely in the types of struc
tural representations they produce. For instance, multidimensional scaling pro
cedures (e.g., Kruskal, 1977; Kruskal & Wish, 1978; Shepard, 1962a, 1962b) gen
erate spatial representations in which concepts are located in an n-dimensional
space, where each dimension might represent a particular feature (e.g., size, fero
city, predacity). Alternatively, hierarchical cluster analyses (e.g., Johnson, 1967)
produce taxonomic representations. Whereas hierarchical representations might
be adequate for representing some types of knowledge, they are inadequate for
representing knowledge that is not strictly hierarchical in nature. Recently, a
network scaling technique (Pathfinder: Schvaneveldt & Durso, 1981;
Schvaneveldt, Durso, & Dearholt, 1985) has been developed that produces graphs
which are not constrained to hierarchical relationships.

Multidimensional Scaling
Multidimensional scaling (MDS) is an elaborate least-squares fitting technique.
Most MDS programs require that the user input a symmetrical distance matrix
and specify the number of dimensions to which the data should be fit. The algo
rithm then attempts to fit the data to the specified number of dimensions by
minimizing the amount of "stress," or deviation from the optimal fit, in an itera
tive fashion. There are several types of MDS analyses available, the most com
mon variables being whether they are metric or nonmetric (i.e., whether they
assume interval or ordinal data) and weighted or nonweighted (i.e., whether indi
vidual subject matrices are considered or only a single composite matrix). In gen
eral, nonmetric techniques are to be preferred to metric, since it is often difficult
to insure that the data have interval properties. Also weighted techniques are
more robust than nonweighted (i.e., they tend to reduce the problems associated
with local minima and are claimed to be nonrotatable). The MDS solution con
sists of a set of dimensioriless points (one for each item in the set) in an n
dimensional space. While the relative positions of items can be considered
optimal, the orientation of the space itself is arbitrary (i.e., it is rotatable). Thus,
it is often difficult to identify the dimensions (if they are in fact meaningful) or to
determine the correct number of dimensions to use.

1We believe that it is important to distinguish knowledge elicitation (the topic of this pa
per) from knowledge acqui8ition. The latter term is quite general and often ambiguous,
but in the context of artificial intelligence it most often refers to machine learning. The
machine learning approach is one possible solution to the knowledge engineering
bottleneck which occurs when human knowledge is to be transferred to a machine. An al
ternative solution is to improve upon the techniques available for extracting knowledge
from human experts. We use the term knowledge elicitation to refer to this approach.
We feel that the two approaches complement each other in many ways. Knowledge elici
tation techniques could be used to produce the core knowledge-base and knowledge ac
quisition techniques could be used to augment and refine this core knowledge. One can
think of knowledge elicitation as a special case of learning, that is, learning by being told.

tO-)

Cluster. Analysis
There are numerous clustering techitiques (e.!?., hierarchical, overlapping, dis
joint), but hierarchical clustering schemes (HCS) are the most common. Further
more, there are several HCSs, the most common being the minimum (connected)
and maximum (diameter) methods. HCS is conceptually simple and consists of
repetitively combining the two closest objects in the data matrix into a single
cluster. Once formed, distances to this new cluster must be computed and can
either be the minimum or maximum of the distances from each of the objects
(the average is also occasionally used). The output of the HCS is a "tree" with
connections between items and clusters at various levels. The number of clusters
ranges from n (each item is a separate cluster) to 1 (all items in a single cluster).
One of the difficulties in employing HCS for knowledge representation is deciding
on an appropriate cutoff level, that is, when to stop grouping items together.
Unfortunately, this decision must be left to experimenter judgment.

Pathfinder
The networks generated by Pathfinder consist of nodes representing concepts (or
objects or actions), and links between some pairs of nodes, representing relation
ships between those concepts. Pathfinder, like other scaling techniques, requires
estimates of relatedness or distance for all possible pairs of concepts in a set. In
Pathfinder these concepts are to be represented in the network as nodes. Basi
cally, the Pathfinder algorithm determines whether or not a link will be present
between each pair of concepts. Links are assigned weights (distances in the data
matrix) corresponding to their strength. A link is added if the minimum distance
between the concepts based on all existing paths (chains of one or more links) is
greater than the distance estimate for that pair.
Pathfinder allows for systematic variation in the complexity (number of links) of
the resulting networks as parameters of the method are varied. (i.e., r and q). The
parameter r is based on the Minkowski r-metric. Its value can range from 1 to eo
and determines how path length is computed. While continuously variable, sim
ple interpretations exist only for r equal to 1 (all links in the path are added), 2
(the Euclidean distance is computed), and eo (the longest link in the path is com
puted). The q parameter determines the maximum number of links that can be
included in a path. When r = eo and q = n - 1 the network is minimally con
nected and the data are assumed to be ordinal. For these reasons, r = eo,
q = n - 1 are generally the preferred values for these parameters. Regardless of
the values specified for r and q, the resulting network solution is inherently not
dimensional and is difficult to represent graphically. While nodes and connecting
links are specified, no real limitations are placed on the location of nodes in the
n-dimensional space. Further, links are at most weighted arcs, since no informa
tion about the meaning of links is supplied as part of the analysis.

Applications of Scaling Techniques
In general, scaling techniques such as those described above have been used in
cognitive psychology to study the organization of concepts in memory (e.g., Rips,
Shoben, & Smith, 1973; Shoben, 1983). Cooke, Durso, and Schvaneveldt (1986)
found that lists of words organized according to either the Pathfinder or multidi
mensional scaling representations of those concepts were easier to learn than
unorganized lists. Further, they found that a list organized according to the
Pathfinder representation was easier to learn than a list organized according to
the multidimensional scaling representation. These results provided evidence for
the psychological. validity of scaling representations in that the representations
were predictive of learning and recall.

lO-L.

Scaling techniques have also been used to investigate cognitive structures under
lying human expertise in domains such as air-to-air flight maneuvers
(Schvaneveldt, Durso, Goldsmith, Breen, Cooke, Tucker, & DeMaio, 1985) and
computer programming (Cooke and Schvaneveldt, 1986). Information gained
from such studies can be applied to design, training, and selection problems. For
example, Cooke and Schvaneveldt (1986) had expert, intermediate, novice, and
naive computer programmers judge the relatedness of all possible pairs of a set of
abstract programming concepts (e.g., algorithm, global variable, debug). These
data were used to empirically derive Pathfinder network representations of pro
grammer knowledge of these concepts. In Figures 1 and 2 the average naive and
expert programmer network representations are displayed. Results indicated that
the representations varied depending on programming experience and that the
changes were systematic with expertise, providing evidence for evolution of the
structures. The networks also revealed some critical associations of expert pro
grammers ~nd some misconceptions of naive programmers.

Figure 1. Pathfinder network representation of the average cognitive structure
of naive programmers.

lo-~

Figure 2. Pathfinder network representation of the a\·erage cognitive struct11re
of expert programmers.

In addition, scaling techniques have been applied to the design of the human
computer interface (McDonald, Dayton, & McDonald, in preparation; McDonald,
Dearholt, Paap, & Schvaneveldt, 1986; l'v1cDonald, Stone, Liebclt, & Karat, 1982;
Roske-Hofstrand & Paap, in press; Tullis, 1985). McDonald, Dearholt, et. al.
have proposed a formal interface design methodology based on user knowledge.
One of the applications they discussed involved the development of an indexing
aid for the Unix on-line documentation system (the "man" system). Their
approach was to empirically derive a model of the Unix operating system from
experienced users of the system, then to base the design of the index on this
model. During the model-building phase of their study, McDonald, Dearholt, et
al. (1986) first used a sorting methodology to obtain estimates of distance for
approximately 200 basic Unix commands (section 1 of the man system) from 15
experienced Unix users. They then performed Pathfinder and cluster analyses on
the obtained proximity matrix. These analyses formed a base-level Unix user's
model. Some of the specific results of this study are summarized later in this
paper.

le?-4

I •

Advantages of Scaling Techniques as Knowledge Elicitation Tools
As previously mentioned, scaling techniques can overcome many of the criticisms
of knowledge elicitation techniques such as interviews and protocol analysis. In
addition to facilitating knowledge elicitation, scaling techniques provide informa
tion concerning the structure of knowledge that might serve as a basis for
representing that knowledge in the system. For example, the organization
inherent in the scaling representation might suggest an organization of a set of
production rules that would facilitate search. More generally, we believe that our
knowledge elicitation methodology will allow the development of empirically
derived knowledge-bases in which the information elicited determines the content
and architecture of the system, as opposed to the traditional approach in which
the elicitation of knowledge is guided by an existing or proposed system architec
ture.
Traditionally, knowledge elicitation methodologies have involved interviews with
one or more experts. The use of multiple experts has tended to increase the
opportunity for conflicts in the knowledge-base, which might simply be a
reflection of the fact that there are several different, yet correct, solutions to
problems. However, it is not clear how idiosyncrasies among different experts
should be coded in a knowledge-base. One advantage to the use of scaling tech
niques is that they can be applied to group, as well as individual data. The
resulting group solution can be thought of as a prototypical representation of
expert knowledge. Thus, scaling techniques also provide a means of combining
knowledge from multiple experts.
In summary, the scaling approach to knowledge elicitation has a number of
advantages over traditional knowledge elicitation techniques. Psychological scal
ing techniques require less introspection on the part of the expert than traditional
interviews in which the expert is asked, "tell me what you know and how you
know it." Scaling techniques require experts to make judgments rather to
introspect and verbalize about how they do what they do. Ericsson and Simon
(1984) have noted that appropriate cues are necessary in order to retrieve
knowledge from long-term memory. Consequently, some of the problems of ver
bal reports might be avoided by providing experts with specific cues in the form
of the concept set. Scaling techniques also offer a more formal, as well as more
and objective, means of eliciting knowledge than traditional techniques. Scaling
solutions are standard, in the sense that given a set of distance estimates and a
specific scaling technique two different researchers/knowledge engineers will
independently produce identical representations. On the other hand, the same
two individuals may have radically different interpretations of the same protocol.
Finally, the scaling approach can handle, and is in fact well-suited to, elicitation
of knowledge from multiple experts.

RESEARCH ISSUES CONCERNING THE USE OF SCALING TECH
NIQUES AS KNOWLEDGE ELICITATION TOOLS
Whereas there are many foreseeable advantages to using scaling techniques for
knowledge elicitation, the application to this particular domain raises several
methodological issues. In general, the scaling techniques themselves are well
specified, but there are other aspects of the methodology as a whole (e.g., method
of data collection) that require investigation. Thus, the issues outlined in this
section are aimed at formalizing the methodology from start to finish. By formal
izing all aspects of the methodology, its application will be simplified and subject
to less interpretation on the part of the researcher/knowledge engineer.2 Recently,
there have been several studies conducted that have addressed one or more of the
research issues. In fact, the development of a knowledge elicitation tool kit can

~-5

be thought of as a series of studies designed to answer questions and solve prob
lems related to the application of scaling techniques to knowledge elicitation. In
the following sections the major issues are presented, along with a brief summary
of research directed at each particular issue. The issues are organized according
to the three major phases involved in scaling analysis: 1) data collection, 2) scal
ing, and 3) interpretation. It should be emphasized that the fact that clearly del
ineated phases and research issues can be identified attests to the formal qualities
already present in this approach.

Data Collection
All of the scaling techniques discussed require as input a matrix of distance esti
mates for all pairs of items to be scaled. It is assumed that a relatedness esti
mate for a pair of items corresponds to the distance between the corresponding
concepts in memory. According to the distance metaphor of memory, concepts
that are semantically related are closer in memory than concepts that are less
related. The scaling solutions all represent the notion of distance in different
ways. Two concepts that are judged to be highly related will generally be close
in the spatial solution of Jv:IDS, appear in the same cluster in cluster analysis, or
be joined by a link in a Pathfinder network. The four issues that follow have to
do with the collection of distance estimates for a set of items.

Obtaining a set of items to be scaled. The first step in the data collection
phase of these techniques involves the selection of a set of items (concepts,
objects, actions) to be represented. It is usually appropriate to limit the number
of items in the set in order to simplify data collection and interpretation of the
resulting solution. Therefore, it is important to avoid including items that are
irrelevant to the domain and at the same time attempt to capture all (or at least
most) of the critical items of a domain. Unfortunately, no satisfactory tech
niques exist for identifying the important items in a domain or for selecting a
subset of the important items once they have been identified. In some cases a
predefined set of items exists (e.g., the set of all Unix commands), however, the
set may be inappropriate. For instance, McDonald, Dearholt, et al. (1986) found
in their study of the Unix system that only 44 of the 219 commands in the set
were known by all of the experienced users. In addition, event records of com
mand usage collected from experienced Unix users indicated that out of 235
different commands used, only 112 were from the original set of 219. Typically,
researchers select a set of items based on their intuitions about the domain or the
intuitions of a domain expert. Because it is often difficult to introspect and to
verbally express mental processes (Nisbett & Wilson, 1977), this set of intuitively
derived items may be incomplete or inappropriate.
Research has been conducted on various methods for eliciting domain-related
information from experts (Cooke & McDonald, 1986). The goal of this work was
to develop a methodology for identifying the core set of basic ideas in a particu
lar domain. It should be noted that this goal differs from the general goal of
knowledge elicitation in which not only ideas are needed, but also relations, rules,
and facts connecting the ideas. Cooke and McDonald (1986) investigated four
idea elicitation tasks that were given to domain experts: 1) listing critical domain
concepts, 2) listing steps involved in a domain-related task, 3) listing chapter
titles and subtitles for a hypothetical book on the domain, and 4) extracting criti
cal ideas from an interview with an expert. Results indicated that the four

2It should be pointed out that many of these issues are relevant _for other applications as
well (e.g., interface design and studies investigating expertise).

\0-~

methods differed in terms of the number of ideas that were generated as well as
the types of knowledge (concepts, facts, general rules) generated. Interestingly,
less than ten percent of the ideas took the form of "if-then" rules, suggesting
that knowledge is not naturally conveyed in this form.

Contextual effects. The selection of an appropriate set of items is important
for several reasons. An obvious ramification of selecting an incorrect or incom
plete set of concepts is a resulting knowledge representation that is also incorrect
or incomplete. However, there is another not-so-obvious reason that the set of
items plays an important role. The distance estimates supplied by the subjects
are affected by the context or frame supplied by the rating environment (Tver
sky, 1977; Murphy & Medin, 1985). Murphy and Medin (1985) have argued that
theories underly similarity judgments and that different theories are appropriate
in different contexts. Consequently, context changes, such as subtle differences in
instructions, can affect relatedness judgments. For example, Murphy and Medin
(1985) suggested that judgments of relatedness between concepts such as chil
dren, fewelry, and photograph albums would change given the context of a burn
ing house. Like instructions, the specific concepts that make up the concept set
provide a context for relatedness judgments. For example, penguin is very simi
lar to bird when the other concepts are types of vegetables, but not so similar
when the other concepts are types of birds. Therefore, the particular concepts
chosen to make up the concept set have nontrivial consequences for the outcome
of the psychological scaling representations. Research is being conducted that
investigates the effects of different contexts on the scaling representation of a set
of items (Roske-Hofstrand & Paap, 1986). Results thus far have indicated that
relatedness estimates are indeed affected by the addition or deletion of items in a
given set.

Methods of collecting distance estimates. Distance estimates between all
possible pairs of items can take the form of a matrix in which the rows and
columns designate specific items in the set. Such matrices may be symmetrical
(i.e., the distance from A to B is equal to the distance from B to A) or asymmetr
ical (i.e., the distance from A to B is not equal to the distance from B to A),
although none of the current scaling techniques except Pathfinder make use of
this information.
Distance estimates can be obtained through paired comparisons, sorting, listing,
and event record analysis. In the paired-comparison task judges are required to
rate the relatedness or similarity of all n(n-1)/2 pairs of items. Distance esti
mates are computed as the inverse of the relatedness ratings. Theoretically,
asymmetrical distances can be obtained using this technique, but it is a time con
suming task - extremely so for large sets of items.
Sorting entails having judges sort items into piles based on shared relationships.
For a group of judges, distance estimates are the inverse of the frequency with
which pairs of items are placed in the same pile. This technique is considerably
less time consuming than the method of paired comparison.
Distance estimates can be obtained from lists of relevant domain concepts by
computing the conditional probability that one item follows another in the lists.
However, this technique does not insure that estimates of distance for all items of
interest are obtained. Alternative methods for computing distance from lists are
available, for instance, number of intervening items in the list. Similar tech
niques can be applied to event records where the lists consist of actions recorded
as experts perform domain-related tasks.

t0-7

Research is needed that compares these various data collection methods in terms
of the distance estimates that they produce. Representations may differ depend-.
ing on the method used to obtain the distance estimates. The advantages and
disadvantages of each method need to be addressed explicitly and the appropriate
applications for a given method should be identified. AB a preliminary step
toward resolving this issue, Roske-Hofstrand and Paap (1986) have compared
scaling representations derived for the same set of items using either the paired
comparison method or the sorting method.

The effect of instructions. Concepts can be related along a variety of dimen
sions {e.g., apple - fire truck, bird - robin, hamburger - french fries, pen - type
writer) and as a result, it is difficult to decide what instructions should be given
to the judges concerning relatedness. Typically, general "relatedness" instruc
tions have been given under the assumption that judges will choose the most
relevant dimensions on which to compare the items. We have observed, however,
that this lack of guidance can lead to difficulties when the data are scaled (e.g.,
uninterpretable dimensions using :MDS) or even later when the results of the scal
ing analysis are applied. For example, if raters are asked to judge the relatedness
of a set of editor functions that occur together in task sequences (e.g., find and
change might be frequently used together) and that also have featural similarities
(e.g., insert and delete might require similar command sequences), then judges
may use different dimensions for different pairs of functions, rather than weighing
each pair on the same set of dimensions. McDonald, Dayton, and McDonald (in
preparation) found that quite different scaling representations were obtained by
giving instructions to either judge the similarity of items or to judge how well
items go together. In general, the relatedness instructions should be carefully
considered in the data collection phase of this methodology.

Scaling
AB part of the process of deciding how the estimates of distance are to be
obtained, the scaling analysis to be used should also be considered. These two
stages (obtaining distance estimates and scaling) may interact, since certain data
collection methodologies emphasize (or allow) certain characteristics of the data
to emerge (such as hierarchical arrangement) while other methods do not. Furth
ermore, once a particular scaling technique has been selected, decisions must be
made concerning the particular algorithm (e.g., maximum or minimum hierarchi
cal cluster analysis) and/or parameters (e.g., q and r for Pathfinder) for that
technique.

Selection of a scaling technique. We believe that multiple scaling techniques
should be used in combination to elicit knowledge. Each of the techniques
emphasizes different features in the data. For instance, Pathfinder captures
information about local relations (pairs of items that are highly related), whereas
multidimensional scaling captures information about global relations among the
item set as a whole (i.e., dimensions). Furthermore, the techniques differ in terms
of the type of representation (e.g., spatial, network, hierarchical) that they gen
erate. A particular representation or combination of representations might be
desirable for a particular application. Research is needed that compares the scal
ing techniques in terms of psychological validity and the type of knowledge eli
cited. Given this information, a mapping could be derived between features of
specific domains and scaling techniques. In one study that investigated this issue,
Caoke, Durso, and Schvaneveldt (1986) compared the multidimensional scaling
technique with the Pathfinder technique and found that Pathfinder was superior
in terms of the elicitation of know ledge that was related to recall.

t0-3

Selection of a particular solution. Given a particular scaling technique, the
choice of parameters can greatly influence the resulting solution. There are
several criteria that can be used to select a particular solution. A solution may
be selected because it is an intuitively appealing representation of the domain.
However, this criterion is subject to the same criticism as introspective tech
niques. A more objective approach is to select the solution that corresponds most
closely to behavioral measures such as recall or categorization performance. The
criterion that is most often used to choose among various solutions concerns
"goodness of fit." The solution is selected that best fits the original data (i.e.,
distance estimates). Of course, the more parameters in the solution (e.g., links,
dimensions) the better the fit, but because the general goal of this approach is to
reduce the original set of data, it is desirable to select the solution in which fit is
maximized while number of parameters is minimized. It should be noted that use
of the fit criterion assumes that the original distance estimates accurately reflect
knowledge. It could be that the best representation is one that least resembles
the original ratings. Generally, the criteria are heuristics, not formal rules.
Research is needed to make these notions more precise and to evaluate solutions
resulting from varying parameters. In the Cooke, Durso, and Schvaneveldt
(1986) study, a comparison was also made among various multidimensional scal
ing representations and various network representations of the same data.
Results indicated that some representations generated by the same general tech
nique were better at predicting recall than representations with slightly different
parameters.

Interpretation of the Solutions
Once scaling solutions have been generated they must be mapped onto the partic
ular application. For example, in the interface design application mapping can
consist of taking the output of the scaling analysis selected and projecting it
rather directly onto the organization of the interface. Even with this simple
approach, however, there is ample room for interpretation. If hierarchical clus
tering is used, for example, there are numerous ways of emphasizing the inter
and intra-cluster relationships, ranging from a traditional dendrogram to a spatial
arrangement of items (cf., McDonald, Stone, & Liebelt, 1983). In the knowledge
elicitation application, scaling solutions need to be mapped onto a knowledge
base. This mapping can occur indirectly, by using the solutions to guide struc
tured interviews which in turn generate information for the knowledge-base, or
by transforming the solutions into a format compatible with a particular
knowledge-base architecture (e.g., production rules). The scaling solutions could
also be directly mapped into the knowledge-base of a system capable of interpret
ing it. In any case, the scaling solutions require some form of interpretation
before they can be used by a knowledge-based system.
Because the interpretation process is not formalized, it is subject to numerous
biases. Thus, the identification of dimensions in a multidimensional scaling
analysis, a cutoff point in a hierarchical clustering solution, and link labels in a
Pathfinder network are not specified by the scaling techniques, yet the interpreta
tion of the resulting representation is highly dependent on this type of informa
tion. For example, Pathfinder networks only become semantic networks with the
interpretation of links. Without link labels, caution must be exercised in inter
preting and comparing links in the networks. In the knowledge engineering
application, it is necessary to know not only that two concepts are related, but
how they are related as well. In order to provide the Pathfinder network with
semantics, the links must be interpreted or labeled. Cooke and McDonald (1986)
have taken some preliminary steps towards a formal methodology for classifying
and labeling links according to semantic relationships.

l0-1

The identification of semantic relations or dimensions is one means of providing
the scaling representations with semantics. Another is through the identification
of levels of abstraction in these structures. In any domain there are some con
cepts that are superordinate categories of other concepts or that are simply more
general than other concepts. Knowledge concerning levels of abstraction enables
inferences to be drawn about concepts at one level of abstraction based on con
cepts at a higher (i.e., more general) level of abstraction. One could envision a
multi-leveled scaling representation in which each successive level contained con
cepts that were increasingly abstract. In the study that follows, a technique is
investigated for identifying abstract concepts or categories in a set of Unix com
mands.
We have suggested that scaling representations can be used as a starting point
for further knowledge elicitation or machine learning approaches. On the other
hand, it is possible that the scaling approach could eventually result in a com
plete knowledge-base. If the representation is to be complete, however, a way of
interpreting it is needed. (Hayes, lg85). That is, even if the details of a represen
tation (i.e., link labels, dimensions) are identified, it is still necessary to determine
how to make use of the representation. The representations themselves are not
capable of making inferences, answering questions, making decisions, or solving
problems. For instance, a production system could be used to reason over facts
in a semantic network knowledge-base (cf. Anderson, lg83). Some preliminary
work has been done on reasoning over Pathfinder networks using principles of
spreading activation in a connectionist fashion (R. W. Schvaneveldt, personal
communication). This approach to interpretation eliminates the need for seman
tic link labels.

THE ELICITATION OF LEVELS OF ABSTRACTION
In the previous section several research issues were outlined along with some
efforts toward resolving these issues. In this section we elaborate on the issue of
levels of abstraction and discuss a study designed to build representations with
multiple levels of abstraction.
As previously mentioned, scaling techniques require interpretation in order to
apply them to many real-world situations. One potentially useful type of infor
mation not explicitly conveyed in scaling solutions concerns the differentiation
among concepts according to levels of abstraction. For instance, Pathfinder net
works are "fiat" in the sense that relations between concepts at the same level
(e.g., property relations such as bird - feathers or robin - red) and relations
between concepts at different levels (e.g., superordinate relations such as bird -
robin or animal - bird) are not distinguished. Whereas hierarchical clustering
schemes do produce multilevel structures, the levels do not necessarily correspond
to actual levels of abstraction due to possible error in the data and the fact that
the resulting solution needs to be completely connected. In fact, hierarchical
clustering schemes may generate a multileveled structure even when the concepts
are all from the same level. In order to concretize these issues and provide neces
sary background for the subsequent study on abstraction, results from the
McDonald, Dearholt, et al. (lg86) study on Unix commands is summarized below.
The purpose of the McDonald, Dearholt, et al. study was to elicit knowledge
about Unix commands from experienced users and to employ this knowledge in
the development of an Interactive Documentation Guide for the Unix on-line
documentation system. Each of 21g Unix commands was printed on an index
card and 15 experienced Unix users were each asked to sort the cards based on
the functions of the commands. Subjects also indicated whether or not they were
familiar with the commands. A matrix of distance estimates was obtained by

lo-(0

counting for each pair of commands the number of subjects that placed that pair
in the same pile and subtracting this value from 16. A conditional probability
matrix was then created by dividing each of these eo-occurrence values by the
smaller of the two frequencies (number of judges familiar with each item) for that
pair. This procedure tends to reduce the relative distances between pairs in
which one or both items are less common. Only 44 of the 219 commands were
sorted by (and thus were familiar to) all 15 experienced Unix users. Of these, 37
commands were identified as "core' Unix commands by eliminating those com
mands which were not grouped with one or more of the other 43 commands by at
least half of the raters. While scaling analyses were performed on the data from
all 219 commands, for the sake of simplicity the hierarchical cluster analysis
(maximum method) of the 37 core commands is shown in Figure 3.

binmail
mail
talk
cat

more
lpr
pr
cd

mkdlr
rmdlr

Is
pwd

chmod
cp
mv
rm

date
hostid

hostname
users

who
whoami

help
man

ed
vi

kill
sleep

wait
log in

passwd
cc

lint
lex

yacc
nroff
troff

____,

t---"" I
~ r-

- J

---. I
I - 1--

____,

----. J

___,

t t t t t t t t t t t t t t t t
D 1 2 3 4 S I 7 8 I lG tt 12 13 14 15

C\ITOFP' VALUE

-
Figure 3. A hierarchical cluster (maximum method) analysis of 37 "core" Unix
commands.

In Figure 3 a cutoff value of 1 indicates that all 15 experienced Unix users
grouped the commands in that cluster. The higher the cutoff, the fewer subjects
who sorted the connected commands together. Even though there are 15 cutoff
levels, it is unlikely that there are 15 meaningful levels of abstraction for this set
of commands. Thus it becomes important to distinguish between clusters that
form because of categorical associations and clusters that form because of

lO- { \

variability in the data. Additionally, the cluster analysis provides no information
concerning the category labels for particular clusters. In fact, the nameability of
each cluster might differentiate meaningful clusters from clusters that are
artifacts. Clusters that are easily named are probably more meaningful than
clusters that are not easily named. The purpose of the following study was to eli
cit information about levels of abstraction of the Unix commands from experi
enced Unix users in the form of "goodness of cluster" ratings and cluster names.

Method

Subjects. Four experienced Unix users from New Mexico State University
voluntarily participated in this study. These subjects had also participated in
the first Unix study.

Materials. Materials consisted of 83 clusters of two or more Unix commands
taken from the original set of 219. The clusters were obtained as follows. A
minimum cluster analysis was performed on the 152 commands that at least eight
of the 15 experienced Unix users were familiar with. A cutoff value of ten or
more in this particular solution resulted in a total of 83 clusters (some of these
were nested in that a small cluster may also be included in a larger cluster).
Thus, the 83 clusters contained commands that at least half of the experienced
Unix users were familiar with and that belonged together, that is, at least five
judges felt that the items belonged with one of the other 151 commands.
Because seven of the 152 commands did not cluster in the solution at the cutoff
value of ten, they did not appear at all in the 83 clusters.

Procedure. Each subject was seated in front of a CRT upon which each of the
83 clusters was randomly presented one at a time. For each cluster the subject
was asked to respond by pressing the "0" key if there were one or more items in
the cluster that were unfamiliar. If the subject responded with a "0" the next
cluster was presented. Otherwise, the subject was asked to rate the "goodness"
of the cluster by entering a rating of "1" through "5." A response of "1" indi
cated that the cluster was very bad and a response of "5" indicated that the clus
ter was very good. Following the rating, subjects were asked to assign a name to
the cluster. After the cluster was named, the next cluster was presented. Trials
continued in this fashion until all 83 clusters had been presented.

Results and Discussion
In general, the four subjects tended to agree on goodness of category ratings for
the 83 clusters (mean interjudge correlation -- r (81) = .97, p < .001). Ratings
of "0" through "5" occurred 4.2, 9.0, 7.2, 14.5, 22.0, and 43.1 percent of the
time, respectively. Thus, the distribution of the ratings was skewed with the
higher ratings of "4" or "5" occurring most frequently suggesting that the cluster
analysis did indeed produce mostly meaningful categories.
For each of the clusters, the "goodness" ratings were averaged over the four sub
jects. In addition, if the subjects agreed on a name (or a significant part of a
name) for a cluster then that name was assigned to the cluster. In many cases,
names tended to migrate from smaller clusters to a larger superset cluster. That
is, subjects often assigned the same name to a subset of commands as they did to
the larger superset. In this case the smaller subset clusters were collapsed and
the name was assigned to the superset cluster. The name migration criterion,
along with changes in the "goodness" rating allowed the elimination of many
clusters resulting in a simpler, but more meaningful, representation. An example

tO-lL..

of this procedure for a subset of 14 of the 152 commands is presented in Figure 4.
In Figure 4a the original cluster analysis (minimum method) for this subset is
presented along with the average "goodness" ratings. In Figure 4b the clusters
are collapsed and labeled. It should be noted that for this particular subset,
name migration was responsible for all of the collapsing since all of the clusters
were judged to be quite good. That is, subjects labeled talk and write as interac
tive communication as well as talk, write, and wall and talk, write, wall, and mesg.
Thus, in this example, information about category n_ames, reduced the number of
clusters from ten to five.

biff ----------.
binmall 4
prmall --+-------. mall .,::3::.::.6~7 ~4.:.::;:33;,.... __ __,

fiom -----------~
eheeknews -----,

lnews 1-=4~.7"-5 ___ __,

postnews ----._"-'-"-'---'
read news

reenews
mesg -----------,

talk 4.75 i-=4'"'. ~5 -~
write ----' 4.5
wau-----...1

(a)

2.75

bitf
blnma!l
prmall

mall
fiom

cheek news
I news

postnews
read news

reenews
mesg

talk
write
wall

I Electronic

I
Mal

News Communication

I
Interactive_

1 Communication

(b)

Figure 4. Hierarchical cluster analysis (minimum method) with average judged
"goodness" (a) and after reduction based on naming (b).

There are, however, some anomalies in the resulting representation. For instance,
the command biff (which informs the system whether or not you want to be
notified when mail arrives during the current terminal session) does not cluster in
the hierarchical cluster analysis with the other four electronic mail commands
until later when it also clusters with the commands related to news. We are
currently working on methods for extracting information about categories from
Pathfinder network solutions. A Pathfinder representation of the same subset of
commands is shown in Figure 5. The three main categories are also apparent in
this representation and can be identified by rich interconnections among items
within the same category. We are in the process of quantifying such information
so that it can be used to define category boundaries. Note that in this represen
tation of the data, the biff command appears to be part of the mail commands.

~-{3

Figure 5. Pathfinder solution for communication commands (r =eo, q = n - 1).

These results suggest that information about levels of abstraction can be
obtained as a second step in the representation process. Both naming and rating
appear to provide information that aids in the identification of "real" categories.
The resulting representation appears to be more complete as a characterization of
experienced user knowledge.

CONCLUSIONS
We feel that the psychological scaling approach to knowledge elicitation has
numerous advantages over traditional knowledge elicitation techniques, notably
the formalization of the elicitation process. Results that have been obtained in
other areas using this same approach have been quite promising. These tech
niques have been successful in the elicitation of knowledge from experts in
domains such as computer programming, flight maneuvers, and the Unix operat
ing system. However, there are several issues that should be addressed in order
to refine this methodology so that it is most useful for knowledge elicitation.
A long-term goal of our research is to develop a system that embodies the
knowledge elicitation tool kit along with expertise concerning the appropriate use
of the tools. Thus, this knowledge elicitation expert system would be able elicit a
set of domain-related items, select an appropriate data collection methodology,
choose appropriate scaling techniques, carry out the scaling, select a particular
scaling solution, and interpret the resulting solution. The formalization of all
aspects of this methodology is needed in order to develop such a system.
On the other hand, the application of this methodology is not at a stand-still
until these issues are resolved. Indeed, it has already been applied to several
problems and results have been encouraging. The resolution of the issues would
serve to formalize many of the aspects of this methodology that are currently left
to the judgment of the experimenter or knowledge engineer. At any rate, we

(0-\4

believe that even in its current state,. this methodology constitutes a more formal
and objective approach to knowledge elicitation than other existing techniques.

ACKNOWLEDGEMENTS
The authors would like to acknowledge Donald Dearholt, Kenneth Paap, and
Roger Schvaneveldt for their valuable contributions to this paper. Thanks also
to the experienced Unix users who participated in the abstraction study.

REFERENCES
Anderson, J. R. (1983). The Architecture of Cognition, Cambridge, MA: Harvard

University Press ..
Butler, K. A. & Corter, J. E. (1986). The use of psychometric tools for knowledge·

acquisition: A case study. In W. Gale (Ed.); Artificial Intelligence and
Statistics, Reading, MA: Addison-Wesley.

Cooke, N. M. & Schvaneveldt, R. W. (1986). The evolution of cognitive networks
with computer programming experience. Paper presented at the Workshop
on Empirical Studies of Programmers, June 5-6, 1986, Washington, D.C.

Cooke, N. M., Durso, F. T., & Schvaneveldt, R. W. (in press). Recall and meas
ures of memory organization, Journal of Experimental Psychology: Learning,
Memory, and Cognition.

Cooke, N. M., & McDonald, J. E. (1986). A formal methodology for acquiring and
representing expert knowledge. IEEE Special Issue on Knowledge Represen
tation.

Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis: Verbal Reports as
Data, Cambridge, MA: MIT Press.

Gammack, J. G., & Young, R. M. (1985). Psychological techniques for eliciting
expert knowledge. In M. A. Bramer (Ed.), Research and Development in
Expert Systems, London, UK: Cambridge University Press, 105-112.

Hayes, P. J. (1985). Some problems and non-problems in representation theory.
In R. J. Brachman & H. J. Levesque JEds.), Readings in Knowledge
Representation, Los Altos, CA: Morgan Ka mann, 3-22.

Hoffman, R. R. (in press). The problem of extracting the knowledge of experts
from the perspective of experimental psychology. AI Magazine.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241-
254.

Kruskal, J. B. (1977). Multidimensional scaling and other methods for discovering
structure. In Enslein, Ralston, & Wilf (Eds.), Statistical Methods for Digital
Computers. New York: Wiley.

Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. Sage University
Paper series on Quantitative Applications in the Social Sciences, #07-011,
London: Sage Publications.

McDonald, J. E., Dayton, J. T., & McDonald, D. R. (in preparation) Adapting
menu layout to tasks.

McDon~d, J. E., Dearholt, D. W., Paap, K. , & Schvaneveldt, R. W. (1986). A
formal interface design methodology based on user knowledge. Proceedings
of Human Factors in Computer Systems, CHI '86, 285-290.

McDonald, J. E., Stone, J. D., Liebelt, L. S., & Karat, J. (1982). Evaluating a
method for structuring the user-system interface. Proceedings of the 26th
Annual Meeting of the Human Factors Society.

l0-(5

McDonald, J. E., Stone, J. D., & Liebelt, L. S. (1983). Searching for items in
menus: The effects of organization and type of target. Proceedings of the
27th Annual Meeting of the Human Factors Society.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coher-
ence. Psychological Review, 92(3), 289-316. ·

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal
reports on mental processes. Psychological Review, 8, 231-259.

Rips, L.J., Shoben, E. J., & Smith, E. E. (1973). Semantic distance and the
verification of semantic relations. Journal of Verbal Learning and Verbal
Behavior, 12, 1-20.

Roske-Hofstrand, R. J., & Paap, K R. (1986, November). Cognitive JNDs:
Implications. for Scaling Techniques. Paper presented at the 27th Annual
Meeting of the Psychonomic Society, New Orleans.

Roske-Hofstrand, R. J., & Paap, K. R. (in press). Cognitive networks as a guide
to menu organization: An application in the automated cockpit. Ergonom
ics.

Schvaneveldt, R. W., & Durso, F. T. (1981). Generalized semantic networks.
Paper presented at the meetings of the Psychonomic Society.

Schvaneveldt. R. W., Durso, F. T., & Dearholt, D. W. (1985). Pathfinder: Scal
ing with Network Structures. Memorandum in Computer and Cognitive Sci
ence, MCCS-85-9, Computing Research Laboratory, New Mexico State
University.

Schvaneveldt, R. W., Durso, F. T., Goldsmith, T. E., Breen, T. J., Cooke, N.
M., Tucker, R. G., & DeMaio, J. C. (1985). Measuring the structure of
expertise. International Journal of Man-Machme Studies, 23, 699-728.

Shepard, R. N. (1962a). Analysis of proximities: Multidimensional scaling with
an unknown distance function. I Psychometrika, 27, 125-140.

Shepard, R. N. (1962b). Analysis of proximities: Multidimensional scaling with
an unknown distance function. II. Psychometrika, 27, 219-246.

Shoben, E.J. (1983). Application of multidimensional scaling in cognitive
psychology. Applied Psychological Measurement, 7, 473-490.

Tullis, T. S. (1985). Designing a menu-based interface to an operating system.
Proceedings of Human Factors in Computing Systems (CHI '85) Conference.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.

l0-l0

Knowledge Acquisition for Knowledge-Based Syst-ems Workshop, Banff, Canada, Nov., 1986

A Foundational Approach to Autonomous Knowledge
Acquisition in Knowledge-Based Systems

lames P. Delgrande

School of Computing Science.
Simon Fraser University.

Burnaby. B. C ..
Canada VSA 1S6

ABSTRACT

A formal. foundational approach to autonomous knowledge acquisition
and its relation with logical knowledge representation systems is presented.
Formal systems are derived by means of which the set of potential
hypotheses that can be formed on the basis of a stream facts is precisely
specified. A procedure is also derived for restoring the consistency of a set
of hypotheses after conflicting evidence is encountered. The framework is
intended both as a basis for the development of autonomous systems that
learn from examples, and as a neutral point from which such systems may
be viewed and compared. The relation between acquiring knowledge within
this framework and reasoning deductively is also explored.

1. Introduction

Broadly speaking, there are two actions that can be performed on a body of knowledge:
information may be derived from it, or the body of knowledge may be modified. In
knowledge representation the foremost concern is typically to develop a sufficiently precise
notation for the representation of knowledge. togettJ.er perhaps with an inferential
apparatus for reasoning with the knowledge. In knowledge acquisition the concern is to
develop methodologies and techniques for incorporating domain knowledge into representa
tion structures. This paper presents a formal, foundational approach to the acquisition of
knowledge. The basic idea is to ignore, insofar as possible. representational concerns and
instead develop in isolation (again. insofar as possible) a framework for autonomous
knowledge acquisition. To this end the starting point is the same as that of virtually all
knowledge representation schemes: that the world consists of. or may be described by. a
collection of individuals and a collection of relations on these individuals [Mylopoulos and
Levesque 84]. Such a framework for knowledge acquisition could have two potential
benefits: :first it could provide a formal standpoint from which acquisition systems may be
constructed and from which existing acquisition systems may be examined and compared.
Second it could provide a standpoint from which the concerns of acquisition. and how they
impinge on concerns of deductive reasoning with a knowledge base. may be examined.

These notions are expanded and amplified in the rest of this section. In the following sec
tion. formal systems are de~eloped for characterising this approach to knowledge acquisi
tion. and the approach is compared with representative AI learning systems. Following
this. the relationship between acquisition systems which fall into this framework. and
deductive reasoning systems, is examined. Further details. proofs of theorems. etc. are
given in [Delgrande 85].

l\-0

1.1. Approach

The world is assumed to be describable by a collection of individuals and relations on indi
viduals. This. of course. is the starting point for the standard Tarskian definition of an
interpretation for (function-free) :first-order logic. Clearly any learning system should be
able to receive information or "facts" concerning this world or domain. and so at any point
in time, some finite portion of the domain. described by a set of ground atomic formulae. is
assumed to be known by the learning system. Moreover. as time progresses. a learning sys
tem will encounter new information. and so this set of known ground atomic formulae
may monotonically increase. Also it is initially assumed that the only information avail
able to a learning system concerning the domain is in the form of ground instances. The
reason for this is that if more general statements were permitted- for example existentials.
universal generalisations. or disjunctions - their presence would beg the question of their
origin. Thus. for example. if we were told that there was a white raven in Ontario. this
would presuppose some agent who has knowledge (somehow) of this individual. Note
though that if we knew that a particular individual was a raven and white we would also
know that there exists a white raven, but only as a consequence of the ground instances.
Similarly, if we were informed that elephants had four legs. this would presuppose an
agent who had determined this relation. In any case, such information presupposes an
entity that had already performed some acquisition, or who had formed more complex sen
tences from the ground data. So. to begin with, I assume that the only available informa
tion is in the form of ground formulae. However, this assumption is restrictive1, in that it
excludes more general statements, and so, after appropriate systems have been developed,
consequences of relaxing this assumption are investigated.

Given a set of ground instan<:es, it seems reasonable to propose a structure for this set, and
hence hypothesise relations among the known relations. Thus if all ravens we had encoun
tered were black. we might form the hypothesis "all ravens are black". However. since the
set of known ground instances increases mono tonically. new hypotheses may become ten
able while others will be falsified. So the question arises as to how a set of hypotheses may
be modified as falsifying instances are encountered.

This part of the problem then consists of forming hypotheses based on a stream of ground
atomic formulae. where the hypotheses are phrased in terms of set relations among (the
extensions of) predicates. However the emphasis here is on what hypotheses may poten
tially be formed. and not on which hypotheses may justifiably be formed. Thus for example
if we have a set of black ravens and know of no non-black ravens, we could hypothesise
that ravens are black. However the approach at hand gives no indication as to when such a
hypothesis should be formed or what constitutes adequate evidence for such an assertion.
So the problem is to determine formal criteria which prescribe the set of potential conjec
tures. rather than to determine pragmatic criteria whereby an acceptable set of conjectures
may be formed. A similar distinction can be made in a deductive system. where an under
lying logic specifies what could be derived. but not what should be derived.

The overall approach then is as follows. Hypotheses are proposed and modified on the basis
of a finite. monotonically increasing set of ground instances. The hypotheses are expressed
in a language. HL. that is a simple variant of the language of elementary algebra. The cri::
teria for proposing hypotheses are straightforward: there is a reason to do so (i.e. some
minimal notion of evidence is satisfied) and the hypothesis is not known to be falsified.
These criteria though are far too simplistic. and in general the resultant set of hypotheses

1 But not so restrictive as it may at first seem. As mentioned, an assignment of individuals and rela
tions is all that is assumed in a Tarskian interpretation. Moreover, there are significant applications
which make similar restrictive assumptions. Relational data bases clearly comist of ground formulae, and
sentences of, for example, relational algebra are equivalent to such sets. Many semantic networks ex
pressly limit or omit disjunctive and existential sentences, offsetting the loss of expressibility with a gain
in computational efficiency.

lt- \

will be inconsistent.

However. with each term in a sentence of HI.. we can associate two subsets of the ground
instances. consisting of those known to satisfy the term and those known to not. For exam
ple. to the term "black raven" we can associate the set of individuals known to be black and
a raven. and the set known to be either non-black or non-raven. Formal systems are
developed to characterise relations between terms in HL by means of these sets. From this,
ground instances whose truth values are unknown can be iteratively located so that deter
mining their truth value leads to a convergence of the hypothesis set to consistency. Infor
mally these "knowable but unknown ground instances" correspond to unknown but poten
tially knowable "facts" in the domain.

This process provides a sharp separation between the inductive and deductive aspects of, the
problem of acquisition. Induction. as such. plays a relatively minor role: it is used to sug
gest an initial (and usually inconsistent) set of hypotheses. which then are modified using
strictly deductive techniques. The set of hypotheses that may be formed is shown to be
perhaps surprisingly general and in fact (with respect to expressiveness) subsumes a
number of systems for learning from examples and by discovery.

To recapitulate then, for knowledge acquisition I assume only that:

1. the domain is describable as a set of ground atomic formulae. some finite subset of
which is known;

2. the set of known ground atomic formulae is correct and error-free;

3. the set of known ground atomic formulae may grow monotonically with time; and

4. known individuals or tuples of known individuals may be tested for membership in a
known relation.

Of these assumptions. the second is clearly the most restrictive, and deserves further com
ment. Consider where we have some conjecture (say. "ravens are black") and an exceptional
individual (say. we encounter an albino). If we don't want to totally abandon our original
hypothesis. then there seems to be two ways we can discharge the exception. First. we
could amend the conjecture to something like "normally ravens are black". and perhaps also
introduce "normally albino ravens are white". Formal aspects of this approach are investi
gated in [Delgrande 86] - in any case the exception is "excused". Second we could deter
mine. or simply declare. that the observation is erroneous: either the individual is not a
raven or it really is black. However, this procedure of determining that an observation is
incorrect is a pragmatic concern, and is quite distinct from our concern of what hypotheses
"follow" potentially from a set of observations.

Once such a framework for knowledge acquisition is established. we can examine the rela
tionship between such acquisition systems and knowledge representation schemes. Since
acquiring knowledge of a domain and deductively reasoning with this knowledge are two
fundamentally different enterprises. the resulting systems may be expected to differ
significantly. This in fact proves to be the case. Given our assumptions. the natural direc
tion for investigating acquisition from a stream of examples leads to a set-theoretic
approach. while the natural direction for reasoning about properties and relations among
individuals leads to a (first-order) logical approach. This part of the problem also addresses
the issue of how arbitrary statements. in addition to the ground instances. can be incor
porated into the acquisition process.

1.2. Related Work

Much work has. of course. been carried out in AI addressing the problem of learning from a
stream of examples. The early. influential work of Patrick Winston is described in [Wins
ton 75]; in this system. descriptions of concepts are formed from a set of examples of the
concept and "near misses". The work presented in [Brown 73], [Hayes-Roth 78], [Mitchell
77], [Shapiro 81], [Solway and Riseman 77]. and [V ere 78] also falls into this category. The

U-2.

more recent work of Michalski, presented in [Michalski 83]. is a particularly detailed
approach to learning from examples. An extensive survey of AI learning systems is given
in [Dietterich et el 82]. while [Smith et al 77] describes a proposed "model" for learning
from examples. and [Dietterich and Michalski 83] compares four particular generalisation
programs. Much of this work is concerned with proposing and refining a description of a
concept. In contrast. the work at hand deals with characterising the hypotheses formable
under a set of (arguably) minimal assumptions and hence is more concerned with exploring
intrinsic properties and limitations of such approaches. In the last subsection of the next
section I return to this distinction and compare the work at hand with three systems for
learning from examples.

Most formal approaches to learning from examples have 'been concerned with inducing
instances of a given type of formal language. The area of learning theory studies systems
that implement functions from evidential states to languages. Learning theory was given a
rigorous foundation with the work of Gold [Gold 67]. A survey of such approaches is
p~esented in [Angluin and Smith 82]. while [Osherson et el 83] gives recent results in this
area. The key difference between such approaches and the present work. clearly. is that no
underlying formal grammar is presupposed. beyond that for elementary set theory.

2. Introducing Conjectural Information

2.1. A Language for Introducing Conjectures

As mentioned. the domain of application is assumed to be described by a presumably
infinite set of ground atomic formulae. formed from presumably infinite sets of individuals
and predicates. However. given a particular predicate. all that can be known of it is a sub
set of those individuals (or tuples) which satisfy it and a subset of those individuals which
do not. I will speak of an individual as being known, if it is known to be or not be part of
the extension of a known predicate. A predicate will be referred to as known if its truth
value on a given individual (tuple) can be determined2. Informally. a known individual or
predicate is one "encountered" by a learning system. The sets of tuples known to belong to
the extension of a predicate and known to not belong to the extension are referred to as the
known extension and the known antiextension respectively. So for a known n-place predi
cate P and known individuals a1, ••. , an there are three possibilities:

1. PCav ... , ~) is known to be true.

2. -.P(al, ... 'an) is known to be true.

3. Neither P(a1, ... , an) nor -.P(a1, ... , an) are known to be true.

Definition: For each known predicate symbol P define sets P+ and P_ by:

P + = { <a1, ... , an> I P(al, ... , an) is known to be true}.

p_ = { <al, ... 'an> I -.P(al, ... 'an) is known to be true}.

Conjectures are expressed in a language HL. This language is analogous to that of elemen
tary set theory. except that operators and relations are subscripted with the character "h". I
will use the symbol "lh" for the (hypothesised) disjointness relation, and "a:.h"· ".h"· and "lh"
for the converse. composition. and image operations. A "ply" operator =>h is also intro
duced. When we come to consider the algebra of terms of HL. we will also want to con
sider the corresponding prepositional logic. The ply operator will serve as the analogue in
the algebra of the material conditional in the logic. This operator is discussed further later
in this section.

2 Thus perhaps, for a known predicate, a verification procedure is assumed to be known for determin
ing if a given individual is part of the extension.

ll-3

De:.linition: If P is the set of known predicate names. then the terms of HL are exactly
those given by:

1) If a E P then a is a term of HL.

2) If a. 13 are 2-place terms and y a 1-place term of HL not containing ::>h. then a:ha.
atohf3, and alhy are terms of HL.

3) If a and 13 are terms of HL. then so are anhf3, aUhf3• ..,ha. and a::>hfl·

Definition: The sentences of HL are exactly given by:

If a. 13 are terms of HL. then a=hfl· aChf3, a!:hf3· alhf3, ao;:f3, act.f3. a!Lf3. a if3 E HL.
So, for example.

Raven U hPenguin U hRobin !: h Bird

Uncle =h (BrotherohParent) U h (HusbandohSisterohParent)

have the respective readings "the set of ravens. penguins, and robins is hypothesised to be
contained in the set of birds" and "(the binary relation) uncle is hypothesised to be
equivalent to the union of the composition of brother with parent. and the composition of
husband with sister with parent".

The known extension and antiextension corresponding to terms in HL can easily be deter
mined. Thus. for example, the hypothetical intersection of P and Q is known to contain just
those elements that both P and Q are true of. and is known to not contain just those ele
ments that either P or Q is known to not be true of. For the hypothesised operations we
obtain:

Proposition:

Complement:

Union:

Intersection:

Ply:

Converse:

Image:

Composition:

-.hp= (P_,P+)

PUhQ = (P+UQ+. P_nQ_)

PnhQ = (P+nQ+, P_UQ_)

P::>hQ = ((-.P+UQ+) n (-.Q_UP_), Q_n-.p_)3

a:hP = ({ <y.x>l <x.y> EP+}.{ <y.x>l <x.y> EP_})

P lh Q = ({yl (3x)(<x.y> EP+ A x EQ+)}. 0)
for binary relation P and one-place predicate Q

PohQ = ({ <x.z>l (3y)(<x.y> EP+ A <y.z> EQ+)}. 0).

These operations generalise easily to ternary and higher-order predicates. Other operations
such as domain and range may be defined in terms of these.

It will prove essential that occasionally we be able to determine the value of P(a1, ••• , an).
provided that P and a1, ... , an are known. However, in general we would not want to
determine the truth values of all known predicates applied to all combinations of known
individuals. The reason for this is combinatorial: given p known n-place predicates and m
individuals. there are pmn knowable ground instances. In the approach to be described. at
most p(p-1) of these combinations need to be known for hypothesising relations.

Naively. two terms of HL may be conjectured to be equal when there is some reason to do
so (i.e. the intersection of their known extensions is non-empty) and there are no known
counter-examples. While there are conditions other than these that can be used for forming
conjectures. any set of alternative conditions arguably must include at least these, and so
these conditions represent a set of minimal criteria for hypothesis formation. (See [Del
grande 85] for an examination of other such conditions.) In a similar manner. conditions for
containment and disjointness may also be specified.

3 This expression is chosen so that it corresponds to the material conditional in the logic (following).

ll-4

We obtain:

Definition:

o:=h~ when 0:+ n ~+ ;C 0 and 0:+ n ~- = 0 and o:_ n ~+ = 0.

o:Ch~ when o:+ n ~+ ;C 0 and o:+ n ~- = 0 and o:_ n ~+ ;C 0.

o:r;h~ when 0:+ n ~+ ;C 0 and 0:+ n ~- = 0.

0: lh~ when 0:+ n ~+ = 0 and 0:+ n ~- ;C 0 and o:_ n ~+ ;C 0.

The problem with this approach to forming conjectures. of course. is that it is hopelessly
simplistic. For example. assume that MSc_Sup means that one can supervise M.Sc. stu
dents. while PhD_Sup and Has_PhD means that one can supervise Ph.D. students or has a
Ph.D. (respectively). If all that is known is that

MSc_Sup(John), PhD_Sup(John). Has_PhD(John). together with

MSc_Sup(Mary). -.PhD _Sup(Mary)

we would have:

PhD_Sup eh MSc_Sup. PhD_Sup =hlia.s_PhD. along with

Has_PhD =h MSc_Sup.

This clearly is inconsistent. A potential solution to this- difficulty is to determine the truth
values of select ground instances. where both the predicate and the individual are known.
but where the truth value of the ground instance is not known. In the above example. if
Has_PhD(Mary) was determined to be true; then PhD_Sup ehHas_PhD could be formed:
if Has_PhD(Mary) was determined to be false. then Has_PhD =h MSc_Sup could be
weakened to Has_PhD eh MSc_Sup.

So two questions arise. The first concerns how such "select" ground instances can be deter
mined for the restoration of consistency. The second concerns specifying or characterising
the conjectures to which this procedure may be applied. Both questions are answered by
examining the algebra of the known extensions and antiextensions of terms of HL and.
from this. the corresponding propositionallogic.

2.2. An Algebra and a Logic for Forming Conjectures

Two terms of HL are defined to be (strictly) equal when their known extensions and
antiextensions coincide. Containment (~) is introduced by the usual definition. Hence:

Definition: For o:. ~ terms of HL.

o: = ~ i:ff o:+ = ~+ and o:_ = ~-·
o: ~ ~ i:ff o: n h~ = o:.

o: < ~ i:ff a ~ ~ but o: ;C ~.

The resultant algebra HLA is given by HLA = [H; -.h. n h· U h• ::> h]. where the carrier H is
given by:

H = { <a.b> I a,b k I and anb = 0}

for a set of known individuals I. The pair of elements in a member of H corresponds to a
possible known extension/antiextension pair. Upper and lower bounds of Hare defined by:

1 =df (1.0) 0 =df (0l)

We obtain the following postulates:

\t-5

Postulates:

Pl ex()h{3 = {3 ()hex
exUhf3 = {3 U11ex

P2 exnh({3nh'Y) = (ex()h{3)()h'Y
exUh(f3Uh')') = (exUh{3)Uhy

P3 exnh(exU h{3) =ex
exUh(ex()h{3) =ex

P4 exnh(f3U~a')') = (exnh{3) Uh (ex()hy)
exUh({3nh'Y) = (exUh{3) nh (exU 11y)

P5 exnhex =ex
exU hex =ex

P6 exnh({3Uh(exnh'Y)) = (exnh{3) Uh (exnhy)
exUh({3()h(exUh')')) = (exUh{3) nh (exUhy)

P7 exnho = 0
exnht =ex

P8 ex = -.h -.hex

P9 -.h(exUh{3) = ""hex()h-.h{3
""h(ex()h{3) = -.hexU~a-.~af3

PlO ex nh-.hex ~ {3 U h -.hf3

Pll ex nh (ex:>h{3) ~ f3

Rl If exn 11 y ~ {3 then')'~ (ex:>h{3)

Pl-PlO then characterise nh. Uh. and -.h. These postulates very nearly. but don't quite.
characterise Boolean algebras. Instead of a postulate for a universal complement.

we obtain the weaker "Kleene" postulate PlO. However we retain postulates governing
universal bounds (P7) and involution (P8) as well as De Morgan's laws (P9). The weak
ened complement arises from the fact that the known extension and antiextension of a
predicate typically do not together constitute the set of known individuals I. This algebra
has been investigated under the names of normal involution lattices [Kalman 58] and Kleene
algebras (Kleene 52].

We also want to derive the prepositional logic corresponding to HLA. The operations of
hypothesised intersection. union. and complement will clearly be analogous to the logical
operations of conjunction. disjunction. and negation. Corresponding to the material condi
tional in the logic we need to introduce a fourth operation. called the ply [Curry 63]. Pos
tulates Pll and Rl are used to characterise this operation. Pll corresponds to modus
ponens. while Rl says that the ply is maximal among solutions to Pll. Note though that
:> 11 is of limited usefulness in forming conjectures: while it does in fact correspond to the
material conditional in the logic (following). logical entailment corresponds to inclusion
(~) in the algebra. Thus the ply serves basically to facilitate development of the formal
results.

Given these postulates. the corresponding prepositional logic HLL is derived. This logic.
which seems to have not appeared in the literature. is given below.

l\-b

Axiom Schemata

Al a::> ({3 ::>a)

A2 (a::>({3=>')')) ::> ((a::>{3) ::>(a=>')'))

A3 al\{3 ::> a

A4 al\{3 ::> {3

A5 a::>({3::>(a I\ {3))

A6 a::> (aV {3)

A7 fj::>(aVfj)

A8 (a=>')') ::> (({3 =>')') ::> (aV(3 ::> i'))

A9 a= -.-.a

AlO (a:> -.a) V -.(a::> -.a)

Rules of Inference

MP From I- a and i- a ::> {3 infer 1- {3

HN I- a ::> {3 i:ff 1- (a::> -.a) V {3 and 1- (-.{3 ::> {3) V -.a

A semantic account for the formulae of HLL follows easily from the algebra HLA.

Definition:
1= a' in HLL i:ff a = 1 in HLA.

where a' is the formula obtained from a by replacing intersection with conjunction. etc. in
the obvious way. The material conditional is linked to containment. via entailment. by the
following.

Proposition: 1= a'::> (3' in HLL i:ff a~ {3 in HLA.

We obtain:

Theorem: HLL is sound and complete with respect to HLA.

Corollary: HLL is decidable.

Not surprisingly. negation in HLL is weaker than in PC: we lose reductio ad absurdum as a
method of proof; also we lose the law of the excluded middle. PC is obtained if AlO and
HN are replaced by (a::>{3) ::> ((a::>-.{3) :::>-.a). We also obtain:

Theorem:

1. 1- a::> {3 i:ff 1- -.{3 ::>-.a.

2. If 1- -.a V {3 then 1- a::> {3

3. If 1- {3 then 1- -.{3 ::> a

4. If 1- {3 and 1- a::>-.{3 then 1- -.a

5. If I- -.(a::>{3) then 1- -.{3

Note however that none of the formulae obtained by replacing the meta-theoretic "if
then · · · " in the above. with the material conditional. is a theorem of HLL.

The logic resembles the system of first degree entailment. Efde• of [Anderson and Belnap 75].
The principal difference is that axiom Al and the theorem a::>((3::>{3) of HLL is rejected by
Anderson and Belnap. while their axiom (a::>{3):::>(-.{3:::>-.a) is not a theorem of HLL.

2.3. Restoring the Consistency of Conjectures

For restoring the consistency of a set of conjectures. we subsequently obtain:

Theorem: If a 11 ••• , an• a E HL and a 1, ... , an have been hypothesised according to our
naive criteria. where a is derivable from a 11 ••• , an in HLA. then ground instances
can be determined. given a set of confirming instances for a 1, ... , an that will either

n-7

1. refute one of a 1, ••• , an

2. allow ex to be hypothesised or, if a is a negation of a relation, known.
Outline of Proof: Equality is characterised in HLA in the standard fashion as a reflexive

predicate which obeys the principle of substitution of equals into formulae. An
equivalent. but much more basic. characterisation is provided and shown to be
equivalent to the original. This alternative set of rules then may be used for forming
proofs in HLA. However, this set of rules has the important property that if there is
evidence (confirming ground instances) for the rule premiss(es), then there is
(immediately and simply) evidence for the conclusion. or else there is an instance that
falsi:fi.es the rule premiss. Since a proof is a sequence of steps from original premisses
to d,esired conclusion according to the rules of inference, the theorem follows immedi
ately. Note that it does not matter which proof of a from av ... , an is selected.

This guarantees that if our naive criteria allowed us to hypothesise that

A=hB. B=hC. C=hD.

but not

A=hD•
that we could identify an instance g with the following characteristics. The predicate sym
bol of g is among the set of known predicates, and the constants (individuals) of g are
among the known individuals. The truth value of g is unknown, but determining the truth
value of g. will refute one of the premisses. or. via our naive criteria, allow the conclusion
A=hD to be hypothesised.

The proof of this theorem is constructive. and leads immediately to a procedure which will
locate evidence (i.e. ground instances) for a conjecture a that follows from a set of
premisses a 1, ... , an• where each premiss has supporting evidence, or else will refute one of
a 1, •.• , an. This evidence is located from the instances supporting a 1, .•• , an: the pro
cedure is linear in the length of the proof of a. A corollary to the theorem allows for a
generalisation of the notion of evidence to include any metric that is applied uniformly to
the conjectures. Consistency can thus be restored in a set of conjectures by repeatedly
applying this procedure. Moreover. if we begin solely with a set of ground instances we
will, by repeated application of our naive criteria for forming conjectures together with this
procedure. arrive at a set of consistent conjectures.

This resolves the first question posed above concerning how consistency can be maintained.
The second is answered via the logic HLL and a secondary result concerning the algebra: the
conjectures to which the procedure may be applied correspond precisely to the sentences of
elementary set theory. except that

1. we do not have a universal complement.

2. the ply operator does not appear within the scope of a hypothetical converse, image. or
composition operator.4

The first condition is unavoidable in this approach (or any approach that generalises solely
from a stream of ground instances). For the complement. though. we do retain involution,
De Morgan's laws, laws concerning universal bounds, and the "Kleene" postulate. The
second condition. which was given in the definition of HL. presents no real obstacle. Since
containment provides an analogue for entailment. the ply is of limited use in forming con
jectures.

~ This condition formed part of the definition of the language HL and is required in the proof of the
above theorem.

ll-B

2.4. Further Issues

Up to this point I have been considering the question of what conjectures may (potentially)
be formed on the basis of a stream of ground instances. and how the consistency of a set of
conjectures may be restored in the face of conflicting ground instances. In this section I
further consider formal properties of the systems involved. along with the overall expres
siveness of these systems. The approach is to consider elements of the algebra HLA (i.e.
known extension and antiextension pairs) and compare them with standard (Boolean) sets.

In HLA we have entities such as (Red+• Red_) where Red+ is the set of things known
to be (say) red and Red_ is the set of things known not to be red. These entities represent
what is known of predicates (relations) in the domain of application. In standard naive set
theory we simply have some (finite, known) collection of entities. So. for example, in this
latter case, we may wish to distinguish some set of known entities {sv ... , s.cJ. If we use
capitalised strings for the former entities and strings beginning with a lower case letter for
the latter, we might say something like:

Red= (Red+• Red_)= ({r1, •.• , rn}. {t11 .•• , tm}) and

s = {s1, ••• ,s.c}.

So entities such as Red must be distinguished from sets such ass. The latter are wholly
and entirely known. in that their constituents are completely known. Thus s = {s1, ... , sn}
exactly determines s; for any individual a, it is known whether aE s or a~s. Red on the
other hand is used to represent what is known about a relation in the domain of application
-that is. the individuals known to be in the extension and the individuals known to not be
in the extension. However there are further differences between these two types of entities.

First. if s = {s1, ..• , s.c} then any occurrence of s can always be replaced by {s1 , ... , sn}.
Thus it seems reasonable to assert Stack(s) or Stack({s1, •.• , sn}) with equal facility. This
though is not the case with Red. While it seems reasonable to say. for example.
colour _type(Red), we certainly don't want to say colour _type((Red+• Red_)). Even if we
knew that {r1, · · · } was the extension of Red, we wouldn't want to say
colour _type({r1, · · · }). The difference lies in the intensional nature of predicates such as
Red, an aspect not shared by sets such ass. That is, Red, and in fact all the elements of P
and all the terms of HL. are assumed to represent what is known about properties; the con
jectures of HL then may be looked on as representing hypothesised interrelations among
properties, based on what is known of their extensions. This means that, among other
things. we can't distinguish predicates with differing intensions but with the same exten
sions (for example. vertebrates with hearts from vertebrates with kidneys).

But sets such ass. which are formed from members of I and P. are defined by their exten
sions. Once again. ifs= {s1, ..• , sn} there is nothing else to learn about the extension of s.
These sets that can always be replaced by their extension I will refer to as reducible. An
equally appropriate term is knowable. The (hypothetical) sets. such as Red, which cannot
be replaced by their extension. I will refer to as irreducible. An equally appropriate term
here is unknowable.

So there are two questions of interest:

1) How can we formally characterise the irreducible sets?

2) How do the reducible and irreducible sets interrelate?

These questions are addressed by specifying. via a list of axioms. the set of allowable redu
cible and irreducible sets. For both reducible and irreducible sets. the axioms developed
will parallel those in the system of Zermelo-Fraenkel (ZF) [Fraenkel et al 73]. Note how
ever that there is no commitment made as to which set theory applies in the real world.
That is. there are sets (maybe classes) in the real world that the irreducible sets correspond
to; however there is no need to decide which theory governs those (unknowable) sets.

Omitting the development, we obtain:

Notation:
a. b. c. · · · -reducible
A. B. C. · · · -irreducible
· · · . x, y. z- either reducible or irreducible

Set Axioms:

Existence:

i) If aE IUP. {a} is a set.

ii) If a, b s= IUP and anb ;:C 0 then (a. b) is an irreducible set.

Extensionality:

i) (a)(b)(x)(xE a E xE b) :::> a= b

ii) (A)(B)(x) ((xE A+ E xE B+) A (xE A_ E xE B_)) :::>A= B

Pairing:

(x)(y)(3a)(z)(zE a E (z=xV z=y))

Sum:

i) (a)(3b)(x)(xE b = (3c)(xE c AcE a))

ii) (a)((3D)(DE a) :::>
(3B)(x)[xE B+ E ((3c)(xE c AcE a) V (3C)(xE C+ ACE a))]
A [xE B_ E -o(3c) ((xE c AcE a) A (C) (xE C_A CE a))])

iii) (A)(3C)(x) ([xE C+ = (3B (xE B+A BE A+) V (3b)(xE bAbE A+))]

Power Set:

i)

ii)

Separation:

i)

ii)

Regularity:

A C_=0)

(a)(3b)(c)(cE b E cs=a)

(A)(3B)(c) ((cE B+ = cs=A+) A (cE B_ = (cs;;;(A+ UA_) 1\ dlA+)))

(a)(3b)(x)(xE b = xE a 1\ cr(x)) for b not free in cr. and cr
reducible or irreducible.

(A)(3B)(x)((xE B+ E (xEA+ A cr(x))) 1\ (xE B_ E (xEA_ V ~cr(x))))
for B not free in cr. and cr reducible or irreducible.

(a)(a;C0 :::> (3x)(xE a 1\ (y)(yE x :::>yEa)))
where for x irreducible, yE x means yE x+.

This axiomatisation then answers the preceding two questions regarding reducible and
irreducible sets: as well it provides us with the following benefits. First. the hypothetical
operators can be justified and defined in terms of the axioms for irreducible sets. So for
example. for intersection we have:

Theorem: (A)(B)(3C)(x)((xE C+ = xEA+AxEB+) 1\ (xE C_ = xEA_ V xEB_))
and C is unique.

So for any two irreducible sets there is a third unique set whose known extension consists
of elements common to the known extensions of the first two sets and whose known antiex
tension consists of elements in either of the known antiextensions of the two sets. This in
turn justifies the definition:

Definition: A nh B = C iff (x)((xE C+ E xEA+ 1\ xEB+) A (xE C_ = xEA_ V xEB_)).

Thus. A n h B = (A+ nE+. A_ U B_). Moreover results of applying an operator to a reducible
and an irreducible set can be justified and defined. For example. for intersection we obtain:

(\-lO

Deftnition: A nhb = c i1f (x)(xE c = xE b AxE A+).

Thus An 11b = A+nb. Thus the result of intersecting a known set of blocks with the
(irreducible) predicate Red is the subset of the blocks known to be red. The other
hypothetical operations can be similarly defined.

Given the extended system. the concept of transitive closure is introduced in [Delgrande
85). Given transitive closure. we can introduce a rudimentary means of relating predicates
which apply to sets of objects and to predicates that apply to pairs (or some fixed number)
of objects. Thus we can express the hypotheses that a stack of objects is a set of objects
that satisfies the transitive closure of the On relation and. conversely. any set of objects so
bounded is hypothesised to be a stack. As an example of the expressiveness that we obtain.
consider the oft-cited exa.II).ple of an arch. In first order logic we may write:

(yl)(y2)(y3)[Arch_reln(yl• Y2· YJ) =
On(y3. Yt)AOn(yJ. Y2)A -.Touching(y1, Y2)1\Pillar(yt)APillar(y2)1\Block(y3)]

to express the fact that an arch relation obtains between y1• y2 • and y3• In HL we can
express the hypotheses:

D(3,1)h(Arch_reln) ~~~On.

D(3,2)h(Arch_reln) ~h On.

D(1.2)h(Arch_reln) 111 Touching.

D(l)h(Arch_reln) ~~~Pillar,

D(2)11(Arch_reln) ~~~Pillar.

D(J)h(Arch_reln) ~ Block.

D(i)h and D(ij)h are extensions of the image operator and select the i-th or the i-th and j-th
arguments of a relation. The first relation expresses the fact that the third and first argu
ments of Arch_reln are bounded by the On relation. Thus it is equivalent to

(y 1)(y2)(y3)[Arch_reln(y1• Y2· y3) :::> On(y3. Yl)].

A pillar could be defined by:

Pillar =11 Stack U h Block

which would tie our definition back to that of Stack and the transitive closure of On.

A third· capability that the extended system provides is a means of forming conjectures
about sets of irreducible predicates. and thus meta-conjectures about the domain. For any
set of known individuals or predicate names A= {A1, ... ,An}. we can form reducible sets
Ar ~A or irreducible sets A; = (Ai+• A;_) where Ai+, A;- ~ A and A;+ nA;- = 0 (or. of
course. sets of such sets. etc.). Thus. one may decide to specify

colour _type= {Red, ... , Violet}

where Colour _type is introduced as an 5 internal" name. or by definition. based on the
hypothesis:

Colour=" RedU" · · · U"Violet.

Similarly one may specify:

Bear _type= ({Black_bear, Polar _bear.···}. {Red. Stack,···})

based on the hypothesis:

Black_bearUhPolar _bearUh · · · ~h Bear.

Bear _type may be taken as irreducible. perhaps as a result of knowledge of individuals. for
example the fact that some individual is known to be a bear. but is known to belong to

ll-\\

none of the known subgroups. Likewise. colour _type may perhaps be taken as reducible as
a result of pragmatic considerations. This time. for example. there is no known individual
known to be coloured that isn't one of the known colours.

So the set axioms. as well as providing us with a more primitive basis for forming conjec
tures. also expand the expressiveness of the system. In particular we can relate some predi
cates on sets of objects to other predicates or individuals. Also we can form conjectures
about other conjectures. or meta-conjectures. However. while the set of allowable indivi
duals has been vastly expanded. the form of the conjectures is unchanged. The formal
results of the last section still apply and. since in the intended model the property of being
an individual is decidable. the overall system remains decidable.

2.5. Comparison with Learning Systems

It is worth pausing at this point to compare the approach with other related work on learn
ing in AI. Three systems are particularly relevant and serve to place the present work
within the field. The early work of J.S. Brown [Brown 73] on automatic theory formation
is a direct precursor to mine. Patrick Winston's dissertation [Winston 75] on learning
structural descriptions from examples is a well-known early AI learning system and serves
as a good representative of a general approach to learning from examples. Ehud Shapiro's
work [Shapiro 81) on the inductive inference of theories from facts is similar to mine in
broad outline. except that he makes substantial assumptions concerning how the domain of
application is described.

The task of Brown's system is to propose definitions for a set of binary relations based on
knowledge of the extensions of the relations. The system begins with a set of binary rela
tions R = {R1, .•• , Rn} and a database containing all the tuples for which Ri(x. y) is true for
each Ri E R. The database is assumed complete and error-free. A process is given for pro
posing definitions of the relations. However the body of a definition is restricted to be
either the composition of relations or disjunctions of such compositions. This format
though is adequate for characterising a range of domains. including that of kinship rela
tions.

The system is restrictive in that it demands complete and static data. and deals only with
composition and disjunction. No analysis is carried out with regard to what may be conjec
tured. nor is an algorithmic analysis of the system given. Nonetheless the system illus
trates some important points. Foremost is the overall difficulty in constructing any general
system that will induce definitions from primitive instances. Given Brown's approach. and
a domain as elementary as binary kinship relations. a vast number of conjectures was pro
duced. However. as he remarks, it is not at all obvious which definitions should be selected
as axioms and which should be left as redundant.

Brown's system is heuristic and was intended for direct implementation. Thus it dealt
with matters such as efficiently searching for possible definitions. proposing definitions in a
"simplest first" manner. etc. In contrast I have not addressed implementation issues. but
rather have attempted to address general problems of hypothesis formation. and thus issues
dealing with characterising a set of conjectures and maintaining the consistency of a set of
conjectures.

Winston's program learns definitions of concepts in the blocks world domain by means of
"successive refinements" based on carefully chosen examples. The program is given a train
ing sequence of examples of the concept and of "near misses", where a near miss is an exam
ple that is quite similar to an instance of the concept but differs in a small number of
significant details. Relevant features that the concept must have are extracted from the
(positive) examples. while negative information is extracted from the near misses. The
notion of near miss is centrally important. and serves to focus and accelerate the learning
process.

l\- \t

Winston is largely interested in the pragmatic aspects of a learning system. and concen
trates on techniques that will speed the learning process or will assist in an implementation.
In some sense then his approach is complementary to the one taken here (which avoids the
more pragmatic issues). In addition. the set of sentences of HL subsumes the conjectures
that may be formed in Winston's system5; thus anything that can be formed in his system
can also be conjectured in HL. However. in HL the set of formable conjectures and the
means of restoring consistency are precisely laid out whereas Winston does not address
these issues.

Again, however. these aren't Winston's concerns: rather he deals with problems of imple
mentation. Thus the problems of dealing with a vast number of possibilities for conjectures
are avoided by means of a carefully selected sequence of examples and near misses. By res
tricting the language of discourse. the number of possibilities is further reduced. The result
is that only a single (tentative) definition is retained. If worst comes to worst. and the
definition becomes inconsistent, the system is able to resort to a backtracking strategy.

Shapiro's work is, superficially. the most similar to my own. Shapiro assumes that a
domain is described by a stream of ground instances: based on the ground instances. a set of
conjectured axioms for the domain is proposed and refined. The key difference is that in his
approach far more is assumed about the way the domain is to be described. First. the
domain is assumed to be describable by a set of rules in the form of restricted Horn clauses.
Also the names of the classes for which defining axioms are to be induced are known
beforehand and, for purposes of efficiency, each class is dealt with individually before the
next class is considered. ·

A general. incremental algorithm for proposing a set of rules which imply the known
ground instances is developed and described. The algorithm functions by successively read
ing ground instances. If the set of hypotheses is too strong (i.e. a contradiction is encoun
tered). a contradiction backtracking algorithm is applied to locate the refuted hypothesis.
The refuted hypothesis is then removed. If the conjectures are too weak. and don't imply
the new ground instance, then a new conjecture is added. or a refinement of a previously
refuted hypothesis is added. The algorithm has tuneable parameters that determine the
complexity of the structure of a hypothesis and the complexity of derivations from the
hypotheses. ·

The assumption that the domain is governed by rules allows an elegant. powerful. and rea
sonably efficient algorithm, and firm theoretical results concerning the types of languages
that may be discovered. The system has. in addition to discovering an axiomatisation for
simple arithmetic. synthesised logic programs for simple list-processing tasks. satisfiability
of Boolean formulae, and tree isomorphism. These results though hinge on the assumption
that the domain is describable in terms of (restricted) Horn clauses.

3. The Relation between Acquisition and Deductive Reasoning

3.1. Reasoning with Knowledge and Conjecture

Given the preceding framework, arguably derived from first principles and with minimal a
priori representational commitments. it is a reasonable question to ask how this approach
could be used with some given representation scheme. In particular. consider now where
we have a KB that consists of an arbitrary. consistent set of sentences. where some are
known to be true. while others are hypothesised to be true. Since we require that the KB be
able to reason about knowledge and hypothesis. this part of the problem either requires or
presupposes a theory of incomplete knowledge. I have taken the latter course. and adopted
the theory given in [Levesque 81]. This work presents a first-order logical language KL that

5 Winston actually gives a semantic net representation for his concepts. This representation however
is clearly equivalent to a set of binary relations, and is useful mainly as a notational or implementational
device.

H-\3

can refer both to application domains and to what a knowledge base might know about
such domains. KL is extended here to a language called HKL that is able to deal also with
arbitrary conjectural sentences.

KL extends first-order predicate calculus (FOPC) by adding a sentential operator K, where
Ka can be read as "a is known to be true". HKL extends KL by the addition of a sentential
operator H. where Ha can be read as "a is conjectured to be true". Using HKL we can
express sentences such as "John or Bill is hypothesised to be a teacher" or "it is known that
Mary is hypothesised to be a teacher". HKL is specified as follows:

Axiom Schemata

1. The axioms of FOPC

2. Ka, where a is an axiom of FOPC

3. K(a::>~) ::> (Ka::>K~)

4. a=Ka where terms of a are within the scope of a K or H operator
5. (x)Ka ::> K(x)a

6. Ka ::> (-.Ha A -.H-.a)

7. K(a::>M ::> (-.K~ ::> (Ha::>H~))

8. H(a::> M ::> (-.K~ ::> (Ka::>H~))

9. H(a::>~) ::> (-.K~ ::> (Ha::>H~))

10. ((x)(Ka V Ha) A (3x)-.Ka) ::> H(x)a

Rules of Inference - Modus ponens and universal generalisation

Since the axiom Ka::>a is not a theorem of the system, what we are dealing with is not
guaranteed to be true in the outside world. and thus is not knowledge per se, but rather
corresponds to a notion of belief. Given this interpretation Ha may be more appropriately
read as "a is hypothesised to be true, under the assumption that the non-hypothesised sen
tences are in fact true". The distinction then is between potentially revisable statements.
and statements which are taken to be knowledge. and thus true and unrevisable.

The first five axiom schemata and the rules of inference are those of KL. We obtain that
knowledge and conjecture are closed under modus ponens. and meta-knowledge is complete
and accurate. Also if something is known. neither it nor its negation is conjecture. and gen
eralisation applies analogously to conjecture and knowledge. What this extensiop from KL
to HKL buys us then is a means of distinguishing and reasoning with sentences known to be
true. from those that are not known but are. for one reason or another. believed to be true.

In HKL the semantic interpretation of a closed formula depends on a world description (or
interpretation in the Tarskian sense) and two descriptions of a KB. or model descriptions.
The first model description gives the possible worlds that may be the case. given the known
part of the KB; the second gives the subset of these possible worlds that may be the case
assuming that the conjectured sentences are also true. From [Levesque 81] we have:

Definition:

PRIM= {p(n1, •.. , nt)l niE Nand pE Pr(k)}.

WD = [PRIM-+{T.F}] the set of complete world descriptions.

MD= {ml m~ WD and m is non-empty} the set of model descriptions.

We can define an interpretation function for sentences of HKL as follows:

Definition:
V E [HKLxWDxMDxMD-+ {T.F}] is given by:

1) V(a. s. m1• m2) = s(a) if aE PRIM.

2) V(-.a, s, m1• m2) =Tiff V(a, s, m1. m2) =F.

3) V((a:::>/3). s, m1• m2) = T i1f V(a, s. m1• m2) =For V(/3. s. m1, m2) = T.

4) V((x)a,s,m1.m2) =Tiff for every n. V(a[xln],s,m1,m2) = T.

5) V(Ka.s.m1.m2) = T i1f V(a.s',m 1.m2) = T for every s'Em1•

6) V(Ha. s, m 1• m2) = T i1f V(a. s'. m 1, m 2) = T for every s' Em2 and
V(a. s', m1• m2) = F for some s' Em1.

Definition: aE HKL is valid i1f for every s and m1 and m2• V(a.s.m1.m2) is T and
satisfiable if its negation is not valid.

The intuitive idea here is that whereas the first model description. m1• specifies a set of com
plete world descriptions that may be the case. the second. m2• restricts this set to a set of
world descriptions that could be the case if the conjectured sen~ences actually turned out to
be true. We obtain: ·

Theorem: A sentence a of HKL is valid iff a is a theorem.

3.2. The Relation between Ill.. and HKL

The logic HKL seems to have reasonable properties with respect to reasoning deductively
with knowledge and hypothesis. There is a problem however with updating the KB. If the
KB were told, for example, that P(a) was hypothesised but later that ~PCa) was in fact the
case. we would get an inconsistent knowledge base. Intuitively though. since a hypothesis
is something that could conceivably be false. it seems that we should be able to "withdraw"
a hypothesis. The difficulty of course is that HKL is monotonic and there is no obvious
means of withdrawing a hypothesis.

A partial solution to the problem is to have the hypothetical portion of the KB. denoted
KBh. depend on the known portion KB.~:. so that KBh = HYP(KB.~:) for some function HYP.
For the rest of this section I review a version of the problem where the KB consists solely
of known sentences and we want to "apply" HL to this KB to produce a hypothesised com
ponent. Thus for example if KB.~: is

P(a), (x)(P(x):::>Q(x)), R(a).

then applying HL to what is known about the ground instances could yield:

P=hQ, Q=hR. P=hR

or the equivalent hypothetical KB in HKL -

(x)(P(x):=Q(x)), (x)(Q(x)::R(x)). (x)(P(x)::R(x)).

The basic idea is that KB.~:. which is expressed in HKL. determines a set of ground instances
and a set of sentences that are representable in HL. and that by applying the procedure for
restoring consistency to these sets we obtain a set of hypotheses following from this
knowledge. The function HYP then takes a known KB and produces a hypothesised com
ponent KBh. where KBh is the result of "applying" HL to the original KB. In outline. we
have the following procedure for forming a hypothetical component KBh for a known KB:

Let KB = [KB.~:. KBh] be composed of the known and hypothesised portions of the KB.
and assume initially that KBh = 0. The procedure is specified as follows:

1. Let G = {gIg is a ground atomic formula and KB.~:f-HKL g}.

2. Apply the procedure of section 2.3 to G to obtain a consistent set of conjectures
C expressed in HL. The determination of new ground instances may also
increase KB.~:.

3. Let KBh be the translation of the sentences of C into sentences of HKL; exclude
any of those provable in KB.~:.

Two issues concern us. The first is how HYP may be specified using HL. The second deals
with possible restrictions that must be placed on KB.~:. The first question is resolved

satisfactorily: there is generally a straightforward translation of sentences from HL to HKL
and. given this, the function HYP can be specified in a straightforward manner. The only
difficulty arises with conjectures involving sets of sets. where in some cases it may not be
obvious how to express a conjecture in first-order terms.

The second question cannot be answered so satisfactorily. It proves to be the case that
unless KBk is equivalent to a set of ground instances, that applying HYP to it may result in
inconsistency. The difficulty is that the procedure for restoring consistency relies on the
existence of knowable ground instances whose truth value is unknown. However in FOPC
it is possible to attribute a property to an unknown individual. and this attribution may
lead to inconsistency here.

While this last result appears somewhat limiting. things in practice may not be too bad.
Several considerations are relevant. First, the assumptions underlying HL are those that
presumably underlie any coherent knowledge representation system: that there are indivi
duals and relations. Given this, arguably the problems are intrinsic to the split between
forming hypotheses and reasoning with knowledge. and thus. to the extent that the
assumptions of HL are realistic. are unavoidable. Hence the problems addressed here argu
ably are the problems that must be addressed by any system that learns from examples. or
else must be discharged by means of a priori decisions by the system designers. Second.
while applying HYP to a general KB may lead to inconsistency. it need not necessarily do
so. If it does. it may be possible that pragmatic considerations can be used to resolve or
skirt a particular inconsistency.

4. Conclusions

This work develops a formal. unified, and general (but basic) framework for investigating
autonomous knowledge acquisition and acquisition systems. and their relation with
knowledge representation systems. A primary goal was to keep the approach as general as
possible and independent of any particular domain. representation scheme. or set of learn
ing techniques. Hence. for example. there is no restriction placed on the ordering of the
ground instances, nor is there any restriction with regard to introducing new ("known")
predicate names during the learning process. The major methodological stance is the adop
tion of the same basic ontology - individuals and relations - common to representation
systems. as a starting point for in~estigating acquisition. In this way factors arising from
our orientation toward acquisition emerge. presumably unobstructed by any a priori
representational commitments.

Formal systems are developed for introducing and maintaining the consistency of conjec
tures. An exact specification of what conjectures may potentially be formed is provided.
Also it is shown how the consistency of a set of conjectures can be restored in the face of
con:fiicting instances. The system illustrates that a reasonably rich and expressive set of
conjectures can be derived using only a minimal set of assumptions. The expressiveness of
the system is also indicated by the fact that it is as expressive as a number of existing AI
acquisition systems. including [Brown 73], [Hayes-Roth 78], [Vere 78], and [Winston 75].
Results concerning decidability lend credence to the possibility that it may be efficiently
im plementable.

The framework presented is intended not only as a basis for the development of auto
nomous acquisition systems. but also as a neutral point from which such systems may be
viewed and compared. Presumably the issues addressed here are common to. and are
relevant to. any system for learning from examples. However only a set of formal issues
have been addressed. Pragmatic issues concerned with the justification of conjectures.
strength of evidence, and degrees of confirmation (to name a few) are outside the scope of
this work. Also outside the scope of this paper is the question of exceptions to general
statements; this area is addressed in [Delgrande 85] and [Delgrande 86].

The approach as it stands may have immediate practical applications. It could be used. for
example, for verifying or completing definitional constraints in large databases or

l\-l(p

knowledge bases. Thus, as a specific example. database systems often use integrity con
straints to partly maintain consistency and reliability. However. given a large number of
relations. it is an arduous task to specify all integrity constraints and to ensure that the set
is consistent. The approach then seems suited to the task of automatically proposing and
verifying such constraints.

The interaction between autonomous knowledge acquisition and deductive reasoning is also
explored. The languages HL and HKL provide a possible logical framework for an
integrated system for acquisition and reasoning. Given our assumptions, the natural direc
tion for investigating acquisition from a stream of examples leads to a set-theoretic
approach, while the natural direction for reasoning about relations among individuals leads
to a first-order logical approach. However the interaction of these approachs leads to
immediate (and, in hindsight. obvious) difficulties, which likely require informal. pragmatic
techniques for their resolution.

Acknowledgment

This work is part of my doctoral disssertation at the University of Toronto. super
vised by Prof. John Mylopoulos. Financial assistance from the Province of Ontario
and the Department of Computer Science. University of Toronto, is gratefully ack
nowledged.

Bibliography

[1] A.R. Anderson and N.D. Belnap Jr., Entailment: The Logic of Relevance and Necessity,
Vol. I. Princeton University Press. 1975

[2] D. Angluin and C.H. Smith, "A Survey of Inductive Inference: Theory and Methods",
Technical Report 250, Department of Computer Science, Yale University, 1982

[3] J.S. Brown. "Steps Toward Automatic Theory Formation", Proceedings of the Third
International Conference on Artificial Intelligence, Stanford. Ca .. 1973, pp 121-29

[4] H.B. Curry, Foundations of Mathematical Logic, McGraw Hill Co., 1963

[5] J.P. Delgrande. "A Foundational Approach to Conjecture and Knowledge", Ph.D. thesis,
Technical Report CSRI-173, Department of Computer Science, University of Toronto,
September 1985

[6] J.P. Delgrande. "A Prepositional Logic for Natural Kinds", Sixth Conference of the
Canadian Society for the Computational Studies of Intelligence, 1986

[7] T.G. Dietterich. B. London, K. Clarkson and G. Dromey. "Learning and Inductive
Inference", The Handbook of Artificial Intelligence. P.R. Cohen and E.A. Feigenbaum
(eds.). William Kaufmann Inc., 1982

[8] T.G. Dietterich and R.S. Michalski, "A Comparative Review of Selected Methods for
Learning from Examples", in Machine Learning: An Artificial Intelligence Approach,
R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (eds.), Tioga. 1983

[9] A.A. Fraenkel. Y. Bar-Hillel and A. Levy. Foundations of Set Theory, 2nd revised ed .•
North-Holland Pub. Co .. 1973

[10] E.M. Gold. "Language Identification in the Limit". Information and Control 10. 1967,
pp 447-474

[11] F. Hayes-Roth. "The Role of Partial and Best Matches in Knowledge Systems", in
Pattern-Directed Inference Systems, D.A. Waterman and F. Hayes-Roth (eds.),
Academic Press. 1978

[12] G.E. Hughes and M.J. Cresswell, An Introduction to Modal Logic, Methuen and Col.
Ltd .. 1968.

H-t?

[13] J.A. Kalman. "Lattices with Involution". Transactions of the American Mathematical
Society. vol. 87. 1958, pp 485-491

[14] S.C. Kleene, Introduction to Metarnazhemo;tics. North Holland Pub. Co .. 1952

[15] H.J. Levesque. "A Formal Treatment of Incomplete Knowledge Bases". Ph.D. thesis.
Department of Computer Science. University of Toronto. 1981

[16] R.S. Michalski, "A Theory and Methodology of Inductive Learning". in Machine
Learning: An Artificial Intelligence Approach. R.S. Michalski. J.G. Carbonell. and
T.M. Mitchell (eds.), Tioga. 1983

[17] T.M. Mitchell. "Version Spaces: A Candidate Elimination Approach to Rule Learning",
Proceedings of the Fifth International Conference on Artificial Intelligence, Cam
bridge. Mass .. 1977. pp 305-310

[18] J. Mylopoulos and H.J. Levesque. "An Overview of Knowledge Representation" in On
Conceptuol Modelling, M.L. Brodie. J. Mylopoulos. and J.W. Schmidt (eds.). Springer
Verlag. 1984

[19] D.N. Osherson. M. Stob and S. Weinstein. "FormarTheories of Language Acquisition:
Practical and Theoretical Perspectives". Proceedings of the Eighth International
Conference on Artificial Intelligence. Karlsruhe. West Germany. 1983

[20] E.Y. Shapiro. "Inductive Inference of Theories from Facts". Research Report 192.
Department of Computer Science, Yale University, 1981

[21] R.G. Smith. T.M. Mitchell, R.A. Chestek and B.G.·Buchanan, "A Model for Learning
Systems", Proceedings of the Fifth International Conference on Artificial Intelligence.
Cambridge. Mass., 1977. pp 338-343

[22] E.M. Solway and E.M. Riseman. "Levels of Pattern Description in Learning", Proceed
ings of the Fifth International Conference on Artificial Intelligence, Cambridge. Mass.,
1977. pp 801-11

[23] S.A. Vere. "Inductive Learning of Relational Productions", in Pattern-Directed Infer
ence Systems. Waterman and Hayes-Roth (eds.). Academic Press. 1978

[24] P.H. Winston. "Learning Structural Descriptions from Examples" in The Psychology of
Computer Vision. P. Winston (ed.), McGraw-Hill, 1975

ll-(~

Knowledge Acquisition for Knowledge-Based Systems Workshop I Banff 1 Canada 1 Nov. 1 1986

I\:RITON:

A Kno-wledge Acquisition Tool

for Expert Systems

J oachim Dicderich

lngo Ruhmann

Mark May

Research Division "Expert Systems"
Institute for Applied Information Technology

German Research Institute for Mathematics and Data Processing
Schlo:B Birlinghoven

Postfach 1240
D-5205 Sankt Augustin 1

West Germany
Tel.: -2241/14-2687

.ABSTRACT

A hybrid system for automatic knowledge acquisition for expert
systems is presented. The system integrates artificial intelligence
and cognitive science methods to construct knowledge bases em
ploying different knowledge representation formalisms. For the
elicitation of human declarative knowledge the tool contains au
tomated interview methods. The acquisition of human procedural
knowledge is achieved by protocol analysis techniques. Textbook
knowledge is captured by incremental content analysis. The goal
structure of the knowledge elicitation methods is an intermediate
knowledge representation language on which frame, rule and con
straint generators operate to build up the final knowledge bases.
The intermediate knowledge representation level regulates and re
stricts the employment of the knowledge elicitation methods. In
complete knowledge is laid open by pattern directed invocation
methods (the intermediate knowledge base watcher) triggering the
elicitation methods to supplement the necessary knowledge.

Keywords: expert systems, knowledge acquisition, cognitive science methods, inter
mediate knowledge representation.

\2-0

..

1. Introduction

The KRITON system for knowledge acquisition is designed to meet the requirements of
practical knowledge engineering tasks. Starting-point in developing the system was the
assumption, that no single acquisition method will be powerful enough to overcome the
so called knowledge acquisition bottleneck in knowledge engineering. To fill that gap,
it requires hybrid knowledge acquisition tools, employing several knowledge acquisition
methods to capture different kinds of human knowledge. Within the domain of expert
systems, two major knowledge sources are available, in principle:

1. The human expert with his declarative and procedural knowledge of the domain in
question. This knowledge has been obtained in long practice and is often turned to
account without sufficient meta-knowledge about the way it is used. To model problem
solving processes mounting on these, often incomplete and unstructured, knowledge
chunks is the task assigned to expert systems.

2. Well-structured static knowledge, fixed in the traditional mode of knowledge repre
sentation: natural language documents, text books, technical descriptions and instruc
tions.

Depending on the actual application, all of the above mentioned knowledge sources may
become important and a knowledge acquisition tool should be able to meet these require
ments.

The aim of the present paper is to put forward an integrated methodological approach,
which takes into consideration different types of expert knowledge (declarative knowledge
vs. procedural knowledge) combining so far divergent methods to a modular knowledge
acquisition system, each submethod being able to acquire information on specific aspects
of the problem solving process and to transform the gained information into a knowledge
representation formalism.

The KRITON-approach for automatic and semi-automated knowledge acquisition inte
grates methods of artificial intelligence with those of cognitive science. One of the im
portant strategies of knowledge engineering is the interview, i.e. the dialogue between
knowledge engineer and expert to inquire about important terms and concepts of an ap
plication domain (NEWELL & SIMON 1972) and their interdependence.

From cognitive science we adopted the method of protocol analysis, i.e. processing and
transformation of texts gained by transcribing protocols of loud thinking durin,g a problem
solving process. In AI, the analysis of thinking-:-aloud protocols has been automated quite
early (WATERMAN & NEWELL 1971, 1973).

The analysis of texts with respect to syntactic, semantic and pragmatic criteria also goes
back to cognitive science. Although content analysis hac; developed into a standard method
in the social sciences, it still represents a not much used option for knowledge acquisition on
the basis of natural language texts. KRITON uses a form of incremental content analysis
to take advantage of these valuable knowledge sources.

Figure 1 shows the basic architecture of the KRJTON system. In short: ·three knowledge
elicitation methods are employed, namely an automated interview, content analysis and

t2- \

protocol analysis. After a completion process and a consistency check the elicited infor
mation is transformed into an intermediate knowledge representation language consisting
of a descriptive language for functional and physical objects, and a propositional calculus.

Know

ledge

Sources

Elici

tation

Methods

Inter

mediatE!'

Know

ledge

Repre

sentation

Know

ledge

Ba-"t'

Gene-

rat.iou

• 0 •••••••

• • • • 0 •••• .
.

• • • • • • 0 •• .
• • • 0 •••••

• • • 0 •• 0 •• · ...
.
• 0 •••••••

. . • • . . . 0.

.
.

.
• • 0 •••••••••

Frame. rule and constraint generators operating on the intermediate representation level
are finally u::;ed to build up the destination knowledge base. On the other side, the already
acquired knowledge guides the employment of the elicitation methods to complete the
knowl<•dge bases incrementally.

l '2.- z.

2. Methods for Knowledge Elicitation

On its first processing level our model makes use of three different knowledge elicitation
methods, to be outlined in this chapter.

2.1. Interview

One of the most important strategies of knowledge engineering is the interview. GROVER
(1983) distinguishes four different interview techniques for rule acquisition:

1. Forward scenario simulation
An applicational situation within a problem domain is selected and investigated under
faboratory conditions. The expert reports on the relevant terms and concepts and
describes the steps in problem solving, i.e. his or her own reasoning to achieve a goal.

2. Goal decomposition
The knowledge engineer divides the overall problem into subgoals and asks the expert
to describe paths for achieving the su bgoals.

3. Procedural simulation
GROVER (1983) uses this umbrella term for protocol analysis. In his opinion control
ling interventions by the knowledge engineer are absolutely necessary.

4. Pure reclassification
Expert statements are further differentiated and classified into specific objects and
relations between objects by means of a dialogue between knowledge engineer and
expert. As a result of the interview, object-relations may be reclassified and new
taxonomic relations eventually discovered. An interview techniques not mentioned in
GROVER's classification is

5. Laddering
The expert is asked to name important concepts of the problem domain in question.
These concepts are then used as basis for the interview to follow. Especially supertypes

. and iitstances of generic concepts are inquired about, allowing the derivation of a tax
onomic structure. An automated version of this interview techniques is implemented
in ETS (BOOSE 1984, 1985).

2.1.1. Interview Methods in KRITON.

In the KRITON system, interview techniques are completely automated, what is to say, the
expert interacts directly with the system. A combination of the repertory grid technique,
forward scenario simulation and laddering is used to explore the relevant concepts of a
problem domain.

The top level technique is the repertory grid approach: triples of semantic related concepts
are presented to the expert in form of natural language sentences and the expert is asked
for attributes two of the concepts share distinguishing them from the third.

If the expert is not able to name discriminating attributes, the system switches into lad
dering mode to explore taxonomic relations between the concepts. The expert may either

l'L-3

answer with a single word, denoting a specific concept, or can enter free text, which is
analyzed through morphologic-syntactic techniques to detect the relevant concepts.

The interview produces structured objects at the intermediate knowledge representation
level. These objects incorporate the explored taxonomic relations and attributes.

2.2. Protocol Analysis

Protocol analysis refers to the automated or semi-automated analysis of thinking-aloud
protocols, that is, tape-recorded utterances of an expert. during a problem solving episode.
The result of the protocol analysis can be considered as a path through successive knowl
edge states representing the sequence of the problem solving events. In case that an expert.
system uses this sequence of knowledge states (e.g. in consultation) a surface modeling of
the human problem solving process takes place.

Although automatic protocol analysis has been suggested as an adequate method for know
ledge acquisition in expert systems for some time now, fully developed systems are rare. A
consistent approach to protocol analysis is described by KUIPERS & KASSIRER (1983,
1984), their approach aiming at both, a structural description of the problem domain and
a qualitative simulation of the transitions between knowledge states during the problem
solving process. A constraint language is used to fill up incomplete protocol segments.

The power of protocol analysis quite decisively depends on the quality of the protocol
recording. Only if the protocol is actually one of loud thinking during a problem solving
process and only if this protocol has been correctly transcribed, automatic analysis will be
successful. As the success of any protocol analysis clepends on the quality of the recorded
information, detailed and adequate instructions with respect to the attainment of protocol
recordings of verbal utterances during the problem solving process are of great importance.
In any case, it requires psychologically trained manpower to achieve a constant cognitive
load of the thinking-aloud expert (for a comprehensive review on problems with verbal
data, see·ERICSSON & SIMON 1980, 1984).

Granularity of expert knowledge has turned out to be a serious and not easy to handle
problem. Even the most careful employment of protocol analysis will not avoid problem
irrelevant knowledge elements to be acquired. As soon as not directly problem-relevant
concepts are uttered by the expert, they are contained in the verbal material and hence are
fed into the analysis. For example, this can be the case when the expert starts commenting
upon, explaining or evaluating his thoughts or actions.

The other extreme, however, might as well occur, namely an expert communicating his
"compiled knowledge" to the system. This is to say, that the expert over his extended
learning process has combined inference steps so that the verbal report on the problem
solving process is incomplete. The expert skips, more or less small, nonetheless essential
inference steps. Even if this does not necessarily affect the efficacy of the future expert
system, it will reduce the explainability of the problem solving process.

2.2.1. Protocol Analysis in the KRITON System

Protocol analysis as a knowledge elicitation method is used in the KRITON system in
order to get hold of procedural human knowledge. Ideally, knowledge that was part of
content analysis or some previous interview is observed ,. in action" during the protocol
recording. Goal structure of the protocol analysis is the propositional part of the inter
mediate knowledge representation level. ln KRJTON protocol analysis is accomplished in
five steps. First the transcribed protocol is partitioned into segments on the basis of the
experts speech pauses during recording. The second step is the semantic analysis of the
segments, creating propositions for each segment. ln a third step, the appropriateness of
the selected operators and arguments is checked upon. Next, a knowledge base matching
is attempted to instantiate variables inside the propositions (variables are inserted if ap
propriate references for pronouns etc. cannot be f-ound). In a last step, propositions are
arranged according to their apparence in the natural language protocol.

2.3. Content Analysis

Knowledge engineering phase models recommend the knowledge engineer to start off with
studying manuals and documents on the problem domain in question. This can be very
time-consuming, particularly if the knowledge engineer is supposed to become an expert
on the topic before beginning his or her actual work.

For about forty years content analysis has been concerned with analyzing texts, especially
newspaper articles. Since the 50ies, programs for automatic content analysis are available
(KRIPPENDORFF 1980; MERTEN 1983). Utilization of these methods for constructing
knowledge-based systems have, in the best case, been outlined in the published literature.
NISHIDA, KOSAKA & DOSHITA (1983), for example, analyze hardware manuals by
means of action-event models. FREY, REYLE & ROHRER (1983) use discourse represen
tation structure (DRT, by H. Kamp) as "intermediate level" between the natural-language
text (a fragment of German language) and a data basis.

2.3.1. Content Analysis in KRITON.

KRITON supports the knowledge engineer in incremental content analysis. The knowledge
engineer can ask for statistical information on keyword frequencies in a selected text. H
a text seems expedient for knowledge acquisition, the user can define the size of a text
fragment surrounding the keywords, to be used for the generation of basic propositions in
a similar manner as in protocol analysis.

The resulting propositional structures are sometimes faulty and therefore not appropri
ate for inference processes. The goal structures as part of the intermediate knowledge
representation are to be constructed in an interactive process, where possible objects and
relations are presented to the user in a menu and window system. Appropriate items can
be selected by mouse-operations and the corresponding knowledge structures are set up.

3. Intermediate Knowledge Representation Level

In our system, all output from the mentioned above techniques is translated into an inter
mediate knowledge representation system. This representation system has two subparts: a
descriptive language for functional and physical objects. representing the generic concepts,
and a propositional calculus representing the transformation path of these concepts during
the human problem solving process.

The general architecture of this representation level is similar to KL-TWO (VILIAN 1985),
that. means, a terminological component is used to represent conceptual knowledge and a
propositional component is introduced to handle complex statements about the world.

The description language consists of structured objects, their features and interrelations
in a semantic net. The semantic net is the goal language for the methods interview and
content analysis and serves as the basis for the frame generation process.

The second part of the intermediate knowledge representation language is a propositional
calculus, using semantic primitives to describe the basic relations of concepts detected
by protocol analysis. The set of semantic primitives is not complete and will have to be
updated for each application domain (e.g. technical applications).

The intermediate knowledge representation level allows integration of different knowledge
sources and supplies the tool with openness towards elicitation methods currently not
available. Moreover, it can be used for the generation of various knowledge bases for

. different expert system shells and knowledge representation systems taking advantage of
the facilities of interactive knowledge base generation.

4. Dealing with Incomplete Knowledge: Knowledge Guided Knowledge Elici
tation.

The use of knowledge elicitation methods depends not only on decisions of the knowledge
engineer but also on requirements the KRITON system detects on the basis of the already
acquired knowledge.

A significant role in dealing with incomplete knowledge is played by the watcher. The
watcher is an always.active demon controlling the intermediate knowledge representation
for missing components. For example, the user (the knowledge engineer or the expert)
might have generated ::everal objects during the incremental content analysis without any
relation to the taxonomic organization of the objects of the corresponding domain (i.e.
no information about the inheritance paths, part-of relations or instance relations was
given). The watcher checks all objects at the intermediate knowledge representation level
for missing, but possible or indispensable, links (every object has to be placed in a taxo
nomic organization), sends a message to the user and recommends the employment of an
elicitation method to complete the knowledge base. The watcher is also invocated if an
elicitation method starts, informing the user about incomplete parts of the knowledge base.
Furthermore, the user can delegate the selection of concepts to be used in an interview to
the watcher. In this case the demon looks for semantic related but incomplete objects and
triggers an interview further exploring that domain.

procedunrl

Fig. 2: Interaction between Intermediate Knowledge
Representation and Elz'citation M et hods.

5. Knowledge Base Generation

As mentioned above, the intermediate knowledge representation is the blackboard for
frame, rule and constraint generation.

The task of the frame generator is to translate the information stored in structured objects
and their relation into a frame language. In principle. this is a simple syntactic transfor
mation process. After frame generation, the user can interactively correct the translation
process with a structure editor.

The output of the protocol analysis is the input for the rule generator. A subset of
propositional clauses, extracted from adjacent segments in the thinking-aloud protocol, is
offered to the user for rule generation. The user can either reject the proposal or use it
for rule generation. Rule junctors and rule actors are inserted by selection from pop-up
menus, premises and actions by entering the corresponding proposition number. Again, a
rule editor can be called to correct for shortcomings of the automated protocol analysis.

Thus far, frame and rule generator build knowledge bases using the BABYLON frame and
rule language (DJ PRJMJO & BREWKA 1985).

\2-7

lf the user, through interaction with the system, detects global value restrictions, the
constraint generator is used to represent these global restrictions in a constraint language
(see GUESGEN 1986).

6. Steps in Knowledge Engineering with KRITON.

The following is a description of phases in automatic knowledge acquisition using the KRI
TON methodology. These steps are not strongly chronological. Especially through the
influence of the knowledge-guided knowledge elicitation process, loops (cyclic and alternat
ing employment of the different KRITON submethods) are probable and for applications
of considerable size can be considered necessary.

There is no doubt, that in certain cases the exclusive employment of single submethods of
KRITON will be successful.

The technique of incremental content analysis will be described in more detail in forth
coming publications. The overall knowledge acquisition process consists of three levels:
knowledge elicitation, intermediate knowledge representation and knowledge base genera
tion.

I. Definition of the domain.
The actual knowledge domain defined by the situation, in which human problem
solving process occurs, is initially investigated by means of interview techniques.
The definition of the domain and the breaking down of the experts extensive knowl
edge into proportionate subparts is an important precondition for the automated
acquisition process.

II. Elicitation of declarative knowledge by automated interview techniques and incre
mental content analysis.
The important terms ana concepts of a concrete knowledge domain to be investi
gated by means of automated protocol analysis or other acquisition methods for
procedural knowledge are inquired about and entered into the computer-based
analysis system. Interview and content analysis are employed in a cyclic manner
until the network of structured objects reaches a significant size.

Ill. Guided protocol recording
A prot.ocol of loud thinking is tape-recorded. This requires a careful guidance to
secure constant verbalization of the expert during the problem solving work. It will
take quite a few protocols if the problem domain is not to be restricted to a single
problem solving path.

IV. Transcription
The recorded protocol is transcribed. While punctuation is not used, speech pauses
are supplemented. The protocol is entered into the analysis system.

V. Protocol segmentation
The protocol is automatically divided into numbered segments, the speech pauses
determining the length of the segments. .

\2-B

VI. Search for the knowledge elements in the segmented protocol
The segmented protocol is searched for the various knowledge elements of the prob
lem space. Concepts that are detected are stored together with the segments they
are contained in.

VII. Semantic analyst"s of the segmented protocol
By comparison with the available lexicon entries, all words contained in the seg
ments found by V. are examined whether they include
a) ordinal relations, e.g. A is smaller than B or X is equal toY or,
b) tendencies, e.g. The state of X is stable. The value of Y continues to increase.

VIII. Propositionalization
If such elements are found, the knowledge elements together with the operators
interconnecting them are set. down in a prepositional calculus.

IX. Completion of propositions
The system tries to find knowledge elements, which allow a completion of the above
mentioned propositions. This is first. done within the same segment, subsequently
in the neighboring segments.

X. Knowledge base matching.
The method described under VIII. does not allow the identification and solution of
references, especially over longer distances. In case of a proper realization of pro
tocol recording, however, complex syntactic constructions are not to be expected.
By way of trial, the completion of propositions is accomplished by searching for
complete propositions displaying the components already extracted. The missing
arguments are taken from these propositions.

XI. Intermediate knowledge representation
All output from the protocol analysis is integrated in the intermediate knowledge
representation system. This language supplies a prepositional language as a goal
for the protocol analysis. Each proposition consists of an operator, i.e. a semantic
deep case representing the basic relation between the acquired concepts, a segment
marker, i.e. a pointer to the origin of the proposition in the natural language
protocol, and the relevant concepts.

XII. Checking for completeness in the network of structured objects.
Usually, protocol analysis will exhibit voids in the net.work of structured objects.
This is always the case, when concepts used during the thinking-aloud procedure
are not sufficiently defined. In this case, interview and content analysis should be
repeated.

XIII. Frame generation
Structured objects in the semantic net of the intermediate knowledge representation
level are translated into frame format, i.e. the BABYLON frame representation
language. In general, frame generators for several other ·languages can be added,
using the intermediate knowledge representation as a blackboard.

XIV. Rule generation
Rule generation is an interactive process realized by mouse-operations for the selec
tion of propositions to be used on the left or right side of rules. Corrective actions

can be taken by calling a structure editor. The organization of rule sets as well as
the selection of control strategies, for the present, remains a task of the knowledge
engineer.

XV. Constraint generation.
If global dependencies between data are discovered while using KRITON, these
relations are encoded in a constraint language. The selection of data and their
relations proceeds by mouse-interaction.

7. Comparison with other Systems of Automatic Knowledge Acquisition

None of the so far developed systems for automatic knowledge acquisition has reached
product features. Most systems are experimental in character. Though the approaches are
often very different and based on different theoretical assumptions, some common features
are identifiable. The efforts center around the construction of a conceptual structure by ·
means of an interactive system.

Nevertheless; there is no system that handles multiple knowledge representation formalisms
or makes use of several different knowledge sources to acquire both declarative and proce
dural knowledge. Some systems, for instance ROGET, have no elicitation component and
are primarily used for purposes of knowledge base extension.

KADS (BREUKER & WIELINGA 1985) is an interactive system using a set of differ
ent functions in support of the knowledge engineer. This includes assistance in planning
problems, data interpretation and consistency check. KADS was mainly based on a KL
ONE implementation in PROLOG provided with a simple rule interpreter, the rules being
part of a network. This knowledge based system, containing task-dependent and domain
independent information, is used for the interactive analysis of a knowledge domain. Ana
lysis is controlled by interpretation models that are typical for specific problem solving
processes (e.g. in a diagnostic task domain). In principle, KADS can be considered as a
library containing different elicitation methods.

ROGET (BENNETT .1985) directly interacts with an expert to construct a rule base that
is understood as fundamental conceptual structure of the knowledge domain. ROGET
itself was developed in the context of EMYCIN and supports only systems of this type. A
ROGET consultation is used for the following ta:sks:

1. definition of problem solving type;

2. acquisition of conceptual structure;

3. analysis of conceptual structure;

4. operationalization of conceptual structure for a specific knowledge engineering envi
ronment (of the EMY CIN type).

ETS (BOOSE 1984, 1985) is another interactive system for generation of knowledge bases
of the EMYCIN and OPS 5 types. The heart of the system consists of an on-line im
plementation of the repertory grid_test by KELLY (1955). Factor analytical methods are

1'2-lO

applied for an investigation of semantic distance between concepts and possible implica
tional relations. ETS only supports rule base generation.

8. Implementation

So far, all components described in this paper are implemented in a preliminary form on a
XEROX-ll08 machine in INTERLlSP-D using object-oriented features from LOOPS. The
structured object representation of the intermediate knowledge representation language is
realized in form of LOOPS-objects. Protocol and content analysis make use of a lexicon for
"closed class" words. Detection of word-stem works by means of an analysis of inflection,
which itself is part of the lemmatization component. Lemmatization is to some extent
lexicon- based and partly rule- based. The hit. rate is well above 90 percent and in so far
comparable to that of other systems. A first application of the system is planned for the
2nd half of 1986. Application domain is an expert. system for planning and configuration
of bureau equipment.

9. Conclusions

We are aiming at an integrated, modular system-tool for knowledge acquisition in expert
systems. On the one hand the system should be of high supportive value for the acquisition
~of declarative and procedural expert knowledge. On the other hand it should be open, in
the sense, that it provides facilities for its own extension and elaboration. At the present
stage of the systems development the protocol and the content analysis still work inaccurate
and sometimes erroneous. For the present, these shortcomings in automatic text analysis
are compensated by the use of appropriate editors, through which the employment and
testing of the system in applied industrial fields is guaranteed.

To sum up: the here presented approach to automated knowledge acquisition not only
has the potency of taking advantage of developments in hybrid knowledge representation
formalisms, but also is hybrid in the sense that it makes use of information from different
knowledge sources. In our opinion, the guaranteed openness for future extensions is a
most promising feature of the knowledge acquisition tool presented here, supplying it with
a remarkable amount of applicability for various industrial fields.

10. References

Bennett, J .S. ROGET: A Knowledge-Based System for Acquiring the Conceptual Struc
ture of a Diagnostic Expert System. Journal of Automated Reasoning, 1, 49-74, 1985

Boose, J. Personal Construct Theory and the Transfer of the Human Expertise. In: Proc.
of the National Conference on Artificial Intelligence. Austin, Texas 1984

Boose, J. A Knowledge Acquisition Program for Expert Systems based on Personal Con
struct Psychology. International Journal of Man-Machine Studies, 23, 495-525, 1985

Breuker, J. & Wielinga, B. KADS: Structured Knowledge Acquisition for Expert
Systems. Proc. Expert Systems and their Applications, Vol. 2, 887-900, 1985·

\2-\\

Di Primio, F. & Brewka, G. BABYLON: Kernel System of an Integrated Environment
for Expert System Development and Operation. Proc. of the Fifth International
Workshop "Expert System and their Applications", Avignon, France, May 1985

Ericsson, K.A. & Simon, H.A. Verbal Reports as Data. Psychological Review, 87, 3,
1980

Ericsson. K.A. & Simon, H.A. Protocol Analysis. Verbal Reports as Data. The MIT
Press, Cambridge, Mass. 1984

Frey, W., Reyle, U. & Rohrer, C. Automatic Construction of a Knowledge Base by
Analyzing Texts in Natural Language. IJCAl 83, 727-729, Karlsruhe 1983

Grover, M.D. A Pragmatic Knowledge Acquisition Methodology. JJCAI 83, 436-438,
Karlsruhe 1983

Guesgen. H.W. Consat-0. Foundations of a System for Constraint Satisfaction. Unpub
lished manuscript, St. Augustin, 1986

Kelly, G. The Psychology of Personal Constructs. New York: Norton, 1955

Krippendorff, K. Content Analysis. An Introduction to its Methodology. Beverly Hills,
1980

Kuipers, B. & Kassirer, B. How to Discover a Knowledge Representation for Causal
Reasoning by Studying an Expert Physician. IJCAI 83, 49-56, Karlsruhe 1983

Kuipers, B. & Kassirer, B. Causal Reasoning in Medicine: Analysis of a Protocol.
Cognitive Science," 8, 363-385, 1984

Merten, K. lnhaltsanalyse. Westdeutscher Verlag, Opladen 1983

Newell, A. Simon~ H.A. Human Problem Solving. Prentice-Hall Inc., Englewood Cliffs,
N.J. 1972

Nishida, T., Kosaka, A. & Doshita, S. Towards Knowledge Acquisition from Natural
Language Documents- Automatic Model Construction from Hardware Manuals
IJCAI 83, 482-486, Karlsruhe, West Germany, 1983

Vilian, M. The Restricted Language Architecture of a Hybrid Representation System.
IJCAI 85, 547-551, Los Angeles 1985

Waterman, D.A. & Newell, A. Protocol Analysis as a Task for Artificial Intelligence.
Artificial Intelligence, 2, 285-318, 1971

Waterman, D.A. &. Newell, A. PAS II: An Interactive Task Free Version of an Auto
matic Protocol Analysis System. JJCAJ 1973. Menlo Park, Ca.: Stanford Research
Institute, 431-445, 1973

11.-lZ..

Knowledge Acquisition for Knowledge-Sa.sed Systems Workshop, Banff, Canada, Nov. , 1986

MOLE: A Tenacious Knowledge Acquisition Tool

Abstract

larry Eshelman, Damien Ehret, John McDermott, and Ming Tan

Department of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

MOLE can help domain experts build a heuristic problem-solver by working with them to generate an
initial knowledge base and then detect and remedy deficiencies in it. The problem-solving method
presupposed by MOLE makes several heuristic assumptions about the world, which MOLE is able to
exploit when acquiring knowledge. In particular, by distinguishing between covering and
differentiating knowledge and by allowing covering knowledge to drive the knowledge acquisition
process, MOLE is able to disambiguate an under·specified knowledge base and to interactively refine
an incomplete knowledge base.

1" Introduction
MOLE [Eshelman 86] is an expert system shell that can be used in building systems that do heuristic
classification. lt is both a performance system which interprets a domain dependent knowledge base
and a knowledge acquisition tool for building and refining this knowledge base. MOLE the
performance system presupposes that the task can be represented as a classification problem: some
object is selected from a set of pre-enumerable candidates (e.g., faults, diseases, components) on the
basis of weighted evidential considerations (e.g., symptoms, cues, requirements) [Ciancey
84, Clancey 85, Buchanan 84]. MOLE the knowledge acquisition tool builds a knowledge base by
eliciting knowledge from the domain expert guided by its understanding of how to represent the
knowledge required by its problem-solving method, and discovers missing knowledge and refines the
knowledge base guided by its understanding of how to diagnose what knowledge the problem-solving
method might be missing.

MOLE belongs to a family of knowledge acquisition tools which get their power by paying close
attention to the problem-solving method used by their performance systems [McDermott 86, Gruber
86]. Examples of such systems are TEIRESIAS [Davis 82], ETS [Boose 84], MORE [Kahn 85a, Kahn
85b], KNACK [Kiinker 86], SALT [Marcus 85], and SEAR [vandeBrug 85]. MOLE resembles the first
three systems in that its method can be described as a variant of heuristic classification. lt differs
from them in that its problem-solving method incorporates certain explicit assumptions about the
world which, along with several assumptions about how experts express themselves, are exploited
during the knowledge acquisition process.

Our goal has been to make MOLE smart -· i.e., to enable it to build a reasonable knowledge base with
a minimal amount of information elicited from the expert. Our research. strategy has been to overly
restrict (or so it seems at first) the information that MOLE can elicit from the expert and then to search
for heuristics that will enable it to build from this limited information a knowledge base that can

perform the given task reasonably well. In this paper we shall describe the results of this strategy. In
Section 2 we describe the method presupposed by MOLE and the set of knowledge roles imposed by
the problem-solving method. In Section 3 we describe how MOLE's knowledge of its performance
system's method is exploited in knowledge acquisition.

2. MOLE's Method
MOLE the knowledge acquisition tool gets its power from its knowledge of the problem-solving
method of MOLE the performance system. In this section we shall describe the method used by
MOLE the performance system. MOLE's problem-solving method is a variant of heuristic
classification. MOLE selects or classifies candidate hypotheses on the basis of "rules" associating
the candidates with various evidential considerations. However, unlike some heuristic classification
systems such as MYCIN, these rules are not just arbitrary implications among arbitrary facts about the
world [Szolovits·?s]: By making certain assumptions about the world and interpreting the rules or
associations in light of these assumptions, MOLE is able to obtain considerable leverage for its
knowledge acquisition. MOLE's problem-solving method consists of the following steps:

1. Ask what symptoms need to be explained
2. Determine what hypotheses will explain or cover these symptoms (COVERING

KNOWLEDGE)
3. Determine what information will differentiate among the hypotheses covering any

symptom (DIFFERENTIATING-KNOWLEDGE)
4. Ask for that information
5. If any differentiating knowledge needs to be explained, go to 2
6. Pick the best combination of viable hypotheses that will explain all of the symptoms

(COMBINING-KNOWLEDGE)
7. If there is information that will affect the viability of some combination of hypotheses, ask

for that information, and go to 2 ·
8. Display the results

Central to MOLE's method is the distinction between evidence that needs to be explained or covered
by some hypothesis and evidence that helps differentiate among hypotheses. The former, covering
knowledge, reflects two basic assumptions that MOLE makes about the world:

1. Exhaustivity: every abnormal finding has an explanation •. i.e, some candidate
hypothesis will account for it.

2. Exclusivity: explanations should not be multiplied beyond necessity .. i.e., do not accept
two hypotheses if one will do.

The exhaustivity assumption enables MOLE to interpret the hypothesis-symptom associations in its
domain model causally. Every symptom is assumed to have a cause. If a symptom is not explained by
one hypothesis, it must be explained by another. The exclusivity assumption is a version of Occam's
razor: All other things being equal, parsimonious explanations should be favored. As a general rule
of thumb, the types of events represented by hypotheses are fairly rare, so it is unlikely that several
occur simultaneously. (Of course, two such events might be interrelated, but then this should be
represented by combining knowledge.)

An important corollary follows from the exhaustivity and exclusivity assumptions: Accept the best
candidate relative to its competitors .. i.e, a candidate may "win" by ruling out competing candidates.
Because symptoms must be explained by some hypothesis (exhaustivity), one of the hypotheses must
be true. And because only one hypothesis is likely to be true (exclusivity), we can drive up ttie
support of one hypothesis by driving down the support of its competitors or vice versa. This provides

l '3-\

the basis for MOLE's second kind of knowledge role, differentiating knowledge.

Differentiating knowledge enables MOLE to evaluate the relative likelihood of hypotheses
explaining the same symptom. MOLE understands four types of differentiating knowledge:

• Anticipatory knowledge
• Circumstantial knowledge
• Refining knowledge
• Qualifying knowledge

In all four cases, the knowledge helps differentiate which hypothesis is the most likely explanation of a
symptom. Anticipatory knowledge is closely tied to covering knowledge. Given the covering
knowledge that event E1 explains event E2, anticipatory knowledge is the additional information that
the presence of.E1 is likely to lead to E2, or alternatively, that the absence of E

2
tends to rule out E1'

Circumstantial knowledge, like covering knowledge, associates evidence with hypotheses. But
unlike covering knowledge, the evidence does not have to be explained or covered. Circumstantial
knowledge is merely correlated -· positively or negatively -- with the hypothesis. Such evidence
indicates that the hypothesis is more or less likely to be true, but there is no presumption that one of
the hypotheses with which it is associated must be true. Refining knowledge points to
distinguishing features of a symptom which indicate that a proper subset of the hypotheses covering
it are more likely to contain the correct explanation. By refining the symptom, MOLE is able to
differentiate among the hypotheses that might explain the unrefined symptom. Qualifying
knowledge is any background condition which qualifies the strength of an association. A qualifying
condition may either strengthen an association or weaken (or completely mask) an association.

Covering knowledge and differentiating knowledge are local to a symptom. Combining knowledge,
on the other hand, is global. Once the hypotheses which best cover or explain each symptom that
needs to be covered have been discovered, combining knowledge ·is used to select the best
combination of hypotheses that will explain all the symptoms that are present. More specifically;
combining knowledge overrides MOLE's default method for combining hypotheses. MOLE classifies
active hypotheses in one of three categories: accept, reject, or indeterminate. Hypotheses that are
clearly better than any of their competitors at explaining some symptom are tenatively accepted.
Hypotheses which are not accepted and are not needed to explain any symptoms because these
symptoms are explained by some accepted hypothesis are rejected. All other active hypotheses are
classified as indeterminate. Among the indeterminate hypotheses MOLE tries to find the smallest
viable set that will explain all the unexplained symptoms. Combining knowledge overrides MOLE's
default procedure and recommends a less parsimonious combination of hypotheses.

The ability to make use of combining knowledge means that MOLE is not simply limited to selecting
hypotheses but can also construct hyp_otheses. However, since its constructive ability is rudimentary,
we have continued to present MOLE as only appropriate to tasks that are amenable to heuristic
classification. MOLE's method still places strong limitations on the type of tasks for which it would be
appropriate.

We have mainly used MOLE to build knowledge bases for diagnostic tasks. However, we have
described MOLE's method so that no particular type of domain is presupposed, for we suspect that
there is a much wider range of tasks for which MOLE would be usefuL For example, MOLE might be
used in a domain whose task is component selection. Covering knowledge would link the
components (hypotheses) with requirements that must be met (symptoms). Differentiating knowledge
would be information indicating what tradeoffs can be made between various components.
Combining knowledge would be heuristics suggesting how to select a combination of components if
no single component met a set of overlapping requirements.

1~-2.

Since most of our research has involved diagnostic problems, we will illustrate MOLE's method and
the knowledge roles presupposed by its method with an example of a system which diagnoses
problems in a coal burning power plant. The knowledge base built by MOLE the knowledge
acquisition tool enables MOLE the performance system to diagnose problems connected with the
boiler, the central unit in a power plant. The problems rarely prevent the boiler from functioning, but
they are a major source of inefficiency. A boiler that is functioning inefficiently can waste millions of
dollars of fuel as well as dump tons of pollutants into the atmosphere.

Suppose, for example, the operator notices that there is a loss in gas and that the ash leaving the
boiler is dark. These are two symptoms that need to be covered or explained. The loss in gas has two
potential explanations: (1) a high gas temperature; (2) high excess air. The other symptom, dark ash,
has three potential explanations: (1) high excess air; (2) low excess air; (3) large fuel particles. For
each symptom present, MOLE tries to differentiate among the potential causes. For example, when
there is high excess air, there is a strong expectation (anticipatory knowledge) that there will be a
high fly ash flow. If this expectation is not met, support for the high excess air hypothesis is driven
down. Consequently, support for the competing explanation, high gas temperature, is driven up and
becomes the likely explanation for the loss in gas. Since high excess air is also a potential
explanation for the dark ash, support for its competitors, low excess air and large fuel particles, are
also driven up. MOLE tries to further differentiate between these two hypotheses. For instance, if the
flame temperature is not low, contrary to .what one would expect if there is low excess air, then
support for the low excess air hypothesis is also driven down, leaving large fuel particles as the most
likely explanation for the dark ash. Once MOLE has finished locally differentiating the hypotheses
covering each symptom that is present, MOLE looks at what combination of hypotheses will best
explain all the symptoms. In this case MOLE will accept two hypotheses, high gas temperature and
large fuel particles, since the only hypothesis which will explain all the relevant symptoms has been
ruled out by the absense of a high fly ash flow. Having accepted these two hypotheses, MOLE next
sees whether they, in turn, can be treated as symptoms that are explained by higher level hypotheses.
In this case, they both have higher level explanations. For example, the large fuel particles can be
explained by either the setting of the pulverizer or by a malfunction of the pulverizer. Knowing that
the grinder had recently been maintained would provide provide circumstantial evidence that a
malfunction is unlikely and thus drive up the likelihood that the setting of the pulverizer is the
explanation for the large fuel particles. MOLE continues until it has attempted to explain every event
that can be explained.

In the next section we will draw from our experiences with the power plant diagnosis task to illustrate
how MOLE uses its knowledge of its method to guide the knowledge acquisition process both when
generating the initial knowledge base and when refining it.

3. Knowledge Acquisition
Usually it is not very hard to elicit knowledge from an expert. The hard problem is eliciting the right
sort of knowledge. Knowledge needs to be in such a form that it will be applied to the problem in the
right way at the right time. The first step in satisfying this need is to explicitly identify the appropriate
problem-solving method for the task and the types of knowledge roles relevant for this method. Once
this is done, it is fairly easy to build a knowledge collector. However, if the ultimate goal is to replace
the knowledge engineer with an automated system, rather than providing the knowledge engineer
with a programming tool, then two troublesome features of the knowledge acquisition process must
be addressed: ·

• Indeterminateness: When specifying associations between events, the expert is likely to
be fairly vague about the nature of these associations and events.

• Incompleteness: The expert will probably forget to specify certain pieces of knowledge.

~~-3

The indeterminateness problem reflects the fact that experts are not accustomed to talking about the
associations between events in a way that precisely fits the problem-solving method's predefined
knowledge roles. Since our ultimate goal is to develop a knowledge acquisition tool that replaces the
knowledge engineer, the burden is upon the knowledge acquisition system to ·make sense of
whatever information the domain expert is willing to provide. Although the expert can be encouraged
to be as specific as possible, a smart knowl-edge acquisition tool must be able to tolerate ambiguity
and indeterminateness.

The incompleteness problem is the problem of how to identify missing or incorrect knowledge. The
expert, no matter how qualified and thorough he may be, is going to forget to mention certain special
circumstances. And sometimes the expert will make mistakes. Thus, a smart knowledge acquisition
tool needs to be able to incrementally add knowledge to the knowledge base, refine existing
knowledge, and sometimes correct existing knowledge.

The indeterminateness problem and the incompleteness problem dominate the two phases of
knowledge acquisition: (1) the gathering of information for constructing the initial knowledge base
and (2) the iterative refinement of this knowledge base. During the first phase, MOLE mainly relies
upon static techniques of analysis. MOLE examines specific associations and events in light of the
context provided by the surrounding structures. During this phase MOLE concentrates on
disambiguating the information provided by the expert, although MOLE also tries to recognize areas
where the knowledge is obviously incomplete. During the second, dynamic phase, MOLE and the
expert interact in order to refine the knowledge base. The expert gives MOLE a test case and tells
MOLE the correct diagnosis. If MOLE the performance program comes to an incorrect conclusion,
MOLE the knowledge acquisition tool tries to determine the source of the error and recommends
possible remedies. Typically, this means adding knowledge or qualifying existing knowledge, but
sometimes the interpretation provided in the previous phase needs to be revised.

In the following two subsections, we shall discuss the techniques MOLE uses during both th~
construction and refinement phases of knowledge acquisition.

3.1. Constructing the Initial Knowledge Base
MOLE initiates the knowledge acquisition process by asking the expert to list the events ·• i.e.,
hypotheses and evidence •· that are commonly relevant to the expert's domain and to draw
associations between pairs of events. This information is easy to elicit from the expert, although the
expert will often overlook certain associations or events. However, in order for MOLE to be able to
fashion this network of events and associations into a knowledge base suitable for diagnosis, four
additional pieces of information are needed:

1. The type of event (i.e., whether observed or inferred)
2. The type of evidence an association provides (e.g., covering evidence, anticipatory

evidence)
3. The direction of an association (e.g., does E1 explain E2 or vice versa)
4. The numeric support value attached to an association

MOLE understands that experts are not very good at providing such information and so does not
require that the expert provide a fully specified network of associations. Instead, MOLE relies on its
expectations about the world and how experts enter data in order to mold an under-specified network
of associations into a consistent and unambiguous knowledge base.

The most critical piece of information is the association type. Both the direction and support value of
an association are dependent upon its type. The problem with directly asking the expert for the

1'3-4

association type is that it is hard to convey to the expert what these types mean. The distinction
between covering and circumstantial evidence, for example, is part of MOLE's jargon, not the
expert's. But the problem is not simply a matter of finding a translation from MOLE's jargon into
terminology that the expert can understand. The indeterminacy is deeper than this. Not only does the
expert have difficulty distinguishing among types of evidence, often he can't decide whether an event
should be classified as evidence rather than a hypothesis. He may not even be sure whether he
should say it is observed or inferred. Perhaps it can be observed, but only with difficulty. For
example,. one of the causes of a misbalance of convection is the presence of fouling. Whether the
operator can see signs of fouling depends upon what part of the boiler it is occuring. On those
occasions when he cannot observe fouling, he still may be able to infer fouling. Furthermore, even if
an event is observed, it can function as a hypothesis. Suppose that fouling can be observed and that
a low heat transfer needs to be explained. A misbalance of convection competes with a misbalance
of radiation as explanations of a low heat transfer. If fouling is discovered before the explanation of a
low heat transfer has been resolved, then fouling serves as evidence for a misbalance of radiation.
On the other hand, if it has already been ascertained that there is a misbalance of radiation then the
fouling provides the explanation.

After several unsuccessful attempts to find ways of unambiguously eliciting the association types
froin the expert, we discovered that we were looking for the solution in the wrong place. In the three
domains that we have explored most extensively the only associations that the experts have ever
spontaneously entered are covering and anticipatory associations. Instead of having to worry about
identifying half a dozen knowledge roles, we only have to worry about two. In a sense there is no
identification problem at all, since every anticipatory association can be interpreted as a covering
association and vice versa. However, the anticipatory strengths of some covering associations are so
weak that they can be ignored in practice. So the problem is to identify which covering associations
provide significant anticipator}' evidence. We shall return to this question when we discuss how
MOLE determines the support values of associations.

On reflection, it isn't very surprising that the initial knowledge acquisition process generates just
these two types. The starting point in diagnosis is a set of events that need to be explained. MOLE
asks for the names of these events and their potential explanations, and then for explanations of
these explanations. The knowledge acquisition process is driven by covering knowledge and to a
lesser extent anticipatory knowledge. Other types of knowledge are secondary and tend to be
overlooked by the expert. For example, given that low excess air needs to be explained, the most ·
common explanations will occur to the expert·· e.g., the fan power has been exceeded or there is a
leak in the duct. While he is thinking about fan power it may occur to him that if he knows that a valve
is malfunctioning, he will anticipate that the fan power has been exceeded. On the other hand, it is
unlikely to occur to him that the installation date of the duct is a relevant circumstance for
determining the likelihood of a leak. When providing covering knowledge the expert is biased toward
thinking of events causing other events. He tends to overlook circumstances or states that are
correlated with an event except in the context of some actual test case.

Given the expert's bias toward providing only covering associations, finding out the direction of these
covering associations would seem to be a straightforward matter. All we need to do is ask the expert
whether E1 explains E2 or vice versa. Unfortunately, about twenty percent of the time experts reverse
the direction. When the expert says that E1 explains E2 what he may mean is that E1 explains why he
would accept E2, not that E1 is the physical explanation of E2. The same confusion occurs with cause
and effect language. Sometimes the expert will say that E1 causes E2 and mean that the occurrence
of E1 "caused" him to think of E2 as the explanation of E1. We have found that the most reliable
directional information that can easily be elicited from the expert is an association's temporal
direction ·• i.e., which event occurs first. MOLE assumes, all things being equal, that the temporal
direction is a reliable indicator of the explanatory direction. If, for example, the expert says that E2

\~-5

supports E1 and that E1 precedes E2, MOLE assumes that E1 explains E2• However, if the expert
indicates that he is not sure about the temporal direction, MOLE will try to elicit more information in
order to clarify the nature of the association. lt could be that the association is circumstantial, or,
more likely, that one event is really a direct indication of the other event. For instance, a small, red
flame is a direct indication of a low flame temperature. Although MOLE interprets the flame
temperature as explaining the flame size and color, the expert may be reluctant to put a temporal
direction on this relationship.

The final type of information that MOLE needs in order to fashion the initial network of associations
into a knowledge base is each association's support value. However, experts do not like providing
numeric support values and are not very good at it. In our experience, when experts are asked to
indicate the degree of support of some piece of evidence for a hypothesis by selecting a number
within a fixed range, they will think about the question for awhile and then almost inevitably choose
some number near the middle of the range. Fortunately, it turns out that the support values do not
have to be very accurate, and that on the basis of a few simple assumptions MOLE can assign default
support values that are just as good, if not better, than those assigned by the expert. (They
subsequently can be adjusted by MOLE during dynamic analysis.)

MOLE's method for assigning support values for covering evidence follows directly from MOLE's
exhaustivity and exclusivity assumptions. The assumption that every symptom can be explained by
some hypothesis plus the assumption that only one of the covering hypotheses is likely to be the
explanation suggests that the positive support provided by the presence of a symptom should be
distributed among the hypotheses and should sum to 1.0. Since MOLE initially has no information
how this support should be distributed, it makes the default assumption that the support values for
any symptom should be equally divided among the hypotheses which explain it.

The method for assigning support values for anticipatory evidence has a weaker rationale. MOLE
assumes that if an expert spontaneously mentions a piece of anticipatory knowledge, then it is the
sort of information that is likely to have a significant impact; thus, a relatively high support value is
assigned. The problem, then, is to determine when an expert is spontaneously entering anticipatory
evidence. As was explained earlier, covering evidence and anticipatory evidence are closely linked.
They enable MOLE to reason in both directions between two events. If E1 explains E2, then the
occurrence of E2 provides some evidence for E1. If in addition there is a strong anticipatory
connection between the events, then the occurrence of E1 increases the likelihood of E2. MOLE pays
attention to the direction of this supporting relationship. If the expert indicates that E1 supports E2
and that E

1
is temporally prior, then MOLE will infer that the expert is spontaneously entering an

anticipatory association. MOLE will also assume that there is a covering association between the two
events. On the other hand, if the temporal and supporting directions are different ·• e.g., if E1
supports E2, and E2 is prior to E1 --MOLE assumes that the expert is entering a covering association,
and assumes, until evidence to the contrary, that there is no strong anticipatory association.

· MOLE has one other opportunity to identify anticipatory associations in the initial phase of knowledge
acquisition. MOLE monitors the static knowledge base and notes any symptoms which have
hypotheses that cannot be differentiated. MOLE assumes that if the expert provides several
explanations for some event, then he probably can provide knowledge that will differentiate among
them. For example, suppose that MOLE learns during the initial construction of the knowledge base
that low excess air can be explained by either the fan power being exceeded or by a leak in the duct,
but is not told about any evidence that would help differentiate between these hypotheses. MOLE will
ask the expert how he can tell which hypothesis is the cause of low excess air. The expert may
indicate that if there is no loud noise coming from the wind box, then MOLE can rule out that there is
a leak. This will enable MOLE, at least in principle, to differentiate the two hypotheses.

Before discussing the second phase of knowledge acquisition, something should be said about the
absence of any stress on qualifying knowledge during the first phase. Based on the descriptions of
other diagnostic systems, one might expect that for a system to perform adequately most associations
would. need a large number of qualifications. If MOLE did not distinguish between covering and
differential knowledge and simply tried to build rules associating evidence with hypotheses, then, no
doubt, its initial network of associations would require many qualifications. However, because of the
emphasis that MOLE puts on covering knowledge, MOLE tends to build multi-layered networks with
sparse connections rather than flat networks where several layers of information need to be compiled
into one rule. By asking for the explanations of a symptom rather than the conditions for accepting a
hypothesis, MOLE naturally discovers intermediate events which mediate between the bottom level
symptoms and the top level hypotheses. The knowledge base for diagnosing boiler problems, for
example, consists of eight levels of explanation and has as much depth as it has breadth.

However, there -is a price to pay for the heavy reliance on intermediate events. There is the danger
that redundant pathways are drawn between events. MOLE needs to check for duplicate pathways.
For example, in one session MOLE was told that the two explanations for a misbalance of convection
are fouling and low excess air. However, in a later session MOLE learned that low excess air can be
explained by the fan power being exceeded which, in turn, can be explained by fouling. Thus, there is
a direct path from fouling tomisbalance of convection and an indirect path through fan power being
exceeded and low excess air. The question is whether the direct path is an actual causal path or
whether it represents a compiled version of the longer path. MOLE has no way of knowing the
answer, but it is important that MOLE notice such occurrences and ask the expert about them.

3.2. Refining the Knowledge Base
In the previous section, we mentioned that MOLE checks to make sure that hypotheses can in
principle be differentiated. If they cannot,. MOLE tries to elicit knowledge from the expert that will
enable it to differentiate among them. However, such static techniques of refinement are quit~
limited. The expert typically needs a richer context to remind him of missing knowledge, and MOLE
needs a richer context in order to be able to distinguish a wider range of association types. The
needed context is provided by feedback from the expert during dynamic analysis. The expert gives
MOL!: a test case and tells MOLE the correct diagnosis. If MOLE the performance system has come
to an incorrect diagnosis, MOLE the knowledge acquisition tool tries to determine the source of the
errors and recommends possible remedies.

In the remainder of this section we will discuss MOLE's techniques for doing dynamic analysis. These
techniques reflect the three types of knowledge roles understood by MOLE: covering knowledge,
differentiating knowledge, and compining knowledge.

3.2.1. Differentiating Knowledge ·
If MOLE's diagnosis does not match that supplied by the expert, MOLE first determines whether or
not the diagnosis would have been reachable if the hypotheses had been differentiated differently. If
it is so reachable, then MOLE looks for missing differentiating knowledge. MOLE next decides
whether there is a global or a local problem. In a local problem support needs to be shifted among
hypotheses which explain the same symptom. In a global problem the raising or lowering of some
hypothesis's .Jikelihood will affect the explanations of several symptoms in the right direction and so
have a global effect (Sometimes what looks like a global problem is actually a collection of several
local problems.)

Anticipatory·knowledge: If the problem is global, MOLE will first focus on identifying anticipatory
knowledge. As was explained in our discussion of static analysis, if the expert spontaneously enters a
covering association, MOLE cannot tell whether the two events are also linked by an anticipatory

l3-7

association, so it only generates a covering association. MOLE now examines whether there are any
inactive covering associations which would have the desired effect if they were also interpreted as
anticipatory assumptions.

For example, knowing that a loss in gas is explained by either a high gas temperature or high excess
air, and that a high fly ash flow is explained by either very small fuel particles or high excess air, and
not ·having any information to differentiate between these pairs of hypotheses, MOLE will accept high
excess air as the explanation for both symptoms and reject the other two hypotheses. MOLE's
reasoning is that since it does not have any reason to favor the other two hypotheses over high
excess air, high excess air is the best choice because it alone can explain both symptoms. However,
when given this case, the expert told MOLE that it was wrong ·- it should have rejected high excess air
and accepted high gas temperature and very small fuel particles. MOLE recognized that if there was
some evidence that could drive down the likelihood of high excess air, then the likelihood of the other
two hypotheses would be driven up. Noting the absence of an event which provides covering
evidence (a high oxygen reading) which would have been explained by high excess air, MOLE
reasoned that if these two events were also linked by anticipatory knowledge, then the absence of a
high oxygen reading would tend to rule out the high excess air hypothesis. MOLE asked the expert
whether the absence of a high oxygen reading ruled out high excess air. He confirmed that it did.

Circumstantial knowledge: If the problem is global and no anticipatory knowledge is discovered,
MOLE focuses on circumstantial knowledge. One reason that circumstantial knowledge is given less
priority than anticipatory knowledge is that we have found that anticipatory knowledge is more
common. But a more important reason is that anticipatory knowledge is tied to covering knowledge
and so the existing covering knowledge provides the richer context which MOLE tries to exploit first.
Even when MOLE interprets a piece of knowledge as circumstantial, it does so tentatively, keeping in
mind that in another example if may learn that it should be interpreted as anticipatory knowledge.

In our previous example, if MOLE had not known anything about the relevance of a high oxygen
reading and the expert had entered it for the first time, then MOLE would have interpreted it as
circumstantial evidence. If MOLE later learned that a high oxygen reading needs to be explained by
high excess air, then it would add a covering association and reinterpret the circumstantial
association as an anticipatory association.

Refining knowledge: If the problem is local to a symptom, then MOLE will ask the expert whether
there are any features of the symptom which narrow the set of the hypotheses that are the likely
cause.

So far in the power plant domain we have not found any occasion for refining a symptom. However,
in other domains refinement has been useful. For example, in a system that diagnoses automobile
problems the symptom that the car won't start was refined to include the feature of whether or not the
engine cranked. This feature is used to distinguish the hypothesis that the battery is dead from
alternative explanations for the car not starting such as being out of gas, faulty spark plugs, and
carburetor problems. ·

Qualifying knowledge: Qualifying knowledge can adjust existing anticipatory, circumstantial, and
refining knowledge. If such knowledge exists but is in the wrong direction, or in the right direction but
is too weak, MOLE asks if there is any background condition which would strengthen or weaken the
existing association in the right direction. In addition qualifying knowledge can be added in
conjunction with an anticipatory association. This, in effect, adds a condition which strengthens a
potential anticipatory association into one that has a significant impact.

For example, when trying to acquire knowledge that would lead it to accept that the fan power is

being exceeded as the explanation for low excess air, and so reject a leak in an air duct as the
explanation, MOLE looked for potential anticipatory knowledge. lt knew that there was evidence of
fouling and that this could cause the fan power to be exceeded, but discovered that the link was too
weak to have the needed effect. This suggested to MOLE that it should ask the expert whether there
was any condition which would make it very likely that the fan power would be exceeded when there
was fouling. The expert confirmed that fouling almost always leads to the fan power being exceeded
when there is a heavy load.

Adjusting support values: If the expert fails to provide any special knowledge which will
differentiate among the hypotheses in the needed fashion, then there are three possibilities: (1) There
is a need for combining knowledge. (2) The numeric support values are wrong and need to be
adjusted .. (3) A combination of locally differentiating evidence is needed, instead of a single globally
differentiating piece of knowledge. MOLE's choice of what to explore first will depend on the
"maturity" of the network arid the reliability of feedback from the expert. lt is easier for the expert to
understand and respond to questions about locally differentiating evidence, so this option is usually
tried first, provided the network is mature.

However, early in the refinement phase the most likely possibility is that the support values are wrong.
After all, the support values are simply MOLE's guesses based on the structure of the network. The
most common change is a shift of a symptom's support from some of its hypotheses to others. For
example, there are only two hypotheses explaining the fan power being exceeded ·• fouling and a
malfunction of a valve·· so MOLE initially set the support value of each association to 0.5. However,
fouling is much more likely than a valve malfunction, unless the fan has not been maintained for a
long time. In a test case where the fan power had been exceeded and there was no further evidence
for favoring fouling over a malfunction of a valve, MOLE could not decide between the two
hypotheses. The expert indicated, however, that MOLE should have picked fouling. After failing to
elicit any knowledge from the expert that would help it differentiate between these two causes, MOLE
decided that its apportionment of support between the two hypotheses must be mistaken and shifted
support from the malfunction of a valve hypothesis to the fouling hypothesis.

3.2.2. Covering Knowledge
So far we have examined the case were MOLE would have reached the correct diagnosis if it had
differentiated among the hypotheses differently. If differentiation is not the problem, then MOLE looks
for missing covering knowledge. There are two possible cases: (1) a hypothesis should be rejected
but can't be because it is needed to explain some otherwise unexplained symptom; (2) a hypotheses
should be accepted, but it was rejected because it is not needed to explain any symptom.

If a hypothesis fails to be rejected because it is needed to explain some symptom, then MOLE asks the
expert for an alternative explanation for the symptom. For example, MOLE discovered that low
excess air was a possible explanation of dark ash after being told in a test case that both of the
hypotheses that it considered possible explanations for the dark ash should be rejected. MOLE
reasoned that dark ash must have an explanation that it did not know about, and asked the expert for
this explanation.

But suppose the expert had told MOLE that there is no alternative explanation; yet, the two
explanations that it knows about are incorrect. MOLE considers two possibilities: (1) the symptom
report is mistaken; (2) the evidence is not really a symptom .. i.e., it has misinterpreted the event as
covering evidence. MOLE would first inquire whether it is possible that the reported observation that
there is dark ash could be be mistaken. If it can be, MOLE would lower the default certainty for the
report of this event. Then if it is again faced with a situation where there is evidence against both the
explanations for this symptom, it will reject them both and suggest that a mistaken report (or mistaken
observation) is the most likely explanation for the reported symptom. On the other hand, if the expert

is quite certain about this reported event, then MOLE would examine how it can most coherently
reinterpret the association •• e.g., interpret the association as a circumstantial association instead of a
covering association.

If a hypothesis is mistakenly rejected because it is not needed to explain anything, then MOLE asks
the expert if there is some symptom that is .present which can be explained by this hypothesis. For
example, MOLE learned about the high stack gas temperature reading in a test case where it wrongly
rejected high gas temperature as an explanation for loss in gas. MOLE the performance system had
reasoned that since high excess air was needed to explain high fly ash and could also explain loss in
gas, the high gas temperature was not needed. However, upon being informed that it should not have
rejected high gas temperature, MOLE the knowledge acquisition tool reasoned that there must be
some piece of evidence that high gas temperature explained which was not explained by any other
hypothesis. MOLE asked the expert for this information, and was told that the missing piece of
evidence was the fact that the stack gas temperature reading was high.

3.2.3. Combining Knowledge
But what if the expert indicates that there is no missing evidence that needs to be explained by the
rejected hypothesis? MOLE reasons that it is probably missing some combining knowledge. If its
hypotheses are properly differentiated locally and there is no missing piece of evidence for the
hypothesis to explain, then this must be a case where the best explanation for some symptom is the
combination of several hypotheses. lt should be stressed that MOLE's default strategy will accept
several explanations for a set of symptoms, provided each hypothesis is the best explanation of at
least one symptom. What distinguishes the case where combining knowledge is needed is that
several hypotheses are needed to explain one symptom. MOLE, with the guidance of the expert,
acquires a rule for handling this special case.

For example, a misbalance of radiation and a misbalance of convection are alternative explanations
for low heat transfer. Furthermore, the misbalance of convection hypothesis is only needed to explain
the low heat transfer. When MOLE has reason to accept a misbalance of radiation as the explanation
of low heat transfer, its default combining strategy will dictate that it reject the misbalance of
convection hypothesis as unneeded. When told that this diagnosis was wrong, MOLE first looked for
some symptom which a misbalance of convection explains but a misbalance of radiation doesn't.
Upon learning that there was no such symptom, MOLE reasoned that it must be missing a special
combining rule, and asked the expert for the circumstances that lead him to accept both misbalance
of radiation and misbalance of convection. In this case, it is the presence of low excess air.

As MOLE has evolved, dynamic analysis has increasingly taken on a more important role. By not
insisting that the expert identify an event's type or an association's direction during the construction
phase if he is uncertain about its value, the knowl~dge base used in the refinement phase is less
determinate than it would otherwise· be. These indeterminate associations provide MOLE with
valuable pieces of information when doing dynamic analysis. Whenever MOLE learns that it has
made an incorrect diagnosis and has located the portions of the network where there is likely to be
missing knowledge, indeterminate associations in these parts of the network are prime candidates for
the missing knowledge. And since MOLE knows something about these associations ·• e.g., what
events they connect •• it can be quite certain how they should be interpreted even if the expert isn't.

4. Conclusion
MOLE illustrates how much power a knowledge acquisition tool can obtain from a set of domain
independent heuristics about the knowledge acquisition process and the nature of the world as it
relates to diagnosis. MOLE plays the role of an experienced knowledge engineer who is able to work

in conjunction with a domain expert and build a diagnostic system, even though the knowledge
engineer has little or no knowledge of the domain. Like such a hypothetical knowledge engineer
MOLE begins with no knowledge of the target domain nor any understanding of the domain's
vocabulary. By interpreting its assumptions about the world in terms of explicit knowledge roles that
guide heuristic classification and by exploiting a few heuristics about how domain experts are likely to
express themselves, MOLE is able to intelligently extract from the expert information relevant for
building a reasonable knowledge base for performing the given diagnostic task.

Acknowledgements
We want to thank Gary Kahn and Sandra Marcus for helpful suggestions in the development of MOLE.
We also would like to thank Holger Sommer for serving as MOLE's expert in the power plant domain

. and for the useful feedback that he provided in the development of MOLE.

References
[Boose 84] Boose, J.

Personal construct theory and the transfer of human expertise.
In Proceedings of the National Conference on Artificial Intelligence. Austin, Texas,

1984.

[Buchanan 84] Buchanan, B. and E. Shortliffe.
Rule-based Systems: the Mycin experiments of the Stanford Heuristic

Programming Project.
Addison-Wesley, 1984.

[Ciancey 84] Clancey, W.
Classification problem solving.
In Proceedings of the National Conference on Artificial Intelligence. Austin, Texas,

1984.

[Ciancey 85] Clancey, W.
Heuristic classification.
Artificial Intelligence 27, 1985.

[Davis 82] Davis, R. and D. Lenat.
Knowledge-Based Systems in Artificial Intelligence.
McGraw-Hill, 1982.

[Eshelman 86] Eshelman, L. and J. McDermott.
MOLE: a knowledge acquisition tool that uses its head.
In Proceedings of the National Conference on Artificial Intelligence. Philadelphia,

Pennsylvania, 1986.

[Gruber 86] Gruber, T. and P. Cohen.
Design for Acquisition: Designing Knowledge Systems to Facilitate Knowledge

Acquisition.
Technical Report, University of Massachusetts at Amherst, 1986.

[Kahn 85a] Kahn, G., S. Nowlan, and J. McDermott.
Strategies for knowledge acquisition. ·
IEEE transactions on Pattern Analysis and Machine Intelligence 7(5), 1985.

1'3-(\

[Kahn 85b] Kahn, G., S. Nowlan, and J. McDermott.
MORE: an intelligent knowledge acquisition tool.
In Proceedings of Ninth International Conference on Artificial Intelligence. Los

Angeles, California, 1985.

[Kiinker 86] Klinker, G., J. Bentolila, S. Genetet, M. Grimes, and J. McDermott.
KNACK- report-driven knowledge acquisition.
Technical Report, Carnegie-Mellon University, Department of Computer Science,

1986.

[Marcus 85] M arcus, S., J. McDermott and T. Wang.
Knowledge acquisition for constructive systems.
In Proceedings of Ninth International Conference on Artificial Intelligence. Los

Angeles, California, 1985.

[McDermott 86] McDermott, J.
Making expert system$ explicit.
In Proceedings of 70th Congress of the International Federation of Information

Processing Societies. Dublin, Ireland, 1986.

[Szolovits 78] Szolovits, P. and R. Patil.
Categorical and probablilistic reasoning in medical diagnosis.
Artificial Intelligence 11, 1978.

[vandeBrug 85] van de Brug, A., J. Bachant, J. McDermott.
Doing R1 with Style.
In Proceedings of the Second IEEE Conference on Artificial Intelligence

Applications. Miami, Florid~, 1985.

13-12

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

AN OVERVIEW OF
KNOWLEDGE ACQUISITION AND TRANSFER

Brian R Gaines
Department of Computer Science, University of Calgary

Calgary, Alberta, Canada T2N 1N4

Abstract: A distributed anticipatory system formulation of knowledge acquisition and
transfer processes is presented which provides scientific foundations for know ledge
engineering. The formulation gives an operational model of the notion of expertise and the
role it plays in our society. It suggests that the basic cognitive system that should be
considered is a social organization, rather than an individual. Computational models of
inductive inference already developed can be applied directly to the social model. One
practical consequence of the model is a hierarchy of knowledge transfer methodologies
which defmes the areas of application of the knowledge engineering techniques already in
use. This analysis clarifies some of the problems of expertise transfer noted in the
literature, in particular, what forms of knowledge are accessible through what
methodologies. The model is being used as a framework within which to extend and
develop a family of knowledge support systems to expedite the development of expert
system applications.

14-o

INTRODUCTION
Growing recognition of the significance of knowledge-based computing systems has
focused attention on processes of knowledge acquisition and transfer. Commercial
application of expert systems is being impeded by the knowledge engineering bottleneck
and has led to the development of rapid prototyping tools. These have proved practically
useful but the range of applications of existing tools is limited, and it is not clear what
limitations are inherent in the prototyping tools, what arise from the shells and their
knowledge representation and inferencing procedures, and what arise from our lack of
understanding of the underlying processes of knowledge acquisition and transfer.

Knowledge acquisition and transfer processes in human society are complex and poorly
understood. Many disciplines are involved in their study but none provides a
comprehensive framework let alone overall theory. Neurology, psychology, linguistics,
education, sociology, anthropology, philosophy and systems theory all have significant
contributions to make. However, integrating them, disambiguating jargon, and combining
different objectives and perspectives are major intellectual problems. The task is attracting
increasing effort but this is unlikely to have significant short-term inpact on knowledge
based system development.

Knowledge acquisition and transfer are now important aspects of advanced computer
technology, and neither the pragmatic development of rapid prototyping techniques nor the
dependence on partial theories from other disciplines can be regarded as satisfactory
foundations. We need to be eclectic in acquiring techniques from all possible sources, but
we also need to complement our pragmatism with effort to develop scientific foundations
for our activities. We cannot be satisfied until we have a precise understanding of the
processes underlying expertise, its operation, acquisition and transfer. This is not a simple
requirement since it entails understanding the nature of knowledge, its dynamics and
application. The foundations of computer technology in the physical sciences are no longer
adequate and need extension into the humanities. The philosophy, psychology and
sociology of knowledge processes are highly significant to future computing, and we have
to operationalize theories and obtain precise answers to questions that have long been
regarded as certainly controversial and possibly intractable.

This paper sketches a framework for encompassing the variety of processes and
phenomena of knowledge acquisition and transfer that provides a convenient classification,
an indication of overall theoretical foundations, and a guide to research methodologies.

PHENOMENA OF EXPERTISE ACQUISITION AND TRANSFER
The problem of expertise elicitation from a skilled person is well-known in the literature of
psychology (Nisbett & Wilson 1977, Broadbent, Fitzgerald and Broadbent 1986).
Hawkins (1983) has analysed the nature of expertise and emphasizes its severe limitations
and dependence on critical assumptions which are often implicit. Dixon (1981) has
surveyed studies showing that much human activity is not accessible to awareness. Collins
(1985) has studied knowledge transfer processes among scientists and suggests that some
knowledge may not be accessible through the expert, not only because he cannot express it,
but also because he may not be aware of its significance to his activity. Bainbridge (1979,
1986) has reviewed the difficulties of verbal debriefing and notes that there is no necessary
correlation between verbal reports and mental behavior, and that many psychologists feel
strongly that verbal data are useless. Clinical psychologists see the problem as one of
cognitive defences that impede internal communication, and have developed techniques of
verbal interaction to identify underlying cognitive processes (Freud 1914, Kelly 1955,
Rogers 1967). These can be used to by-pass cognitive defences, including those resulting
from automization of skilled behavior. Hayes-Roth; Waterman & Lenat (1983) have given
guidelines about knowledge transfer from experts to expert systems, and Welbank (1983)
has surveyed the psychological problems of doing this.

l4-(

The main problems identified in accessing an expert's knowledge are:-
• "Expertise" may be fortuitous. Results obtained may be dependent on features of the

situation which the expert is not controlling.
• Expertise may not be available to awareness. An expert may not be able to transmit the

expertise by critiquing the performance of others because he is not able to evaluate it
• Expertise may not be expressible in language. An expert may not be able to transmit the

expertise explicitly because he unable to express it.
• Expertise may not be understandable when expressed in language. An apprentice may not

be able to understand the language in which the expertise is expressed.
• Expertise may not be applicable even when expressed in language. An apprentice may

not be able to convert verbal comprehension of the qasis of a skill into skilled
performance.

• "Expertise" expressed may be irrelevant. Much of what is learnt, particularly under
random reinforcement schedules, is superstitious behavior that neither contributes nor
detracts from performance.

• Expertise expressed may incomplete. There will ususually be implicit situational
dependencies that make explicit expertise inadequate for performance.

• "Expertise" expressed may incorrect Experts may make explicit statements which do not
correspond to their actual behavior and lead to incorrect performance.

In the development of knowledge engineering methodologies and rapid prototyping
techniques for expert systems the emphasis has been on interviewing experts, and hence on
linguistic trasmission of expertise. A rich variety of alternative methods for expertise
transfer exists in human society:-
• Expertise may be transmitted by managing the learning environment. A trainer may be

able to establish effective conditions for an apprentice to acquire expertise without
necessarily understanding the skill or himself being expert in it.

• Expertise may be transmitted by evaluation. A trainer may be able to induce expertise by
indicating correct and incorrect behavior without necessarily understanding the skill in
detail or himself being expert in its performance.

• Expertise may be transmitted by example. An expert may be able to transmit a skill by
showing his own performance without necessarily understanding the basis of his
expertise.

There are many sources of expertise that do not involve others:-
• Expertise may be acquired by trial and error learning. This is the basic inductive

knowledge acquisition process that is always in operation although heavily overlaid by
the social transfer processes already discussed.

• Expertise may be acquired· by analogical reasoning. The transfer of models and skills
from one situation to another is an important source of knowledge.

• Expertise may be acquired by the application of general laws and principles to new
situations. The use of physical laws and systemic principles to generate specific
expertise is the basis of scientific and engineering expertise.

These many aspects of the problems of knowledge acquisition and transfer are further
confounded by the combinatorial possibilities resulting from the recursive nature of
knowledge processes. We can acquire knowledge about knowledge acquisition. We can
mimic the behavior of an expert coach managing a learning environment. We can give
evaluative feedback on analogical reasoning or the application of principles and laws. We
can express the principles behind the effective management of learning in specific domains.
The knowledge processes of human society are rich and complex, and, in practice, many of
these possibilities will be instantiated as parallel, inter-related activities in any knowledge
acquisition and transfer situation.

\4-Z

SOCIO-SYSTEMIC FOUNDATIONS OF EXPERTISE
Figure 1 shows some of the relations between a knowledge engineer, or knowledge
transfer system, an expert in a problem domain, and the physical, social, knowledge and
problem environments.

Figure 1 Relations between knowledge engineer, expert and environments

l4-~

An "expert role" has been shown rather than an expert person to emphasize that expertise is
focused on specific task domains and is not an indication of global capability. Within that
role various significant psychological processes have been noted: perception, action and
language as interfaces with the world; memory, awareness, intentions, emotions and
attention as associated internal phenomena. Some of these processes go beyond the basic
information processing models of current cognitive science (Norman 1980), but they are
esssential to knowledge acquisition and transfer.

The specific problem environment for the expert is shown as intersecting three general
environments that are common to most problems: physical, social and knowledge. The
knowledge engineer is part of the social environment but outside the problem environment.
He interacts with the expert and also with his environments. For example, if the expert is
performing a task in the physical environment then the knowledge engineer will attempt to
understand the basis of that task, observe the expert performing it, and may manage the
task environment to create scenarios in which to observe specific features of the skill.

The three environments correspond to Popper's (1968) basic delineation of 3 worlds:-
• World 1, the physical environment, is the world of 'things', of physical objects and their

dynamics.
• World 2, the social environment, is the world of 'subjective experience', of people and

the dynamics of their mental experience.
• World 3, the knowledge environment, is the world of 'statements in themselves', of

theories and the dynamics of their logical development

All the phenomena of expertise acquisition and transfer discussed in the previous section
can be represented and analyzed in terms of this diagram. The expert role develops through
interaction with the three environments shown: direct experience of the dynamics of the
physical, social and knowledge environments; learning by example, evaluation and
linguistic communication from other experts in the social environment; managed experience
and transmission; and so on. Figure 1 provides a general framework for know ledge
acquisition and transfer, including knowledge engineering for expert systems.

However, the diagram only gives expression to the phenomena, making some significant
distinctions, but giving no underlying model for the processes involved. The remainder of
the paper develops such an overall model of knowledge acquisition and transfer.

HUMANITY AS A DISTRffiUTED ANTICIPATORY SYSTEM
It is difficult to know where to begin in analyzing human knowledge processes. The
theoretical foundations to be developed are based on the concept that humanity can be
characterized as a distributed anticipatory system -a coordinated collection of autonomous
systems whose primary dynamic is the anticipation of the future. The motivation for this
concept links back to the processes underlying the survival of the species. To survive, a
living system must have access to the necessary resources and be capable of coping with
threats to its survival. Systems evolve to maximize their access to resources and minimize
their vulnerability to threats.

If the universe were static a simple model of resource availability and prey/predator
relations would determine the dynamics of living systems. Until the advent of humanity
this planet was a static universe over long periods of evolutionary time. The beginnings of
the humanity were set in this static universe but its activities soon began to change that
universe so that uncertainty about the future began to dominate.our survival processes.
Changes in the earth that would have taken millions of years began to occur over millenia,
and now they occur within our lifetimes. Humanity developed resources far beyond their
natural availability, extinguished most predators other than itself, and changed the ecology
of the earth. Much of this planet is now a human construct and the distinction between
natural and artificial has become meaningless.

144

Figure 2 shows the system dynamics underlying humanity. The shaded areas show the
response to uncertainty. The keys to survival in an uncertain world are three-fold: first to
maximize territorial dispersion so that some part of the system is outside the range of a
threat; second to maximize cultural diversity so that some part of the system has the
capability to survive a threat; third to improve anticipation of the future, passively to predict
threats in advance, and actively to rebuild the universe so that they do not occur.

System
,, '

Figure 2 Dynamics of a survival-driven system

Figure 2 encompasses the key technological phenomena of our time. Information
technology increases control of information, giving computing when implemented in
silicon and genetic engineering when implemented in DNA. The space program aims to
achieve territorial dispersion and access to new resources. Genetic engineering aims to
achieve cultural diversity and improvement of existing resources. Information technology
is being used to model our anticipatory processes, leading to their greater understanding
throug~ cognitive science and their enhancement through artificial intelligence.

Characterizing humanity as a distributed anticipatory system follows from the logic of
Figure 2. The survival-driven system is the species rather than the individual, and the main
knowledge acquisition system is the species. Humanity has achieved territorial dispersion
and cultural diversity through its structure as distributed collection of autonomous entities.
Language has evolved as a means of coordinating the activities of these autonomous
entities. It is essential to many of the processes of knowledge acquisition and transfer.
Interaction with the social and knowledge environments is at least as important as
interaction with the physical world. The evolutionary pressures have been very strong in
selecting genes giving the capability for the species to act as a single distributed individual,
combining autonomy and cohesion through enhanced linguistic communication.

14-5

KNOWLEDGE ACQUISITION AS A MODELING PROCESS
The characterization of humanity as a distributed anticipatory system, modeling the world
so as to increase its probability of survival, places the systemic foundations of knowledge
processes in theories of modeling. Klir (1976, 1985) has provided the most general
account of modeling, and proposed an epistemological hierarchy accounting for the main
components of any modeling systems and their inter-relations. Gaines (1977) gave a
mathematical formulation of the general problem of modeling as a relation between order
relations at different levels of this hierarchy. The hierarchy has proved a valuable
conceptual tool in analyzing a wide variety of modeling systems both in terms of their
ontological presuppositions and their epistemological processes.

<1.
~
I!

6
~
~
~
~
~
~
~
~
~
~ ...

5

~
~
~
~
~ ...

4

~
~
~
~
~ ...

3

~
~
~
~
~ ...

2

~
~
~
~

""'
~ ...

1

s
§
s
~

Meta-Meta
s

Systems~
~ relations between relations below ·§
s
~

M eta Systems §
~

relations between relations below
§
§
s
;:

Structure System ~
~

relations between models below §
§
s
;:

Generative System ~
§

models that generate data below
§
~ s
§

Data System §
~

events in terms of distinctions be low ~
~
~

Source System
§
~
§

distinctions made §
s

§
§

§-
§-

..J

World
§-

-~ Actions

Figure 3 Epistemological hierarchy of a system modeling a world

Underlying the modeling hierarchy is the notion of a distinction as the primitive concept
underlying the representation of knowledge. It is a sufficient primitive to give foundations
for systems theory including the notion of a system itself (Gaines 1980). In its
psychological form, as a personal construct (Kelly 1955), the notion has been used to
derive very effective techniques for knowledge transfer from experts to expert systems
(Boose 1985). Its foundational role in knowledge acquisition is evident in the hierarchical
representation of distinctions in a modeling system shown in Figure 3. The levels of the
hierarchy itself are the results of distinctions that we make so that no additional primitives
are introduced-in Klir's (1976) terminology:-

• The source system is distinguished as those distinctions that the particular modeling
system makes-it is a distinction about distinctions defining the construct system of an
individual.

• The data system is distinguished as those distinctions that have been made about a
particular event-a distinction about distinctions defining an event

• The generative system is distinguished as a set of distinctions that also defines an
event-these are model-generated rather than event-generated-it is the match between
the model-generated and event-generated distinctions that determines the degree of
approximation of the model to the world-this is a distinction about distinctions among
distinctions that defines goodness of fit.

• The structure system is distinguished as a set of distinctions that compare models-it is
the order relation of simplicity/complexity on models that determines the preference for
the simplest model that is an adequate approximation to the world-this is a distinction
about distinctions that defines our preference for simple models.

• The meta system is distinguished as a set of distinctions that specify the basis of these
comparisons.

• The meta-meta system, and higher levels, are distinguished as sets of distinctions that
specify further relations among the distinctions on the level below.

Note that the upper levels of modeling are totally dependent on the system of distinctions
used to express experience through the source system.

Distinctions are not just static partitions of experience. They may be operations: actions in
psychological terms; processes in computational terms. Whether a system finds a
distinction in the world, imposes it passively as a view of the world, or imposes it actively
as a change in the world, is irrelevant to the basic modeling theory. It makes no difference
to the theory whether distinctions are instantiated through sensation or action. In
knowledge engineering we have to incorporate both the expert's prediction and control
processes.

KNOWLEDGE ACQUISITION IN THE HIERARCHY
The hierarchy of Figure 3 accounts for knowledge acquisition as the modeling of events
enabling adequate prediction and action. A modeling schema results from distinctions
about distinctions at each level in the hierarchy. In prediction the key distinction is to what
degree a level accounts for the information flowing through it and hence this distinction
may be termed one of surprise (Gaines 1977), in the sense used by the economist Shackle
(1955). Surprise goes in opposition to the degree of membership of a predicted event to an
actual event and the expected surprise is a form of entropy. Surprise at the lowest level of
the hierarchy corresponds to distinctions being inadequate to capture events; surprise at the
next level to inadequate variety to experience events; at the next level to inadequate
approximation to predict events; at the next level to inadequate simplicity to explain events;
at the next level to inadequate comprehensiveness to account for events.

The formal theory of modeling is one in which models are selected at each level down the
hierarchy to minimize the rate at which surprise is passing up the hierarchy. The criteria for
model selection independent of the data are generally thought of as being ones of
simplicity/complexity: of two models which fit the data equally well choose the simplest.
However, notions of simplicity/complexity are not well-defmed nor intrinsic to the class of
models.- The simplicity/complexity ordering is arbitrary and in its most general form is just
one of preference. Hence the general modeling schema is one in which surprise flows up
the hierarchy and preference flows down. In situations that are mathematically well
defined, such as determining the structure of a stochastic automaton from its behavior, such
a model schema gives the correct results (Gaines 1977). Conversely, the success of the
schema in stabilizing with regard to a given world defines the characteristics of that world.

(4-7

Thus the basic modeling schema for learning from experience is one in which surprise
flows up the hierarchy and preferences flow down. In primitive organisms only the lower
levels of the hierarchy are developed, surprise is generated from experience and preference
is genetically encoded. In higher organisms the modeling process generalizes both surprise
and preference to cope with novel environments. Humanity has developed the upper levels
of the hierarchy and detached surprise from experience and preference from its genetic
roots. Surprise can flow up from a level without flowing into it from below because the
processes at that level have generated novelty. Preference can be generated at a high level
detached from both experience and genetic origins and flow down to affect the relations of
the organism to the world.

There is neurological and behavioral evidence of the existence within the brain of the two
channels of communication shown in Figure 3 (Tucker & Williamson 1984). The arousal
system passes surprise up to the cortex from the limbic region as unexpected events occur.
The activation system passes preferences down from the cortex to the motor regions.

COGNITIVE SCIENCE INTERPRETATION OF THE HIERARCHY
The loop in Figure 1 from events through distinctions up through the modeling hierarchy
and then down again to predictions and actions corresponds to the epistemological model of
man as an anticipatory system developed by Kelly (1955). Thus, the systemic hierarchy of
Figure 3 has an analog in psychological terminology as shown in Figure 4:-
• The source level is one of constructs, distinctions made in interacting with the world.
• The data level is one of experiences, events which happen to us, and we make happen, in

terms of the distinctions already made.
• The generative level is one of hypotheses which are rationalizatioQ.s of experience.
• The structure level is one of analogies which are correspondences between these

rationalizations.
• The meta level is one of abstractions which are foundations of analogies.
• The meta-meta level is one of transcendencies which are accounts of abstractions.

~

~ ~

6
~ Transcendencies ~
~ ~
~ accoruats of abdractions ~

' \

~
Abstractions ~

~ ~

~ foundations of analogi•s ~
\

5

~
\

Analogies ~
~ ~
~ correspo11de.nccs b•tw••• hypotheses ~ '

4

~ ~
~ Hypotheses ~
~ ratlonolization.s of •xperien.cc ~ ~

3

~ Experiences
~

~ ~

~ ...,tllnts In. terms of constructs ~
~

2

~ \

~ Constructs ~
~ distinctions mad• ~

\. ~ ~ .J
1

.~ '0-.: ~ .. ,,,.#, , '-
~ ~

Events ,,,,, w or Id .~.... Actions

Figure 4 Construction hierarchy of a person modeling a world

t4-8

EXPERTISE, ROLES, GROUPS AND SOCIETIE
The anticipatory processes of the modeling hierarchy may be extended to the operation of
society by viewing groups as cross-sections comprising multiple individuals. This concept
may be given deeper significance by considering the inductive inference process underlying
knowledge acquisition. Whereas deductive logical inference is well-understood and well
founded~ the inductive inference that underlies knowledge acquisition is not. Deduction
guarantees to take us from valid data to valid inferences, but the inferences are thereby part
of the data-no new knowledge is generated. Induction takes us from valid data to models
of that data that go beyond it-by predicting data we have not yet observed, and by giving
explanations of the data in terms of concepts that are unobservable. Induction generates
new knowledge but, as Hume (1739) pointed out over 200 years ago, the process is not
deductively valid and it is a circular argument to claim that it is inductively valid.

Philosophers have continued to debate Hume' s arguments and search for justification of the
inductive process. Goodman (1973) proposed that we accept the circularity but note that it
involves a dynamic equilibrium between data and inference rules as shown in Figure 3: "A
rule is amended if it yields an inference we are unwilling to accept; an inference is rejected
if it violates a rule we are unwilling to amend." Rawls (1971) in his theory of justice terms
this a reflective equilibrium. Stich and Nisbett (1984) noted flaws in Goodman's argument
and repaired them by proposing that the equilibrium is social not individual: "a rule of
inference is justified if it captures the reflective practice not of the person using it but of the
appropriate experts in our society." This gives an operational definition of the role of
experts within an anticipatory system as referential anticipatory sub-systems coordinating
the overall knowledge acquisition process. It also leads to an concept of the role of expert
systems in society, as making the referential process more overt and widely available.

Events

World
Figure 5 Reflective equilibrium in inductive inference

The extension of the modeling hierarchy to social processes is straightforward since Figure
3 presents a general modeling schema and applies as much to groups of people, companies
and societies as it does to the roles of a person. The epistemological hierarchy of a person
is a cross-section of the epistemological hierarchy of the society generating their life-world.
Pask's (1975) concept of P-Individuals as the basic units of psycho-socio-processes allows
roles, people, groups, organizations and societies to be treated in a uniform framework.
An individual is defmed in cognitive terms as a psychological process (Pask 1980) and
more complex psychological and social structures may be defined similarly by taking into
account the possibilities of timesharing, process switching and distributed processing with
psychological processors. For example, one person may assume many psychological roles
(process switching), whereas a group of people working together may act as a single goal
seeking entity and hence behave as one process (distributed processing).

REPRESENTATION OF EXPERT SKILLS WITHIN THE HIERARCHY
In the analysis of expertise, the skills to achieve goals in the world are the crucial
capabilities of the modeling system, and the usual hierarchical models of skills (Powers
1973, Rasmussen 1983) are naturally subsumed within the modeling formulation. Figure
6 shows the basis for action at different levels in the modeling hierarchy:-
• At level one, the activation of a construct may be linked directly to a primitive act, another

construct. This corresponds to reflex actions and stimulus-response connections. In
system-theoretic terms this level might be implemented by conditional probability
calculations giving confirmation-theoretic inductive inference.

• At level two, constellations of experience may be linked to complete action sequences
through rules derived from similar experience. In system-theoretic terms this level
might be implemented by fuzzy production rules giving generalization-based inductive
inference. These constellations may be regarded as prototypical schema, or frame-like
structures in computational terms.

• At level three, a generative model of experience, may be used to compute an optimal
action sequence. In system-theoretic terms this level might be implemented by a state
based modeling scheme giving model-based inductive inference.

• At level four, a variety of alternative models may be compared as a basis for selecting one
appropriate to the required goals. In system-theoretic terms this level might be
implemented by a category-theoretic functional analysis scheme giving analogical
inductive inference.

• At level five, generalized abstract models may be used as templets from which to
instantiate one appropriate to the required goals. In system-theoretic terms this level
might be implemented by a category-theoretic factoring scheme abstracting the
mathematical form of an analogy and giving abstractional inductive inference.

• At level six, the entire process described may be transcended through a recognition that it
is based on distinctions being made at various level, and an attempt to rationalize these
distinctions and create new ones. In system-theoretic terms this level might be
implemented by a distinction-based analysis scheme giving what might be termed
transcendental inductive inference.

~ $

6
~ ' Transcendental ~ ~ ~
!flstlncttoa proce•• ~ dlstlactlo11s crelllton"

~ Abstract ~
~ ~
i tJb#rtJct 111od•Z. • q•clflc tnodd• ~

'
5

~ Comparative ~
~ ~
i •IUrnlltiH atodels ,. Mod11l selection ~

4

~ ~
~ Computational ~ ~ 111od11l ,. opdmlll Getlon comp&lltation ~
~ '

3

~ Rule-Based
~

~ ~

~ •%JI•rl•n.ce ~> tu:tion rules ~
'

2

~ Reflexive
~

~ ~
~ constnu:t , act ~ \. ~ ' ""'

1

~..
~,,..,...,, ~

Events '',,, .$."'" Actions

"World
Figure 6 Action hierarchy of system modeling a world

~4-10

It is an interesting comment on the state of the art in computer science that it has proceeds
"middle-outward" in its representation of the knowledge involved at different levels of the
hierarchy. Information technology has been primarily concerned with level three activities,
and is only now beginning through expert systems to emulate level two activities.

LANGUAGE AND CULTURE IN KNOWLEDGE ACQUISITION
The creation of new knowledge takes place through the surprise/preference flows within
the hierarchy and it is these processes that determine the rate of scientific discovery,
technological invention and product innovation. The capability for an entire society to act
as a distributed knowledge acquisition system depends on communication processes to
coordinatie activity at a given level of the hierarchy across different people. This process
whereby each person does not have to undertake all aspects of the inductive process but can
share the results of such processing by others supports what is generally termed the culture
of a society (V anderburg 1985). People use language for much of this communication but
they also have in common with other animals the capability to communicate cultural
information without the use of language. Mimicry is an important mechanism for
knowledge acquisition as is reinforcement through reward and punishment

The human development of language enables coordination to take place in a rich and subtle
fashion that greatly enhances, but does not replace, the more basic mechanisms in common
with other species. It is particularly important at the upper levels of the hierarchy where
direct expression is difficult. From an individual point of view, language is a way of by
passing the normal mocleling procedures and interacting directly with the system at any
level. In particular it earl directly affect the preference system. Much skilled activity is not
directly accessible through language, but even when language cannot mediate the direct
transmission of knowledge it may be used to achieve the same effect by the indirect support
of other mechanisms. For example, one can describe a good learning environment, or a
behavior in sufficient detail for mimicry.

Figure 7 shows the cultural support for knowledge acquisition at different levels in the
modeling hierarchy:-
• The reflexive knowledge at level one has no verbal component and comes directly from

experience, often that of mimicking the behavior of others. This level has been termed
informal to correspond to Hall•s (1959) definition of cultural transmission of behavior
of this type.

• The rule-based knowledge at level two is usually transmitted by reinforcement of
behavior, verbal rules, or is induced from the patterns of knowledge at level!. This
level has been termed formal to correspond to Hall • s defmition of cultural transmission
of behavior of this type.

• The computational knowledge at level three is usually transmitted by technical
explanation, or is induced from the patterns of knowledge at level two. This level has
been termed technical to correspond to Han•s definition of cultural transmission of
behavior of this type.

• The comparative knowledge at level four is usually transmitted by simile and metaphorical
analysis, or is induced from the patterns of knowledge at level three. Hall does give a
name to this level but the term comparative captures his own activity of highlighting the
features of one culture by contrasting it with others.

• The abstract knowledge at level five is usually transmitted through mathematical
representation, or is induced from the patterns of knowledge at level fo'ur.

• The transcendental knowledge at level six is usually transmitted by general system
theoretic analysis, or is induced from the patterns of knowledge at level five. Many
mystical and consciousness-raising techniques may be seen as attempts to communicate
knowledge at this level when formal analysis is impossible. It involves moving outside
the framework established at the lower levels. Pope (1984) has given examples of this
process in a wide range of cultures.

l4-l)

6

5

4

3

2

1

J

~ Transcendental
~ transfer general principles ~

~ Abstract ~
i transfer b<Jsic laws

~
Comparative ~

~ transfer from related worlds
~
~ Technical ~
~ rational •xplanation •
~
~ Formal
~ reinforccm«nt
~
~
~ Informal
~ mimicry

~ ..

.
~
~
~
~

' ~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~ ,. ,,,,

Events ,,

' 'World
eo.""

.# Actions

Figure 7 Cultural transmission hierarchy of people modeling a world
KNOWLEDGE TRANSFER PROCESSES
The action and cultural transmission hierachies of Figures 6 and 7 may be combined to give
an overall framework for knowledge representation, processing, acquisition and
transmission as shown in Figure 8. This gives detailed foundations for the processes of
knowledge engineering discussed in the first part of this paper and shown in Figure 1.

The primary learning process is one of direct acquisition based on attempts to solve tasks
through interaction with a world, as shown in the lower part of Figure 8. This is applicable
to all three worlds: physical, social and knowledge.

This primary process is the only one open to humanity as a species and is distributed across
partially autonomous individuals coordinated by cultural communication processes. From
an individual perspective it is these communication processes that dominate knowledge
acquisition and transfer. ·

The right hand side of figure 8 shows the cultural communication processes supporting
knowledge transfer:-
• At level one mimicry by watching experts is the main transfer mechanism.
• At level two reinforcement by working under expert supervision is the main transfer

mechanism.
• At level three rational explanation from interviewing experts and books is the main

transfer mechanism.
• At level four use of analogous models to derive knowledge from similar situations is the

main transfer mechanism.
• At level five use of basic laws to derive specific models is the main transfer mechanism.
• At level six use of system priciples to derive specific laws is the main transfer mechanism.

Levels 1 and 2 of the cultural transmission process, mimicry and reinforcement, clearly
belong to world 2, the social environment of subjective experience. Levels 4 through 6,
analogies, laws and principles, clearly belong to world 3, the knowledge environment of
statements in themselves. Level 3, of rational explanation, bridges both worlds.

l4-\2

6 Transcendental
distinction process > distinctions creation

5 Abstract
abstract models > specific models

4 Comparative
alternative models > model selection

3 Computational
model > optimal action computation

2 Rule-Based
experience > action rules

1 Reflexive
construct > act

Figure 8 Knowledge transfer processes in 3 worlds

(4-13

KNOWLEDGE TRANSFER METHODOLOGIES
One practical consequence of the analysis of knowledge acquisition and transfer given
above is a hierarchy of knowledge transfer methodologies based on Figure 8 which defmes
the areas of application of the knowledge engineering techniques already in use. Figure 9
shows this hierarchy in relation to the basic architecture of an expert system:

Knowledge base: the central feature is a knowledge base of facts and inference rules.

Expert system shell: the lower oval shows the operational system for applying the
knowledge base to knowledge support.

• The inference system derives the consequences of facts about a particular situation.
• The planning system determines how to use the inference system to satisfy the specified

objectives.
• The explanation system answers questions about the basis of the inferences made.

Knowledge acquisition system: the upper oval shows the knowledge transfer
processes that may be used to establish the knowledge base.

• The knowledge generation system implements knowledge acquisition by the raw
induction of models from experience without cultural support as exemplified by ATOM
(Gaines 1977) and AM (Davis & Lenat 1982).

• The expertise modeling system implements knowledge acquisition by mimicking an
expert's behavior as exemplified by INDUCE (Michalski & Chilausky 1980).

• The performance reinforcement system implements knowledge acquisition from
performance feedback as exemplified by the PERCEPTRON (Rosenblatt 1958) and
STelLA (Gaines & Andreae 1966).

• The knowledge elicitation system implements knowledge acquisition by interviewing
experts as exemplified by ETS (Boose 1985), KTITEN (Gaines & Shaw 1986), MORE
(Kahn, Nowlan & McDermott 1985) and SALT (Marcus, McDermott & Wang 1985).

• The knowledge structuring system implements knowledge acquisition by analogy as
exemplified by TEIRESIAS (Davis & Lenat 1982) and CYC (Lenat, Prakash &
Shepherd 1986).

• The basic laws system implements knowledge acquisition by building physical models as
exemplified by simulation languages such as SIMULA (Nygaard & Dahl1981).

• The systemic principles system implements knowledge acquisition by derivation from
abstract principles as exemplified by the category-theoretic language OBJ (Goguen &
Meseguer 1983).

Most current expert system shells offer a limited knowledge base represented in terms of
production rules and frames, have weak planning capabilities limited to deriving
consequences and testing assertions, and give simple explanations in terms of the facts and
rules used. However, rapid improvements are taking place in knowledge representation,
inferencing and explanation capabilities of expert systems (Hayes-Roth 1985, Michalski &
Winston 1986, Pearl 1986, Swartout 1985).

Most current knowledge acquisition is done by manual knowledge elicitation. However,
rapid improvements are taking place in the knowledge automatic knowledge acquisition
capabilities of expert systems (Boose 1985, 1986, Bradshaw & Boose 1986, Gaines &
Shaw 1986, Kahn, Nowlan & McDermott 1985, Marcus, McDermott & Wang 1985,
Shaw & Gaines 1986, van de Brug, Bachant & McDermott 1985).

The knowledge base and shell have been incoprated with the acquisition methodolgies in
Figure 9 to show the natural relationships between all three. Shell structure and knowledge
acquisition research and development have so far been treated as separate enterprises.
Integrating the two is essential to future knowledge-based system applications so that the
combined system provides maximal and coherent support to the expert and knowledge
engineer.

\4--\4

Figure 9 Knowledge acquisition hierarchy for expert systems

l4-1'5

CONCLUSIONS
The distributed anticipatory system formulation of knowledge acquisition and transfer
processes outlined in this paper provides scientific foundations for knowledge
engineering:-
• It provides an operational model of the notion of expertise and the role it plays in our

society, and hence provides formal foundations for expert systems.
• It provides a detailed structure for the cognitive processes involved in knowledge

acquisition and transfer.
• There are links between the model and neurological processes in the brain.
• It suggests that the basic cognitive system that should be considered is a social

organization, rather than an individual.
• Computational models of inductive inference already developed can be applied directly to

the social model.
• Cultural knowledge acquisition and tranmission processes are explicitly identified and

structured within the model.
• Linguistic communication coordinates the distributed autonomous units forming the

anticipatory system.
• It suggests that groups of experts, rather than individuals, should be used in developing

expert systems.
• It provides a framework within which all the methodologies for knowledge acquisition

and transfer currently under developed can be incorporated, analyzed and compared.

There are several implications for future developments in Figures 8 and 9. Whereas past
knowledge acquisition and transfer systems have been developed using techniques at one
level of the hierarchy, future systems will increasingly follow the example of human
apprenticeship and operate at multiple levels. The combination of teaching by example,
performance feedback and explicit statement is ubiquitous in human knowledge
transmission and will become increasingly so in expertise transfer systems. The
combination of rule-based, model-based, analogical and law-based inference is ubiquitous
in human knowledge processing and will become increasingly so in expert systems.

The range and variety of expertise transfer systems being developed is very important.
They are complementary rather than competetive. We are entering a phase of system
integration when the best features of many systems will be melded to provide a new
generation of knowledge acquisition and transfer systems. This workshop will give a
major impetus to the collaboration necessary to the development of this next generation of
systems, and hence to the progress and application of the major new information
technology of knowledge-based computing systems.

ACKNOWLEDGEMENTS
Financial assistance for this work has been made available by the National Sciences and
Engineering Research Council of Canada.

REFERENCES
Bainbridge, L. (1979). Verbal reports as evidence of the process operator's knowledge.

International Journal of Man-Machine Studies, 11(4), 411-436 (July).
Bainbridge, L. (1986). Asking questions and accessing knowledge. Future Computing

Systems 1, in press.
Boose, J.H. (1985). A knowledge acquisition program for expert systems based on

personal construct psychology. International Journal of Man-Machine Studies
20(1), 21-43 (January).

Boose, J.H. (1986). Rapid acquisition and combination of knowledge from multiple
experts in the same domain. Future Computing Systems, In press.

Bradshaw, J.M. & Boose, J.H. (1986). NeoETS. Proceedings of North American
Personal Construct Network Second Biennial Conference. pp. 27-41.
University of Calgary: Department of Computer Science (June).

Broadbent, D.E., FitzGerald, P. & Broadbent, M.H.P. (1986). Implicit and explicit
knowledge in the control of complex systems. British Journal of Psychology 77,
33-50.

Collins, H.M. (1985). Changing Order: Replication and Induction in Scientific
Practice. London: SAGE.

Davis, R. & Lenat, D.B. (1982). Knowledge-Based Systems in Artificial
Intelligence. New York: McGraw-Hill.

Dixon, N. (1981). Preconscious Processing. Chichester: Wiley.
Freud, S. (1914). Psychopathology of Everyday Life. London: Benn.
Gaines, B.R. (1977). System identification, approximation and complexity.

International Journal of General Systems, 3, 145-174.
Gaines, B.R. (1980). General systems research: quo vadis ?. Gaines, B.R., Ed. General

Systems 1979. Vol. 24, pp. 1-9. Kentucky: Society for General Systems Research.
Gaines, B.R. & Andreae, J.H. (1966). A learning machine in the context of the general

control problem. Proceedings of the 3rd Congress of the International
Federation for Automatic Control. London: Butterworths;

Gaines, B.R. & Shaw, M.L.G. (1986). Knowledge engineering techniques.
Proceedings of AUT OF ACT'86. To appear. Detroit (November).

Goguen, J.A. & Meseguer, J. (1983). Programming with parametrized abstract objects in
OBJ. Theory and Practice of Programming Technology. Amsterdam: North
Holland.

Goodman, N. (1973). Fact, Fiction and Forecast. Indianapolis: Bobbs-Merrill.
Hall, E.T. (1959). The Silent Language. New York: Doubleday.
Hawkins, D. (1983). An analysis of expert thinking. International Journal of Man-

Machine Studies, 18(1), 1-47 (January). ·
Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence,

26(3), 251-321 (July).
Hayes-Roth, F., Waterman, D.A. & Lenat, D.B., Eds. (1983). Building Expert

Systems. Reading, Massachusetts: Addison-Wesley.
Hume, D. (1739). A Treatise of Human Nature. London: John Noon.
Kahn, G., Nowlan, S. & McDermott, J. (1985). MORE: an intelligent knowledge

acquisition tool. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence. pp. 581-584. California: Morgan Kaufmann.

Kelly, G.A. (1955). The Psychology of Personal Constructs. New York: Norton.
Klir, G.J. (1976). Identification of generative structures in empirical data. International

Journal of General Systems, 3, 89-104.
Klir, G.J. (1985). Architecture of Systems Problem Solving, New York: Plenum

Press.
Lenat, D., Prakash, M. & Shepherd, M. (1986). CYC: Using common sense knowledge

to overcome brittleness and knowledge acquisition bottlenecks. AI Magazine 6(4),
65-85.

Marcus, S., McDermott, J. & Wang, T. (1985). Knowledge acquisition for constructive
systems. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence. pp. 637-639. California: Morgan Kaufmann.

Michalski, R.S. & Chilausky, R.L. (1980). Knowledge acquisition by encoding expert
rules versus computer induction from examples-A case study involving soyabean
pathology. International Journal of Man-Machine Studies, 12, 63-87.

Michalski, R.S. & Winston, P.H. (1985). Variable precision logic. Artificial
Intelligence, 29(2), 121-146 (August).

Nisbett, R.E. & Wilson, T.D .. (1977). Telling more than we can know: verbal reports on
mental processes. Psychological Review 84, 231-259.

Norman, D. (1980). Twelve issues for cognitive science. Cognitive Science, 4(1), 1-
32.

Nygaard, K. & Dahl, 0-J. (1980). The development of the SIMULA languages.
Wexelblat, R.L. (Ed.) (1981). History of Programming Languages. pp. 439-
480. New York: Academic Press.

Pask, G. (1975). Conversation, Cognition and Learning. Amsterdam: Elsevier.
Pask, G. (1980). Developments in conversation theory-Part I. International Journal

of Man-Machine Studies, 13(4), 357-411 (November).
Pearl, J. (1985). Fusion, propagation and structuring in belief networks. Artificial

Intelligence, 29(3), 241-288 (September).
Pope, S. (1984). Conceptual synthesis: beating at the ivory gate?. Smith, W., Ed.

Systems Methodologies and Isomorphies. pp. 31-40. California: Intersystems.
Popper, K.R. (1968). Epistemology without a knowing subject. Van Rootselaar, B., Ed.

Logic, Methodology and Philosophy of Science Ill. pp. 333-373.
Amsterdam, Holland: North-Holland Publishing Co ..

Powers, W.T. (1973). Behavior: The Control of Perception. New York: Aldine.
Rasmussen, J. (1983). Skills, rules and knowledge; signals, signs and symbols, and other

distinctions in human performance models. IEEE Transactions on Systems, Man
& Cybernetics, SMC-13(3), 257-266 (May/June).

Rawls, J. (1971). A Theory of Justice. Cambridge, Massachusetts: Harvard University
Press.

Rogers, C.R. (1967). On Becoming a Person: A Therapist's View of
Psychotherapy. London: Constable.

Rosenblatt, F. (1958). The Perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65, 386-407 (November).

Shackle, G.L.S. (1955). Uncertainty in Economics. Cambridge University Press.
Shaw, M.L.G. & Gaines, B.R. (1986). Techniques for knowledge acquisition and

transfer. Proceedings of AAAI Workshop on Knowledge Acquisition for
Knowledge-Based Systems. Banff (November).

Shortliffe, E.H. (1976). Computer-Based Medical Consultations: MYCIN. New
York: Elsevier.

Stich, S.P. & Nisbett, R.E. (1984). Expertise, justification and the psychology of
inductive reasoning. Haskell, T.L., Ed. The Authority of Experts. pp. 226-241.
Bloomington, Indiana: Indiana University Press.

Swartout, W. R. (1985). Knowledge needed for expert system explanation. Proceedings
of the 1985 National Computer Conference. Vol. 54, pp. 93-98. Reston,
Virginia: AFIPS Press.

Tucker, D.M. & Williamson, P.A. (1984). Asymmetric neural control systems in human
self-regulation. Psychological Review, 91(2), 185-215 (April).

van de Brug, A, Bachant, J. & McDermott, J. (1985). Doing R1 with style. Proceedings
of the Second Conference on Artificial Intelligence Applications. IEEE
85CH2215-2, pp. 244-249. Washington: IEEE Computer Society Press.

Vanderburg, W.H. (1985). The Growth of Minds and Cultures: A Unified
Theory of the Structure of Human Experience. Toronto: University Press.

Welbank, M. (1983). A Review of Knowledge Acquisition Techniques for
Expert Systems. BTRL, Ipswich: Martlesham Consultancy Services.

14-t6

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Knowledge-Based Knowledge Acquisition
for a Statistical Consulting System

William A. Gale
AT &T Bell Laboratories 2C273

600 Mountain Avenue
Murray Hill, NJ, 07974

ABSTRACT
Knowledge-based knowledge acquisition means restricting the domain of
knowledge that can be acquired and developing a conceptual model of the
domain. We have built a prototype knowledge-based knowledge acquisition
system for the domain of data analysis. A critique of the prototype has led to a
design for a possibly practical data analysis knowledge acquisition system.

1. Introduction

Daryl Pregibon and I built our first statistical consultation system, REX, using
standard expert system techniques (Gale, 1986ai Pregibon and Gale, 1984). REX is a
consultation program in regression analysis, a statistical technique for data analysis. It
demonstrated the feasibility of using expert system techniques to construct data
analysis consultation systems. It had an active life as a demonstration system, running
weekly about for a year.

We then faced the problem of building consultation systems for other analytic
techniques, which brought home the inadequacies of the knowledge acquisition methods
used in building REX. The next (second) section reviews the shortcomings of standard
expert system construction methods as we experienced them in a statistical application.
Similar shortcomings have been noted in many application areas, leading to a wide
spread perception of need for better knowledge acquisition methods.

REX made two major contributions to subsequent work. The first is a viewpoint for
thinking about data analysis as a diagnostic problem. Briefly, one should list model
assumptions (analogous to possible diseases), test the data set at hand for violations of
the assumptions (analogous to symptoms), and if found select a transform of the data
(analogous to treatment). The success of this approach depends on the representation
of statistical knowledge. This is the second major contribution of REX. REX has a set
of statistical primitives including tests, plots, assumptions, and transforms, which can
be implemented as frames with slots containing procedures, or as objects (classes) with
instance variables and methods. The hierarchical str;Icture of the network of frames
directs the interpretation of the statistical knowledge.

We refer to the statistical knowledge as strategy. A hand held calculator can do (some)
regression calculations. But the assumptions behind this calculation, how they can be
examined, when they should be examined, and how they can be remedied if found

1?--0

require considerably more expressive power than even such elaborate calculators as
modern statistical packages.

Student was subsequently designed to allow expert statisticians working alone to build
and test strategies {Gale, 1986b). It was conceived of as a program by example system,
because of the key role that examples seemed to play in the construction of REX. We
built a prototype that acquired knowledge from a first example in a new data analysis
area. The third section describes the knowledge acquisition techniques used in the
prototype, and the fourth criticizes them.

One successful part of the Student prototype is knowledge-based knowledge acquisition.
The key to this technique is restricting the domain for which knowledge can be
acquired. Just as domain restriction allows domain specific knowledge to be used in a
knowledge-based consultation system, domain restriction allows domain specific
knowledge to be used in a knowledge-based knowledge acquisition system. The domain
specific knowledge essential for knowledge-based knowledge acquisition is a conceptual
framework for the domain. The framework must specify the types of primitive entities
to be used, how each primitive will be represented, acquired, and modified, and how the
primitives can be combined and displayed. The fifth section discusses the issues that
must be resolved in order to use knowledge-based knowledge acquisition.

At the risk of redundancy, let me define knowledge-based knowledge acquisition as the
approach to knowledge acquisition which {I) restricts the domain of knowledge which
can be acquired and {2) builds a conceptual model of the restricted domain.

The sixth section discusses the generality of knowledge-based knowledge acquisition. It
is a practical tool for widening the knowledge acquisition bottleneck when several
similar consultation systems must be built.

2. A Critique of Knowledge Acquisition in REX

Developing a strategy for use in REX was a labor-intensive process. Two phases can be
distinguished. In the first phase the statistician responsible for the strategy, Daryl
Pregibon, chose a half dozen regression examples that clearly showed some frequent
problems. He then analyzed them using interactive statistical software with an
automatic trace. After analyzing the group of examples, he studied the traces and
abstracted a description of what he was doing. We coded this as a strategy for REX
and tried it on a few more examples. He revised the strategy completely at this point,
and the second phase began.

In the second and longer phase, one of us would select one additional regression example
and run REX interactively on the chosen example. Since we selected the example
knowing what would stretch REX, REX usually reported a severe problem that it didn't
know how to fix. Then we would modify the strategy so that the example would be
handled. This process was iterated through about three dozen more examples.

Based on this experience, and on a feeling that it was typical of other techniques, we do
not believe it is possible to construct a data analysis strategy without working through
many examples. One must make many decisions to construct a strategy, and there is
no literature simplifying the task. Therefore the only available defense of a strategy is

IS"-)

to demonstrate performance, which requires working many examples more than those
used to construct the system. On the other hand, our experience also leads us to
believe that it is easy to generalize from data analysis examples. The basis for
generalization is usually a statistical test which statisticians can provide.
Generalization then consists of determining the range of values of the test for which the
demonstrated technique holds.

However, the way in which we worked examples for REX was far from ideal. The first
difficulty with our method was assuring ourselves that a strategy modified to work one
additional example still worked all previous examples. We could by brute force run
REX in batch mode on all previous examples and see if the performance was the same.
Usually we reasoned that most of the previous examples could not be affected, and
checked the few that might be affected by hand. Naturally, the more examples worked,
the more severe this problem became. The need to check consistency in batch mode for
a system designed to be interactive reduced the flexibility of the strategy developed.

Second, the method used was the epitome of the currently standard two-person
development of expert systems. I built the inference engine used while Daryl was
responsible for the strategy developed. Whenever Daryl wanted to do something he
hadn't done before, we had to huddle, as Daryl was learning a language he would only
use to construct one program. In a department with twenty professional statisticians
and one person intimately familiar with the inference engine, it was not clear how many
additional data analysis techniques could be handled by this two person approach.

Third, it would be difficult to modify the strategy in REX. Modifiability is important
because a growing literature on strategy (Gale, 1986c; Haux, 1986; Darius, 1986) can be
expected to suggest desirable changes. It is also important because users will probably
want to modify strategies to their particular needs. Statistics is a discipline that is
applied in other, "ground" domains. Current knowledge representation and language
generation techniques are not adequate to produce a tool that will speak physics with
physicists and psychology with psychologists. An alternative to one broad tool is a tool
that is readily specialized. However, the first two problems would make this difficult:
to specialize the program a local statistician would have to learn a language used by no
other program in the world, and the modifications made might inadvertently destroy
some capabilities of the strategy.

The contribution of REX to subsequent work was stated in the introduction. It
provided us with the beginnings of a conceptual framework for data analysis: a data
analysis consists of a desired calculation, assumptions required for the calculation to be
meaningful, tests for the violation of the assumptions, and transformations to
ameliorate the violations. The classes of frames used in REX provided us with an initial
list of classes of primitives that has remained useful and has been expanded.

3. Knowledge Acquisition in a. Student Prototype

The necessity of working examples to construct a data analysis strategy suggested the
possibility of acquiring strategies directly through that process. A system should assist
the teacher in establishing consistency across all examples worked, and should not force
a statistician to learn an obscure language. It appeared that examples might provide a

!5-Z

language suitable for communication between statisticians and computers.

The first issue encountered in designing Student was how to learn from the first
example. In a system without knowledge, there is simply no basis for use of information
provided in working an example. By providing Student with the conceptual framework
induced from REX, we have built a prototype that can deal meaningfully with an
example even when it has seen no previous examples. This step was only possible
because the system was limited to data analysis.

DeJong's (1983) method of explanatory schema acquisition is another example of the
possibility of one-shot learning that is possible with domain knowledge. His approach
has more detailed and explicit domain knowledge then ours, and learns independently of
human assistance. His technique has not been used for knowledge acquisition for a
consulting system, but might be extended that way.

The prototype was implemented on a Symbolics 3670 communicating with a statistics
program on a Vax 750.

The conceptual framework used in the Student prototype had the ten classes of
primitives shown in the following table. Each instance of a primitive was represented
by a frame. In the table, indentation indicates that names of instances of the primitive
indented occurred as values in some slot of the superordinate primitive. That is, the
relation shown by indentation is "uses information from."

input variables
data types

assumption testing
plot

test

action

generic plot

generic test

question discriminator
predicate discriminator

Each primitive has a set of slots, which are also chosen to reflect the structure of data
analysis. As an example, perhaps the simplest primitive is the input variable frame,
which had only a few slots:

input variable
external name of input
required or optional
default if optional
data type
variable name

The content of the instances of these primitives is the information that a consultation
system must have. For instance, when asking a consulting client for a specific input, it

l'?-3

is necessary to know the common name of the input. Likewise, the system must know
whether to insist upon having a given input variable before beginning the analysis
(required or optional), and what default to use if the user does not have one of the
optional input. The system must also know what data type is required for the input in
order to determine if submitted data is possible. Since we do not want to overwrite
input data with later calculations, we need a standard variable name to copy the input
to.

Gale (1986b) and (1986c) discuss the formalization of data analysis used in Student in
more detail. Here it is sufficient to note that the work stands as an example of how the
conceptual framework from one consultation system (REX) can be generalized and
formalized.

Knowledge-based knowledge acquisition in this context means specifying how the
contents of each slot will be acquired. In the case of the input variable primitive, each
slot could be acquired by asking the teaching statistician. Most of them could also be
acquired more actively. The internal name could be created from the external name
and perhaps a unique number. Acceptable data types could be inferred from the data
types of the inputs to the set of examples provided. Optional variables and their
defaults could be inferred as those with repeated inputs. In fact, it seemed better in
each of these cases to ask the teaching statistician and then use the information to
check inputs to teaching examples.

Thus, subsidiary techniques designed for the specific knowledge will be chosen. The
Student prototype used three subsidiary techniques: interviewing, limits induction, and
monte carlo learning.

The preponderance of cases were handled by interviewing. Knowing what is needed,
and having a statistician at hand, it is easy to just ask. Even so, exactly how to ask for
the information varied between menus, fill in the blank, multiple simultaneous choice,
and free response. And of course the prompts varied for each item.

Monte carlo learning was used to establish initial notions of the distributions for test
results. The distributions were used in turn to set initial cut points, or lz'mits for
distinguishing severe, mild and insignificant cases of assumption violations.

Limits induction is inference of limits on test ranges from test results and action
(transform) or non-action by the statistician. Let vi be the value of a test on the ith
data set, and ai beT or F as the statistician acted or didn't act in the situation covered
by the test. Then set the lower cut point as max(vd ai=F) and the upper cut point as
min(vd ai= T). Then for test values above the upper cut point, the statistician has
always acted, and for values below the lower cut point, the statistician has never acted.
This simple scheme is slightly modified to include the monte carlo results. Limits
induction was programmed in the prototype, but with only single examples, it was not
tested.

Knowledge-based knowledge acquisition has several advantages. First, the information
in each slot is necessary for a consultation program. Systematizing the knowledge to
acquire from a statistician speeds construction because the system won't forget what is
needed.

Another advantage of knowledge-based knowledge acquisition can be shown in the
acquisition of an input variable. It is almost always appropriate to run a number of
tests on each input variable by itself. Without knowledge-based knowledge acquisition
each time a new variable is given, a battery of tests must be specified by the teaching
statistician. However, it is easy to keep track of what tests have been used for all input
variables by data type, and to suggest these to the statistician. Since the tests are
based only on knowing the data type of the input, they will often be appropriate in
many different data analysis procedures. The domain knowledge we are using here is
that the tests are similar in many different analysis types, and that they are reasonably
organized by data type.

As another example, a statistician may notice after some time of programming that an
optional input variable is possible. One would then back up and increase the generality
of numerical procedures to accommodate the extra variable. With knowledge-based
knowledge acquisition, the statistician is encouraged to think of optional inputs at the
beginning of the construction process, thus avoiding the costs of reprogramming. This
encouragement may not be effective in all cases, but it can only work in the direction of
reducing the problem. In short, by providing a framework for data analysis, the
statistician is encouraged to think in previously successful terms.

A system that acquires first examples does not address all the problems in building a
knowledge acquisition system. However, the domain restriction is expected to be useful
for extending a given body of knowledge as well as initiating it. Extension of knowledge
for a given data analytic technique involves demonstrating more assumptions, how to
detect their violation, and how to fix them. The same techniques used for initial
acquisition suffice here. However, it is also necessary to check consistency for
previously worked examples.

Consistency means that after incorporating information on a new assumption, the
recommended analyses of all previously worked examples are not changed. This is a
requirement analogous to logical monotonicity. Some changes can be proved consistent
by using domain knowledge. The domain knowledge consists of a theorem, and the
proof consists of verifying the hypotheses of the theorem, so this is not automatic
theorem proving. The proof may use data that could be specified and collected when
the previous examples were demonstrated. This will be more efficient than rerunning
examples. Other cases, such as showing that a new test is not passed for an old
example, require new calculations. Domain knowledge may be able to specify data to
save which will make such checking faster than completely reworking an example.

Of course, the check may find that a change is inconsistent. That is, that the
recommended analysis for at least one previous example has changed. Then the
statistician will need to revise the existing body of knowledge. This might just consist
of blessing the revised analysis for the inconsistent examples. Or it may require
revising the strategy, perhaps revising the assumption just added. This can be assisted
by domain knowledge encoded as editing procedures.

15-5

4. A Critique of Know ledge Acquisition in Student

Interviewing is useful. A knowledge-based interview is easy to write, since one knows
exactly what to acquire. Interview procedures attached to slots are easy to keep track
of, so that it is easy to see if all slots can be acquired.

A research issue is how much can and should be acquired by interviewing, and how
much must or should be provided as initial knowledge. The prototype tested this by
attempting to acquire everything by interviewing. It appeared that everything could be
acquired this way. However, experience with this extreme approach led to deciding to
provide some items as initial knowledge. The collected reasons used to justify initial
provision of an item were

(1) distractingly frequent requests for information,
(2) need for richly structured information,
(3) need for careful control of the generality of information, and
(4) stable and non-controversial information.

For example, data types (vectors, matrices, time series, ...)will be built in for reasons 2
and 4. An initial core of technical definitions will be provided for reasons 1 and 4. The
domains of functions (so that no attempt will be made to take logs of negative numbers)
will be built in for reasons 3 and 4. Reason 4 is cited in each case and appears to be
necessary.

Programming by example is possible, but slow and clumsy. There is, however, key
information in the examples. And, as argued, examples are necessary. It is useful when
describing a plot or test to have an example to do the operations on immediately.

The lisp machine was a successful prototyping environment. However, our consultation
systems must use a statistical package for their specialized computations. Therefore, a
practical system will probably have to be built on the same machine as the package for
reliability of delivery.

The Student prototype assumption testing frames need to be generalized. First,
arguments are needed. The prototype was built to redo REX so it copied the REX
organization of assumptions. REX had explicitly represented "checking the dependent
variable for outliers," and "checking the independent variable for outliers." Thus the
Student prototype is only prepared to learn about ground level assumption violations
such as "dependent-outlier" and "independent-outlier." Clearly, acquiring a variable
containing entity to represent "checking the input variable for outliers" would be more
powerful. Second, the assumption-testing notion needed to be generalized to the notion
of "feature," which might never lead to a transformation, but which might lead to a
report item.

We found in building REX that the most powerful explanations in statistics were not
verbal, but graphical. Thus we programmed before and after plots for each
transformation. Student is able to construct these automatically from plots acquired in
the course of being shown how to detect an assumption violation. This is a
convenience. Generic plots may be another example of knowledge best provided
initially. But it may be best to include the capability to acquire them even if it is rarely
used.

Monte carlo learning seems like a technique with much wider applicability for statistical
systems to learn about statistical tests. Limits induction is apparently a useful idea
although it has not been tested. It can describe what a statistician has actually done,
possibly pointing out a poorly worked example, or a poor test. It can be used to alert
statisticians to taking an action that is not consistent with previous actions, but can be
changed easily if they insist.

5. Issues for Knowledge-Based Knowledge Acquisition

Does the restricted domain have a useful generality'? Restriction to the point that one
can provide a framework necessarily sacrifices generality. If only one expert system can
be made within the restrictions, building a special tool to assist in its construction will
be unproductive. Snee (1980) reports a survey result that a dozen data analysis
techniques will cover the bulk of data analyzed. So perhaps this many systems would
be needed for standard forms of analysis. There are also, however, many specialized
forms, practiced in only one industry or one company. After building S (Becker and
Chambers, 1984), it was observed that S was being used frequently to construct
specialized analytic environments. This suggests a need for many statistical expert
systems.

What is the conceptual framework for the domain'? Spedfically ...

What classes of primitives are needed'? Probably the most efficient way to develop a
conceptual framework is to build one expert system in the domain. The classes of
primitives used are highlighted if one uses a frame based programming approach. The
different classes of primitives have different slots and different control procedures.
REX was programmed using a system allowing either rules or frames. It turned out
that the frames were more useful. A side effect was to identify the classes of primitives
used. The Student prototype was built to use frames, and thinking in terms of the
classes of primitives made its structure clearer from the start.

How are the primitives structured'? Slots in frames which refer to other frames induce a
network structure on a collection of frames. This structuring is easy to implement, and
has been sufficient for representing assumptions using plots, tests, and transforms in
slots. It has not been sufficient for representing a strategy using assumptions, because
control concepts (branch and loop) turned out to be necessary. But the additional
structure was easy to add.

How is the knowledge validated'? This will be highly dependent on the domain.
Validation needs to be supported as much as possible, however. In our case, the
knowledge is validated by the coincidence of machine generated analyses of specific
examples and expert analyses of the same examples. Therefore Student is designed to
collect and display examples and their analyses. It can then check the required
coincidence automatically.

What background knowledge will be suppla"ed'? This will also depend strongly on the
domain. Knowledge at the periphery of the domain, such as knowledge of mathematics
as required for statistics, is likely to have the required stability and to be non
controversial. The background knowledge identified in our case consists of knowledge

t5-7

about data types, functions, plot types, and vocabulary.

How is the knowledge communicated? We are trying to build systems that will allow
subject matter experts to construct a consultation system. The conceptual framework
must be communicated clearly to the expert using the system. Indeed, the expert must
be actively encouraged to think in the specific terms provided by the framework, even if
it is a natural one.

Probably the most important area to communicate is the structuring of primitives. We
have found graphical displays of the hierarchy to be useful here.

6. The Generality of Know ledge-Based Know ledge Acquisition

The issues raised in the previous section lead directly to an assessment of the generality
of knowledge-based knowledge acquisition.

First, it is clear that it applies to areas where more than one expert system is to be
built. It will, in fact, usually be necessary to build at least one expert system manually
before it is clear what a conceptual framework for a domain might be. My impression is
that many expert systems built to date are representatives of similar ones that might
also be built. For instance, medical diagnosis and mineral deposit detection have many
specific diseases and minerals to deal with. Thus there may be many domains with
both sufficient generality and sufficient restriction.

Second, a conceptual framework is necessary. In building a first, ground level, system it
will help to seek regularity and common cases. A frame based programming system
helps to identify these commonalities. But, if the first system has a myriad of types of
rules or frames, a generalized framework is unlikely.

Third, the framework must be readily presentable. The subject matter specialists may
need to be encouraged to think within the specific framework provided, even if it is
natural. For hierarchically organized knowledge, graphs are an attractive
communication medium. Some restriction in expressiveness may be appropriate to get
easier communication.

7. Summary

Knowledge-based knowledge acquisition is possible when the domain of knowledge
acquisition can be restricted and a conceptual framework for the restricted domain
provided. It is useful when the restricted domain still allows constructing a variety of
expert systems. We have demonstrated the feasibility of using knowledge-based
knowledge acquisition in one domain, data analysis, by building a prototype. The
method should be usable in other domains. The principal requirements on the domain
are (1) that several independent consulting systems are needed, and (2) that the

conceptual framework from one consultation system can be formalized.

References

Becker, R. A., and J. M. Chambers, 1984, S: an Interactive Environment for Data
Analysis and Graphics, Wadsworth, Belmont, California.

Darius, P., 1986, "Building Expert Systems with the Help of Existing Statistical
Software: An Example", Proceedings COMPSTAT86, Physica-Verlag, Vienna, Austria,
p. 277.

DeJong, G., 1983, "Acquiring Schemata Through Understanding and Generalizing
Plans", Proceedings Eighth IJCAI, Morgan Kauffman, Los Altos, California, p. 462.

Gale, W. A., 1986a, "REX Review" in W. A. Gale, ed., Artificial Intelligence and
Statistics, Addison-Wesley, Reading, Massachusetts, Chapter 9.

Gale, W. A., 1986b, "Student Phase 1: A Report on Work in Progress" in W. A. Gale,
ed., Artificial Intelligence and Statistics, Addison-Wesley, Reading, Massachusetts,
Chapter 11.

Gale, W. A., 1986c, "A Comparison of Representations for Statistical Strategies",
Proceedings of Statistical Computation Section, ASA, Washington, D.C.

Pregibon, D., and W. A. Gale, 1984, "REX: An Expert System for Regression Analysis"
in Proceedings COMPSTAT84, Physica-Verlag, Vienna, Austria, p. 242

Haux, R., ed., 1986, Expert Systems in Statistics, Gustav Fischer Verlag, Stuttgart.

Snee, R. D., 1980, "Preparing Statisticians for Careers in Industry" The American
Statistician, May 1980, v. 34 pp. 65-75.

Knowledge Acquisition for Knowledge-Rased Systems Workshop, Banff, Canada, Nov. , 1986

Abstract

A Conceptual Framework for Knowledge Elicitation

* Chaya Garg-Janardan and Gavriel Salvendy
School of Industrial Engineering

Pu1·due University
West Lafayette, Indiana 47907.

Knowledge ellcltation ls a first but critical step ln the bullding of expert systems.
The performance of expert systems and the expense Involved In their
development Is determined largely by the accuracy and rellablllty or the
extracted knowledge and the time taken to extract the knowledge, respectively.
Hence, the development of a structured, reliable and valid method for knowledge
extraction wlll facllltate the widespread use or expert systems by Improving their
performance and rendering the bulldlng process more economical. This paper
presents a conceptual framework that may be used to derive a knowledge

. ellcitation methodology. This conceptual framework Is establlshed by extending
Newell's and Simon's (1972) problem space concept and Integrating It with
Kelly's theory of personal constructs.

1.0 Knowledge Elicitation

Knowledge ellcitation Is the process by which facts, rules, patterns, heuristics and
operations used by humans to solve problems ln the particular domain are
ellcited. It Is a first but critical step In the construction of expert systems. The
tlme required by this phase affects the cost effective development of expert
systems. The performance of the expert system ln terms of the systems rellablllty,
valldlty and utlllty depends on the rellablllty, valldity and accuracy of the
ellclted knowledge. It ls thus or great concern that knowledge ellcltatlon poses a
significant bottleneck to the process of building expert systems. Besides humans,
knowledge may be elicited from several sources Including books, journals, reports,
manuals, databases and case studies. However, knowledge ellcitation from
humans Is the major thrust here since the intuition, experience and heuristics
used by humans ln problem solving are rarely stated expllcitly ln the llterature.

1.1 Important Issues in Knowledge Extraction

A concise and formal statement of the problem of knowledge elicltation precludes
the possiblllty of making explicit the many diverse but Interacting factors that
contribute to lt. To thls effect, the statement or the problem Is preceded by an
examination of Issues Identified as Important to this problem. These Include: (a)
What knowledge should be elicited, and (b) How should It be ell cited, I.e., what
attributes should a knowledge ellcitation methodology possess? Each of these
Issues Is discussed below.

What knowledge to elicit? Two kinds of knowledge: process and content, may be
elicited from humans. Process knowledge ls defined as the strategies and

* The writing of this paper and development of the concepts herein were made possible due to fel
lowships to the first author by NEC Corporation and IBM Corporation and by the NEC Corpora
tion professorship to the second author.

t&-0

procedures used In problem solving. Content knowledge represents the actual
facts and rules used by the human In solving problems. The two kinds of
knowledge cannot be divided Into mutually exclusive classes. Process knowledge
Includes the methods by which a subset of the content knowledge Is accessed,
combined and used to solve problems. Combinations of content and process
knowledge and heuristics maybe used successfully so often that they become
automated and stored as chunks by the human. As soon as the human recognizes
a pattern In a given problem the associated chunk ls executed. These chunks
form as an Individual's experience and expertise level Increases and render the
process-content dlstlnctlon more ambiguous. In the context of knowledge
extraction, It may be Impossible for the knowledge engineer to assert that only
one of process or content knowledge wlll be elicited. This ls because, as stated
above, the two kinds of knowledge cannot be divided Into mutually exclusive
classes. Despite thls ambiguity, definition of the klnd of knowledge that Is of
primary Interest may provide a framework within whlch to ellclt knowledge,
evaluate the completeness of the elicited knowledge and prevent the development
of methods that ellcit random samples of domain specific knowledge. The kind of
knowledge that Is of primary Interest may vary from domain to domain.
Ellcitation of content knowledge may be the chief concern In analysis type
domains; whereas, In synthesis type domains ellcltation of both process and
content knowledge may be equally Important. Analysis problems are those where
all possible solutions can be enumerated al1ead of time. Synthesis problems are
those where unique solutions may be bullt from components or Inputs. In
synthesis problems It Is not possible to enumerate all possible solutions, at the
very outset.

Attributes of a knowledge elicitation methodology. A first step ln the formulation
of an effective and efficient knowledge ellcitatlon methodology ls the enumeration
of It's attributes (both required and desirable). The methodology should rest on a
theoretical framework, I.e., the procedure used by the methodology should derive
from thls theoretical framework. A valid theoretical framework facllltates
dellneatlon of what knowledge to ellcit, provides a bases against which to
valldate the methodology and the elicited knowledge and structures the
procedure used by the method. The methodology should be such that lt almost
ferrets Information out of the human. Tills Is because humans have difficulty ln
expressing the actual Information and strategies used ln problem solving. A
methodology Is needed whlch draws attention to various aspects of the problem
and prompts expression. Instead of eliciting some random subset of knowledge,
the methodology should attempt to elicit deep, causal, strategic and nearly
complete knowledge. The methodology should not employ procedures that are
task specific and vary widely from domain to domain and researcher to
researcher. Instead procedures used should be applicable to a class of problem
domains.

A knowledge ellcltatlon tool should objectively check for inconsistencies and
conflicts ln the elicited data. Such checl~s are necessary because humans In their
perceptual, response and decision making process are subject to several sources of
bias and Inaccuracy (Tversky and Kalmeman, 1974; Moray, 1985). Checks for
conflicts are particularly necessary when eliciting expertise from multiple sources.
Expertise Transfer System's (ETS, [Boose, 1986]) method of presenting knowledge
ln multiple forms to the expert facllltates the detection of conflicts but does not
guarantee lt. The tool should have a system for combining information elicited
from multiple experts and for resolving copfllcts ln expertise collected from
multiple sources or from a single source. ETS Incqrporates a method to achieve

this.

Appropriate quantitative and qualitative methods should be used to analyze the
ellcited data, so that any Impllclt relations, trends and patterns In the ellcited
knowledge are made expllcit. A first step towards the use of quantitative
techniques ln analyztng data ls ENTAIL (Galnes and Shaw, 1981; Boose, 1986).
Graesser and Clark (1985) suggest the ldentlficatlon of conceptual graph
structures In the ellclted Information as an et!ective way of Imposing structure
and maklng expllclt much of the Impllcit Information. Such analyses wlll
facllltate outputting the ellcited data In a structured format. Any hidden
relations Identified may be used to chunlc and establish links ln network and
frame based representations. The tool should provide facllltles using which the
ellclted data may be examined and modified by the expert. Systems whlch
currently provide this faclllty Include TEIRESIAS (Davls, 1979), ETS (Boose,
1986) and XPLAIN (Swartout, 1984). The format ln which the subject responds
should be flexible. There should be a trade ot! between flexlblllty ot!ered and
running the rlsk of permitting the human to ramble on as ln undirected 'thlnk
aloud' protocol analysts. The Individual may be given the option of choosing one
of several response formats.

In essence the problem Is twofold: to outllne a theoretical framework and develop
and validate a tool for knowledge acquisition. Both problems need to be solved In
light of the above specifications regarding what knowledge to elicit, and how to
ellcit this knowledge. This paper Includes a solution to the first part of the
problem. A solution to the latter part Is currently being developed and valldated.
Prlor to outlining a solution to the former part, a brief discussion on the exlstlng
methodologies for knowledge elicitatlon Is Included.

2.0 Current Methodologies For Knowledge Elicitation

2.1 Protocol Analysis and Related Methods.

Protocol analysis Is the collection of Information from subjects by having them
'think aloud' or Introspect and verballze. Nisbett and Wllson (1977) caution
researchers about the pitfalls of protocol analysis. Removal In tlme, a prlorl
theories (correctly or Incorrectly formed), mechanics of judgment, context, non
events and discrepancy between the magnitude of cause and effect are listed by
Nlsbett and Wllson as the factors which affect the avallablllty and
representativeness of events and stlmull ln Individuals. These In turn affect the
consistency and accuracy of the verbal reports that emerge.

Ericcson and Slmon (1984) provide a critical but comprehensive discussion on
methods used to collect and analyze protocols and factors that users of protocol
analysis should be aware of. Erlccson and Simon list timing of verbalizatlons,
dlrectedness and content of verbalizations and amount of Intermediate processing
required as factors that affect the consistency and completeness of verbal reports.
Thus, while analyzlng protocols lt ls very essential to account for the Influence of
the above mentioned factors.

Knowledge extraction techniques derived using protocol analysis Include Grover's
(1983) three phase methodology, delplli (Jagannathan and Elmaghraby, 1985),
Crawford Slip Method (Rusk and Krone, 1984) and Smith's and Baker's (1983)
Idea of presenting experts wlth novel problems and recording their problem
solving process. The common denominator underlying these techniques ls an

\0-Z

emphasis towards structuring and systematizing the knowledge ellcitation
process. Despite It's weaknesses protocol analysis has been used to ellclt
knowledge In the construction of a majority of the expert systems. Sufficient
knowledge maybe ellcited using protocol analysis only at the expense of large
Investments of time, effort and money. Tills has led many knowledge engineers to
conclude that the knowledge extraction phase has significantly stymied the
bulldlng of expert systems. Graver's method whlle more structured and
streamllned than protocol analysis Is subJect to all the shortcomings attributed to
protocol analysis. This Is because protocol analysis Is largely resorted to for
Information ellcltation. The development of Interactive methods to ellclt expertise
evidenced a movement away from protocol analysis.

Several methods that ellclt expertise interactively have been developed Including
1\tiDIS (Antonelll, 1983); MORE (Kahn, Nowlan and McDermott, 1985); SALT
(Marcus, McDermott and Wang, 1985); PLANET (Shaw, 1984); CAP (Koubek,
Salvendy and Dunsmore, 1986) and ETS (Boose, 1986).

2.2 Interactive Methods for Knowledge Elicitation

Expertise Transfer System (ETS) Is an Interactive grid based method for ellclting
knowledge (Boose, 1986). The repertory grid technique was developed for use as a
psychotherapeutic tool by· George Kelly ln 1955 based on hls personal constructs
theory. Appllcatlon of tills grld approach to diverse domains for Information
ellcitatlon and several quantitative methods for the analysis of grids are outllned
In Shaw (1980, 1981). In fact, PLANET (Shaw, 1984) ls an Integrated set of
computer programs, that offers several alternative approaches for the ellcltation
and analysis of repertory grids, from one or more people. It provides programs for
the analysis of a single grid as well as for comparison and analysis of data across
several grids. Boose first applled tills technique to knowledge extraction for
bulldlng expert systems.

ETS Is a particularly effective knowledge ellcltatlon tool ln analysis type domains,
due to the many features It provides Including generation of entallment graphs,
Intermediate and conclusion rules; combination of expertise from multiple
sources; presentation of ellclted data to the expert ln multiple forms; and a
system for tracing through the knowledge base of ellclted data. NeoETS, a new
version of ETS Incorporates Ideas from Saaty's (1980) Analytic Hierarchy Process
(AHP) and uses hierarchies as well as rating grids with multiple variable types to
represent knowledge. Hierarchies not only help the expert break down problems
Into component parts but also permit reasoning at different levels.

MORE (Kahn, Nowlan and McDermott, 1985) ls an automated knowledge
acquisition system that helps refine an existing knowledge base. The bullders of
thls system based on their experience in hand-crafting MUD, a drllling fluid
diagnostic and consultant, developed a qualltatlve model of causal relations and
Identified a set of strategies that they found useful ln refining (manually) the
MUD knowledge base. Thls causal model and set of strategies are used by MORE
to guide the Interview process. Given a model of the domain knowledge and the
set of strategies thls system appears to be particularly effective In refining an
existing knowledge base.

SALT (Marcus, McDermott and Wang, 1985) ls one of the first systems developed
for knowledge acquisition In synthesis type domains where problems are solved by
constructing solutions. In particular, SALT was developed as a knowledge

lCo-3

acqulsltlon tool for VT, an elevator system configurer. To accompllsh thls,
SALT's problem solving shell draws on three kinds of knowledge (method,
constraint and fix schemas) that are elicited and represented using the two
subsystems (the Interviewing and the rule generation subsystems) within SALT.
Based on the Input, data driven procedures are used to determine each piece of
the configuration and the values for each piece. Knowledge which helps Identify
constraint vlolatlons ls drawn upon to spot constraint vlolatlons by Identifying
and checking constrained values. Next, knowledge whlch Indicates "fixes" for
constraint vlolatlons is used to "fix" potential constraint violations. It appears
that the problem solving shell used by SALT facllltates knowledge acqulsltlon In
synthesis type domains.

To summarize, the above methods present gooci but Incomplete solutions to the
knowledge extraction problem. The PLANET set of programs provide a
convenient and structured format to ellclt and analyse responses from a single
individual as well as compare responses across several lndlvlduals. PLANET's
sultablllty as a tool for knowledge extraction may be dramatically Improved by
Incorporating ln It a scheme to draw attention to various aspects of the domaln
and a method to detect confiicts ln the ellclted data. ETS Is very appropriate for
ellcltlng knowledge ln analysis type domains; however, ln synthesis type domains
lt's inablllty to ellcit "causal knowledge, procedural knowledge or strategic
knowledge", (Boose, Hl86) mltlgates Its usefulness. The methods used ln both
SALT and MORE may be borrowed to significantly Improve exlstlng tools for
knowledge extraction. The strategies used ln MORE wlll be an asset in the
knowledge refinement stages. The problem solving shell used ln SALT wlll be
very etrectlve in ellcltlng knowledge ln synthesis type domalns. Below, a
conceptual framework that may be used to derive a procedure to ellclt knowledge
ls descrl bed.

3.0 A Conceptual Framework For Knowledge Elicitation

The conceptual framework outllned here was establlshed by extending a well
known theory of problem solving and Integrating It wlth a theory which explains
how lndlvlduals construe themselves and their environment (Figure 1). The
former ls Newell's and Simon's (1972) theory of problem solving and the latter ls
Kelly's (1955) theory of personal constructs. In the following section, the two
theories are described, and the Integration of the two theories, ls brought out.

3.1 The Problem Space Concept.

In thls paper, the authors extend Newell's and Slmon's (1972) concept of a
problem space. To clarify and lllustrate certain concepts, an arbitrary domain Is
chosen, the control and monitoring of a Flexible Manufacturing System (FMS),
by a supervisor. It ls asserted that the problem space of any problem consists of
an Invariant part and a variant part~ Further, the authors contend that the
lnvarlant part ls comprised of the following components: objects, Instruments,
operator, operations, operating conditions, end products, by products and certain
constraints. The variant part ls comprised of a set of states. Each of the two
parts ls described before the relationship between the parts ls brought out.

3.1.1 The invariant part of the problem space.

Definition of each component of the invariant part. The object Is the Inputs glven
to the problem which is being solved. The instruments are the tools, machines

[(p-4

and aids which may be used by the operator to perform operations on the given
object. The operator, though a part of the problem space, has an overview of It.
The operator not only knows what problem Is being worked on, but Is also aware
of what the end products and by products should be, what resources are avallable
or unavallable and under what constraints the work has to proceed. The end
products and by products are what would result If the problem Is solved
successfully. Operations are the actions which may be taken by the operator and
which may bring about changes In the otl1er Invariant and variant components of
the problem space. The Invariant components do not change per se, but the
values of their characteristics undergo change. This Is discussed later, In this
paper. Constraints are Imposed on the problem space and the operations which
the operator may use not only due to the characteristics of the Invariant
components of the problem space but also due to Indirect sources. In a
manufacturing situation, factors such as Inventory level, batch size and the
avallablllty of manpower are some of the direct constraints that affect the
operations that an operator may perform. For Instance, they may Influence the
operator's decision to replace a tool. Indirect constraints are Imposed on the
problem space due to the thought and perceptual process of the operator. How
and why this Is a constraint Is clarified when bringing out the relationship
between the variant and the Invariant parts of the problem space.

Characteristics and values. Given a problem, each of the components of the
Invariant parts of the problem space may be defined by a set of characteristics.
These characteristics reflect the nature of the component, Influence the problem
solution process used and reflect how well the problem Is solved. These
characteristics may take on one of a range of values. The values may be numeric
or alphanumeric and may fall In the normal expected range or may lle beyond
the llmlts of thls range; thereby, Indicating some malfunction In the state of the
system. Several or pairs of these· values are closely related to each other, I.e.,
changes In the value of one characteristic may bring about or be accompanied by
changes In the values of other characteristics. This Is due to the Interrelationships
between the characteristics. Interrelationships between values may also Impose
constraints on the sets of values tl1at may or may not appear together. Such
constraints may constitute the preconditions that have to be satisfied for the
occurrence (or non-occurrence) of sets of values.

3.1.2 The variant part of the problem space.

Definition and its relation to the inva1·iant part. The variant part of the problem
space consists of a set of states. This set Is comprised of an initial state, a set of
intermediate states and a set of final states. For every final state there exists a
set of unique Intermediate states. It Is always possible to define an Initial state.
However, only a subset of the Intermediate and final states can be defined at the
beginning although all states can be defined once they are attained. A state Is
defined by the values and the Interrelationships between the values which are
taken up by the characteristics of the components of the Invariant part of the
problem space. A state n changes to state n+1 when some action or operation Is
performed on state n by the operator. Ideally, there should exist an Initial state, a
set of defined Intermediate and final states and a set of actions. However, In
practice this Is not true due to the Infinitely many combinations In which the
values of the characteristics may appear and due to the presence of the human
operator In the problem space. This Is because the action performed on each
state n to reach state n+ 1 Is determined by the operator's perception (patterned
or otherwise) of state n. In other words, the action taken and hence the new

state reached depends upon the operator~s definition, perception and
Interpretation of state n.

The second klnd of constraint comes Into play now. Thls constraint ls due to the
perceptual style of the operator. By perceptual style Is lmplled the operator's
perception of the characteristics and values (In patterns and schemas versus
single discrete characteristics) and the meanings attached to the values. Thus the
definition of a state by an operator may be affected by the operator's perceptual
style. The set of values and characteristics used by an operator to define a state
need not be totally subsumed In the set of actual values whlch define the state.
However, thls does not Imply that the Intersection of two sets Is empty. The
operator's Interpretation of a state refers to the set of outcomes (expected, slightly
expected and precluded outcomes), that are predicted by the operator for the
given state. The operator then chooses the operation or action to be performed
on the given state, In order to reach the most preferred outcome (an outcome at
the current step becomes a state at the next step). The performance of an
operation merely lmplles that the values of certain characteristics are changed.

To summarize, It ls asserted here that all knowledge required In solving a
problem (not the process of problem solution), may be derived by eliciting all
characteristics and values associated with each part of the problem space, l.e.,
objects, Instruments, end products, by products, operators, operations and
constraints; the set of states whlch the problem may terminate ln and how each
of these states whlch the problem may terminate In are reached (Intermediate
states, actions). In other words, It Is contended that problem solving knowledge
may be elicited from an Individual by determining how the Individual construes
the given problem space.

3.2 The Theory of Personal Constructs.

Kelly's (lg55) theory of a personal scientist or theory of personal constructs
Indicates that each Individual seeks to predict and control events by forming
theories, testing hypotheses and weighing evidence. Kelly asserted that
lndlvlduals' perception of the world, other events, lndlvlduals and sltuatloris was
represented In the form of constructs ln the lndlvidual. A construct Is defined as
an Internal bipolar scaled dlmenslon whlch brlngs out the slmllarity of a set of
elements and the difference of this set of elements from other elements. Thus a
construct lmplles both simllarity and contrast. According to Kelly, anticipated
outcomes depend on the Individual's Interpretation of past similar events. This
generallzatlon whlch causes antlclpation Is based on simllarities and differences
perceived ln events that have already taken place and also on when events are
perceived as beginning and ending. This dependence on personal experience
accounts for why unique responses maybe given by Individuals even when the
same set of elements Is used for each Individual. Constructs may also be
represented as hierarchies, Le., with some superordinate constructs subsuming
other subordinate constructs.

Personal constructs theory was first applled by Kelly (lg55) to ellcit the client's
perception of Individuals who played an Important part ln his (the cllents) llfe.
Slnce then the theory has been applled to many a setting (Shaw (lg8o, 1g81]),
from helping determine the causes for strained employer employee relations to
knowledge extraction for bulldlng expert systems (Boose, 1986).

3.3 Integration of the Theory of Problem Solving and the Theory of
Personal Constructs.

From Kelly's theory that people think In terms of constructs, It Is Inferred that
people can perceive simllaritles and differences. It Is asserted that people can
perceive slmllarltles and differences only because they associate characteristics at
certain values with given states, events and situations (Figure 1). Individuals
anticipate a set of Intermediate and final outcomes based on the characteristics
which they perceive ln a given lnltial situation, event or state. The choice of
action or operation to be performed on the given state (call It state 1}, by the
Individual Is determined by the element In the set of anticipated outcomes that
the Individual wants to reach. This outcome (call It outcome 1} becomes a state
(state 2} and the Individual performs another action or operation to reach
outcome 2, which Is state 3. The only distinction between state 2 and outcome 2
(which Is state 3) Is that the values of certain characteristics are different. It
follows that the set of anticipated outcomes wlll be different for the two states.
This continues until the desired final state (equivalently the final outcome) Is
reached.

In essence, lt Is asserted that an Individual's definition, perception and
Interpretation of a state Is determined largely by the characteristics (and the
values of the characteristics) which the Individual associates with the state. Thus
an ablllty to elicit from the lndlvldual the characteristics, values of these
characteristics, the Interrelationships between the values, expectations of
outcomes and choice of actions fm· each of the components of the given problem
space, should yield detalled problem solving knowledge. This amounts to eliciting
how an Individual construes his problem space. Different Individuals wlll construe
the same problem space differently based on personal experience. Reasons to
beUeve that this framework: facllltates the ellcitatlon of detalled knowledge and
the derivation of a knowledge ellcltatlon methodology are discussed below.

4.0 Implications Of The Above Conceptual Framework

Several direct and lndlrect benefits accrue from the conceptual framework
presented In section 3.0. This frameworl<: facllltates the derivation of a
knowledge ellcltatlon methodology that possesses several of the attributes listed
ln section 1.1. This Is because the framework provides guldeUnes regarding what
knowledge to elicit and the sequence and format that should be used to eUcit this
knowledge (Figure 1). Knowledge that should be ellcited Includes characteristics
of components of the problem space, ranges of values of these characteristics,
lntercorrelations between the characteristics, sets of characteristics that may or
may not occur together (and the constraining factors), states of the system, th•e
set of predicted outcomes and the actions that allow reallzation of a desired
outcome, glven a particular state.

The repertory grid technique developed by Kelly prompts the ellcitatlon of
knowledge In a structured format. Ellcltatlon of lmowledge In such a structured
format reduces significantly the time required to analyse the ellclted data.
Further,. lt permits the use of statistical methods (for example, distance-based
clustering techniques) for analysing the elicited data. Boose (1986) and Shaw
(1980, 1981) have successfully demonstrated that the repertory grid technique
and existing clustering algorithms maybe used to ellcit and analyse knowledge,
respectively.

[{g-{

The components of the invariant part of the problem space may enable the
knowledge engineer to draw the expert's attention to various components of
problem solving knowledge that the expert may be using (consciously or
subconsciously) to solve problems in the domain. This facllltates the ellcltation of
knowledge that is used subconsciously. Use of Kelly's personal constructs theory
makes possible the ellcltation of any unique approaches and heuristics that the
expert may be employing to solve problems. This ls possible because the emphasis
is on ellciting how the expert construes the problem space. Although it remains
to be demonstrated, there is reason to believe that this conceptual framework
may be used to ellcit knowledge ln both analysis and synthesis type domains; the
latter because the methodology emphasizes ellcltatlon of sets of characteristics
that may or may not occur together. Implicit here is the ellcitatlon of factors that
constrain the simultaneous occurrence of certain sets of characteristics and
values.

Indirect benefits accruing from thls framework include the scope for gaining
lnslght lnto the generic components of knowledge within and across domains.
Analysis of data using quantitative and qualitative methods and classification of
the ellclted knowledge based on the components of the Invariant part of the
problem space may yield valuable Insight Into the relations, patterns and
structures lmpllcit ln the ellclted data. This may be used to chunk knowledge
and establish llnks between and across the chunks of knowledge ln network and
frame-based representations.

References

Antonelll, D. (1983). The appllcation of artlfl.clal lntelllgence to a maintenance
and diagnostic Information system (1/IDIS). In the Proceedings of the Joint
Services Workshop on Artificial Intelligence in Maintenance, Boulder, Colorado.

Boose,· J., (1986). Expertise transfer fo1· expert system design. New York:
Elsevler.

Davls, R. (1979). Interactive transfer of expertise: Acquisition of new Inference
rules. Artificial Intelligence, 12, 121-158.

Erlccson, K.A., and Slmon, H.A., (1984). Protocol Analysis: Verbal reports as
data. MA: The :MIT Press.

Gaines, B.R., and Shaw, M.L.G., (1981). New directions ln the analysis and
interactive ellcltatlon of personal construct systems. In M.L.G. Shaw (Ed.),
Recent advances in personal construct technology (pp. 147-180). New York:
Academic Press.

Graesser, A. C., and Clark, L.F. (1985). Structures and procedures of implicit
knowledge. NJ: Ablex.

Graver, M.D., (1983). A pragmatic lmowledge acquisition methodology.
Proceedings of the Eighth International Joint Conference of Artificial Intelligence
(pp. 436-438). Karlsruhe, West Germany.

Jagannathan, V., and Elmaghraby, A. S. (1985). MEDI<A T: Multiple expert
delphi-based knowledge acquisition tool, Teclmlcal Report. Loulsvllle: University
of Louisvllle, Engineering, Mathematics and Computer Science Department.

Kahn, G., Nowlan, S., and McDermott, J. (1985). Strategies for knowledge
acquisition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-7 (3), 511-522.

Kelly, G.A. (1955). The psychology of personal constructs. New York: Norton.

Koubek, R.J.,. Salvendy, G., and Dunsmore, H., (1986). CAP: A knowledge
extraction methodology for computer programming. In Proceedings of the Human
Factors Thirtieth Annual Meeting. Dayton, OH: Human Factors Society.

Marcus, S., McDermott, J., and Wang, T., (1985). Knowledge acquisition for
constructive systems. In the Proceedings of the Ninth International Joint
Conference on Artificial Intelligence (pp. 637-639). Los Angeles: CA.

Moray, N., (1985). Sources of bias and falllblllty ln humans. In the Workshop on
Knowledge Engineering in Industry. Toronto, Canada: University of Toronto.·

Newell, A., and Simon, H.A. (1972). Human problem solving. NJ: Prentice-Hall,
Inc.

Nlsbett, R.E., and Wllson, T .D. (1977). Telllng more than we can know: verbal
reports on mental processes. Psychological Review, 84, (3), 231-259.

Rusk, R. A., and Krone, R. M., (1984). The Crawford sllp method (CSM) as a
tool for extraction of expert knowledge. In G. Salvendy (Ed.), Human-computer
interaction (pp. 279-282). New York: Elsevier.

Saaty, T.L. (1980). The analytic hierarchy process. New York: McGraw-Hlll.

Shaw, M.L.G., (1980). On becoming a personal scientist. New York: Academic
Press.

Shaw, M.L.G., (1981). Recent advances in personal construct technology. New
York: Academic Press.

Shaw, M. L. G., (1984). Interactive lmowledge ellcltatlon. In the Proceedings of
the Canadian Information Processing Society Annual Conference. Calgary,
Canada.

Smith, R. G., and Baker, J. D., (1983). The DIPMETER advisor system. In the
Proceedings of the Eighth International Joint Conference on Artificial Intelligence
(pp. 122-129). Karlsruhe, West Germany.

Swartout, W.R., (1984). Explaining and justifying expert consulting programs. In
W.J. Clancey and E.H. Shortll:ffe (Eds.), Readings in medical artificial
intelligence: The first decade (pp. 382-398). Reading, MA: Addlson-Wesley.

Tversky, A., and Kahneman, D. (1974). Judgment under uncertainty: Heurlstlcs
and biases. Science, 184,·1124-1131.

I
V

Domai~ - Related
\"a:-:ables

I
:-------·y-

Varia~~es Related To The
Expa:-ts Experience and

----·----------------- Koooljd''

"'
~::- Space

i ,------------··-------.
v ____ .,

[.-~<:.:~~~_:: ?a:-t

1. Initial state
2. Set of i~ter

rned:a:e
states

3 . Set of f.:-:-. a 1
states

'------.. -,---. _ _j
~ :---------!---·--· -·-

Eo~ expa:-:s cefine the
states of :::e syste~.
~~at set of outco~as ara
predicted a~d ~hat are
the actions taken

/-:-
1

I. '!-.'hat kn~•~adge to elicit~

::or;:;ation a::d
:-a~resantation of
~=nstructs,

s :::ilarities.
::ifferencas a::d
=::aracteristics

He~ e~as the expert
co::st:-~e the probla=
space

2. '!-.'hat seq:.::::::~e to elicit ;.:::::-..-ledge in?
3. '!-.bat for=.a: to elicit kn~la-=ge b?

\G,- (0

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Design for Acquisition:
Principles of Knowledge System Design

to Facilitate Knowledge Acquisition

Thomas Gruber and Paul Cohen+
Experimental Knowledge Systems Laboratory

Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003

Abstract

The problem of knowledge acquisition is viewed in terms of the incongruity between the rep
resentational formalisms provided by an implementation (e.g., production rules) and the for
mulation of problem solving knowledge by experts. The goal is to design knowledge system
architectures that provide representational primitives that are at the level of the expert's task,
rather than the level of implementations. This paper presents principles of design for acquisi
tion to guide the design of architectures to facilitate knowledge acquisition. The principles are
applied to the design of an architecture for managing uncertainty in medical reasoning, and
examples from a working system are shown. The design makes it possible to acquire two kinds
of knowledge that are traditionally difficult to acquire from experts: knowledge about eviden
tial combination and knowledge about control. Practical implications for building architectural
support software, including knowledge acquisition tools, are discussed.

"This research is funded by National Science Foundation grant 1ST 8409623 and DARPA/RADC Contract
F30602-85-C-0014.

t7-0

1 INTRODUCTION

Knowledge acquisition is the process of gathering knowledge about a domain, usually from an
expert, and transforming it to be executed in a computer program. It is a part of the knowledge
engineering process, which includes defining a problem, designing an architecture, building a
knowledge base, and testing and refining the program. Knowledge acquisition is regarded as
the bottleneck in this process. Our thesis is that the design of a knowledge system should
anticipate the acquisition process. By analogy with "design for testability," in which digital
hardware is designed to be easily tested (Bennetts, 1984), our aim is design for acquisition:
designing knowledge systems to facilitate knowledge acquisition.

The first advance on the knowledge acquisition problem was the invention of general architec
tures: knowledge representation techniques and accompanying interpreters that allow the pro
grammer to encode domain knowledge in a knowledge base separate from the algorithm that
interprets it. The EMYCIN architecture is paradigmatic (van Melle, 1979; see also Buchanan
and Shortliffe, 1984). Its essential architectural features are a rule formalism with conjunctive
premises, certainty factors, and an exhaustive backward-chaining control strategy.

With the general architectures came tools to help the knowledge engineer and expert transform
knowledge into the available formalisms. Experts were insulated from the Lisp implementation
by rule editors and pseudo-natural language interfaces (Shortliffe, 1976). In TEIRESIAS, Davis
(1976) demonstrated that a program can use knowledge about the architecture, such as the
structure of rules and the effect of backward chaining, to help users refine and debug the
knowledge base.

Recently, the emphasis in knowledge systems research has shifted toward less general, more
task-specific architectures (Chandrasekaran, 1986; Clancey, 1985; McDermott, 1983). Many
systems share common problem solving methods, despite differences in implementation. When
the task can be characterized at a level independent of the implementation, an architecture
can be designed to capture the task-specific problem solving knowledge. For example, the
HERACLES architecture (Clancey, 1986) is designed to do heuristic classification, a common
task for knowledge systems.

Kno:wledge acquisition tools for task-specific architectures can apply knowledge about the kind
of problem that the task addresses and the problem solving methods it provides. For example,
ETS (Boose, 1984) is a method of acquiring knowledge for hierarchical classification tasks. It
applies a psychological theory of how to elicit classification hierarchies from people. SALT (Mar
cus, McDermott, and Wang, 1985) assists in knowledge acquisition for iterative design tasks
such as configuration. The architecture for SALT identifies three kinds of domain knowledge
used by its problem solving strategy, and SALT uses knowledge about their form and purpose to
focus and constrain the knowledge acquisition dialog. In both cases, the knowledge acquisition
method is driven by demands of the task (e.g., classification or configuration) rather than the
implementation formalisms (e.g., rules).

Both ETS and SALT acquire knowledge for well-characterized problem solving methods. How
ever, the solutions of many kinds of problems are not well-characterized. For these problems,

t 1-\

knowledge systems, and ultimately tools to build them, must be designed. Design means choos
ing knowledge representations and control strategies that can bring expert knowledge to bear
on novel problems. Careful attention to the design of a problem solving architecture can make
knowledge acquisition easier both for knowledge engineers and automatic knowledge acquisition
tools.

This paper explores principles of design for acquisition, by which the design of a knowledge
system can facilitate knowledge acquisition. In Section 2, we present three general principles
of design for acquisition. In Section 3, we show how these principles have been applied in
the design of an architecture for managing uncertainty in medicine. The architecture makes it
possible to acquire two kinds of knowledge that are traditionally difficult to acquire: knowledge
about evidential combination and knowledge about control. In Section 4 we show how the
principles of design for acquisition imply a hierarchical organization of tools for implementing
knowledge system architectures, emphasizing the integration of knowledge acquisition support.

2 PRINCIPLES OF DESIGN FOR ACQUISITION

This section presents three principles that should be considered during the design of a knowledge
system. They may be familiar to knowledge engineers as heuristics for knowledge representation.
We present them in the context of making it easy for experts to express their knowledge.

Principle 1 Design task-level representational primitives to capture important domain concepts
defined by the expert.

This principle prescribes that the knowledge engineer provide a language of task-level terms.
It addresses a fundamental obstacle to knowledge acquisition, the representational mismatch
between the way that an expert formulates domain knowledge and the way the knowledge is
represented in an implementation (Buchanan, Barstow, Bechtel, Bennett, Clancey, Kulikowski,
Mitchell, and Waterman, 1983). For example, knowledge acquisition in a strictly rule-based
architecture is ultimately rule acquisition; and if it is difficult for an expert to express problem
solving expertise as rules, then it is hard to acquire the knowledge. The problem is that rules
are implementation-level primitives.

An example of a task-level primitive is the notion of a "trigger" - a special relation between data
and hypotheses such that when the data are found, a hypothesis is immediately activated. For
the cardiologist, a 45 year old man complaining of chest pain with exercise "brings to mind" the
hypothesis of angina; trigger is natural construct for diagnosticians. If it is a representational
primitive for the system, then acquiring triggering relations from the expert is straightforward.
If instead one must achieve the effect of a trigger by, say, "tuning" the certainty factors of rules
or the weights on links, then it will be difficult to acquire, explain, and modify this knowledge.

Principle 1 implies that architectures should be designed to support a language of task-level
terms for the expert, to minimize the effort of translating knowledge into computable form. The

\7-2

primitives that represent task knowledge should hide the implementation as much as possible;
they should provide the illusion of a "virtual machine" whose behavior is described in task-level
terms.

Principle 2 Design declarative representational primitives.

From the standpoint of knowledge acquisition, declarative knowledge representations are prefer
able to procedural ones. The meaning of declarative representations can be "read" directly,
whereas the meaning of procedures can only be had by executing the procedure or simulating
its execution. For experts to understand procedural representations of their knowledge they
must first understand the algorithm that interprets them. Even when knowledge seems nat
urally represented with procedures (e.g., control knowledge), formulating it declaratively can
facilitate acquisition, explanation, and maintenance.1 In Section 3.2 we show how designing
declarative primitives for control knowledge allows one to represent expertise in deciding what
to do next under conditions of uncertainty. By making the knowledge explicit and declarative,
the expert can examine the assumptions underlying his control decisions. 2 In Section 4 we show
how representing task-level terms declaratively allows the use of conventional "form-filling" user
interface technology in knowledge acquisition tools.

Principle 3 Design representations at the same level of generalization as the expert's
knowledge.

This principle can be summarized with two caveats:

• Don't force experts to generalize except when necessary.

• Don't ask experts to specify information not available to them.

Generalization is one of the dimensions of representational mismatch, the distance between
the expert's formulatio.n and the implementation.3 A representation and its referent in the
world are at different levels of generalization if there are distinctions in the world that the
representation fails to capture or the representation makes artificial distinctions. An example
of overgeneralization is forcing a large range of values into a small set of categories. The
expert interpreting blood pressure considers the full range of systolic/diastolic ratios, while the
knowledge engineer may want to categorize it as high, normal, or low, to make it easier to

1Neches, Swartout, and Moore (1984) also advocate this principle,, emphasizing the advantages for explain
ability and maintainability.

2 Clancey (1986) also argues for the explicit representation of control knowledge to facilitate explanation,
knowledge engineering, and tutoring.

3 Another dimension is operationalization, converting advice to procedures, which has been shown to be very
difficult to overcome (Mostow, 1983).

17-3

implement. Conversely, the knowledge engineer may ask the expert to specify more knowledge
than he or she has, again to suit the implementation. For example, the expert may be asked
to supply degrees of belief with far more precision that is justified by his or her knowledge.
Knowledge acquisition not just building a knowledge base, but getting the system to perform
correctly; Principle 3 is critical to refining and debugging knowledge systems.

3 A CASE STUDY OF DESIGN FOR ACQUISITION

In this section we illustrate the principles of design for acquisition in the context of a medical
expert system. We show how the design of the system facilitates acquisition of two kinds of
knowledge that are traditionally hard to acquire: knowledge about how to combine evidence
and knowledge about how to control the order of actions. The ability to capture this expertise
gives the system a unique ability to manage uncertainty by selecting or planning actions that
will minimize uncertainty or its effects.

3.1 Task domain: Managing Uncertainty in Medicine

MUM is an knowledge system that Manages Uncertainty in Medicine, currently in the domains
of chest and abdominal pain. (See Cohen, Day, Delisio, Greenberg, Kjeldsen, Suthers, and
Berman, 1986, for details.) Physicians make a distinction between retrospective diagnosis, in
which all the evidence is known in advance and the goal is to make the correct diagnosis, and
prospective diagnosis, which emphasizes the proper management of the patient through the
workup, a diagnostic sequence of questions and tests. In prospective diagnosis, uncertainty
about the patient's condition is managed by gathering evidence in the best order (e.g., to maxi
mize diagnostic information and therapeutic effectiveness and to minimize cost and discomfort).
MUM's task is prospective diagnosis; it uses expert knowledge about evidence and control to
generate an intelligent workup for a patient.

The knowledge acquisition task for MUM includes not only eliciting heuristic associations
(Clancey, 1985) between evidence and diseases ("What are the symptoms of angina?"), but
also combining knowledge ("What is the effect of risk factors like smoking on the hypothesis of
angina when there has only been one episode of pain?"), and control knowledge ("Under what
conditions should an angiogram be given?"). 4 The expert for MUM has a wealth of combining
and control knowledge, central to his expertise as a physician. This knowledge is difficult to
represent, and thus acquire, in current architectures. We designed MUM in accordance with the
principles discussed above to make it easy to acquire combining and control knowledge.

"'An angiogram is an expensive, invasive test for coronary artery blockage, usually given only after other tests
show positive results.

\7-4-

3.2 Design for acquisition of combining knowledge

Combining knowledge specifies how belief in several pieces of evidence is combined to support
a single conclusion. Remarkably, knowledge engineers rarely ask experts how they combine
evidence. Instead, fixed, global numeric functions that compute degrees of belief are built into
the architecture (Duda, Hart, and Nilsson, 1976; Shafer, 1976; Shortliffe and Buchanan, 1975;
Zadeh, 1975). Although the numeric representations and functions are a convenient imple
mentation formalism, they make it surprisingly difficult for experts to express their knowledge
about how they manage uncertainty (Cohen and Gruber, 1985; Szolovits and Pauker, 1978).

Numeric degrees of belief and global combining functions violate Principle 3 because they
require experts to summarize knowledge about uncertainty, that is, state their knowledge at
an inappropriate level of generality. To assess a degree of belief, the expert must consider and
summarize several factors, including probability, salience, and cost. Consequently, experts have
trouble specifying them. They violate Principle 1 because the numeric degrees of belief do not
correspond to domain knowledge (such as frequency statistics) and are combined by functions
chosen by the knowledge engineer, not the expert. Uniform combining functions are easy to
implement, but do not accommodate task-specific methods for combining evidence in different
ways.

MUM's design does three things to facilitate the acquisition of combining knowledge. First,
it replaces the real-valued numeric representation of uncertainty with symbolic states of belief
that are meaningful in domain terms. Second, it provides an explicit representation for clusters
of evidence, to encapsulate diagnostically significant subsets of evidence. Third, it replaces the
global numeric function with local combining functions, specified by the expert, for each cluster
of evidence.

MUM represents belief as nominal values that characterize the expert's evaluation of eviden
tial support. Seven states of belief are defined by the expert: confirmed, disconfirmed,
supported, detracted, strongly-supported, strongly-detracted, and unknown. They
are primitives at the task level; each has diagnostic or therapeutic significance.

MUM represents combinations of evidence with clusters, frames that represent diagnostically sig
nificant groupings of evidence. With respect to evidential support, diseases are clusters. Clus
ters also represent intermediate results, such as definitional data abstractions (Clancey, 1985)
and common groupings of clinical findings. For example, the cluster chest-pain-when-eating
illustrated in Figure 1 describes a situation in which the chief complaint of a patient is pain or
pressure in the chest that begins after eating. This cluster triggers the disease classic-esophageal
spasm. crescendo-pain-long-duration in Figure 1 represents the situation where the pain
has been increasing in intensity for more than ten minutes. The cluster discriminates between
angina and esophageal spasm: pain from the former usually lasts less than ten minutes.

Principle 1 motivates the design of clusters in MUM. Clusters are easy to acquire because they
are knowledge level primitives that represent characteristic diagnostic situations. They have
the right "grain size." For example, the expert can state categorically the implications of a
subset of findings, instead of relying on the system to calculate a partial match to a complete

17-5

~anae: chest-pain-when-eating
Conabining-function: IF (and (or (confirmed episode-chief-complaint=pain)

(confirmed episode-chief-complaint=pressure))
(confirmed episode-chief-complaint-location=chest)
(confirmed episode-incited-by-eating))

THEN confirmed

~ar.ne: crescendo-pain-long-duration
Cor.nbining-function: IF (and (or (confirmed episode-chief-complaint=pain)

(confirmed episode-chief-complaint=pressure))
(confirmed episode-chief-complaint-frequency=crescendo)
(confirmed episode-chief-complaint-duration> lOminutes))

THEN confirmed

Figure 1: Two clusters for diagnosing chest pain

Clusters represent diagnostically significant combinations of evidence. They might play a part
in a diagnostic scenario like this: A patient reports an episode of chest pain incited by eating
(chest-pain-when-eating); this combination of findings is relevant to many diagnoses. (For in
stance, it triggers classic-esophageal-spasm, shown in Figure 2.) The physician then asks about
the duration and time course of the pain. H the report matches the situation characterized here
as crescendo-pain-long-duration, the cluster is confirmed. This cluster of symptom descrip
tions is useful in differential diagnosis; for instance, it supports classic-esophageal-spasm and de
tracts classic-angina). In these examples, the combining functions specify necessary and suffi
cient conditions for clusters to be confirmed; no other belief state (such as supported) is relevant.

17-~

~anae: classic-esophageal-spasm
Isa: disease
Triggered-by: (confirmed chest-pain-when-eating)
Combining-function: IF (or (confirmed barium-swallow=spasm)

(confirmed manometries))
THEN confirmed

IF (or (confirmed vasodilator-tx)
(confirmed nitroglycerin-tx))

THEN strongly-supported
IF (confirmed crescendo-pain-long-duration)

THEN supported
IF (disconfirmed nitroglycerin-tx))

THEN detracted
IF (confirmed chest-pain-short-duration))

THEN detracted
IF (disconfirmed barium-swallow=spasm)

THEN disconfirmed

Figure 2: Part of a Disease Frame for Classic Esophageal Spasm

The evidential combining function for this disease is made up of rules; each IF part specifies conditions
on the state of belief in clusters, and each THEN part asserts a state of belief for the disease. "tx"
means trial therapy; for example, nitroglycerin-tx is confirmed if pain goes away when the patient takes
a nitroglycerin tablet. Manometries and barium-swallow are tests; ba.rium-swa.llow=spasm is a cluster
that is confirmed when the barium-swallow shows a spasm. The triggering function has the same syntax
as the left hand sides of rules in the combining function. In this example, when the cluster chest-pain
when-eating (Figure 1) is confirmed, the disease classic-esophageal-spasm is triggered. These combining
and triggering functions were elicited by a knowledge engineer working with a physician, in the context
of actual cases.

From inspecting the combining function, a. planner can infer that the tests (manometries and barium
swallow) are most diagnostic, since they can confirm and disconfirm the diagnosis of this disease. In the
frames representing these tests, however, one will find that they are invasive and therefore costly - to be

avoided. Slightly less diagnostic information (strongly-supported, detracted) can be obtained from trial
therapies, and even less (supported, detracted) from reports of episodes of pain given by the patient.

\/-7

set of findings. This expertise is difficult to represent in architectures like that of INTERNIST
(Pople, 1977), where all the evidence for a disease is grouped together in a single frame, and
combined by a uniform scoring technique.

In MUM, evidence combination is completely local; there are no global combining functions.
Every cluster has its own combining function. The combining function for the first cluster in
Figure 1 is simple: when an episode of chest pain (which may also be described as pressure)
is incited by eating then this is a confirmed case of chest-pain-when-eating. No other
combination of states of belief in evidence has any affect on belief in that cluster. Diseases, also
represented as clusters, typically have more complex combining functions. For example, the
frame for classic -esophageal-spasm, with the set of rules that define its combining function,
is shown in Figure 2. The combining function maps various combinations of states of belief in
data and other clusters to a range of belief states for the disease.

Combining functions are essential ingredients in MUM's knowledge base, and they are acquired
from the expert. They are explicit, declarative representations of the evaluation of evidential
support that is only implicit in global, numeric combining functions. For example, in MYCIN
(Shortliffe and Buchanari., 1975), premises of rules list the evidence that will support the con
clusion, but the calculation of how well the evidence is supported is hidden from the expert.
Thus there is no natural way to say, "Fire this rule only if the belief in premise P1 is b1 and P2
is b2, and then conclude C with belief b3." bt, b2, and b3 bear the same arithmetic relationship
to each other in every rule. Applying Principle 3 to the design of MUM allowed the expert to
characterize a whole range of situations with different ways of combining their evidence. The
precise behavior of each combining function is clear.

Local combining functions are easy to acquire in the context of clusters. Only diagnostically
significant combinations of evidence are specified, and only some of the belief states in each
constituent piece of evidence are considered. This contrasts with the situation where no local
combining function is specified, but every possible combination of belief is possible. We have
found that having to specify the combining knowledge explicitly and locally makes knowledge
acquisition more efficient, when maintenance and knowledge base refinement are considered.
Combinatorial problems are avoided because the space of combinations is very sparse; not every
combination of belief in every piece of evidence is relevant in the chest pain domain. This holds
advantages for knowledge base refinement and testing. First, every combination of evidence
is justified. Second, when test cases are found for which combining knowledge is inadequate,
the omission is easily localized to the cluster where the combination function is underspecified.
Third, if combining functions produce conflicting belief states for the same cluster, it indicates
a situation that the expert had not considered. For example, two rules in a combining function
may both be satisfied, where one asserts supported and the other disconfirmed. Since the
rules are understood in the context of the cluster, they can be modified or augmented easily to
resolve the conflict. This is a major advantage of Principle 3 for knowledge acquisition: when
the expert is not forced to generalize combining knowledge beyond familiar cases, errors in the
knowledge base tend to be errors of omission.

ll-8

3.3 Design for acquisition of control knowledge

A major part of expertise in prospective diagnosis is the ability to gather data in the proper
order, omitting unnecessary tests, asking only those questions that pertain to relevant hypothe
ses, and prescribing preliminary or exploratory treatment before all of the manifestations of a
disease are present. This is control knowledge about what to do, rather than what to believe.
Traditionally, domain knowledge is acquired without troubling the expert to think about con
trol. Simple control strategies such as forward chaining are implicit in the interpreter, separated
from the domain knowledge base, and selected by the knowledge engineer. When these weak
methods are inadequate, the knowledge engineer coerces the interpreter to do something more
complicated, perhaps by ordering rules or having rules communicate via control flags. Other
techniques for specifying control, such as procedural attachment in frame-based systems, are,
again, designed and implemented by knowledge engineers largely without consulting experts.
But experts have useful domain-specific knowledge about how to solve problems.

The problem we faced in MUM was how to represent control knowledge so we could acquire it
from the expert. The solution is to ask the expert for the parameters of a domain that affect
control decisions, and then ask him to formulate control knowledge in terms of these control
parameters. For example, some diseases are more dangerous than others; some clinical tests
are very costly; and some evidence is more diagnostic. Control knowledge is easier to acquire
in these task-level terms, in contrast to implementation-level parameters, such as the priorities
of tasks on an agenda, or the order of clauses in a rule. Since task-level control parameters are
declarative they can be reasoned about by a knowledge-based system, and more to the point,
they can be acquired.

Control parameters are a vocabulary for describing situations in which the expert knows what
to do. Control rules (Davis, 1976), acquired from the expert in terms of control parameters,
represent the decision points in diagnosis. Given the evidence that has already been acquired,
and the hypotheses it suggests, the diagnostician selects some action, typically to gather ev
idence for a suspected hypothesis, often by prescribing trial therapy. MUM was designed to
represent this decision-making process, so that the expert could specify how it should proceed.

Some control rules specify preferences among alternative actions. For example,

Name: prefer-cheap-to-confirming
Conditions: action1 is potentially-confirming, and

action2 is potentially-supporting, and
action1 costs more than action2

Strategy: prefer action2

The effect of this rule is to cause the system to favor cheaper actions and sacrifice a little
support.5 Other control rules specify focusing strategy:

6Fea.tures of evidence like potentially-confirming a.re derived from descriptions of the actions a.nd the clusters
for which they serve a.s evidence. An a.ction (e.g., running a. test) is potentially-confirming if it ca.n result in
evidence tha.t contributes to a. confirmed sta.te of belief in a. cluster (e.g., a. disease).

Name: focus-on-dangerous-supported-hypes
Conditions: hypothesist is supported, and

hypothesisz is supported, and
hypothesist is more dangerous than hypothesisz

Strategy: focus on hypothesis1

_This rule directs the attention of the system to the most dangerous hypothesis (e.g., a life
threatening disease) that has support. That is, the system will search for evidence for and
against the more dangerous hypothesis first.

Just as the design of clusters and combining functions give structure to the expert's descrip
tions of evidential belief, control parameters and control rules organize the expert's strategic
knowledge. Control parameters define a space of diagnostic situations, called the control space,
distinct from the belief space of evidential support for hypotheses. In accordance with Princi
ple 1, both the control space and the belief space are constructed from task-level terms. The
representation of the control space is designed to facilitate knowledge acquisition from experts
rather than forcing them to abide by implementation decisions that they often do not under
stand. Adhering to Principle 2, MUM selects actions based on declarative control rules; they
describe control decisions in terms of explicit control parameters. While it might seem that
control knowledge is economically represented procedurally, as with decision trees (Hannan
and Politakis, 1985), such representations compile out the conditions for control decisions (e.g.,
the costs and potential quality of evidence) leaving a sequence of unexplainable actions. In
accordance with Principle 3, the design of MUM does not ask the expert to generalize beyond
the diagnostic situations with which he or she is familiar. As combining functions prescribe
local combinations of evidence, control rules represent local control decisions. Local control
rules have the same relation to global conflict resolution strategies (e.g., "choose the most spe
cific rule") as local combining functions have to their global counterparts (e.g., Bayes' rule).
Again the local context facilitates acquisition and makes errors of omission more transparent.
When control rules conflict, the cause is missing control knowledge in a particular context.
For example, the prefer-cheap-to-confirming rule resolves the conflict between more gen
eral preferences rules, one that says "prefer actions that are potentially confirming" and the
other that specifies "prefer actions that cost less." The tradeoff is acquired from a particular
diagnostic situation.

4 IMPLICATIONS FOR THE DESIGN OF ARCHITECTURE SUPPORT
TOOLS

In the previous section we emphasized the design of knowledge representations to facilitate
knowledge acquisition, but the principles in Section 2 also have practical implications for the
design of software support for knowledge engineering. Specifically, the principles guide the de
sign of task-specific architectures. A task-specific architecture integrates particular knowledge
representation formalisms and problem solving strategies to perform a well-defined task, such

11-(0

_Symbolic
Inference Net

Classic-Angina Esophagitis

Actions

Treatment
Eff".:acy
I

10-min-chest-pain I~:~: s:- i nduced-pa i
Treatments

Data
Interpretations ~

substernal Pain-duration . (.sts I T ~-:s'"'t_r_e_s_s---te_s_t _ __,

·/.,. .. ;,,.
I 1

isk-ab·.·.·.o-.ut .•.
stress-test-result _

L-----'_/

Figure 3: The structure of a MU knowledge base.

Control
Knowledge

Focusing
Strategies

Action
Preferences

In the MU architecture, objects in a. symbolic inference net are connected by inferential relations

that propagate symbolic values. For example the potential-evidence relation propagates belief
states, such as supported and confirmed. At each node, a local combining function determines
the belief state of the current node as a function of the belief states of nodes contributing po~
tential evidence. The control knowledge is used to focus (e.g., decide which clusters to concen
trate on) and to choose among possible actions (such as prescribing a test), given the state of the

objects in the net and characteristics of actions (tests and treatments are executed by actions).

as hierarchical classification.6 The point for knowledge acquisition is that task-specific architec
tures can provide a language of task-level terms to the expert and a way for knowledge engineers
to implement these terms declaratively and at the appropriate level of generality, hiding the
implementation.

This section presents a hierarchy of knowledge engineering tools for an architecture called
MU that is a generalization of MUM. Figure 3 illustrates some of the structure of task-level
constructs that MU_ generalized from MUM; for example, triggering and evidential combination
are instances of inferential relations, which automatically propagate values through a symbolic
inference net.

Tool Objects in User's View Software Support
Knowledge Application-specific Terms (Meta-)Knowledge-based Utilities
Acquisition
Interface diseases, tests, treatments, questions, language-specific editors and form-

intermediate diagnoses, criticality of filling interfaces, inferential consis-
diseases, costs of tests, efficacy of tency analyzer, graphical display for
treatment objects and relations

Virtual Machine Task-level Constructs Task-specific Reasoning Mechanisms
(shell) clusters connected by value propagation functions

inferential relations
combining functions pattern matching language
control parameters interface to the inference net
control rules rule-based planner
preference rankings decision-making support

AI Toolbox Implementation Primitives AI Programming Techniques

(KEE) rules rule interpreters
frames and slots knowledge base bookkeeping,

inheritance mechanisms,
assumption maintenance

Lisp objects and functions demon and message passing support
windows and graphic objects window system

Figure 4: A hierarchy of knowledge engineering tools to support the MU architecture.

Figure 4 shows the organization of software support for the MU architecture. 7 The three tiers
correspond to functional levels. The left column shows the hierarchical relationship among
tools. The knowledge acquisition interface is constructed from functionality supplied by the
shell, which is built on top of implementation primitives supplied by an AI toolbox. The
center column shows the objects that a user would work with at each level; experts would
use application-specific terms that are instantiations of task-level constructs, which are in turn

6 Task-specific architectures have been designed for many familiar tasks. Among them are varieties of classi
fication and diagnosis (Bylander and Mittal, 1986; Clancey, 1985; Hannan and Politakis, 1985) and design and
configuration (Brown 1985; Howe, Dixon, Cohen, and Simmons, 1986; Marcus, Caplain, McDermott, and Stout,
1986).

7 As of this writing, these tools are under early development.

11-(2

implemented using primitives provided by the AI programming environment. The right column
lists some of the functionality provided by software at each level.

At the base of the hierarchy are the implementation level tools. Instead of Lisp, the primitives
are AI programming constructs: frames and slots with inheritance and attached procedures,
"worlds" for assumption-maintenance, and graphical displays. The software support is standard
technology; we currently use the commercial product KEE.8 The primary user of these tools is
the knowledge engineer. Figure 5 shows an implementation-level view of part the knowledge
base for MUM, reimplemented in MU.

The middle level is the shell- the software that implements a "virtual machine" that operates on
task-level constructs. Supporting a virtual machine level is a natural application of Principle 1.
The shell is a set of tools, some that support run time operations, such as propagating the effects
of data through an inference net, and others that provide an interface for customizing task
level terms (defined by the architecture) for a specific application. Task-level constructs are
implemented as objects using the AI toolbox, but can be viewed by the user as primitives.9 For
instance, one can relate data to hypotheses with an evidential relation or a triggering relation
without thinking about how those relations are implemented. Figure 6 shows a virtual machine
view of part of the evidential support relation for MUM.

The top tier is the knowledge acquisition interface, a set of tools that together present a "user
illusion" (Kay, 1984) of a language of application-specific instantiations of constructs provided
by the architecture. For example, c lassie -angina is an instantiation of a cluster, and it is
presented to the expert as an object related to other clusters and data by links in a graph
of evidential support (such as Figure 6). The primary function of the knowledge acquisition
interface is to make it easy for experts to formulate their expertise in the available language. A
practical effect of applying Principle 1 is that the language is restricted to task-level terms. This
allows one to build a knowledge acquisition tool that can apply specific heuristics for acquiring
them, as is done in SALT (Marcus et al., 1985).

When task-level terms are represented declaratively as objects, meta-knowledge (Davis and
Buchanan, 1984) about how to acquire task-level terms can be represented as annotations to
those objects. This straightforward application of Principle 2 allows one to use simple syntactic
techniques to improve the user interface for knowledge acquisition. A surprising amount of
leverage can be achieved by using conventional data entry techniques, which we will call form
filling, to elicit knowledge from experts.10 Form filling is a generalization of the "fill in the
blank" style of data entry, where each "blank" is labeled and presented in a context. The legal
input values are highly constrained and possible values are enumerated when known. On-line
help is conveniently accessible, in the form of descriptions of the expected input and examples.
For instance, choosing from a menu is a simple kind of form filling (for a single "blank"). A

8 Which is, of course, a. trademark and product of IntelliCorp.
0 In our implementation, they are represented as class frames, slots, slot facets, attached demons, and message

handling methods.
100f course this is the "easy" kind of knowledge acquisition. The more difficult problems of designing the

architecture and implementing task-level primitives still requires a. knowledge engineer.

l!-13

-I
I
[j

fragmenr of the MUM Knowledge Base

§:f~':;::--: ~" ":-TRIGGER-FOR-MITRAL•VAL YE-PROLAPSE

§;~;:-.:;::-:::.-IA.CER-IIISIC.-fACTORS
~{~:':::: ••• --VISE-I..IICE-cHEST..PAIII

I 'l 1§::.:::::-.•. YlltNiEJI• THAN•35·WITH-BAO-coRONARY-f AN1L V•

·~~~~-.::.-::: :""- .. AN-ANGINA•TRIGGER
~~~-7~ .• .-............. :"' .. ANGINA-AF•WITH•AGE 

>,,,, ',', '• '•ANY..PAW-LESS•THAN-5•SECS·WITH•TRIGGEII 

\~~~~~~::,::'~CHEST-PAIN 
~ ~~ ~ •:' ,'', ... ~CHEST -PAW-FROM-coLD 
'.,':'',', '•CHEST..PAW-FROM-£XERTION 

\:~:,:...:'~CHEST -PAIN-FROM•STRESS 
\\.. \' ',CHEST-PAJN-IIICITED-BY-EXERTION 

','•,'•CtEST-PAIN-REUEV£0-BY-MTAO 

'', '-CLASSIC·ANGINA-IIISIC. of ACTORS 
'·CLASSIC•ANGINA• TRIGGEII-ct..USTER 

,ESOPHAGEAI.. -f!EFLUX 

/,ESOPHAGITIS 
//,ESOPHQGEAL-c.ANCER 
"• //,··:EXERCISE-NlUCfD•ASTHMA 

\ :,'// ,GALL -BLADDER-DISEASE 

\ ~:~'//,GASTRIC-cANCER 

\ 
~~~'//'/.GASTRIC-uLCER 

~~~',:~/,' .GASTRITIS 

\\, .~:•,:•; /; HEPATITIS 
:,~~~~:~: .. ~"<MITRAL •V Al. VE -PROLAPSE 

:~~::":'/ .. /.PANCREATITIS 
;r,::;;~ :': ..... /.PEPTIC-STENOSIS 
<""/- / 

\ ;:::·.;•/•' .P£PTIC-IJLCER 

\ ~{:;;:::::::~ur.:: 
DISEASE~ J f.:.:: ••. --PNEUMOTHORAX 

\}{f:~~~-:::::::=T~ 
~,. '-~ ~ -- '. ' ·ACUTE -HEART -F Al.. liE 

'~]!;;:·:>:::=·ASTHMA 
~!\·,,~\\·· ,',CHAONIC:-HEAAT..fALURE 
··''·'-" \ \\•\\ • \ •CL.ASSIC•ANGINA .,,,,, .... 

··::\' ··: .. ·CLASSIC•ESOPHAGEAl•SPAS 
\:.~.\s '·CL.ASSIC-MI 

\~\\~·CLASSIC·MUSCLE-PU. 
I \

1\···ct.ASSIC-PUI.MONARV-EMSOL 

\\\ 

it in MUM Knowledge Ba.se 

unit: PRINZ-METAL in knowledge bue -
tell by FREED on 29·Jul•1986 19:22:11 
tied by liRUIEII on 29-Sep•1986 9:53:00 

Member Of: DISEASE 

Prinzmet~'s ~ngin&. An ~~~>USUAl and uncommon fann of ~ngin& wh 
p.Un is experienced at rest and sometimes while in bed r.ather th 
--.g actiYh:y. Tile elec~Mn taken --.g ~n ~ttack w 

indicue S-T segment elevuion r~<Mr tNn depression. Nitroglyca 
~ drugs tNt influence cu:itm metal>olism by tile myoc&rdium 
of -tit. (Source: T-'•1 

slot: COJII~INING·TUNCTION from PRIN2-METAL 
lnheriunc:e: OVERIIIJE.V ALliES 
eo.r.n-t: "Speeir- how evMience is combined to ~Hoct tile 1eve 

of support tar this frame" 
V-: (F (CONFIRMED DAF•STRESS•TEST-f0R-PIIIN2-METAL) 

THEN CONFIIMEII) 
(F 

(CONFIRMED 
ISCHEMK:-cHANGES·WITH..PAI\I-011-PIIESSURE) THEN 

CDIIIF1RMED) 
(IF (COM'IRMED CHEST..PAIN-tNCITED-BY-EXERTlON) THEN 
DISCONFIRMED) 

(F (CONfiiiMEII ANGINA-RF·WITH•AiiE) THEN DETRACTED) 
(F (CONFIRMED TEN-MIN..PAIN-REUEV£0-BY-NTRO) 
THEN STRONilL V-SUPPORTED) 

(F 
(CONFIRMED OAF •V ASODLA TOR• TX-fOR-PRINZ ·METAL) 
THEN STRONiiL V-SUPPORTED) 

(F 
(CDNf1AMED OAF-NTROGL YCERJNE·TX·FDA-PIItNZ-METAL) 
THEN STRONilL V·SUPPDRTEO) 

(F 
(CONFIRMED 
OAF-HOLTER-oR-cARDIAC-BEEPEII•TEST-fDR-PIIINZ·META 

) THEN COM'lRMED) 
(F (CONFIRMED MAJOR-EVIOENCE-fDR•PRINZ•METAL) 
THEN STRONGI. V-SUPPORTED) 

wn slot: C~JTIC.I.LITT from PRINZ-METAL 
lnheriunce: DVERRIDE.VALUES 
V&lueC!us: BOOLEAN 
Convnent: • A measure of the prognosis• 
Values: YES 

slot: EVIDI!NCZ-TO~ from CLUSTER 
lnherit~nce: OVERRIOE.VALUES 
V ~lueCLiss: INFERENCE -FRAME 
Comment: .,f this fr~me pN.ys a role of potenti.l.l evidence for an 
other frame, th.an ttN.t tr.ame(s) is isted here"" 
VUies:UnknaWn 

Figure 5: The Implementation-level View: A fragment of the MUM knowledge base as displayed 
by KEE. 

The objects in the user's view are implementation-level objects: frames, annotated slots, and inheritance 
relationships. The graph shows a. fragment of a hierarchy of frames. They are organized by their 
implementation. The window on the left shows some of the clusters and diseases (a subclass of clusters) 
for MUM. The window on the right shows a. KEE display of a. disease frame. The semantics of slots are 
defined by the architecture; for example, all clusters have a slot for combining-function, defined in the 

clusters class frame. prinz-metal is a kind of cluster, and it instantiates its own combining function. 

\7-l-+ 



~-=- I 

The POTENTIAL-EVIDENCE relation in MUM 

;; . 
\ .. -

PAIN-NOT-RELJEVED-tiY•VASOIItLATOA-<OAF•VASODII..ATOR•TX-FOR-PAIN-NOT-REUEVED-tiY•VASODII..ATOR 
GINA,~DAF-o:.G-FOII-IJNSTABLE•ANGINA DAF-EPISODE-FDR-PAIN•NDT-REUEVED-IIY•VASDIIII.ATDR 

OAF •AGE -FOR•ANGINA-IF•WITH•AGf 

1 \ .ANGfNA-IF•WITH•AGf./ ~OAF-IILOOD-PRESSURE-FIIR-ct.ASSIC•ANGINA-RISK-FACTORS I ~ OAF•SMOK.ER-FOR-ct.ASSIC-ANGINA-RISK-FACTDRS 

\ 

I Ct.ASSIC-ANGINA-RISK-FACTDRS -cHOLESTEROL-LEVEL-FOR-ct.ASSIC•ANGINA-RISK-FACTDRS 

I OAF-DWIETES-FOR-Ct.ASSIC•ANGINA•RISK-FACTDRS 

I I . DAF-FAMILY-HISTDRV-FDR-cLASSIC-ANGINA-RISK-FACTDRS 
. EATING-PAIN-RELEVEO-tiY-POSITIDN-OAF-EPISODE-FOR-EATING-PAIN-IIEUlWED-tiY-PDSITlON 

~' CLWING-cttEST-PAJN.--l-OAF-£PISOIJE-FOR-RE~-cttEST-PAIN 
/ I 

IASY--OAF-£PISODE-FDR-PLEURISY 

f•STRESS•TEST-FOR-cLAsSIC•ANGINA 

.ifi::.!+--'f./1-H''oif' Uss·THAN•10·--ettES1..PAIN•REUEVED-tiY-M~DAF-EPISODE-FDR-LESS·THAN•10•MUII-cttEST..PAIN-RELEVED-tiY-MTRO 
,~_, . .,_....._""VOUNGER•THAN•35•WJTH1riAD-cORONARY-FAMIL V-HISTORY 

. . OiEST..PAIN-FIIOM·~DAF-EPISDDE-FOR-cHEST..PAJN•fROM-cOLD 
· ;· CHEST..PAIN-FROM•STRESS--DAF·EI'tSOOE-FOR-cHEST..PAIN-FROM•STRESS I 'it:; OAF•VASOOIL.ATOR•TX-Fo!'-cLASSIC•ANGINA 

DAF-EKG-FDR-cLASSIC·ANGrruo 

I 
·JSCHEMIC-cttANGES•WITH..PAIN-OR-PRESSUAE<DAF-EPISODE-FDR·ISCHEMIC-cHANGES·WITH-PAJN-DR-PRESSUIIE ~

•, · CHEST..PAIN-FROM-EXERTfON--.:-DAF-EPISDDE-FOR-cHEST..PAIN•FROM-EXERTlON 

.:· '-YISE-LIKE-cttEST-P~DAF-EPISDDE-FOR·VISE-LJKE-cttEST..PAIN 
'OAF-MTROOL YCERINE•TX-FDR-cLASSIC·AIIIGINA 

~~ f I DAF-EKG-FDR·ISCHEMIC-cHANGES•WITH-PAIN-OR-PRESSURE 

ULCER-RISK -FACTORS OAF -uLCER-HISTORY -F~-tll.CER•RISK -FACTORS 

I~ \1 OAF-RECTAL-EXAM-FOR'-tll.CER-RJSK-FACTDRS 

I 11. I i )I\ OAF-;EmoDE-FOR-TRIGGER-FOR•MITRAL-VALVE-PROl.APSE 
TRIGGER-FDR•Mitmll.•VAL'Vl!-PRDLAPSE~DAF•SEX-FDR•TRIGGEII-FOR-MITRAL·VALVE•PROLAPSE 

/ I lifl H DAF-VASODILATOA•TX-FDR-SUDDEN-EXTREME-DYSPNEA 
//(1/l.tl If 1~ ~oAFlAGE-FDR•TRIGGER-FDR·MITRAL•VALVE-PROl.APSE 

SUDDEN-EXTREME-tlY:SPnt/o. I 

! I ' /M Ill OAF -EPISODE -F~R-SUDDEN-EXTREME -tlY:SPNEA 
/ f!~~::"W;-NECTION-FOA-PfRICAROITIS 

PERICAROITI ~ : DAF"EKG-FOR-PERICARDITIS I 
1 1 iii.Fl!EXAMimrKIN-FDR-PERICARDITIS 

1/ 1\D!!F-soos-TESr-rDR-PIIIHz-METAL 

// •
1 

*.sr-PAw-lNCITED-BY-£xERTION--DAF•EPISOOE-FDR-cHEST-PAIN-JNCITED-tiY-EXERTIDN 
V./ 1

PAF•VASbou.TOA•TX-FoR-PIIINZ-METAL 
PRINZ-MET If I • I 

I DAF -MTROGL YCERINE-TX"'FOA-PIIINZ-MET AL 

'dJlF-HOLTER-OR-cAIIDIAd-su:PER-TEST-FDR..PRINZ-METAL .... ' ' 

Figure 6: The Architectural View: A fragment of the evidential support relation in MUM. 

This lattice shows one kind of inferential relation in MUM, the evidential support relation 
(potential-evidence). The nodes in the lattice represent assertions that may be believed. The links 
represent the inference paths that evidence may take; belief in one node is propagated (i.e., from right to 
left) to other nodes for which it is evidence (that it may support or detract). The expert or knowledge 
engineer can select nodes to edit them or add new nodes, and the graph displays the evidential context. 
Similar graphs are available for other inferential relations provided by the MU architecture, such as trig
gering and treatment efficacy, and each relation may be viewed in both directions. This view of the knowl

edge base differs from the frame hierarchy of Figure 5 in that the structure represents evidential rather 
than hierarchical relationships - that is, the structure of the knowledge rather than the implementation. 

(-,-/~ 



more sophisticated example is the rule editor shown in Figure 7, a kind of "language-specific 
editor" for acquiring rules of various kinds in MU. It uses descriptions of task-level objects to 
constrain the user's input and verify its validity. This technique is similar to the menu-based 
approach to natural language interfaces (Tenant, Ross, Saenz, Thompson, and Miller, 1983). 
Form filling is possible because the terms that the expert instantiates are explicit (i.e., anno
tated with meta-level descriptions) and declarative (not embedded in procedural expressions).U 
Furthermore, integrating the representations used by knowledge acquisition tools with the shell 
and the implementation environment is possible because _the design of the system anticipated 
acquisition. 

5 TOWARDS AUTOMATED KNOWLEDGE ACQUISITION 

If the problem of knowledge acquisition is viewed as representational mismatch, the primary 
contribution of design for acquisition is to make the notation for expressing knowledge more 
comprehensible and accessible to those with the knowledge. Fortunately, good knowledge rep
resentation is also good knowledge engineering. An analysis of successful knowledge acquisition 
tools (Davis, 1976; Boose, 1984; Marcus et al., 1985; Kahn, Nowlan, and McDermott, 1984; 
Eschelman and McDermott, 1986) suggests that they satisfy two requirements: to identify the 
kinds of knowledge to expect from the user, and to provide a functional mapping from user input 
to implementation primitives. When the underlying architecture supports task-level primitives, 
the first is accomplished and the second is simplified. Thus design for acquisition facilitates 
knowledge acquisition by both human and machine. 

Yet the problem of knowledge acquisition can go beyond representation and implementation 
issues. It may be that for some kinds of expertise, it is difficult to design any notation compre
hensible to the expert that can also be executed. If an expert diagnostician is not accustomed 
to formalizing his or her expertise, there is no natural notation other than the cases with which 
he or she works. For this kind of expertise, induction from examples can be an appropriate 
acquisition methodology. The learning program transforms knowledge in the form of examples, 
which alone are inadequate to drive a knowledge system, into more general knowledge of the 
sort useful to the system.12 

Control knowledge is an example where a knowledge acquisition methodology can profit from 
augmenting a good design with induction techniques. Experts who are not familiar with pro
gramming may have difficulty writing control rules, even if they are specified in a comprehensible 
language of control parameters. Experience with MUM has shown that a good way to acquire 
these rules is by analyzing physicians' workups on actual patients. This has suggested a knowl
edge acquisition tool that asks about control parameters in the context of decision trees, which 

11 This is because the meaning of expressions in the input language can be understood well enough by the 
interface to prevent invalid expressions. (We believe that) the semantics of procedural languages are more 
difficult to reason about in this way. 

12 If the system only knew about a. set of examples, and had no generalizations, it would be the extreme of 
"brittleness": it would reduce to a. lookup table. 

11-10 



I ; J I "I ENTIAL•EVIOENCE rel•t1on for CLASSIC·ESOPHA 

Clicl-. l;,tt ·~n any item to edit it Help will appear at the bottom of the S·:reen. 
To .;r.;,ate a new rule, .;,dit this template: 
IF <potential evidence> IS (belief state> and. •. 
THEN ~-ESOPHAGEAl-SPASM IS <belief state> 

IF MANOMETAICS-FOA-CLASSIC-ESOPHAGEAL-SPASM IS CONFRvlED and. .. 
THEN CLASSIC•ESOPHAGEAL·SPASM IS CONf1AMED . 

IF 8ARIUM·SWAU.OW·FOR·CLASSIC-ESOPHAGEAL-5PASM IS CONFIRMED and. .. 
THEN CLASSIC·ESOPHAGEAL-SPASM IS CONFIRMED 

IF CAEscao>-PAIN-LONG-OURATION IS CONFIAMED and. .. 
THEN CLASSIC•ESOPHAGEAL·SPASM IS SUPPORTED 

IF NITROGLVCERINE-TX-FOR·CLASSIC-ESOPHAGEAL-SPASM IS CONf1AMED and. •• 
THEN CLASSIC·ESOPHAGEAL·SPASM IS STRONGLV·SUPPOATED 

IF VASOOU..ATOR·TX-FOR-CLASSIC-ESOPHAGEAL-SPASM IS !f!o!@jf{!!~o and. .. 
THEN CLASSIC·ESOPHAGEAL-SPASM IS STRONGLV-SIA'PORTED 

IF NITROGL VCE:RINE-TX-FOA·CLASSIC-ESOPHAGEAL-SPASM IS OISCONFIRMED and. •• 
THEN CLASSIC·ESOPHAGEAL·SPASM IS DETRACTED 

IF CHEST -PAN-SHORT -DURATION IS CONFIRMED and. •• 
THEN CLASSIC-ESOPHAGEAL·SPASM IS DETRACTED 

IF BARIUM·SWAU.OW-FOR·ClASSIC-ESOPHAGEAl-SPASM IS DISCONFIRMED and. .. 
THEN CLASSIC-ESOPHAGEAL·SPASM IS OISCONFIRMED 

Cnoose fro~ BELIEF-STATES 
Create a new one 

Unknown 
DETRACTED 

DISCOtiFIRMED 
STRONGLY-DETRACTED 
STROtlGLY-SUPPORTED 

SUPPORTED 
X toHFIRMEJ:l 

Figure 7: The Expert's View: A knowledge-based rule editor instantiated on a combining 
functions for the evidential relation on a cluster. 

The rule editor is a sophisticated instance of conventional data entry technology: form-filling. Each 
term in the rule editor can be selected with a mouse; they are the "blanks" to fill. In the example, the 
"forms" are rules comprising a symbolic combination function, computing the belief in the diagnosis 

classic-esophageal-spasm as a function of several sources of evidence. The syntax of the rules is 

supplied as a parameter to the editor, and can be seen in the rule template at the top of the window. 

In this case, the left hand side of a rule is a. statement about belief in one of the clusters which serve 
as potential-evidence for this disease, and the right hand side is always a statement about belief 
in the diagnosis. The user has selected a belief term from the right hand side of a rule. The meta

level description of combining functions for potential-evidence tells the editor that only members 
of a class called belief-states are allowed for this term, and so a menu is presented. If the user 
chooses to create a new belief-state, a form for creating new instances of that class is invoked. 

ll-l7 



are equivalent to graphs of expert workups (Cohen. 1986).13 Each node in the decision tree 
corresponds to a decision about what to do next; the tree contains a wealth of implicit control 
knowledge. The role of the acquisition tool is to elicit example decision trees, and to walk the 
expert through hypothetical cases (paths in the tree), asking for control parameters pertinent 
to each decision. It could ask questions such as "What factors influenced your decision to do 
action X instead of Y?" The decision tree is then annotated with these reasons for action, 
and inductive techniques are used to find patterns for generating plausible control rules. 'rhe 
research to implement this idea is currently in progress. 

6 CONCLUSIONS 

We described three principles of design for acquisition and showed how an architecture was 
designed so that knowledge about evidential combination and knowledge about control could 
be acquired from an expert. While conventional expert system architectures make it difficult to 
acquire these forms of knowledge from experts (or assume that they are best left to the engineer), 
we find that they are integral to expertise in managing uncertainty in prospective diagnosis. 
We conclude that emphasizing the acquisition of knowledge in the design of an architecture is 
also good engineering; if knowledge acquisition tools are designed with the architecture, they 
can be integrated with runtime and implementaion-level software. The function of knowledge 
acquisition interfaces is made easier when the underlying architecture supports task-level terms. 
Finally, we proposed a technique to address the fundamental limitation of the "intelligent 
interface" approach to knowledge acquisition. When the expert cannot formulate the necessary 
knowledge in any notation, then expert-guided induction may facilitate generalization from 
examples of problem solving. However, the success of induction still depends on whether the 
knowledge engineer can devise the proper language of generalizations - the right task-level 
terms. 

Acknowledgments 

We are indebted to the researchers on the MUM project: Dan Suthers, Rick Kjeldsen, Mike 
Greenberg, Jeff Delisio, and David Day, and to Dr. Paul Berman, of the University of Mas
sachusetts Medical School. Thanks for insightful comments from Kevin Ashley, Sharad Saxena, 
and Larry Lefkowitz. 

13They are also also called diagnostic keys, and are often used to publish diagnostic expertise. 

~7-18 



REFERENCES 

Bennetts, R. G. (1984). Design of Testable Logic Circuits. Reading, MA: Addison-Wesley. 

Boose, J. H. (1984). Personal construct theory and the transfer of human expertise. Proceed
ings of the National Conference on Artificial Intelligence, Austin, TX, August, 27-33. 

Brown, D. C. (1985). Capturing mechanical design knowledge. Proceedings of the 1985 Inter
national Computers in Engineering Conference, ASME, Boston, MA, August. 

Buchanan, B. G., Barstow, D. K., Bechtel, R., Bennett, J., Clancey, W., Kulikowski, C., 
Mitchell, T., & Waterman, D. A. (1983). Constructing an Expert System. In F. Hayes
Roth, D. A. Waterman, & D. B. Lenat (Eds.), Building Expert Systems, Reading, MA: 
Addison-Wesley, 1983. 

Buchanan, B. G. & Shortliffe, E. H. (Eds.) (1984). Rule-Based Expert Systems: The MYCIN 
Experiments of the Stanford Heuristic Programming Project. Reading, MA: Addison
Wesley. 

Bylander, T. & Mittal, S. (1986). CSRL: A language for classificatory problem solving and 
uncertainty handling. AI Magazine, 7(3), 66-77. 

Chandrasakeran, B. (1986). Generic tasks in knowledge-based reasoning: High-level building 
blocks for expert system design. IEEE Expert, Fall, 23-30. 

Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27, 289-350. 

Clancey, W. (1986). From GUIDON to NEOMYCIN and HERACLES in twenty short lessons. AI 
Magazine, 7(3), 40-60. 

Cohen, P. (1986). Managing Uncertainty. Department of Computer and Information Science, 
University of Massachusetts. Submitted to the Third Conference on Artificial Intelligence 
Applications, Orlando, February, 1987. 

Cohen, P. & Gruber, T. (1985). Reasoning about uncertainty: A knowledge representation 
perspective. Pergamon Infotech State of the Art Report. Also COINS Technical Report 
85-24, Department of Computer and Information Science, University of Massachusetts. 

Cohen, P., Day, D., Delisio, J., Greenberg, M., Kjeldsen, R., Suthers, D., & Berman, P. (1986). 
Management of uncertainty in medicine. To appear in IEEE Conference on Computers 
and Communications, February, 1987. 

Davis, R. (1976). Applications of meta-level knowledge to the construction, maintenance, 
and use of large knowledge bases. Doctoral dissertation, Computer Science Department, 
Stanford University. Reprinted in R. Davis & D. B. Lenat (Eds.), Knowledge-Based 
Systems in Artificial Intelligence, New York: McGraw-Hill, 1982. 

Davis, R. & Buchanan, B. G. (1984). Meta-level knowledge. In B. G. Buchanan & E. H. Short
liffe (Eds.), Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuris
tic Programming Project, Reading, MA: Addison-Wesley, 1984. 

17-lCf 



Duda, R. 0., Hart, P. E., and Nilsson, N. J. (1976). Subjective Bayesian methods for rule-based 
inference systems. Proceedings of the 1916 National Computer Conference. 

Eshelman, L. & McDermott, J. (1986). MOLE: A knowledge acquisition tool that uses its 
head. Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, 
August, 950-955. 

Hannan, J. & Politakis, P. (1985). ESSA: An approach to acquiring decision rules for diag
nostic expert systems. Proceedings of the Second Conference on Artificial Intelligence 
Applications, 520-525. 

Hayes-Roth, F. & Lesser, V. (1977). Focus of attention in the Hearsay-II speech understanding 
system. Proceedings of the Fifth International Joint Conference on Artificial Intelligence. 

Howe, A. E., Dixon, J. R., Cohen, P. R., Simmons, M. K. (1986). DOMINIC: A domain
independent program for mechanical engineering design. International Journal for Arti
ficial Intelligence in Engineering, 1(1), July, 23-29. 

Kahn, G., Nowlan, S. & McDermott, J. (1984). A foundation for knowledge acquisition. 
Proceedings of the IEEE Workshop on Principles of Knowledge-base Systems, Denver, 
Colorado, December, 89-98. 

Kahn, G., Nowlan, S. & McDermott, J. (1985). MORE: an intelligent knowledge acquisition 
tool. Proceedings of the Ninth International Joint Conference on Artificial Intelligence, 
Los Angeles, CA, August, 581-584. 

Kay, A. (1984). Computer Software. Scientific American, 251(3), September, 52-59. 

Marcus, S., McDermott, J., & Wang, T. (1985). Knowledge acquisition for constructive sys
tems. Proceedings of the Ninth International Joint Conference on Artificial Intelligence, 
Los Angeles, CA, August, 637-639. 

Marcus, S., Caplain, G., McDermott, J., & Stout, J. C. (1986). Making SALT Generic. De
partment of Computer Science, Carnegie-Mellon University. 

McDermott, J. (1983). Extracting knowledge from expert systems. Proceedings of the Eighth 
International Joint Conference on Artificial Intelligence, August, 100-107. 

Mostow, D. J. (1983). Machine transformation of advice into a heuristic search procedure. 
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine Learning: An 
Artificial Intelligence Approach. Palo Alto: Tioga, 1983, 243-306. 

Neches, R., Swartout, W. R., & Moore, J. (1984). Explainable (and maintainable) expert 
systems. Proceedings of the IEEE Workshop on Principles of Knowledge-base Systems, 
Denver, Colorado, December, 173-184. 

Pople, H. (1977). The formation of composite hypotheses in diagnostic problem solving- An 
exercise in synthetic reasoning. Proceedings of the Fifth International Joint Conference 
on Artificial Intelligence, 1030-1037. 

17~20 



Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton University 
Press. 

Shortliffe, E. H. & Buchanan, B. G. (1975). A model of inexact reasoning in medicine. Math
ematical Biosciences, 23, 351-379. 

Szolovits, P. & Pauker, S. G. (1978). Categorical and probabilistic reasoning in medical 
diagnosis. Artificial Intelligence, 11, 115-144. 

Tenant, H. R., Ross, K. M., Saenz, R. M., Thompson, C. W., & Miller, J. R. (1983). Menu
based natural language understanding. Proceedings of the Association for Computational 
Linguistics, Massachusetts Institute of Technology, June 15-17. 

van Melle, W. (1979). A domain independent production rule system for consultation pro
grams. Proceedings of the Sixth International Joint Conference on Artificial Intelligence, 
August, 923-925. 

Zadeh, L. A. (1975). Fuzzy logic and approximate re~oning. Synthese, 30, 407-428. 



Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986 

STRUCTURED ANALYSIS OF KNOWLEDGE 

S. A. Hayward - STC Technology Ltd., 
Six Hills House, 
London Road, 

Stevenage, 
Herts, SGllYB, 

U.K. 

B. J. Wielinga & J. A. Breuk:er - University of Amsterdam 
Herengracht 196, 

1016 BS Amsterdam, 
The Netherlands. 

ABSTRACT 

Traditional approaches to Expert Systems development have emphasized the use 
of exploratory programming techniques and moving as quickly as possible from 
conceptualisation to code. This research demonstrates that implementation 
independent domain modelling is feasible and useful within the context of a 
methodology which aims at supporting good software engineering principles as 
applied to Expert Systems. 

INTRODUCTION 

This note is based on research carried out within a collaborative research project part funded by 
the European Community as part of the ESPRIT programme*. The project is entitled 'A 
Methodology for the Development of Knowledged Based Systems'. It aims to consider the 
whole of the lifecycle for development of KBS from the perspective of providng "structured 
techniques" to support the development process. The work to date has given most attention to 
the knowledge analysis and acquisition process, but the project is now also moving on to 
consider specification and documentation for design of system architecture for KBS. 

The project constitutes a major European research effort in this field (c80 man years over 5 
years) and is the only ESPRIT funded work in this area. 

The project has so far produced a theoretical basis for the modelling of domain expertise in an 
implementation independent way and developed tools to support this process. The techniques 
and tools are currently being applied to a number of experimental system development activities 
within the project and also for commercial clients. 

* The partners are STC plc, Scicon Ltd., SCS GmbH, Cap Sogeti Innovation, the University of Amsterdam 
and the KBSC (Polytechnic of the South Bank, London). The research on knowledge acquisition and analysis is 
based on ideas originated at the University of Amsterdam. 

\ct:>-0 



THE RATIONALE FOR THE PROJECT 

The traditional approach to KBS development has been essentially experimental. This is in 
keeping with its roots in the scientific field of Artificial Intelligence research. Thus, for KBS, 
an application area is chosen because it is hoped that it will shed light on capabilities and 
techniques of application of AI methods. Development is progressed as far as interest and 
research budgets permit 

When it then comes to the attempt to apply the technology to commercial systems development 
there is a clash of objectives. In this case the primary concern is to achieve a system with a 
prespecified level of capability, and preferably within time and cost budget constraints. In 
other words we expect to apply the normal criteria for any commercial software development. 
An experimental methodology cannot expect to satisfy these criteria. This point is fundamental 
and simply recommending "simpler" applications and labelling the methodology "rapid 
prototyping" does not overcome it. Doubtless science can be converted to engineering by the 
gradual accretion of experience, but we would like to achieve the transfer more rapidly and 
more efficiently. In particular in this case one might hope to learn something from the history 
of other types of software. 

Apart from these pragmatic concerns there are other, more theoretical, reasons for 
dissatisfaction with a wholly unstructured approach to KBS development. There is a huge 
conceptual gap between knowledge as expressed by an expert and the encoding of expertise in 
a software system. This is not in any way to denegrate achievements in knowledge 
representation theory and languages. These achievements have made the gap bridgeable, but it 
is still wide. The attempt to transform data from protocols, for example, direct to an 
implementation language is doomed to misinterpretation or underinterpretation. 

In our research we have adopted two related ideas in an attempt to advance our capability. The 
first is that the separation of software development into phases is applicable to KBS, in 
particular that one should undertake analysis prior to commitments to implementation detaiL 
This implies that the results of the analysis can be expressed in a way which is independent of 
decisions concerning system implemetnation. The second is that knowledge can be analysed at 
a number of levels and that analysis at an epistemological level is necessary to achieve a full 
understanding of a domain and to manage the transition from knowlege expressed by an 
individual (or set of individuals) to know lege embodied in a software system. 

The primary concern of the project in the area of knowledge acquisition and analysis has 
therefore been to provide techniques and support for such an epistemological analysis. The 
product of this analysis is then precisely the implementation independent representation 
required to satisfy our software engineering predilections. 

It is perhaps interesting to note that when this project started (about 2 1/2 years ago) this 
approach was somewhat unusual (Bennett's work on ROGET (Bennett, 1983) was one of the 
few early pointers for us, together with work in the cognitive modelling tradition). However 
there are a number of instances where other researchers appear to share similar insights, 
notably Clancey who has also explicity championed implementation independent analysis 
(Clancey, 1983; Clancey, 1985), together with work of perhaps more pragmatic origins 
(tackling the "knowledge acquisition bottleneck" e.g. Marcus, McDermott & Wang, 1985; 
Kahn, Nowlan & McDermott, 1985) which has found value in abstracting away from 
implementation details to representation of "higher level" structures in a domain. More recently 

(~-I 



we have noted the work of a research group at Tektronix who appear to be developing ideas 
similar to our own, though from a background in algebraic modelling in the formal software 
engineering tradition rather than cognitive modelling and knowledge representation (Freiling, 
Refuss, Alexander, Messick and Shulman, 1986). 

LEVELS OF KNOWLEDGE ANALYSIS 

We view the process ofknowledge acquisition as one of"interpretation": verbal data (e.g. from 
interviews with experts or textbooks) is interpreted or mapped onto other representations and 
structures. Classically in KBS development the attempt has been made to map directly from 
the verbal data to rules or some such implementation formalism. This is difficult and 
dangerous (in the sense that misinterpretation or underinterpretation is almost inevitable). We 
suggest that one can explicitly identify levels of analysis and in so doing provide a basis for 
supporting the interpretation process. 

Sloman, 1980, suggests four degrees of depth at which questions about knowledge can be 
asked: questions at the individual level, at the conceptual level, at the level of a particular 
formalism and at the level of mechanisms that implement a formalism. These levels closely 
correspond to the levels of representational primitives for different kinds of knowledge that 
Brachman, 1979, distinguishes: implementational, logical, epistemological, conceptual and 
linguistic knowlege. 

For the purpose of mapping verbal data onto knowledge we propose five levels representing a 
synthesis between Sloman's classification and Brachman's representational levels. 

Knowledge Identification 

This level of analysis corresponds to simply recording what one or more experts report on their 
knowledge. Although the result may be in a formalised form, the representational primitives 
on which this formalisation is based are linguistic (in the sense that Brachman uses this term). 
The same knowledge from different experts may have to be represented differntly, because 
they use different terminology, or because their knowledge is structured in a different way. 

Knowledge Conceptualisation 

Aims at the formalisation of knowledge in terms of conceptual relations, primitive concepts and 
conceptual models. The knowledge of different experts, and possibly of differnet subdomains, 
is unified within one conceptual framework. 

Epistemological Analysis 

At the epistemological level the analysis uncovers structural properties of the conceptual 
knowledge, formalised in an epistemological framework. Such a framework is based on 
epistemological primitives representing types of concepts, types of knowledge sources, 
structuring relations (such as hierarchical relations, inheritance), and types of strategies. 

Logical Analysis 

The level of analysis applied to the formalism in which the knowledge on higher levels is 
expressed and which is responsible for inference making. 



Implementational Analysis 

At this level of analysis, mechanisms are uncovered on which higher levels are based. The 
representational primitives are the ones which are normally used when an implementation of an 
AI programme is described (e.g. matching, testing, slot-filling, etc.) 

THE PRODUCTS OF ANALYSIS 

Knowledge analysis undertaken within the framework we propose produces as its major output 
a four layer model of expertise: 

1. Domain Level 

Definition of the domain concepts and their static relationships - primarily ISA but others 
may be relevant, e.g. consists_of, dependent_ upon etc. This could extend to defmition 
of causal relationships in some domains. 

2. Inference Level 

Definition of relationships arising in a task context These are conceived of as dynamic 
and are expressed in an inference structure. This structure describes only what 
inferences can be made, not which and how they are made in particular instances of 
problem solving. The inference structure is defined in terms of meta-classes, which 
describe the role of domain concepts (e.g. hypothesis, data) and "knowledge sources" 
Le. the knowledge elements required to make inferences from concepts in one meta-class 
to another. 

3. Task Level 

Specification of how the available inferences can be used to undertake a particular task -
defined in terms of the goals of the task. · There may of course be many task layers 
specified on a given inference structure, defining methods to achieve different goals or 
different methods for the same goal. 

4. Strategic Level 

Definition of how the task level may be controlled e.g. changing task plans if an impasse 
is reached. We have conducted relatively little analysis of this level, but in general it 
would appear to consist of a plan, monitor, repair cycle. We anticipate that even 
sophisticated Expert Systems will often use a fixed task structure and this layer is 
defmed more for conceptual completeness than practical necessity. It does however help 
to indicate why certain naive assumptions about Expert Systems may not be realised e.g. 
graceful degradation at the limits of performance will depend on substantial modelling 
and implementation of this level, it does not arise for expertise per se. 

An example of such a four layer model is given in (Wielinga and Breuker, 1986). 



THE PROCESS OF ANALYSIS 

The application of these ideas in practise is not as complex as might be imagined. (This 
perhaps provides some supportive evidence for the methodology in that a "natural" process 
may be difficult to describe or characterise but will be easy to use). 

Fundamental to our approach is that the knowledge engineer should not have to conduct the 
analysis in a wholly bottom-up fashion; this is very labourious and probably error-prone. In 
particular the creation of models as described above is very difficult.; a process of top-down 
refmement is much less demanding. This, of course, requires the predefinition of generic 
categories to act as a starting point. 

The notion of meta-classes and knowledge sources already incorporates a high level of 
abstraction. We believe that these can be used to create prototyping inference structures which 
we term "interpretation models" (because of their role in interpreting the verbal analysis by 
postulating a certain model on the basis of an initial survey of the domain). The model can then 
be used as a basis for data gathering, since one has a view of the categories one is looking for. 
As the analysis proceeds the model may be modified or changed, where the data is found not to 
match. However, the process is one of top-down refinement and thus provides cognitive 
support, making it more manageable and controllable. 

The analysis process overall is defined as consisting of three phases. In the initial phase, 
which we have called "orientation" the knowledge engineer becomes acquainted with the 
domain (and the expert). The major concepts in the domain are identified, together with the 
scope and complexity of the tasks undertaken. At this stage the knowledge engineer is 
identifying rather than interpreting data and the analysis is kept to a very general or global level. 
The main outputs of orientation are a statement of potential system boundaries (there may be 
more than one) and an estimate of the feasibility of the system(s). A start will also have been 
made on creating the domain lexicon (listing key concepts) and an initial interpretation model 
will be selected or constructed. The latter at this point is nothing more than a weak hypothesis. 
This first phase may be regarded as a preparation for knowledge acquisition proper. 

Once the scope of the system has been specified, this defines in broad terms the function(s) of 
the system and its users. The aim is then to construct a detailed specification of the function the 
system has to perform. This specification includes the knowledge and strategies employed in 
the expertise. At this stage, processing of data becomes mainly model-driven. After a 
defmition of the main- and sub-tasks involved in the performance of the system's functions the 
interpretation model may be refined and moves towards becoming the inference structure for 
the particular domain/task of interest. This involves fully specifying the meta-classes in terms 
of domain concepts, and knowledge sources using domain relations; plus defining the task 
structure adequate for the performance of the desired functionality. 

With an interpretation model identified, data can be collected and interpreted from 
expertise-in-action. Thinking aloud protocols may provide these data more adequately than 
interviews. Such on-line protocols are preferred to interviews or retrospective data, because 
there is ample evidence that experts do not necessarily employ the types of strategies and 
knowledge they may claim to use. 

The interpretation model is used in such a way that the data from the domain and expert can be 



fitted within the structures provided by the model, thus producing a fully specified description 
of the expertise in a domain. However, the data may also 'refute' the selected/constructed 
model, which may motivate revisions of the model. For instance, it may turn out that data 
obtained from early interviews on the strategies the expert claims to use, are not confirmed by 
more detailed and valid data collected from analysis of expertise in action. However it may 
also be noted that one may adopt a more synthetic approach to the definition of the task level, 
since the available inferences in the domain may be manipulated in a way which does not 
directly mirror their use by an expert. This may be the primary distinction between cognitive 
modelling and expert system building. Of course the criteria for assessing the adequacy of the 
model become harder to defme if one takes this approach, but this may be compensated by 
conceptual simplicity at this level. 

These stages are described as problem identification and problem analysis. The basic 
distinction here is between identification of the various components in the domain, notably the 
domain concepts, but also such things as the roles and functions of user(s) and expert(s) in the 
domain; and analysis of the problem solving behaviour in terms of describing these 
components within a coherent model. These two "phases" are in no way sequential. In 
practise one observes a highly iterative cycle, but the separation is useful in a normative or 
didactic sense because it enables the processes of identification (e.g. of behavioural 
components in a protocol) to be distinguished from the fitting of the identified elements within 
the framework of a model. 

It should be noted that the analysis process must also include an analysis of the environment 
for the proposed system and of the characteristics of the intended users. These are not 
emphasized here because we have little to add beyond normal good software engineering 
practice. However it should be noted that user characteristics will impact on the model of 
expertise, particularly with regard to the task level, and.in that area the user and expert analysis 
are effectively indistinguishable. Nevertheless there is a component of analysis which should 
cover the normal concerns of user analysis for defining the required man-machine interface, 
exception handling, explanation and so on. 

The result of all this is full analysis documentation covering models of expertise, user and 
environment We believe one should then be ready to proceed to issues of system architecture 
and design. These issues can now be considered on the basis of a full specification of the 
domain and the role of the proposed system, and without the need to backtrack over major 
parts of the knowledge acquisition exercise. 

SUPPORT TOOLS 

The techniques described above cannot realistically be carried out without computerised 
support. We have developed a system for this purpose, known as KADS (for Knowledge 
Acquisition and Documentation Structuring). This system is built on KL-ONE, which is used 
not only to record the domain concepts and their relationships but also to record the analysis 
concepts as defmed by the methodology. A large part of a domain analysis is then guided and 
documented by instantiating these concepts and providing values for their attributes. Other 
components of the system allow the maintenance of lexicons and glossaries, the production of 
diagrams, and the analysis of interview transcripts. An illustration of the facilities provided is 
given by the screen shown in Fig. 1. The system is currently implemented in Quintus Prolog 
on Sun workstations. 

(<l> -5 



REFERENCES 

[1] Bennett, J.S. (1983) "ROGET: a knowledge-based consultant for acquiring the conceptual 
structure of an expert system" Stanford University Memo HPP-83-24. 

[2] Brachman, R. J. (1979) "On the Epistemological Status of Semantic Networks". In N. V. 
Findler (Ed.) "Associative Networks" New York, Academic Press. 

[3] Clancey, W. J. (1983) "The epistemology of a Rule Based Expert System- a framework 
for explanation", Artificial Intelligence 20. 

[4] Clancey, W. J. (1985) "Heuristic Classification" Artificial Intelligence 27 (3). 

[5] Freiling, M. J. Refuss, S. Alexander, J. H. Messick, S. L. Shulman, S. J. (1986) "The 
ontological structure of a troubleshooting system for electronic instruments" 1st Intl Conf 
on Application of AI in Engineering Problems, Southampton. 

[6] Kahn, G. Nowlan, S. & McDermott, J. (1985) "MORE: An Intelligent Knowledge 
Acquisition Tool", Proceedings of 9th International Joint Conference on Artificial 
Intelligence. · 

[7] Marcus, S. McDermott, J. & Wang, T. (1985) "Knowledge Acquisition for Constructive 
Systems", Proceedings of 9th International Joint Conference on Artificial Intelligence. 

[8] Sloman, A. (1980) "The computer revolution in philosophy" Harvester. 

[9] Wielinga, B. J. & Breuker ,J. A. (1986) "Models of expertise" Proceedings of European 
Conference on AI, Brighton. 



oot1Yat1an 
..,at 1s tile oot1¥at1on to- tll1s doea1n? 
(taxt) 

pba..JDanufacture 

: ,··. ·: .. · ... ··_ ... ·· 

..,...,., techno 1 ogy- opera t 1 ng_speed 
cad..des1 gn ~ sc:1cards 

Figure 1. A typical KADS screen display. 



Specification of Expertise: 

Knowledge Acquisition for Expert Systems 

Paul E. Johnson 

Imran Zualkernan 

University of Minnesota 

Sharon Garber 

3M Company 

The purpose of this paper is to describe a framework for 

creating a representation of the expertise required to perform a 

class of tasks. The framework is based upon a procedure employed·

in research conducted by cognitive scientists and psychologists 

in· order to understand the human problem solving and decision 

making process. The procedure consists of giving individuals 

real or simulated tasks to perform and asking them to "think 

aloud" while they work. The comments such individuals make are 

referred to as verbal protocols, and the techniques used to 

analyze these comments are termed, collectively, protocol 

analysis. 

The primary motivation for our paper is to address a 

fundamental difficulty in knowledge acquisition methods. This 

difficulty is that the process of human thinking we wish to 

understand is not available to direct observation. In the case 

of the human expert, this difficulty is even more severe since 

the expertise of interest is typically not reportable, due to the 



2 

compilation_of knowledge which results from extensive practice in 

a domain of problem-solving activity (Anc1Pr,on; 1.981), 

One result of the lack of awareness on the part of human 

experts is the use of what is often called rapid prototyping in 

the development of an expert system. Through interaction with a 

system prototype, the expert often reveals expertise not 

discoverable by other means. While we do not disagree with the 

basic notion that human experts can reveal knowledge and skill in 

the performance of a specific task (including prototype 

debugging), we believe that building a prototype system early in 

the knowledge acquisition process may carry with it committment 

to a specific model of thinking (inference process) that does not 

adequately represent the expertise we are attempting to 

understand. 

We regard a system prototype (e.g., Ramamoorthy, 1984) as a 

specific~tion of the requirements for a model of expertise. In 

this,paper we shall propose an alternative means of creating such 

a specification, which is based upon the use of human problem 

solving data. The virtue of our approach, we believe, is that it 

permits the construction of a system prototype to be delayed 

until a more adequate view is obtained of the expertise in 

question. 

In the balance of the paper we shall attempt to do several 

things. First, we will describe, briefly, the background of 

protocol analysis methods as these have been employed in the 

psychological literature on human problem solving, in order to 

make clear both the strengths and weaknesses of this method of 



3 

understanding human thinking. Second, we shall propose a 

dPfinition of expertise that h~~ ev0lved f~om work do~e at the 

University of Minnesota over the past several years on the nature 

of expert thinking. Third, we shall describe a framework for 

developing a representation of expertise based upon the use of 

protocol analysis techniques. And finally, we shall present 

examples of the use of this framework. 

Protocol Analysis 

Historically, protocol analysis derives from the attempt by 

psychologists at the turn of the century to use introspective 

methods in order to gain an understanding of human mental 

processes. Such introspective methods typically required 

intensive training on the part of subjects who then attempted to 

search their conscious memory for the basis of some task 

performance. Such efforts fell into disfavor among American 

psychologists when it was claimed that they distorted the process 

they were attempting to describe. 

In Europe, psychologists used versions of the classic 

introspective method to augment more standard observational 

techniques for assessing an individual •s thought process. The 
, 

use of such methods has generally been considered informative by 

these investigators, particularly in the discovery phase of 

research where the attempt is made to develop a theory that can 

later be subjected to more standard verification experiments. 

In the 1970's, American psychology moved away from 

behaviorism and toward mentalism and information processing 

models of thought. Investigators such as Newell and Simon (1972) 



4 

began to use a first cousin of the traditional introspective 

method, call~d concurrent protocol analysis, to ~xamine 

problem-solving behavior. Based upon previous work by deGroot 

(1965), Newell and Simon asked chess players to think aloud while 

solving chess game situations. The technique used by Newell and 

Simon required that subjects think aloud, but not attempt to 

rationalize their problem solving activities, something these 

investigators regarded as an essential weakness of the earlier 

introspective methods. 

The concurrent protocol technique removed some of the 

criticism of earlier introspective methods and was responsible 

for much of the early development of the theory of human 

information processing. Our objective in the present paper is to -

show how the techniques developed by early investigators such as 

Newell and Simon can be extended to the study of human expertise. 

In the next section we present a definition of expertise that has 

resulted from our attempts to apply the techniques of protocol 

analysis to the study of expert thinking in a variety of problem 

solving domains. 

Definition of Expertise 

We define expertise as the operative knowledge that 

underlies the performance of a task. It is characterized by 

means of generativity, or the ability to act in new situations, 

sometimes by the presence of causal relationships among concepts, 

and usually by the likelihood that a given problem can be solved. 

Expertise is a property of knowledge, and not a property of the 

behavior we observe as individuals perform tasks. 



5 

The expert and a computational model are two artifacts. 

Each has a set of capabilities for problem solving in a specific 

domain. One way to represent the expertise for problem solving 

is as a set of requirements that have to be satisfied in order to 

solve problems in a given domain. Consider the following 

example. 

Suppose the objective of an artifact is to solve quadratic 

equations. One way of characterizing what is required to perform 

this task is by means of the quadratic formula. The expertise in 

this case can be represented (at least initially} by the 

following description. For an equation ax2 + bx + c = 0, the 

quadratic formula ( -b +- Sqrt (b**2 -4ac}}/2a is a statement of 

what needs to be computed to achieve a sol·ution. 

The quadratic formula is a rule that generates a certain 

behavior, namely, solving quadratic equations. The formula 

displays a certain "competency", i.e., it can solve quadratic 

equations for integer, real and complex numbers. To be able to 

use this formula an artifact requires certain abilities. For 

example, the artifact should know how to divide, multiply, 

subtract etc. If the artifact is to solve quadratic equations 

involving complex answers, it should also know how to do complex 

arithmetic. The abilities implied by the quadratic formula are 

realized by what Simon (1980} has termed the inner environment of 

the artifact doing the solving. Addition, for instance, can be 

implemented in a number of ways, depending upon the internal 

processing architecture of the artifact performing addition. 

l~-t 



6 

In the.above example, the expertise in question can be 

characterizPd by the quadratic formula, plu~ the abilities needed 

to realize this rule. Such a characterization is at the 

knowledge level (Newell, 1981). It is also a description of what 

needs to be computed (Marr, 1982). Hence, it is a part of a 

Computational Theory for the task of solving quadratic equations. 

The above description of expertise is incomplete, however. 

In addition to a statement of rules, and the abilities required 

to realize these rules, we need information about goals and how 

they are related to the use of abilities. In our example it 

would be useful to know, for instance, that the discriminant 

(b**2 -4ac) is a good determiner of which goals to follow, i.e., 

(1) if the descriminant < 0, invoke the abilities for complex 

arithmetic; (2) if the descriminant >= 0, invoke the abilities 

for real arithmetic; and (3) if the descriminant = 0, the ability 

to perform square root is not required. 

The above statements are examples of rules that define goals 

for achieving a problem solution. The application of these rules 

is invariant with respect to the resources used to implement the 

abilities; that is to say, it does not matter how I do real 

arithmetic, rule 2 will still hold true. Also, the rules are 

specific to the "grammar" of a domain, i.e., the quadratic 

equation (We do not suggest that such rules are, literally, a 

grammar of expertise, but rather that the idea of a grammar is a 

useful analogy for thinking about·certain consequences of the 

representation we have created). The rules are essentially a 

representation at the knowledge level of what needs to be 



7 

computed in order for the task of solving quadratic equations to 

be completed. 

Expertise, then, is a representation at the knowledge level 

which is competent in generating a certain problem solving 

behavior. A part of this expertise is the set of abilities which 

are required to realize the solution of problems to which the 

expertise applies. These abilities are themselves realized in 

different ways, depending on the artifact performing the task. 

Abstractly, expertise is a map from some problem space to 

a solution space. Hence, an important characterization of 

expertise is the specification of input and output. We take the 

specification of input to be a set of legal inputs that a given 

expertise accepts as valid. Inputs are an important part of 

expertise because they determine what kinds of features (cues) 

need to be extract~d from the environment for problem solving to 

be accomplished. The specification of output is a set of legal 

solutions to problems in a domain. These solutions are the set 

of "strings" recognized by the "grammar" of expertise. In the 

next section we give an example of expertise in a specific domain 

(experimental design) and the methods used to determine it. 

We summarize the definition of expertise proposed here as 

follows. Expertise is defined over some domain of subject matter 

and class of tasks or problems. It has five parts: 

0 Possible solutions and components of solutions 

to a given class of problems. 

0 Specification of "legal" inputs and "legal" outputs 

for the given class of problems. 



8 

0 Relationships between problem inputs and solution 

outputs. 

0 "Legal" ways of moving between solution components, 

including a specification of the data or cues that 

must be processed to make such transitions. 

0 Abilities required to realize the transitions between 

components. 

We now turn to a description of a framework for obtaining 

information from the expert, and for developing, from this 

information, a representation of expertise. 

Framework 

We shall assume any problem solving process has two 

components, a problem solver and a problem. We also assume that 

the problem solver starts with little or no information and 

gathers what is needed as problem solving proceeds. We further 

assume the problem solver has· some criterion for determining when 

a solution is achieved. We also assume the problem solver has a 

set of abilities that are used in order to solve the problem. 

This set of abilities defines the "competency" of the problem 

solver to act effectively in a given domain. For example, in 

solving algebraic problems, a problem solver might compute the 

quadratic formula to solve a quadratic equation. Hence, the 

problem solver has the "competency" to solve a quadratic equation. 

Finally, we assume that a problem solver proceeds by setting 

goals and executing actions to satisfy these goals. 

Expertise in a domain is a specification of what is required 

to solve problems in that domain. Protocol is a trace of problem 



9 

solving. If we consider the expert to be a black box, protocol 

can be consirlererl analogous to the output of ;j rnmnuto,.. n>"nnl";>m ._ _.,..,.,-r---· I""' v:;,• -•·• 

that has the same behavior as the black box. But protocol is 

more than a trace of a program, it contains explicit statements 

of what the program is trying to do. 

Our objective in knowledge acquisition is to construct an 

artifact (e.g., a computational theory) that solves a class of 

problems which are currently solved by an expert (or experts). 

To construct this artifact we need a specification of its 

requirements. This specification outlines what needs to be 

computed to solve that class of problems. 

There will be a number of artifacts that can achieve the 

same performance in a variety of ways. The way the expert solves 

the problem works, in part, because it is adapted to the 

capacity of the human information processing system (e.g., human 

algorithms take into account short term memory limitations). 

Since we may implement our theory on a variety of processors, we 

need a description that does not depend on a particular 

processing architecture. The purpose of knowledge acquisition, 

in this case, is not to learn how to solve a problem, but rather 

to discover what is required to solve a problem. 

A protocol trace provides a record of human problem solving 

activity. We propose to use this trace to develop a 
-

specification of the requirements for any system that attempts to 

solve the same problem as the system (human expert) giving the 

protocol. Thus, given a class of problems, and verbal protocol 

from expeits solving these problems, our task is to determine a 



10 

method for transforming information in these protocols into a 

description of expe~tise. 

We now state the problem of knowledge acquisition as 

follows: 

0 The expert is an artifact that realizes a certain problem 

solving behavior by using its expertise. 

0 The task of knowledge acquisition is to determine this 

expertise. 

0 The expert has developed a set of abilities that are 

necessary to realize this expertise. 

0 We cannot observe directly what the expertise is like. 

0 We can, however, observe the invocation of the expert•s 

abilities in a problem solving session via a trace of 

problem solving behavior. 

0 Since we can observe the invocation of abilities in the 

expert, we can have some idea of what the expertise is like. 

0 A statement of the expertise required to perform a task 

serves as a specification of the requirements for a 

computational model to perform the task. 

We next present a specific methodology for collecting and 

analyzing protocol data to arrive at our representation of 

expertise. 

Methodology 

A good way of characterizing a problem-solving domain is to 

look at the problems being solved. In pragmatic terms this 

involves looking at problems that are given. to experts to solve. 

Sometimes this process can be facilitated by the natural taxonomy 



11 
' 

of problems. in the domain. Consideration of the problems being 

routinely solved. then hPrnme~ a first set of data points in the 

problem space to be studied. 

A given problem specifies a data point in a problem space. 

For any such data point we can have a trace of problem solving by 

an expert. This trace includes two things; a solution for the 

data point in question, and a trace of what was being done while 

that solution was achieved. 

Coding of Data 

The purpose of coding is to transform data into a form that 

can be helpful in building a representation of expertise. This 

would correspond to, for example, taking a set of data points 

(say ordered pairs) and plotting them on Cartesian coordinates to

determine a correlation. 

We present, below, a description of components of the coding 

scheme employed in our recent work on expertise. 

0 Actions. 

Actions are things that are syntactically indicated by verbs. 

Actions can include things like collecting data, doing a 

computation, etc. If the data coder is familiar with the scheme, 

these can be· coded for with reasonable accuracy (We are currently 

conducting a separate study of expertise in protocol analysis). 

Coding for actions involves recognizing verbs and coding the 

sentences associated with these as actions. A coder with some 

knowledge of the domain will be better at extracting these 

actions than someone who has no domain knowledge and only the 

notion of Verbs to go on. We have found that someone who is less 



12 

than expert in a field often makes a good coder since he/she is 

familiar with basic vocabulary, but does not tend to ext.raoolate 

beyond the available data. 

0 Episodes. 

In the protocol data, there are patterns of actions that are 

repeated within and across different problems. Such patterns are 

what we call episodes. These patterns exist together, in time, 

due to some necessity of performing them in a certain order. The 

simplest pattern would be a sequence of actions. The assumption 

is that the pattern of actions in a given protocol is a trace 

which was generated while the problem solver was attempting to 

achieve a goal. Different types of episodes correspond to 

different types of goals. 

0 States. 

States are problem conditions defined by new data. New data 

can be further subdivided into environmental data and internal 

data. Environmental data correspond to the expert seeking some 

information from the problem domain. Internal data, on the other 

hand, correspond to data produced via some computation. To code 

for data, it is necessary to keep track of when new information 

is articulated in the protocol. 

0 Goals. 

Corresponding to each episode is a goal the problem solver 

is trying to achieve. We consider each goal as a black box which 

has a set of inputs and a "functionality" that produces a set of 

outputs. Knowing the states that are associated with ea~h type 

of episode, the correspondence between the type of goal and the 



13 

type of episode, one can usually code for the possible set of 

outputs. Such outputs are new state: generated in th~t episode. 

It is considerably harder to code for inputs related to goals 

since they might be outside the boundary of the context defined 

by the episode. 

0 Abilities. 

To achieve a given goal, the problem solver requires certain 

abilities. For example, to solve a differential equation one 

generally has to know how to take first and second or higher 

level derivatives. In general, if A is a goal, then an ability 

is what is required to perform the actions necessary to achieve 

that goal. 

0 Contexts and Decisions. 

A problem solver is in a particular context at each .stage of 

the problem-solving process. Contexts are defined by the 

solution, or part of a solution, that is being considered at each 

point in problem solving. Decisions are associated with each 

context. Without loss of generality, we can assume that the 

objective of a decision in a given context is to include or 

exclude, in the final solution, parts that correspond to that 

particular context. Hence, contexts also indirectly specify the 

decisions that need to be made in a domain. Syntactically, 

contexts are specified by one or more nouns which are a part of 

the solution space. 

Analysis 

The objective of analysis is to formulate a specification 

for expertise in a domain of problem solving. Syntactically, 

I a..- (2 



14 

such a specification consists of a set of bubbles. Each bubble 

has a unique string as __ its idP.ntifi~?r, Eat:h buhb1e can itse1f. 

have levels of specification. In addition, there is a set of 

directed relationships between bubbles represented by arrows. 

The arrows are of two kinds. 

0 Arrows between two bubbles 

0 Arrows starting from a symbol represented by ==. 

Each arrow has a "box" associated with it. This box includes a 

set of strings (see Figure 1). All such strings are members of a 

finite set called the set of possible cues. Each arrow also has 

associated with it a "cloud". Each cloud contains a set of 

strings; all these strings are uniquely determined members of a 

finite set called the set of possible goals. Finally, each arrow 

also has associated with it a "triangle". Each triangle includes 

a set of steps. Each of these steps is a member of a set called 

the set of abilities. 

!nie~t_Fig~r~ l ~b£U! ~e~e-

Semantically, the specification of requirements for the 

expertise in a given problem-solving domain consists of contexts 

associated with each bubble. The identifier of a bubble is the 

unique string which identifies the context (the related solution). 

In addition, there is a set of cues which is the union of all the 

outputs of all the episodes identified. Finally, there is a set 

of goals which is the set of all strings identifying goals. 

Particular assign~ents of goals to clouds determines the 

assignment of cues to boxes. 



15 

Each bubble identifies a context of problem solving. It can 

he seen as a possible part of th,::. .;;,...,., (" .... , ..... ; .... ,., 
... ••- • ' ''-, .J '-' • ..,.·v,...., •• • 

between bubb~es determine directed "pathways" of problem solving. 

They determine a way of moving between components of the 

solution, or of making decisions for a solution. The cloud 

associated with each relationship identifies the goals that 

specify the abilities needed to "travel" on that relationship or 

"pathway". The cues in the box associated with the relationship 

represent the set of possible "triggers" to activate the 

abilities (goals). The union of all the boxes is the input 

specification. The set of all possible subsets of bubbles (at 

all levels) defines the output. 

To create a specification for coded data, we define a bubble 

for each context. The formation of relationships between bubbles 

is determined by a sequencing scheme (described below). The 

assignment of goals is determined by recognizing one or more of 

the decisions as a primary sequencer of problem solving in a 

given domain. Said another way, the assignment of goals is 

determined by "major" decisions in each problem-solving context. 

Since contexts are related to decisions, these statements are 

equivalent with respect to the assignment of goals. In 

determining the primary sequence, a useful notion is that of a 

major hypothesis that determines the solution. Each such 

hypothesis defines a problem-solving context. An example in 

classification tasks (such as diagnosis) would be the set of 

possible solutions to a set of diseases. 



16 

Sequencers are goals that are essential to making a decision 

cannot be made unless it is considered to be part of a solution. 

This corresponds to proposing a hypothesis. Similarly, a 

decision cannot be made until it is evaluated. So "propose" and 

"evaluate" are two of the major sequencers that determine the 

inclusion of goals in bubbles. We have used the idea of a 

context being part of a given solution as a major sequencer. 

More complicated sequencers can be used, depending on the task. 

An essential property of a sequencer is that it divides the 

protocol coding into temporal intervals. The boundaries of an 

interval are called dividers. These are determined by a pair 

consisting of a primary sequencer and a context. Both the 

sequencer and the divider are said to be associated with the 

context. The episodes and the associated goals falling in an 

interval between two dividers determine the relationship between 

the contexts associated with the dividers. 

There are no restrictions imposed on the dividers except via 

limits of human cognition. This does not corrupt our methodology 

since two different sets of sequencing schemes/divi_ders can yield 

the same assignment of goals to clouds. The intervals can be 

overlapping. Once the temporal intervals and the boundaries are 

determined, a relationship is created for each unique interval 

such that the ends of the interval are the bubbles associated 

with the contexts in the dividers. All the goals falling between 

the interval are included in the bubble associated with that 

relation. This, in turn, uniquely determines the assignment of 



17 

cues to boxes. If there is more than one goal in an interval, 

then the con ten t of the box i s t .he u n i on of fun r. t i o n.a 1 011 t r 11 t -;. of 

those goals. Hence, each point in the problem space specifies a 

set of relationships between bubbles. 

We illustrate the above analysis with an example based upon 

our previous discussion of the quadratic equation. A part of the 

expertise encoded in the quadratic formula is its "competency" to 

characterize a solution as either complex or real. We shall 

attempt to map that part of expertise in the quadratic formula 

that is responsible for distinguishing between complex and real 

solutions. 

The expertise we are looking for to split the solution space 

into complex and real spaces is encoded in the square root symbol.

The particular use of this symbol, and its semantics in the 

quadratic formula, define the "competency" for splitting the 

output space into two spaces. We can further refine the space to 

reflect the ability to specify equal roots. We represent the 

expertise as shown in Figure 2. 

ln!ert_Fig~r~ £ about ~ere_ 

We now describe an application of the above me~hodology to a 

specific piece of work currently in progress at the University of 

Minnesota. 

Case Study: Industrial Experimental Design 

The problem we wish to consider is often referred to as 

Off-line Quality Control. It can be described briefly as follows. 

A client comes to an industrial statistician for help in 



18 

designing a-statistical experiment to study a process. The 

c 1 i e n t j s. t y p i c a 1 1 y a n en g i n e e r . o r a s c i e n t i s t A•: h c 1 s i n t e r c s t e d 

in improving particular aspects of a system. For an engineer, 

the problem might be coming up with optimum parameters for a 

process to create some product. The experiment must be 

statistically sound and also ~atisfy certain cost constraints 

given by the client. 

The objective of the statistician's proposed design is to 

improve the performance of some process. This process can be 

characterized in terms of an experimental unit that flows through 

the system over time. The experimental unit is the experimental 

material to which a treatment is applied in a single trial. The 

experimental unit may be a typewriter ribbon, a lump of cookie 

dough, a plot of land, a manufacturing plant or it may b~ a group 

of patients in a hospital or class of drugs. The statistician 

considers certain properties of the experimental unit, such as 

availability, size, and representativeness of the objects in the 

experiment. 

The statistician is interested in various aspects of the 

process. These include time and cost of running the experiment, 

ease in changing factor levels, and blocking information. For 

example, differences in operators or in amounts of raw materials 

or in temperature and humidity conditions during the course of 

the experiment are important blocking considerations in designing 

an efficient experiment. 

At the termination of the process, the-measurements made on 

the experimental unit constitute the values of the response 



19 

variable or -variables. The statistician knows which 

characteristics to measure and how these -a~e measured. 

In the investigation we wish to describe, we examined (using 

the methodology described above) the expertise of two 

statisticians solving a series of simulated industrial design 

problems. Each problem was based upon an actual encounter 

between an industrial statistician and a client. Our 

investigation consisted of the following: 

Selection of Test Problems 

The objective here is to determine the extent to which the 

set of problems we select represents the task domain of interest. 

In our investigation we were interested in a system capable of 

performing experimental design in a manufacturing environment. 

To accomplish our objective, we discussed ·the problem area with 

the experts and selecting actual problems in a specific 

manufacturing domain. 

Collection of Protocol 

Two experts were selected to solve our problems. The first 

expert is a University Professor, although he has had 

considerable experience in industry as well. The second expert 

is from industry (a large manufacturing company). We refer to 

these experts by initials Ch and KK respectively. The experts 

were given identical problems and verbal protocol~ were collected 

during problem solving. These protocols were analyzed as 

follows. 



20 

Analysis of.Data 

We defined a probl~m-solving Ppi~o~e a~ a series .of goals •. 

together with the actions used to achieve these goals (as 

described above). Listed below are the major episodes used to 

analyze the protocol data collected from our two experts 

performing the experimental design task. 

0 Understand Product/Process 

0 Relate Factors to Response 

0 Propose Design 

0 Probe for Additional Information 

0 Evaluate Design 

0 Consider Experimental Conditions 

0 Calculate Sample Size 

0 Consider Blocking 

0 Reduce Factors/Levels of Factors 

0 Consider Interactions 

0 Consider Experimental Error 

As mentioned above, it is necessary to determine the way in 

which the problem solution evolves during problem-solving 

activity. One means of doing this is to keep track of all the 

new information that is added to the problem, either by the 

environment or by internal calculations. We have called these 

additions of information, problem states, and we assume that each 

new addition results in a new problem state. Actions add 

information to the current problem state. 



21 

Frequency Analysis 

Since ~;:c are concerned about -t-he 11 WhV.t 11 rather than the 

11 hOW 11 of the problem solving process, one convenient way of 

representing our data is through simple frequency counts. For 

instance, we have a record of our two experts solving the same 

problem and arriving at similar results. The first question we 

wish to ask, in this instance, is, what are the important goals 

and abilities required to realize different contexts? To answer 

this question, we look at each protocol and observe the frequency 

of occurence of each kind of episode. An example of the data 

from one such analysis shown in Figure 3 (see list of 

abbreviations in front of the figures at the end of the paper for 

a list of the episodes referred to by number in each figure). 

In~ert_Fig~r~ 1 ib£U! here_ 

Inspection of Figure 3 shows that: 

0 Given a particular problem, there is strong correspondence 

between the kinds of episodes invoked by each expert. 

0 Some episodes are consistently invoked more than others 

~cross problems. These episodes define a .. minimum capacity .. 

for the artifact. 

0 For each problem PROPOSE DESIGN is invoked a very small 

number of times, suggesting that the proposed artifact 

should have mechanisms for making very few and very good 

initial guesses. 

0 A large part of the problem solving process seems to be 

devoted to EVALUATE DESIGN. This suggests that the artifact 



22 

should have good evaluation capabilities. In other words, 

the artifact should be adept at suggesting a design-at any 

point in problem-solving process, and then evaluating it 

against the constraints posed by the client. 

0 Although the artifact should have good guessing abilities, 

the large effort concerning evaluation indicates that the 

design is done in an evolutionary manner. 

A second question that can be addressed by examining the 
~ 

frequency of episodes is to consider the goals that contribute to 

good first guesses about an appropriate design. To answer this 

question we can plot the frequency of all episodes before the 

first guess of the design is made (see Figure 4). From the data 

in Figure 4, we observe that understanding the product/process, 

and understanding experimental conditions, seem to play a major 

role in the selection of a design. 

Temporal Analysis 

A second kind of analysis that can be performed on protocol 

data is based upon the temporal sequence of occurence of episodes. 

To do this kind of an analysis we plot in Figure 5 the states of 

problem solving against episodes (The multiple numbers shown 

vertically along the abscissa in Figure 5 & 6 result from the 

program used to produce the chart - the two numbers in each 

column should be interpreted sequentially, i.e., is 11, is 13' 

etc). Each point on the graph shown in Figure 5 corresponds to 

the activation of a particular kind of episode during a 

problem-solving state. We call this kind of a diagram an episode 

trace. Figure 5 gives the episode traces for problem 1 for both 



23 

our experts. Figure 6 gives the episode traces for problem 2 for 

the same- two expert~. 

ln~e~t_Fig~r~ ~! ~ !bQU! he~e-

Some of the episodes in a problem-solving trace can be used 

as "anchors" for studying the relationships between other 

episodes. For example, in Figures 5 & 6, PROPOSE DESIGN is such 

an episode. We use PROPOSE DESIGN as a primary sequencer. The 

corresponding intervals, dividers and boundaries for this 

sequencer are also s~own 'in Figures 5 & 6. Table 1 summarizes 

the designs proposed by each subject on the two problems plus 

three additional problems as identified by the primary sequencer 

PROPOSE DESIGN and the temporal dividers in each problem. 

ln~e~t_T!ble_1_a~o~t_h~r~ 

As shown in Table 1, there is correspondence between the 

kinds of designs proposed by the two experts. We also observe 

the following repetitive transformations between designs. 

FACT Frac FACT 

SCR Frac FACT 

SCR LS 

The data in Table 1 suggest a tentative conclusion about the 

structure that is generating these transitions, namely, Frac 

FACT, LS and PB are kinds of SCR designs. Also, Frac FACT and LS 

are kinds of FACT designs. 

We now describe how a specification for expertise in 

experimental design can be developed by using the primary 



24 

sequencer and episode traces shown in Figures 5 & 6. For the 

sake of simplicity, --w-e---will show only that part uf the solution 

space consisting of Full Factorial Designs, Fractional Factorial 

Designs, Screening Designs, Balanced Incomplete Block Designs and 

Latin Square Designs. We extracted these types of designs by 

looking for nouns in the protocol that corresponded to parts of 

the solution. The set of such designs defines the bubbles in our 

specification; each bubble corresponds to a type of design. 

The next step involves looking at the temporal intervals 

coded in each protocol for each expert, and using these intervals 

to determine possible transitions between the alternative designs. 

We illustrate this process by considering problem 1 and looking 

at the episode trace generated by Ch {Figure 5). 

Each temporal interval defines a relationship between the 

dividers on its boundries. Consider temporal interval #5. Its 

dividers are {PROPOSE DESIGN, FACTORIAL) and (PROPOSE DESIGN, 

FRACTIONAL FACTORIAL). We conclude that there exists a 

relationship between Factorial and Fractional Factorial bubbles 

in the specification. 

We mark an arrow from Factorial to Fractional Factorial in 

the specification corresponding to this temporal interval. Next, 

we look at all the episodes that are activated in this interval. 

These are episode 4 {PROBE) and episode 7 (CALCULATE SAMPLE SIZE). 

From the protocol we extract the goals related to these episodes. 

We draw a cloud associated with the relationship between the two 

designs and include the two goals. Next, we look at the states 

generated as outputs from each of these goals, and include the 



25 

states in the box associated with the relationship. Finally, we 

identify the se~ of abilities t~at are required for achie~i~g 

these goals. We include "the ability to calculate sample size" 

and the "ability to pfobe for information" in the triangle of 

abilities. 

The above description identifies the process by which a 

relationship can be determined from a temporal interval. The 

same process can be repeated for each temporal interval in the 

two problems. If any of the intervals correspond to a 

relationship between the same two parts of the solution (and have 

the same direction), then the union of the corresponding set of 

goals, set of cues, and set of abilities for each temporal 

interval, defines the corresponding sets for the relationship 

that is included in the specification. For example, if in 

another protocol, a temporal interval with the same div.iders as 

the temporal interval discussed above was observed, and there was 

one episode, say EVALUATE in the interval, then we would simply 

add EVALUATE to the cloud. We would also add the states 

associated with EVALUATE ~o the box and add the abilities 

associated with this episode to the triangle associated with the 

relationship. 

We observe from Figures 5 and 6 that the first episode in 

each interval has a special property; the first divider has an 

empty context. Such temporal intervals form special kinds of 

relationships in the specification, namely, the transition is 

made in the absence of any information. In the specification, 

the absence of information is represented by an == sign. 



26 

The final specification for our example is given in Figure 

7, This sp-ecification is--a "road--map" of the possib1-e 

transitions between parts of the solution and the design problem. 

For example, to move from considering a Factorial Design to a 

Latin Square Design, one needs the ability to "evaluate design" 

and the ability to "calculate sample size". The map also shows 

that the discrete nature of variables, number of runs, 

interactions to be estimated etc., are cues that trigger this 
.. 

transition. We can observe from the specification that the union 

of all abilities associated with the relations stemming from the 

empty state is the minimum set of abilities required to propose 

an initial design. The cues associated with this union are a set 

of cues that need to be extracted from the environment before a 

consideration of any part of solution can be made. Finally, the 

set of all cues corresponds to the vocabulary the exper~ uses to 

formulate the problem. 

ln~e~t_Fig~r~ l abou! he~e 

Conclusions 

In this paper we have presented a framework for describing 

expertise. When we talk about a specification of requirements 

for expertise, however, we do not mean that this framework can 

encode all kinds of expertise. We qualify our idea by saying 

that our representation can describe expertise in a certain class 

of tasks, for example, expertise in design or diagnostic tasks 

(Chandrasekaran, 1983; Clancey, 1985). (As stated earlier, we 

are also currently using these techniques to determine expertise 



27 

in protocol analysis). Since a specification has the 

"competency" to generate~ ~ery large number Gf possible solution

sequences from a finite set of inputs, we might consider it to be 

a "grammar" of expertise for a class of tasks. But since our 

formalism is incomplete, we do not make such a claim. 

In concluding, we wish to make two additional points. 

First, the choice of a sequencing scheme in our framework has 

implications for the specification of expertise. For instance, a 

given sequencing scheme determines the contexts and the 

relationships among the contexts for a class of tasks. Different 

schemes might lead to different representations of expertise. 

Our study of expertise in a number of different domains has 

helped us to identify a set of possible sequencing schemes, but 

in general the choice of sequencing scheme requires further 

research. 

Our second point is that there is a relationship between the 

nature of the expertise as practiced by human experts in a class 

of tasks, and the way that expertise is represented in our 

framework. For example, human experts often use a small number 

of cues to distinguish between competing sets of possible 

solutions (Johnson, et. al., 1981; 1986). The implication of 

this observation for the representation of expertise is that 

there should not be a large number of "strings" in the cue box in 

any relationships between the bubbles corresponding to such 

competing sets of hypothesis. This implication extends to the 

expertise for a class of tasks, and for specific domains in that 

class. The "carry-over" of findings from the empirical study of 



28 

human experts to our proposed framework also requires further 

investigati.on. 

Obviously, the work we have described is in progress. and 
~ 

while we are reasonably comfortable with the overall shape of our 

results, many of the details will undoubtedly change as our 

investigation continues and our thinking improves. At this 

point, we claim only that our representation can serve as an 

initial specification for a computational model of expertise. We 

hope, however, that it will also provide a guide for further 

thinking on the nature of one of today•s most exciting research 

frontiers. 

l~-27 



29 

References 

Anderson, J.R. et. al. Acquisition of problem solving skill. In 
John R. Anderson (Ed.) Cognitive Skills and Their Acquisition. 
Hillsdale, NJ: Lawrence Erlbaum Associates, 1981. 

Chandrasekaran, B. Towards a Taxonomy of Problem Solving Types. 
AI Magazine, Winter/Spring 1983, 9-17. 

Clancey William J. Heuristic Classification. Artificial 
Intelligence, December 1985, Vol. 27, No. 3. 

deGroot, A. Thought and Choice in Chess. New York: Basic 
Books, Inc., 1965. 

Johnson, P. et. al. Expertise and Error in Diagnostic Reasoning. 
Cognitive Science, 1981, 5, 235-283. 

Johnson, P., Moen, J. & Thompson, W. Garden Path Errors in 
Diagnostic Reasoning. In L. Bole and M.J. Coombs (Eds.) Computer 
Expert Systems. Springer-Verlag (in press). 

Marr, 0. Vision. San Francisco, CA: W.H. Freeman & Co., 1982. 

Newell, A. The Knowledge Level. AI Magazine, Summer 1981, 1-20. 

Newell, A. & Simon, H.A. Human Problem·Solving. Englewood 
Cliffs, CA: Prentice-Hall, 1972. 

Ramamoorthy, C.V., Prakash, A., Tsai, W., Usuda, Y. Software 
Engineering: Problems and Prospectives. IEEE Computer, October 
1984. 

Simon, H.A. Sciences of the Artifical (2nd Ed.), Cambridge, MA: 
MIT Press, 1980. 



Problem 

1 

2 

3 

4 

5 

Table 1 

Sequences of Designs Proposed by Two Subjects 

in Five Experimental Design Problems 

Subject 

Ch 

KK 

Ch 

KK 

Ch 

KK 

Ch 

FACT 

FACT 

FACT 

SCR 

so 

FACT 

FACT 

LS 

Sequence 

FACT 

LS 

FACT -- Frac FACT 

LS 

BI -- Frac FACT -- SCR -- Frac FACT 

Frac FACT 

C.M. 

C.M. -- B.B. -- FACT 

SCR -- Frac FACT -- PB -- Frac FACT 

KK Frac FACT -- PB -- Frac FACT -- Frac FACT -

LS -- Frac FACT 

Ch 

KK 

c. c. 
c.c. 

Frac FACT 

B.B. -- C.C. 

(q ... z~ 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure Captions 

Syntax and Semantics of a Specification for Expertise. 

Specification of a Part of Expertise in Solving 
Quadratic Equations. 

Frequency of Occurrence of Episodes. 

Frequency of Occurrence of Episodes Before a Design 
Proposed. 

Episode Traces for Problem 1. 

Episode Traces for Problem 2 . 

is 

Specification of Part of Expertise in Doing Statisti~al 
Experimental Design. 



Abbreviations Used in Figures 

Episode Name 

Understand Product/Process 

Relate Factors to Response 

Propose Design 

Probe for Additional Information 

Evaluate Design 

Consider Experimental Conditions 

Calculate Sample Size 

Consider Blocking 

Reduce Factors I Levels of Factors 

Consider Interactions 

Consider Experimental Error 

(C{-31 

Abbreviation 

Unde 

Rel 

Prop 

Prob 

Ev a 1 

Exper 

Calc 

Bloc 

Redu 

Inter 

Err 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 



Box: contains the 
relevant cues that 
' trigger ' the 
relationship 

= : signifies an 
'empty' context 

Triangle: contains 
the abltities 
re qui red to move 
from to bubble to 
the bottom bubble . ..._ __ ~ 

Bubble corresponds to a 
/solution or part of a solution 

(l{-32 

Cloud: contains the 
relevant goals 
re qui red to move frcrr 
top bubble to bottom 
bubble. ·-

...,. ..... • .1 

- t -· 



S = Square 
Su = Subtract 
M: Multiply 

1 
Co = Com!)~re to 0 

1 
b**2 -4ac 
b**2 -4ac >= o 

b**2- 4ac 
"----l b**2-4ec < 0 

~ 
'-..... 

Compute \ 
Compere ) 

b**2 -4ac 

~----------------------~ b**2-4ac:O 

;-: / ,_. ·-
1 ' -. 





Episodes 

Episodes 

Ch protocol 1 problem number 1 

9 ... 
temporal inten:a/ = tp 

f. 
• / ~~ 

tp4 tp5 

1357911111222223333344 
13579135791357913 

States 

, 
KK protocol! problem number 1 

12 
temporal interval = tp .. . ..... ,. • 

10 •«\ ~ . • 
8 tp2 

6 
cccc••\ A 

••• • •• • •••• • 
4 

tpl I 
2 tp3 tp5 

cccc•• tp4 

0 
1 4 7 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 

0 3 6 9 2 5 8 1 4 7 0 3 6 9 2 

States 



Episodes 

Episodes 

! 
10 

9 
8 
7 

6 ~ 

5 tpl 

1··~, 
• c• 

4 

3 

2 
1 • 

0 l 

Ch protocol 2 problem number 2 

• • 
I AI I, J\ • ~ • • • 

I 

ft ft I 

I I c• • . ~ \ I tp2 J i ~ r c• f 

temporal inten:al = tp 
tp5 

• 

0 ~ ~ 4 

' • ' ' cc• • cc• rp3 ccJ J ccJ ~ • tp4 

1471111222333444455 
0369258147036925 

10 

9 

8 
7 
6 • 

5 

States 

KK protocol 2 problem number 2 

temporal interval = tp 

• ••• 

• 
• 

4 rpl • c• ~ .... 
3 

., '~«CC-~'\ .J ~' ,/ 2 tp2 
1 •• J J J JJ • c• •• 
0 

1 4 7 1 1 1 1 2 2 2 3 3 3 4 4 4 
0 3 6 9 2 5 8 1 4 7 0 3 6 

States 

• • 

•• ccJ'J c• 

tp3 

4 5 5 5 
9 2 5 8 



Hot,.~ 1h .vend ·~·~!'Wiry ~~Ptal I• 
trj.tnql,.!l ,..,...tu.q '-\biJill,.•' 
hrlv,. bonn Jnlrntl•ntlly f,.ft 
bl.tnk. 

cnsl/limt eonslraintJ 
power of &:sip 
dt Jll'es of frndom 
rtplication 
diJCrtfl' vlriablet 

"'· indeJI 
measur! of interactions 

nutntlf:r of facton 
liud or variahle fac1ors 
mrasu~ nf ~sponu· variahle 
rthlllon of factor" '" "'spmue 
hlud.inK v.·ith tCS11tCI In lime 
laclnr variahdily 
intltptndentt of hatches 

rq~lic:~don 
cooti\i~M ......,. ..... 
powerof<lotlpl ........ "'""""' 
.....sant<k•iadon 
meuwe of lnlenctionl 
diKrt:te w1ri1ble1 

numbrt .. of levels of factors 
indr~ntknct of raclurs 
indtpemknce of evaluation from de~i .. n 

1mpon.a'1t proptonies or ftctors 
nurn~r nf racron 
~•••i~ nf heron to rrllronse 
t:ml/trm..~ constraints 

lll<r"ellt •arlableo --..of boldlea .. ooch unJo 
'"Pilcatloa -... ..... ........ 
-or ..... .., 
•-or troOdon, 
"'-""-or boocl... 

........ ,. or .... _iona 
rlallndea 

_.....orboldlea 
taolutioa 
-oflnltr..
~..._ 

dl1dency of ..... ... 
h......,.o, .... taor,_ 
~orri<IOrl 

,. 

l>lncloW. 
numhor of """"'n'<• ... ., .... ;.,. 
n!IOiudon 

~of .. aluadon '""" deolp 

nutnber of le"'tll of factc)f'J 
mtlsu~ of rtsponlc ••ri•h 
"llmbtr or borchca 

faf:for variability 

"llmhororracro,. 

r···· 
~ 

(."'
{'() 

& 
'-I. 



Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986 

Knowledge Acquisition for Fault Isolation Expert Systems 

ABSTRACT 

Kenneth De Jong 
Computer Science Department 

George Mason University 
Fairfax, VA 22030 

and 
The Navy Center for Applied Research in AI 

Code 5510 
Naval Research Laboratory 

Washington, D.C. 20375 

For the past few years we have had the opportunity to explore the use of AI and 
expert system technology in a setting in which diagnostics aids for a large number 
of complex man-made systems are required. We have built (and discarded) several 
prototype fault isolation shells in the process of understanding how this technol
ogy can be usefully applied. We feel that we have now evolved an architecture 
which is well suited for this task and incorporates a powerful and highly visual 
interactive knowledge acquisition system. 

This paper will provide an overview of the architecture of our latest prototype, 
describe our experiences with having Navy labs use the knowledge acquisition sys
tem, and summarize our plans to further automate the knowledge acquisition pro
cess. 

INTRODUCTION 
The expert system technology from the AI community is being applied to a wide 
variety of problems including fault isolation in complex man-made systems. The 
Navy has been interested in and supportive of the development of fault isolation 
expert systems which can improve the quality of their maintenance and troub
leshooting activities. As an example, Navy technicians on aircraft carriers may be 
responsible for troubleshooting several hundred different (sub )systems for which 
he/she has had varying amounts of training (frequently little or none). To com
pensate, the Navy has and continues to invest heavily in automatic test equip
ment (ATE) to aid or replace these technicians. The quality of the "test pro
grams" which drive these ATE stations varies dramatically in spite of a uniformly 

zo-o 



high cost to acquire them. 

Although it is tempting to leap to the conclusion that one could significantly 
improve this sort of troubleshooting activity with reasonably straightforward 
applications of current expert system technology, there are several aspects to the 
problem which raise significant technical issues. First, with several hundred 
different systems to maintain, it seems infeasible to think in terms of indepen
dently developed expert systems for each one. Rather one thinks in terms of a 
more general fault isolation shell providing a common knowledge 
acquisition/representation scheme for use with all subsystems. However, even 
with this level of generality, there are still several hundred knowledge bases to be 
built, debugged, and maintained in a context in which there can be considerable 
overlap and/or similarity in the content of many of the knowledge bases. These 
observations strongly suggest the development of a sophisticated knowledge 
acquisition system which can be used to facilitate the construction of a new 
knowledge base for a specific system in a variety of ways including re-using 
and/or adapting existing knowledge modules. 

Compounding the problem of applying current expert system technology is the 
fact that, for many of the subsystems being maintained, there is little human 
expertise in the traditional sense of finding someone who is good at fixing a partic
ular subsystem and capturing his/her knowledge in a set of associative rules. 
Rather, technicians depend heavily on the structural and functional descriptions 
contained in the technical manuals of the many subsystems they attempt to main
tain. This suggests that simple rule-based architectures are not likely to be 
sufficient for the task at hand. 

For the past few years we have had the opportunity to explore the use of Al and 
expert system technology in this setting. vVe have built (and discarded) several 
prototype fault isolation shells in the process of understanding how this technol
ogy can be usefully applied. We feel that we have now evolved an architecture 
which directly addresses the issues discussed above. In particular, we are using 
component networks with "local" rule bases as the means of building a "causal" 
model of the subsystems a technician is required to maintain. This has allowed 
us, among other things, to develop a highly visual and interactive knowledge 
acquisition system with access to existing (frequently generic) causal descriptions 
which can be "pulled in" and integrated into the knowledge base currently under 
construction. This form of knowledge representation also provides us with a 
framework for automating the knowledge acquisition process even more in two 
distinct ways. First, there is a significant amount of "off-line" reasoning that can 
be done with a causal model to infer (and incorporate) higher level associative 
rules of the form typically formed by expert technicians when very familiar with 
particular subsystems. Also, feedback from the fault isolation process can be used 
to refine, correct, and identify problems in the knowledge base. 

'20-l 



The following sections will provide a brief overview of the architecture of our 
latest prototype (unglamorously named FIS, for Fault Isolation System), describe 
our experiences with having Navy labs use the knowledge acquisition system, and 
summarize our plans to further automate the knowledge acquisition process. 

THE STRUCTURE OF A FIS KNOWLEDGE BASE 
A great deal has been written about the design and implementation of diagnostic 
expert systems in general with much of the initial experience and "common wis
dom" coming from applications in the medical domain. Although we benefited 
greatly from this body of accumulated· knowledge, we felt that there were two 
important properties of our particular task domain that needed to be addressed 
and incorporated into the underlying design of FIS. First, since we are focusing 
our activities on fault isolation in man-made systems, deeper knowledge in the 
form of plans, schematics, principles of operation, etc. is available in addition to 
any attempts at forming a set of high level diagnostic rules. It was clear from the 
start that good technicians rely heavily on both kinds of knowledge when fault 
isolating. The second important characteristic of our domain of application was 
that most of the Navy fault isolation expert systems would have to be built for 
systems for which there was little human diagnostic expertise or experience, since 
in the ATE world automatic test equipment is delivered simultaneously with new 
systems. 

These observations led to the design of a multi-level knowledge representation 
(and associated evidential reasoning mechanism) which is described in more detail 
elsewhere (De Jong 1984, Pipitone 1984, and Pipitone 1986). For our purposes, a 
brief description of the structure of the knowledge base will suffice in order to 
understand the knowledge acquisition issues in this context. 

Figure 1: The Structure of a Simple Causal Model 

'ZO -2. 



We have chosen to represent deeper knowledge about man-made systems in terms 
of a qualitative causal network model in which nodes represent replaceable 
modules, arcs express relationships between modules, and arc labels indicating 
points at which evidence-gathering tests might be made. Causal knowledge is 
represented as collections of causal rules attached to modules and test points. 
Figure 1 gives a partial visualization of a causal model for a simple system con
taining four replaceable modules, six test points, arrows indicating some depen
dency relationships (information flow), and several causal rules. Notice that there 
is no a priori commitment to modeling a system at a particular level of detail. 
The evidential reasoning mechanism works at this level of abstraction regardless 
of what a replaceable module really is (a sub-system, a card, a gear) and what 
kind of system is being repaired (mechanical, electrical, optical). In addition, 
hierarchical relationships are easily represented by treating an object as a replace
able module at one level and as a "system" at a lower level with its own replace
able components. 

Qualitative causal rules are attached to this dependency network in two ways. 
First, each module has a local causal rule base describing how that module 
behaves in isolation (independent of their placement in a particular system). Fig
ure 1 illustrates one of several such rules attached to module 3. In the electronics 
domain, module 3 might represent an amplifier and have a collection of causal 
rules of this sort which are generic and inherited by every instance of a replaceable 
amplifier module. Figure 1 also illustrates that causal rules can also be attached 
to test points and generally represent configuration-specific knowledge of the sort 
an experienced technician might evolve over time as he/she accumulates experience 
with a particular class of systems. One of the important features of FIS is that it 
will uses causal rules of this second more global type if to improve the rate at 
which fault isolation occurs (measured in terms of the number of evidence
gathering tests required), but is quite capable of fault isolation in their absence 
using only rules associated with the local behavior of modules. 

There are other kinds of information which, if available, can be included in a 
knowledge base such as a priori failure rates of modules, indications of the relative 
costs of making tests, and module replacement costs. FIS will use this informa
tion if present to improve the rate of fault isolation (measured in terms of cost
weighted tests). However, FIS does not require such information for its diagnos
tics activities. 

THE KNOWLEDGE ACQUISITION PROCESS IN FIS 
The preceding sections have provided some insight into the motivation for and 
structure of a FIS knowledge base. In this section we focus on the activities 
involved in constructing a knowledge base for a particular system (which in the 
ATE world is designated as the UUT, the unit under test). 



It should be clear by now that, at a minimum, the knowledge engineer must con
struct a qualitative causal model for the UUT which represents the structure and 
behavior of the UUT down to the level of "replaceable module" appropriate for 
the particular task (e.g., board-level maintenance in a communications system). 
This, in turn, implies that domain experts are not the subject of intensive rule
extraction interviews, but rather are called upon to assist in the construction of 
causal models. We have found that this role shift for domain experts increases 
their interest in the knowledge acquisition process and, because the focus is on 
building a model rather than on the extraction of a frequently ill-defined and 
unarticulated set of rules, significantly reduces the time required to construct a 
usable knowledge base. 

Module, 
UUT 
Libraries 

Hift Level 
UT 

Description 

Knowledge 
Engineer 

Com-¥iled uu 
Compiler 

Description 
Dia nostic 

Figure 2: The Knowledge Acquisition System 

Productivity can of course be further enhanced with a knowledge acquisition 
"front end" to assist in the knowledge base construction process. Figure 2 illus
trates the basic knowledge acquisition system components which we provide for 
FIS. Since these causal models have a strong visual aspect to them, a display
oriented interactive editor is a natural choice for working with a knowledge base. 
In addition, because large systems are frequently constructed from similar com
ponents, provision is made to build up libraries of generic modules which can be 
"pulled in" and instantiated during the model construction process. 

Although it is fairly easy to envision a knowledge acquisition front end which can 
facilitate network building, assisting in the acquisition of causal rules requires 
some careful thought, hard choices, and in our case continued experimentation. 
One very natural point of departure is to exploit the "object oriented" par~digm 
by building up libraries of generic module hierarchies so that each module instance 
automatically inherits a collection local causal rules. This can be quite effective 



when modeling one or more systems at a level in which there are lots of instances 
of similar modules. However, one is still faced with providing assistance in build
ing such libraries and one-of-a-kind modules. In this case, we have chosen ini
tially to provide a terse rule language with built-in rule expansion capabilities to 
minimize the effort involved. However, we are not happy with the fact that this 
still places a large burden on the knowledge engineer and/or domain expert to 
provide FIS with reasonably consistent and complete sets of causal rules for 
modules. We have plans to address these problems in the near future and discuss 
the strategy briefly in the following section. 

At this point in time, acquiring the more global causal rules associated with test 
points has not been a problem because there have been so few of them provided 
by domain experts! Even more interesting is the fact that the test point rules 
encountered are of the type that could have been derived by FIS via compile-time 
reasoning about the network. This raises some interesting issues and plans dis
cussed in the following section. 

COl'vfPILE-TWE ACTIVITIES IN FIS 
As Figure 2 illustrates, the interactive knowledge acquisition interface in FIS 
manipulates a high level version of the knowledge base intended to facilitate incre
mental acquisition. However, as with most other high level languages, there are 
internal representations which are far more efficient for use during execution (i.e., 
fault isolation in this case). As a consequence, we have found it useful to build a 
compilation phase into FIS to effect this transformation. It is also an opportunity 
to catch a number of rather straight forward knowledge base errors frequently 
made during knowledge acquisition such as missing or inconsistent causal rules 
associated with modules. For example, during incremental development of the 
simple model in Figure 2, one could have indicated that checking the frequency at 
T6 is a useful evidence-gathering test. Furthermore, the causal rule base associ
ated with module 4 might quite legitimately leave open the possibility that fre
quency out of spec at T6 may be due to the fact that it is already out of spec at 
T5. This in turn requires some causal knowledge in module 3's rule base relating 
to frequency tests. If missing or inconsistent, they are flagged at this point. 

Notice that this kind of consistency checking is accomplished by introducing into 
the compiler some of the evidential reasoning mechanisms used during fault isola
tion. This raises the interesting issue as to what other benefits might accrue from 
compile-time reasoning. The analogy we like to use is that of a technician study
ing the static description of a system and learning something of how it behaves. 
In a similar sense at compile time, FIS is "seeing" the whole network for the first 
time and is capable of deriving useful information about the behavior of the net
work from its static description. There are several interesting directions we are 
exploring. 

Zo-5 



The first is the ability to derive automatically from a given causal network, addi
tional high level rules of the sort attached to test points. Such rules typically 
have the form: "If X is ever known to be true at this test point, then either 
module Y or Z are faulty". This is the sort of reasoning which, in the absence of 
such a rule, will have to be re-derived each time during fault isolation. Hence, 
studying the static structure at compile time can lead to derived rules which can 
dramatically increase the rate at which fault isolation occurs. 

An even more intriguing and exciting use of compile-time reasoning comes from 
observing how the causal rule bases for unfamiliar modules are derived by d~main 
experts. As one might expect, they generate the necessary rules by studying the 
sub-structure of a replaceable module which is itself a system describable by a 
causal network. Generally the lower level modules are simpler, more uniform, and 
better understood. This in turn suggests the possibility of automatically deriving 
higher-level module rules from lower level module descriptions. We have just 
begun exploring this opportunity to enhance the knowledge acquisition process 
and hope to report on our experiences with it in the near future. 

DEBUGGING AND REFINING FIS KNO"\VLEDGE BASES 
Even with rigorous compile-time checks there are still possibilities for errors in a 
causal network which will only show up as incorrect fault isolation behavior. 
Hence FIS provides the usual sorts of tracing and debugging mechanisms during 
fault isolation. Here we can and do take advantage of the visual nature of causal 
networks, displaying them in color and imposing on them graphical indications of 
how the evidential reasoning mechanism and fault isolation process is proceeding. 
Combining this with a rudimentary explanation facility in the form of ambiguity 
sets (which modules are suspect) and causal links (the derived chains of causality 
which made modules suspects) has produced a reasonably efficient interface for 
debugging and refining a particular knowledge base. 

At the same time it is clear that more rigor testing of the fault isolation behavior 
will be required for real Navy applications. We hope to further automate this 
activity in the coming year. 

CURRENTSTATUSANDFUTUREPLANS 
FIS as described here was originally written in Franz Lisp on a V AX/780 running 
Unix. During the past year it has been converted to Common Lisp and ported 
various Lisp machines and M68000-based workstations. It was demonstrated at 
AAAI-86 running on a Sym holies 3640. 

The Naval Air Engineering Center and Harris Corporation have been working 
closely with us to evaluate the usefulness of FIS on actual Navy systems. Figure 
3 shows one of the typical subsystems of a Doppler radar unit which is serving as 
an evaluation test bed. In this particular application, technicians and/or ATE sta
tions are expected to fault isolate to the board level of the various sub-systems. 



Experience to-date has been very favorable and further applications are planned 
with other Navy Labs as well. 

- eagel 
m-attn 

m-sig 
9 us md1ode 

~ 

~ 
m-ifl m-i~ 

rr g-ifl ir g-Jf:l ade 

~~ -rf ade-ref 

rr- nt 
g-sJg g-attn 

- '""a'"' 

gditd!! iqrd 
sdipar 

R,., _t. pwr&ent 
pous 

temp out.l)us 
p-Ioek age par 

1pnorm 

~ 
o-p lock 

on-offl lo-o ut. b1t-rf 
r-ose refout l-ose tdrive 

rf-out 

on- ff2 

Figure 3: A Subsystem of a Doppler Radar Unit 

As indicated in earlier sections~ we also have plans to explore ways of improving 
the current FIS knowledge acquisition capabilities. In addition the improvements 
in the areas of compile-time rule derivation and automated fault isolation 
certification, we are planning to explore several possible applications of machine 
learning. The basic observation is that technicians get better at fault isolation 
with experience, and so we are looking at ways of fielding FIS with the ability to 
dynamically make changes to the knowledge base as realistic estimates of a priori 
failure rates of modules and actual fault isolation performance data become avail
able. 

20-7 



REFERENCES 

De Jong, K., "Applying AI to the Diagnosis of Complex System Failures" (1984), 
Proc. Oakland AI Conference, pp. 121-122. 

Pipitone, F., "An Expert System for Electronics Troubleshooting Based on Func
tion and Connectivity" (1984), Proc. IEEE 1st Conf. on AI Applications, pp. 133-
138. 

Pipitone, F., "The FIS Electronics Troubleshooting System" (1986), IEEE Com
puter, July 1986, pp. 68-76. 

2o-B 



Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986 

An Intelligent Mixed-Initiative Workbench for 
Knowledge Acquisition 

Gary S. Kahn, Edwin H. Breaux, 

Robert L. Joseph, and Peter DeKierk1 

Camegie Group Inc. 

Pittsburgh, Pa. 15219 

1The authors acknowledge AI Kepner, and Jeff Pepper who contributed to the development of 
ideas presented in this paper. 

Zl-0 



An Intelligent Mixed-Initiative Workbench for Knowledge 
Acquisition 

Abstract 
The TEST Knowledge Acquisition Workbench (TKAW) enables knowledge 
engineers and trained. domain experts to interactively build knowledge bases 
representing trouble-shooting knowledge. TKAW prov1des both system-directed 
interrogation and gra!)hic-onented editors for building up the knowledge base. 
Novice users of TKAW rely heavily on the interrogation techniques, while 
experienced users tend to use the airect manipulation of graphic 1tems as a 
preferred method. TKAW supports knowledge base enhancement.~-by 1} providing 
the user with the ability to browse quickly for information already in the knowledge 
base, 2) warning users of suspected information duplication, and 3) aiding the user 
in the detection and correction of erroneous information. 

1. Resolving the knowledge acquisition bottleneck · 
There are a number of reasons Tor the' knowledge acquisition bottleneck". Among 
them is the need for specialists (knowledge engineers) to intervene between the 
domain expert who has the knowledge and the system in which it must be 
embedded. In many organizations ttiere are indeed two types of knowledge 
engineers - one, skilled in interviewing and eliciting information, the other skilled in 
the software methodologies required to represent and use the information 
provided. 

Most approaches to automated knowledge acquisition have attempted to 
econom1ze by removing the knowledge engineering experts. While TKAW's goal 
is similar, our initial work is aimed at making the knowledge engineer more 
!)roductive by providing a specialized workbencll. However, as workbenches of 
this kind become more powerful, the distinction between knowledge engineer and 
domain expert blurs, as domain experts themselves become skined in using the 
system building tools provided. ·:-

Expert system developers typically find that their knowledge acquisition techniques 
change with the course of system development. In first appproaching a new 
problem, knowledge acquisition tends to be exploratory. The goal is not only to 
acquire knowledge but, more importantly, to identify a representational format and 
control strategy of sufficent power to capture domain-specific problem-solving 
behavior and domain-specific knowledge. 

Once this is done, knowledge acquisition becomes constrained by the target 
architecture. At this point, the rate at which knowledge can be "pumped into" the 
system changes dramatically. However, it is still a time-consuming process to 
interview ancf code a knowledge base. · For this reason, several recent systems, 
including MORE1, 2, and ETS3, among others, have looked at ways to interrogate 
experts under the assumption that a cnosen underlying architecture can solve the 
problems of interest. Learning apprentice systems4 make similar assumptions. 
Rather than focus on the difficult problem of characterizing/designing underlying 
representational and control architecture, such systems SimplifY the knowledge 
acquisition problem by mapping domain expertise into an already identified shell. 

Certain of these systems have attempted to provide intelligent assistance to users. 
MORE, for instance, automatically browses the knowledge base for weaknesses 

2t-1 



and generates suggestions for repairing or strengthening the knowledge base. 
MOLE5, a successor system to MORE, goes somewhat farther in identifying 
reasons for failures of performance and suggesting ways to correct for problems of 
this sort. The TEST Knowledge Acquisition Workbench (TKAW), addressed in this 
paper, continues this line of research.2 Like MORE, TKAW interviews domain 
experts, and uses an understanding of how the knowledge base will be used to 
gutde its queries. Like MOLE, TKAW provides tools that aid in knowledge base 
correction given the results of a diagnostic session. TKAW differs in using more 
powerful interface technologies to .create an environment supportive of mixed 
tnitiative system development. 

TKAW is designed to enable knowledge engineers and trained domain experts to 
interactively ouild knowledge bases representing trouble-shooting knowledge. 
Within these knowledge bases, it is possible to represent both the causal 
consequences of component and functional failures (failure modes), as well as 
diagnostic methods, including the effective ordering of diagnostic tests. The TEST 
(Trouble-shooting Expert System Tool) inference engine is designed to use 
knowledge bases of this sort in order to find the cause for malfunctions. TEST is a 
diagnostiC shell developed at Carnegie Group Inc. lt is currently being used in the 
development of several systems. 

Before considering TKAW features in more detail, it will be useful to look at the 
basic features of a TEST knowledge base. 

2.TEST 
TEST uses a semantic network of schematic objects, or frames, to represent its 
operative concepts. 6 Most critical is the failure mode. A failure mode represents 
a deviation of the unit under test from its standard of correct performance. Failure 
modes are arranged in a hierarchy. At the top of the hierarchy are observable 
failures of the enttre unit, i.e. behavtor that is not to specification. At the bottom of 
the hierarchy are failure modes of individual components. Failure modes at 
different levels in the hierarchy can be confirmed or rejected based on particular 
outcomes of tests. Tests are distinct nodes in the network. A procedure attached 
to the link between a failure mode and a test tells TEST whether to confirm or 
disconfirm the failure mode, given a particular test result. 

The trouble-shooting task proceeds by focusing on an observed or suspected 
failure mode. An attempt is made to determine whether the failure mode has 
occurred in the unit under test. If the failure mode has occurred, or if its status 
remains unknown, then the possible causes of the failure mode are investigated to 
see if they have occurred. The search process is guided by an unaerlying 
representation of the order in which diagnostic experts explore possible causes for 
identified failure modes. During this process a trace is generated which makes it 
easy to provide explanations. Once the diagnosis has isolated the underlying 
component failures, a repair recommendation is made. 

Several other objects may also appear in the knowledge base. These include 
representations of data gathering activities, decision logic, diagnostic methods, 
and rules. Rules are used by this system as a means of modifyin9 default 
diagnostic knowledge. One reason for the need to replace default dtagnostic 

2-fhe work described below is verY. much work-in-progress. Much of the implementation remains 
to be done. However, many of the ideas have already t5een explored in prototype form. 

'Zl-2 



knowledge is to handle applications where the population of units being diagnosed 
do not aahere to a single design but rather encompass a number of identifiable 
minor design variations. Such rules may alter the order in which candidate causes 
are considered. They may also affect the diagnostic significance associated with 
each symptomatic failure mode or test result. Rules are also used to detect 
inconsistencies in input data, and infer the occurrence of failure modes. 

The TEST architecture meets three requirements for knowledge acquisition 
systems: 

1) lt is rich enough to represent the knowledge required to solved the functionally 
specified problems; 

2) lt facilitates mapping from procedural descriptions of problem-solving and 
declarative characterizations of domain knowledge to the underlying 
representation by using concepts and relations that correspond to those domain 
experts use in thtnking about their task; 

3) lt is explicit enough to facilitate browsing and analysis required to provide 
intelligent guidance to users of the workbench. 

TEST is implemented in Knowledge Craft™, Carnegie Group's knowledge 
engineering toolkit, and Common Usp. TKAW is implemented using Knowledge 
Craft interface tools. This allows a t1ght integration between the workbench and 
the underlying knowledge representations. · 

3. TKAW's Approach 
TKAW is designed to elicit 7 kinds of information required by a TEST knowledge 
base: 

1. failure modes and their causal relations to each other, 

2. decision logic related to the identification of failure modes; 

3. data gathering activities to be invoked when there is a lack of 
certainty about the next failure mode to consider for evaluation; 

4. test and repair procedures; 

5. rules which override many different kinds of_default assumptions; 

6. diagnostic methods to use in _confirming or disconfirming a failure 
mode hypothesis; 

7. a variety of attribute information bearing on the assorted objects io 
the system; 

TKAW provides graphic devices, menus, and system-directed interrogation for 
purposes of acquiring this information. The design approach taken to TKAW, 
however is best understood by considering its functional capabilities in terms of a 
cube with dimensions representing knowledge engineering activities, types of 
analysis, and source of control. 

Zl-3 



Source 
.Qf 

Control 

.lftr 
Analysis Dynamic 

Static 

User 

System 

Figure 3-1: TKAW design 

Knowled2e 
En2ineerin2 

Actjyities 

In order to be effective, TKAW must provide features which enable the user to 
effectively create, extend, and modify a knowledge base. Creation refers to what 
can be called clean slate activities: that is, the Initial description of a knowledge 
base in a manner that is unconstrained by earlier knowledge en~ineering activities. 
Extension covers knowledge base enhancements to· a pre-existmg system. Here, 
issues of consistent reference, duplication avoidance, and intelfigent facilitation 
become pronounced as new information must be properly placed within the 
existing system. Modification refers to non-monotonic changes in an existing 
knowledge base, that is deletions or revisions. 

The type of analysis dimension highlights the availability of tools for analyzing the 
knowledge base (static), and for anafyzing a diagnostic session (dynamic). The 
source of control dimension conveys that TKAW's behavior and analytic activities 
can be controlled by either the user or TKA W itself. · 

TKAW interfaces are designed for modeless operation, enabling the user to move 
smoothly between operations, as well as to request system guidance. In addition, 
TEST programs can be run as a separate task, allowing a smooth transition 
between knowledge base editing and the running of the diagnostic system. 

TKAW provides both system-directed interrogation and graphic-oriented editors for 
building up the knowledge base. Novice users of TKAW rely heavily on the 

'2l-4 



interrogation techniques, while experienced users tend to use direct manipulation 
of graphic items as the preferred method. These methods support each other. 
For the novice user, a graRhic map of the knowledge base is displayed and 
incrementally augmented as TKAW's questions are answered. The experienced 
user can directly manipulate the graphic representation, as well as activate the 
interrogator by selecting menu opt1ons and mouse clicking on relevant portions of 
the graphics display. 

The essential core of the knowledge base is displayed as a tree of failure modes 
(global view). The user selects, at any given time, which of the failure modes in 
the tree should be expanded, as a focused view. The focused view shows the 
tests, repairs, and rules associated with the selected failure mode. Each of these 
objects can be selected for further expansion. On selection, the object is 
displayed with its attributes and their values in the schema window. These values 
may be modified within the window. (See figure 3-2.) 

The remainder of this paper examines the use of TKAW in more detail. The 
following section focuses on TKAW as a mixed initiative workbench, and describes 
the manner and conditions under which users are likely to rely on TKAW's 
direction. In subsequent sections, the focus is on TKAW facilities that aid in the 
extension and modification of existing knowledge bases. 

4. TKA W's Mixed-Initiative Environment 
To be successful, mixed-initiative systems need to 

1. offer a full continuum of contror options between total system control 
and total user control, 

2. facilitate transfer among the various control options, and 

3. allow the user to vary the degree of control appropriately with 
improving skill level or changes in the task being performed. 

The following walk-through illustrates the use of TKAW in terms of these goals. 
For the purposes of demonstration, we have chosen a non-proprietary example of 
a knowledge base. The partial knowledge base which we use is for the (highly 
unlikely) afplication of on-site diagnosis of central air conditioning systems. (See 
figure 4-1. 

4.1. A session with a novice 
When a user enters TKAW, the graphic windows show only a single node of the 
tree that is about to be built. That node represents the buffer itself, so that 
everything can be graphically "attached" to the buffer. Unless told otherwise, 
TKAW starts off in system-directed mode, providing verbose commentary. 

Prompts start to appear in the prompt window and an initial dialo9ue begins: 
TKAW first elicits a hst of symptomatic problems, considered as functional fa1lure 
modes. 

Computer: Please list all problems to be diagnosed in this portion of the 

2.1-5 



·. ·. 

Figure 3-2: Screen layout for TKA W 



Urmamed#l 

Buffer 

Air Hot No Air _ Blows Fuse Often 

Figure 4-1: A Partial Knowledge Base for Central Air Conditioning Systems 

knowledge base. 

For more information on valid reponses, strike the HELP key on the 
keyboard. For more information on using· TKAW in general, use 
Control-HELP. 

Problems to be diagnosed: 

User: Hot-Air No-Air 

Computer: [Graphically displays failure modes Hot-Air and No-Air. Hot-Air is 
in reverse video, indicating that it is now being selected as the basis 
for further questioning. A copy of Hot-Air is placed in the focused 
view, but since Hot-Air has no definition yet, nothing else appears 
within the focused view.] 

Because the knowledge acquisition process must be constrained by the 
interviewee's knowledge and intended focus, TKAW is flexible about the way it 
obtains its information. 

Computer: Unless you indicate otheiWise, we will proceed to complete the 
knowledge base by first asking for the structure of the knowledge 
base and basic information. Afte!Wards, we will go back and obtain 
more detailed information, such as descriptions of the tests and 
repair procedures. If you wish to change this mode of operation, use 
Meta-m. 

2.t-7 



Please describe in words what the failure mode Hot-Air indicates. 

User: The vents are producing air, but the air is not cold. 

Computer: What are the possible causes of Hot-Air? 

User: Low-Freon Broken-Cooling-Unit 

Computer: What are the tests for Hot-Air? If several tests may be used, and 
each test in and of itself is indicative of Hot-Air, please list them all. 
If several tests must all test positive, then that is one test procedure 
so just enter the name of the test procedure. 

User: Hot-Air-Check 

Computer: If there are any repairs that can be performed upon identifying a Hot
Air failure, please list them now. If there aren't any, just strike the 
RETURN key. 

User: [RETURN key] 

In the above interaction, TKAW has focused_on eliciting the essential structure of 
the knowledge base: namely, the failure mode hierarchy, and the names of repairs 
and tests associated with each failure mode. TKAW proceeds in a depth-first, 
partially elaborative manner. After Hot-Air is selected as the focus, TKAW asks 
about 1ts causes. Following this, it attempts to get elaborative information about 
the tests and repairs which bear on the Hot-Air failure, and are represented in the 
focused view window. TKAW proceeds to ask about Low-Freon, one of the 
causes of Hot-Air. 

As information is provided, TKAW represents ·it graphically. The symptomatic 
failure modes were displayed under the buffer node; their proximal causes were 
represented in the global window as they were provided. Test and repair 
information was dispfayed as attached to the focal failure mode in the focused 
view window. This failure mode is highlighted in the global view to remind the user 
of the context in which additional information will be interpreted. Thus, the user 
can both see the system's interpretation of the information provided and follow the 
developing context in which further questions are asked. This latter point can 
significantly increase the user's ability to stay with a line of questioning. 

The interrogator seeks to complete each object or concept (represented as a 
schema) that it knows about by filling in values for all the attnbutes (slots). To 
perform its task, the interrogator uses the detailed textual view mentioned above. 
This view is called the schema window, since it lets the user view and edit the 
contents of schemata. As the user is being prompted for a given slot, the 
interrogator displays that slot within the schema window, if it is not already there, 
and then it hi9.hlights the slot name. The user is then prompted using the -prompt 
associated w1th that slot name. While the slot is a terse name for referencing a 
given attribute, the prompt is sufficiently descriptive for any novice. Thus the · 
novice learns slot names by watching the interrogator highlight each slot name in 
turn as it asks its questions. _ 

Interrogation is controlled by-a script which may be modified by the user to change 
the order in which the information is collected by TKAW. For example, the user 



can request that the information in the knowledge base be collected by expanding 
the tree breadth first instead of depth first. He may also request the immediate 
collection of detailed attribute information. 

Because, as we shall see below, an experienced user can alter the flow of control, 
it is possible that questions in the script might be passed without being answered 
or even asked. The system keeps track of such questions and tries t.o get back to 
them whenever it can. Prior to terminating a session, TKAW will give the user the 
opportunity to fill in information not yet provided. 

There are several advanced features in the interrogator, such the editing of the 
previous value in response to the current question, which are available to experts 
and novices alike. A list of these features is readily accessible by requesting help. 

4.2. A session with an experienced user 
Using TKAW over time is a learning experience. By providing reactive graphics, 
TKAW teaches the user the graphic manipulations that can be performed to 
accomplish what had initially been done by answering questions as they arose. 
By suggesting, from time to time, where the user can override system control, 
TKAWinforms users of the flexible functionality that is at their disposal. 

More advanced users move easily between graphics manipulation and reliance on 
the system to provide guidance through prompting. When they are first learning to 
take control, users tend to suspend TKAW interrogation only temporarily. A user 
may do so simply by invoking a command instead of answenng the pending 
guestion. This is useful for such activities as selecting another failure mode as a 
focus of attention. If the new failure mode doesn't exist yet, the user may create it 
and then select it. Of course the user may also issue any other command he 
chooses, including commands for browsing, editinQ, or changing control 
parameters. This technique of gaining temporary control1s illustrated below: 

Computer: If there are any exception rules, please list the names of the rules 
here. 

User: [Clicks the mouse on the Failure Mode icon to activate the create 
failure mode command.] 

Computer: Creating a failure mode ... 

Name of failure mode to create: 

User: Blows-Fuse-Often 

. Computer: [Creates a dummy failure mode on the screen near where the mouse 
currently sits and attaches the failure mode to the nearest node in 
the tree. (As the user moves the mouse, the dummy failure mode 
moves in the global window and it is continually attached to the node 
that is closest at the time.}] 

Position the failure mode with the mouse and click-left when done. 



User: [Positions the dummy failure mode as the rightmost child under the 
buffer name and then clicks the mouse.] 

Computer: [Displays the actual failure mode, labeled Blows-Fuse-Often, at the 
appropriate location on the screen, redisplaying the screen to keep 
the tree "balanced". Since the command is now complete, the 
interrogator once again resumes control:] 

What are the possible causes of No-Air? 

User: [Clicks on the Blows-Fuse-Often failure mode, once again 
interrupting the interrogator. This activates the select node 
command, with Blows-Fuse-Often as its argument.] 

Computer: [Acts on the user command, then returns control to the interrogator. 
Since the Blows-Fuse-Often failure mode has been selected, and 
since neither the interrogator nor the user has filled in any 
information for that failure mode, the interrogator continues by asking 
the first question in the script for the failure modes:] 

What are the possible causes of Blows-Fuse-Often? 

Note that the interrogator's behavior has effectively been altered by the actions of 
the user. Questions that would have been asked according to the script have, at 
least temporarily, been bypassed. 

After a while, many users will find system-directed interactions to be annoying, 
even though the user can always override the system's requests. Such users can 
turn the system control off. When the user does so, the computer will immediately 
inform him as to how to turn control back on. Requesting system help at any time 
will also tell the user how to turn the system control bacK: on. When the user has 
answered all questions for the Blows-Fuse-Often schema, he is once again given 
control, until he requests another fill schema command or reverts back to system
directed mode. 

4.3. A Synopsis of the Mixed-Initiative Environment 
To build a knowledge base with TKAW, the user can do it himself using the 
graphics editor and command options, or he can let the system drive the task 
through directed prompts. System interrogation, however, can always be escaped 
by executing simple commands. Commands may be invoked by typing the textual 
command, oy bringing up a menu and selecting the command from that menu, or 
by striking a short-hand control-key sequence. · Many commands let the user 
directly manipulate the graphic representation of the knowledge base. Other 
commands permit viewing of the knowledge base or changing the flow of control. 
For example, in the m1ddle of being questioned about one portion of the 
knowledge base, the user may browse thrOUQh the graphic representation of the 
knowledge base and select a different node 1n the tree, thereby requesting that 
investigation be diverted to that portion of the knowledge base. 

Zl-lO 



5. Extending the knowledge base 
Extension covers knowledge base enhancements to a pre-existing system. Here, 
issues of consistent reference, duplication avoidance, and intelfigent facilitation 
become pronounced as new information must be properly placed within the 
existing system. TKAW helps users locate and cross-reference objects already in 
the knowredge base, as well avoid the duplicate creation of objects already in the 
knowledge base. 

TKAW meets these needs by 1) providing the user with the ability to browse 
quickly for information alreaay in the knowledge base 2) warning users of 
suspected information duplication and 3) aiding the user in detection and 
correction of erroneous Information. In what follows, TKAW features are 
described, and then illustrated in terms of a user session aimed at the expansion 
of the air conditioner knowledge base. 

5.1. Features 
TKAW features exploited during the extension of the knowledge base can be 
characterized in terms of the type of analysis on which they depend (i.e. static vs. 
dynamic), and the source of control (i.e. user vs. system). The illustrated cross
section of the cube displays 9 features explained befow the figure 5-1. 

System 9 2,3,4 

User 5, 6, 7,8 1, 2, 3,4 

Dynamic Static 

Figure 5-1: TKAW support for extension 

'Zt-\( 



Features using static analysis 

User initiated features: 

1) Multiple browsing options: 

Browsing facilities are required when the user wants to confirm that a new (to be 
added) failure mode is not already in the knowledge base or to find a similar failure 
mode which can be copied and edited to create the new object. In a large 
knowledge base, it is impractical to browse without a means of directing attention 
to relevant segments of data. 

TKAW provides for string search, network browsing, and schematic pattern 
matching. String search is used to match against the names of knowledge base 
objects. Search of this kind is constrained by allowing the user to specify the type 
of object (Failure mode, test, etc.). Network browsing is used to examine objects 
within the knowledge base that are in a specified relation to a specified object. 
Pattern matching is used to find objects with attribute values specified in the 
search template. 

Both System and User Initiated: 

2) Redundancy detection 

When developing a knowledge base, the user may unknowingly duplicate a failure 
mode by using a different name to refer to one already known. TKAW monitors 
failure modes which have identical causes and consequents, as well as those that 
share the same test or repair procedure. The user can request this information on 
demand or ask TKAW to provide an immediate warning when potential 
redundancy is found. 

3) Recognizing failure mode classes 

Domain experts typically cluster groups of failure modes in classes. 
DiagnosticaJry, it is !YPically sound to determine the type of cause prior to 
determining 1ts specifiC nature. Similarly, it often useful to point the diagnostic 
search toward a class of problems. Class references can also refer to subnets 
within the knowledge base; this can reduce the amount of information that needs 
to be reentered. 

TKAW monitors for groups of failure modes that typically eo-occur as potential 
causes of other failure modes. The user is provided the opportunity of designating 
these as classes. TKAW also monitors for references to failure modes in known 
classes. The user can request this information on demand or ask TKA W to 
provide an immediate warning when potential class membership is found. 

4) Error detection 

TKAW monitors for certain kinds of errors. Of particular interest are objects that 
are not properly linked into the knowledge base. In addition, failure modes without 
causal, test, or repair information are noticed. These errors are flagged by TKAW 
upon t~rmination of a session. The user can also request this Information o·n 
demand. 

2(-12 



Features using dynamic analysis 

User Initiated 

5) Editing Descriptive Text 

During diagnostic problem-solving, system errors may occur in the text displayed 
to the user. Ttiis might include descriptions of failure modes, procedural 
information in regard to test or repairs, or prompts used to query the user. 

Rather than force return to the editor, TKAW allows the user to select text strings 
for editing in a pop up window. The knowledge base is updated appropriately, as 
TKAW maintains an association between displayed strings and their knowledge 
base source. 

6) Determining current knowledge 

When a diagnostic session is paused, the system may be asked to reveal what it 
knows or has already concluded. This allows the expert to notice when the 
system is not making use of relevant information. If the information is lacking or is 
improperly linked in the knowledge base, this can be corrected. If the information 
should have been inferred, an inference rule may be added. 

7) Determining goals 

Similarly, when the running system is paused, it may be asked to reveal both. 
candidate failure mode hypotheses, as well as planned tests or user queries 
associated with the confirmation or disconfirmation of these failure modes. Thus, 
users have the opportunity to notice· when the system has failed to conclude 
inferrable information, or 1s preparing to determine needless information. In 
addition, hypotheses which should have been rejected on the basis of available 
information, or not even considered as reasonable candidates can be noticed. 

8) Setting Breakpoints 

Breakpoints may be associated with failure modes, such that the system pauses 
automatically when a particular failure mode becomes a focus of attention. At this 
the point the system can be stepped with explanation; or paused for a return to the 
workbench. This relieves the user of carefully monitoring a diagnostic run until a 
point of debugging interest is reached. 

System Initiated 

9) Finding ErroneOL:JS Branches 

When the system makes an erroneous conclusion, and is subsequently informed 
of the correct conclusion (already in the knowledge base), the system responds by 
indicating where the diagnostic search failed to take a branch that would have led. 
to a correct ~onclusio~. The user may then modify this node. 

2\-(3> 



5.2. An Example 
The following example demonstrates how some of the facilities described above 
can be used to extend the air conditioning knowledge base. In particular, the 
example illustrates the use of multiple "browsing techniques, breakpointing, 
determining current knowledge and goals, and in-place correction of text. 

Prior to this session, the knowledge base has the failure mode tree pictured in 4-1. 
At this point, Sam, a new knowledge engineer is assigned the task of adding in 
additional failure modes. He wants to acfd the failure mode, compressor-motor, 
but is not sure if it is already in the knowledge base. He does a string search on 
motor, broken, and cooling across failure mode names, but does not find the 
failure mode that he wants. In order to assure himself that the failure mode is not 
there, he uses string search to look for a test with compressor in its name. Finding 
compressor-circuit-test, he uses the network browser to look at all the failure 
modes linked to it by the test-for relation. This turns up the failure mode 
compressor-engine, which turns out to be what Sam had 1n mind. Sam then 
links it to the oroken-cooling-unit. Multiple browsing techniques provided for 
successful identification of a failure mode already in the knowledge base, thus 
preventing unintended duplication. 

In order to determine the effect of this addition, Sam sets a breakpoint on 
compressor-engine. Sam runs the knowledge base to see how it functions. 
When this failure mode becomes the focus of attention, the system pauses. At 
this point , Sam wants to know what information the system knows. The system 
pops up a window indicating that it is trying to determine if there has been a 
compressor engine failure, and that it has determined that the air being produced 
is hot, that freon levels are ok, and that the cooling unit is not broken. 

From this, Sam realizes that the system does not know if the thermostat works. He 
notes that a failure mode is missing so he goes back and adds that failure mode to 
the knowledge base, by placing an icon in the global window and answering 
prompt information prov1aed by tfle system. The knowledge base now appears as 
10 figure 5-2. 

Sam then continues to run the example. The compressor enginer is determined 
not to work. The repair procedure is then displayed in the window but there is a 
mistake. Sam selects the repair text and modifies it in the middle of a run to 
correct the mistake ( see figure 5-3).· This correction is then saved in the data 
base. 

6. Modifying A Knowledge Base 
Modification refers to deletions and revisions in an existing knowledge base, that is 
non-monotonic changes. Here, TKAW provides help bY. pointing users to parts of 
the knowledge base that may be impacted by their modifications. 

TKAW monitors for several kinds of changes. Some of these include: 

1) Reorde~ng of failure mode list 

Failure modes which should be considered as the causes of another failure mode 
(F) are listed in F's "due-to" slot. The order of the list indicates the order in which 
these failure modes ought to be considered. When modifications are made in this 
list, the system needs to determine if the reordering is meant to be universal, or is 
only intended in certain cases. In order to determine this, TKAW (on user request) 
reminds the user that F is considered as the cause of a set of problems (all the 

2l-(4 



Failure Mod Fail 

Air Hot 

I Bad Compressco- Relay 

Failure Mode 

Figure 5-2: The augmented knowledge base 

failure modes in which F appears in their due-to list). The user is asked to indicate 
if the reordering is independent of the diagnostic context; or is contingent on other 
information that may be tied to the occurrence of particular causal consequences 
of F. 

2} Renaming failure mode 

When a user renames a failure mode (F), there is an ambiguous state. Should the 
operation be treated as a selected copy and edit, or as a local slot modification? 
In other words, is the failure mode to be treated as a new cause of the consequent 
failure mode displayed over the selected instance of F, or should the name change 
propagate across all references to F. On user request, TKAW provides a list of all 
the objects in which a reference to F occurs, and permits the user to select where 
references to F should be renamed. 

3) Renaming tests and repairs 

TKAW similarly monitors for changes in the names of repairs and tests. Whenever 
name changes are made, users can request the name change to propagate 
universally to all references, or get a list of objects in which a reference to the 
modified entity is found. The user can then indicate where references shourd be 
changed. 

7. Conclusion . 
By providing a mixed-initiative multi-task environment, TKAW allows knowledge 
engineers ·and domain experts the option of directing or bein~ directed by tfle 
unoerlying knowledge acquisition system. By providing a graph1c interpretation of 
the underlying knowledge base as it changes in respect to user input, users are 
provided with a context in which to understand the impact of replies to system 
prompts. TKAW supports knowledge base enhancement by 1) providing the user 



16 

Conclusion: Compressor Engine is broken 

The repair is: 
Install a new compressor engine. To install the engine connect the 
engine's black wire to the power source and the red wire to ground. 

Install a new compressor engine. To install the engine connect the 
engine's red wire to the power source and the black wire to ground. 

engine's black wire to the_ power source and the red wire to ground. 

Figure 5-3: Correction Of Information During A Test Run 

with the ability to browse quickly for information already in the knowledge base, 2) 
warning users of suspeded information duplication, and 3) aiding the user in 
detedion and corredion of erroneous information. 

2(-(0 



References 

1. Kahn, . G.S., Nowlan, S., McDermott, J., "Strategies for knowledge 
acquisition", IEEE Pattern Recognition and Machine Intelligence, 
September 1985. 

2. Kahn, G.S., Nowlan, S., McDermott, J., i'MORE: An intelligent knowledge 
acquisition tool", Proceedings of International Joint Conference on Artificial 
Intelligence, 1985. 

3. Boose, J., "Personal construct theory and the transfer of human 
expertise", Proceedings of the National Conference on Artificial 
Intelligence, Austin, Texas, 1984. 

4. Michell, T.M., Mahadevan, S., Steinberg, L.l., "Leap: A Learning 
Apprentice System for VLSI design", Proceedings of International Joint 
Conference on Artificial Intelligence. 1985. 

5. Eshalman, L., McDermott, J., "Mole: A knowledge acquisition· tool that 
uses its head", 1986, Draft. 

6. Camegie Group Inc., Knowledge Craft Technical Manual, 1986. 

2.(-[7 



Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986 

Heuristics for Expertise Transfer: An Implementation of 
a Dialog Manager for Knowledge Acquisition 

Catherine M. Kitto and John H. Boose 
Knowledge Systems Laboratory, Boeing Advanced Technology Center 

Boeing Computer Services, P.O. Box 24346, Seattle, Wa., 98124 

ABSTRACT 

One of the most difficult and time
consuming activities in constructing an 
expert system is the process of 
knowledge acquisition. Our objective is 
to identify a set of heuristics for expertise 
transfer based on our experience in 
knowledge acquisition for expert 
systems and to formalize this knowledge 
as rules. Aquinas, a knowledge 
acquisition workbench, contains tools to 
interview experts, analyze, test, and 
refine knowledge, and generate 
knowledge bases for expert system 
shells. A set of heuristics for knowledge 
acquisition has been defined and 
incorporated in the Dialog Manager 
subsystem of Aquinas to provide 
guidance in the knowledge acquisition 
process to domain experts and 
knowledge engineers. 

The implementation of the Dialog 
Manager is described and an example 
transcript shows the interaction of 
Aquinas, the Dialog Manager and the 
expert. A preliminary classification for 
knowledge acquisition heuristics is 
proposed. Finally, issues in formalizing 
strategies for knowledge acquisition and 
a plan for future research is presented. 

INTRODUCTION 

Aquinas is a knowledge acquisition 
workbench consisting of an integrated 
set of tools for automated knowledge 
acquisition, representation, and 

reasoning (Boose and Bradshaw, 1986). 
One of these tools, the Expertise 
Transfer System (ETS) interactively 
interviews an expert, analyzes the 
information entered, assists the expert 
in refining that knowledge, and 
generates a production rule knowledge 
base. Vocabulary, conclusions, problem
solving traits, trait structures, trait 
weights, and inconsistencies are elicited. 
This problem-solving knowledge is 
stored in a rating grid (shown later in 
Figure 4). Problem solutions (elements) 
are requested and displayed across the 
top of a grid, while solution traits 
(constructs) are listed down the side of 
the grid as bipolar scales. 
The interviewing methodology used to 
construct the rating grid is derived from 
Personal Construct Psychology (Kelly, 
1955; Gaines and Shaw, 1981; Shaw and 
Gaines, 1986). The expert supplies 
traits to discriminate between groups of 
problem solutions (elements). Each 
element is given a rating by the expert 
showing where it falls on the trait scale. 
Production rules are generated from the 
ratings in the grid and can be tested in 
end-user consultations. Knowledge 
bases can be created for a number of 
expert system shells (KEE, S.1, M.l, 
OPS5, etc.) from the common internal 
reP,resentation in Aquinas (Boose,1985, 
1986 ). 

More than 500 knowledge-based system 
prototypes have been generated by ETS, 
during the three years of its use at the 
Boeing Company. A typical prototype 

2'2.-0 



can be constructed in less than two 
hours. 
Aquinas extends the problem-solving 
and knowledge representation 
capabilities of ETS by allowing experts 
to structure information in hierarchies 
using multiple variable types. Several 
methods exist for representing and 
reasoning about uncertainty, and dozens 
of tools related to building and 
maintaining the knowledge base are 
available. A novice Aquinas user is led 
through an initial interview, but can 
then be overwhelmed by the large 
number of alternative knowledge 
development and refinement methods. 

To assist novice and intermediate users 
in effectively using Aquinas, a Dialog 
Manager was created (Kitto and Boose, 
1986). The Dialog Manager is a 
subsystem of Aquinas that contains 
heuristics for the transfer of expertise 
and for the use of Aquinas during the 
knowledge acquisition process. 

APPROACH 

Our goal was to identify heuristics used 
by experts and knowledge engineers in 
constructing a knowledge base using 
Aquinas. We were concerned with how 
and why users decide to invoke Aquinas 
commands in specific situations. We 
identified these heuristics and 
embedded them in the Aquinas Dialog 
Manager. 

Another objective was to identify 
differences between strategies used by 
the novice user of Aquinas and the 
experienced user who has acquired skill 
in using the tool. Could the successful 
strategies of the experienced Aquinas 
user be captured and used to guide a 
novice through a knowledge acquisition 
session? Could these heuristics be 
presented to the novice in an 
explanatory or tutoring capability? 
Would strategies that prove successful 
for a particular expert in a specific 
problem-solving domain be equally 
successful with a different expert and 
different domain? 

As a starting point, a knowledge 
engineering development effort using 
ETS was examined in depth. A team of 
knowledge engineers had developed a 
ttFinancial Advisor" knowledge-based 
consultant to select appropriate 
investments for a client. The team 
maintained a journal summarizing 
discussions with the domain expert and 
their experience in using the ETS 
knowledge acquisition tool. 

This detailed account of applied 
knowledge acquisition was a productive 
source of heuristics for knowledge 
acquisition and strategies for the use of 
ETS. It was supplemented with 
transcripts and interviews with the 
domain expert and knowledge 
engineering team. We reconstructed the 
interaction between ETS and the 
domain expert from the stored 
transcripts. The version ofETS in use at 
this time did not contain the Dialog 
Manager, so all the documented 
heuristics dealing with the use of ETS 
and the knowledge acquisition process 
stemmed directly from the know ledge 
engineers and domain expert. 

Next, we repeated the entry of the 
nFinancial Advisor" knowledge base, 
this time using Aquinas. We were able 
to compare the performance of the 
Dialog Manager in selecting Aquinas 
operations with the original transcripts 
using ETS without the Dialog Manager. 
We identified differences in knowledge 
acquisition strategies and areas where 
the Dialog Manager's heuristics could be 
improved. 

IMPLEMENTATION OF THE DIALOG 
MANAGER 

The Dialog Manager has been 
implemented as an expert system. Its 
domain knowledge is the effective use of 
Aquinas. A rule-based approach to 
implementation was selected because of 
its flexibility, maintainability, and 
motlifiability. Heuristics are encoded as 
rules directly within the Aquinas 
system. 

2.2..- \ 



Options for Dialog Manager Assistance 

The Dialog Manager offers three modes 
of interactive assistance: automatic, 
assist, or off. 

In the "automatic" mode, the Dialog 
Manager applies knowledge acquisition 
heuristics to determine the t•best". 
Aquinas operation to be performed next 
within the context of the current state of 
the knowledge base and the 
characteristics and preferences of the 
expert. The Dialog Manager displays 
the recommended command sequence, 
and an explanation of what it is doing 
and why it has chosen that option. This 
mode is most commonly used for new 
Aquinas users, particularly in the initial 
interview when they may be unfamiliar 
with Aquinas commands and desire 
guidance. The expert may interrupt the 
Dialog Manager to regain control. 
The Dialog Manager also provides 
limited guidance to the expert in an 
"assist" mode in which the Dialog 
Manager again applies heuristics to 
suggest several suitable command 
alternatives and display its 
recommendation. However, experts 
may overrule the Dialog Manager by 
replacing the recommendation with 
their own command choices. 

If the user overrides a proposed 
suggestion, the Dialog Manager asks for 
a textual explanation to be stored in a 
file accessible to Aquinas developers for 
later analysis. The recommendation of 
the Dialog Manager and the command 
preferred by the user are noted in the 
permanent history and flagged for the 
Dialog Manager learning facility. 

Finally, experts may prefer to use 
Aquinas with the Dialog Manager in 
"off' mode. The Dialog Manager makes 
no suggestions to the expert although it 
continues to record a history of selected 
operations. The "off' mode is typically 
used for brief demonstrations, or by 
experienced Aquinas users who require 
little guidance. 

Users can also select the level of 
prompting and explanatory information 
provided by the Dialog Manager. Three 
levels are provided: verbose, concise and 
terse, permitting users to select detailed 
or abbreviated explanations and 
justifications for. Dialog Manager 
recommendations. 

Dialog Manager Modes 

Control 

Explanation 
Level 

off 

assist 

No recommendations; Record keeping only. 

Offers recommendations; User may override. 

automatic Automatically implements recommendations. 

verbose Paragraphs of explanation 

concise Medium level of explanation ( sent.ences). 

terse Little or no explanation of recommendations. 

Table I. Dialog Manager offers a range of assistance and explanation. 



Data Structures for Representation 
of Knowledge Acquisition Heuristics 
It was necessary to develop special data 
structures to capture information used 
in the knowledge acquisition heuristics. 
Since many heuristics for knowledge 
acquisition involve temporal reasoning 
or user characteristics, three types of 
data structures were defined to record 
and represent this information: 

• the "recent" events list, a 
mechanism for retaining Aquinas 
command sequences with associated 
time stamps. This is stored in 
memory as an Interlisp record. As a 
new command is entered, it is added 
to the recent events list, and the least 
recent is removed. 

• the permanent history, a file 
containing the complete chronology 
of Aquinas commands entered by the 
expert for the current knowledge 
base. This is stored as an Interlisp 
file which is loaded into Aquinas 
when the expert enters Aquinas. 

• the user profile , a file containing 
user model information on 
individual Aquinas domain expert 
users and classes of Aquinas users. 

EXAMPLE TYPESCRIPT 

The following example illustrates how 
the Dialog Manager employs its 
heuristics for knowledge acquisition to 
guide an expert in developing the 
.. Database Management System (DBMS) 
Advisor" and provides explanations of · 
its strategies. Recommendations from 
the Dialog Manager are highlighted in 
boldface type and preceded by [DM], 
while Aquinas user entry is in 
underlined bold type. 

In Figure 1, the expert has specified that 
the Dialog Manager run in "automatic" 
mode, supplying "concise" explanations 
of alternatives considered and suggested 
actions. In this mode, the Dialog 

--- AQUINAS SYSTEM---
Would you like to work on an OLD 
knowledge base, or create a NEW one? 

AQ**NEW 

Would you like help using AQUINAS from the 
DIALOG MANAGER? 
AQ**YES 

Would you like the DIALOG MANAGER to 
make suggestions (ASSIST) or 

run automatically (AUTOMATIC)? 
AQ** AUTOMATIC 

When giving advice, should the DIALOG 
MANAGER be VERBOSE, CONCISE, or TERSE? 
AQ**CONCISE 

Please give a short description of the probiem 
you are trying to solve. 
AQ**DBMS SELECTION 

Figure 1. Aquinas interviews an expert to 
obtain problem-solving knowledge. The Dialog 
Manager will apply heuristics about the 
knowledge acquisition process and the use of 
Aquinas to assist the user in constructing a 
knowledge base. The user has asked the Dialog 
Manager to automatically guide the interaction. 

Manager will control the interaction 
between expert and Aquinas, prompting 
the expert when domain knowledge is 
needed. The user may regain control of 
the dialog by escaping to the executive 
after any Aquinas prompt. 

Next, in figure 2, Aquinas asks the 
expert for an initial set of DBMS 
problem solutions. The solutions are 
then combined into triads (sets of three), 
and the expert is asked to identify 
discriminating traits. The Dialog 
Manager is automatically guiding the 
user in this interaction. Prior to each 
step, the Dialog Manager displays a 
concise explanation of the activity to be 
performed. 

2.2-3 



•• [OM] Enter a set of solutions for the DBMS 
domain 

--ELICITING ELEMENTS--
Please enter a list of DBMS elements, one to a 

line. When you're done, enter a RETURN. 
AQ**IMS 
AQ**SJR 
AQ**RJM 
AQ**SQIJDS 
AQ**IDMS 
AQ**TOTAL 
AQ**EASYTRIEVE 
AQ**(CR) 

-·[DM]Now define a set of traits that 
discriminate between problem solutions. 
Solutions will be considered three at a time. 

--BUILDING TRAITS BY TRIADS--
Think of an important attribute that two of 
I MS, SIR, and RIM share, but that the other 
one does not. What is that attribute? 

AQ**HIERARCHICAL 
What is that attribute's opposite as it applies 
in this case? 
AQ**NOT HIERARCHICAL 

Think of an important attribute that two of 
SIR, RIM, and SQIJDS share, but that the other 
one does not. What is that attribute? 
AQ**RELA TIONAL 
What is that attribute's opposite as it applies 
in this case? 
AQ**NOT RELATIONAL 

• • 
Figure 2. AQUINAS as~s the expert for ~n initial 
set of potential solut1ons. The solut1ons are 
combined into triads {sets of three), and the 
expert enters discrimin_ating traits. ~he Dialog 
Manager directs the d1alog automatically. Its 
comments are flagged with "(OM]." 

The Dialog Manager continues to guide 
the user, prompting the user in figure 3 
to rate each DBMS solution on each trait 
scale. In this case. the Dialog Manager 
suggests several appropriate 
alternatives, chooses ''fill in ratings", 
and provides a brief explanation of why 
that option was ~hosen. Figur~ 4 
illustrates the Aqumas screen showmg 

--FILLING IN RATINGS--
···[OM] Do you want to add elements, add 

traits, or fill.in ratings for each DBMS 
solution on each trait scale. I recommend 
you fill in grid ratings to keep the knowledge 
base simple for initial testing. 
AQ**EDIT FILL.iN RATINGS 
Please rate these things on a scale of 1 to 5, 
where 1 means more like HIERARCHICAL and 5 
means more like NOT.HIERARCHICAL. If 
neither one applies, enter N{either). If both 
apply, enter a B{oth). 

HIERARCHICAL {1) I NOT HIERARCHICAL{5) 
IMS**! 
SIR**! 
RIM**~ 
SQIJDS**~ 
IDMS**~ 
TOTAL**~ 
EASYTRIEVE**~ 

Please rate these things on a scale of 1 to 5, 
where 1 means more like RELATIONAL and 5 
means more like NOT RELATIONAL If neither 
applies, enter N{either). If both apply, enter 
B{oth) 

RELATIONAL{ 1 )/NOT RELA TIONAL(5) 
IMS**S .. • • 

F1gure 3. H~r~ •. the Dialo_g Manager displays the 
possible act1v1t1es for th1s state of knowledge 
base development and decides to have ~he 
expert fill in ratings to rate each DBMS a~amst 
each trait scale. The results are automatically 
displayed in a rating grid {Figure 4) . 

this initial DBMS knowledge base. The 
top window depicts the ~ev:Ioping_ca~e, 
expert, solution, and trait ~Ierarc~Ies m 
a hierarchy map. The middle wmdow 
shows the DBMS rating grid, and the 
bottom window displays implications 
between traits in an implications graph. 
These are used later to generate rules· in 
the knowledge base. The Dialog 
Manager automatically displays these 
graphs after. the. expert h~s entered 
solutions trait pairs, and ratmgs for the 
Databas~ Management System Advisor. 



I .SI,TO•JL~ I 
~ .<>.CCOIJNTING 

OBMS~ PERSOI'INEL.RECOROS 

~IRS 
""" SOCIAL.SECURITY 

AI,TOOLS,EXPI!RT --a 
~·;:: 

,.......-----. /;:::,..RIM 
l..::..nt,ELEMEI·IT 1(:::- SQL.DS 

~~"- IOMS 
~TOTAL 

. EASYTRIEVE 

/ HII!:RARCHICA.L 

~ REL.ATIOW:..L 

[I ~.A.~T~N.~E~L~E~I·.·I~E~N~T~. T~R~A~trQI '~'.~=-NETWORK 
' ~ -I!:~P..Eli1~1:1C~.fii!..Q.I.!If:i.!:D_ I . ~TEXT.RETRIEVAL 

~ . . .. 
1 1 5 5 3 3 5 1. HIERARCHICAL HIERARCHICAL/NOT .HIERARCHICAL 
5 5 1 1 5 5 5 Z. RELATIONAL ·- RELATIONAL/NOT .RELATIONAL 
5 2 5 5 1 1 5 3. NETWORK ·- NETWOBK/NOT .NETWORK 
1 2 3 4 2 2 5 4. E:<PERIENGE.REQUJRED -- HIGH.EXPERIENGE/LOW.EXPERiENGE 
5555551 5. TEXT.RETRIEVAL -- GOOD.TEXT.RETRIEVALJPOOR.TEXT.RETRIEVAL 

.1 I I I I 11 . 

. 1 I I I I I 7. EASYTRIEVE 

. I I I I I 6. TOTAL 

.I 11 I 5.10MS 

. I I I 4. SQL.DS 

.t I 3. RIM 

.1 Z. SIR 

. 1. IMS 

HIEI'IARCHIC::.L 

Figure 4. Aquinas screen showing the developing hierarchies, the rating grid, and an implication 
analysis for the DBMS knowledge base after the expert has entered solution elements and attribute 
trait pairs. Ratings appear in the rating grid as they are entered. In Automatic mode, the Dialog 
Manager determines when to update the displays of these graphs. 

l2- 5 



In our example, the Dialog Manager has 
been operating in nautomatic" mode 
with ••concise" explanations. At this 
point, however, the Dialog Manager 
applies the following heuristic : 

if fill-in-rating-grid-complete and 
all-displays -current and 
current-command-state = exec and 
dialog-manager-mode = automatic 
and 
user-AQUINAS-experience =high 
and 
no-of-current-command-choices > 7 

then recommendation= 
OPTIONS DIALOG.MANAGER 
ASSIST 

because "you are an experienced 
AQUINAS user 

and many knowledge base refinement 
commands are appropriate here" 

This is an example of a Dialog Manager 
heuristic based upon user experience 
and current state of knowledge base 
development. 
The expert has now entered the initial 
DBMS rating grid and the Dialog 
Manager is operating in .. assist" mode 
(Figure5). 

Once an initial set of elements, traits, 
and trait ratings is entered as in our 
DBMS example above, the expert may 
choose from more than 150 alternative 
commands on menus and submenus in 
Aquinas, including the following 
activities: to apply analytic techniques 
to the knowledge base; to edit cases, 
experts, elements, traits, ratings; to 
display grids, maps, implications; to set 
options; and to manage hierarchies of 
experts, cases, elements, and traits. 
Even an experienced knowledge 
engineer may be puzzled as to which 
technique to attempt next. The Dialog 
Manager examines heuristics to identify 
a set of alternatives for the given state of 

---CHANGING DIALOG-MANAGER OPTIONS-
···[DM]Now changing Dialog Manager 

options to Assist since you are an 
experienced AQUINAS user and many 
knowledge base refinement commands 
are appropriate here. 
AQ**OPTIONS DIALOG-MANAGER ASSIST {9!} 

Figure ~ The Dialog 1':'1anager , ~ti.ll in 
"automatic" mode, appl1es an heunst1c to 
automatically switch to "assist" mode when 
the user is experienced with AQUINAS and 
there are a large number of operations 
available. 

the knowledge base, and recommends 
the strategy of greatest potential value, 
determined by accumulated rule 
priorities. 

We continued to use the Dialog Manager 
to guide in construction of the DBMS 
knowledge base. Just as before, the 
Dialog Manager applies knowledge 
acquisition heuristics to identify 
appropriate alternatives and determine 
the preferred strategy. In this case, the 
Dialog-Manager finds that the two 
elements IDMS and TOTAL are highly 
similar (100% match), indicating the 
rating grid cannot meaningfully 
distinguish these two solutions. The 
Dialog Manager's heuristics specify that 
analyzing element similarities and 
adding a trait to discriminate between 
the two similar elements would be the 
strategy with the greatest potential 
payoff to correct the problem. (This 
heuristic is illustrated later in figure 11). 
Heuristics dealing with correcting 
problems detected in the knowledge base 
are usually weighted more heavily than 
other command options. When more 
than one knowledge base problem exists, 
the one with greatest severity is given 
priority. 



Figure 6 illustrates interaction with the 
Dialog Manager in ((assist" mode. When 
the Dialog Manager recommends 
ANALYZE SIMILARITIES ELEMENTS, it 
pauses until the expert confirms its 
recommendation with a carriage return 
or overrules it by erasing the line and 
entering a new command. The fact that 
the user confirmed (or overruled) the 
Dialog Manager's recommendation is 
recorded on the recent events list and 
permanent history for analysis by the 
learning facility. 

Next, the Dialog Manager applies an 
heuristic, based upon complexity of the 
knowledge base. As shown in Figure 7, 
the Dialog Manager now recommends 

···[OM) Do you want to add elements. add 
traits, test the knowledge. or correct 
problems in the knowledge base. 
I recommend that you correct problems by 
analyzing similarities elements since there 

are fewer than 6 traits and there is a high 
degree of similarity between two elements. 

Analyze similarities to distinguish them. 
AQ**ANALYZE SIMILARITIES ELEMENTS (CR) 

(userconfirms) 

---SIMILARITIES ELEMENTS ANALYSIS---

The two elements IDMS and TOTAL are 
matched at the 100% level. Can you think of a 
trait that distinguishes between them? 
AQ**YES 
What is that trait? 
AQ**GOOD REPORT WRITER 
What is that trait's opposite? 
AQ** POOR REPORT WRITER 

What is the name of a scale or concept that 
describes GOOD. REPORT. WRITER/POOR. 
REPORT WRITER? 
AQ** REPORT WRITER 

• • 
~ 6. The Dialog Manager, now in "assist" 
mode, presents an array of command 
alternatives and suggests ANALYZE 
SIMILARITIES ELEMENTS. The justification for 
this selection is a version of a rule in the Dialog 
Manager. 

that the expert use cluster analysis to 
analyze the knowledge base since the 
rating grid is large with more than 40 
grid cells. The number of rating grid 
cells is just one measure of knowledge 
base size and complexity used in the 
Dialog manager heuristics. Since there 
is also a weak link in the element 
clustering relationship, the Dialog 
Manager recommmends that the expert 
SHOW CLUSTERS ELEMENTS to 
perform a cluster analysis on knowledge 
base elements. The expert agrees with 
the recommendation and confirms it 
with a carriage return. After the DBMS 
element cluster analysis is graphically 
displayed (Figure 8), the Dialog 
Manager proceeds (Figure 7) to suggest 

···[OM] Do you want to add elements, add 
traits, analyze the knowledge, make 
hierarchies, or test the knowledge ? 
I recommend you analyze the knowledge 
base by performing a cluster analysis since 
there are more than 40 cells in the rating 
grid and there is a weak clustering 
relationship between element groups. 

AQ**SHOW CLUSTERS ELEMENTS (CR) 
(user confirms) 

···[OM] Do you want to add elements, add 
traits, analyze the knowledge, make 
hierarchies. or test the knowledge ? 
I recommend you MAKE HIERARCHIES by 
splitting the rating grid on elements 
because the grid has more than 5 traits and 
40 cells and a weak element clustering link. 

AQ**EDITSPLITGRID BY ELEMENTS (CR) 
(user confirms) 

---SPLITIING GRID BY ELEMENTS---
Do you want to use the element clusters? 
AQ**YES 
What is a class name for IDMS,TOTAL, SIR, IMS? 

AQ**HOST LANGUAGE DBMS 
What is a class name for EASYTRIEVE, SQUDS, RIM? 

AQ** FOURTH GENERATION TYPE 

Figure L.. The Dialog Manager, in "assist" 
mode, recommends SHOW CLUSTER ELEMENTS 
and EDIT SPLIT GRID BY ELEMENTS. The 
ustification for this selection is a version of a 

rule in the Dialog Manager based on knowledge 
base complexity .. 

2.2..-7 



IDMS 

TOTAL 

SIR 

.60 

RIM 

Figure 8. Based on the recommendation of the 
Dialog Manager, the expert requ~sted SHOW 
CLUSTERS ELEMENTS for the DBMS knowledge 
base. The two major clusters are (IDMS, TOTAL, 
SIR, IMS) and (EASYTRIEVE, SQUDS, and RIM). 

that the rating grid be split by element 
clusters since there is a clustering link 
of only 60% between the two groups 
(IDMS, TOTAL, SIR, and IMS) and 
(EASYTRIEVE, SQL/DS and RIM). The 
expert identifies a class name t'Host 
Language DBMS" for the first group and 
('Fourth Generation DBMS" for 
EASYTRIEVE, SQLIDS, and RIM. This 
results in the addition of two new 
element classes and another level of 
abstraction n the element hierarchy. 
Our expert continued to use the Dialog 
Manager to assist in the construction of 
the DBMS knowledge base. Figure 9 
illustrates the hierarchy map for the 
completed DBMS knowledge base. 

DISCUSSION 

Strengths and Weaknesses of 
Approach 
Our experience with the Dialog 
Manager has demonstrated that it is 
possible to define a knowledge 
acquisition environment and to 
formalize knowledge about the transfer 

of expertise in a rule-based 
representation. Probably the most 
valuable result of the implementation of 
the Dialog Manager is the collection of 
heuristics for knowledge acquisition and 
the effective use of Aquinas. A 
classification scheme is proposed in the 
following section showing the variety of 
heuristics that we encountered. 
Our research effort focussed on the 
knowledge acquisition process and 
improved our understanding of how 
expertise can be transferred effectively. 
We were surprised at the number of 
different strategies practiced by 
individual experts and knowledge 
engineers. Our attempt to capture these 
strategies and formalize this knowledge 
in the Dialog Manager is an important 
step in understanding knowledge 
acquisition. 

One disadvantage of the Dialog 
Manager is that individual experts may 
(at least initially) disagree with the 
strategies suggested by the Dialog 
Manager. It may be that the heuristics 
used are not appropriate for certain 
classes of problem or types of 
idiosyncratic behavior. As the scope of 
the Dialog Manager's heuristics expands 
to encompass a variety of strategies, we 
anticipate that this weakness may be 
alleviated. A learning capability has 
been incorporated in the Dialog 
Manager. Its strengths and weaknesses 
are discussed later in this section. 

We have encouraged users to operate in 
the t'assist" mode since it provides 
feedback to the Dialog Manager and 
system developers for both the case 
when the user agrees with the 
recommendation of the Dialog Manager 
or diagrees and overrules the decision. 
However, some experts object to having 
to erase the Dialog Manager entry and 
replace it with their own selection. 
Users have also criticized the 
occasionally excessive detail in the 
Dialog Manager explanations and 
prompts. 

22-6 



DBMS Hierarchy Map 

MAP FROM AI, TOOlS·: ATN: ATN,ELEMENT: ATN,ELEMENT,TRAIT 

DBMS 

IAS 

SOCIAL.S~CURITY 

AI,TOOLS,I!XPI!RT --a 

/ ~OUATH,GENEAATIO~TYPE,DBMS ·<RIM~~::~~.:~:: 
.------. / ~ SQL.DS 
'AT~ ELEMENT, ... ~ EASYTFIIEVE 

/IMS 
,.?--SIR 

HOST,LANGUAGI!,DBMS ~ 
ID MS 

TOTAL 

fi~LATIONAL 

.II.PPUCATIONS j_
~~~:~:~ICAL 

~XPEFIIENCE SYSTEMS I ATN.ELEMENT,TFIAIT I~ ~ MAitUENANCE

\

TEXT,fiETfiiEVAL

SATCH,REPORTS

FIEPORT,WFIITEFI ~ NEV'I'.REPORT,GENEfl.<l..TJON

~ AD,HOC,QIJEP.IES

figure 9. AQUINAS and the Dialog Manager were used to dev~lop ~he DBMS knowl~dge base. The
completed rhierarchy map consists of 10 DBMS elements, 12 trart parrs, 2 levels of trarts, and 3 levels
of elements ..

A Proposed Classification of
Heuristics for Expertise Transfer

It was apparent in our work in
developing the Dialog Manag~r ~hat the
heuristics for knowledge acqmst10n and
expertise transfer could be classified .
We began to detect certain patterns in
the various heuristics for knowledge
acquisition. We also observed that the
components ~f these heu~istics t~nded to
fall into specific categories. This led to
our attempt to define a preliminary
classification of heuristics for knowledge
acquisition and the transfer of expertise,
summarized below.

Heuristics for Knowledge Acquisition

• Heuristics Based on Temporal
Reasoning

Heuristics Considering the
nRecency" of some event
• Recent in some absolute sense

oftime a fixed interval-
''within the last 10 minutes"

• Recent in a .. relative" sense-
nwi thin the last 10 commands
entered"

• Recency may have a different
definition for different experts

Heuristics Concerned with a
Specific Order ofEvents (may
include functional dependencies)

2:2.~

• whether an event occurred
prior to another event

• whether a specific sequence of
multiple events occurred in
some predefined order

• events which must
automatically trigger the
execution of some other
command

• Heuristics based upon user
prefere-nces

Individual Preferences
• Options for interaction

selected in the past
-degree of interactive
assistance from [DM]
level of [DM] explanatory
detail

• Patterns of command
sequences repeated frequently
by a user

Repeated patterns in which
the user overrules a specific
Dialog Manager command
with another
Repeated past actions of
expert to confirm DIM's
suggestions

User Group or Categorical
Preferences

• lnheri ted Preference
Characteristics

• Default options for User Group

• Heuristics related to the complexity
of the knowledge base

Number of elements in rating
grid
Number of traits in grid
The number of rating grids
The number of experts developing
the knowledge base
The number of cases considered
The number of implications
between traits
The complexity of the hierarchies
Presence ofmultiple variable
types

• Heuristics based upon the Problem
Domain

Structured Selection
Constructive Problems
Qualitative Causal Models for
Diagnostic Problems

• Heuristics dependent upon current
state

Current state of interaction
between user and Aquinas
Current state of knowledge base
Current state ofDialog Manager
Current state of user history

• Heuristics based upon knowledge
base problems

Heuristics derived from
implication analysis, ambiguous
relationships in kb
Heuristics derived from
similarity analysis measures
• High similarity between traits
• High similarity between

elements
Heuristics derived from
anomalies in solution and trait
hierarchies

• Heuristics Based upon Expertise or
Experience of User I User Group

Number of knowledge bases
created
Number of Aquinas sessions
performed
Number of unique Aquinas
commands used.
Complexity of knowledge bases
• Average size rating grid
• Maximum size rating grid
• Average number of rating

grids
• Maximum number of

abstraction levels
Number of times Aquinas used
with Dialog Manager off
Level of prompt detail requested

• Heuristics for Prioritization of
Command AI ternati ves

'ZZ.-lO

Heuristics based on past problem
solving performance (measured
by rank correlation with expert)

- Heuristics based upon severity of
some problem in the knowledge
base
Heuristics based upon expected
benefits of command
Default heuristics (to be applied
when no others are appropriate)

Examples of Dialog Manager
Heuristics Based on Complexity of

Knowledge Base

If number-of-implications > 0 and
number-of-traits I

number-of-implications < .2
then recommendation =

(ANALYZE IMPLICATIONS ALL)
because

nth ere is a high number of
implications in proportion to the
number of traits in the grid."

if number-of-implications > 0 and
number-of-implications I
number-of-gridcells > .833

then recommendation =
(ANAL YZE IMPLICATIONS ALL)

because
"there is a high number of
implications in proportion to the
size of the rating grid."

Figure 10. Two examples of Dialog-Manager
heuristics based on the current state and
complexity of the knowledge base.

One important class of heuristics is
based on knowledge base complexity.
Dialog Manager rules manage
hierarchies of experts, cases, elements,
and traits. One rule recommends that a
rating grid be split into two or more
grids when it is large and a clust.er
relationship between elements or tra1ts
exists. Another rule suggests that one
expert's rating grid should be
subordinated to that of another expert.
Other rules attempt to simplify complex
implicational relationships. Fig'!r~ 10
illustrates examples of these heur1st1cs.

Examples of Dialog Manager
Heuristics Based on Problems in

Knowledge Base

If fill-in-rating-grid-complete and
number-of-ambiguities > 0

then recommendation =
(ANALYZE IMPLICATIONS
AMBIGUITIES)

because
nthere are inconsistent or
ambiguous implications in the
knowledge base"

if fill-in-rating-grid-complete and
number-of-elements < 6 and
number-of-traits > 3 and
element-similarity> .90

then recommendation =
(ANALYZE SIMILARITIES
ELEMENTS)

because
"there is a high degree of .
similarity between two elements m
the knowledge base. Analyze
similarities to distinguish them."

if number-of-elements < 6 and
number-of-traits > 3 and
fill-in-rating-grid-complete and

average-element-similarity.
>70

then recommendation =
(ANALYZE SIMILARITIES
ELEMENTS)

because
"the average similarity between .
elements in the knowledge base ts
> 70 percent. Analyze similarities
to distinguish the elements."

Figure 11. A number of Dialog-Manager
heunstics deal with knowledge base problems.
The Dialog Manager will recommend an action
to correct the most serious problem.

Another useful class of heuristics
illustrated in Figure 11 stems from
potential "problems" in the knowledge
base: a high similarity between two
traits or elements, high average
similarity, ambiguities, too many or too
few implications, etc.

'2.2-l \

Role of Learning in the Dialog
Manager

-··[OM] Expand grid by adding new solutions
AQ**EDIT ADD ELEMENTS (CR)
Please enter a list of solution elements.
AQ**ADABAS
AQ**(CR)
---[OM] Now display map to show changes.
AQ**SHOW MAP (CR)
··[OM] Do you want to add elements, add
traits, fill in ratings, or make hierarchies?
I recommend you FILL.IN RATINGS since you
have added a new solution.

AQ**EDIT FILL.IN RATINGS (expert
AQ**EDIT ADD TRAITS (CR) overrules)

• • •
···[OM] Expand grid by adding new solutions
AQ**EDIT ADD ELEMENTS {CR)
Please enter a list of solution elements.
AQ**ORACLE
AQ**(CR)
-[OM] Now display map to show changes.
AQ**SHOW MAP (CR)
··[OM] Do you want to add elements, add
traits, fill in ratings, or make hierarchies?
I recommend you FILL.IN RATINGS since you
have added a new solution.

AQ**EDIT FILL.IN RATINGS (expert
AQ**EDIT ADD TRAITS (CR) overrules)

---[OM] I notice that you repeatedly follow a
pattern of EDIT ADD ELEMENTS, SHOW MAP,
and EDIT ADD TRAITS. Will you follow this
sequence most of the time?
AQ**YES
---[DM]Adding new heuristic for expert ATN.

Please explain why you do this.
AQ**I PREFER TO ADD ONE ELEMENT AND

ONE TRAIT ATA TIME.

(Explanation is saved for analysis by Dialog
Manager developers to extract non
idiosyncratic heuristics)

Figure 12. An example of learning in the Dialog
Manager. The user has repeated a pattern of
adding an element, displaying the rating grid,
and overruling the Dialog Manager's command
suggestion to add a trait instead. The Dialog
Manager detects this pattern, and once the user
confirms it, constructs a new heuristic for
knowledge acquisition for this expert.

The Dialog Manager is equipped with a
learning mechanism. The data
structures used to record interaction
between the Dialog Manager and the
Aquinas user (the recent events list, the
permanent history) provide a wealth of
information about how Aquinas is used
to construct knowledge bases.
Whenever the user enters a command
sequence in noff' mode or confirms or
overrules a Dialog Manager suggestion
in ''assist" mode, the learning
mechanism records this fact and scans
the data structures looking for similar
patterns that have appeared in the past.
Detected patterns of user preferences
are stored in the user profile , or may be
used to create new heuristics applicable
to the individual user or a more general
class of users.
The Dialog Manager learning capability
is illustrated in figures 12 and 13. Our
Database Management System expert is
expanding the DBMS rating grid by
adding elements, using the Dialog
Manager's t'assist" mode. The expert
follows the suggestions to add an
element and display the hierarchy map,
but overrides the Dialog Manager's
recommendation to fill in ratings and
chooses to add a new trait instead. Later
in the session, the expert repeats this
same pattern. The Dialog Manager's
learning mechanism observes the
repetition in command sequences,
noting that in each case, the expert has
overruled EDIT FILL IN RATINGS with
EDIT ADD TRAITS. The Dialog
Manager points out this pattern and the
expert confirms a preference for this
command sequence. A new heuristic is
created for this individual expert, ATN,
to suggest EDIT ADD TRAITS after
adding an element and displaying the
hierarchy map. This is an example of
the Dialog Manager's learning of
idiosyncratic heuristics based on
individual preference patterns.

The Dialog Manager also is capable of
learning heuristics which apply to a
more general class of users. Figure 13
illustrates the learning of a non-

z~-12..

idiosyncratic pattern based upon
observations of behavior of a group of
users. In this case, the Dialog Manager

--ADDING AN ELEMENT··
• • •

--DISPLAYING RATING GRID--
·[DM]Now display rating grid to show
changes.
AQ**SHOW UPDATE GRID (CR)
--DISPLAYING IMPLICATIONS-
·[DM]Now display implications to show
changes.
AQ**SHOW UPDATE IMPLICATIONS (CR)
--DISPLAYING RULES--
·[DM]Now display rules to show changes.
AQ**SHOW UPDATE RULES
AQ** ANAL YZE TEST CONSULTATION (CR)

(expert overrules)

{DM] detects pattern occurring earlier.

-··[OM] I notice that you repeatedly follow a
pattern of SHOW UPDATE GRID, SHOW
UPDATE IMPLICATIONS, but not SHOW
UPDATE RULES. You TEST CONSULTATION
instead. Will you follow this sequence most
of the time?
AQ**YES

···[OM] Adding a new heuristic for expert
JOHN.

Please enter a short description of why you
do this.
AQ**TO REDUCE SCREEN OUTPUT.
(Explanation is saved for analysis by Dialog
Manager developers to extract non
idiosyncratic heuristics)

···[OM] I notice that other members of class
Aquinas-developers (JEFF ,OAVE,CA THY)
follow this pattern. Does this heuristic apply
to all Aquinas-developers?
AQ**YES
---[OM] Adding new heuristic for Aquinas
developers.

Figure 13. An example of learning in the Dialog
Manager 1n which a non-idiosyncratic pattern is
observed to apply to a class of users: the
"AQUINAS system developers". A new heuristic
will be added to the Dialog Manager to direct
the dialog for this user class.

notes that John, a member of the class
Aquinas System Developers, follows a
pattern of adding an element, displaying
the rating grid, and implications, but
overrules the Dialog Manager~s
suggestion to display the rules. As in
the previous example, the Dialog
Manager adds a heuristic for the
individual user, but it also is aware that
other Aquinas system developers, J eff,
Dave, and Cathy also follow this
pattern. The user confirms that this is a
non-idiosyncratic heuristic which
applies to the entire user class of
Aquinas System Developers.

In both examples oflearning (and in any
case in which the expert overrules the
Dialog Manager), an explanation of why
the particular pattern was entered is
sought. This textual explanation is
stored for later analysis by the
developers of the Dialog Manager as a
further source of non-idiosyncratic
heuristics. In addition, if the Dialog
Manager suspects a reason why it was
overruled in "assist" mode, it will also
display its hypotheses and ask the user
to confirm whether that was a reason.
For example,

"Did you overrule my
recommendation to AN ALYZE
SIMILARITIES TRAITS because
this did not result in improved
performance when you did this
earlier?"

This proposed explanation is stored for
later analysis along with the user's
response.
We recognize the weakness in this
purely statistical and pattern
recognition-based approach, but we feel
that it offers promise as a basis for
further work. Our intent is for the
Dialog Manager to be able to ~~learn"
broader concepts such as how experts
organize knowledge hierarchically and
how and when the expert should move to
a more general or more specific level of
abstraction.

22.-\~

ISSUES AND FUTURE WORK

The implementation of the Dialog
Manager and the experience of experts
and knowledge engineers who have used
Aquinas and the Dialog Manager to
develop prototype expert systems have
raised a number of issues. We are only
beginning to understand how expertise
can effectively be transferred: the
techniques currently used by experts or
knowledge engineers using an
automated system such as Aquinas,
their underlying heuristics, and
whether there are more effective
strategies for knowledge acquisition.

We expect to learn more about heuristics
for effective transfer of expertise as more
experts and knowledge engineers have
the opportunity to use Aquinas with the
Dialog Manager. We will observe and
interview Aquinas users of varying
backgrounds and experience in the
development of expert systems. We will
also examine the information recorded
by the Dialog Manager when it adapts
existing heuristics to derive new ones.

In addition, we are planning an
experiment in which experts will use
Aquinas without the Dialog Manager for
entry of new knowledge bases, and then
repeat the knowledge base entry
exercise with the Dialog Manager
automatically directing or assisting the
process. Transcripts for knowledge
acquisition both with and without the
Dialog Manager can then be compared
and discrepancies discussed with the
expert to identify where Dialog
Manager heuristics could be improved.

The learning capability of the Dialog
Manager is an area where we are
focussing attention. We recognize that
the current approach, relying on
statistical analysis of the command
history and user profile files is an
oversimplified view, but we feel that it is
a promising first step. Our objective is
that the Dialog Manager improve its
performance through adaptive learning.

I

As the scope of Aquinas is expanded, the
usage of the tool will become
increasingly demanding. The recent
implementation of Aquinas (Boose,
Bradshaw, 1986) allows hierarchically
structured cases, experts, solution
elements, and traits. This gives rise to a
new set of questions to be considered in
formulating heuristics for this complex
environment: for example, when should
the rating grid be split into two or more
grids, and what is the best way to
structure the knowledge? The novice
user of Aquinas may find the multiple
windows, rating grids, and implication
graphs confusing. The need for
guidance, explanation, and tutoring
becomes more critical as the knowledge
acquisition environment becomes more
complex.

One of the greatest challenges for
Aquinas is acquiring underlying
concepts in the problem domain. The
ROGET system (Bennett, 1983) is a
knowledge acquisition tool which aids in
conceptualization of knowledge bases.
ROGET is aware of the organization of
existing knowledge bases in the medical
domain, and attempts to structure a new
knowledge base using categories
common to related expert systems (for
example, determined causes, laboratory
tests, observed signs). Like ROGET, the
Aquinas Dialog Manager carries on a
dialog with the expert about the
relationships between objects in the
problem domain (traits, elements, etc).
Both ROGET and Aquinas are
concerned with acquiring an expert's
conceptual structure . However,
ROGET's success may in part be due to
the fact that it deals with the medical
domain in which categories of advice
and evidence are applicable to a whole
family of expert systems. Aquinas is not
restricted to a specific domain, however
broad, and must handle a wider variety
of classes of problems.

We also anticipate that the
requirements for guidance from the
Dialog Manager will increase as the

capability is added to acquire knowledge
for problems domains which do not fit
the structured selection paradigm. We
plan to extend Aquinas to handle
knowledge acquisition for constructive
problem-solving such as in the SALT
system (Marcus, McDermott, and
Wang, 1985) and to represent domain
models of qualitative causal relations in
acquiring diagnostic knowledge as in
the MORE system (Kahn, Nowlan, and
McDermott,1985) and its successor
MOLE (Eshelman and McDermott,
1986).

Another issue to be resolved is how the
Dialog Manager should prioritize
alternative strategies when more than
one is justified. It must consider the
severity of the problems requiring
correction versus the expected benefits
of a modification. In our earlier
example, (Figure 6) the Dialog Manager
chose to correct the element similarity
because it was the only current problem
in the knowledge base. However, if
there had also been an ambiguous
implication, the Dialog Manager would
have applied the first heuristic
illustrated in Figure 11 to correct the
ambiguous relationship because of the
severity of the condition (rules cannot be
generated, and the knowledge base
cannot be tested). Various schemes for
evaluating the relative seriousness of
problems and predicted success of
alternatives will be attempted. A future
issue is how do we resolve conflicts
between problems of similar severity?
How do we determine the command
sequences leading to the highest payoff?

Also at issue is the role of temporal
reasoning in heuristics for knowledge
acquisition. Future work will explore
the effects of absolute versus relative
differences in time, and the concept of
nrecency" in performing operations in a
time-related sequence of commands. For
example, if the knowledge has just been
tested, and two new traits are added,
the user may wish to test the knowledge
again even if it was done recently.

An open question is when the Dialog
Manager should consider user
preferences and past successes to
select or rule out a strategy. As an
example, the Dialog Manager may
decide to suggest that the user volunteer
data to expand the rating grid
(additional solution elements, trait
pairs, or even cases). This activity is
appropriate if no data has been
volunteered earlier or if many
intervening operations have occurred
since the grid was expanded. But the
Dialog Manager must also consider user
preferences and past performance. For
example, when the user consistently
answers ~tno" to prompts such as ~~can
you think of a trait which discriminates
between IDMS and TOTAL?", then the
Dialog Manager should avoid repeating
this request.

A final research objective is to
incorporate user models in the Aquinas
system. Recent attention has been given
to user modelling for tailoring system
responses, explanation facilities and
tutoring for the user, (Sleeman, Appelt,
Konolige, Rich, Sridharan, and
Swartout,1985). The Dialog Manager
already maintains user profiles and its
learning facility is able to make
inferences based upon user performance.
We will extend this concept to define and
model the knowledge, intentions. goals,
roles, activities, and communications
protocols of Aquinas users, including the
domain expert, knowledge engineer, and
Aquinas system developer.

User models will be critical if the Dialog
Manager is to be used as a tutorial
system to teach know ledge engineers
and experts how to effectively transfer
domain expertise. W oolf and McDonald
specify four components in an effective
tutoring system: the subject area
(knowledge acquisition); the student
model (the novice Aquinas user);
teaching strategies; and communication
strategies. We anticipate that new
heuristics for teaching and
communication must be developed for
the Dialog Manager to become an

effective tutoring system. (Woolf and
McDonald, 1984; Clancey, 1985).
Additional consideration will be given to
the interrelationship between the level
of user expertise, complexity of the
concepts and heuristics, the importance
of the concept, and the level of detail in
explanations (Wallis and Shortliffe,
1985) to customize the Dialog Manager's
explanations for its use as a tutorial
system.

ACKNOWLEDGEMENTS

The authors wish to thank Roger
Beeman, Miroslav Benda, Jeff
Bradshaw, Jackson Brown, Art Nagai,
Dave Shema, Lisle Tinglof-Boose, and
Bruce Wilson for their contributions and
support. Aquinas and the Dialog
Manager were developed at the Boeing
Advanced Technology Center of Boeing
Computer Services in Seattle,
Washington.

REFERENCES

Bennett, J.S., ~~ROGET: A Knowledge
based Consultant for Acquiring the
Conceptual Structure of an Expert
System", Report No. HPP-83-24,
Computer Sciences Department,
Stanford University, 1983.

Boose, J.H., Expertise Transfer for
Expert System Design, New York:
Elsevier, 1986.
Boose, J. H., ~~A Knowledge Acquisition
Program for Expert Systems Based On
Personal Construct Psychology", I nt.
Journal Man-Machine Studies,
23,(1985).

Boose, J.H. and Bradshaw, J.M.,
«NeoETS: Capturing Expert System
Knowledge in Hierarchical Rating
Grids", Proceedings of the Second
Annual Conference on Expert Systems in
Government, McClean, VA, October,
1986.
Clancey, W.J. ~~use of MYCIN's Rules
for Tutoring", in Buchanan, B. and
Shortliffe, E. (eds.) Rule-Based Expert

Systems: The MYCIN Experiments of the
Stanford Heuristic Programming
Project, Reading, Mass: Addison-Wesley,
1985.

Eshelman, L. and McDermott, J.
«MOLE: A Knowledge Acquisition Tool
that Uses its Head", in the Proceedings
of the Fifth National Conference on
Artificial Intelligence, Philadelphia, Pa,
1986.
Gaines, B.R., and Shaw, M.L.G, ~~New
Directions in the Analysis and
Interactive Elicitation of Personal
Construct Systems" in M.L.G Shaw
(ed.), Recent Advances in Personal
Construct Technology, New York:
Academic Press, 1981.
Kahn, G., N owlan, S., and McDermott,
J., ~~MORE: An Intelligent Knowledge
Acquisition Tool", in the Proceedings of
the Ninth Joint Conference on Artificial
Intelligence, Los Angeles, California,
August, 1985.
Kelly, G.A., The Psychology of Personal
Constructs, New York: N orton, 1955.
Kitto, C.M., and Boose, J.H., .. An
Implementation of Knowledge
Acquisition Heuristics", Boeing
Computer Services Technical Report
BCS-G-2010-[36], 1986.

Marcus, S., McDermott, J., and Wang, T.
~~Knowledge Acquisition for
Constructive Systems", in Proceedings
of the Ninth Joint Conference on
Artificial Intelligence, Los Angeles,
California, August, 1985.

Shaw,M.L.G., and Gaines, B.R.,
PLANET: A Computer-Based System
for Personal Learning, Analysis,
Negotiation and Elicitation Techniques,
in J.C. Mancuso and M.L.G. Shaw, (eds),
Cognition and Personal Structure:
Computer Access and Analysis, Praeger
Press, 1986, in press.

Sleeman, D., Appelt, D., Konolige, K.,
Rich, E., Sridharan, N.S., and Swartout,
B, ~~user Modelling Panel", Proceedings,
Ninth International Joint Conference on
Artificial Intelligence, Los Angeles,
California,August, 1985.

Wallis, J.W. and Shortliffe, E.H.,
<<Customized Explanations Using Causal
Knowledge", in Buchanan, B. and
Shortliffe, E. (eds.) Rule-Based Expert
Systems: The MYCIN Experiments of the
Stanford Heuristic Programming
Project, Reading, Mass: Addison-Wesley,
1985.

Woolf, B. and McDonald, D.D.,
ttBuilding a Computer Tutor: Design
Issues," IEEE Computer, September,
1984.

"2.Z-l 7

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

KNACK- Report-Driven Knowledge Acquisition

Georg Klinker, Joel Bentolila, Serge Genetet, Michael Grimes, and John McDermott

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract
This paper describes a knowledge acquisition tool that builds expert systems for evaluating designs
of electro-mechanical systems. The tool elicits from experts (1) knowledge in the form of a skeletal
report, (2) knowledge about a large collectipn of report fragments, only some of which will be relevant
to any specific report, and (3) knowledge of how to customize the report fragments for a particular
application. The tool derives its power from exploiting its understanding of two problem solving
methods and of the different roles that knowledge plays in those two methods.1

1. Introduction
A key issue in developing any expert system is how to update its large and growing knowledge base.
A commonly proposed solution is the construction and use of a knowledge acquisition tool, e.g.,
TEIRESIAS [Davis 82], ETS [Boose 84], MORE [Kahn 85], SALT [Marcus 85], SEAR [vandeBrug 86],
MOLE [Eshelman 86]. Such a tool typically interacts with domain experts, organizes the knowledge it
acquires, and generates an expert system. A knowledge acquisition tool also can be used to test and
maintain the program it generates. The critical feature of such a tool is that a domain expert can use
it to update a knowledge base without having to know about the underlying AI technology .

. A large knowledge base can be kept maintainable by organizing it according to the different roles that
knowledge plays [Chandra 83], [Ciancey 83], [Neches 84]. Knowledge roles, the organizational units
of the knowledge base, are made explicit by defining a problem solving method. Some work has been
done to analyze existing knowledge acquisition tools with respect to the problem solving method
each assumes and the roles that knowledge plays [McDermott 86]. We share the hope that a better
understanding of different problem solving methods will lead to better knowledge acquisition tools in
the near term and to expert systems with broader scope farther down the line.

KNACK is a knowledge acquisition tool that assists an expert in creating expert systems that evaluate
the designs of electro-mechanical systems. Each of the expert systems produced by KNACK is called
a WRINGER. A WRINGER gathers information about a system's design, points out possible design
flaws and makes suggestions to correct and improve the design.

·- · ..

1This research was sponsored by the Defense Nuclear Agency (DNA) and the Harry Diamond Laboratories (HDL) under
contract DNA001-85·C-0027. The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of DNA or HDL.

z~-o

KNACK guides adomain expert through the knowledge acquisition session. lt asks the expert to
create or modify a skeletal report and report fragments which describe the design of some specific
class of electro-mechanical systems. KNACK also elicits knowledge of how to customize the report
fragments for a particular application. That information is then transformed into a knowledge
representation appropriate to evaluate a system design. KNACK helps the user by minimizing the
amount of information the expert must provide to define a piece of knowledge and by using heuristics
to infer new knowledge from previously acquired knowledge.

Section 2 gives an overview of the design evaluation task for a specific class of electro-mechanical
systems. Section 3 describes the capabilities of the WRINGERs generated by KNACK for evaluating
the design of such systems. Section 4 is meant to explicate the problem solving methods and
knowledge roles employed by the generated expert systems. Section 5 discusses KNACK.

2. The Design Evaluation Task
The WRINGERs that we have developed so far do design evaluation within the nuclear hardening
domain. Nuclear hardening implies the use of specific engineering design practices to increase the
resistance of an electro-mechanical system to the environmental effects generated by a nuclear
weapon. Our domain expertise is supplied by individuals who are technical design reviewers for
nuclear effects on electro-mechanical systems. The following is a summary of the problems such
experts encounter in their work.

Information about the design is usually provided by several different designers. This causes problems
when different designers use conflicting terminology or have inconsistent or incomplete views of the
overall system design. The evaluator integrates the information coming from different sources in
order to understand the overall system design.

The evaluator tries to gather just enough information from the designer to do the evaluation. The
designer takes into account an immense number of details about the system and about the
environment within which it will function. Since the evaluation is focused along the nuclear
hardening dimension, not every detail that was considered by the designer is relevant for the
evaluator. An experienced evaluator knows which information to gather and how to elicit that
information.

When one of our domain experts evaluates the design of an electro-mechanical system, he really is
helping to design it. He evaluates the design for consistency, completeness, and possible design
flaws. Although the designer can develop a system that meets all other requirements, he often does
not know enough about nuclear hardening to design a hardened system. Therefore, the evaluation
must be constructive. The experienced evaluator suggests improvements to the submitted design
which would make it more acceptable;

The designer and the evaluator ordinarily go through several cycles of design presentation and
design evaluation. Once the design has been evaluated, it is returned to the designer together with
criticism and suggestions on how to correct possible design flaws. The designer then comes back to
the evaluator with a revised design proposal. This is an iterative process which leads to an
acceptable design proposal.

The evaluator also takes into account highly interdependent information. Restricting a system in
some way may influence other design decisions. lt may constrain future design choices or require

· revising previous design decisions.

We have organized these problems into two major tasks for an expert system that functions as a

z 3-l

competent evaluator of electro-mechanical system designs: (1) how to gather just the requisite
information from the designer to build a useful design description and (2) how to evaluate the design
for consistency, completeness and possible flaws in a constructive manner.

3. The WRINGERs
We decided to build our expert system (the first WRINGER) in two consecutive steps, corresponding
to the problems involved. First, we built a system that gathered information. The output from a
session with this system was a repo·rt describing the design of some particular electro-mechanical
system. Because these reports contained all of the information necessary to evaluate the design, they
were useful in themselves.2 Second, we extended our initial expert system so that it evaluated the
gathered information. An advantage of this stepwise approach was that our domain experts could
critique the generated report and, in the process, show us how they evaluate a system design.

Each WRINGER is a member of a family of expert systems in a common domain area. The
WRINGERs we have generated so far gather information about electro-mechanical systems, and
evaluate this information with respect to nuclear hardening. They also produce, in report form, a
description of the system design and a preliminary evaluation with suggestions on how to improve the
design.

3.1. Gathering Information
Usually, a team of designers will work together on the design of a system. lt is thus likely that several
different designers will interact with a WRINGER to give an adequate description of a system design.
Different people might use conflicting terminology. A WRINGER discovers whether two designers
use different words to describe the same fact by using its knowledge about synonyms. If a designer's
answer to a question contains a synonym for a known expression, the WRINGER replaces it with that
known expression.

To take into account the different sources of information available to an evaluator, a WRINGER has
several ways to gather information: lt can elicit the information from the user by (1) asking a question,
(2) interpreting a graphical design description, e.g. a drawing of a system's components, (3) asking
the designer to fill in the slots of a table or diagram, .or (4) asking the user to choose from the items in
a menu. A WRINGER can fill in gaps based on information already available to it by (5} directly
applyin,g specific domain knowledge, (6) computing numeric values, or {7) referring to a database.
Some information gathering strategies will be more suitable than others for gathering a particular
piece of information. Using an appropriate strategy makes it easier for the designer to interact with a
WRINGER. For example, to give a spatial description of the system it is often more convenient to
draw the system than to answer questions. Often more than one way exists to gather a piece of
information. When this is the case, a WRINGER decides how to gather it.

An evaluator might have to try several ways to gather a piece of information before he is satisfied with
the result. A strategy used to gather information might not be successful or the information received
might be insufficient or incomplete. If a way to gather information was unsuccessful, a WRINGER
tries another strategy. For example, a WRINGER uses a database when it has to determine the
break-down voltage of a diode. If the database contains no entry for that diode, a WRINGER asks the

2Most design projects require a finished report containing information about general design objectives, tradeoff decisions,
analysis and test results, and detailed parts specifications. Those reports are usually valuable even before they are finished.
While it is being written, a good report indicates the benefit of continuing a project; it helps to organize the diverse activities
within the scope of a large task and to identify potential problem areas within sub-tasks. A good design report contains all the
data that an evaluator needs to determine the adequacy of a proposed design •

.z; .. :z.

designer. On the other hand, if the information received by using some strategy was insufficient or
incomplete, a WRINGER will try another way to gather that information. For example, it is possible to
infer that one of the subsystems of a system with an internal power supply will be a motor generator.
This information might not be sufficient. lt is likely that the motor generator is not the only subsystem.
Therefore a WRINGER will ask for the remaining subsystems. A WRINGER might consult a database
in order to determine the break-down voltage and the damage constant of a diode. If the database
contains data on the break-down voltage but no entry for the damage constant, the latter has to be
determined. lt can be computed if the requisite information is available or else the WRINGER can ask
for it.

lt is often the case that only a fraction of a WRINGER's knowledge is applicable to the evaluation of
any particular electro-mechanical system. A WRINGER selects the necessary information about the
design of the system in a data-driven manner; the decision to gather a particular piece of information .
is based on previously gathered information. Generally more than one piece of information can be
gathered at any time. The order in which the pieces of information are gathered may be important: an
inference might make a question unnecessary, the designer might feel more natural providing
information in a certain order, or information gathered in a certain order might reduce the amount of
information needed. Accordingly, a WRINGER uses the following heuristics to select which piece of
information to gather next:

• Prefer to infer a piece of information whenever possible.

• Prefer to gather a piece of information that allows the designer to feel comfortable with
the order of giving this information.

• Prefer to gather the pie<:e of information which is most likely to reduce the subsequent
number of necessary pieces of information, that is, select the piece of information to
gather next which prunes the space of necessary pieces of information.

The purpose of the first heuristic is simply to avoid asking the designer unnecessary questions.

The goal of the second heuristic is that the information will seem convenient to the designer to
provide next. This is accomplished by following the skeletal report, thereby eliciting information for a
selected report part only, and by providing a WRINGER with a set of preference rules enabling it to
decide which piece of information to gather next, for example, request the names of subsystems
before asking about connections betw~en them.

The third heuristic reduces the burden placed on the designer in gathering a piece of information.
WRINGERs prefer to elicit a piece of information which is likely to enable inferences. For example,
the type and the diameter of a cable might both be important to know. If a WRINGER has to decide
whether to ask a question to determine the type or to ask another question to determine the diameter
of the cable, it will prefer to ask the former question because it knows that it can infer the diameter
once the type is known. Another way for a WRINGER to reduce the effort to gather a piece of
information is to try to establish the requisite information enabling inferences with minimal effort. For
example, a worst-case value for the damage constant of a semiconductor device can be inferred if the
class (transistor, diode, etc.) and family (high-power, low-power, etc.) of the device are known. On
the other hand, the damage constant can be computed precisely if class, break-dpwn voltage,
capacity of the junction, material (silicon, gallium arsenide, etc.) and geometry (planar, non-planar)
are known. In order to determine the damage constant of a semiconductor device, a WRINGER will
try to determine the worst-case valu~ first. Therefore it will try to establish information about class
and family. If the ·worst-case value confirms the system design (does not lead to a design flaw during
evaluation), further information needed to compute the damage constant does not have to be
gathered, even though the computation would have led to a more precise result.

2~-3

3.2. Evaluating Designs
Before the design of a system is evaluated for design flaws, the information provided by the designer
will be checked to ensure that it is correct, consistent and complete. A WRINGER immediately
checks newly gathered information for validity. This includes finding out whether input provided by
the designer is obviously wrong or merely implausible. In the first case, an answer might be outside of
a predefined numeric range or it might not be a member of a predefined complete set of possible
answers. In the second case an answer might be flagged as questionable because it is not a member
of a predefined incomplete set of possible answers~

A WRINGER checks the gathered information for contradictions. For example, it makes sure that a
cable carrying power is not connected to a cable carrying a signal. lt also tries to determine whether
it has all the information needed to evaluate the system. For example, it checks whether a power
source is specified for the system and whether a defined antenna is connected to the rest of the
system.

In the case of the WRINGERs we have built so far, the evaluation of electro-mechanical systems
focuses on nuclear hardening. They ensure that a system will function in some predefined nuclear
environment. A WRINGER's approach to this evaluation is to determine and use worst-case values
for its analysis. An assumption is made that worst-case values are rough estimates of the precise
values and that it takes less effort to determine worst-case values (in terms of pieces of information to
gather) than to find out the precise values. If the worst-case analysis indicates a design flaw, a
WRINGER gathers the additional information that allows it to replace the worst-case values with more
precise values. If the evaluation still does not result in a hard system, a WRINGER points out possible
flaws in the design of the system. lt then suggests improvements. For example, if the energy coupled
into an interface circuit through a power line exceeds an upper limit, the semiconductor devices of
the interface circuit will be damaged. A WRINGER will suggest using a terminal protection device to
limit that energy to an acceptable level.

As a result of the evaluation a designer might want to change his description of the system design or
the system design itself. On the other hand it might be necessary to gather additional information. A
WRINGER gives the designer an opportunity to review and correct the gathered information about the
system being designed. lt checks whether all the information necessary to evaluate the system is
available. If some vital piece of information is missing, a WRINGER tries to elicit this information from
the designer. If the designer cannot or does not want to provide the required information, a
WRINGER assumes a worst-case value. For example, a WRINGER needs to know the transfer
impedance of the solid shield for a cable in order to evaluate the protection provided by this shield. If
the designer cannot provide this information, a WRINGER asks for the outer and inner radii and the
resistivity of the solid shield in order to compute the transfer impedance. If this information is not
available, a WRINGER assumes a worst-case value.

Finally, the description of the system design and the evaluation results are usually documented in
some form. A WRINGER presents the gathered information and the results of the evaluation in the
form of a report. lt uses the skeletal report to determine the structure and the report fragments to
determine the content of a report about an actual electro-mechanical system. The report fragments
also guide a WRINGER in integrating the gathered information into a report. In some cases the
designer will. not agree with the results of the evaluation. For this reason a WRINGER allows the
designer to add comments to a report.

4. The WRINGERs' Problem Solving Methods
This section describes the knowledge a WRINGER uses to perform the tasks reported in section 3. lt
gives an overview of the problem solving methods the WRINGERs use, along with the identified
knowledge roles, and describes the knowledge bases of two implemented WRINGERs.

A problem solving method is knowledge that establishes and controls the sequences of actions
required to perform some task. This control knowledge dynamically defines the order in which

· subtasks have to be solved in order to perform the overall task. lt also defines the kind of domain
specific knowledge that is applicable within each step. Thus, the problem solving method helps to
identify and classify the domain knowledge. lt makes the different roles knowledge plays in the
design evaluation task explicit and suggests ways to organize the knowledge base according to the
knowledge roles. The granularity of the problem solving method is determined by the demand that
the knowledge represented by a knowledge role can be applied without further control knowledge, .
e.g. the order in which that knowledge will be brought to bear does not matter.

Information gathering and evaluation are treated as separate problems. A WRINGER uses a different
problem solving method for each of them. Initially, it gathers the information necessary for the
evaluation and then evaluates the information. If, as a result of the evaluation, additional information
is required, the WRINGER then invokes the method for information gathering again. After that,
another evaluation is performed. This iterative process ends when the designer is satisfied with the
design.

4.1. A Method For Information Gathering
The problem solving method and the knowledge roles that WRINGERs use to solve the information
gathering problem can be summarized as follows:

1. Choose an appropriate part (chapter, section or subsection) of the report that is to be
constructed [REPORT STRUCTURE). Identify all the pieces of information· which are
required for this part of the report [INFORMATION IDENTIFICATION).

2. Determine the pieces of information which are appropriate to be elicited now from the set
of all identified pieces of information. If no appropriate pieces of information remain to be
gathered, continue with step 6.

3. Select one piece of information to be elicited from among those appropriate to be
gathered (INFORMATION SELECTION).

4. Determine a strategy to gather the selected piece of information and apply that strategy
(INFORMATION GATHERING). If the strategy fails, try another one. If no strategy succeeds,
continue with step 2; otherwise check the provided piece(s) of information for synonyms
[SYNONYM] and errors.

5. Make all appropriate inferences based on the gathered piece(s) of information
(INFORMATION GATHERING]. Continue with step 2

6. If there are more report· parts to be constructed, continue with step 1; otherwise,
information gathering is tentatively assumed to be complete.

One role for knowledge is in regard to REPORT STRUCTURE; this includes knowledge about which
chapters, sections and subsections are part of the report and knowledge about their order.
INFORMATION IDENTIFICATION knowledge is used to identify pieces of information which are relevant to
each part of the report; determining an initial set of pieces of _information to be gathered. The

2'3-5

INFORMATION SELECTION role represents knowledge about how to select a piece of information to be
gathered from the set of all identified pieces of information. lt organizes knowledge of how to prefer
to gather one piece of information over others. The INFORMATION GATHERING role describes the
different ways to gather a piece of information (ask a question, interpret a .graphical design
description, fill in the slots of a table or diagram, choose among the items in a menu, apply specific
domain knowledge to inferences, compute numeric values from formulas, refer to a database).

·Relying on previously elicited information and other pre-defined knowledge, it defines the
·circumstances in which these techniques can be applied. lt also includes instructions about what to
expect as a response and what to do with the elicited information. The role SYNONYM is a way to
represent knowledge about making a user's answer consistent with the common way of expressing
that answer.

4.2. A Method For Evalua.tion
The problem solving method and the knowledge roles the WRINGERs use to solve the evaluation
problem can be summarized as follows:

1. Check the gathered information for consistency [CONSISTENCY EVALUATION) and
completeness [COMPLETENESS EVALUATION).

2. Evaluate the design description for possible design flaws by using a worst-case analysis
[DESIGN EVALUATION]. If no indications of flaws are found, go to step 6.

3. Evaluate the parts of the design description which showed indications of flaws again, this
time using a precise analysis [DESIGN EVALUATION). If no indications of flaws are found,
go tostep6.

4. Make constructive suggestions which pieces of information need to be modified or
completed [DESIGN FIX]. Gather any missing information3• Generate worst-case values
for any required pieces of information still missing [DESIGN DEFAULT]. When there is
nothing to be modified or to be completed, go to step 6.

5. Continue with step 1.

6.1ntegrate the gathered information into the associated report phrases [REPORT PHRASE],

assemble the report phrases, include any evaluation messages, and write the report to an
output device [REPORT STRUCTURE].

CONSISTENCY EVALUATION knowledge and COMPLETENESS EVALUATION knowledge include,
respectively, how to uncover contradictory information and how to detect when information provided
by the designer is incomplete. DESIGN EVALUATION knowledge identifies problem cues that are
associated with possible flaws in the design of an electro-mechanical system. The DESIGN FIX role
includes knowledge about how the design could be improved. DESIGN DEFAULT knowledge is about
worst-case values for the necessary pieces of information the designer could not provide. A
WRINGER uses REPORT PHRASE knowledge to incorporate the gathered information into the report.
REPORT STRUCTURE knowledge is applied to appropriately place the report phrases within the report.

3-n,e method described in section 4.1 for information gathering is used.

4.3. Two Sample WRINGERs
. In Fall 1986 KNACK was used to develop two WRINGERs. The first, a PROGRAM PLAN writer,
·presents a definition of the activities necessary to design, produce, and maintain an electro
mechanical system capable of withstanding nuclear environments and completing its mission. The
program plan is the primary top level report covering all phases of the design project. lt describes the
comprehensive plan for management, assessment, hardening, implementation, and testing that a
contractor will conduct for an electro-mechanical system. lt identifies the specific methods to be
used for analysis, design, testing and evaluation, explains the design philosophy, rationale behind
various decisions, and assumptions underlying the design. lt also projects a schedule of activity and
completion for each segment of the program plan. Given several well chosen sample reports, it took
one person-week to create the PROGRAM PLAN writer with KNACK. The domain dependent
knowledge base contains 834 OPS5 rules: 3 rules describe the skeletal report (REPORT STRUCTURE

knowledge), 386 rules define the report fragments (REPORT PHRASE knowledge), 351 rules represent
different ways to gather information in order to customize the report fragments for a particular ·
application (INFORMATION GATHERING knowledge), 19 rules define synonyms (SYNONYM knowledge),
46 rules identify the information relevant for each part of the report (INFORMATION IDENTIFICATION

knowledge), and 29 rules describe which piece of information to gather next (INFORMATION SELECTION

knowledge). The average condition part of one of the PROGRAM PLAN WRINGER's rules has 3.4
elements. Each element is a pattern that can be instantiated by an object. On the average the pattern
will mention 2.0 of the attributes which define an object. The average action part has 7.2 elements.
Each element creates either a new object or modifies an existing object.

The second expert system, a DESIGN PARAMETERS REPORT writer, presents and evaluates a
detailed description of an electro-mechanical system. lt documents the system description, analysis,
design features, and assumptions required to assure the nuclear hardness and survivability of the
system with respect to one n·uclear environment: electro magnetic pulse (EMP}. To evaluate the
system, the WRINGER gathers detailed information about the electro-mechanical system design
ranging from the level of major components to the level of individual semiconductors. After the
gathered information is checked for completeness and consistency, a worst-case analysis is carried
out for each interface circuit in the system, determining whether the EMP environment will induce
currents above the operating voltage of the interface circuits. This analysis indicates either that the
system is sufficiently refractory of the EMP environment or may not be. In the latter case a more
detailed screen analysis, and if necessary an even more precise resistive analysis, is conducted to
identify inadequacies in the system's response to the EMP environment. When such an inadequacy is
pinpointed, the WRINGER suggests possible fixes, all of which are prechecked for adequate
strengthening properties in the interface circuits. The basis for the expert system was a single sample
report and a series of interactions with our EMP expert. lt took three person-weeks to create it with
KNACK. The domain dependent knowledge base contains 1444 OPS5 rules: 3 rules represent
REPORT STRUCTURE knowledge, 620 rules REPORT PHRASE knowledge, 610 rules INFORMATION

GATHERING knowledge, 32 rules SYNONYM knowledge, 47 rules INFORMATION IDENTIFICATION

knowledge, and 29 rules INFORMATION SELECTION knowledge. 135 rules evaluate the gathered
information (CONSISTENCY EVALUATION, COMPLETENESS EVALUATION, DESIGN EVALUATION, DESIGN FIX,

and DESIGN DEFAULT knowledge}. The average condition part of one of the DESIGN PARAMETERS
REPORT WRINGER's rules has 3.8 elements. On the average each element will mention 2.3 of the
attributes which define an object. The average action part has 3.0 elements. Each element creates
either a new object or modifies an existing object.

23-7

5. KNACK
KNACK is a knowledge acquisition tool capable of building WRINGERs, i.e., expert systems that can
evaluate electro-mechanical system designs. Its task is to elicit the domain dependent knowledge
from the expert. The remaining part of the paper describes how KNACK aids an expert in creating a
WRINGER: (1) it elicits knowledge from the expert about a skeletal report, report fragments, and how
to customize tlie report fragments, (2) it uses heuristics to infer additional knowledge.

KNACK uses object-attribute-value tuples and relations as basic elements to represent knowledge.
Each object may have multiple attributes. Dependencies between objects are represented by
relations. These basic elements, object-attribute-value tuples and relations, are used to build the
condition parts and the action parts of OPS5 rules. An OPS5 rule represents a piece of knowledge.
The pieces of knowledge are organized into knowledge roles. A knowledge role is described by a
corresponding knowledge role template.

5.1. Eliciting Knowledge From The Expert
KNACK's knowledge acquisition approach is based on the assumption that an expert can adequately
present his knowledge about electro-mechanical design evaluation in the form of a skeletal report and
report fragments. lt is also assumed that the expert knows how to customize the report fragments for
a particular application. The skeletal report and report fragments describe all the information that
reports in a given domain might contain. An actual report will be the skeleton fleshed out with some
subset of customized report fragments. In detail, the skeletal report defines the outline of an actual
report and the order of report fragments within an actual report. A report fragment describes a small,
possible piece of an actual report, the conditions under which the piece will be included in the actual
report, the fixed text of a-report part and the variable information of a report part. The knowledge of
how to customize the report fragments for a particular application defines strategies for how to gather
the variable information.

KNACK assumes that the expert knows what information is needed, how to evaluate this information
and how a designer should present this information (i.e., the expert must have a clear idea of what
constitutes an acceptable report about the design of electro-mechanical systems). We think this is a
valid presupposition for a variety of evaluation tasks. In general, someone whose job it is to evaluate
the work of others must have comprehensive and precise knowledge about that work.

KNACK provides support to the expert in defining that knowledge. The expert uses keywords to
indicate chapter, section and subsection headings. From this KNACK determines the skeletal report.
The expert then types the text for a report fragment. There are basically two kinds of text that can be
included in a WRINGER report. One kind is 'boiler plate' text and it is simply a sentence or paragraph
which will appear exactly the way it was formulated by the domain expert, whenever the conditions for
including it are satisfied. The other kind of text contains blanks which are filled in with information
that is specific to whichever electro-mechanical system is the subject of the WRINGER report. The
blanks are given variable names and it is the values for these variables that are collected by a
WRINGER during its information gathering. Figure 5·1 illustrates how a report fragment is defined.4

The example contains the blanks "<V1>" and "<V2>" for variable information. In an actual report
these variables would be instantiated; for example: "The power line interface-circuit is protected by a
terminal protection device".

41n this and following figures. the expert's input appears in bold italics; the implementation details (for rules) and the prompts
(of KNACK) appear in lowercase and uppercase; the knowledge inferred by KNACK appears in small capitals. Default
responses, enclosed by brackets, are used when the user types only a carriage return.

REPORT DEFINITION:
chapter: 4 section: 13 subsection: 0 phrase: 1
[
The <V1 >interface-circuit is protected by a <V2>.

1

Figure 5·1: Sample Input For The Report Phrase Knowledge

The expert then defines object/attribute pairs to represent the variable information. In the example in
Figure 5-2 "interface-circuit.name" and "protection-device.name" are used to define the variables
"<V1>" and "<V2>" of Figure 5-1. KNACK assumes that objects appearing in the same report
sentence are related and routinely creates relations between them, asking the expert to name the
relation. If the expert does not give a name for it, the relation is not created. "Protects" is the relation
name used in the example.

VARIABLE DEFINITION:
variable .•.••...•• [V1]:
represents•. :

object [INTERFACE-CIRCUIT]:
attribute [NAME]:

variable ..••...•.. [V2]:
represents .•..•.. :

object... [INTERFACE-CIRCUIT] : protection-device
attribute [UNKNOWN]: name

name of the relation PROTECTION-DEVICE-> INTERFACE-CIRCUIT .. [PART-OF]: protects

Figure 5-2: Sample Input To Define Variables

KNACK guides the expert through the knowledge acquisition process by exploiting a WRINGER's
problem solving methods. A WRINGER's problem solving methods represent the knowledge needed
to control the task. They are defined so that the domain knowledge, organized in knowledge roles,
does not include control knowledge. KNACK takes advantage of this separation of control knowledge
and domain knowledge. lt presupposes that a WRINGER's problem solving methods are those
described in section 4, thus freeing the expert from having to define the control knowledge.

KNACK also exploits a WRINGER's knowledge roles, which are described by templates. The
knowledge role templates define implementation details for a piece of knowledge, they define what
the expert has to provide for a piece of knowledge, and they define the optional parts of a piece of
knowledge. The implementation details ensure that the domain knowledge can be accessed by the
control knowledge. Because these details are already defined by a knowledge role template the
expert does not have to be concerned with them. The following example of how to define the
knowledge for the knowledge role INFORMATION GATHERING points out how KNACK determines what
the expert has to provide to define knowledge. Suppose the expert wants to define a question which
a WRINGER will ask the designer. KNACK knows from the knowledge role template for INFORMATION

GATHERING that the expert must provide text for the question and that the expert has an option of
providing possible and default answers. Therefore it prompts the expert for that input. The sample
input shown in Figure 5-3 demonstrates how the expert defines a question intended to gather
information for one of the slots in the report fragment shown in Figure 5-1 and 5-2.

QUESTION DEFINITION:
variable ..•....... [PROTECTION-DEVICE.NAME]:
represents :

object ..•.... : PROTECTION-DEVICE
attribute ~ NAME

is determined by.:
[question, graphics, table, menu, inference, formula, database, quit] [QUESTION]:

text•........ : Which protection device protects the interface-circuit
possible answers .. [UNKNOWN]:
default answers .. : [UNKNOWN]:

Figure 5·3: Sample Input For The Question Knowledge

5.2.1nferring Additional Knowledge Using Heuristics
KNACK uses heuristics to infer additional knowledge. The heuristics can be specific to infer
additional knowledge for a particular· knowledge role or they can be applicable to more than one
knowledge role. We now use the example of Figure 5-3 to describe some of these heuristics. Figure
5-4 shows the question rule5 for the input sample of Figure 5-3 after KNACK extended it by using
heuristics:

KNACK uses heuristics to insert conditions and relations between the objects of conditions into the
question rule. These conditions and relations define the circumstances in which asking that question
is appropriate:

• If KNACK discovers known objects within the text of the question and if a way is known to
gather information about these objects, KNACK adds a condition for each object to the
question rule. The question text of the example contains the object "interface-circuit".
This is a known object and a question strategy was defined to gather information about
this object. Thus KNACK added the condition about the existence of an "interface
circuit" to the rule.

• KNACK adds a template element relation for each previously defined relation between
objects in different conditions. In the example, KNACK added the relation "part-of"
between the objects "interface-circuit" and "subsystem".

KNACK uses heuristics to make the text of a question more specific. lt is easier to answer a specific
question because it is more clear what the question is about. Also, it is easier to evaluate specific
information than it is to evaluate some general statements:

• If a known object is used in the question text and if a way is known to gather information
about this object and this object is related to another object by a "part-of" relation,
KNACK includes this relation into the question text and it adds the corresponding
condition to the rule. In the example, KNACK encountered the object "interface-circuit".
This is a known object and a question strategy was defined to gather information about
this object. lt is further known that "interface-circuit" is a "part-of" a "subsystem".
Therefore KNACK extended the question text with "of the subsystem" and added the
corresponding condition about the existence of a "subsystem" to the rule.

5 A question rule consists of two OPS5 rules: one rule to enable the asking of the question and another rule to handle multiple
answers. In the case of multiple answers the second rule fires again _for each answer and creates the appropriate basic
elements for each of the answers.

If a SUBSYSTEM WITH SOME NAME IS KNOWN
and a INTERFACE-CIRCUIT WITH SOME NAME IS KNOWN
and THE INTERFACE-CIRCUIT IS PART·OF THAT SUBSYSTEM

Then ask "Which protection device protects the interface-circuit <INTERFACE-CIRCUIT.NAME>
OF THE SUBSYSTEM <SUBSYSTEM.NAME>"

and create the slot PROTECTION·DEVICE.NAME for the answer
and create the relation PROTECTS between the object· PROTECTION-DEVICE

and the object INTERFACE-CIRCUIT

(p question-55
(questioning-in-progress)

-->

(SUBSYSTEM Aid <id-1> ANAME {<SUBSYSTEM.NAME><>NIL})
(INTERFACE-CIRCUIT Aid <id-2> ANAME {<INTERFACE·CIRCUIT.NAME>ONIL})
(relation A name PART-OF Afrom-object INTERFACE-CIRCUIT A from-id <id-2>

Ato-object SUBSYSTEM Ato-id <id-1>)
-(question Anumber q65_ Aid-list <id-1> <id-2>)

(bind <question-id> (gint))
(make question-text Aid <question-id>

At ex t Which protection device protects the interface-circuit <INTERFACE·CIRCUIT.NAME>
OF THE SUBSYSTEM <SUBSYSTEM.NAME>))

(make question Anumber q65 Aid-list <id-1> <id-2>)
(make argument-list q65 <question-id> <id-1> <id-2>)
(make build-obj/att q65 <question-i~> <id-1> <id-2>)

(p question-obj/att-65
{(build-obj/att q65 <question-id> <id-1> <id-2>) <Cb>}

--->
(remove <Cb>)
(bind <O-id-1> (gint))
(make object Aid <o-id-1> Apointer <question-id> Aname PROTECTION-DEVICE)
(make attribute Apointer <o-id-1> Aname NAME Avalue nil)
(bind <n-id-1> (gint))
(make object Aid <n-id-1> Apointer <question-id> Aname relation)
(make attribute Apointer <n-id-1> Aname name Avalue PROTECTS)
(make attribute Apointer <n-id-1> Aname from-object Avalue PROTECTION-DEVICE)
(make attribute Apointer <n-id-1> Aname from-id Avalue <o-id-1>)
(make attribute Apointer <n-id-1> A name to-object Aval ue INTERFACE-CIRCUIT)
(make attribute Apointer <n-id-1> Aname to-id Avalue <id-2>)

Figure 5-4: Sample Question Rule Extended By Heuristics

• If a known object is used in the question text and if a way is known to gather information
about this object and if this object has a "name" attribute or a "type" attribute, KNACK
will include a variable in the question text which will insert the name or type of the known
object The above example now contains the objects: "interface-circuit" and
"subsystem". They are known objects and question strategies were defined to gather
information about them. Also, a "name" attribute exists for both objects. Thus KNACK
made the question text more specific by adding the variables "interface-circuit.name"
and "subsystem.name".

KNACK uses heuristics to extend its knowledge about known objects, their attributes, and the
relations between objects. lt defines new objects, adds new attributes to objects, and creates the
necessary relations between objects:

•If the expert uses an object that KNACK does not know, KNACK asks whether it is a
synonym for an existing object. If the expert indicates that it is not a synonym for an
existing object, KNACK defines the new object.

z.~- \\

• If the expert describes a known object with an attribute that KNACK does not know,
KNACK asks whether it is a synonym for an existing attribute of the known object. If the
expert indicates that it is not a synonym, KNACK defines the new attribute for the known
object.

• If the expert mentions known objects in the text of a question and if a way is known to
gather information about these objects and if the object of the answer is a different
object, KNACK creates relations between the known objects of the question text and the
object for the answer. KNACK also inserts these relations into the representation of the
question. The expert has to define a name for each of these relations. The example in
Figure 5·4 shows that KNACK extended the question rule with an action to create the
relation "protects" between the object for the answer "protection-device" and the known
object "interface-circuit" which appears in the question text.

6. Conclusion
In this paper we described KNACK, a knowledge acquisition tool for building expert systems that
evaluate the design of electro-mechanical systems. KNACK's knowledge acquisition approach is
based on the assumption that an expert can adequately present his knowledge in the form of a
skeletal report and report fragments. The skeletal report provides a framework around which report
fragments relevant to the design of a specific electro-mechanical system can be organized. KNACK
also elicits knowledge about how to customize the selected report fragments for a particular
application. The skeletal report, the report fragments and the knowledge of how to customize the
report fragments provide KNACK with all it has to know to present the design of an electro
mechanical system and to evaluate it. In order to acquire the knowledge necessary to solve the
information gathering and the evaluation tasks, KNACK exploits a WRINGER's problem solving
methods and knowledge roles to guide the expert through the knowledge acquisition process.
KNACK determines what an expert has to provide to define the knowledge. Finally, KNACK uses
heuristics to infer additional knowledge. For example, heuristics are used to define the
circumstances in which it is appropriate to ask a question, to make the text of a question more
specific, and to extend knowledge about objects, attributes and relations between objects.

Acknowledgments
We would be remiss if we did not mention our eo-workers in this project. William Rodi (S-Cubed)
made significant contributions. Casey Boyd (CMU) reviewed an earlier draft of this paper. Thomas
Flory and Roland Polimadei of Harry Diamond laboratories (HDL) and Rodney Perala of Electra
Magnetic Applications (EMA) served as our domain experts. We would also like to thank Andrej
Bevec (HDL), John Northrop (S-Cubed), William Proffer (S-Cubed), and Alex Stewart (HDL) for their
support.

References

[Boose84]

[Chandra 83]

Boose, J.
Personal construct theory and the transfer of human expertise.
In Proceedings of the National Conference on Artificial Intelligence. Austin, Texas,

1984.

Chandrasekaran, B.
Towards a taxonomy of problem solving types.
AI Magazine 4(1), 1983.

Z?-\Z

[Ciancey 83]

[Davis82]

[Eshelman 86]

[Kahn 85]

[Marcus85]

[McDermott 86]

[Neches84]

[vandeBrug 86]

Clancey, W.
The advantages of abstract control knowledge in expert system design.
In Proceedings of the 3rd National Conference on Artificial Intelligence.

Washington, D.C., 1983.

Davis, R. and D. Lenat.
Knowledge-Based Systems in Artificial Intelligence.
McGraw-Hill, 1982.

Eshelman, L. and J. McDermott.
MOLE: a knowledge acquisition tool that uses its head.
In Proceedings of the 5th National Conference on Artificial Intelligence.

Philadelphia, PA, 1986.

Kahn, G., S. Nowlan and J. McDermott.
MORE: an intelligent knowledge acquisition tool.
In Proceedings of Ninth International Conference on Artificial Intelligence. Los

Angeles, California, 1985.

Marcus, S., J. McDermott and T. Wang.
Knowledge acquisition for constructive systems.
In Proceedings of Ninth International Conference on Artificial Intelligence. Los -

Angeles, California, 1985.

McDermott, J.
Making expert systems explicit.
In Proceedings of 10th Congress of the International Federation of Information

Processing Societies. Dublin, Ireland, 1986.

Neches, R., W. Swartout, and J. Moore.
Enhanced maintenance and explanation of expert systems through explicit models

of their development.
In Proceedings of IEEE Workshop on Principles of Knowledge-based Systems.

Denver, Colorado, 1984.

van de Brug, A., J. Bachant, J. McDermott.
The Taming of R1.
IEEE Expert 1(3), 1986.

Knowledge Acquisition for Knowledge-Based ·systems Workshop, Banff, Canada, Nov., 1986

ABSTRACT

GENERALIZATION IN A NOISY ENVIRONMENf:
The need to integrate symbolic and numeric techniques in

learning

Yves KODRA TOFF, Michel MANAGO
Inference and learning group

LRI, Univ. Paris-Sud & CNRS, Bat. 490- 91405 ORSA Y, France

Jim BL Y1HE, Clive SMALLMAN
GEC research, West Hanningfield Rd, Great Baddow

CHELMSFORD, England- CM2 8NH

Thierry ANDRO
COGNITECH, 167 rue du Chevaleret, 75013 PARIS, France

This paper describes the main principles by which an integration of two approaches to Machine Learning can be
performed. The work is done under the ESPRIT contract P1063, the INSTIL project, which is concerned with the
application of machine learning to knowledge acquisition for intelligent knowledge based systems. The intended
approach is to integrate several different approaches to Machine Learning and apply the composite system to
knowledge acquisition for commercially available expert systems.

I~ INTRODUCITON

There are several ways to look at Machine Learning. In Similarity Based Learning (SBL) (see for
instance [Michalski 1984; Lebowitz 1986]), one learns from the similarities detected among a set
of positive examples and their differences with a set of negative examples. The approach chosen in
this project belongs to SBL. A distinction, inside SBL, can be made in terms of "symbolic" versus
"numeric" learning. These two approaches differ in their means and their goals.

The mean of the numeric approach is the optimization of some global parameter like entropy in the
case of Quinlan's ID3 [Quinlan 1983], or a disti;Ulce between examples as in Clustering Analysis
[Diday 1979]. Its goal is to point out a subset of the descriptors that are the most useful with
respect to this optimization.

The mean of the symbolic approach is the optimization of a description function, synthesized from
the examples. It is often required that the recognition function be complete, i.e. that it should
recognize all positive examples, and consistent, i.e. that it should reject all the negative examples.
Its goal is to express some conceptual relationship among the positive examples.

It is a well known fact that the numeric approach is rather efficient and robust relative to noise but
generates rules that are not easily understandable by a human expert. On the other hand, the
symbolic approach is well adapted to interactions with experts but cannot handle noise very well
[Dietterich & Michalski 1983; Fu & Buchanan 1985].

One of our goals is to write a system (INSTIL) that keeps the positive features of both approaches,
as described in this paper. This learning system is being built from three learning software which

24-o

were developped at GEC and LRI-IA and is used to generate a rule base for the expert system TOM
developped at COGNITECH which diagnoses tomato diseases.

ll- BACKGROUND MATERIAL

In this section, we describe the existing individual sub-systems (learning software and rule base)
which constitute the background material of the INSTIL project. We will describe in section IV
how these pieces fit together.

ll.A.-MAGGY

MAGGY is an object oriented generalization algorithm [Kodratoff 1986; Manago 1986]. It
outputs conjunctive generalizations of the examples. For a given disease, the left hand side of the
rules concluding to the disease are the positive examples while the left-hand side of all the other
rules are the negative examples. From a set of experts given production rules which can be possibly
given by more than a single expert (these will be refered to as the training examples in the rest of
this paper) or from a set of observations made by experts (fully instanciated training examples),
MAGGY outputs rules which are more general (fewer rules with more general preconditions).

When the generalization fails to be consistent (it covers at least a negative example), MAGGY tries
to use near-misses [Winston 1985] to introduce new intermediary concepts in the language of
description or fill up information which may be missing. Although it has been argued that in "real
life" you rarely find near misses [Fu 1985], we feel that when the positive examples are close to the
negative examples or when the language of description is not very rich, near misses are actually
bound to occur.

ll.A.l. Matching algorithm

MAGGY uses an object matcher to extract all the similarities between the positivive examples (this
has been inspired by the strucural matching algorithm of AGAPE [Kodratoff & al1983, Vrain & al
1986]) which works in two phases:

- Transferring the differences between the positive examples into variables of generalization
-using the dropping rule [Michalski 1983] on all that differs (atomic formulae as well as bindings
of variables)

This allows to separate the deductive generalization steps from the inductive ones [Vrain & al
1986]. We claim that the only inductive rule of generalization is the dropping rule. All the others are
deductive. Consider for example the following rules of generalization :

-Introducing a variable in place of a constant [Michalski 1983].

This is deductive as one long as the binding of the variable is not dropped: f(A 1 , ... ,Ai•····An) <=>
f(A1, ... ,x, ... ,An) & EQUAL(x,Ai)

-Climbing a the generalization tree [Winston 1975; Michalksi 1983].
This is again deductive unless the binding of the variable is dropped (note that formally, a
different is to be made between RED1 and REDO since the first one is a unary predicate while the
other is a constant. On the semantic level, these represent the same concept).

RED1(A) <=> COLOR-OF(x,A) & EQUAL(x,REDO)

Although this remark might seem a bit trivial (in fact it is not as it allows to claim that generalization
is mainly a deductive process), we feel that this is extremely important if one wanted to integrate
Explanation Based Learning techniques [Dejong 1981, Mitchell1983, Silver 1986] into SBL as
one could view 99% of generalization as a deductive proof. This could be useful to learn better

2.4-l

.. ·.

heuristics of generalization. Note that we do not intend to do this in the course of the INSTIL
project, but it is one of the research topics at the LRI-IA.

IT.A.2. Knowledge representation

MAGGY uses normalized (binary predicates) first order logic to represent the examples (a
representation centered on the conceptual objects). This is a logic with three values : TRUE,
FALSE and UNKNOWN.

For instance, there is a REPULSIVE GREEN MOLD ON A RED TOMATO WITH NO YEUOW
SPOTS would be represented as [x: <!SA MOLD> <IS REPULSIVE> <IS GREEN> <IS-ON
y>] & [y: <!SA TOMATO> <IS RED>] & -{z: <!SA SPOT> <IS YEUOW> <lS-ONy>]

MAGGY also uses frames [Minsky 1975, Charniak: 1977] to represent background knowledge. We
feel that it is an improvement over to the classical taxonomic representation as:

-frames allow to use structural knowledge to represent more than a single relation of generality.
We use the AKO (A Kind Of= subset) relationship between frames (for instance MOLD AKO
SYMPTOM) and the PART-OF relationship (LEAVES PART-OF PLANT). While the first one is
used in taxonomies, the second is not. Therefore, frames allow to represent relations of generality
between composite objects which cannot be represented by taxonomies.

- An object may have more than one father. Hence it is possible to have a conceptual object
belonging to several different taxonomies (Although biologists view a TOMATO as being a
FRUIT, in gastronomy it is sometime thought of as a VEGETABLE).

- Frames represent prototypical situtations and (easy) default reasonning. For instance, if the
COLOR slot of the object LEAVES is filled with GREEN, we will not need to write down the
calor of a specific instance.

- Axioms can be attached to a frame as done, for example, in KRL [Bobrow & al 1977] (a
procedure/axiom can be attached to a KRL unit/object). Although we have not yet implemented this
feature, we plan on attaching axioms of the domain to objects of a frame.

We will have $IF-NEEDED triggers to fire axioms such as MATURE(x) ==> RED(x) and

YOUNG(x) ==> GREEN(x) which will be attached to the eo/or slot of the object TOMATO .

- Finally, a theoritical limit of taxonomies is that they require that all the sons exhaust the
possibilities of their father and that they are mutually exclusive. While this may hold in an ideal
environment, in presence of noise this is unlikely to be the case. Furthermore there are fields where
polymorphy must be taken into account.

ll.B-MAIN

Main is a program based on Michalski's A q algorithm [Michalski 1983]. It is presented with a set
of positive and negative examples, all described in terms of a logic called VL that is capable of
representing structures and arbitrary objects. A disjunctive rule for recognising examples of the
concept, written in terms of the same representation, is built by repeatedly. forming conjunctions
that describe subsets of the examples, until all the examples are described. These conjunctions are
fonned by generating plausible descriptions from combinations of the individual statements present
in a chosen ··seed·· example.

This process is very flexible. The expert can start the process off with half-formed concept
descriptions, and by altering the search criteria can build descriptons ranging in form from those
that merely discriminate the current examples from counter-examples to those that attempt to
characterise the examples in some way. There are three features of this approach which we shall
see are important in section IV. They are

1) the vast space of potential decriptions is searched efficiently by a beam search;

2) the method is capable of generating disjunctive concepts, and representing structural
knowledge

3) the method is heavily influenced by the examples that are chosen as ··seed·· examples.

ll.C.NEDDIE

NEDDIE is a learning system similar to Quinlan's ID3 [Quinlan 1983]. Given a set of examples
that may belong to a number of different classes, it produces a decision tree that discriminates
between the classes. It has been argued that decision trees are not a natural way to represent such
data. Thus, the system has been equipped with a method of producing classification rules from
trees [Corlett 1983]. The system has several modifications to unable it to cope with three kinds of
uncertainty or noise in the training set:

- Uncertainty in the training examples

Each example is represented as a set of feature vectors, consisting of a top level example vector
which may point to other vectors as physical parts of the object. Each slot of the vector represents
the value of one of the features used to describe the training set. The feature values may have an
order relation, and can be subsets of the integers or the set of real numbers. Uncertainty in the value
of a feature can be represented either by the symbol DUNNO or by assigning to it a range of
values, a list, or an interval in the case of real numbers attributes. Such examples can affect the
building of the tree in a number of different parts of the tree, with the effect scaled to the probability
of its occurence there.

-Uncertain conclusions in the tree

The system has been designed to use, at will, a number of preference criteria for building the tree,
including entropy and a chi-squared test of the reliability of an attribute. Many such criteria are strill
under experiment. Apart from this, the tree can be terminated at any point if its overall reliability,
based on a chi-squared test, falls below a certain value called min-branch-safety [Corlett 1983].
Thus the conclusions of a tree can be "fuzzy" since it may terminate before an exact classification
has been reached. In such cases, the method of choosing a class for an unseen object (for instance
the probability or majority methods [Quinlan 1986]) is left to the user.

- Uncertainty in the class of an example

Just as any feature of an example may contain an explicit representation of uncertainty, the class to
which it belongs can be expressed with uncertainty. Many people have noted (see for example
[Quinlan 1986]) that the class attribute is particularly sensitive to noise, and in NEDDIE the user
can specify a preferred probability distribution over a number of classes for that example. If such
examples are used, the tree can never produce a complete classification for every case (obviously).

The method used to produce rules from a decision tree is also adapted to noise. If the original
branch tree to which a node relates made an uncertain classification, then the rule produced is
allowed to also. It may be considerably simpler than its tree counterpart, but must contain no less
uncertainty in the sense of the expected information gained in successfully using the rule [Shannon
& Weaver 1949]. Neddie takes the decision tree that it generates, and separates it into its
component rules. These are conjunctions of tests along with their conclusions. Each rule is then
simplified as follows.

Each test of the conjunction is experimentally dropped. If the new conclusion based on the
examples that satisfy the new rule is weaker than the original one, the test is put back in. Otherwise
it is dropped permanently. Thus all tests in a rule that were originally in the tree but not directly
associated with that rule 's conclusion are dropped. Also, because of the use of information theory,
rules with "fuzzy" conclusions can be handled in the same way.

2.4-3

These rules can be given a "flat" representation, understanding that all the descriptors of their
left-hand side must simultaneously take the value TRUE, to allow the recognition of a disease. On
the other hand, one might consider that some descriptors are more important or better defmed, or
more efficient than others. One should then take advantage of this knowledge by checking the better
ones first. It also often happens that some descriptors are redundant and must be used as merely
confmnatory, while some others are to drive the recognition process. All this belongs to the set of
strategies usually painfully programmed in order to improve the functioning of an Expert System.
In our approach, we shall generate an order on the descriptors.

ll.D. TOM

This expert system diagnoses tomato plant diseases, finding the most probable disease given a set
of symptoms. Advice is given both in terms of treatment and prevention of recurrence. It is an
operational system, used by plant protection technicians, agricultural technicians and students.

Its functioning is based chiefly upon an interactive dialogue between the user and the inference
engine. The vocabulary is that used by human experts, allowing for no computer jargon or
abbreviated forms.

The system is based on approximately 280 production rules using 200 descriptors with certainty
factors. These descriptors were obtained from specialists in phytopathology from the French
"Institut National de Recherche Agronomique".

The system is still under improvment due to some limitations of the original knowledge base and to
a natural evolution in the expertise domain. These improvments will be carried out in parallel with
the INSTIL project. Besides obtaining automatically learned rules as described in this paper, we shall
also attempt to use INSTIL as a benchmark for the use of Machine Learning, as an aid for the
development of industrial Expert Systems.

m. MOTIV ATIONS OF THE INSTIL PROJECT

One of our goals is to obtain fewer rules to diagnose the diseases based on the rules given by
several different experts. A second goal is to learn strategies to be used during consultation (which
questions to ask first, what are the relevant intermediary subgoals).

Collecting training examples from several experts is very important since different experts often
have different views on how to solve a problem (they even sometime disagree on what the diagnose
of some specific diseases ought to be). Hence, we expect the data to give a complete picture of the
domain and to be as representative as can be. We also intend in the future to use the system in more
classical manner, i.e. generate rules from a large collection of observed data.

illA. Handling of noise

In signal processing, noise is defined as "everything that should not have been there" and
"everything that is missing". When dealing with knowledge, this defmition has to be expanded to
"eveything that disrupt the environment that we want to learn from and cause incorrect
consultations". One of the aims of the INSTIL project is to build a system that can detect and recover
from noisy data. In ac.hieving this, some classification of the kinds of noise encountered in
multi-experts knowledge acquisition is necessary, and a first approximation is presented here.

ill.A.l. Types of noise

a) - Natural noise

We defme it to be the noise that originates from the concept themselves. We assume (in this
paragraph) that the descriptors provided by the experts are as complete as we need (the noise due to

an inadequate description space will be studied in the next paragraph). We have identified three
kinds of natural noise.

- Some concepts are very hard to notice

F or_instance, a discriminating feature of the disease "Colletotrichum Coccodes" is the presence of
tiny black marks on the roots, less than one millimetre in size, which are hard to see and often
missed during consultation ..

Note that this noise could come from the conjunction of some descriptors (jar instance, it is harder
to see a green spot on a green leaf than on a red tomato).

- Two concepts are likely to be confused with one another during consultation.

For example, a brown spot on a tomato fruit often looks like rotting tissue.

While the skilful experts who provide the examples to the system are unlikely to confuse the two,
there is a strong chance that the user of the system will. This type of noise originates from the
difference of skill between the persons who build the system, and the persons who use it.

- There can be what we have called symbolic noise. By this, we mean that there is
a real overlap in the concepts (jar example, when does dark grey stop being grey to become
black?). In this case, the noise exists in the definitions of the descriptors themselves and even the
experts could make a mistake. When symbolic noise is present, it is often the case that experts
disagree on the value that is to be given to the noisy descriptor.

-Finally, the domain can be ill-defined meaning that the experts do not yet have the knowledge to
correctly diagnose certain diseases (for example he cannot be sure wether it is disease A or disease
B). This can sometime be due to the fact that some further analysis is needed but that this data is not
available during consultation and hence that it cannot appear in the experts rules. For the sake of
simplicity, we will consider that in this case the domain is ill-defined eventhough it is not. For
instance, several diseases are caused by differ.ent viruses and it is not possible to differenciate
among these without doing some analysis in laboratory (this data will never become available to the
users of the expert system) . We deal with this kind of noise by putting all the different classes of
examples in a single class and not attempt to do any further diagnose (we will only diagnose the
disease VIRUS and not attempt to find which virus is causing the disease).

b)- Expert noise

We assume (in this paragraph) that expert noise is not introduced because of natural noise in the
concepts. Expert noise can be:

- Spelling mistakes (trivially handled)

- Giving the wrong value to a descriptor (for other reasons than symbolic noise)

-Forgetting to mention a descriptor (for other reasons than the descriptor is hard to see).
This is often caused by the fact that people often forget to mention what ought to be absent (eg the

leaves must not be crumpled). Note that this is only the case in learning from experts rules (and not
from observations) as they have in their heads knowledge like "whenever there is X, then it is not
disease A".

-Describing one disease, and attributing the description to another (our plant pathologist might
have studied the fermentation of grapes a bit too closely!).

- Basing a description of one disease on a plant that in fact has several diseases.

- Using redundant descriptors. This frequently occurs when the examples are given by several

~4-4.5

different experts. We will see in section N.A. that this is actually a positive feature.

- Providing a language of description which is not rich enough

This last kind of noise occurs when a richer language of description is needed in order to
discriminate two diseases or in order to discriminate the generalizations of examples of diseases.
Consider the following:

R1: [x: <!SA PLANT> <AGE MATURE>] & [spotsl: <!SA SPOT> <NUMBER SEVERAL>
<COLOR WHITE> <FORM CONCAVE>] & {fruitl <!SA FRUIT>] & [facel: <PART-OF

fruitl> <IS EXPOSED-TO-SUN>] =>SUNBURN

R2: [x: <!SA PLANT> <AGE MATURE>] & [spotsl: <!SA SPOT> <NUMBER SEVERAL>
<COLOR YEUOW> <FORM CONCAVE>] & [fruitl <!SA FRUIT>] & [facel: <PART-OF

fruitl> <IS EXPOSED-TO-SUN>] =>SUNBURN

By climbing the generalization frame, one could conclude that a caracteristic description of
SUNBURN is : there are Jig ht colored spots on the face of the fruit exposed to the sun.

R3 : [x: <!SA PLANT> <AGE MATURE>] & [spotsl: <!SA SPOT> <NUMBER SEVERAL>
<COLOR GREY-BEIGE> <EVOLUTE-INTO spots2> <FORM CONCAVE>] & [spots2: <!SA
SPOTS> <COLOR BROWN>] & [fruitl <!SA FRUIT>] & [facel: <PART-OF fruitl> <IS

EXPOSED-TO-SUN>] & [leavesl: <!SA LEAVES>] & [symptom]: <!SA SYMPTOM>]=>
NARCOSIS-OF-FRUIT-EXTREMITY

Since grey-beige is also a light eo/or, the negative example shows that the color is light expect grey
beige (the language of description should be enriched by introducing a new intermediary concept as
done in [Fu & Buchanan 1985]) or that we chosed the wrong eo/or frame, or that the expert forgot
to provide some frames where WHITE and YELLOW appear. (one could also learn that the color
of the spots is stable in the case of SUN-BURN or that there are no symptoms on the leaves).

Automatically identifying which of them is valid requires a study of close negative examples which
differ by only one characteristic (Winston's near misses [Winston 75]). If there are none, we have
to ask for some help to the experts.

For example, the expen has to say that the language of description ought to be improved since
WHITE and YEUOW belong to the frame TRANSLUCENT while GREY-BEIGE does not. (in
the present case, the fact there are no symptoms on leaves is also relevant). The correct
generalization will then be : there are translucent spots on the part of the fruits exposed to the sun
and no symptoms on the leaves.

ffiA.2 -Observable effects and treatment of noise

Natural noise is handled by discouraging the use of the noisy descriptors. We keep a symbolic
RELIABILITY variable associated with the concepts describing the disease. We pass on this
information as a heuristic so that the systems favor the most reliable concepts. The RELIABILITY
is currently given by the expert, but we may in future be able to detect unreliable descriptors
automatically by analysing incorrect diagnoses. In addition, symbolic noise can be detected when
two different experts disagree on the value of a descriptor.

In the rest of this section, we will discuss how expert noise can be detected.

ID.A.2.a. Overlapping of positive and negative examples.

Z4-5

We consider a positive example and a negative example to overlap when one is a generalization of
the other. Such an event is easily detected as soon as we try to build rules and test them. When this
occurs, two different actions can be taken.

- By using default domain specific knowledge we try to remove the confusion between the two.
The expert is informed of the automatic completion of the examples. Here is an example of this :

Disease of the tomato "tobacco mozaic virus":
"A yellowing and mozaic on the leaves"

Counter-example. Disease of the tomato "potato virus Y":
"A yellowing and mozaic on the leaves which are crumpled"

Using default knowledge, we fill up the missing information in the example that the leaves are not
crumpled (in normal state) instead of applying the dropping rule on this descriptor.

-When this fails, we go back to the human expert asking him to separate the two. If the example is
a generalization of the counter-example by only one characteristic (it is a near miss [Winston
1975]), we suggest that the example is made more specific so as to exclude the counter-example.
This can be done by specializing a rule or by adding the negation of a descriptor.

Disease of the tomato "sclerotinia sclerotinium":
"Brown or beige alteration of the stem, 5 cm up, with diffuse limits"

Counter-example. Disease of the tomato "dydimella lycopersici":
Brown or beige alteration of the stem, 5 cm up, with diffuse limits and
wet tissue.

From these two descriptions we propose the solution of adding to the description of the example
the descriptor "not wet tissue" which becomes dry tissue (which is not a default value).

If the expert cannot give immediate feedback, the faulty examples are put into a class of their own
and the system carries on.

1I.A.2.b. An example contradicts domain knowledge.

This is usually caused by a diagnostic error on the part of the expert. Similarity-based learning
systems have been criticised in the past for not making much use of domain knowledge, but it will
play a role in the INSTIL system for the detection and treatment of noise.

ll.A.2.c. Noise in the examples can break clusters.

In the typical problem domain of a learning system, an element of regularity is often present. This
has been exploited in a number of systems to suggest examples which may be affected by noise, eg
Metaxa3 [Emde 1986] or AQ15 [Michalski & al 1986]. Using this technique, if one example is
strikingly different from the others, it is considered .. suspect"" and the expert is notified.

It must be stressed, however, that unlike the other two effects of noise listed here, this result could
be caused by a perfectly good example thought of by a single expert, and is only to be used as a
guide rather than a rule.

m. B. Other motivations

We aim at producing a system that keeps the best of each individual systems. This includes:

- Handling of noise as described in the preceding section

·:.·.·

- A powerful representation of knowledge. For instance, making use of structural knowledge and
first order logic will allow NEDDIE to ask questions such as "Is there a symptom with a light
color?" instead of"ls there the attribute red?" etc ...
- Finding an intelligent disjunctive _generalization of the experts given rules. As we will see in the
next section, it is not always possible to find purely conjunctive generalization. Nevertheless, we
are not interested in "stupid" generalization such as the disjunct of all the training examples.
-Generate efficient strategies (this includes fmding an ordering of the attributes, intermediary
subgoals and so on)

IV- PROPOSED APPROACH OF THE INSTIL PROJECT

IV .A - Setting up the questionnaires

The descriptors contained in the current version of TOM are significant in the case of expertise on
tomatoes, since they come from the expert himself. We shall add to these "tomato issued"
descriptors, some others used in the context of other plant pathology. In this accumulative process,
we will forget insignificant descriptors only. We consider the redundancy that will almost certainly
show up to be a positive feature, enabling us to solve cases not expected by the experts. It will also
help in the building of rule strategies as described in section IV.B.3.

Once a set of descriptors is chosen, a questionnaire containing them and the possible diseases
will be set up. Several experts will be asked to fill up the questionnaire while being shown real
diseases. Given a real case, they will have to make a diagnosis, firstly on the name of the disease,
secondly on the associated values of all the descriptors. This method has already been used in
[Michalski & Chilauski 1980].

We are very sensitive to the importance of a good questionnaire, and its relations to noisy data, as
explained above. Therefore, the questionnaire will never be considered as final. It must be modified
depending on the results. It is clear that asking again Human Experts to fill it up, perhaps several
times, as we presently plan to do, is a cumbersome process. This shows well why some
Explanation Based Learning could be useful in order to bring in modifications to the rules already
learned, without the need of filling again the questionnaires. But this is at present a purely far-off
research topic.

IV .B Merging the current systems.

In this section we describe how -we intend to merge our current systems to produce a system
capable of achieving the goals laid out in the previous section.

IV .B.l A combination of Neddie and Main.

The reason for the success of Neddie and systems like it in the presence of noise is strongly linked
to the top-down approach of building a decision tree. Individual examples only have a significant
effect at lower levels of the tree, and thus an earlier termination of the tree based on a statistical
approach can be effective [Blythe, 1986]. We will use this feature of Neddie's approach in the
integrated system, although the actual tree structure will not be used as a representation of
knowledge. ·

A drawback of Neddie, however, is that it cannot represent structural knowledge adequately. An
attempt to give Neddie this power of representation without altering its search technique would
increase the complexity of the algorithm unreasonably. In Main, on the other hand, we have a
system with sufficient power that also performs an efficient search through the space of possible
concept descriptions.

Part of the INSTIL system will use Main's techniques to select good tests to be built into a
Neddie-like search tree. Thus we preserve Neddie's top-down approach and can also make use of

24-7

the structural information that is a feature of our plant pathological domain. This sub-system has
been dubbed the Downwards Evaluating Neddie and New-main Integrated System, and will be
referred to as ··nENNIS .. in this paper~

IV.B.2- Generating diagnostic rules

These will be generated by merging DENNIS and MAGGY. MAGGY is a system which is well
suited to produce conjunctive generalizations. Nevertheless, it is often the case that conjunctive
generalizations (even minimal ones) are inconsistent (i.e. too general since there is at least one
counter-example which is covered by them). Hence, a disjunctive generalization which will reject
every counter-examples is needed. Consider the following:

Let El, E2 and E3 be three examples, and CE a counter-example:

El: [x: <!SA FRUIT> <COLOR RED> <SIZE VERY-BIG> <TEXTURE SOFT>]
E2: [x: <!SA FRUIT> <COWR GREEN> <SIZE BIG> <TEXTURE HARD>]
E3: [x: <!SA FRUIT> <COLOR GREEN> <SIZE VERY-BIG> <TEXTURE HARD>]

CE: [x: <!SA FRUIT> <COLOR RED> <SIZE BIG> <TEXTURE ANY>]

A complete conjunctive generalization of the examples is [x: <!SA FRUIT> <COLOR ANY>
<SIZE LARGE> <TEXTURE ANY>]. It is intuitively clear that it is minimal and it covers CE. A
less general expression must be found (which will countain disjunctions) which can be: [x: <!SA
FRUIT> <COLOR GREEN> <SIZE LARGE> <TEXTURE HARD>] / [x: <ISA FRUIT>
<COLOR RED> <SIZE VERY BIG> <TEXTURE SOFT>]. This is actually the same as making
two packages, one with El in it and one with a conjunctive generalization of E2 and E3. There is an
alternative consistent disjunctive generalization which is to make two packages , one with a
conjunctive generalization of El and E3 and the other with E2 in it. In this case, the discriminating
attribute is going to be the SIZE instead of the COLOR.

We plan on using DENNIS to find out a set of attributes that cannot be generalized. We then pass
on this information to MAGGY and generalize the individual clusters. By taking the disJunction of
the clusters which belong to the same class, we produce an intelligent disjunctive generalization of
each class. There will be some heuristics used by DENNIS which could be:

- Minimize the number of disjunctions in the generalization
- Maximize the explicability and homogeneity of the packages of training examples (how well the
expert can explain the generalization and how well the training examples are linked to the
generalization in each package)
- Minimize the number of unreliable tests made at each level of the decision tree (see section
TII.A.l.a).
- Favour some expert given attributes.

In the previous example, we would pick the disjunctive generalization yvhichfavors COLOR as it is
a more reliable attribute than SIZE (there is more symbolic noise between BIG and VERY-BIG)
than between RED and GREEN unless the user is color blind).

Presendy, DENNIS has not yet been implemented and we have only tried to integrate NEDDIE and
MAGGY (by writing some software to turn NEDDIE's knowledge representation into MAGGY's).
This quick and simple method works as follow: NEDDIE generate a decision tree and MAGGY
finds a generalization of the individual clusters. In the near future, we plan on inter-mixing the
systems as described next.

When DENNIS will be used to generate decision trees, it is possible that the search space becomes
too immense. If this happens, we will rely on MAGGY to create a window in the space of negative
examples and to pass on a smaller set of attributes which DENNIS will use to generate the decision
tree. This will be achieved by finding a conjunctive generalization of the positive examples and
analyze (criticize) the inconsistencies. The negative examples covered by the generalization will

constitute the window, while the attributes that have been over-generalized (since no negative
example was covered at the beginning of the process, it is clear that some attributes have been over
generalized) will make the smaller set of attributes. Therefore, by looking at the trace of the
conjunctive generalization process, we will explain what went wrong (identify the faulty step) and
specialize it by introducing a disjunction. This will· allow the system to find an intelligent
disjunctive generalization as well as an ordering on the descriptors.

IV .B.3. Generating strategies for the diagnosis of diseases

Two features of a typical diagnostic expert system that must be taken into account when the rules
are used are

1) the user may not be able to answer all our questions in a typical consultation (jor instance, it is
ridiculous to ask a user a question about the state of the leaves when the user does a consultation !Jy
using a picture which only shows the fruits and he cannot access any other information).
Therefore, the system must be able to find more than one way of making a diagnosis and hence
find alternative strategies;

2) there will typically be many rules, so an efficient strategy must be found to access the rules that
are applicable to a given situation.

Our approach to the first problem is two-fold: we produce rules that save as much information as
possible in the plant description, and we do not require that all of the description be verified before
making the conclusion associated with the rule. Thus a rule can be ""fired·· in many different ways.

In some learning domains, an efficient strategy for firing rules may be provided by the expert in
terms of sub-goals for the diagnosis. If given it, we would certainly use this information, but if
not, INSTIL can be used to generate partitions of the rule base by common features, allowing us to
access the rules efficiently.

V. CONCLUSION

We have presented the main goals of the INSTIL project, which are to build a learning system
capable of generating the required knowledge and strategies for a real-world expert system that is
capable of functioning well in the presence of noise. We believe that "evolutive" or "adaptive"
Intelligent Knowledge Based Systems (IKBS) will grow out of fundamental research such as this.
They will have the ability to manipulate and expand their own knowledge bases whilst allowing for
human guidance.

Clearly then advances on the current situation will be made. This includes the merging and
extension of existing symbolic and numeric learning techniques, to facilitate IKBS knowledge
acquisition, the provision of tools for domain experts to capture and encode their knowledge more
easily, and the provision of a working prototype as a methodological basis for future research in
IKBS.

Acknowledgments

This research is partially sponsored by ESPRIT contract 1063 :INSTIL. LRI research in Machine
Learning is also sponsored by PRC & GRECO "Intelligence Artificielle".

REFERENCES

[Bobrow & al 77] Bobrow, D. G. and Winograd, T.
An overview of KRL, a knowledge representation language, Cognitive Science, Vol1, No 1, pp.
3-46, 1977.

[Charniak 1977] Charniak, E.
A framed painting: The representation of a common sense knowledge fragment., Cognitive
Science, Vol1, No 4, pp. 355-394, 1977.

[Corlett 1983] Corlett, R.
Explaining induced decision trees, Proc. Expert systems, 1983, pp. 136-142.

[Dejong 1981] Dejong, G.
Generalizations Based on Explanations, Proc. 7th IJCAI, 1981, pp. 67-69.

[Diday 1979] Diday E., Simon J.C. Clustering Analysis, in Communication and Cybernetics
Digital Pattern Recognition, Fu K. S. ed, Springer Verlag Berlin 1979.

[Dietterich & Michalski 1983] Dietterich, T. G. & Michalski, R. S.
A comparative review of selected methods for learning from examples. In Machine Learning: An
artificial intelligence approach, Vol. 1, chapter 3, Michalski R. S., Carbonell J. G., Mitchell T. M.
eds, Morgan Kaufman 1983.

[Emde 1986] Emde, W.
Great flood in the Blocks World, pro~eedings ofEWSL, Universite d'Orsay 1986.

[Fu & Buchanan 1985] Fu, L. M. & Buchanan, B. G.
Inductive Knowledge Acquisition for Rule-Based Expert Systems. Knowledge System
Laboratory, Computer Science department Stanford University 1985.

[Fu 1985] Fu, L. M.
Learning object level and meta-level knowledge in expert systems. Phd thesis, Stanford university
1985.

[Kodratoff & al1983] Kodratoff, Y. & Ganascia J. G.
Improving the generalization step in learning, in Machine Learning :An artificial intelligence
approach, Vol. 2, Michalski R. S., Carbonell J. G., Mitchell T. M. eds, Morgan Kaufmann 1986.

[Kodratoff 1986] Kodratoff, Y.
Learning expert knowledge by improving the explanation provided by the system. Proc. of the first
International Meeting on Advances in Learning, Les Arcs 1986.

[Lebowitz 1986] Lebowitz, M.
Integrated Learning: Controlling Explanation, Cognitive Science 10, 1986.

[Manago 86] Manago, M.
Object Oriented Generalization: A Tool for Improving Knowledge Based Systems. Proc. of the
first International Meeting on Advances in Learning, Les Arcs (France) 1986.

[Michalski & Chilausk:i 1980] Michalsk:i, R. S. and Chilausk:i, R. L
Learning by being told and learning from examples: an experimental comparison of the two
methods of knowledge acquisition in the context of developing an expert system for
soybeandisease diagnosis. Policy Analysis and Information Systems, Vol4 No 2 June 1980.

[Michalski 1983] Michalski, R.S.
Theory and Methodology of Inductive Learning , in Machine Learning, an Artificial Intelligence

Approach, Michals.ki R.S., Carbonell J.G., Mitchell T.M. eds, Tioga Publishing Company 1983.

[Michalski 1984] Michalski R.S.
Inductive Learning as Rule-guided Transformation of Symbolic Descriptions: a Theory and
Implementation, in Automatic Program Construction Techniques,Biennann A.W., Guiho G.,
KodratoffY. eds, Macmillan Publishing Company, 1984.

[Michalski & al1986] Michalski, R. S. & Mozetic, I. & Hong, J. & Lavrac N.
The AQ15 Inductive Learning System: An overview and experiments. Proceedings of the
first International Meeting on Advances in Learning, Les Arcs 1986.

[Minsky 1975] Minsky, M.
Aframeworkfor representing knowledge, in The psychology of computer vision, P.H. Wmston
ed, Me Graw-Hill, New York 1975.

[Mitchell 1983] Mitchell T.M.
Learning and Problem Solving, Proc. UCAI-83, Karlsruhe 1983, pp. 1139-1151.

[Quinlan 1983] Quinlan, J. R.,
Learning efficient classification procedures and their application to chess end games , in Machine
Learning, An Artificial Intelligence Approach, Michalski R.S., Carbonell J.G., Mitchell T.M. eds,
Tioga Publishing Compagny 1983.

[Quinlan 1986] Quinlan, J. R.
The effect of noise in concept learning, in Machine Learning : An artificial intelligence approach,
Vol. 2, Michals.ki R. S., Carbonell J. G., Mitchell T. M. eds, Morgan Kaufmann 1986.

[Silver 1986] Silver B., Precondition Analysis :Learning Control
Information in Machine Learning :An artificial intelligence approach,
Vol. 2, Michals.ki R. S., Carbonell J. G., Mitchell T. M. eds, Morgan Kaufmann 1986

[Shannon & Weaver 1949] Shannon & Weaver .
The mathematical theory of communication. University of Tilinois press, Urbana 1949.

[Vrain & al1986] Vrain C., Manago M., Ganascia J. G., KodratoffY.
AGAPE: An algorithm that learn from similarities, Proc. European Working Session on Learning-
86, Universite d'Orsay Paris-sud 1986.

[Winston 1975] Winston, P.H. Learning Structural Descriptions from Examples, in The
Psychology of Computer Vision, Winston, P. H. ed, McGraw-Hill, New York 1975.

~-1\

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

DRAFT

YAKYAK

Yet Another Kit for Your Acquisition of Knowledge

The knowledge acquisition tool clearly not named by a marketeer.

Abstract

Jim Kornell

General Research Corporation

PO Box 6770

Santa Barbara CA 93111-6770

In the following, an extended abstract is given for YAKYAK, a

knowledge acquisition tool. The abstract is broken into four parts. First,

our motivation for yet another knowl~dge acquisition tool is described.

Then, in a section called "Context and Constraints", we offer our

understanding of the nature of the knowledge acquisition task. We then

describe YAKYAK, and finish by offering an initial assessment.

1. Motivation

YAKYAK is an effort to extend our past work in knowledge

acquisition systems [1,2,3], while taking advantage of other's ideas to

provide capabilities our tools have lacked. As we have used our tools, we

have become more aware of their strengths and their weaknesses, and YAKYAK

is an attempt to augment those strengths while correcting the failings.

Beyond this, we felt that recent work has demonstrated powerful techniques,

but the systems demonstrating these techniques were either (a.) academic

investigations somewhat remote from applications areas (e.g., CLUSTER/S

[4]), (b.) didn't go far enough or weren't broad enough (e.g., ETS [5],

zt:;-o

RuleMaster (6]), (c.) contained what we consider to be epistemological

errors (MORE [7]), or (d.) too far from completion to deter current work

(CYC (8]).

Since knowledge acquisition is both important and facinating, we

wanted to try our hand at a system integrating our favorite knowledge

acquisition capabilities. YAKYAK is the result.

2. Context and Constraints
.We believe the most critical requirement for a knowledge

acquisition system is that it let the expert chose and direct an

appropriate level of representation for the knowledge sfhe deems

important. In building a knowledge acquisition system, the first problem to

solve is:

How can the expert easily (even unthinkingly) create the most

appropriate representation for her or his knowledge?

This approach shortcircuits any debate over causal versus

evidential knowledge being best for a particular system. If one

accepts Hume, the idea of "cause and effect" has no referent in the real

world (9,10]. We see no need to attempt to direct the expert to use one or

the other kinds of knowledge. Rather, following Kuipers [11], we see

causal and evidential knowledge distinguished by whether the state

variables needed to draw conclusions are implicitly or explicitly

expressed. YAKYAK employs slightly different knowledge acquisition

techniques for each, but calls little of the expert's attention to the

difference. A knowledge acquisition system should accept knowledge in

whatever form(s) the expert feels it is best expressed.

Two complications should be mentioned. First, strategies of

applying knowledge affect approaches to gathering it. For example, one may

gather knowledge differently for classification [12,31] and construction

(13] problems. The capability of the system to use important knowledge may

be constrained. For example, the expert may have a guiding metaphor, but the

system may not be able to use it. So, a knowledge acquisition system

shouldn't be unable to accommodate important information because of expected

constraints in a planned reasoning system; at the same time, it shouldn't

waste time gathering knowledge it can't use.

The second complication is the necessity of matching the system to

the behavior of the expert. As much as possible, the system should meet

the expert in her or his territory, rather than force the expert to adapt

to the system. In hand-crafted knowledge acquisition, technical details

of knowledge representation and application are hidden from the expert.

This is more difficult in an automated system. The more the system can

support and reinforce the expert doing what s(he is good at, and the less

it can require the expert to do something s(he feels uncomfortable with,

the better.

With the above concerns as the background, we designed YAKYAK to

handle three kinds of knowledge:

• Prepositional objects and the static relationships among

them;

• Procedural -- the dynamic relationships and behaviors

observed in the world; and

• Metaknowledge -- an understanding of the meanings,

structures, and limits of the above two classes of

knowledge.

Although YAKYAK has reasoning abilities, we do not view YAKYAK

as a reasoning system per se. While the knowledge structures it produces

can certainly support nonmonotonic reasoning, we have not yet included that

capability. We do not deal with reasoning with counterfactuals [14], nor do

we deal with circumscription for reasoning about commonsense knowledge

[15,16].

3. YAKYAK System Description

There are two aspects of YAKYAK to be discussed: automated

interviewing to gather knowledge, and the facilities for representing

knowledge in the expert's terms.

A. Automated Interviewing

We want to build a documented knowledge architecture. A

knowledge architecture encompasses both the structure and content of an

expert's knowledge about. a domain. Content means specific facts and

behaviors within the domain. Structure is the way the pieces fit together.

A documented architecture holds not only the operational domain knowledge

but the justifications and rationales for the knowledge as well.

In the following, the sequence of the YAKYAK interview is given,

wi.th the focus on gathering operational knowledge. At each step, the

expert is queried for and encouraged to supply documentation knowledge as

well. This can take the form of annotation attached to particular chunks

of knowledge, or a higher level discussion attached to knowledge clusters.

The goal is an architecture of knowledge entities which reflect

the structure and content of the problem domain. A knowledge entity is

a grouping of related facts and heuristics, of similar abstraction or

detail, which are closely coupled to one another and less closely

coupled to the rest of the world.

To begin, YAKYAK asks for a name or brief description of the

problem to be solved. It then asks for all of the decisions which might be

reached, and records whether the goal is to select a decision or to rank

some or all of the possibilities. This becomes the highest level

knowledge entity.

YAKYAK then asks if there are any subproblems to be solved in order

to make a decision. If there are, the process recurses, and the name of

each subprocess and its possible decisions are recorded as the next

level of knowledge entities. Connections between subproblems are

classified as serial, concurrent, or independent. Serial means that

subproblem A must be solved before subproblem B; concurrent means that

subproblems A and B must be solved at the same time; and independent

means that the ordering of subproblem solutions makes no difference.

This process goes on until the expert is satisfied that an appropriate

granularity of knowledge entity has been achieved -- that none is larger

than (in Seymour Papert's phrase) "a mind-sized chunk". Particular

stress is laid on decomposing subproblems with concurrent relationships,

since concurrency suggests that parts of each subproblem may relate to

the other(s) serially.

This gives YAKYAK is an initial sketch of the knowledge

architecture. The next step is to try to fill in the connections of the

various knowledge entities to each other and to the outside world. We've

already made a start, in that many of the ~ubproblem decisions are likely to

be conditionals in the "parent" knowledge entities. YAKYAK asks the

expert for each entity of the nascent architecture whether any of the

knowledge entity descriptors from the lower levels should be regarded as

conditionals. Completion of the process leaves YAKYAK with a starting

idea of the internal coherence of the knowledge architecture.

To get the connection of the various knowledge entities to the

outside world, we use a technique stolen from ETS. We present triplets

of decisions, and ask for conditions which distinguish two of the presented

decisions from the third. The distinguishing feature may already be present

in the knowledge entity, being a previously specified subproblem. If it is

not, it is added. This process is repeated exhaustively for each knowledge

entity. Note that unlike ETS, the relations as described by the expert are

taken on faith. We do not build entailment graphs nor do we try to

disambiguate differences between the expert's stated and manifested

internal models.

Throughout the process of eliciting conditions, whenever the number

of conditions with a knowledge entity exceeds eight, we urge the expert

to consider whether a further decomposition of the knowledge entity is

in order [17].

Last, YAKYAK asks for exception ("unless") conditions for each

knowledge entity. While these are logically identical to the other

conditions, it seems that posing the question in this way encourages the

expert(s) to think of relevant exception conditions which might not

otherwise be enunciated.

At this point, YAKYAK has the basic knowledge structure. We want

to flesh in more detail. YAKYAK now asks the expert for condition

definitions. For each condition in each knowledge entity, the ranges of

legal values are sought. If a condition is a decision in a lower level

knowledge entity, the condition receives the decision values from that

entity. Otherwise, the expert is asked directly. Whether the condition

values come from decision values or are freshly defined by the expert, an

ordering of values is requested. Some standard orderings are presented

(linear, circular, mutual exclusion, unordered), or the expert can supply

herjhis own. The expert is also asked whether any of the values (or ranges

of values) should be marked as typical or atypical.

For external conditions (those requiring information from the

world), the expert is queried about data reliability. The expert can

specify either particular condition values or ranges as being of higher or

lower reliability, or that all values for a particular condition are of

* higher or lower reliability .

As a 'last step in building a knowledge architecture, YAKYAK asks

the expert to order the conditions and to rank condition saliencies.

Conditions can be marked like relations between subproblems: serial,

concurrent, or independent. Thus, order of condition evaluation is under the

expert's control. The expert is also asked for a linear ranking of the

importance of the conditions in making a decision. The options exist to rank

them, to decline to rank them (in which case they are treated as of equal

salience, except when salience is temporarily affected by the typicality or

atypicality of condition values), or to rank them on salience tiers (giving

* In MORE, this is called test conditionalization and test differentiation.

two or more conditions identical rankings).

At this point all of the pieces are in place, at least at a first

draft level. Henceforth, the expert can at will revert to any stage in the

process to modify the knowledge architecture. Knowledge entities can be

added, removed, or changed; conditions can be eliminated, elaborated, or

circumscribed; decision possibilities can be increased, reordered, or

constricted. An important side effect of the process of describing actions

in the domain (described below) will be recognition of faults in the

knowledge architecture. YAKYAK wants to encourage as much as possible

the quick rectification of errors.

There are four approaches to eliciting the behaviors of each knowledge

entity. YAKYAK uses scenario generation, completeness an~ consistency

checking, induction, and direct querying. The expert has the choice of

approaches and order of use.

Scenario generation allows a rapid exploration of the space within

a knowledge entity. The process is simple: example conditions are

presented to the expert, who then specifies one or more decisions (with

attendant certainty). The strategy of the scenario generator is to create

sets of condition values which reflect either typical or boundary

situations. When this has been done for each knowledge entity, the

completeness checker can be used to fill out the gaps between the typical

and the boundary states for each entity.

The rationale for scenario generation is that experts should spend

more time doing (answering specific questions within their area of

expertise) than describing (reporting their reasoning processes). In

general, experts are recognized by their ability to make correct decisions

when faced with real circumstances. We feel that interview time spent

doing what the experts are good at satisfies two important goals. First,

since experts are usually quite fast at this kind of exercise, a large

amount of knowledge can be gathered quickly. Second, and at least as

important, having the expert engaged in something sfhe is good at

reinforces the expert's use of the tool.

Besides its rapidity, scenario generation has two further

advantages. It provides support for knowledge acquisition in the common

cases where the expert only remembers a particular rule when reminded of it

by some unusual set of circumstances. And, when used with the completeness

checker, it lets the system protect itself to some extent from letting any

"area" within a knowledge entity be too sparsely defined -- this in turn

supports better partial match inference [32] and graceful degradation.

The completeness checker can be used independently of the scenario

generator, to look for underspecified situations within each knowledge

entity. Because some (often many) of the conditions will have ordered

values, we can look for potential situations which are in some sense

"midway" between two known situations. The consistency checker looks for

very similar situations within knowledge entities which generate different

decisions. Such situation pairs (or groups) may not in fact be

inconsistent; however, the system can call such pairings to the attention

of the expert for validation or correction.

Our use of induction for rule generation is discussed elsewhere

(3,18), and need only be covered briefly here. In common with other systems

(19,20,21], we induce general rules from the (usually) specific examples

created using the scenario generator. Such general rules can be created

and put in place automatically. YAKYAK prefers to show each induced rule

candidate to the expert for acceptance, correction, or rejection. To the

extent that this induction is a form of learning, it is similarity-based

learning. YAKYAK has no facilities for explanation-based learning [22].

Finally, the expert can simply tell the system the rules. In most

domains there are some special cases which might not be picked up using the

scenario generator. And, there may be situations which appear possible as

* combinations of condition values but which in fact are never seen . For

either of these cases, or if the expert simply prefers to tell the system

straight out, a facility for direct entry of rules is present.

* The expert can use a special decision -- unrecognizable circumstance
-- to indicate that a combination of condition values is not allowed.

Z'5-7

Once the knowledge architecture is complete, the expert can test

the system. Sfhe can examine the decisions when YAKYAK queries itself via

the scenario generator. Or, questions can be posed directly to the system.

The normal process of knowledge acquisition will have any and all of the

above steps reiterated as necessary, until the expert is satisfied with the

performance of the system.

B. Facilities for Representing Knowledge

There are three interesting aspects to knowledge representation in

YAKYAK:

1. segregation of levels of knowledge;

2. dealing effectively with uncertainty; and

3. knowledge of expectations.

Vertical and horizontal segregation of levels of knowledge

corresponds to information hiding in traditional software, and is desirable

for the same reasons. Vertical segregation means that different levels of

knowledge are distinct. This includes (but isn't limited to) segregating

domain and control knowledge. Horizontal segregation means that knowledge

clusters on the same level of granularity but with different subjects are

separated. Two crucial elements for any knowledge system are

comprehensibility and maintainability. Segregation of levels of knowledge

makes each knowledge entity easier to understand, since all of its contents

have a single referent. And, it makes maintenance easier, by isolating all

of the knowledge about a particular object or event within a well-defined

entity.

Segregation is achieved by requiring that for any knowledge entity,

whatever the number of conditionals and conclusions, conditions and

conclusions are disjoint sets; and all elements within a knowledge entity

partake of only the allowed conditionals and conclusions. (This implies

that while conditionals may be correlated -- orthogonal factors are hard to

find in the real world -- they are independent. Non-independent

conditionals should be segregated.)

The architecture of knowledge segregation takes two forms.

Embedded invocacion is the means of structuring vertical segregation.

Embedded invocation is instantiated when the value of a conditional in one

knowledge entity is the output of a lower-level knowledge entity. Serial

invocacion is used to represent serial reasoning: the action of a

conclusion in one knowledge entity is the invocation of another.

The concept of information hiding may seem odd for knowledge based

systems, where transparency of knowledge is usually considered necessary:

However, in YAKYAK it serves a number of purposes. Besides supporting

comprehensibility and maintainability, it melds control of reasoning with

the structure of the knowledge. This makes control easier to understand,

and the consequences of modifying control easier to predict. And, it

allows induction to operate in a straightforward way on many different

knowledge levels. We feel that the concepts of vertical and horizontal

segregation of knowledge give important advantages to knowledge

organization and application.

YAKYAK handles three kinds of uncertainty. First, there is input

reliability: to what extent are particular input values to be trusted? As

indicated above, the expert can assign a reliability index to a condition,

or tag individual condition values with reliabilities. Second, there is

knowledge reliability: the normal uncertainty techniques of expert

* systems . Third, the system itself deals with uncertainty of

application of knowledge. Because YAKYAK does not require exhaustive

coverage of the subject domain, there will be times when a question is

posed to the system for which it has no directly applicable knowledge.

Thus, it must deal with partial matching and with matching on inductive

closeness of perceived to known situations. In this case, there is

system-generated uncertainty. YAKYAK uses Bayesian techniques for

* A pleasant side effect of knowledge segregation and the structural
nature of control knowledge is that it is equally easy for the expert to
express uncertainty about control and domain knowledge.

combining evidence [26].

Experts generally know what to expect within their fields of

* expertise. YAKYAK uses three techniques to model expectation

First, the range of possible values attached to rule clauses can be

ordered at the discretion of the expert. This means for example that an

expert might want to distinguish between a medium, a hot, and a very hot

oven. Here there is a linear ranking of values, and the system can use the

knowledge of the linearity to understand that a hot oven is more like a very

hot oven than is a medium oven. The system can know how possible values

within a condition relate to one another.

Second, rule clauses can be tagged for saliency within a knowledge

entity. Having YAKYAK know how conditions within a knowledge entity relate

to one another lets the system weight the clauses differently in induction,

** in scenario generation, and in reasoning

The third technique is coupled to the second. It is the capability

for the expert to specify one or more "typical" states for condition

values. A problem with saliency rating is its unresponsiveness to

exceptional conditions. Oven temperature may be the most salient condition

for baking, but not if the stove is on fire. By letting the expert specify

one or more typical values, the system can use deviation from typicality to

boost salience. A very atypical value for a usually less important clause

can raise the salience of the clause to make it more central in reasoning.

These three elements -- condition value ordering, condition

* For an alternate view of expectation driven reasoning, see Langley
et al [27].

** This saliency ranking contrasts with the path chosen in MORE, which as
indicated above we feel to be in epistomological error. In MORE, clauses are
distinguished as symptoms and background conditions. We feel that the
symptomjbackground condition distinction sugge~ts a separation between clusters
of associated clauses which is unwarranted. If a "background condition" is at a
different level of abstraction than a symptom, it should be treated as part of a
separate knowledge entity. If it is not, then it really just another symptom.
In either case, we believe that letting the expert assign saliency values gives
more freedom in creating an appropriate domain representation.

Z7-LO

saliency, and condition value typicality -- let YAK.YAK "expect" the typical

and recognize the atypical. This capability is one we take for granted in

human experts, but is more difficult to find in (non-NL) expert systems.

4. Assessment

At this writing (late April '86) YAKYAK is only partially

implemented. A comprehensive assessment will have to wait until

implementation is complete and we have tested it in at least three domains.

A partial assessment can be based on what has been implemented:

mostly algorithms which were adapted from our previous work on TIMM and

KATIE. Those programs are described elsewhere [1,2,3]. Our assessment of

those programs can be seen in the features we chose to keep for YAKYAK and

the extensions we felt were necessary. The old programs were powerful

enough to build useful systems, and were very simple to use. Washington

office could use them. We hope, but as yet have nothing to demonstrate,

that YAKYAK will be a major improvement on those tools.

The biggest hole in YAKYAK, and the feature which most certainly

assures its obsolescence, is its inability to deal with metaphor.

Considering the importance of metaphor in thinking [23], this is a huge

hole. We view the CYC project (8] has having the right goals, but there's a

long interim between CYC's arrival and present problems. We hope YAKYAK

is a productive approach for knowledge acquisition starting from a

knowledge-poor position.

There are three classes of further criticism which could be

levelled at YAKYAK. One regards reasoning, the next some details of

knowledge acquisition, and the last the visual display of knowledge.

YAKYAK is not a reasoning system. At the same time, it must have

reasoning facilities in order for the domain expert to test the developing

knowledge base. It was mentioned above that Y~YAK doesn't do

counterfactuals, commonsense reasoning, or nonmonotonic reasoning (although

the structure is there to support the latter). It could be added that it

2.?-(l

has the structure but doesn't do multiple context reasoning [24]. Our view

is that (a.) we've got hard enough problems to solve to achieve what YAKYAK

sets out to do, and (b.) we'd be nuts to try to do everything. The limited

reasoning capabilities in YAKYAK (exhaustive deductive, abductive, and

inductive inference) are our solution to the "ambition halting problem."

The second class of criticism regards knowledge acquisition

details. That the system doesn't do explanation based learning (EBL) we

regard as a natural effect of the YAKYAK strategy of starting from a

knowledge poor position. It could be said that as YAKYAK acquires knowledge,

it should be able to alter its tactics. We would agree -- we simply have

to limit version 1. It isn't the case that there is a well tested and

"standard" set of algorithms for EBL. For YAKYAX to integrate situation

based learning (which it has) and EBL would be a new line of research at

least as broad as that already required.
~ :..

A more serious criticism is that YAKYAK doesn't do enough c0

distinguish the expert's internal model from herfhis stated model. One of

the most attractive features of ETS is that it attempts to isolate and

illuminate areas where the expert's stated and manifested models conflict.

By so doing, ETS attempts to move toward the actual rather than the

enunciated model. This is undisputedly a desirable goal. One of the most

interesting pieces of information to come out of PROSPECTOR [25] was the

disparity between what the experts claimed to do and what they actually did.

YAKYAK at this time fails to take up the advance made by ETS.

Finally, the visual display of knowledge is weak in YAKYAK.

Particularly for showing the structure of the knowledge architecture,

visual display is critical [28,29,30]. YAKYAK uses some of the capabil

ities of the Xerox/Interlisp-D machine on which it was (is being) developed,

but does not go far enough. We view this as a fault to be repaired, but not

as a disabling fault. That is, we feel that we can test the ideas in YAKYAK

prior to providing a really effective user interface. We are open to

comments and criticism on this view, but we see the display algorithms as

being a separable stream from the knowledge acquisition algorithms. We

therefore feel safe in waiting until the core of the knowledge acquisition

Z7-l2

system is built before turning our attention to the display.

References

[1] Kornell, J., Embedded Knowledge Acquisition to Simplify Expert
Systems Development, 1984 Conference on Intelligent Systems,
Oakland University, Rochester MI, April 1984

[2] Kornell, J., A VAX Tuning Expert Built Using Automated Knowledge
Acquisition, First IEEE Conference on Artificial Intelligence
Applications, Denver CO, December 1984

[3] Cooper, D., and Kornell, J., Combining Symbolic and Numeric Methods
For Automated Induction, AAAI Workshop on Coupling Symbolic and
Numerical Computing in Expert Systems, Bellevue WA, August 1985

[4] Stepp, R., and Michalski, R., Conceptual Clustering of Structured
Objects: A Goal-Oriented Approach, Artificial Intelligence 28,
February 1986

[5] Boose, J., Personal Construct Theory and the Transfer of Human
Expertise, AAAI-84, Austin TX, August 1984

[6] Michie, D., Muggleton, S., Riese, C., Zubrick, S., RuleMaster: A
Second Generation Knowledge Engineering Facility, First IEEE
Conference on Artificial Intelligence Applications, Denver CO,
December 1984

(7] Kahn, G., Nowlan, S., McDermott, J., Strategies for Knowledge
Acquisition, IEEE Transactions on Pattern Analysis and Machine
Intelligence, September 1985

[8] Lenat, D., Prakash, M., Shepherd, M., CYC: Using Common Sense
Knowledge to Overcome Brittleness and Knowledge Acquisition
Bottlenecks, AI Magazine, Winter 1986

[9] Hume, D., A Treatise of Human Nature (Vol.!) (1740)

[10] Russell, B., A History of Western Philosophy, Simon & Schuster,
New York NY, 1945

[11] Kuipers, B., The Limits of Qualitative Simulation, IJCAI-85,
Los Angeles CA, August 1985

[12] Clancy, W., Classification Problem Solving, AAAI-84, Austin TX,
August 1984

[13] Marcus, S., McDermott, J., Wang, T., Knowledge Acquisition for
Constructive Systems, IJCAI-85, Los Angeles CA, August 1985

[14] Ginsberg, M., Counterfactuals, IJCAI-85, Los Angeles CA, August 1985

[15] McCarthy, J., Circumscription-- A Form of Nonmonotonic Reasoning,
Artificial Intelligence 13, February 1980

[16] McCarthy, J., Applications of Circumscription to Formalizing
Commonsense Knowledge, Artificial Intelligence 28, February 1986

[17] Miller, G., The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information, Psychological Review,
Vol.63, pp.81-97, 1956

[18] Kornell, J., A Satellite With A Good Attitude: An Expert System For
Stationkeeping, IEEE Westex '86, Long Beach CA, June 1986

[19] Michalski, R., Pattern Recognition as Rule-Guided Inductive Inference,
IEEE Transactions on Pattern Analysis and Machine Intelligence, July 1980

[20] Cheng, Y., Fu, K.S., Conceptual Clustering in Knowledge Organization,
First IEEE Conference on Artificial Intelligence Applications, Denver CO,
December 1984

[21] Chiu, D., and Wong, A., Synthesizing Knowledge: A Cluster Analysis
Approach Using Event Covering, IEEE Transactions on Systems, Man, and
Cybernetics, April 1986

[22] Lebowitz, M., Integrated Learning: Controlling Explanation, Cognitive
Science, April-June 1986

[23] Lakoff, G., Johnson, M., Metaphors We Live By, University of Chicago
Press, Chicago IL, 1980

[24] Barton, G., A Multiple-Context Equality Based Reasoning System, HIT
Artificial Intelligence Laboratory Technical Report No.715, Cambridge MA,
1983

[25] Duda, R., Gaschnig, J., Hart, P., Konolige, K., Reboh, R., Barrett, P.,
Slocum, J., Development of the PROSPECTOR Consultation System for Mineral
Exploration, Final Report, SRI Projects 5821 and 6415, SRI International,
Menlo Park CA, 1978

[26] DeGroot, M., Probability and Statistics, Addison-Wesley, Reading MA, 1975

[27] Langley, P., Bradshaw, G., Simon, H., Data-Driven and Expectation-Driven
Discovery of Empirical Laws, CIP Working Paper No.443, Department of
Psychology, Carnegie-Mellon University, Pittsburgh PA, 1982

[28] Norman, D., Draper, S., eds., User Centered System Design, Lawrence
Erlbaum Associates, Hillsdale NJ, 1986

[29] Card, S., Moran, T., Newell, A., The Psychology of Human-Computer Inter
action, Lawrence Erlbaum Associates, Hillsdale NJ, 1983

[30] Richer, M., Clancy, W., GUIDON-WATCH: A Graphic Interface for Viewing A
Knowledge-Based System, Report No. STAN-CS-85-1068, Department of Computer
Science, Stanford University, Stanford CA, 1985

[31] Clancy, W., Heuristic Classification, Report No. STAN-CS-85-1066,
Department of Computer Science, Stanford University, Stanford CA, 1985

[32] Hayes-Roth, F., McDermott, J., Knowledge Acquisition From Structural
Descriptions, IJCAI-77, Cambridge MA, 1977

27~6

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov. , 1986

The Knowledge Acquisition Grid:
A Method for Training Knowledge Engineers

Marianne LaFrance
Department of Psychology

Boston College
Chestnut Hill, Massachusetts, 02167

This paper describes the Knowledge Acquisition
Grid, newly developed to assist knowledge
engineers in the manual transfer of expertise.
The Grid is used in a knowledge acquisition
training module which itself is part of a larger
training program in building expert systems
offered by Digital Equipment Corporation. The
~ describes a two-dimensional space in which
five forms of expert knowledge and six basic types
of interview questions constitute the horizontal
and vertical dimensions respectively. Description
is given of the rationale, components, strategy,
and evaluation of the ~ for training in
knowledge acquisition.

Knowledge-based systems require the kind of specialized
and extensive know-how usually available only in the heads
of a small coterie of experts. To date, the gaining of
this expertise has proven to be one of the great
challenges in building expert systems. This paper
describes one component of a Training Program in Knowledge
Acquisition designed to provide knowledge engineers with
the conceptual and practical means with which to more
effectively conduct the manual transfer of expertise.

BACKGROUND

The Training in Knowledge Acquisition is currently part of
a larger training program in building expert systems first
put into service by Digital Equipment Corporation in late
1982 and now offered several times a year to people both
inside and outside the company. Although the original 14-
week course in building knowledge-based systems covered a
range of available AI tools, a significant gap in the
curriculum was identified by the end of the first year:
there was no material specifically focussed on how to deal
with the complexities of acquiring knowledge from the
experts.

The initial response was to have the
psychologist, design a 2-day module
"Expert Interviewing". The. aim was to

~-0

author, a social
initially ~~lleu,

introduce knowledge

engineers to in-depth interviewing by drawing on theory
and research in psychology, ethnography, nonverbal
communication, cognitive science, and the sociology of
specialized interviewing. The guiding assumptions for the
training were twofold: first, that experts who are in the
position to know the most may be the least able to
articulate what they know; and second, that available
methods could be adapted and developed for the expressed
purpose of eliciting this particular kind of tacit
knowledge. The module ~as since been expanded and updated
to reflect developments in the field as a whole. Now
called "Knowledge Acquisition", the training has become an
integral and important part of Digital's training program.

Focus ~Manual Knowledge Acquisition.

Although the course includes material on automated methods
of knowledge acquisition, the overall emphasis is on
manual interviewing methods. There are a number of
reasons for this emphasis. First, manual knowledge
acquisition is the most routinely used and broadly useful
method of acquiring expertise. Manual methods can be
applied to any knowledge domain. Second, even when
automated knowledge acquisition features become
practically feasible for some aspects of the process,
manual methods will still be called upon to complement and
cover content not accessible by purely automated means.
Third, manual interviewing methods are uniquely good at
taking into account considerable expert to expert and
domain to domain differences. A final reason for focusing
on manual methods of gathering expertise is that as they
are used in an increasing range and variety of settings,
they will suggest promising directions for how knowledge
acquisition can be effectively automated.

Training Obiectives. The complete training module in
knowledge acquisition is designed to increase knowledge
acquisition effectiveness by exposing participants to a
variety of techniques and tools. One of these tools is
the Knowledge Acquisition Grid which constitutes the
central concept of this report. In addition to gaining
familiarity with the structure of the Grid, the rationale
for its two dimensions, and suggestions for how it can be
used to grasp expertise, the training in knowledge
acquisition has a number of other objectives. They
include the following:

1> An enhanced appreciation for knowledge acquisition as
an integral process in building expert systems,

2> An understanding of the qualitative aspects of
expertise,.

3) Facilitiy in identifying the prevailing myths about
knowledge acquisition and in dealing with the realities,

4> Competence in using specialized interviewing techniques
to enhance the expert's involvement and the knowledge
engineer's comprehension,

5 > The ab i 1 i t y
knowledge,

to recognize different kinds of expert

6) A repertoire of different types of questions to access
different types of knowledge,

7) Awareness of how knowledge acquisition develops, and

8) Acquaintance with new developments in the automation of
knowledge acquisition.

~ FOR TRAINING IH KNOWLEDGE ACQUISITION

Expert systems are valuable to the extent to which they
are knowledge rich, but the need for the knowledge has not
been matched by effective means for drawing it out.
Expert knowledge is not easily captured. The process is
time consuming, painstaking and complicated. In fact,
knowledge acquisition has been called the critical
bottleneck problem in the development of knowledge-based
systems <Feigenbaum, 1980).

In acknowledgement of this bottleneck, one response has
been to increase efficiency by developing means for
automating the transfer of expertise. Another tack has
been to recognize that several issues contribute to the
bottleneck and that methods must be developed to deal with
each of them. A number of the important ones are: 1 > lack
of understanding about the nature of expertise, 2> poor
manual interviewing skills, and 3> a limited repertoire of
questioning strategies. Each of these are described
briefly below.

Nature sL Expertise

Knowledge engineers who assume that the problem of
knowledge acquisition is essentially quantitative are
likely to bypass important know-how. Work in cognitive
psychology has shown, for example, that experts differ
from novices not only in the amount they know, but also in
how their knowledge is represented and bundled <Chi,
Claser and Rees, 1982; Chiesi, Spilich and Voss, 1979,
Larkin, McDermott, Simon and Simon, 1980; Milojkovic,
1982).

A conception of know-how b&sed on qualitative aspects has
important implications for people concerned with acquiring
knowledge from experts. For example, there is need to
recognize that expert knowledge comes encapsulated in
varying modes rather than an undifferentiated mass of
information. The Forms of Knowledge Dimension of the
Knowledge Acquisition Grid articulates five distinct forms
of expert knowledge, each with its own structure and
characteristics and each enclosing a subset of the
expert's expertise. These will be described more fully
below in the section entitled, "The Knowledge Acquisition
Grid".

Poor Manual Interviewing Skills

The · p r o c e s s
extended and
expert and

of knowledge acquistion usually
intense collaboration between

the knowledge engineer. To say

demands an
the domain

that this
requires interpersonal competence and communication skills
severly understates what is involved. Experts and
knowledge engineers alike have different experiences and
preferred ways of thinking and working. If these are
ignore~ the knowledge engineer is in danger of getting an
incomplete or misconstrued knowledge base.

Experts cannot be simply hooked-up and drained of
everything they know. An approach that takes account of
the personal nature of expertise and the inter-personal
quality of acquiring it will have more success than one
that gives little weight to these important social
psychological issues.

Limited Questioning Strategies

Designing more proficient knowledge acquisition depends in
part on expanding ways to tap into human expertise. It is
insufficient to merely have the patience to ask "why" of
an expert four hundred times in a row. A enlarged and
more targeted repertoire of questions and probes is
required.

For example, recent research in cognitive and social
psychology has shown that different types of questions
elicit different kinds of answers <Clark, 1985; Loftus,
1975>. In other words, the form that a question takes
constrains the answer obtained. The Types of Questions
Dimension of the Knowledge Acquisition Grid articulates
six distinct kinds of questions directed at uncovering
expert knowledge, each with its own structure and purpose.
These also will be described more fully below in the
section entitled, "The Knowledge Acquisition Grid".

2.~-3

In sum, these bottlenecks in knowledge acquisition can be
relieved through the application of a manual method that
approaches various kinds of expertise with a diversified
set of questions.

THE KNOWLEDGE ACQUISITION ~

Since expertise apparently resists single category
compartmentalization, and since no single question can can
elicit all the required information, a multi-modal
approach was needed. The Knowledge Acquisition Grid
addresses this need by conceptualizing the multiple ways
that experts encode what they know, and provides a wide
repertoire of question types to gain access to it.

Structure 2i the Knowledge Acquisition Grid

The Knowledge Acquisition Grid shown in Figure 1 organizes
expert knowledge and knowledge engineer questions as
separate but interacting dimensions. The first dimension
represented by the columns in the Grid, describes the
Forms ~ Knowledge in which an expert's know-how is
stored. The second dimension, represented by the rows in
the Grid, describes the Types 2i Questions that are
available to knowledge engineers to get access to it.

Question Types

Grand Tour

Cataloging
Categories

Ascertaining
Attributes

Determining
Inter
connections

Seeking Advice

Cross
checking

Forms of Knowledge

Layouts Stories Scripts Metaphors Rules-of-Thumb

Figure 1: The Knowledge Acquisition Grid

Dimension ~ Forms ~ Knowledge

Expert knowledge is both multiform and tacit.
system builders need a way to recognize
material that is distributed in memory and
character.

Thus expert
and access

implicit in

The Knowledge
Knowledge. A
follows:

Acquisition Grid presents five Forms ~
brief description of each form is as

1) Layouts. Larouts incorporate the expert's "map''
of the task, including an understanding of its boundaries
and basic elements. Layouts subsume and give coherence to
the expert's facts and heuristics by specifying the goals
to which they aim, and the criteria used to characterize
the problem at hand. By getting access to how the expert
sets the task and organizes current information in light
of prior knowledge, the knowledge engineer is able to
determine the problem type and its scope.

2) Stories. Stories represent the classic cases and
typical examples culled from the expert's long experience
with the problem domain. Stories can be of a number of
types in addition to the now familiar Talking Aloud
Protocol CVaterman and Newell, 1971). For example,
Esplanatory Stories are those in which the expert, seeking
to account for some puzzling situation, narrates a set of
events that unfold in such a way as to lead up to and
produce the phenomenon in question. A Diagnostic
Story/Prescriptive Story describes some phenomenon in a
way that shows what was wrong and what needed fixing.

3) Scripts. Scripts give the expert's sequential
and procedural knowledge of the area. The basic elements
of a script are its roles, standard props or objects
needed to carried out the actions, a standard sequence of
scenes wherein one act enables the next, and some normal
results from performing the activity successfully
CAbelson, 1981). To know an expert's scripts is to have a
flow chart of critical actions, and to be able to
understand each action in terms of the prior knowledge
required to perform it.

4) Metaphors. Metaphors encapsulate the expert's
image of the task which includes its characteristics,
constraints and options. Metaphors describe one thing by
reference to another apparently dissimilar thing so that
the first is understood more completely than if the
comparison had not been made. Their advantage is being
able to present an idea compactly, so that a collection of
characteristics is conveyed in a word or two, which can

later be reconstructed and embellished through probes
directed to the expert by the knowledg engineer.

S> Rules-of-thumb. Rules-of-thumb provide the
myriad tactics and methods for interpreting and dealing
with the vast array of circumstances encountered in
carrying out the task. A rule-of-thumb is encapsulates
tacit knowledge about which conditions warrant which
actions, and about how to gather data on and assess
current conditions. Rules-of-thumb are concrete,
implementable strategies of minor to moderate scope which
can single out and define as issues those specific,
limited conditions for which they serve as the most
complete strategy.

Rationale~ MultiPle Forms AL Knowledge

Each
which
expert.

of these Forms of Knowledge is a different way in
know-how can be represented in the mind of the

Together, the five forms suggest that expertise
domain is not encoded in the expert's mind in a

bundle, but that varying experiences with the
lead to different mental representations.

in a
single
problem

Support for this idea comes from research in cognitive
psychology that shows that learning is a segmented
process, and that the various segments are stored in
different parts of the memory CAnderson, 1980).
Psychologists hypothesize that breaking up of information
in this way allows people to make better generalizations
and more useful predictions. Similarly, Minsky's society
of-mind theory proposes that intelligent action emerges
from the interactions of many small systems operating
within an evolving overall administrative structure
<Minsky, in press>.

Advantages AL Multiole Forms ~Knowledge. The Forms of
Knowledge dimension thus sees expertise as made up of a
number of smaller subsystems, each with its own character
and function. There are, in addition, a number of
practical advantages to seeing expert know-how as multi
modal. In the first place, the Forms of Knowledge provide
a way during knowledge acquisition to catalogue a domain's
real complesity. In the spirit of getting a handle on a
domain, there is sometimes danger that that which
initially does not seem to fit may be left out. The five
kinds of knowledge provide the means to tap a domain's
particular intricacies. Secondly, the Forms of Knowledge
encourages broad coverage. In seeing knowledge as multi
modal, the knowledge engineer is more likely to check
whether other modes of expressing the expertise will turn
up relevant but previously unarticulated know-how.

Third, each Form of Knowledge reflects a different but
practical slant on the problem domain. Layouts, Stories,
Scripts, Metaphors, and Rules-of-Thumb implicitly
prescribe how to deal with different features of the job.
In other words, how a problem is laid out or scripted
has direct implications what can be done about it.

Next, the five Forms of Knowledge have the advantage in
allowing understanding of the expert's domain in his or
her own words. This gives the knowledge engineer a way to
stay close to concepts of a domain ~hile at the same time
having the means to organize them. Finally, the five
Forms of Knowledge provide a buffer between acquiring the
knowledge from the expert and transforming into a
particular representation. This allows the expertise to
be understood first on its own terms, a stage which is
important for subsequently being able to select
appropriate representations for it.

One caveat should be mentioned here: even though expert
knowledge is generally multi-modal, not all Forms of
Knowledge are evident in all knowledge domains, nor are
they used equivalently by all experts. Nevertheless,
knowledge engineers should recognize the potential in each
area, and not assume that unfamiliar forms are necessarily
unproductive ones.

Dimension~ Tvpes sL Questions

The process of constructing a knowledge base requires the
knowledge engineer to have a number of question types.
Survey researchers, for example, have shown that using
different question formats optimizes the information
received. Alternatively, the use of only one type of
question severely limits the kind of answers that can be
obtained. The Knowledge Acquisition Grid presents five
Types~ Questions. A brief description of each type with
an example is given below:

1) Grand Tour Questions. Grand Tour questions cast a
wide net over the domain in order to understand the
boundaries as the expert sees them. The material sought
includes an overview of the expert's perspective, goals,
constraints and options. Sub areas within the expert's
domain are comparably pursued by means of Mini-Tour
queries. An eaample of a Grand Tour question is "Could
you describe the kinds of things that schedulers do?
Please do not edit things out of your description, even
things you think may not be important." This particular
phrasing of the question is designed to elicit a Layout

description but could as equally be directed at
a Story or Metaphor.

eliciting

2> Cat&loging the Categories. The expected outcome
of these questions is an organized taxonomy of the
expert's terms and concepts. An example of a Cataloging
the Categories Question is "'When you gave me an overview
of your job, you talked about 'schedulers'. Are there
different types of schedulers? Are schedulers a subtype
of some other kind of job?" This type of question might
follow a Layout response to a Grand Tour Question.

3) Ascertaining the Attributes. These questions aim
to discover the distinguishing features and range of
possible values of the expert's concepts. An example of
an Ascertaining the Attributes Question is "You've
described a number of types of scheduling situations that
you've encountered. I wonder whether you could now take
the first two that you mentioned, and describe some ways
in which these two are similar to each other but different
from the third example that you gave." As stated, this
question is a follow-up to a Stories description.

4> Determining the Interconnections. These are
questions directed at uncovering the implicit causal
model of the domain. Of particular interest are the
relationships and linkages among the expert's concepts.
An example of Determining the Interconnections Question is
"In describing the routine set of steps for scheduling an
order you said that checking the request date occurs
before anything else. 'Why is that the case?" This
question is directed at previously obtained Scripts
information.

5) Seeking Advice. These questions are designed to
reveal the expert's recommendations for how to deal with a
variety of conditions such as how to determine current
conditions and which conditions warrant which actions. An
example of a Seeking Advice Question would be "You've
compared scheduling to playing a board game; from your
experience with playing board games what advice could you
give on doing scheduling?" This type of question would be
in response to a previously volunteered Metaphor.

6) Cross-Checking Questions. These questions are
designed to validate and examine the limits on previously
obtained information. Cross-checking questions actually
consist of five subtypes including, the Naive Question,
Playing Devil's Advocate, the Hypothetical Situation
Question, asking How Sure Are You? and Seeking the
Exception. An example of a Naive Question is "Bear with
me while I ask what may appe~r to be a naive question.

Could you tell me why orders need to be scheduled?" An
example of a Devil's Advocate Question would be "Let me
play devil's advocate in response to your story about the
need to set priorities on scheduling multiple orders.
What if you didn't set priorities?"

Rationale For Multiple Question Types

Research indicates that questions variously restrict and
direct the kinds of answers that can be obtained. For
example, there are two broad types of questions: questions
that ask the recipient to provide the questioned item, and
second, utterances that require the hearer to simply agree
or disagree with the content of the question. Wh
questions, those beginning with the words, who, whose,
which, what, why and how, ask that the question variable
be supplied_ and hence provide considerable leeway for the
recipient to respond. The second type, yes/no questions
call on the hearer merely to concur or not with the
proposition put forward by the questioner CWoodbury,
1984).

Within the Wh-question category itself,
differences in the specificity of the
solicited. Questions beginning with what, why,
open-ended whereas questions beginning with
who, where, when, and which appear to require
are as specific as the hearer is able to make

there are
information
and how are
the words,

answers that
them.

Subtle variations in the wording of questions has
been shown to affect how hearers respond to them.

also
For

example, research on eye-witness testimony has revealed
that witnesses to a car accident report that the car was
going significantly faster if the question was phrased,
"How fast was the car going when it crashed into the
wall?" than if it was put, "How fast was the car going
when it llJl into the wall?". A comparable rewording in
another study showed the same effect. In this case,
survey respondents report more headaches if the question
is phrased, "Do you get headaches
how often?" than if they are asked
headaches occasionally and if so,
1979).

frequently and if so,
instead, "Do you get

how often?" CLoftus,

Studies such as these show that replies are significantly
effected by how questions are phrased. Other research on
questions has focussed on asking whether some question
strategies are more effective than others in eliciting
full and valid disclosure. The theoretical notion here is
that the memory trace is composed of several features and
hence the effectiveness of a question or retrieval cue is
related to the amount of feature overlap with the event

being reported. In other words, some questions pick up
elements that are neglected when other kinds of questions
are asked. A second outcome of this research is the
recognition that there are probably several retrieval
paths to the encoded event, so that information that is
not readily accessible by one retrieval cue might be
available with a different cue CTulving, 1974>.

The Knowledge Acquisition Grid is based
theoretical framework. The matrix formed by
knowledge and types of questions was designed to
the feature overlap between t~e encoding of the
by the expert and the subsequent retrieval of
knowledge engineer in a knowledge acquisition
The multiple forms of both knowledge and
encourage using many retrieval paths.

on this
forms of
increased
expertise
it by a
context.

questions

Advantages ~Multiple Question Types. There are then a
number of advantages to being able to call upon a number
of different question types. The six types of questions
in the Grid are designed to be seen as a package, the
total contents of which are geared to producing a
comprehensive survey of the expert's knowledge. Secondly,
the questions enable the knowledge engineer to approach
the domain from a number of directions, thus increasing
the chances of revealing important material overlooked
when other routes are taken. A third advantage to having
access to several question types is their respective
attention to different features. Each question is aimed
at uncovering different aspects of the expertise. For
example, questions from Cataloging the Categories focus on
getting hold of the inventory of the expert's domain.
Seeking Advice questions aim to disclose the expert's
methods for hitting upon a solution.

The six types of questions also vary in their levels of
specificity which, in combination, have the advantage of
pulling out material varying in detail and composition.
Grand Tour questions seek to draw out broad and
comprehensive descriptions in order to grasp the scope of
the problem domain, whereas Cross-Checking questions aim
to verify fine detail. A fifth advantage to utilizing
different types of questions is the ability to contain
knowledge engineer bias. The range of questions should
counteract the tendency of knowledge engineers to favor
one type of question over another at the expense of a more
comprehensive grasp of the relevant expertise.

Sixth, having access to a number of different types of
questions guards against unwarranted assumptions by both
knowledge engineer and expert. In asking a different type
of question about the same material, .the knowledge

z~-to

engineer may find that he or she has incorrectly assumed
certain connections or inclusions. Alternative questions
may also encourage the expert to be more explicit about
things previously assumed to be obvious. There are also a
number of advantages having to do with doing well by the
expert. For example, having access to a number of
different types of questions provides the knowledge
engineer with opportunities to change direction or pace or
content, and thus sustain the expert's interest and
motivation. Multiple questions also indirectly convey to
the expert that the knowledge engineer respects the range
and complexity of what he or she knows. Finally multiple
questions provides cross validation without cross
examination. By being able to draw on a range of queries,
knowledge engineers can come back repeatedly to the same
content area while avoiding the appearance of redundancy
or skepticism.

STRATEGY XQR USING ~ KNO~LEDGE ACQUISITION QB1Q

The five Forms si Knowledge and the six Types si Questions
in the Grid do not exhaust either dimension. Rather each
dimension is intended to provide the knowledge engineer
with a wide-angled lens to see more of the relevant
expertise. Moreover, the categories within each dimension
overlap to some degree. For example, a Story about a
particular situation may contain within it a Metaphor or
Rule-of-Thumb. The important feature of the matrix
nature of the Grid is not category independence but domain
scope.

The Grid can be used both passively, in providing
assistance in decoding expert's replies, and actively in
deliberating evoking particular knowledge content. Each
of these will be taken up in turn followed by some
suggestions for structuring alternative paths through the
Grid.

Decoding Experts' Replies

The Grid provides an explicit depiction of the reciprocal
relationships that can exist between knowledge acquisition
queries and experts' descriptions. Questions do not only
elicit content but can follow it as well. Moreover, the
Grid provides a way of dealing with replies which do not
seem to be tied to a question as phrased. From the
standpoint of the knowledge engineer, questions directed
to experts do not always elicit the intended information.
Nevertheless, a practiced knowledge acquisitor can
sense of the answer provided. The Grid provides a
for appreciating and identifying the different forms
which expertise comes.

U,-l(

make
tool

in

One of the marks of the good knowledge acquisitor is the
ability to decode answers of all types and specially those
which appear not to be a reply to the immediately
preceding questio~. More specifically, knowledge
engineers who use the Grid develop the habit of asking
themselves after each reply, "To which question is this an
answer?" and "Of what knowledge form is this an example?"

Evoking Particular Knowledge Forms

The Grid provides the means for deliberately evoking a
particular kind of response from the expert. At times the
expert may be asked for a Metaphor to open"up a new line
of investigation on the problem domain. Or a Story about
an atypical situation may be solicited in order to get a
different slant on the domain after a protocol analysis
has ~een done on a story of a typical case.

Particular knowledge forms are evoked as a way to call up
what is typically tacit knowledge. Since experts are
frequently hard pressed to describe what they know, direct
"why" or "how" questions are as frequently unsuccessful at
uncovering important information. But if they can be
given a mental handle, such as a request for a particular
kind of experience with the domain, then previously
implicit material can be made explicit.

Alternative Paths Through the Grid

Each dimension of the Grid has its own internal order. In
the Types of Questions dimension, open-ended queries are
at the top, while increasingly more specific, directed
questions are located at the bottom. The Forms of
Knowledge Dimension is somewhat less linear, but the more
declarative kinds of knowledge are represented at the
left, and the more procedural kinds of know-how are on the
right side of the grid.

One way then of using the Grid is to start at the upper
left and move back and forth in a more or less systematic
manner to the lower right. Such an orientation begins
with a broad investigation of the factual aspects of the
expertise, and concludes with a focussed attention on
specific heuristics.

the only way to use the Grid. This tactic is not, however,
It can also be used in a
knowledge engineer moves from
ones and back to the general,
the procedural and back to
knowledge mode.

more cyclic fashion. The
general queries to specific
and from the declarative to

the declarative in the

How the Grid is used depends ultimately on the particular
needs of different expert systems teams; there is no
single best way to deploy it. The value of the Grid is
its multi-modal depiction of expert knowledge and the
multi-form investigative means to get a hold of it.

SUMMARY

Skill with the Grid comes with practice. In the knowledge
acquisition training module, participants learn how to
use it through exposure to videotape examples as well as
group exercises and guided feedback. Moreover,
participants learn to use the Grid in the context of
learning about other aspects of the knowledge acquisition
process, including strategic, technical, and organizat
ional concerns.

Manual knowledge acquisition can be made systematic. It
can also be learned. The Knowledge acquisition training
module has been developed to demonstrate both these
properties. Traditionally, manual knowledge acquisition
has been seen as putting in lots of unproductive hours.
Experience with the Grid in particular has shown that
greater sophistication with manual interviewing techniques
can lead to time well spent and to greater overall
knowledge acquisition proficiency.

2G-l3

References

Abelson, R.P. (1981).
script concept.

The psychological status of the
American Psychologist, ~. 715-729.

Anderson, J.R. <1980). Cognitive psycholoav An& its

Chi I

implications. San Francisco, CA: Freeman.

M.T.H., Claser, R., Rees, E. <1982>. Expertise in
problem solving. In R. Sternberg <Ed.), Advances~
the psychology~ human intelligence <Vol 1, pp.7-
75). Hillsdale, NJ: Lawrence Erlbaum.

Chiesi, H.L., Spilich, C.J., & Voss, J.F. <1979).
Acquisition of domain-related information in
relation to high and low domain knowledge. Journal
~Verbal Learning and Verbal Behavior, ~. 257-273.

Clark, H.H. (1985). Language use and language users. In
G. Lindzey & E. Aronson <Eds.), IhA handbook ~
social osvcholoav. (3rd ed., Vol Z, pp.179-232>.
Reading, MA: Addison-Wesley.

Feigenbaum, E.A. <1980>. Knowledge engineering: ~
applied~~ artificial intelligence. Stanford,
CA: Stanford University, Heuristic Programming
Project.

J • I Simon, D. p. I & Simon, H. Larkin, J.,
(1980).

McDermott,
Expert

physics problems.
and novice performance in solving
Science, 208, 1335-1342.

Loftus, E.F. (1975>. Leading questions and the eyewitness
report. Cognitive Psychology, L• 560-572.

toftus, E. F. <1979>. Eyewitness testimony. Cambridge,
MA: Harvard University Press.

Milojkovic, J.D. <1982). Chess imagery
master. Journal ~Mental Imagery, ~.

Minsky, M. <1986, in press>. Society .2J.. m.ill.9..

in novice
125-144.

and

Tulving, E. <1974>. Cue-dependent forgetting. American
Scientist, ~. 74-82.

Waterman, D.A., & Newel!, A. (1971). Protocol analysis as
a task for artificial intelligence. Artificial
Intelligence, ~. 285-318.

Woodbury, H.
court.

(1 9 8 4 > . The s t r a t e g i c use o f que s t i on s i n
Semiotica, ~. 197-228.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, :tbv., 1986

ON COMPETENCE AND PERFORMANCE NOTIONS

IN EXPERT SYSTEM DESIGN:

A Critique of Rapid Prototyping

Otto E. Laske

Arthur D. Little, Inc.
Artificial Intelligence Center

Acorn Park, Cambridge, Massachusetts 02140
U .S .A.

~1-0

TITLE

AUTHOO.:

ABSTRACT:

ON COMPETENCE AND PERFORMANCE NOTIONS IN EXPERT SYSTEM DESIGN:
A Critique of Rapid Prototyping.

Dr. Otto E. Laske
A.I. Center
Arthur D. Little, Inc.
25 Acorn Park
Cambridge, Massachusetts
U.S.A.

02140

A distinction is made between four phases of knowledge engineering: the
elicitation, analysis, encoding of knowledge, and prototype design. It
is shown that present wisdom of how to work through these phases is
defective in that it only yields two out of four possible types of expert
system, and that to accede to the two remaining types of system, a
different approach to knowledge engineering, especially knowledge
elicitation, is required. This alternative approach entails decompiling
large knowledge data bases (KDB's) produced via protocol analysis. The
need for deferring commitment to architecture and inference mode is
justified on cognitive-science grounds. It is shown that decompilation
of KDB's enforces automation of knowledge analysis and encoding,
fruitfully constrains knowledge elicitation, and undoes the present
dichotomy of competence and performance notions in expert systems.

KEYWORDS: Knowledge elicitation, knowledge analysis, knowledge
encoding, knowledge data base (KDB), KDB decompilation, automation of
knowledge analysis and encoding.

27-l

I

Modelling Human Expertise in Knowledge Engineering:
Some 12

.. climinary Observations

David C. Littman

Cognition and Programming Project
Department or Computer Science

Yale University

New Haven, CT 06520

February 1986

22J-O

1

ABSTRACT

This paper reports the rr!!!ults ol an empirical analysis or the knowledge engint!ering bebavior of 6
persons with extensive experience in AI. The 6 persons WP.re given the task or designinr, an AI
program and were videotaped while they did so; during their two-to-three hour design sessions,
they were asked to talk aloud about what they were doing and why they were doing it. The
paper identifies several recurrent behaviors common to all the AI designers. For example, sevt>ral
componenLs or the designers' goal structures are identified, as is the importance or focussing on a
"touchstone", or key issue, around which much or the designer's behavior revolves. SevPral
potential implications ol the research ror the design or knowledge engineering tools are explored.

2

1 Introduction: Motivation, and Goals
Knowledge transfer from expert humans to machines is slow, dirricult, and prone to error. In

order to automate the knowledge transfer process, knowledge engineers will have to write

intelligent kno"Vledge acquisition programs that are easily as complex as the domain programs

they want to produce. One potentially useful approach to acquiring information that might

assist developers or automated knowledge acquisition tools may be to

• studv human expertise in knowledge acquisition as a skill in its own right and

• attempt to write programs that can reproduce it.

That is, it may be productive to view the problem of automated knowledge engineering as a

kno,u:ledge engineering problem itself! Our goal, as "meta knowledge-engineers", would then be to

identify the knowledge and skills that human knowledge engineers use when they perform the

task of identifying an expert's underlying model of a domain. We would then engineer our

knowledge about knowledge engineering into knowledge acquisition programs. It seems plausible

to suppose that, if we could understand the skills and knowledge that knowledge engineers use

when they build models of someone's reasoning in a domain (perhaps their own!), we could

contribute to the goal of understanding how to build general automated knowledge acquisition

tools. Ultimately, we would like to be able to write AI programs that can, themselves, write

general knowledge engineering programs.

In this paper, we present preliminary analyses of videotaped protocols of 6 AI researchers who

were given a transcript of a fragment of tutorial interaction between a tutor and a student in

which the tutor was teaching the student some basic principles of large weathel' systems. The AI

researchers were given the following task:

• Write "interesting" AI computer programs that simulate the interactions of the
tutor and·the student.

We gave our AI designers the task of writing simulation programs for two main reasons. First,

building simulation programs is often a useful initial step in producing performance oriented

knowledge based systems. Second, by giving our AI designers the goal of producing simulation

programs, we forced them to focus their attention on the actual domain knowledge and rules of

interaction that the tutor and student used. Forcing our AI designers to focus on the actual

domain knowledge and tutorial knowledge appeared to have the effect of preventing them from

looking for some AI "hacks" that would reproduce the tutorial interaction presented in the

transcript or the tutorial dialogue without formulating a plausible representation or the student's

and the tutor's knowledge.

Our goal in analyzing the protocols of the AI researchers as they designed their programs to

simulate the interaction of the tutor and the student is guided by this hope:

• We hope that what we learn through systematic empirical study and simulation of
human knowledge engineers will assist us in the knowledge transfer endeavor. \Ve

ze-z

3

I
i

further hope that, by understanding the kno.ledge and skills used by AI researchers
to build AI programs, we will be able to build AI programs ourselves that will behave
as AI resem-c:hers do when ~hey are writing AI programs.

We realize that the observations presented in this note are preliminary. In addition, it may seem

that much of what we observed in our subjects has been noted in books and papers such as

Hayes-Roth, \Vaterman, and Lenat (1983) and Chandrasakaran (1985), or is part of the tacit

knowledge of members of the AI community; both are true. The intended contribution of this

work, however, is threefold:

• To suggest that knowledge engineering may itself be a reasonable domain for
know ledge engineering

• To begin to provide an empirical 6a8i8 for constructing intelligent knowledge
engineering programs

• To suggest that the videotape protocol methodology may be a useful technique for
assisting us in systematizing our empirical knowledge of knowledge engineering.

The preliminary conclusions from this work read like a bad-news good-news story. The bad news

is that. the amount of knowledge used by human knowledge engineers is enormous: building

programs to simulate human knowledge engineers will be a formidable task. The good news

comes in three parts:

• the program design behavior of different human knowledge engineers appears to be
similar

• the design behavior of our AI designers appears to be consistent with models of the
design process developed by researchers studying the cognitive underpinnings of
software design1

• protocol methodology appears to provide useful insights into program design processes
of knowledge engineers.

This note is thus intended to illustrate the potential value of the videotape protocol methodology

for identifying some of the consistent, empirical aspects of the behavior of human knowledge

engineers that may facilitate our work as we confront the task of building intelligent machine

knowledge engineers. In Section 2 we describe the stimulus materials and methods we used in

this experiment. In Section 3, we describe seven of the main themes we discovered in the

behavior of our AI designers and present empirical data from the protocols of their problem~

soh·ing interviews. Finally, in Section 4, we present some implications, limitations, and future

directions for our work.

1cf. Adelson and Soloway, (1985).

4

2 Methods

2.1 Subjects
The 6 subjects were experienced designers of AI programs. Each AI designer was an advanced

student in the Yale Artificial Intelligence program. Each subject had at least six years of

programming experience and had written at least one AI system containing more than 5000 lines

of code. Most subjects had written several such AI systems and had worked on significantly

larger AI systems.

2.2 Stimulus Materials and Procedure

Each subject was given a transcript of a fragment of dialogue between a tutor and a student

and asked to design an AI program that would simulate the behavior of the tutor and the

student. During the fragment of dialogue, the tutor teaches the student about certain aspects of

large weather systems. The fragment of dialogue, which is included as Section 6, contains ten

interchanges between tutor and student.2 We chose this fragment of tutorial dialogue because

the participants have quite different goals, as well as very different knowledge. The task

appeared to engage the interest of each subject; each stated that the task was challenging,

though they felt a longer transcript would have been useful. Each subject was videotaped while

solving the AI design problem; the interviewer encouraged subjects to talk aloud during their

interviews.

3 Central Themes in AI Designers' Performance
In this section, we present brief descriptions and examples of each of the following seven

themes that appeared to be central to our AI designers' behavior:

• The Importance of the Knowledge Engineer's Goal Structure

• The Importance of World Knowledge

• The Selection of a General Representational Schema

• Causal Simulation of the Domain

• The Identification of Heuristics

• Model Testing Strategies and Progressive Refinement

• Focusing on a "Touchstone"

Each of the 6 subjects in our study exhibited several of these themes; we now briefly consider

each theme in turn.

2This transcript is a slightly modified version of a transcript presented by Stevens, Collins and Goldin in their
paper "Misconceptions in students' understandi!ll" in the book Intelligent Tutoring S11•tem•, edited by D. Sleeman
and J. S. Brown.

s

3.1 Importance or the Knowledge Engineer's Goals
Each of our AI designers appeared to have a goal structure that guided the process of designing

the simulation program. Five of the most important goals of the AI designers are:

• Identify the Domain Knowledge and Tutorial Knowledge: Subject 2 was
most explicit about his need to have clearly in mind the knowledge that his program
would have to represent. He was the most cautious Q(the designers: rather than
jumping right in and selecting a representation for the knowledge, he spent most of
his time just understanding the knowledge his program would have to manipulate.
Subject 1, Subject 2, Subject 3 and Subject 4 all spent considerable effort
understanding the tutorial knowledge of the tutor so that they could understand how
.the t1,1tor construc_ted responses to the student.

• Use a Consistent Representation: Subject 1 was most explicit about his
enforcement oi the constraint of using a consistent representation· for the knowledge
in his program. Subject 1 realized that a common representation for the knowledge
of the tutor and the student would facilitate the communication between the two
parties in his simulation of the tutorial interaction. Interestingly, the heuristic of
using a common representation led Subject 1 to ignore the possible desirablity of
using different representations for the tutor and the student; thus, he did not
question the psychological reality of using the same basic representation.

• Identify and Solve Key Problems: All of our subjects identified key issues that
their programs would ha,·e to address. Some key issues were problems of representing
knowledge; other key issues related to how to organize the control structure of the
program.

• Use Stepwise Refinement: Each of the subjects recognized the need to develop
their designs so that the degree or specificity or each of the components of the
program stayed "in synch·. Subject 3 was most articulate about this issue when he
noted that he would design a modular program and said that he would "go back and
forth" between the modules as he fleshcd out the design. The strategy of going back
and forth apparently served to prevent designers from making commitments to· one
aspect of the design that would make other aspects difficult to design.

• Identify the Abstract Structure of the Problem: Subject 3 explicitly used the
method of abstraction to help him design his program. As we illustrate in Section
3.5, Subject 3 abstracted away from the domain the pattern of the tutorial
interaction.

The:>e five components of the goal structures or our AI designers were important aspects of their

design processes. A tentative implication for knowledge engineering design tools of the

importance of the designer's goal structure may be that such tools should provide the designer

with a mechanism for directly expressing and fulfilling his or her goals.

3.2 Importance or World Knowledge
The importance of world knowledge for the process of constructing intelligent knowledge-based

systems cannot be overemphasized. We repeatedly observed our subjects appealing to their world

knowledge as they designed their programs. Our subjects appealed to world knowledge in two

main ways.

z~-~.
0 •• "• '• .,, • ... -..:. ,._ ,I ' '<.M.-~ l"''(> .~ .. ,

6

Appeal to Domain Knowledge: In order to understand what the student understood, and

how the tutor generated responses to the student, all subjects referred extensively to their

knowledge of the weathtr domain. In addition, almost every subject regretted not knowing more

than they did know about the weather domai:J.. For example, Subject 1, who had extensive

training in physics, noted several times the limitations o(his knowledge about weather systems.

On one occasion he simply did not know the reason for the form of the tutor's response to the

student. Subject.! 's puzzlement over the goal the tutor was trying to achieve with the reply to

the student occasioned this comment:

"Obviously my model or weather is orr. It's a conrounding factor. The first thing I'd do in
building (this) AI system would be to get out some books on weather and understand what is
really going on."

This quotation by Subject 1 illustrates the importance to knowledge engineers, and to programs

which would simulate their behavior, of a reasonably powerf'ul model of the domain in which they

are engineering knowledge.

Appeal to General World Knowledge: Our subjects frequently appealed to world

knowledge that was not related directly to the weather domain. For example, one of our subjects

noted that transcripts or dialogue sometimes failed to capture potentially useful information. such

as the motivation and mood of the participants. Another subject pointed out that different

tu~ors might have very different styles for interacting with students; equally, some subjects

obsen·ed that motiYational differences of students might require their tutorial programs to reason

about differences in students' learning style. Such differences in tutoring and learning styles haYe

an impact on the design of the AI program since they would either have to be simulated or

ignored altogether.

3.3 Selection or General Representational Schema
Early in the process of constructing their AI programs, both Subject 1 and Subject 3 settled

on general frameworks for conceptualizing the rules and knowledge or the weather domain. For

example, Subject 1 decided, very early on in his analysis of the transcript of the weather

tutoring session, that he would use a frame-slot notation for the weather domain knowledge of

both the student and the tutor. Approximately two minutes after beginning his task, Subject 1

identified his representation:

"It there's a climate frame, one or its slot8 is going to have to be temperature."

Subject 1 's statement is consistent with his subsequent analysis of the requirements or his

program's representation of the weather domain. He continued to pursue the applicability of the

frame-slot representation, identifying the kinds or knowledge the frames would have to represent

as well as heuristics for filling the slots with values. Thus, Subject 1's early decision to use a

frame-based representation for the weather domain knowledge phyed an important role in the

ze-"

7

I

subsequent design work bf his AI program.

Subject 3 initially settled on a cau~al-chain representation for the knowledge in the weather

domain.3 and this had a strong impact on his subsequent work. While Subject 3 recognized

that his initial causal-chain representation of weather domain knowledge was not entirely

adequate, he based most of the machinery for the tutor's question-generation behavior directly on

the causal-chain representation. For example, the causal chain representation would permit the

tutor to work back along causal chains to help students explain how observed effects arose (e.g.,

precipitation) and to work forward along causal chains to help students learn to predict what

would happen given a particular state of the world (e.g., water-burdened clouds running up

against a mountain.)

Thus, while Subject 1 and Subject 3 selected different initial representations for weather

domain knowledge, their early selections of representations strongly affected their subsequent

designs of their programs.

3.4 Causal Simulation or the Domain
In building their representations of the weather domain, our subjects used naive physical

process theory to mentally simulate the causality in _the weather domain as they tried to

understand what the student understood and what the tutor was trying to teach. The following

quotation illustrates Subject l's use of mental simulation to understand the effect of the

Japanese Current on the climate in the Northwest United States: Subject 1 performed this

reasoning when he was trying to understand why the tutor asked the student how the Japanese

Current affects rainfall in Washington and Oregon.

"I'm inferring that the Japanese Current is cold. If I make (this) assumption about the Current's
path, then the Current starts out in Japan, which is fairly far north, and goes even farther north.
So, it probably gd~ very cold when it come~ down the coast and probably make~ Washington and
Oregon a fairly cold place."

Though Subject 1 made the incorrect assumption that the Japanese Current is cold, this

quotation illustrates the use of simulation to reason about causality as part of the process of

designing the behavior of the model of the student and the tutor. While some subjects performed

simulation more than others, every subject used simulation of the domain during their program

desirrn behavior.4

3A causal-chain representation relates causes in the weather domain (e.t;., air masses cooling) to their effects (e.g.,
releasint; moisture as precipitation).

4See Littman & Soloway (1086) for a more extensive treatment of mental simulation in desitiJ1 and understandint; of
programs.

z~-7

8

3.5 Identifieation or Heuristies
Subjects identified two kinds of heuristic reasoning that their programs would have to perform.

First, subjects identified several heuristics for reasoning in the weather domain; second they

identified several program control heuristics that the tutor and the student used to control the

tutorial session.

Domain Heuristics: Subject 1 interpreted the student's behavior in terms of his frame

representation for the student's knowledge about climate. Subject 1 proposed that the slots of

the student's climate frames were filled by applying heuristics which could include default

methods for filling slots.

"The second heuristic is that the slots have metrics associated with them with distributions on the
values and a heuristic for selecting a value out or that distribution based on the "is-part-or
relations for geographic areas."

Heuristics for Controlling Program Behavior: Subject 1 was very interested in

understanding how the tutor constructed responses to the student, since he viewed this as the

primary aspect of his program's control mechanism. After reading and analyzing several

interchanges between the student and the tutor, Subject 1 said:

The interviewer is definitely building this question (to the student) out of the student's responses.

Then, after seeing a few more interchanges, Subject 1 had a nash of insight and stated the

tutor's heuristic for constructing replies to the student:

"If the student comes up with a false statement, the statement is immediately contradicted in an
intere$ting way. It's (the tutor's response) not just "NO." ... (the response) relates back to a
previous question or the interviewer; the correct re"pon8e (to that question) i8 what the
interviewer says now."

Thus, Subject 1 identified two kinds of heuristic reasoning for his program to perform, one

related to the domain, the other related to the control structure of his program. It is interesting

to note that both domain and program control heuristics were based on the frame-slot

representation Subject 1 had selected: Subject 1 designed the domain heuristics to fill slots in

the frame; he designed the program control heuristics to use information in the frames.

Subject 3 also focused on the heuristics used by the tutor and student to construct their

responses. Subject 3 abstracted the transcript of the tutorial interaction by categorizing each of

the tutor's and each of the student's statements; the designer's categorization of the statements

in the transcript produced a foundation for a schematic description of the types of utterances the

tutor and student made. Using the schematic description of the student's and tutor's utterances,

Subject 3 then attempted to identify heuristics the tutor and the student used to produce a

response of each type.

9

3.8 Model Testing and Progressive Rennement
All of our subjects tested their evolving models of the tutor and student at various stages in

the design process. On the basis of their tests of their evolving models, they refined and

corrected their program designs.

Model Testing: All subjects noted the importance or testing their evolving models of their

programs. Most subjects used a variant or the "predict-and~verify" method. Here is how

Subject 1 expressed his strategy:

"So I guess I am playing this game, predicting what the interviewer i8 trying to 8ay ...

The important observation to make about the skills of progressive refinement and testing the

adequacy or the model is that both require a great deal of heuristic knowledge. For example,

how did our designers know:

• which components or the design should be tested!

• when to test components of the design!

• how to test different components of the design!

• how to interprl!t the results or the tests!5

The last point, interpreting the results of the test of the model, points out the importance to our

subjects of debugging their designs. For example, Subject 1 spent a great deal of time resolving

contradictions between his representation of the tutor's knowledge of the Japanese Current and

his factual knowledge about the fate of moisture in bodies or air that are cooling. The following

quotatio:" illustrates Subject 1 's concern with identifying the sources of contradictions. He said

this:

"I get .a contradiction because I know that if things cool orr they lose their moisture. So I know
there is a Jot or rainfall in Washington and Oregon. But I am thinking that if the (Japanese)
Current is coming down from the North it will already have lost its precipitation so I get a
contradiction."

In fact, Subject 1 had made a faulty assumption about the Japanese Current (it is actually a

warTD body of water) and built the faulty assumption into his representation of the tutor's

knowledge. Subject 1's faulty representation of the tutor's knowledge of the Japanese Current

led him to a contradiction between what he believed about the Japanese Current (that it is cold)

and the affirmative response of the tutor to the student's assertion that it is probably rainy in the

Pacific Northwest because of the effect of the Japanese Current on the precipitation patterns.

Subject 1 attempted to resolve this contradiction several times, putting it aside each time until

some new piece of evidence became relevant to its resolution. The behavior of "putting aside"

the contradiction, until some new information became relevant to its resolution, is consistent with

the model of software design proposed by Adelson and Soloway (1985) in which "demons" help

5The credit assignment molll!ter raises its head here.

10

expert software designers turn their attention to old issues when new information becomes

relevant to them.

Progressive Refinement: Our subjects began their AI tasks with only a very general idea of

how their programs should behave. After an initial phase of identifying important attributes of

the student's and the tutor's knowledge and reasoning, they decided on a potential representation

for the knowledge and reasoning. As our subjects filled in their designs, they refined their initial

representations by a three-step process:

• derive predictions about the behavior of the tutor and the student from their program
designs

• evaluate the predictions with the transcript of the tutorial session

• alter the model to be consistent with the transcript.

Our subjects knew that their programs would have to be designed in a "propose-test-modify"

cycle. Subject 3, for example, was fully aware that his first attempt to design the program

would be primarily a "throwaway". Subject 3's recognition that much of his initial program

would be a throwaway is apparent in this comment:

"It's always a problem: How far to expand something you know you are going to throw away."

3.7 Foeusing on a "Touchstone"
After studying each of the statements of the tutor and the student, our AI designers had a

general idea of the knowledge the AI program would have to include and the rules it would have

to use to manipulate the knowledge effectively. Following this initial assessment of the

requirements of the program, several of our AI designers identified a tutorial interaction, or a

response, that they considered to be crucial for their programs. Subject 2, for example, decided

that the third interaction, in which the tutor asks the student how the Japanese Current affects

rainfall in the Pacific Northwest, was crucial for his program. He said that if he could

understand how to generate the tutor's question, and how to generate the student's response,

then he would understand:

• how to represent the domain knowledge

• how to represent the tutor's strategies for asking questions

• how to represent the student's strategies for building informative responses.

A touchstone is valuable because it provides a test for the essence of something. The skill of

selecting touchstones for testing knowledge-based programs is important; it permits the designer

of the program to identif'J what would count as an effective solution to the problem. If we

understood better how knowledge engineers know "what counts as a good solution", we may be

able to design support tools to assist them in developing such solutions.

ze,-lO

11

I
14 Implications, Limitations, and Future Directions

4.1 Implications
The current work suggests four main implications.

• The means by which expert knowledge engineers extract mental models of domain
experts is, itself, heavilu knowledge baBed.

• A great deal of the behavior of experienced knowledge engineers appears to be based
on heuriBtic claBBification of problem types (Ciancey, 1985). For example, the AI
designers in our study who had some experience studying or designing tutoring
systems made a commitment to a general representation schema earlier in their design
proceSBes than the AI designers who had never worked in the domain of tutoring
systems. The experience of the AI designers who had worked in the domain of
tutoring systems appeared to permit them to classify the problem type quite readily
and to select a representational system based on the problem type. Thus, it would be
very useful to study the organization of our knowledge engineers' knowledge.

• The process of empirically studying the methods that knowledge engineers use to
extract mental models of domain experts is a potentially useful enterprise.

• The videotape protocol methodology appears to provide a potentially useful tool for
studying the process of designing knowledge engineered programs.

Each of these implications must be explored by future research before it is possible to evaluate

them fully.

4.2 Limitations
The information presented in this paper does not constitute even an attempt to formulate an

initial empirical theory of knowledge engineering. Rather, it attempts to show that describing

consistent aspects of the behavior of knowledge engineers can suggest interesting avenues to

pursue toward the goal of developing computational theories of how knowledge engineers do their

wotk. The ideas presented in this note are limited for three main reasons:

• the subject sample is small

• the domain in which the AI designers were asked to work is limited: a more adequate
empirical descriptive theory of knowledge engineering should study behavior of
knowledge engineers in several domains

• the results reported here are just a first pass at analyzing the extensive protocol data
collected from our subjects' design sessions.

Even with these limitations firmly in mind, it seems plausible to imagine that a more detailed

empirical study of the behavior of knowledge engineers could provide useful insights into ways of

devising intelligent, knowledge-based knowledge engineering tools.

~-((

12

4.3 Future Directions
In the future, we plan to address several issues:

• More Detailed Analysis of the Data: The protocol data we collected are very
rich. The goal in performing further analyses will be to identify

• the actual knowledge used by our subjects

"' the goal structure of our AI designers that controlled their design behavior

• the heuristics they used to achieve their goals.

• Develop a Process Model: In this paper we have identified just a few of the
salient behaviors of our designers. As we identify more of the knowledge and
heuristics used by our designers, we plan to develop a process model of their behavior.

• Develop a Simulation: As the process model of our designers' behavior becomes
neshed out, we will develop a simulation model of their behavior.

4.4 Acknowledgements
I would like to thank Elliot Soloway for his unflagging support of my work. J ames Spohrer and

Andy Liles made very useful comments on drafts of this paper. I would also like to extend my

appreciation to my subjects.

5 References
Adclson, B. and Soloway, E. A modt:l of software design. Yale Computer Science Department

Technical Report #342, 1984, Department of Computer Science, Yale University, New Haven,

CT.

Chandrasakaran, B. Generic tasks in expert svstem design and their role in explanation of

problem solving. Technical Report, July, 1985, Department of Computer and Information

Science, Laboratory for Artificial Intelligence, The Ohio State University, Columbus, OH.

Clancey, W. Heuristic Classification. Stanford University Computer Science Department

Research Report #STAN-CS-85-1 066.

Building expert svstem8. F. Hayes-Roth, D. Waterman and D. Lenat (eds.), Addison-Wesley,

Reading, MA., 1983.

Littman, D. & Soloway, E. Mental 8imulation of program8: Some data and some theorv.

Submitted to 1987 Conference on Computer Human Interaction (CHI).

Stevens, A., Collins, A., and Goldin, S. Misconceptions in students' understanding in

Intelligent tutoring svstems D. Sleeman and J. S. Brown (eds.), Academic Press, London, 1982.

Zf$-12..

13

8 Stimulus Transeript
The following transcript is the actual transcript shown to our subjects.

tutor: 1. Do you know what the climate is like in Washington and Oregon!

student: 1. Is it cold!

tutor: 2. Can you guess about the rainfall there!

student: 2. Normal, I guess.

tutor: 3. How do you think the Japan Current along the coast affects rainfall there!

student: 3. It's probably rainy.

tutor: 4. Yes. There are rain forests in Washington.

student: 4. Then the Japanese Current is warm.

tutor: 5. Right.

student: 5. And the wind blows in from the sea.

tutor: 6. What happens to the moist air blown over Washington and Oregon by the winds!

student: 6. It condenses and rains because the moist air cools and cannot hold the water. It

cools when the wind blows it and it lowers from the sky.

tutor: 1. What happens to the temperature or the moist air as it rises!

student: 7. The moist air gets warm.

tutor: 8. No, it cools when it rises.

student: 8. So the mountains also cool the moist air when they come into contact with the

moist air.

tutor: 9. No. The contact with a solid mass does not cool off moist air.

student: 9. Because it is not big enough.

tutor: 10. Right.

student: 10. So then it is because the mountains cause the air mass to rise!

:• .·~· : --l .. ':'"T.~Jf...t.~·;·. •":; '·' ... ,-

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Taking Backtracking With a Grain of SALT

Sandra Marcus
Department of Computer Science

Carnegie-Mellon University Pittsburgh,
Pennsylvania 15213*

In addition to the author, Einile Servan-Schreiber contributed significantly to the coding of the SALT
analyses described in this paper. Many of the ideas contained here were presented in a discussion
group attended by Larry Eshelman, Gary Kahn, John McDermott, Tom Mitchell, and Allen Newell,
and I am very gr;,ateful for their feedback. I would also like to thank JeffStout for his work on the
problem-solving strategy and control shell assumed by SALT.

Introduction

A very successful approach to automating knowledge acquisition has been to focus a tool on expert
systems that use the same problem-solving method (Davis and Lenat, 1982; Boose, 1984; Marcus,
McDermott, and Wang, 1985; Kahn, Nowlan, and McDermott, 1984; van de Brug, Bachant and
McDermott, 1986). Such tools gain their advantage from the way in which they represent the
knowledge they acquire; that is, the representation can identify knowledge by the role it plays in
finding a solution (Clancey, 1985; McDermott, 1986). Knowing how knowledge will be applied
provides a strong lever for managing the input of the knowledge and deciding the appropriateness of
the knowledge base for the intended use. This paper will describe some aspects of user guidance
provided by the knowledge acquisition tool SALT (Marcus, McDermott, and Wang, 1985; Marcus and
McDermott, 1986), based on a knowledge representation for constructive applications for which a
propose-and-revise strategy is appropriate.

SALT assumes that any expert system it creates will use a strategy of incrementally extending a
plan while monitoring constraints on plan extensions. Whenever it detects a constraint violation, the
system will use domain expertise to consider past decisions that could be changed, choose the least
damaging change that remedies the violation, remove anything potentially inconsistent with that
change, and continue extending the plan from that point. For an unaided domain expert to describe
how to perform a task using backtracking involves making explicit a great deal of control knowledge,
which experts are usually fairly vague about. [t is particularly difficult for the expert to keep in
mind how steps to extend the plan should be ordered, which decisions arfect compliance with
constraints on the plan, and how local refinements that remedy individual constraint violations
interact with each other to affect overall progress toward a plan that meets all constraints. The broad
outlines of the method SALT assumes define a knowledge represe:1tation SALT can exploit to assist
users with these difficulties. SALT's know ledge base analyses can indkate when backtracking is
needed, identify potential points to backtrack to, and indica•e potential problems in converging on a
solution that may require additional knowkdge.

Dr. Marcus is now with Boeing Computer Services. Advanced Technology Center,
P.O. Box 24346, M/S 7L-64,Seattle, WA 98124.

Is Backtracking Needed?

Experts in design and planning are fairly good at describing individual considerations for
constructing a solution for their domain. They can extemporaneously list many of the constraints the
solution must satisfy. They can consult manuals of formulas and tables for producing individual
output values. But they are less clear on how the individual steps fit together, how to organize them
into a system. SALT aids users by allowing them to enter knowledge piecemeal starting at any point .

. SALT keeps track of how the pieces are fitting together and warns the user of places where pieces
might be missing or creating inconsistencies.

SALT users typically start by specifying procedures for producing particular desired output values.
They can start by specifying a procedure for any value. Users can describe a set of procedures from
input to output if they wish to do so. Alternatively, users may start by giving a procedure for
determining an output value that takes into consideration all information necessary to make a
decision. SALT can then march the user backward to acquire procedures for the information
necessary at that step, and so on. If each step includes all relevant considerations, the resulting
expert system will be a least commitment system in the sense that, like MOLGEN (Stefik, 198la;
1981b), it will not make a decision until all necessary information is available. If steps cannot be
ordered so as to make all information available before a decision is required, SALT will guide the
expert in combining plausible reasoning to propose an initial guess with knowledge-based
backtracking to revise guesses. Examples based on VT (Marcus, Stout, and McDermott, 1986), an
expert system for configuring elevators, can illustrate how SALT exploits its knowledge of propose
and-revise problem-solving to guide the expert. These examples will follow a user whose strategy is
to start with a procedure for specifying one of the desired output values of the expert system.

VT takes as input the customer's functional specifications, such as elevator speed and carrying
capacity, and key architectural information about the elevator shaft, such as wall-to-wall dimensions
and locations of sills and rail supports. VT's task is to select all pieces of equipment and produce a
configuration and layout of parts that meet both those specifications and safety, installation and
maintenance requirements.

At the start of a SALT interview, the user is shown the menu below for indicating the type of
knowledge to be entered or viewed. Three basic kinds (or roles) of knowledge make up a propose-and
revise system: (1) procedures for proposing values for the pieces of the design or plan the system will
output, (2) identification of constraints on individual pieces of the design or plan, and (3) suggestions
for ways of revising the design if the constraints are not met.

In the interaction below, the user is electing to enter a procedure for determining the value of
MACHINE-MODEL. SALT's messages are in sans seriftype, user replies in sans serif italic. A word
in brackets at the end of a SALT request for information is a default response which the user can
issue by typing carriage return. (These conventions apply to all sample SALT dialogs in this paper.)

1. PROCEDURE
2. CONSTRAINT
3. FIX
4. EXIT

Enter a procedure for a value
Enter constraints for a value
Enter remedies for a constraint violation
Exit

Enter your command [EXIT]:

What is the name of the value for which you will specify a procedure?: MACHINE-MODEL

SALT next presents the user with a set of prompts. These are requests for information needed to
specify a procedure for the SALT-assumed problem-solving strategy. The completed PROCEDL"RE
schema for MACHINE-MODEL is as follows:

2~-1

1
2
3
4
5
6
7
8
9

10

Name:
Constraint type:
Precondition:
Procedure:
Table name:
Column with needed value:
Parameter test:
Parameter test:
Ordering column:
Optimal:

MACHINE-MODEL
ACTUAL
NONE
DATABASE-LOCKUP
MACHINE
MODEL
MAX-LOAD > = SUSPENDED-LOAD
NONE
HEIGHT
SMALLEST

Enter your command [EXIT]: <er>

The user's choice ofDATABASE-LOOKUP as the procedure type for determining MACHINE
MODEL indicates that the SALT -generated expert system will consult its database of equipment
specifications to select an appropriate machine.l With this procedure, the user is presented with a
set of subprompts asking for details for locating the value to be retrieved. In the schema above, the
name of the table and column from which the value is retrieved are SALT-generated defaults.
Parameter tests are tests to be performed on table entries (rows) to decide which are appropriate
candidates for retrieval. In this case, the entry must have a listing under the column MAX-LOAD
that is greater than or equal to the SUSPENDED-LOAD. Finally, if more than one entry under
MODEL meets this test, ordering column and optimal considerations are used to determine which
entry should be retrieved. The user indicates that the entry with the smallest height is the most
desirable.

This procedure in isolation is incomplete. SALT notices this and makes the query below if the user
tries to exit from the interview at this point:

I have no PROCEDURE for arriving at a value for SUSPENDED-LOAD which was mentioned
as a contributor for MACHINE-MODEL. Do you wish to specify one now? [SAVE]:

The following three procedures are supplied by the user in response to SALT prompts to supply
missing knowledge.2

1
2
3
4
5

Name:
Constraint type:
Precondition:
Procedure:
Formula:

Enter your command [EXIT]:

SUSPENDED-LOAD
ACTUAL
NONE
CALCULATION
CAR-WEIGHT + CABLE-WEIGHT

lSALT can also be used to collect and generate a database that is organized into tables of constants. The user will be
reminded to enter constants for any table referenced in a procedure. .

2This is a simplification of an example that occurred as SALT acquired the VT knowledge base. The original analysis
involved a chain of 13 steps.

l'\-Z

1 Name:
2 Constraint type:
3 Precondition:
4 Procedure:
5 Formula:

Enter your command [EXIT]:

1 Name:
2 Constraint type:
3 Precondition:
4 Procedure:

CABLE-WEIGHT
ACTUAL
NONE
CALCULATION
HOIST-CABLE-UNIT-WEIGHT*

HOIST-CABLE-QUANTITY

HOIST-CABLE-QUANTITY
ACTUAL
NONE
CALCULATION

5 Formula: SUSPENDED-LOAD I HOIST-CABLE-STRENGTH

Enter your command [EXIT]:

Once the user enters these procedures, SALT stores that knowledge within a dependency network
shown below:

I HOIST-CABLE-STRENGTH

contributes-to -------+ contributes-to

HOIST-CABLE-QUANTITY ..-----

HOIST-CABLE-UNIT-WEIGHT

I ------ contributes-to
contributes-to +

----~ CABLE-WEIGHT CAR-WEIGHT

~
contributes-to contributes-to

~
L------------- SUSPENDED-LOAD

I
contributes-to • MACHINE MODEL

Using this representation, it is very easy for SALT to detect the impossibility of applying three of the
steps in a forward chain. SALT's aid in this situation is guidance in how to use propose-and-revise
instead. First the user is warned that the situation exists:

In the procedures I have been given, there is a loop. The list below shows the values on
the loop; each value uses the one below it and the last uses the first:

1 CABLE-WEIGHT
2 HOIST-CABLE-QUANTITY
3 SUSPENDED-LOAD

In order to use an.y procedure, I need some way of getting a first estimate for one of the
names on the list. Which one do you wish to estimate? [SUSPENDED-LOAD]: 2

The user is asked to break the loop by providing an estimate for one of the values on the loop. The
user indicates that an estimate will be provided for HOIST-CABLE-QUANTITY by typing its
number,2.

The format used for eliciting an estimate is the same as that used for any step to extend a plan:

1
2
3
4

Name:
Precondition:
Procedure:
Formula:

Enter your command [EXIT]: 4 3

HOIST-CABLE-QUANTITY
NONE
.CALCULATION

Prompts on the left represent requests for information. Values on the right in the example are
defaults. As shown below, the user indicates that in extending any plan, the system should initially
use three hoist cables. SALT users are coached to use the most preferred value as an estimate. In this
case, the smallest number of hoist cables that can be used on any job incurs the smallest possible
dollar cost.

1
2
3
4

Name:
Precondition:
Procedure:
Formula:

Enter your command [EXIT]: <er>

HOIST-CABLE-QUANTITY
NONE
CALCULATION
3

Once the user has settled on this procedure and exited from the procedure screen, SALT indicates that
this will be a potential point for initiating backtracking, since the original procedure will be used to
derive a constraint placed on this estimate. In this case, the user accepts the default, ~IINIMCM:

The procedure you originally gave for HOIST-CABLE-QUANTITY will be used as a check
ofthe estimate. How does the value arrived at by that procedure limit the estimate?
[MINIMUM]: <er>

SALT's representation of the revised knowledge base that results from this interaction is shown
below:

r-+ HOIST-CABLE-QUANTITY HOIST-CABLE-UNIT-WEIGHT

------contributes-to contributes-to

CAR-WEIGHT -------.. CABLE-:EIGHT

~
contributes-to contributes-to

------- + HOIST-CABLE-STRENGTH ... SUSPENDED-LOAD

contributes-to contributes-to contributes-to

MINIMUM-HOIST-CABLE-QUANTITY MACHINE-MODEL

constrains

I

The system is now set up to start with three hoist cables; use this value to compute CABLE
WEIGHT, then SUSPENDED-LOAD; and finally, compute MINIMUM-HOIST-CABLE-QUANTITY.
If the computed minimum is greater than three, the system will register a constraint violation. SALT
has essentially taken knowledge that the user originally defined as filling the role of extending a plan
and assigned it as part of the system's constraint knowledge. Because SALT now has knowledge of a
new constraint, it must have a way of remedying a violation of that constraint, and it reminds the
user:

I have no knowledge of fixes for MINIMUM-HOIST-CABLE-QUANTITY. Would you like to
specify one now [SAVE]? yes

The next section describes aid SALT can provide in suggesting potential fixes.

Where Should the System Backtrack To?

In many cases, it can be difficult to decide what parts of the proposed plan to revise in order to remedy
a constraint violation. In principle, any value that contributes to the constraint or its constrained
value might serve as a potential fix value. This is the rationale behind dependency-directed
backtracking, applied in expert systems such as EL (Stallman and Sussman, 1977; Sussman and
Steele, 1980). But revisions may differ in cost and in likelihood of success. SALT assumes a method
of knowledge-based backtracking; that is, the generated system will use domain expertise to decide

what values to change to remedy a constraint violation.3 A user who wishes to suggest revisions in
response to a constraint violation should at least consider any contributor that could have an impact.
Ifthe dependency network is very dense, the user may have difficulty recalling all contributors.
SALT helps by reading out the relevant part of the network on request. The example below is for the
knowledge base described so far, after the user elects to supply a fix for the MINIMUM-HOIST
CABLE-QUANTITY constraint.

There are no fixes for MINIMUM-HOIST-CABLE-QUANTITY in the knowledge base.
Would you like to see possible fix values? [YES]:

There are no contributors to HOIST-CABLE-QUANTITY.

Would you like to see the contributors to MINIMUM-HOIST-CABLE-QUANTITY? [YES]:

Contributors to MINIMUM-HOIST-CABLE-QUANTITY:

1 HOIST-CABLE-STRENGTH
2 SUSPENDED-LOAD
3 CABLE-WEIGHT
4 HOIST-CABLE-QUANTITY
5 HOIST-CABLE-UNIT-WEIGHT
6 CAR-WEIGHT

Give the number of the one you want to work on (0 for new) [0]:

Because HOIST-CABLE-QUANTITY was assigned a constant value of3, there are no contributors to
it. The indentation in the display of contributors to MINIMUM-HOIST-CABLE-QUANTITY
indicates the remoteness of their contribution. The leftmost contributors, SUSPENDED-LOAD and
HOIST-CABLE-STRE~GTH, are used directly to calculate the constraint. CABLE-WEIGHT and
CAR-WEIGHT, indented under SUSPENDED-LOAD, directly contribute to SUSPENDED-LOAD
and thus to MINIMUM-HOIST-CABLE-QUANTITY. In principle, a change in any contributor to
MINIMUM-HOIST-CABLE-Ql:ANTITY, however remote, could change its value and, depending on
the direction of change, remedy the constraint violation. Domain expertise is needed to determine
what change to try because the domain expert knows which changes are most disruptive or expensive
in the real-world, and also which are most likely to succeed.

In this example, the user does not suggest changing any of the contributing values but would revise
HOIST-CABLE-QUANTITY directly. The proposed fix is shown below:

1
2
3
4
5
6

Violated constraint:
Value to change:
Change type:
Step type:
Rating of undesirability:
Reason for undesirabiity:

MINIMUM-HOIST-CABLE-QUANTITY
HOIST -CAB LE-QUANTITY
INCREASE
SAME
4
Changes minor equipment selection

SALT's representation of the knowledge base now looks as shown below:

3AIR-CYL <Brown, 1985) and PRIDE (Mittal and Araya, 1986> also use advice for recommending revisions but differs from
SALT-generated systems in other architectural features,

--r:* HOIST-CABLE-QUANTITY HOIST-CABLE-UNIT-WEIGHT

----- contributes-to contributes-to

CAR-WEIGHT ---------.. CABLE-:EIGHT

---- contributes-to contributes-to ------- . HOIST-CABLE-STRENGTH _., SUSPENDED-LOAD

contributes-to contributes-to

MINIMUM-HOIST-CABLE-QUANTITY

I I
constrains

I
suggests

I
FIX

I
increases

I

I

contributes-to

MACHINE-MODEL

The knowledge base now calls for the generated system to start with the smallest possible number of
hoist cables and use that estimate to make other equipment selection and sizing decisions. The
system will then use the results of those decisions to calculate the smallest number of hoist cables
required under those conditions. If the minimum is three or fewer, the current configuration is
acceptable. Ifit is greater, HOIST-CABLE-QUANTITY will be increased by the amount that it fell
below the minimum, and the process will be repeated using the new estimate for HOIST -CABLE
QUANTITY. If the calculated minimum ever exceeds the specified maximum, the system will stop
increasing HOIST-CABLE-QUANTITY and reach a dead end. It will then declare that no solution is
possible for this over-constrained job.

In this example, the search carried on by the mechanism that implements fixes is extremely simple.
Since there is only one potential remedy for MINIMUM-HOIST-CABLE-QUANTITY, the generated
system need not decide which potential fix to apply. When there is more than one possible fix, the
system must choose among them in a way that ensures that the system will converge on a solution if
one exists. SALT provides a map of the knowledge base to help sophisticated users assess the
adequacy of any knowledge base collected by SALT. This map and its use are described in the next
section.

2..'<-7

Will the Search Converge?

A piece of knowledge supplied by the user to fix a violated constraint carries with it three crucial bits
of information: a value that might be changed, the way it should be changed, and the cost of the
change. The first two pieces of information give the system potential remedies for constraint
violations. The third influences the order in which the system attempts to apply those remedies.

Domain knowledge deter~ines the relative cost of potential constraint remedies. For VT, ordering
largely reflects dollar cost to the company responsible for supplying, installing, and maintaining the
equipment. Potential fixes are ordered according to their most severe negative effect on the
configuration. For VT, potential fixes are investigated in that order, starting with the least costly,
because it is very important to the elevator company not to overlook any low-cost solutions. However,
this method excludes any use of information that might reflect the likelihood of convergence on a
solution that satisfies all constraints. Evaluating the likelihood of convergence requires examining
the effect of a particular fix on other potential constraint violations.

The kind of domain-specific information SALT collects to direct backtracking is relatively easy to
elicit, since the expert can focus on one constraint violation at a time and give preference ratings that
reflect cost considerations alone. However, a search that relies solely on this local information and
ignores potential interactions among fixes for different constraint violations may run into trouble.
SALT helps manage knowledge-based backtracking by mapping out interactions among fixes for
different constraint violations. Interacting fixes can then be examined to see if they might interfere
with convergence on a solution. Fixes that do not cause problems can be dealt with using local
information only. This treatment, the "standard treatment" for SALT-generated systems, ignores
potential interactions among fixes for different constraints. Trouble spots are treated as special cases
that take into account more global information.

The Assumed Standard Treatment and Its Trouble Spots

In the standard treatment, choice of where to backtrack to is conditioned on individual constraint
violations. Only potential fixes identified by the domain expert as relevant to the current violation
are considered, and these are selected in order of the expert's preference. All possible combinations
of constraint-specific remedies will be tried until a remedy is found for the violation. If the system
reaches a dead end-- i.e., none of these combinations remedy the local constraint violation-- the
system wi1l announce that there is no possible solution. If fixes for one constraint violation do not
affect other constraint violations, this strategy guarantees that the first solution found will be the
most preferred and that the system will correctly report failure if no successful fix is found for an
individual constraint.

However, it is possible that remedies selected for one constraint violation may aggravate constraint
violations that occur further downstream. This may result in failure to find a solution when one does
exist in cases in which a fix that appears optimal based on local information would not be preferred if
more were known about the search space.

For example, the lowest cost successful fix for a particular constraint violation may aggravate a
downstream constraint violation so much that the system reaches a dead end when exploring fixes
for these downstream violations. If more expensive fixes for the first constraint do not have the same
negative effect downstream, nudging the search through the more expensive first step may give a
solution. The undesirable behavior of the system in this case would be a premature announcement of
failure.

Another potential problem is that unproductive looping may occur between fixes for two constraint
violations if their preferred fixes counteract each other.4 This will occur, for example, if fixing one
constraint violation increases a certain value, which leads to violation of another constraint whose
fix calls for decreasing the same value, and so on. Repeated violations of the same constraint are not
necessarily pernicious, but such a case of antagonistic constraints might result in an infinite loop.

Currently SALT displays a representation of the interactions among fixes in a knowledge base. This
was used this t9 analyze VT's knowledge base for potential trouble in a local, constraint-specific
search. Special-case treatments for problem spots were then hand-coded. Plans for automating this
process in SALT are discussed under "Future Directions."

SALT's Map of Fix Interactions

In order to identify trouble spots, we need to know whether and how a proposed change to a fix value
will affect the relationship of constraints and their constrained values anywhere else in the network.
To map these interactions, SALT uses a worst case analysis. The dependency network that
represents contribution in procedures for proposing plan extensions and specifying constraints can be
augmented in many cases by a notation for direction of correlation between values at adjacent nodes.
For many algebraic formulas, SALT can assess whether an increase in a contributor will produce an
increase in the result or the reverse. For example, if z = x- y, increasing x will increase z, while
increasing y will decrease z. Procedures involving calls to the database cannot be similarly assessed
because, by design, what is stored in the database could vary on a very short-term basis. Thus,
anything involving a database call is marked unknown and considered to have a potentially
aggravating effect on downstream constraint checks.

Most fixes have an associated direction-- increase or decrease of the fix value. Using the correlations,
this direction of change can be propagated through the network to any constraints or constrained
values. As constraints involve relational tests between values, knowing the propagated effect on the
constraint or constrained value will tell us whether the change to some upstream fix value will make
the constraint more or less likely to be violated. For example, if a constraint is a maximum, a change
that decreases the constraint or increases the value it constrains makes it more likely that the
constraint will be violated. Again, fixes without a clear direction-- e.g., those involving calls to the
database or substitutions of symbolic values-- are assumed to have a potentially negative effect on
downstream constraint checks.

SALT lists chains of interacting fixes. Each chain originates from a constraint whose tendency to be
violated is not affected by fixes for any other constraint and whose own fixes make other constraints
more likely to be violated. If fixes for any of the constraints in this second tier make other constraints
more likely to be violated, these are added to the chain. Loops are flagged when a constraint recurs in
the chain. Knowledge engineers examine the chains and loops in a knowledge base to see whether
they represent trouble spots for the standard treatment.

Diagnosis and Treatment of Trouble Spots

The map displayed by SALT for the HOIST-CABLE-QUANTITY example is shown below. The
starting point of the chain is the first constraint, shown between asterisks. There is no possibility
that a fix anywhere else will make it more likely that this first constraint will be Yiolated.
Constraints are shown without parentheses. All potential fixes for a given constraint are listed below
the constraints that they might remedy and indented to the right .. They are enclosed in parentheses

4A related but less serious problem is that a remedy not chosen may have an ameliorating effect on a downstream constraint
violation. In such a case, the system might miss a solution in which the total cost of fixing the two violations might be less if a
more costly fix were chosen for the first.

along with the direction of change and a number representing the cost of the fix; higher numbers
indicate higher cost. Below each fix value is a list of constraints that may be more likely to be violated
because of that fix. "LOOP" indicates the occurrence in the chain of a constraint that has already
appeared.

*
MINIMUM-HOIST-CABLE-QUANTITY
*

(HOIST-CABLE-QUANTITY, Up, 4)
MINIMUM-HOIST-CABLE-QUANTITY

LOOP

This figure displays a loop, but it is not an infinite loop because the system will stop increasing
HOIST-CABLE-QUANTITY when the maximum hoist cable quantity is reached. When this happens
a dead end will be declared; it is not a premature dead end, however, because it is unavoidable.

A simple case involving a potential premature dead end might look like this:5

*
MAXIMUM-CAR-JAMB-RETURN

*
(PLATFORM-WIDTH, Down, 10)
(DOOR-OPENING, Substitute, 8)
(OPENING-WIDTH, Up, 6)

MINIMUM-DOOR-OPERATOR-SPACE
(DOOR-MODEL, Up, 4)

This map indicates that the less costly change to OPENING-WIDTH, although preferred for its local
cost considerations, may cause a violation of MINIMUM-DOOR-OPERATOR-SPACE. The more
expensive fixes to PLATFORM-WIDTH and DOOR-OPENING have no negative downstream effects.
If selecting OPENING-WIDTH as the fix to implement causes a dead end, this may constitute a
premature announcement of failure. Selecting a change to PLATFORM-WIDTH, DOOR-OPENING,
or some combination of the three potential changes may remedy the violation to MAXIMUM-CAR
JAMB-RETURN without making it impossible to fix MINIMUM-DOOR-OPERATOR-SPACE.

Currently, the SALT user must hand-code a solution by customizing treatment for the potential site
of the dead end. The control shell must be modified so that whenever a dead end is found for a
violation ofMINIMUM-DOOR-OPERATOR-SPACE, the system will go back and try more expensive
fixes at the relevant prior constraint violation, MAXIMUM-CAR-JAMB-RETURN. The SALT map
helps the user locate this relevant prior constraint violation.

Below is an example of a potential infinite loop:

5Th is example is completely fictional, since no such trouble spots exist in the current VT knowledge base <M arcus, Stout
and McDermott, 1986).

2.G\-t0

*
MAXI MU M-TRACTION-RA TIC
*

(CWT-TO-PLATFORM-FRONT, Down, 2)
(COMP·CABLE·UNIT-WEIGHT, Up, 4)

MAXIMUM-MACHINE-GROOVE-PRESSURE
(HOIST-CABLE-QUANTITY, Up, 4)
(COMP-CABLE-UNIT-WEIGHT, Down, 4)

MAXIMUM· TRACTION-RATIO
LOOP

LOOP

(MACHINE-GROOVE-MODEL, Down, 8)
MAXIMUM· TRACTION-RATIO

(MACHINE-GROOVE-MODEL, Up, 8)
MAXIMUM-MACHINE-GROOVE-PRESSURE

(HOIST-CABLE-QUANTITY, Up, 4)
(COMP·CABLE-UNIT-WEIGHT, Down, 4)

MAXIMUM· TRACTION-RA TIC
LOOP

LOOP

(MACHINE-GROOVE-MODEL, Down, 8)
MAXIMUM· TRACTION-RATIO

Two of the fixes for MAXIMUM-TRACTION-RATIO can result in violation of MAXIMUM
MACHINE-GROOVE-PRESSURE and in turn, two fixes for MAXIMUM-MACHINE-GROOVE
PRESSURE can loop back to cause violation of MAXIMUM-TRACTION-RATIO. The details of this
map reveal that these two potential fixes for each constraint--the changes to CO MP-CABLE-UNIT
WEIGHT and MACHINE-GROOVE-MODEL--directly counteract each other. A closer look at
SALT's knowledge representation, not in evidence here, indicates that decreasing the CWT-TO
PLATFORM distance to fix MAXIMUM-TRACTION-RATIO does not affect MACHINE-GROOVE
PRESSURE or its maximum. Adding hoist cables to fix MAXIMUM-MACHINE-GROOVE
PRESSURE may actually ameliorate a problem with MAXIMUM-TRACTION-RATIO, although the
effect is not substantial enough to warrant its inclusion as a fix for that constraint.

As long as only one of the two constraints is violated, the standard search for a solution based on
isolated constraint violations is satisfactory. But if both constraints are violated, the system may
thrash. The control shell was modified to treat this latter situation as a special case and investigate
fixes for the two constraints in tandem. To do this, one extra piece of information not currently
acquired by SALT was needed. If both constraints cannot be remedied at the same time, a VT domain
expert would relax MAXIMUM-MACHINE-GROOVE-PRESSURE before violating MAXIMUM
TRACTION-RATIO. Under such a circumstance, the generated system will try to minimize the
violation of MAXIMUM-MACHINE-GROOVE-PRESSURE.

Whenever a violation of one of these constraints is detected, the system will check to see if the other
has been violated. If it has, the system will reset the values of all potential fix values to their last
value before the first violation of either constraint. It will then try out potential fixes in this order,
according to whether the fix:
1. Helps both.
2. Helps one and doesn't hurt the other.
3. Helps one but does hurt the other.

In the case of3, the system will apply the fix to remedy the constraint most important to fix.

Z.'t- t(

Future Directions

The current version of SALT makes good use of its knowledge of how information in a domain-specific
knowledge base will be used in constructing a solution. It has already proved useful in developing the
VT system. SALT has also been used to acquire a knowledge base in developing an expert system for
production scheduling of elevators (Marcus, Caplain, McDermott, and Stout, 1986) and for a portion
of the XSEL task of selecting computer components to meet a customer's functional requirements.
One major difference between these domains and that ofVT is the way in which local fixes interact.
When VT decides which proposed fix should be implemented when a constraint has been violated, the
major factor determining the "goodness" of a fix is the dollar cost to the company. This dollar cost can
be determined independently of the parameters of any particular customer input and in fact is
specified by the SALT user before the VT system is ever run. Fixes for one constraint very rarely
exacerbate violations of other constraints for VT. In most cases, when this does occur, the system will
not thrash but simply increase cost until all options are exhausted.

For the scheduling task, on the other hand, the decision about which order to reschedule or which
department must handle rush work depends on such things as what orders are currently scheduled,
how close each is to its original expected schedule, and how close departments are to their capacity at
the time a reschedule is attempted. This is because fixes for one constraint can very easily
exacerbate another constraint violation, and there is the potential for a fix for one constraint to undo
a fix for another. This affects the way SALT must elicit knowledge about how to perform schedule
revisions.

First, SALT can automate the diagnosis described in the last section by pointing out itself the
potential for nonconvergence when it occurs. More importantly, SALT can elicit additional relevant
knowledge to address such inadequacies. For example, SALT can suggest preconditions on
considering a proposed fix that take into account values likely to cause violations of other
constraints. SALT's knowledge representation allows it to locate such values and judge their effect
on other values because they are identified by the role they play in problem-solving.

SALT makes a strong commitment to the problem-solving strategy that will be used for the task it
will acquire. This allows SALT to represent domain-specific knowledge according to the role it will
play in finding a solution for any task that can use this basic strategy. This commitment gives it
considerable power in providing guidance to users in the area where they most need it -- making
decisions that require consideration of the potential interactions of a single piece of knowledge with
everything else in the knowledge base.

References

Boose, J. 1984. "Personal Construct Theory and the Transfer of Human Expertise," in Proceedings of
the National Conference on Artificial Intelligence, Austin, Texas.

Brown, D. 1985. "Failure Handling in a Design Expert System," in Computer-Aided Design, 17: 436-
441.

Clancey, W. 1985. "Heuristic Classification," Artificial Intelligence, 27: 289-350.

Davis, R., and Lenat, D. 1982. Knowledge-Based Systems in Artificial Intelligence, McGraw-Hill.

Kahn, G.; Nowlan, S., and McDermott, J. 1984. "A Foundation for Knowledge Acquisition," in
Proceedings of IEEE Workshop on Principles of Knowledge-Based Systems, Denver, Colorado.

Z.Gt.-12.

Kahn, G.; Nowlan, S; and McDermott, J. 1985. "MORE: An Intelligent Knowledge Acquisition Tool,"
in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Los Angeles, pp.
581-584. .

Marcus, S.; McDermott, J.; and Wang, T. 1985. "Knowledge Acquisition for Constructive Systems,"
in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 637-639.

Marcus, S.; Stout, J.; and McDermott, J. 1986. "VT: An Expert Elevator Configurer That Uses
Knowledge-Based Backtracking," Carnegie-Mellon University Department of Computer Science
technical report, forthcoming.

Marcus, S.; Caplain, G.; McDermott, J., and Stout, J. 1986. "Making SALT Generic," Carnegie
Mellon University Department of Computer Science technical report, forthcoming.

Marcus, S., and McDermott, J. 1986. "SALT: A Knowledge Acquisition Tool for Propose-and Revise
Systems," Carnegie-Mellon University Department of Computer Science technical report,
forthcoming.

McDermott, J. 1986. "Making Expert Systems Explicit," in Proceedings of the IFIP Congress, Dublin,
Ireland.

Mittal, S., and Araya, A. 1986. "A Knowledge-Based Framework for Design," in Proceedings of the
National Conference on Artificial Intelligence, Philadelphia, PA.

Stallman, R.M., and Sussman, G.J. 1977. "Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis," Artificial Intelligence, 9, 135-196.

Stefik, M. 1981a. "Planning With Constraints (MOLGEN: Part 1)," Artificial Intelligence, 16,111-
140.

Stefik, M. 1981b. "Planning and Meta~Planning (MOLGEN: Part 2)," Artificial Intelligence, 16, 141-
170.

Sussman, G.J., and Steele, G.L., Jr. 1980. "CONSTRAINTS-- A Language for Expressing Almost
Hierarchical Descriptions," Artificial Intelligence, 14, 1-39.

Van de Brug, A.; Bachant,J.; and McDermott, J. 1986. ''The Taming of RI," IEEE-Expert,
forthcoming.

Knowledge Acquisition for Knowledge-Based Systems Workshop, ~nff, Canada, NJv., 1986

PRAFT
Measurement of Declarative and Procedural Knowledge in the Development

of a Knowledge Based Media Planning System

Andrew A. Mitchell, University of Toronto

In this paper, we describe our experiences ;in measuring declarative

and procedural knowledge for the development of a knowledge based

media planning system. The purpose of the system is to use the

information from the annual Marketing Plan and other pertinent

information for a particular brand (e.g. Tide detergent) to

develop a media plan for the brand. The resulting media plan

will provide an allocation of the advertising budget by media

(e.g. magazine) and media vehicle (e.g. Time Magazine) over a

one year planning horizon.

The planning system will contain two stages. At the first stage,

the critical elements of the Market~ing Plan will be used to form

goals and constraints for the media plan. Examples of the goals

will include reach and frequency goals and an allocation of the

budget by media and over the planning horizon. Examples of

constraints would be the need to use print media for a coupon

promotion or the need for a minimum number of Gross Rating Points

in a television schedule during a particular time period. The

second stage will be the development of the media plan. The

development of this plan involves satisfying the multiple goals

and constraints. If a feasible media plan cannot be found, then

the system will adjust the goals and constraints set at the first

30-0

stage. The resulting system will provide an interactive environ

ment for the media planner. It will ask the media planner for

information at various stages of the process and provide justifi-

cation and the tradeoffs involved for the various decisions that

the system makes.

In developing the system, media planners from a number of major

advertising agencies and firms in the United States are being

interviewed. Consequently, rather than simply trying to mimic the

problem solving of a single expert, we are attempting to incorp

orate the skills of a number of experts. Based on our current

findings it appears that the planning process is similar across

media planners, however, there are some differences across media

planners in how they use information at different stages of the

process. Therefore, one important aspect of the project involves

determining the similarities and differences in the process

across media planners.
~··

The knowledge acquisition process contains two phases. In the

first phase, a number of media planners were interviewed in depth

to understand how goals are developed and, then, how these goals

are used to develop a media plan. At this phase, media planners

were asked to sort a number of media problems into categories

with similar goals to understand the goal formation process and

were also given a series of media problems with differing goals

and asked to develop a media plan for each problem. Think aloud

protocols were taken for both tasks. In the second phase,

standardized materials will be developed to measure differences

between media planners in the development of goals and the media

plan.

3:?-l

Knowledge Acquisition for Knowledge-Based 'systems Workshop, Banff, Canada, Nov., 1986

INFORM: An Architecture for Expert-Directed Knowledge Acquisition

Abstract

Eric A. Moore
Schlumberger/Applicon

4251 Plymouth Rd
Ann Albor, MI 48105

(313) 995 -6262

Alice M. Agogino
Department of Mechanical Engineering

University of California, Berlceley
5136 Etcheverry Hall
Berlceley, CA 94720

aagogino@euler.berlceley.edu
(415) 642-6450

This paper presents an architecture for INFORM, a domain independent, expert-directed knowledge
acquisition aid for developing knowledge-based systems. The INFORM architecture is based on infor
mation requirements and modeling approaches derived from both decision analysis and knowledge
engineering. It emphasizes accommodating cycles of creative and analytic modeling activity and the
assessment and representation of aggregates of infonnation holistically represent domain expertise for
heuristic classification problem solving, [Clancey85], especially in domains with diagnosis or decision
making under uncertainty. Infiuence diagrams are used as the knowledge structure and computational
representation. We present here a set of infonnation and performance requirements for expert-directed
knowledge acquisition, and describe a synthesis of approaches for supporting the knowledge engineer
ing activity. We discuss potential applications of INFORM as a knowledge engineering aid,
specifically as an aid for developing insight about the encoding domain on the part of its user.

1. Introduction
Hindrances to widespread application of expert systems include what are typically significant alloca
tions of resources, of critical personnel (the expert) and of knowledge engineering effort and equip
ment. The knowledge engineer's efforts to replicate the knowledge underlying expert performance
through encoding techniques that maintain the form of that knowledge are known as knowledge
acquisition; the design of tools and techniques to manage and support the process, as well as the active
guidance of the process, is known as knowledge engineering. Knowledge acquisition is by far the
hardest and most time consuming part of the expert systems building problem.
"Knowledge acquisition bottleneck" understates the significance of the effort required to assess from a
domain expert the information necessary to achieve expert performance. The resources required to
build an expert system seem to have funneled the application of knowledge-based technology to only
high payoff projects, involving only experts with highly valued skills. Here, the more rarified the
expertise, and the more significant the application, the harder it is for someone outside of the expert's
domain -- the knowledge engineer -- to build a system to replicate it "Knowledge acquisition Klein
Bottle" might be more appropriate.

This work was performed at the University of California, Berkeley, and was funded in pan through grants
from the National Science Foundation PYI Program, University of California's Project MICRO, General
Electtic. and IBM.

31-0

What can one do? We could relax the performance requirement, and settle for a knowledge-based sys
tem without expert perfonnance. But this is not the most effective use of organizational resources.
We could find persons with familiarity or proficiency with both knowledge engineering tools and
representation and the encoding domain [Fox83], but even these persons are a scarce organizational
resource. We can find less skilled persons in the domain that are likely to be more articulate about
their problem solving [Dreyfus80], but there is no assurance that these people will share their concep
tual structure of the domain with the expert. Perhaps we can eliminate the expert knowledge engineer,
and look for a way to let the expert encode directly.

The thought of having experts encode their expertise is compelling. Without an intermediary between
the expert and the system, there is no noise introduced to the encoded knowledge, there is no time
spent for the knowledge engineer to learn the language and concepts of the domain, and the resultant
system has the expert's -- and not an intermediary's - view of the domain [Friedland81]. For this,
one risks losing process efficiency, for the expert must understand the knowledge representation and
learn how to use the tool, one risks a potential loss of transparency, if the expert must recast his think
ing in the tool's terms, and one risks the potential failure to objectively and fundamentally address the
expert's reasoning in the domain.

Like many established engineering organizations, the U. C. Berkeley Mechanical Engineering Depart
ment has many potential research applications for knowledge-based technology, rich areas of domain
expertise, and many senior and articulate experts, but lacks readily available organizational knowledge
engineering expertise or tools demonstrably appropriate for the potential applications.

There is a very strong motivation to develop not a just a toolldt, but a procedural aid that will allow,
for example, Master's level engineering students to successfully and efficiently employ knowledge
engineering techniques and technology for practical problem solving. Ongoing research has produced
IDES, the Influence Diagram-Based ~ System. for doing probabilistic inference and planning
using influence diagrams [Agogino85,Agogino86] and [Agogino86 ...]. This paper presents an archi
tecture for INFORM, (INFluence diagram FORMer), an expert- directed knowledge acquisition aid and
interface for building knowledge-based systems in IDES.

2. Prior Work on Knowledge Acquisition

We draw a distinction between techniques, tools, and aids. A technique is a set of procedures, heuris
tics, or guidelines for performing Knowledge Acquisition (KA) or Knowledge Engineering (KE). A
tool provides software support for application of the techniques, but no guidance on its own;
knowledge engineers use tools. An aid is a tool that provides process guidance on its own. An expert
undertaking any phase of a knowledge engineering project requires an aid.

KE tools, techniques, and aids in the literature address different areas of the knowledge engineering
process: encoding context, the phase of determining how the characteristics of the domain, the expert,
the user, and the application will affect or constrain KA procedure; knowledge structuring, the process
resulting in an initial description of the knowledge base in the computational representation; and
knowledge refinement, the process of model focusing and validation. Our research focus here is not so
much on tools for KA, but on techniques and aids for KE.
Early work in KE was concentrated on developing tools and representations. The concept of the
"knowledge level", [Newell82] seeking to formally describe domain knowledge and problem solving
at a level independent of implementation, has influenced the development of ontological representations
of different problem solving domains, [Oancey85,Alexander86] and languages specialized to problem
solving types [Bylander86]. Recent emphasis has been on methodologies for structured KA,
[Freiling85, Kline86] and [deGreef85] on assuring that the KA process meet the requirements of the
application's organization, [Grover83] and on aids for rule refinement [Kalm85,Eshelman86] and
[GinSberg85, Langlotz86].
The organizational and structured knowledge acquisitiop. approaches are information-driven in the sense
that they are a formalism, a set of activities, which produce documents and assure that information
requirements and checks are met These approaches emphasize building a paper knowledge base, or
building a conceptual or knowledge level structure of the domain before committing programming

'3\-1

resources; here, experts can describe their domain structure, in some accessible representation freed
from the implementation representation and with minimized reformulation by the KE. Here, however,
the KE is later involved in rule encoding and refinement

De Greef and Breuker [deGreef85] see two basic approaches to knowledge engineering: the
skills/programming-based rapid prototype and test approach [Hayes-Roth83, Brownston85] and the
structured knowledge engineering approach, which guides and supports knowledge acquisition while
implementation is deferred. INFORM actually falls between the two; we employ model refinement
techniques from decision analysis and knowledge engineering in an environment that is predominantly
structured knowledge acquisition.

Successful KA aids for domain dependent systems in both KE and Decision Analysis (DA) exist; often
their design provides a domain-based encoding language or domain specific graphics, or some superset
of domain concepts from which the temporal encoding problem will be identified
[Holtzman85, Differding84] and [Merlchofer79].

"Domain independent" means that, for a given problem solving approach, the user must create the con
cepts, rather than select them, or that all meta-models of domains are included in the tool model. Two
aids for knowledge structuring, ETS [Boose84, Boose85] and ROGET [Bennen83] elicit the expert's
structure of domain concepts though sequences of comparisons among sets of proposed objects. Both
are intended for use by domain experts and result in "executable" rule bases. ROGET aids the user in
choosing the appropriate inference technique and ontological representation, given information about
the user's experience and the problem solving type (as subsets of the classification problem solving
model). INFORM is intended to be domain independent, but instantiable to specific domains.

3. Expert-Directed Knowledge Acquisition
The notion of "expert systems" is the desire to replicate an expert's problem solving performance in a
domain. While expert systems are proving to be effective computational representations of knowledge
and expertise, they are not complete (some would argue not even adequate) cognitive models of that
knowledge or expertise. So the process of capturing knowledge, of transferring the expert's cognitive
structures, representations, and methods to computational domain structures, knowledge representations,
and procedures, will almost certainly entail its reformUlation. If, for the expert, the act of articulating
this knowledge to an audience is novel, then the expert is also refonnulating this koowledge.
Knowledge engineering is both a descriptive and creative modeling activity.

We view knowledge engineering as a model design and software engineering activity. A proportion
ally small amount of KE time is actually spent programming [Freiling85,Grover83]; much of the skills
(and effort) of knowledge engineering are modeling skills - analysis and reduction, information
management, and process decision making -- as well as the traditional emphasis on performance repli
cation through incremental refinement

An expert-directed KA interface must support all of these activities to in turn successfully support a
model's initial elicitation and eventual refinement

The key assumptions behind any approach to self-encoding are that

it is plausible that the expert can efficiently use the encoding interface, that the expert understands
how to use the tool, the problem, and is motivated enough to use it as it is intended to be used;

the expert can think abstractly about the domain and problem solving within it, i.e. identifying
variables and influences;
that a structured, analytic approach to thinking about one's domain knowledge and problem solv
ing can achieve a refinable model;

the inevitable loss of transparency in encoded information is acceptable if the expert can
somehow assure the perfonnance of the model or if the expert is capable of thinking in the tenns
of the transformed modeL

3\-2

4. Decision Analysis, Influence Diagrams, and Knowledge-Based Systems

Decision analysis (DA) brings a body of experience to structured KA that meshes well with other
approaches from within the AI community.

4.1. Decision Analysis
The decision analysis cycle [Matheson77] is an iterative and interactive proscription for assuring that
essential steps in the decision process or decision-making problem have been taken. It separates the
process into detenninistic structuring, probabilistic assessment, and informational phases. Assessment
and modeling procedures direct the formation of choices, information, and preferences into the decision
set
Both practitioners of DA and KE face the problem of attention focusing, not in making analyses com
plicated enough to be comprehensive, but rather keeping them simple enough to be affordable and use
ful [Howard80]. DA structuring aids have taken a largely "top down" approach to modeling a domain,
and the KE aids a "bottom up" approach to describing the relations in a domain.

4.2. Influence Diagrams
Infiuence diagrams [Miller76, Rege86] are an attractive conceptual and operational representation for
domain expertise. We use influence diagrams as a knowledge structure: a way of organizing
knowledge that is operational, but makes no cognitive claim, though they are intuitively appealing.
Infiuence diagrams have developed into a decision analysis tool that graphically represents the structure
of the decision problem but maintains the computational utility of the decision tree [Schachter85].
They are a three-layered knowledge representation, consisting of information at three hierarchical lev
els: relational, functional, and numerical. This hierarchy accommodates well the way people tend to
model from simple to complex, and from conceptual to numeric.
At the relational level, influence diagrams are directed acyclic graphs that represent the interdependence
of uncertain events in a complex system. Nodes represent sets of possible events, or a range of proper
ties for some object. The presence of an arc indicates the possibility that the outcomes of one node are
somehow influenced by the outcomes of the other. At the relational level, they superficially resemble
semantic nets and frames. A major distinction is that Bayes' theorem-allows topological solution, or
"re-orienting" of influence diagrams. Pearl's worlc with Bayesian inference nets [Pearl85] uses inheri
tance in a frame based system to propagate uncertainties in a structure that closely resembles influence
diagrams, though without decision nodes.
The functional level is a specification of the type of relationship between nodes, or "how" an particular
event or object influences another. The functional level is traditionally probabilistic, with quantitative
relations compressed into the stochastic ones, but influence diagrams can readily accommodate fuzzy,
logical, and other functional relations [Rege86]. The numerical level is a quantitative measure of
the "extent" of the relationship.
Figure {1) describes a diagnostician's model for a simple centrifugal pump. At the relational level, we
can say that the pump's "discharge" is influenced by the "foot valve state" and "strainer state". The
likelihood that discharge is high, low, or nil, is influenced by the likelihood that the foot valve is open
or closed and the likelihood that the strainer is clear, partially clogged, or clogged. At the relational
level, we can specify that the arc from foot valve to discharge is "logical"; if the foot valve is closed,
the discharge is nil Or we could specify a probabilistic relation, and give a distribution on the proba
bility of discharge being high, low, or nil, given some joint distribution of strainer and foot valve
states. The diagnostic inference problem is formulated as, for example, "given some flow meter reading
X, and some pressure gauge reading Y, what is the probability that the strainer is clogged?"

3\-3

Figure 1: Sample Influence Diagram

4.3. Bringing Decision Analysis to Knowledge-Based Systems

INFORM, because it is based on influence diagrams, is seen as best fitting applications under the
heuristic classification definition. [Qancey85]. The formal influence diagram representation is quite
concise; there are nodes (a set of possible states for an event), states spanning the range of possible
outcomes or values for the event, and probabilities on the occurrance of those states conditioned on
other events. An arc in an influence diagram represents a heuristic link between a class of concepts in
the domain. Data abstraction is subjective, rather than symbolic; the information lies in the uncertainty
assessment or from further structuring, rather than in endorsements or in classification hierarchies.
Applying DA to knowledge-based systems means that we focus on designing problem solving models
that effectively replicate expert performance, rather than conCentrating on implementing descriptions of
that . perfonnance. It is important to separate replication of performance from duplication of
procedure-- at best, duplication is unlikely to result in perfonnance improvement
Langlotz, Shortliffe, and Fagan [Langlotz86] point out one of the side benefits of doing .first and
second order sensitivity analysis with heuristics: the KE has to think more broadly about the concept,
not just what its value is, but what it could be, and how likely those other value might be. DAis nor
mally employed for signifigant non-routine decision-making where there is uncertainty about the state
of the factors influencing the decision, the outcomes of the decision, or the extent to which the factors
may influence the outcome. Knowledge-based systems are normally restricted to important but routine
problem solving, pemaps with the most frequency to deterministic classification style problems. In
situations where it is uneconomical or impossible to replicate the expert problem solving processes, the
DA approach may be a viable way to approximate expert performance without explicitly relying on the
processes behind it

Barr argues for knowledge-based systems that provide insights, and not merely answers [Barr85]. He
sees the largest measure of the utility of expert systems in the fact that t13eir construction forces critical
re-evaluation of one's own expertise. The same has been said of Decision Analysis [Howard80].

Non-transparency (refomulation, rather than replication of a true expert's problem solving skills),
represents a potential corruption of those skills, but can improve domain skills in non-experts, persons
who would not ordinarily get the benefit of the KE's critical attention. Non-experts and experts alike
may gain improvements through articulating, structuring, and recording for examination relationships
and strategies in the problem solving domain.

Broadly, AI/Knowledge-Based Systems techniques and technology offer:

- infonnation manipulation & management
-passive and intelligent interface design
- models of users and user actions
- prototyping/system development techniques
- tools and techniques for model refinement
- techniques for heuristic control

and Decision Analysis techniques offer: -

- normative models for decision making
- practical encoding techniques for uncertainty
- robust techniques for encoding structure
- experience in organizational integration & acceptance

We see particular appeal in bringing the top-down modeling and Bayesian uncertainty approaches of
Decision Analysis and the influence diagram conceptual and computational knowledge structure
together with the software engineering tools and perfonnance refinement techniques of Knowledge
Based Systems.

5. The Information Requirements for Expert-Directed Knowledge Acquisition

"Data driven" design has confounded many an interface. The design of an interface must be based
upon the needs and abilities of the set of users for the set of tasks required for the application. How
ever. the interface must still assure that it gets to the application the data it needs to nm. We view
INFORM here as a port for putting infollllation into a program -- subj~t to requirements for content,
quality, and efficiency of expression.

There is no escaping the need to engineer information in order to represent knowledge. At issue here,
of course, is how to best give the expert some responsibility for knowledge engineering. INFORM is
responsible not only for meeting the information needs of the computational knowledge representation,
the influence diagram, but for meeting the information needs of a knowledge engineering process: con
text structuring, refinement, and process control.

There are three basic types of infollllation INFORM must use:

Model: the knowledge base
Procedural: infomation revolving around the state, history, and direction of

the KE process
Insightful: infomation adjunct to analytic and creative thinking about and

explanation of the model

In this section, we discuss these information typeS in terms of their follll and their assessment

5.1. Model Information
The infollllation in the knowledge base is divided into Computational, Structural, and Uncertain con
ceptual infollllation types.

Computational- These are the requirements of the formal influence diagram and IDES. Nodes, states,
probabilities, outcomes, arcs map from a heterogeneous collection of "C" data structures to matrices

'3\-5

and probability distribution for topological transformation and numeric calculation within IDES.

Structural· Infiuence diagrams, augmented with context and assumption tags, and with their graphical
representation, are an appealing way to structure the knowledge in a domain.

An influence diagram represents a model of a problem. In the context of assessment, it is a framework
for experimenting with that model's behavior. The encoded diagram must represent information and
must communicate an understanding. Much of this deeper information is descriptive: representing con
trolling assumptions, constraints on those assumptions and endorsement for or against them, intentions,
histories, and alternatives. To communicate this understanding, we must represent information of
different typeS: graph information, text, numerical, deterministic, logical, and uncertain.

Uncertainty- Despite the naturalness of the in.ftuence diagram representation, both temporal and
domain acquisition problems are difficult for an expert or some other user to solve without experience
or training and in some cases, without assistance. While Bayesian probability is a particular strength
of this knowledge representation, encoding it presents difficulty. It is tedious. People's numeric esti
mates of uncertainty invariably do not accurately represent their underlying judgement without some
structured revision and debiasing [Raiffa70, Kahneman82]. The process of encoding uncertain infor
mation may affect the values assessed and so is critical to the utility of that information [Spetzler77].

The many alternative uncertainty calculi are in part responses to these problems. The failure, however,
of any one representation to win widespread acceptance as the "best" underscores the need for richer
representations.

Bonissone and Tong [Bonissone85] present further guidelines for assessment; these dovetail with what
we already know to be important in terms of the structuring the uncertain variable in decision analysis.
Their discussion is good because it presents the uncertainty encoding activity explicitly as an informa
tion problem. So then, for each piece of evidence, one should determine the:

-measure of certainty/uncertainty
- source of the evidence
- credibility of the source
- environmental conditions under which the source gathered information
- sensitivity of the goal to evidence
- cost of facility to gather information
- likelihood of succeeding in gathering information
- cost of this information gathering task
- default plan to accomplish this task

The encoding of expert's uncertainty estimates is as least as important as the internal representation of
that uncertainty in a knowledge base. One essential perspective on uncertainty representation which
sometimes gets lost is that the representation must be intuitively agreeable to the expert - both the
expert and the uncertainty representation must speak the same language. As Bonisonne [Bonis
sone85 ...] points out, it will ultimately take a mix of verbal and numeric representations to adequately
cover the Babel of uncertainty representations used by different experts in different domains.

ln.ftuence diagrams are founded on Bayesian probability. Cheeseman [Cheeseman85] argues that Baye
sian probability, if properly used, can be worked around virtually all objections to it; in his view, the
faults of Bayesian probability are based primarily on the misperceptions of its critics. On the other
hand, a number is a rather sterile representation of a quantity that, cognitively, appears to be in large
part verbal [Zimmer85]. A strictly Bayesian numeric estimate is very convenient, and axiomatically
correct, but is often misleading without a complete view of the priors implicit in the assessment
Further, a single number overestimates the crispness of the state of knowledge about that uncertainty.
A verbal assessment incorporates more factors than a numeric one, but computation, without loss of
information, requires that the user's fuzzy functions be known as a context-specific ·mapping of verbal
to possibilistic [Zimmer85] and probabilistic numeric distributions. Evidential reasoning emphasizes
articulating priors acting on an estimate and the decision-making power of simply ranking outcomes
(much like the Analytic Hierarchy Process in decision-making [Saaty80]). All of these approaches,

3\-~

under some conditions, make a strong case for themselves. With influence diagrams, we are commit
ted to representations that can ultimately be mapped to Bayesian probability.

Cenainly a judgement on the strength or weakness of one representation or another should consider
encodability of that representation. In assessing an uncertainty estimate, considering all the
approaches, one would want to:

g rank comparable outcomes in order of likelihood
- assess a verbal (qualitative) estimate
- assess numeric Bayesian values
- elicit underlying evidence for an assessment
- estimate the range of uncertainty

But decision analytic information assessment calls for no less that all of this information. What we find
is that, even though the computational representation may be considerably sparer, the conceptual
representation must include an aggregate of information about the uncertain quantity.
We contend that a well designed encoding and representation environment can make the encoding of
Bayesian probabilities for expert systems less forbidding and more accurate. Such an environment
would support a composite conceptual representation of uncertainty (mcluding linguistic, numeric,
underlying and conditioning priors), a mapping from verbal to numeric, and from numeric to verbal,
and a numeric Bayesian calculus.

The approach we will take is straightforward:

- first assess reference linguistic distributions in a broad context
-use these linguistic assessments as a "first pass"
- for refinement, with more sensitive variables, or for variables misleadingly represented

by the linguistic assessment,
- refine the linguistic assessment in a more specific context or employ traditional numeric

encoding techniques

5.2. Procedural Information
Supporting the KA process, for. a self-encoding user, or for some combination of KE and expert,
means

- information management tools (for information programming)
- advice and tools for making procedural decisions.

Many KA tools provide programming support, support interpreted incremental refinement, provide rule
prompters, or a rule compilers based on a rule language. The DA framework. is an approach that con
solidates or would amenably consolidate all of these approaches.

The most ambitious approaches would interact in a natural language directly with the user without the
user understanding the representation within the system. One view [Reboh81] favors a system that
requires the collaboration of the KE, but with techniques and tools for support of critical phases requir
ing little KE training. Such a system would in effect re-distribute portions of the KE' s expertise
between the support tools and a domain expert or less skilled KE. 1bis view is at the heart of the
INFORM approach.

5.3. Information for Insight
We regard "insight" as the the creation and revision of a mental picture of the domain and processes
within it; and the recognition and evaluation of possibilties and tradeoffs inside it. The modeling inter
face should provide the information and techniques for developing and maintaining insight about the
model. We are of course concerned with conveying timely information from the model to the user, the
other problem is easing and organizing the conveyance of appropriate information from user to model.
The base issue is achieving a cognitive fit between user and interface. INFORM must provide a fami
liar medium and acceptable stimulus for modeling effectively.

3l-l

Essay writing is a metaphor for the "progressive formalization" [Holtzman85] of a decision analytic
model. A contention of the INFORM approach is that expository writing could accomplish (in effect)
what the motivation and (in part) structuring phases are intend to accomplish in the probability encod
ing process [Spetzler77]: give the user the opportunity to address critically the assumptions, intentions,
and methods behind the model

The "standard form" for writing an essay is a well known and widely taught frameworlc for expository
thinking and discourse. As an encoding approach, it goes a step beyond simply writing rules into
some subset of a natural or domain language. It puts relations into paragraphs and sections in support
of a problem statement or thesis-- the user thinks about components of the model in an structured
sense, and in the context of the whole model.
In reviewing a knowledge base encoded through INFORM, the DA, expert, user, or KE is in a sense
reading a story; from the contents of the KB, the reader is supposed to be able to piece together a
problem solving "narrative". Applications to be used with persons other than the encoding expert
require explanations that are dependent on both the line of reasoning and the model description; a very
critical element for KA is visualizing an audience for the application. Viewed this way, we can say that
the "rules of journalism" apply here too. The reader must know -- and the interface must somehow
assess: Who, What, When, Where, Why, & How for each concept and relation.

6. INFORM

6.1. Design Goals

These three perfonnance goals capture the essence of what INFORM is intended to accomplish:

(1) sufficiency, getting the encoded infonnation right in terms of the influence diagram representa
tion;

(2) correctnes!, avoiding and correcting conscious and unconscious misrepresentations of expert
judgement; and

(3) providing insight, at minimum representing the correct information in a comprehendable form, at
best completely capturing an expert's underlying model of the objects, relationships, and infer
ences in his domain.

6.2. Architecture

There are four conceptual levels to the INFORM architecture. They build from satisfying information
requirements to giving more tools and advice for insight and finally to system which effectively tutors
its user through the KE process.

The first level is to fill the diagram to sufficiency, through satisfying strucmra.l and computational con
straints. The second is to employ the kinds of feedback that decision analysts and knowledge
engineers employ: diagram drawing on demand, graphic feedback on distributions, ordinal, determinis
tic, and stochastic and sensitivity analysis, comprehendable interaction language, and opportunity for
and access to extensive explanation about the process and the encoded information. The third is the
"heuristic" approach, where the system provides hints and suggestions for encoding to the user based
upon nonnative models of the encoding process and sticky points in the domain. Fmally, with "expert
aid", the system provides aid (hints, requests for explanation, reformulation) based upon encoding ses
sion information, nonnative models of the encoding process, and descriptive models of the problem
domain and user's encoding style.
The INFORM user, in an encoding session, goes through a problem and session structuring module,
and a succession of editing and analysis phases. At any stage, the user may get help about the syntax,
options, or intent of the current phase, comment about some aspect of the model or the modeling pro
cess, or review the some graphic or texmal aspect of the model. Figure (2) shows the main modules
and editor sequence. ·

31-B

........ -+-. .._. -· "-+--+ DCCU
. :-:-:.:-: ~. :-... : -.•• -•• -••• ...;·. ·11,. -•• -••• -. -:-'·:::::::::::::::::
o o o • eo • o o o o o o o o • o o, o o o, o. o 0 o

-:-:-:-:-:-:-: .·.·.·.·.·.•,o,•,. "·>:-:-:-:-:-:.:-:.:-:
0 °' 0 0

' • 0 o o o o D 0

=:::::::::: }\\\

REVIEW

.
.
••• 0 ••
• 0. 0. 0 •
••••• 0 •

• • • • • • 0

0 0." 0 0 •

• • • • • 0 •

• • • • • • 0
• 0 0
• • • • 0 ••

• • • 0 •••
0 0 •••••

0 ••••••
• • 0 0 •••

• • • 0 •••

• • 0 ••••

0 •••• 0 • "
0 ••••••

• • • 0 •••
• • • 0 •••

• • • • • • 0
0 •• 0 .. 0 0

0 ••••••
• • • • 0 ••

• • • • • • 0
• • • 0 •• 0

•• 0 ••••
• 0 0 ••••
0 ••••••

• • 0. 0 0.
0 ••••••

0 •• 0 0. 0
• • • .. • 0 •
• • • • • 0 •

• 0. 0 •••
• • • • • • 0

• b •• 0 ••

• • • • • 0 •

• • • • • 0 • 0. 0... L._------....1. . 0 ••••• 0 0 0 •••••

i~i~i~:~:~:m~~;~j~i~i~i~:~:~i~~~~~~~i~i~:il~!:li!ili!~!I!i::::::::::::::::·· .. :::=:::=:=:=:=:::=· ::::l~l~:ili!i!~i:
:: ~: ~:::::: :::::::::::::::::::: :::::::::::::::::
~/){)}j((~))j~}}}}}?)))((((\:){)))

Figure 2.: Process Paths and Modules in the INFORM Architecture

6.3. Knowledge Structuring

There are two key ideas to INFORM's guiding structuring refinement approach:

(1) Start modeling at the lowest level of precision or specificity

(2) Increase specificity only for the best improvements in model perlonnance.

The user is free to edit the model, and accept or reject advice on what task to choose next, but is
guided through model analysis and refinement

In the relational editor, the user specifies combinations of node name, node label, node description and
arcs. On exiting the editor, this information is parsed and "incomplete information" is identified; the
user is prompted to to provide, for example, a description for a node identified only by a label.

The nodes operated on in the relational editor determine the nodes to be operated on in subsequent
phases, in the functional, and numerical editors. The analysis phases are directed by ordered lists: do
senstivity analysis with the nodes the user is least confident about, expand the nodes that the outcome
is mo$t sensitive to, assess in a different way those uncertainty estimates the user is least (or most
confident) about. The order of nodes operated on is determined by user ranking, or by the rank of the
node within the influence diagram.

3\-C1

Below are some of the activities in the INFORM architecture.

Set Context

Model at Relational Level
- Describe the Model:
-Assure Completeness:
- Look for Insight:
- Offer Analysis:
- Offer Advice:

Revise Model?

Model at Functional Level
-Describe
-Assure Completeness:
- Offer Analysis:
- Offer Advice:

Revise Model?

Model at Numeric Level
-Describe
- Assure Completeness:
- Offer Analysis:
- Offer Advice:

Revise Model?

system application? encoding goal? identify user?
calibrate linguistic uncertainty?

edit and compile nodes and arcs
for each: name, label, description, givens, explanation
potential modifications? encoding plan?
check for cycles, bushyness, son objects by importance?
"might do this next"

edit and compile functional form, states
name, label, description, explanation, plan
estimate modeling effort?
consider reducing the number of states in these nodes

assess aggregate uncertainty information
sensitivity, performance analysis
"focus next on these most sensitive nodes" ...

INFORM Encoding Actvities

6.4. Knowledge refinement in INFORM
"Refinement", in the DA context, is directed towards attention focusing, typically through ranking, and
deterministic and stochastic sensitivity analysis, and towards balancing the modeling effort in terms of
both structural granularity and value of additional modeling effon. Refinement in rule-based expert
systems building is a process of rule addition and modification leading ultimately to performance repli
cation. Performance improvement in an knowledge-based system generally comes with more specificity
granularity; because of the large assessment effort behind properly encoding probabilities, a good deci
sion model will expand and contract through each refinement cycle. With influence diagrams, there is
tradeoff in the granularity of the uncenainty representation and that of the model structure. Formally,
influence diagrams rely on implicitly incorporating conditioning factors within the uncenainty assess
ment and in the concept's definition to result in a polished but condensed model Rule-based expert
systems representations, on the other hand, force this contextual information to be explicitly expressed
as rules. Pan of the refinement process in INFORM is the successive elaboration of what the model
represents.
The success of our approach to encoding uncertainty during refinement is contingent on at least three
things: given no new information, some consistency of uncertainty vernal to numerical mappings is
maintained over time and domain; the success of linguistic revision given new contextual information;
and the extent to which simulation/feedback response is incorporated into revised estimates.

31-10

6.5. INFORM in the Future

The super-structure for INFORM has been implemented in C, and presently a single display text &
graph editor assesses relational information and automatically generates complex influence diagrams.
We have written a linguistic calibration program; worlc is continuing at UC Berlceley with experiments
to sample uncertainty vocabularies of graduate and undergraduate engineering students. Work. will
continue on with the re-implementation and complete development of the INFORM architecture at
Schlumberger/Applicon with the Strobe/Impulse object programming and knowledge base editing tools
[Smith86, Smith83].

The principal advantage of influence diagrams over decision trees is the explicit graphic representation
of the interdependencies of events. Influence diagrams are fundamentally graphic entities; once a
diagram has been drawn initially, the interface too should be organized graphically. Because we want
to simultaneously represent different types of information about the model and the modeling process, a
single view is inadequate. The interface under development will have static windows -- for model
graphics, model text, prompt window, editor/comments and "pop-up" windows - for agendas, menus,
advisors, and uncertainty encoding and representation. Given the need for a graphic representation, the
interface should allow the diagrams to be created graphically (to be drawn on the screen), in addition
to generating the graph from the user's entries of nodes and arcs.

INFORM is intended to be domain-independent, but within the architecture, it is easy to add to the
interface the kind of checking rules that allow for domain and user dependent meta-knowledge about
encoding. RACHEL [Holtzman85] is one such system, a domain dependent intelligent decision sup
port aid for infertile couples.

Effective modelling approaches rely in part on the underlying domain and in part on the modeller cog
nitive style. INFORM is a system intended to replace at least in part the expertise of the KE in direct
ing and in giving advice to the encoder about the KE process, and in representing the encoded infor
mation. Implementation of the ~tecture may ultimately support active modeling and guidance of an
expert's encoding effort. Requirements for an INFORM tutor would be:

measurable or deducible standards of knowledge engineering performance and methodology,

and that these measures are conditionable on a fairly small set of inferable or directly assessable
measures.

6.6. Evaluation

INFORM should be tested for absolute performance, as a interface and as a modeling tool, and for
relative performance, against an encoding expert. The real test is to take an encoding problem from
scratch with an acknowledged expert, and try to build a worlcing system. The typical test of compar
ing system performance against that of an encoding expert is inappropriate at this point but ought to be
an eventuality. At the interface level, we have used and continue to use "good design" checklists
[Heckel84], but that is no real assurance of a good interface without testing and experience. At this
stage, while we are still developing an "integrated" system, user comments and ad hoc evaluation are
especially useful. More traditional approaches to interface evaluation, based upon a number of user's
(with expertise/skill) exposure with a common problem, will be the next step. It will be interesting to
test people with measurably different levels of expertise, to look for correlations between level of skill
and self-encoding ability, and to test, for example, an undergraduate design class, with some diagnostic
problem based on their machine design project.
A testing issue that is separable from the evaluation of the entire interface is the effectiveness and
accuracy of our linguistic uncertainty encoding approach. Testing areas of interest include looking at
differences in the language of uncertainty between estimates about uncertain events from inside and
outside the encoding domain, consistency of judgements between subdomains, and the efficacy of
different approaches to representing the encoding problem and conducting refinements.

6.7. Potential Uses of INFORM
When can we use a stand-alone aid like INFORM for constructing a knowledge-based system or deci
sion support system? We can divide the spectrum of application problems down into significant and
insignificant problems. Significant problems are "high stakes" problems. For significant problems, in
an novel domain, one may still be able to use INFORM as a preprocessor (as in ETS) for initiating the
model, but would certainly expect DA and KE involvement in model refinement and validation.
Significant problems in a stable and well understood context are liable to see the involvement of DA
and K.E, but it may not be necessary. In both cases, INFORM must accommodate well the involvement
of DA and K.E. For problems whose solution is robust, or where solution precision is not critical,
INFORM is plausibly stand-alone: that is the minimal design goal.

Other potential roles for INFORM in KE:

e structure the domain for explanation, as a component of an intensive KA process;
- help the novice K.E work with the expert;
- as a personal KA tool for "small" problems;
-domain dependent aid for "large" problems.

7. Conclusion
We feel knowledge acquisition aids must support information assessmem and presentation and must
provide support for undergoing a sound modeling process. Fundamentally, the INFORM architecture
is an aid for building models; it draws its knowledge structure and modeling approach from Decision
Analysis, and it approach to handling information and heuristics about encoding from Knowledge
Engineering. It is well suited for classification problem solving, especially under uncertainty. The
support INFORM will provide for experts encoding is as a top down design aid, focusing on descrip
tions of the domain concepts and structure, rather than on examples of problem solving in the domain.
Structure is edited, rather than induced. Such direct involvement of the expert in constructing an
operational model of the. domain we feel will aid knowledge engineering for insight, aiding the
development of expert behavior not only on the part of the system, but on the part of the encoder as
well.

References

Agogino85.
A. M. Agogino, ''Use of Probabilistic Influence in Diagnostic Expert Systems,'' in Proceedings
of the 1985 ASME International Computers in Mechanical Engineering, Boston, MA, vol. 2, pp.
305-310, Aug 4-8 1985.

Agogino86.
A. M. Agogino and A. Rege, "IDES: Influence Diagram Based Expert System," in Mathemati
cal Modelling in Science and Technology Proceedings of the Fifth International Conference on
Mathematical Modelling, July 29-31 1985, University of California, Berkeley, ed. X.J.R. Avula,
Pergammon Press, 1986.

Agogino86.
A. M. Agogino and A. Rege, "Sensor Integrated Expert System for Manufacturing and Process
Diagnostics," Proceedings of the Symposium on Knowledge-Based Systems, ASME Winter
Annual Meeting, Anahiem, CA, December 7-12 1986.

Alexander86.
J. H. Alexander and M. J. Freiling, J. L. Staley, S. Rehfuss, and S. L. Messick, "Knowledge
Level Engineering: Ontological Analysis,'' Proceedings American Association for Artificial Intel
ligence '86, pp. 963-968, 1986,

Barr85.
A. Barr, "Systems That Don't Understand," Cognitiva: Artificial Intelligence and Neuroscience,
Paris, June 1985.

3\-,2

Bennett83.
J. S. Bennen, ROGEr: A Jcnow/edge-based consultant for acquiring the conceptual structure of
an expert system, Stanford HPP-83-24, October 1983.

Bonissone85.
P. P. Bonissone, Summarizing Uncenain Information With Aggregation Operators (draft), Gen
eral Electtic Corporate Research and Development, New Yorlc, March 11, 1985.

Bonissone85.
P. P. Bonissone and R M. Tong, "Editorial: Reasoning with Uncertainty in Expen Systems,"
International Journal of Man-Machine S~s. vol. 22, PJY. 241-250, 1985.

Boose84.
J. H. Boose, Personal Construct Theory and the Transfer of Human Expertise, pp. 27-33,
Proceedings American Association for Artificial Intelligence '84,1984.

Boose85.
J. H. Boose, "A Knowledge Acquisition Program for Expen Systems Based Upon Personal
Construct Psychology," International Journal of Man-Machine Studies, vol. 23, pp. 495-429,
1985.

Brownston85.
L. Brownston, R. Farrell, E. Kant, and N. Manin, Programming Expert Systems in OPS5,
Addison-Wesley Publishing Company, 1985.

Bylander86.
T. Bylander and S. Mittal, "CSRL: A Language for Classificatory Problem Solving and Uncer
tainty Handling," The AI Magazine, pp. 66-77, August 1986.

Cheeseman85.
P. Cheeseman, "In Defense of Probability," Proceedings International Joint Conference on
Artificiallntelligence '85, 1985.

Clancey85.
W. J. Clancey, "Heuristic Classification," Artificial Intelligence, vol. 27, pp. 289-350, 1985.

Differding84.
J. C. Differding, The OPAL Interface: General Overview, Stanford Oncocin Projects, 1984.

Dreyfus80.
S. E. Dreyfus and H. L. Dreyfus , "A five stage model of the mental activities involved in
directed skill acquisition," ORC 80-2, U. C. Berlceley Industtial Engineering and Operations
Research Department, February 1980.

Eshelman86.
L. Eshelman and J. McDennott, "MOLE: A Kno1wedge Acquisition Tool that Uses Its Head,"
Proceedings American Association/or Artificial Intelligence '86, pp. 950-955, 1986.

Fox83.
M. S. Fox, S. Lowenfeld, and P. Kleinosky, "Techniques for Sensor- Based Diagnosis,"
Proceedings International Joint Conference on Artificial Intelligence '83, pp. 158-163, 1983.

Freiling85.
·M. Freiling, J. Alexander, S. Messick, S. Rehfuss, and S. Shulman, "Starting a Knowledge
Engineering Project A Step by Step Approach," The AI Magazine, pp. 150-163, Fall, 1985.

Friedland81.
P. Friedland, "Acquisition of Procedural Knowledge from Domain Experts," in Proceedings
International Joint Conference on Artificial Intelligence '81 , pp. 856-861, 1981.

Ginsberg85. .
A. Ginsberg, S. Weiss, and P. Politakis, "SEEK2: .A Generalized Approach to Automatic
Knowledge Base Refinement," Proceeedings International Joint Conference on Artificial Intelli
gence '85, pp. 367-375, 1985.

31-(~

Grover83.
M D. Grover, "A Pragmatic Knowledge Acquisition Methodology," Proceedings International
Joint Conference on Artificial Intelligence '83, pp. 436-438, 1983.

Hayes-Roth83.
F. Hayes-Roth and D. A. Watennan, "An OveiView of Expert Systems, Chapter 1 , " in Building
Expert Systems, ed. F. , D. A. Watennan, D. R. Lenat (eds.) Hayes-Roth, Addison-Wesley Pub
lishing Company, 1983.

Heckel84.
P. Heckel, The Elements of Freindly Software Design, Warner Books. 1984.

Holtzman85.
S. Holtzman, Intelligent Decision Systems, Phd thesis, Stanford Engineering-Economic Systems,
reprinted by Strategic Decisions Group, March 1985.

Howard80.
R. A. Howard, "An Assessment of Decision Analysis,'' Operations Research, vol. 28, no. 1, pp.
4-27, Jan/Feb 1980.

Kahn85.
G. Kahn, S. Nowlan, and J. McDennott, MORE: An Intelligent Knowledge Acquisition Tool, pp.
582-584, Proceedings International Joint Conference on Artificial Intelligence '85, 1985.

Kahneman82.
D. Kahneman, P. Slovic, and A. Tversky, Judgement Under Uncertainty: Heuristics and Biases,
Cambridge University Press, 1982.

Kline86. .
P. J. Kline and S. B. Dolins, "Problem Features that Influence the Design of Expert Systems,"
Proceedings American Association/or Artificial Intelligence '86, pp. 956-962, 1986.

Langlotz86.
C. P. Langlotz, E. H. Shortliffe, and L. M Fagan, "Using Decision Theory to Justify Heuris
tics," Proceedings American Association/or Artificial Intelligence '86, pp. 215-219, 1986.

Matheson77.
J. E. Matheson and R. H. Howard, "Introduction to Decision Analysis," in Readings In Decision
Analysis, Strategic Decisions Group, 1977.

Merkhofer79.
M. W. Merkhofer, B. Robinson, and R J. Korsan, "A Computer Aided Decision Structuring
Process," Tech. Report 7320, SRI, Menlo Park, CA, June 1979.

Miller76.
A. C. Miller, M. W. Merkhofer, and R H. Howard, Development of Automated Aids for Decision
Analysis, SRI, Menlo Pm, CA, 1976.

Newell82.
A. Newell, "The Knowledge Level," Artificial Intelligence, vol. 18, pp. 87-127, 1982.

Pearl85.
J. Pearl, "Fusion, Propagation, and Structuring in Bayesian Networks ," in Workshop on Proba
bility and Uncertainty in Artificial Intelligence, UCLA, August 14-16, 1985, RCA and AAA!,
1985.

Raiffa70.
H. Raiffa, Decision Analysis: Introductory Lectures on Choices Under Uncertainty, Addison
Wesley Publishing Company, July 1970.

Reboh81. .
R. Reboh, Knowledge Engineering Techniques and Tools for Expert Systems, Linkoping Studies
in Spence and Technology No. 71, Software Systems Research Center, Linkoping University,
S-581 83, Linkoping, Sweden, 1981.

-~

Rege86.
A. Rege, "Representing and Solving the Probabilistic Inference Problem in Expert Systems,"
UC Berkeley Expert Systems Lab Worldng Paper , August 1986.

Rege86.
A. Rege and A. Agogino, .. Fuzzy Infiuence Diagrams,? UC Berkeley Expert Systems Lab Work
ing Paper 06-86-01, June 1986.

Saaty80.
T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York. 1980.

Schachter85.
R. D. Schachter, "Intelligent Probabilistic Inference,'' in Workshop on Probability and Uncer
tainty in Artificial Intelligence, UCLA, August 14-16, 1985, RCA and AAAJ., 1985.

Smith83.
R. G. Smith, "Strobe: Support for Structured Object Knowledge Representation," Proceedings
International Joint Conference on Artificial Intelligence '83, pp. 855-858, 1983.

Smith86.
R. G. Smith, R. Dinitz, and P. Barth, "Impulse-86: A Substrate for Object-Oriented Interface
Design," Proceedings of the ACM Conference on Object Oriented Programming Systems,
Languages, and Applications, 1986 .

Spetzler77.
C S. Spetzler and C-A. S. Stael von Holstein, "Probability Encoding in Decision Analysis," in
Readings in Decision Analysis, Decision Analysis Group, Stanford Research Institute., Menlo
Park, CA, 1977.

Zimmer85.
A. C. Zimmer, "The Estimation of Subjective Probabilities via Catagorical Judgements of
Uncertainty," in Workshop on Probability and Uncertainty in Artificial Intelligence, UCLA,
August 14-16, 1985, RCA and AAAI, 1985.

deGreef85.
P. deGreef and J. Breuker, "A Case Study in Structured Knowledge Acquisition," Proceeedings
International Joint Conference on Artificial Intelligence '85, pp. 390-392, 1985.

3l-/£

Knowledge Acquisition for Knowledge-Based .Systems Workshop, Banff, Canada, Nov., 1986

Abstract

ACQUIRING DOMAIN ~DELS

Katharina Morik *

Technische Universitat Berlin
Institut fur Angewandte Informatik

Computergestutzte Informationssysteme
Projekt KIT-Lerner, Sekr. FR 5-8

Franklinstr. 28/29
D-1000 Berlin 10

West -Germany

<ciskit@dbOtuill.bitnet>

Whereas a Learning Apprentice System stresses the generation and refinement of
shallow rules of a performance program, presupposing a domain theory, BLIP1 is
mainly concerned with the construction of a domain theory as the first phase
of the knowledge acquisition process. In this paper the BLIP approach to
machine learning is described. The system design is presented and the already
implemented knowledge sources are shown with their formalisms and functions
for the learning process.

1 Introduction

Following from the growing interest in the application of expert systems

machine learning is now viewed as a means for building up and refining the

knowledge base of an expert system for a particular domain and for a

particular consultation class. This puts new requirements on machine learning

and has led to a discontent with the former inductive learning paradigm which

can be characterized by a two-step procedure consisting of a training phase

and a performance phase. In the training phase, a teacher has to present

several examples, each classified as positive or negative, forming a complete

set with regard to the concept to be learned. This set must be free of

* The KIT-LERNER proj~ct is partially supported by the German Ministry for
Research and Technology (BMFT) under contract ITW8501Bl. Industrial partners
are Nixdorf Computer AG and Stollmann GmbH.

1 BLIP stands for 'Berlin Learning by Induction Program'.

?Z.-o

contradictions. The ordering of examples perhaps is important. In the worst

case, all the system does is to abstract away features, thus acquiring a

general concept. As far as the knowledge acquisition £or an expert system is

concerned, this procedure is, of course, unsatisfactory. Instead, real world

observations should be exploited as examples (Rajamoney et al. 85). These can

be a user's problem solving acticities (e.g. Brazdil 78, Mitchell et al. 85,

Smith et al. 85), visual data of objects (e.g. Phelps et al. 86), or facts, as

is the case with BLIP.

should be in demand.

No training mode should be necessary and no trainee

The new paradigms of machine learning, namely explanation-based learning,

analytic learning, verification based learning, deductive learning have

overcome the limitations of the learning-from-example paradigm. However,

there is still another constraint on these learning approaches: A complete

domain theory is presupposed. Furthermore, in the case of deductive and

verification based learning, the domain theory must be such that the

correctness of each rule can be shown with certainty. Thus the problem is to

build up a consistent domain theory. The standard criticism of inductive

learning techniques is that finding the right descriptive terms for the

description language is the real learning task. This argument also applies to

the new learning paradigms in a modified way: building up the domain model is

the real problem. The first phase of knowledge acquisition is the hardest

problem of the entire learning process (van Someren 86). This problem has been

largely ignored in existing machine learning approaches. BLIP is an attempt to

cope with this problem.

Of course, learning cannot start without any knowledge. One way out of the

dilemma is to start knowledge acquisition with just two types of knowledge:

- a "sloppy" domain model entered by the user,

- general structures that reflect structures of human thought, rather than

structures of the world (Anderson 75).

In knowledge representation systems for domain modeling (e.g. KL-QNE and its

derivates) a so-called knowledge engineer has to structure the domain, and

define the relevant objects, their properties and relations between them. A

learning program, however, should not require the user to do all this. An

initial sloppy model of the domain should suffice, a well organized model

should be the result of the learning process. The learning process itself

should be guided by domain-independent, general knowledge that reflects the

human ability to adopt to new situations. This general knowledge can be

incorporated into the system and, thus, need not be entered by the knowledge

engineer.

In this paper, the system BLIP is described whose task is to aid in the

construction of a domain model. The learning process is guided by meta

knowledge which can be viewed as the representation of cognitive structures

that ease the knowledge acquisition process.

2 BLIP's approach to :machine learning

BLIP is the learning part of an overall system called LERNER2. The

performance element of the overall system is the expert system shell TWAICE3.

BLIP requires the user to specify a sloppy domain model by

- defining predicates and the sorts of their possible arguments

- entering facts about the domain expressed with those predicates

BLIP then discovers properties of those predicates and establishes relations

between them thus structuring the domain. An example of the user's entries

and the program's output is presented below. Finally, the domain model is

transformed into the TWAICE-format rules (for the overall LERNER architecture

see Emde et al. 86). The rule part of the expert system that represents

knowledge about a particular domain is then filled. Beyond the range of BLIP

is the acquisition of problem solving knowledge which elsewhere has been

called 'domain principle' knowledge (Swartout 83) and which is acquired by·

systems like SEEK.2 (Ginsberg et al. 85), LEAP (Mitchell et. al 85) or others

(cf. Steels et al. 85).

2 BLIP is implemented in MPROLOG and is· fully operational under VM370 on an
IBM4381. The learning algorithms are based on the METAXA.2 system //Emde
84//.

3 TWAICE is a registered trademark of Nixdorf Computer AG. It is in the
framework of EMYCIN.

To learn without bearing a particular consultation system in mind has several

advantages. First, the learned domain model may be used more than once to

construct several expert systems. Suppose BLIP has acquired a domain model of

the 'side-effects-of-drugs world'. This knowledge may be used to build an

expert system which assists a user in choosing a drug with a small number of

side effects for a known complaint. But the knowledge may also be used to

build an expert system for an agency which has to assess the risks of new

drugs. The domain model that is necessary to solve these problems is by and

large the same, but the problems differ in the domain principle knowledge that

is necessary.

The same domain model may also be used to build an expert system which

differs from a previously built system only in the number of questions that

will be asked, e.g., because more information is available from the users. In

such cases where even the domain principle knowledge is the same, the

difference lies in the consultation knowledge (cf. Clancey 79). The term

'consultation knowledge' is applied to knowledge about the goal of the

consultation with an expert system (e.g., 'Determine a fault in a computer

system'), the knowledge about the data that have to be asked from the user,

the knowledge about default assumptions that should be used if the user is not

able to answer a question, and other dialog handling routines. The

implications of choosing another consultation class are so important that

expert systems are built from scratch even if expert systems similar with

respect to domain principles and domain model already exist.

Second, as different kinds of knowledge are acquired and represented

seperately it is possible to explain the expert system behavior to the user

with methods described by Swartout (Swartout 83).

Before we explain the learning process, let us have a look at the knowledge

sources. First we will describe the constructions for sloppy modeling, then

the meta-knowledge sources.

2.1 BLIP's Knowledge Sources

Knowledge representation in BLIP is not homogeneous. Although the

representation formalisms are all in the spirit of predicate logics (of higher

order if meta-knowledge is involved), each knowledge source has its own

format. This lack of uniformity can lead to redundant representations.

However, the functionality of the knowledge sources and their efficient use

was of particular importance to us.

Facts are represented declaratively as predicates with arguments, a

representation that is natural to the user. We assume a sorted logic. The

argument sort masks are stored in the lexicon of predicates (LEXICON). The

superconcept relation can be defined for two argument sorts but need not be.

Excerpts of the knowledge sources can be seen in figure 1.

Analogous to the sort restrictions for the arguments of a predicate there is a

kind of sort restriction for the arguments of a meta-predicate, too. That is,

the predicates are sorted in a tree structure and each layer of the tree is

named. This tree-structure is stored in the knowledge source LAYERLEX. For an

example, see a simplified diagram of the LAYERLEX for our pharmacy domain

(Fig.2).

These two knowledge-sources are domain-dependent. The argument types of

predicates for a certain domain model are to be entered into LEXICON. The

predicate layers can be declared in order to explicitly describe the effect of

a certain consultation class on a domain model, here, the recommendation class

as applied to the pharmacy domain. This is done filling the LAYERLEX.

For building up a sloppy model of side-effects of drugs, the knowledge

engineer defines, for instance, the following predicates:

- CURE_l (<drug>, <illness>)

- CURE 2 (<substance>, <symptom>)

-CURE 3 (<drug>, <symptom>)

- CURE_4 (<substance>, <illness>)

- CONTAIN (<drug>, <substance>)

- STRENGTHEN_! (<drug>, <illness>)

- STRENGTHEN 2 (<substance>, <symptom>)

STRENGTHEN_3 (<drug>, <symptom>)

-MONO-SUBSTANCE (<drug>)

;z-4

R U L E - S C H E M A T A :
reductive (pl,s2,s):

pl (x1 ,yl) => s2(x1).

opposite-! (op1,op2,s):
o p 1 (x 1) = > not (o p 2 (x 1)) •

opposite-2 (p1,r1,s):
p1(x1,y1) =>not (r1(x1,y1)).

S T R U C T U R E :
(reductive (p1,s2,s))

lexikon (p1,sort1,sort2) &
lexikon (s2,sort1)
layerlex (p1 ,m1,11) &
layer lex (m1 ,mml, 12) &
layerlex (s2,x,l2)).

C H A R A C T E R I S T I C
SITUATION:

cspos (reductive(pl ,s2,s),
pl(xl ,yl),s2(x1)).

csneg (reductive(pl ,s2,s),
pl(xl,yl),not (s2(x1))).

cspos (opposite-1 (op1 ,op2,s),
op1(x1) & not op2(x1).

csneg (opposite-l(op1,op2,s),
op1(x1) & op2(xl)).

"FACTS:
mono-substance (aspirin).

multi-substance (novalgin).

opposite-1 (mono-substance,
multi-substance, all).

opposite-2 (opposite-!,
inclusive-1, all).

LEXICON:
lexicon (strengthen 2,

substance, symptom).

lexicon (subsort,
pain, symptom).

L A Y E R L E X :
layerlex (strengthen 2,

disadvantage,wf).

layerlex (is-good-for,
· recommendation,bw2).

R U L E S :
opposite-! (op1 ,op2,s) =>not

· inclusive-1 (op1,op2,s).

mono-substance(x1) =>not
multi-substance(xl).

Fig. 1: Knowledge sources of BLIP

- MULTI-SUBSTANCE (<drug>)

ADVANTAGE (<patient>, <drug>)

IS_GOOD_FOR (<patient>, <drug>)

- DISADVANTAGE (<patient>, <drug>)

~recommendation~

layer2

layerl

layerO

;bad_~

apr:;ri_bad ~~ge

multi_substance

addictionl/2

effect! strengthen!

effect2 strengthen2

/ood~
ad~t~ apr~ood

diagnose curel mono_substance

cause cure2

effect3 strengthen3 incidence cure3

effect4 strengthen4 contain cure4

Fig.2: LAYERLEX for the pharmacy domain

Further predicates can be defined by demand. The user is not forced to give

the semantics of these predicates by explaining their relations. The relations

which s/he might have in mind are to be made explicit by the machine. For

example the following rules have been learned by BLIP:

- If a drug contains a substance, then its negative effects which are

expressed by EFFECT, STRENGTHEN, DISADVANTAGE, and ADDICTION are to be

inherited by the drug.

If a drug is of advantage and not of disadvantagefor a patient, then it is

good for the patient.

- If a drug is a multi-substance, then it is not a mono-substance.

These rules have to be represented explicitly in a domain model. For a user,

however, they are so "natural" that s/he might not want to write them down. In

the BLIP framework, just after entering the predicate definitions the user can

express facts. For example:

- ENTAIL (aetz, paracetamol)

- ENTAIL (aetz, ass)

- ENTAIL (aspirin, ass)

STRENGTHEN_2 (ass, stomach-ache)

- STRENGTHEN_2 (paracetamol, kidney-trouble)

- STRENGTHEN_3 (aetz, kidney-trouble)

- STRENGTHEN_3 (aspirin, stomach-ache)

The user enters these facts just taking them from a text book on drugs. S/he

needs not take care of the order of the facts or even of a clear definition of

the predicates. BLIP then comes up with rules like those mentioned above. In

BLIP's notation, a part of the first rule is written as follows:

ENTAILS (x,y) & STRENGTHEN_2 (y,z) => STRENGTHEN_3 (x,z)

This rule corresponds to a meta-fact. In the next paragraph BLIP's meta

knowledge is explained.

2. 2 Meta-knowledge in BLIP

Meta-knowledge plays the central role

acquisition. Meta-knowledge is used for

- checking consistency

in our approach to knowledge

inducing rules from facts (the learning process)

- deducing rules from other rules.

Meta-predicates express relations between and attributes of predicates. Meta

meta-predicates express relations between meta-predicates. A distinction of

types between meta-predicates and meta-meta-predicates is not made. A meta

predicate can be used at every meta-level. It is used to represent the

relation between concepts of the level directly below.

Example:

facti: MONo-SUBSTANCE (aspirin)

fact2: MULTI-SUBSTANCE (novalgin)

fact3: OPPOSITE 1 (mono-substance, multi-substance)

fact4: OPPOSITE_2 (opposite_!, inclusive_!)

Fact3 is at the meta-level with respect to facti and fact2, it is at the

object-level with respect to fact4. A meta-predicate, e.g. OPPOSITE, can be

used at every meta-level; it can be a meta-predicate, a meta-meta-predicate, a

meta-meta-meta-predicate, and so on.

Meta-knowledge in BLIP does not refer to a rule format or a knowledge

representation formalism as does the meta-knowledge of AM, EURISKO, TEIRESIAS

(Davis, Lenat 82). Nor does it refer to control knowledge or run-time behavior

as described in (Hayes-Roth et al. 83). Meta-knowledge in BLIP refers to

predicate constants, describing properties or relations of certain properties

or relations.

A meta-predicate expresses a structural relation that is given by a RULE

SCHEMA. For example, the rule-schema for OPPOSITE_l is4 :

and for OPPOSITE_2:

P(x) => not Q(x)

Q(x) => not P(x)

P(x,y) => not Q(x,y)

Q(x,y) => not P(x,y)

The rule-schema for INCLUSIVE_l is:

P(x) => Q(x)

The rule~schema for EQUIVALENT is:

P(x) => Q(x)

Q(x) => P(x)

It is easily seen that P or Q can be meta-predicates and that relations

between meta-predicates -can be expressed by meta-meta-predicates using the

very same rule-schemata.

The restrictions on the applicability of meta-predicates to predicates are

given by the knowledge source STRUCTURE. A meta-predicate can be applied to

predicates if the argument structures of the predicates fulfill certain

restrictions and the predicates are of the appropriate types. For example, the

meta-preqicate OPPOSITE can only be applied to two predicates of the same

layer which have the same argument restrictions, because direct opposition of

4 in another notation:
V P,Q,x: OPPOSITE_l(P(x),Q(x)) <=> (P(x) => not Q(x))

relations presupposes that the relations are comparable. Another function is

to exclude antinomies: The distinction of types is obeyed, i.e. predicates of

the first type are seperated from those of higher types by the structural
descriptions.

If a meta-predicate holds for a particular predicate this is represented in

two ways. BLIP employs as well a procedural (inferential) representation as a

declarative representation of the same information. This is, as Weyhrauch

(Weyhrauch 80) puts it, a consequence of the procedural-declarative debate in

AI. For example, the meta-fact

W_TRANSITIVE (contain, cure_2, cure_3)

expresses in a declarative way the same information as the rule

CONTAIN(x,y) & CURE_2(y,z) => CURE_3 (x,z)

On the one hand, a meta-fact is stored in the fact part of the inference

engine. On the other hand, a rule is generated automatically for the meta-fact

and stored in the rule part of the inference engine. The two representations

have different functions. With the help of the rule new facts are inferred and

thus the factual knowledge of the system is enhanced. For example, given

CONTAIN (novopirin, ass), CURE_2 (ass, head-ache),

the new fact

CURE_3 (novopirin, head-ache)

can be entered into the knowledge base. With the help of the declarative

representation other meta-facts are inferred in the following way: when there

is a meta-meta-fact whose corresponding representation as a rule has, e.g.,

W_TRANSITIVE as a premise and some other meta-predicates in its conclusion,

these mete-predicates will be considered true with the argument bindings of

the meta-fact concerning w_transitivity without testing. Also, negated meta

predicates as the conclusion of a meta-meta-fact are useful because the

corresponding meta-facts then need not be tested.

For example:

i) meta-meta-fact: OPPOSITE_2 (opposite_!, inclusive_!)
ii) meta-fact: OPPOSITE_! (mono-substance, multi-substance)
iii) meta-fact: INCLUSIVE_l(mono-substance, multi-substance)

Meta-fact iii) need not be tested if ii)

corresponds to meta-fact i):

is known because of the rule which

i') met a-rule: OPPOSITE_l(p,q) => not INCLUSIVE_! (p,q)

In our example, p is MONo-SUBSTANCE and q is MULTI-SUBSTANCE. Only the

declarative representation of rules enables us to deduce rules from other

rules.

For entering a fact or a rule into the inference engine knowledge about

representation format of the inference engine is used (FORMAT).

In order to verify whether or not a meta-predicate holds for certain

predicates the criteria for the validity of a meta-fact are represented in

such a way that they can be used as pattern for a search process in the

factual knowledge of the inference engine. These pattern~ are called

"characteristic situations" (Emde et al. 83). For each meta-predicate

patterns for positive and negative situations are stored. The CHARACTERISTIC

SITUATIONS are generated out of the rule-schemata automatically.

The main information about meta-predicates is captured by the rule-schemata

and the structural descriptions. The characteristic situations could be

generated at run-time as part of the testing process as well as the format

knowledge could be part of the entering process of the inference engine. But,

-as is well known - it is of advantage that most of the knowledge is extracted

from processes, because it is then transparent (and particularly in machine

learning where the expert user requires control over the system's processing)

and easy to changeS .

s The interface for the meta-knowledge acquisition
automatic generation of redundant knowledge
implemented by Sabine Thieme.

and the transducer for the
representations has been

There is a third knowledge source which could be realized as part of a

process: the PRIORITIES of meta-predicates. There is an efficient ordering of

meta-predicates to be tested for a predicate. It may be viewed as the

knowledge of how to construct an "experiment" in order to prove a hypothesis.

This knowledge may be coded in the hypothesis testing or - as we do - is

concentrated into a knowledge source. The efficient ordering of hypotheses

depends on the meta-meta-facts. The ordering itself is represented in a

network-like knowledge source, which can be used for choosing the hypotheses

which are to be tested next.

2. 3 The Learning Process

The main components of the learning process are

- the generation of hypotheses,

- the rating of hypotheses and

- the testing of hypotheses.

The architecture of BLIP is shown in f-igure 3. The components interact via an

agenda. The hypotheses are generated syntactically by taking advantage of the

structural descriptions. For each predicate all possible meta-facts which take

that predicate as an argument are constructed.

The rating component attachs a value between 0 and 1000 to each such

hypothesis. There are several criteria for rating:

- efficiency:

the hypothesis is easy to test, or the hypothesis would exclude a lot of

other hypotheses (this is the priority knowledge);

- activeness:

former tests of the particular hypothesis could not be accomplished with a

clear result;

- effectiveness:

the number of stored facts which correspond to the predicate(s) for which a

meta-predicate is to be tested

Meta-facts which require no testing are immediately generated and entered

into the inference engine. They always have the highest rating.

?2.-\ \

GENERATING

HYPOTHESES

rule

schemata

inference engine

rules

facts

engineer

INTERFACE

TESTING

HYPOTHESES

Fig. 3: system architecture of BLIP

RATING

HYPOTHESES

A hypothesis is tested by searching in the fact part of the inference engine

for facts matching the characteristic situations of this hypothesis. The

number of positive and negative examples are counted. If there are only

positive examples and no negative one, and the number of positive examples

exceeds a threshold, then the hypothesis is verified, the corresponding meta-

fact is entered into the factual part, and the corresponding rule is

generated and entered in the rule part of the inference engine. If

sufficiently many negative situations found, but no positive ones, then the

hypothesis is clearly falsified. If neither the number of positive nor the

number of negative examples exceeds the threshold, nothing is entered into the

inference eng~ne, but the activeness of the hypothesis increases.

The difficult case is, of course, if facts support a hypothesis, but there is

at least one exception. We prepared SUPPORT SETs for this case. Each meta

fact has as one argument the support set for which the meta-fact is valid.

The default assumption is that the support set is ALL (s. fig. 1). But if

exceptions occur, these are described and excluded from the support set. The

description is given by a condition which is introduced as a supplementary

premise in the corresponding rule. The condition can be very simple, e.g. the

rule is not valid for a certain concept. If ~ore is known about the exceptions

the condition can become more complicated, e.g. the rule is not valid for all

concepts with a certain attribute or for all concepts with a certain relation

to other concepts. The exceptions are analyzed searching for statements which

are true for all of them. In this way new concepts can be introduced.

Meta-knowledge also assists in the manual acquisition of knowledge. Instead

of typing in facts and rules for each object of the domain, meta-facts may be

entered into the system. From these meta-facts rules are generated and from

these facts are deduced.

which is dealt with in,

Checking sets of rules for consistency is a problem

e.g. (Suwa et al.82), (Keller et al. 81). Our

approach of using declaratively represented consistency conditions saves

theorem proving and allows for repairing inconsistencies easily. Consistency

of meta-facts is checked with the help of meta-meta-facts. Consistency of

facts is checked with the help of meta-facts.

3 Further Research

The processes described above will be implemented on a SYMBOLICS 3670 in

PROLOG. The main research topics will be:

- improving and reorganizing the predicates and their typed arguments

- developing the approach of the support sets further, so that the knowledge

base can automatically be structured according to relevant subdomains

- handling exceptions, noisy data, and evidence for the inappropriateness of

the model built so far

If a meta-predicate cannot apply to a predicate only because of the order of

the arguments, the order should be.rearranged. Similarly, predicates with n

arguments can be split into r predicates with m arguments (m<n). Of course,

there may conflicts occur. Criteria are the needed in order to decide which

rearrangement is the most efficient.

If support sets or the exception sets become more complicated they can be used

to structure the domain model. The model may be divided into sub-domains, in

which certain relations hold These sub-domains may be interrelated. If it were

possible to construct a taxonomy of sub-domains, this could reflect the

overall structure of the particular domain and could be used as overview

knowledge. An approach in that direction has been made by Emde et al. (83).

Considering the taxonomy as the optimal "Gestalt" of a theory provides a guide

as to how the sub-domains should be organized. It allows for improving even a

consistent domain model (DeKleer at al. 81).

Handling noisy data is another (although interrelated) topic. There are some

problems with this. First, classifying facts requires a theory. But this

theory is not fully known before the system has accomplished its task and no

new facts are to be expected. There is no teacher who classifies the facts for

the system as a "deus ex machina". Therefore, the system has to use the rules

generated so far, which may be an incomplete or even false theory.

Second, improving a theory means not only to increase the amount of rules, but

also to modify it. This may include the deletion of rules and those facts

which have been deduced with the help of these rules (belief revision), or

even the refutation of the theory and building up an alternative, more

appropriate theory. Another modification of a theory is to introduce

"invisible facts" by the help of which most of the rules and inferred facts

can be kept but the counter-examples are also covered.

Third, building up a body of

impossible, if each new incoming

interrelated inference rules would become

fact had the chance to change the former

generated rules. The system were too busy to revise, its behavior would become

oscillating.

It will be one of our prior tasks to operationalize criteria for the decision

whether a fact should be rejected, a rule should be deleted with the dependent

facts, or the theory should be refuted. Some ideas of how deal with evidence

for the inappropriateness of a model are presented in Emde (86).

4 REFERENCES

Anderson, B.F. (75): "Cognitive Psychology" Academic Press

Brazdil, P. (78): "Experimental Learning Model" in: Proceedings of AISBIGI,
Hamburg, pp. 46

Clancey, W.J.(79): "Tutoring rules for guiding a case method dialogue"; The
International Journal of Man-Machine Studies 11, p.25-49, 1979

Davis, R.ILenat, D.B.(82): "Knowledge-Based Systems in Artificial
Intelligence" McGraw-Hill

DeKleer, J.IBrown, J.S.(81): "Mental Models of Physical Mechanisms and Their
Acquisition"; in: J.R.Anderson (ed.): Cognitive Skills and Their
Acquisition, Lawrence Erlbaum, 1981, p.285-309

Emde, W.l Habel, Ch.l Rollinger, C.-R.(83): "The Discovery of the Equator (or
Concept Driven Learning)"; In: Proc. IJCAI-83, Karlsruhe, 1983

Emde, W. (84): "Inkrementelles Lernen mit heuristisch generierten Modellen";
KIT-Report 22, Technische Universitat Berlin, 1984

Emde, W. (86): "Great Flood in the Blocks World (or Non-cumulative
Learning)"; Proceedings of the European Workshop Session on Learning,
Paris-Qrsay, 1986

Emde, W. I Morik, K. (86): "The BLIP System" KIT-Report 32,
Universitat Berlin, 1986

Technische

Ginsberg, A.jWeiss, Sh. (85): "Seek2: A Generalized Approach to Automatic
Knowledge Base Refinement"; In: Proc. IJCAI-85, p.367-374, 1985

Hayes-Roth, F.jWaterman, D.A.ILenat, D.(83): "Building Expert Systems"
Addison Wesley, 1983

Keller, R.M. I Nagel, D. (81): "Some Experiments in Abstraction of Relational
Characteristics"; Technical Report DCS-TM-15; Rutgers University, May
1981

Mitchell, T.M.I Mahadevan, S.ISteinberg, L.I. (85): "LEAP: A Learning
Apprentice for VLSI Design"; In: Proc. IJCAI-85, 1985

Phelps, B.jMusgrove, P. (86):
Learning" Proceedings of
Paris-Qrsay, 1986

"Representation and Clustering in Conceptual
the European Workshop Session on Learning,

Rajamoney, S.IDeJong, G.IFaltings,B. (85):
Knowledge Acquisition through Directed
IJCAI-85, p.688-690, 1985

3Z-10

"Towards a Model of Conceptual
Experimentation"; In: Proc

Smith, R.G./Mitchell,T.M./Winston,H.A./Buchanan, B.G. (85): "Representation
and Use of Explicit Justification for Knowledge Refinement"; In: Proc.
IJCAI-85, p.673-680, 1985

Steels, L./van de Velde, W. (85): "Learning in Second Generation Expert
Systems"; In: J .S. Kowalik (ed.): Knowledge-based Problem Solving,
Prentice-Hall Inc., New Jersey, 1985

Suwa, M./Scott, A.C./Shortliffe, E.H. (82): "An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert-System", Stanford
University, Stanford, CA, Report No. STAN-cS-82-922, 1982

Swartout, W.R. (83): "XPLAIN: A System for Creating and Explaining Expert
Consulting Programs"; In: Artificial Intelligence 21, p. 285-325, 1983

van Someren, M. W. (86): "Constructive Induction Rules:
Description Space for Rule Learning", Proceedings of
Workshop Session on Learning, Paris-Orsay, 1986

Reducing the
the European

Weyhrauch, R.W.(80): "Prolegomena to a Theory of Mechanized Formal Reasoning"
in: Artificial Intelligence 13, pp.l33, 1980

)2-(7

Knowledge Acquisition for Knowledge-Based· Systems Workshop, Banff, Canada, Nov., 1986

USING A DOMAIN MODEL TO DRIVE
AN INTERACfiVE KNOWLEDGE EDITING TOOL

Mark A. Musen, Lawrence M. Fagan, David M. Combs, Edward H. Shortliffe
Medical Computer Science Group

Knowledge Systems Laboratory
Stanford University School of Medicine

Stanford, California 94305-5479
U.S.A.

The manner in which a knowledge acquisition tool displays the contents of a
knowledge base affects the way users interact with the system. Previous tools
have incorporated semantics that allow knowledge to be edited either in terms of
the structural representation of the knowledge or the general problem-solving
strategy in which the knowledge is ultimately used. An alternative paradigm is
to use the semantics of the application domain itself to govern access to an
expert system's knowledge base. This approach has been explored in a program
called OPAL, which allows medical specialists working alone to enter and review
cancer treatment plans for use by an expert system called ONCOCIN.
Knowledge acquisition tools based on strong domain models should be useful in
application areas that are highly structured and for which there is a need for
repetitive knowledge entry.

INTRODUCTION
Knowledge acquisition for expert systems can be a laborious process because of difficulties
in communication between the knowledge engineers who build the systems and the domain
experts whose knowledge is to be represented in the computer. Knowledge engineers
typically lack the background needed to pose optimal questions about a particular
application area. At the same time, domain experts may find it hard to introspect on
their problem-solving strategy and often have little appreciation for how knowledge
engineers formalize expertise as a knowledge base. While the use of structured
interviewing techniques (de Greef and Breuker, 1985) and protocol analysis (Fox et al.,
1985) has begun to define an established methodology for knowledge engineering, often
many cycles of programming, system evaluation, and re-programming are still necessary. It
has long been recognized that the development of new expert systems might be greatly
expedited if experts could somehow enter their knowledge directly into computers without
relying on knowledge engineers as intermediaries (Davis, 1979).

Although domain experts should not be expected to become programmers or to learn
knowledge representation techniques, it is still possible to reduce their dependence on
knowledge engineers during construction of expert systems. One approach is to provide
the experts with some type of knowledge editor to aid in updating and reviewing the
contents of the knowledge base. Because the technicalities of encoding knowledge are
hidden by the editor, the user can think about the information being entered in more
familiar terms. In fact, the more a user can be insulated from the implementation details
of representing expert knowledge, the easier it is to view the knowledge intuitively and
abstractly. Knowledge editing programs consequently attempt to transform an expert's
knowledge between some higher level, external representation entered into the editor and
the internal format required by the target expert system.

Every computer program is written with particular semantic assumptions about the data on
which it operates. These assumptions, which are reflected in the way users interact with
the program, form a model of the data. For example, simple text editors generally employ
a model in which the data represent characters in a document; such editors accept
commands whose semantics relate to modifying characters or lines of text. On the other
hand, a knowledge editor such as TEIRESIAS (Davis, 1979) must assume a different sort
of model. The data on which TEIRESIAS operates represent rules in the knowledge base
of an expert system. Interaction with TEIRESIAS involves identifying erroneous or
missing rules and making necessary corrections~ Although all of the rules in the
knowledge base collectively define a problem-solving strategy, it is important to note that
TEIRESIAS does not address the knowledge from that perspective; the system is designed
to focus on the individual rules in a single chain of reasoning.

OPAL, the knowledge editor for a cancer therapy management system known as
ONCOCIN (Shortliffe et al., 1981), is based on a more abstract kind of data model--that
of the structure of the domain knowledge itself. A detailed model of oncology treatment
gives OPAL the ability to solicit and display knowledge of cancer treatment plans using
graphical "forms" and other visual representations that are intuitively understandable to
expert physicians (Musen et al., 1986a). An example of an OPAL "form" is shown in
Figure 1. Knowledge specified graphically using OPAL is first stored internally in an
intermediate representation and then automatically converted to a format used by
ONCOCIN to provide clinical consultations. OPAL's use of a detailed model of the
domain minimizes dependence on knowledge engineers by allowing entry of new treatment
plans directly by physicians.

This paper examines the use of domain models as the foundation for interactive
knowledge acquisition tools with which expertise can be entered independent of the
particular representation required by the target expert system. We show that a domain
model which includes strong assumptions about the application area can serve to accelerate
knowledge engineering significantly. Because we base our discussion on our experience
with OPAL, it is first necessary to describe ONCOCIN and its area of application.

THE PERFORMANCE ELEMENT: ONCOCIN
Optimal therapy for most cancers is not known. In academic medical centers, patients are
often enrolled in clinical trials that study the efficacy of alternative treatment plans for
given types of cancer. The written descriptions of these complex treatments, called
protocols, contain extremely detailed specifications for how patients with particular tumors
should be managed by their physicians. Protocols dictate combinations of drugs (called
chemotherapies) that are given in a specific order over time. Required laboratory tests
and radiation treatments (if any) are also specified. The complexity of oncology protocols
can make it difficult for physicians to remember precisely what treatments may be
required in certain circumstances. The written protocol descriptions may also have areas
of vagueness or ambiguity that may be difficult for practitioners to resolve (Musen et al.,
1986b). Cancer therapy is thus an excellent domain for the application of expert systems
technology.

ONCOCIN uses a knowledge base of cancer protocols to make therapy recommendations.
Physicians enter required data into the system each time a patient is seen in clinic.
ONCOCIN then uses its knowledge of the protocol in which the patient is enrolled to
determine appropriate treatment given the clinical information supplied by the physician.
(If the physician should ultimately disagree with the program's suggested therapy, he or she
is free to modify ONCOCIN's recommendation.)

ONCOCIN's task can be viewed as a problem in skeletal plan refinement (Friedland and
Iwasaki, 1985). The program identifies the appropriate protocol for a patient and
constructs a treatment plan by selecting and instantiating plan elements at successively
greater levels of detail. For example, ONCOCIN might determine that the plan for a

?3-\

Chemotherapy VAM

Days in Chemotherapy 21

Choose Subcycle

Drug

VP-16 ADRIAMYCIN ~lETHOTREXA TE

!Specify Dose I I Specify Dose I

Figure 1: Sample OPAL "Form"
This table, which has been reproduced directly from the computer screen, displays information
concerning the drug combination "VAM", consisting of VP-16, Adriamycin, and methotrexate. For
each specified drug, OPAL creates a separate object in the intermediate representation of the
ONCOCIN knowledge base. These drug objects are linked to the object for VAM chemotherapy, thus
defining their "context".

particular patient visit should be initiation of a new drug combination (chemotherapy).
The general plan to begin a chemotherapy is then refined into separate plans for giving
each of the component drugs. Next, the dose and route of administration (e.g.,
intravenous or oral) for each drug must be determined.

The ONCOCIN knowledge base is encoded heterogeneously using three basic
representations. First, a hierarchy of frames encoded using an object-oriented
language (Lane, 1986) defines the various structural entities for each protocol in the
knowledge base (Figure 2). Each treatment plan has a unique protocol object that
identifies other objects representing the constituent radiation treatments and
chemotherapies. The chemotherapy objects in turn specify objects that describe the
component drugs. ·

Production rules, the second form of knowledge representation in ONCOCIN, are linked
to each object in the planning hierarchy. The rules are invoked during skeletal plan
refinement to conclude the values of special variables called parameters, establishing such
concepts as the clinical condition of the patient, interpretations for various laboratory
tests, and required adjustments in drug dosages (Shortliffe et al., 1981). Associating rules
with specific objects representing the components of the planning task explicitly defines
the context within which each rule is applicable, enhancing the efficiency of the
consultation system. For example, the rules linked to an object representing a particular
chemotherapy conclude the values of parameters related just to that combination of drugs.

The third form of knowledge representation concerns encoding the sequences of
chemotherapies and radiotherapies to administer to the patient over time. This procedural
knowledge is represented in finite state tables. Each finite state table and the name of the
ONCOCIN parameter whose value reflects the "current" patient state is stored in an object
called a generator (Musen et al., 1986c).

Defining knowledge of a new protocol for ONCOCIN requires (1) creating an object
hierarchy describing the component elements, (2)"1inking appropriate production rules (and
the parameters they conclude) to the various objects, and (3) specifying the temporal
sequence of chemotherapies and radiation treatments in terms of a finite state table. Each
of these representational issues is handled transparently by OPAL. Because OPAL uses a
strong model of the oncology domain as its data model, users can think about protocol
knowledge· independently of how that knowledge is ultimately encoded in the expert
system.

Figure 2: Hierarchy of Objects in ONCOCIN
Both the ONCOCIN knowledge base and the intermediate knowledge representation used by OPAL
maintain a hierarchy of objects that reflects the components of each protocol's treatment plan. A
protocol is comprised of specific radiation treatments and chemotherapies. The chemotherapies are
made up of various drugs. In the knowledge base used by ONCOCIN, production rules are linked to
each object. The consultation is conducted by traversing the object hierarchy and invoking
appropriate rules.

THE DOMAIN MODEL IN OPAL
Analysis of a domain at the "knowledge-level", irrespective of whatever notations might be
used to encode such knowledge, has been suggested as an important first step in the
development of expert systems (Newell, 1982). Once the intended actions, goals, and
vocabulary of the application are understood, a system of symbols can then be used to
represent the knowledge. However, the particular choice of symbols is in some ways
arbitrary.

OPAL's domain model has been derived from a knowledge-level understanding of therapy
planning in oncology. Review of dozens of chemotherapy protocols, in addition to
experience in building a prototype version of ONCOCIN (Shortliffe et al., 1981), has
facilitated our analysis of the application area at the knowledge level. As a result, we have
developed a domain model that is used in OPAL to instantiate the concepts present in
particular cancer protocols. Knowledge of what notions can be anticipated from protocol
to protocol guides all of the program's interactions with its .user.

Although at the knowledge level there is a single, unified model for cancer therapy, OPAL

must encode the domain model using two different. isomorphic representations. First,
OPAL must store entered protocol knowledge in an intermediate representation that can
later be translated into a knowledge base for ONCOCIN. The specification of the format
for this intermediate representation is one embodiment of the domain model. The second
incarnation of the same model is reflected in OPAL's graphical user interface.

OPAL uses two parallel representations of the domain model for logistical reasons.
Because of the internal complexity of the graphical representation of the knowledge,
protocol descriptions stored within the OPAL interface cannot be transformed directly into
knowledge bases for ONCOCIN in a convenient fashion. At the same time, transmuting
ONCOCIN production rules, which are "symbol-level" entities (Newell, 1982), back into
their corresponding knowledge-level assertions for display to the user is also
computationally cumbersome. Thus, the intermediate knowledge representation serves as a
useful buffer between the OPAL interface and the target expert system.

We now consider OPAL's domain model in terms of its knowledge-level components and
physical implementations. Ontological analysis, a methodology for classifying knowledge
level concepts, has recently been proposed as a general approach for classifying the
contents of knowledge bases (Alexander et al., 1986). While we have not attempted to
apply ontological analysis to the domain model constructed for OPAL in any rigorous
fashion, we will relate our discussion to the taxonomy proposed by Alexander et al. to
highlight the correspondence between our respective approaches.

Entities and Relations
The first component of the domain model consists of an identification of the entities in
the application area and their relations. Alexander et al. refer to this as the static
ontology. In the ONCOCIN domain, the "entities" are the therapeutic elements that make
up the planning problem (Figure 2). The "relations" are defined in part by the
composition hierarchy that specifies how each plan (e.g., treatment according to a
protocol) may be defined in terms of more specific plans (e.g., administration of
particular chemotherapies). Other relations define attributes of individual entities (e.g.,
drugs have dosages and routes of administration).

At the implementation level, the intermediate knowledge representation for a cancer
treatment plan is based on a hierarchy of objects describing the necessary protocol,
chemotherapy, radiotherapy, and drug entities, with appropriate links to establish the
composition relations. OPAL creates new objects in this hierarchy and stores and retrieves
the values of slots that define attributes of each instance.

The same entity-relation model is implicit in the OPAL user interface. For example, the
OPAL form in Figure 1 allows the user to specify the names of the individual drugs that
make up a particular chemotherapy. The program presumes that chemotherapies and drugs
are entities in the domain and that they are related compositionally. When a user
interacts with OPAL, the names of the drugs are entered into the blanks of the graphical
form by selecting appropriate choices from a pre-defined menu.

Whenever a blank requesting a drug name is filled in, knowledge stored in the definition
of the graphical form causes OPAL to create a new drug object in the intermediate
representation and link it to the object for the related chemotherapy. Additional forms in
OPAL contain blanks that can define values for the slots in the generated objects. For
instance, selecting the box labeled specify dose beneath one of the drug names in Figure
1 causes another form to be displayed in which certain properties of the designated drug
can be entered. By noting the pathway used to access the new form (i.e., which box in the
first form was selected), OPAL can store the knowledge specified via the second form in
the appropriate drug object. Thus, the user's path through the various forms in the system
determines the particular entities to which entered knowledge is related at each step.
Furthermore, whenever knowledge is specified graphically using the OPAL forms (one

embodiment of the domain model), it is simultaneously translated internally to the
intermediate representation, whose structure denotes the same model in a different
conformation.

Domain Actions
Much of ONCOCIN's skeletal planning task is pre-defined by the hierarchical relations
among entities in the domain (Figure 2). Initiating a plan to begin a new chemotherapy,
for example, tacitly requires invoking plans to administer the component drugs. Because
the planning hierarchy is built into OPAL's model of the domain, such actions do not
have to be specified explicitly for OPAL when new protocol knowledge is entered. They
are assumed constant from protocol to protocol.

On the other hand, there are several ways in which the simple instantiation of the skeletal
plans defined by the domain entities can be modified. Fortunately, the list of these
possible actions is small. At the knowledge level, we must deal with such concepts as
altering the customary dose of a drug, substituting one drug for another, or aborting or
delaying chemotherapy. Alexander et al. would classify these notions as part of the
dynamic ontology of the domain.

OPAL's semantic assumptions about the knowledge in ONCOCIN form a "data model" that
is derived directly from the domain model. Accordingly, the knowledge-level actions that
form the dynamic ontology can be selected directly from menus when physicians enter
descriptions of new protocols (Figure 3). The subsequent translation of the intermediate
knowledge representation into the knowledge base used by ONCOCIN requires conversion
of the knowledge-level specifications into expressions that operate on internal ONCOCIN
parameters. The user of OPAL, however, need only be concerned with actions at the
knowledge level.

Domain Predicates
Just as there is a limited set of actions at the knowledge level, there are limited classes of
conditions that can cause modification of the basic treatment plan. The results of
laboratory tests, certain patient symptoms, ;:md manifestations of treatment-induced toxicity
are the principal factors that can dictate particular actions in OPAL's domain.

Much of the knowledge needed to specify ONCOCIN's planning task (the epistemic
ontology of Alexander et al.) consists of a mapping of specific conditions onto
corresponding domain actions. OPAL simplifies knowledge entry by using a different
graphical form for each class of conditions. For example, in Figure 4, OPAL displays a
predefined list of all the relevant laboratory tests known to the system. When one of the
laboratory tests is selected by the user, "rules" predicated on the results of the test can be
entered. In Figure 4, the expert has indicated that when a patient's serum creatinine is
greater than 1.5, the drug methotrexate should be withheld from "VAM" chemotherapy.
The values entered by the physician using OPAL correspond to a production rule: If
creatinine is greater than 1.5 then omit the drug. The rule is applicable only within a
specific context--in this case, when giving a particular drug (methotrexate) in a particular
chemotherapy ("V AM") in a particular protocol. As in the specification of the static
attributes of domain entities (Figure 1), the context of the knowledge is determined from
the manner in which the user invoked the form.

OPAL must translate predicates based on such knowledge-level concepts as laboratory tests
into expressions that evaluate parameters in the ONCOCIN knowledge base. However, the
actual production rules required by the inference engine are transparent at the level of the
OPAL interface.

Alterations for Blood Counts

Drug Combination: VAM Sub cycle:

Drug:

WBC
(X 1000) >= 150

METHOTREXATE

Platelets
(x 1000)

100 - 150

Report
New protaco I
Off protoco I
Display

>= 3.5 100"/o of STD

Skip cycle
Order Test
CLEAR

3.0 3.5
2.5 3.0

< 2.5

Figure 3: Knowledge-Level Actions in OPAL
Operations that modify the plan of the protocol are specified in OPAL by selecting knowledge-level
actions from menus, such as the one toward the right hand side of the figure. These knowledge-level
actions are translated into expressions involving ONCOCIN parameters when the knowledge base later
is generated from the intermediate representation. The OPAL "form" shown here displays actions to
take with the drug methotrexate in a chemotherapy called "V AM". The user is specifying that when a
patient's white blood cell count is greater than or equal to 3500 and the platelet count is between
100,000 and 150,000, treatment should be delayed.

Procedural Knowledge

< 75

Also part of the epistemic ontology is the sequence of chemotherapies and other treatments
that must be carried out over time. In OPAL, a special graphical environment is used in
which .. the user can create and link together icons that represent the various procedural
elements of oncology treatment plans (Figure 5). Concepts found in traditional
programming languages such as sequential control, conditionality, iteration, exception
handling, and concurrency can all be specified using a visual syntax that mimics the
flowcharts typically found in printed descriptions of protocols. OPAL converts the
graphical representation into a finite state table for use by ONCOCIN (Musen et al.,
1986c).

DISCUSSION
Now that tools to build expert systems are readily available commercially, increasing
attention is being placed on the problems of creating and maintaining large knowledge.
bases. In the case of the prototype version of ONCOCIN, developed before work began on
OPAL, difficulties in knowledge acquisition were particularly apparent; encoding the
system's protocols for lymph node cancer required two years of effort and some 800 hours

Alleratron. far Lab T-•

TEST:
Hematalogy Chem<rlea Mlacenan...,..,.
G,..,ulocytea Alkaline Phoaph&taae OLCO
Hematccrit Total BIUNbln ECG
Hemoglollln BUN Pulm. Function
P1eteleta Creatinine Cleerance
PT ~~•'luiD:I.II.I-
PTT SGOT \
wee SGPT

Selected Teat: SeNm Creatinine

Test Alterations far a-therapy: VAM Subcycle:

ValUe Action ValUe Action

Teat Alterations far Crug: METHOiREXA TE (You must select a chemotherapy first)

ValUe Action ValUe Action

) 1.5 Withhold

Figure 4: Knowledge-Level Rules in OPAL
The blanks in this form allow the expert to specify how the results of laboratory tests should cause
modification of the protocol. The knowledge entered is automatically converted to production rules
that can pe invoked by the ONCOCIN inference engine. In this example, the user has specified that
when a the patient's serum creatinine is greater than 1.5, the drug methotrexate should be withheld
from "V AM" chemotherapy.

of an oncology expert's time. The addition of three protocols for breast cancer
chemotherapy ·took several more months, most of which involved the usual cycles of
programming by knowledge engineers and system testing by domain experts.

A principal goal of our current work is to solve the practical problem of expediting
knowledge acquisition for ONCOCIN by reducing dependence on knowledge engineers as
intermediaries. In OPAL, we have attempted to ease the interchange between experts and
the computer by providing a visual model of oncology knowledge that 'is familiar to
physicians. The model incorporates sufficient assumptions about the domain. that
clinicians can describe new protocols by means of a simple "fill in the blanks" approach.

Other workers have emphasized the usefulness of visual representations in facilitating
knowledge entry by experts. ETS (Boose, 1985), for example, allows construction of
knowledge bases for certain classification tasks. Once a prototype knowledge base has been
specified by means of a ·textual dialog, ETS displays a directed graph that allows the user
to visualize how classifying particular entities in the application area may entail additional
classifications. Another program called ESSA (Hannan and Politakis, 1985), on the other
hand, allows users themselves to define classification hierarchies graphically. The actual
knowledge, however, must be specified as production rules in the EXPERT language, thus
requiring that the user be familiar with a particular expert system "shell". Neither ETS
nor ESSA uses graphics for specification or display of knowledge-level concepts.

3"'3-7

Alterations for Blood Counts

Drug Combination: VAM Subcycle:

Drug:

WBC
(x 1000) >= 150

METHOTREXATE

Platelets
(x 1000)

100 - 150

A ttenua e ose
Withhold Drug
Substitute Drug
Consult

Report
New protoco I
Off protoco I
Display

>= 3.5 100"/, of STD

Skip cycle
Order Test
CLEAR

3.0 3.5
2.5 3.0

< 2.5

Figure 3: Knowledge-Level Actions in OPAL
Operations that modify the plan of the protocol are specified in OPAL by selecting knowledge-level
actions from menus, such as the one toward the right hand side of the figure. These knowledge-level
actions are translated into expressions involving ONCOCIN parameters when the knowledge base later
is generated from the intermediate representation. The OPAL "form" shown here displays actions to
take with the drug methotrexate in a chemotherapy called "V AM". The user is specifying that when a
patient's white blood cell count is greater than or equal to 3500 and the platelet count is between
100,000 and 150,000, treatment should be delayed.

Procedural Knowledge

< 75

Also part of the epistemic ontology is the sequence of chemotherapies and other treatments
that must be carried out over time. In OPAL, a special graphical environment is used in
which .. the user can create and link together icons that represent the various procedural
elements of oncology treatment plans (Figure 5). Concepts found in traditional
programming languages such as sequential control, conditionality, iteration, exception
handling, and concurrency can all be specified using a visual syntax that mimics the
flowcharts typically found in printed descriptions of protocols. OPAL converts the
graphical representation into a finite state table for use by ONCOCIN (Musen et al.,
1986c).

DISCUSSION
Now that tools to build expert systems are readily available commercially, increasing
attention is being placed on the problems of creating and maintaining large knowledge.
bases. In the case of the prototype version of ONCOCIN, developed before work began on
OPAL, difficulties in knowledge acquisition were particularly apparent; encoding the
system's protocols for lymph node cancer required two years of effort and some 800 hours

Alleratlonoo lar Lab Toa

TEST:
Hematology Chemlalrlea Ml:ocenaneaue
c;,..,..locytea Alkaline Pl'tospho.taae DLCO
Hemelacrit Total Slll"'bln ECG
Hemoglobln SUN Pulm. Function
Plate late Creatinine Cle....,ce
PT ug.ll,,cn,,.!!,l.
PTT SGOT ~
wee SGPT

Selected To: Se"'m Creatinine

To Allerallona lar a-therapy: VAM Subcycle:

ValUe Action V:alue Action

To Allerallona lar Crug: ME'TltOiREXA TE ('fou mwot aetect :a chemather:apy flral)

Value Action V:alue Action

) 1.5 Withhold

Figure 4: Knowledge-Level Rules in OPAL
The blanks in this form allow the expert to specify how the results of laboratory tests should cause
modification of the protocol. The knowledge entered is automatically converted to production rules
that can pe invoked by the ONCOCTN inference engine. In this example, the user has specified that
when a the patient's serum creatinine is greater than 1.5, the drug methotrexate should be withheld
from "V AM" chemotherapy.

of an oncology expert's time. The addition of three protocols for breast cancer
chemotherapy ·took several more months, most of which involved the usual cycles of
programming by knowledge engineers and system testing by domain experts.

A principal goal of our current work is to solve the practical problem of expediting
knowledge acquisition for ONCOCIN by reducing dependence on knowledge engineers as
intermediaries. In OPAL, we have attempted to ease the interchange between experts and
the computer by providing a ·visual model of oncology knowledge that ·is familiar to
physicians. The model incorporates sufficient assumptions about the domain that
clinicians can describe new protocols by means of a simple "fill in the blanks" approach.

Other workers have emphasized the usefulness of visual representations in facilitating
knowledge entry by experts. ETS (Boose, 1985), for example, allows construction of
knowledge bases for certain classification tasks. Once a prototype knowledge base has been
specified by means of a· textual dialog, ETS displays a directed graph that allows the user
to visualize how classifying particular entities in the application area may entail additional
classifications. Another program called ESSA (Hannan and Politakis, 1985), on the other
hand, allows users themselves to define classification hierarchies graphically. The actual
knowledge, however, must be specified as production rules in the EXPERT language, thus
requiring that the user be. familiar with a particular expert system "shell". Neither ETS
nor ESSA uses graphics for specification or display of knowledge-level concepts.

31-7

Figure 5: Procedural Knowledge in OPAL
This is a modified version of the sequence of steps in a protocol for lung cancer entered into OPAL
Patients are randomly assigned to either Arm A, which tests the chemotherapies "V AM" and "POCC",
or Arm B, which tests the chemotherapy "CAVP". Patients who respond to either treatment arm may
be randomly assigned to receive "PCI" radiation treatments. The visual flowchart in OPAL is
converted to a finite state table for use by ONCOCTN.

Knowledge entry tools such as INKA (Phillips et al., 1985) come closer to using visual
representations in the manner adopted by OPAL. INKA permits experts to employ a
structured subset of natural language to define PROLOG rules for diagnosis of faults in
electronic circuits. The program displays a schematic diagram of the circuit under
discussion, specified in advance by a knowledge engineer. Experts simply point to
components in the diagram when composing new rules, causing descriptions of the
indicated circuit elements to be incorporated within the entered text. INKA relies on this
graphical display of domain objects to acquire part of the knowledge from experts. The
program also incorporates knowledge-level concepts such as "transistor"* and "voltage" into
its structured rule language. INKA thus adopts a strong domain model that facilitates
knowledge entry. However, the domain model in INKA is not the data model. The
program's data model is one in which the knowledge base is viewed as a collection of
"rules"; there is no framework that can help the domain expert recognize what knowledge
is expected by the system. As a result, INKA itself cannot inform the expert if any rules
are missing or whether a new rule interacts with previously entered statements.

Because the data model in OPAL directly reflects the domain model, physicians learn
immediately that defining protocol knowledge for ONCOCIN is simply a matter of filling
out all the OPAL "forms". Once a particular fact has been entered into OPAL, the
appropriate blanks remain filled in unless the knowledge is later retracted by the expert;
previously entered knowledge can therefore be perused easily at any time. Because entering
new knowledge into a blank overwrites prior specifications, contradictions in the
knowledge base can be avoided. At the same time, portions of the knowledge can be
recognized as missing if particular blanks are not fille~ in.

Previous knowledge editors have been based on either of two types of data models. The
first and most common approach has been to provide a model of the knowledge

representation itself. Typical expert system building shells such as EMYCIN and more
specialized tools such as INKA have adopted this type of data model. TEIRESIAS (Davis,
1979), for example, allowed its user to examine and modify faulty knowledge in the
MYCIN system. TEIRESIAS was a landmark program in that it demonstrated that
inferring a domain model from an existing knowledge base could be used to assure the
syntactic and semantic integrity of new knowledge entered by an expert However, the
data model of the MYCIN knowledge base presented by TEIRESIAS to the user--that of a
collection of rules--was the same model adopted by the consultation program. Although
the system took great pains to attempt translation between natural language and LISP code,
if an expert could not convey his or her thoughts in terms of MYCIN-style rules, it was
impossible to interact with TEIRESIAS.

The second, more abstract approach has been to represent knowledge using a model of a
problem-solving strategy. ROGET (Bennett. 1985), for example, acquires knowledge for
EMYCIN-based systems using a model akin to heuristic classification (Clancey, 1985). By
asking the user what hypotheses are to be considered and what kinds of evidence can
support or refute those hypotheses, the EMYCIN rule-base for a new expert system can be
produced from what is essentially a knowledge-level analysis of the domain. In a similar
fashion, ETS (Boose, 1985) can generate prototype knowledge bases using a weaker model
of classification based on "personal construct theory", a system used by psychometrists for
evaluating how people categorize elements in their environment Because ETS and
ROGET are derived from such general strategic models, the systems are most useful in
eliciting the basic conceptual structure of a knowledge base; neither is intended to generate
production-version expert systems.

A system called SALT (Marcus et al., 1985) models a different problem-solving strategy,
one for constructing solutions. The program is reported to have actually been used by
engineering experts to specify knowledge for configuring elevators in new buildings.
SALT requires a structured language for entry of specific concepts such as methods for
determining values, constraints on values, and corrections for constraint violations. The
system then generates rules in OPS5. Like ROGET, SALT assumes that the user will be
able to conceptualize the solution to the problem in terms of the model provided by the
system. Although it may be easier for a non-programmer to think about strategies rather
than rules, the approach may still require the expert to enter knowledge in an unfamiliar
format

The data model used in OPAL, based on the domain model itself, is perhaps the most
categorical way in which the contents of a knowledge base can be viewed. Unlike previous
knowledge acquisition tools, OPAL's data model is simply one of what knowledge should
be expected. As a result, the user is not given the flexibility found in other systems to
specify new concepts. Novel instantiations of existing concepts can be entered (e.g., a
previously unknown drug can be defined), but the general classes of concepts in OPAL are
predetermined. The domain model, however, is generally sufficient because of the highly
structured, stylized nature of oncology treatment plans.

The limitations in OPAL are the limitations of the domain model. OPAL could obviate
the need for knowledge engineers entirely if the domain model were complete enough. Yet
regardless of the thoroughness with which one can understand the application area at the
knowledge level, it is impossible to anticipate all of the constructs one might encounter in
oncology protocols. Even if one had the necessary prescience, designing acceptable
graphical forms to capture the knowledge for such an all-inclusive model would be
unwieldy. Knowledge acquisition is nevertheless expedited when physicians can use OPAL
for the bulk of the knowledge entry, recognizing that specialized knowledge editing by
computer scientists may often be necessary later. Previous workers have stressed the great
advantages of having preliminary knowledge specification performed by domain experts
working alone (Boose, 1985; Phillips et al., 1985). Our goal in OPAL is to maximize the
knowledge that experts can enter independently by providing a data model that
approximates the way oncologists seem to think about the application area.

OPAL's strategy of providing a model of the domain knowledge to guide the acquisition of
new protocols for ONCOCIN is possible because of the structured nature of cancer
treatment plans. The approach is practical in our setting primarily because encoding
oncology protocols is a repetitive task that can be greatly accelerated when physicians enter
the knowledge themselves. Developing expert systems in other application areas, such as
process control and fault diagnosis for electronic instruments (Phillips et al., 1985),
similarly requires the reiterative specification of knowledge bases that are in many ways
homologous. Tools that allow experts to define new, congenerous knowledge bases in
terms of explicit, knowledge-level models should greatly facilitate creation of expert
systems in these domains.

ACKNOWLEDGEMENTS
This work has been supported by grants LM-04420, LM-07033, RR-01631, and LM-04316
from the National Institutes of Health. Computer facilities were provided by the
SUMEX-AIM resource under NIH grant RR-00785 and through gifts from Xerox
Corporation and Corning Medical. Dr. Musen and Dr. Shortliffe have also received
support from the Henry J. Kaiser Family Foundation. Joan Walton implemented the first
prototype version of OPAL. We thank oncologists Joel Bernstein, Robert Carlson,
Charlotte Jacobs, and Richard Lenon for their evaluations of the developing system. We
are grateful to Michael Kahn, Samson Tu, and Cliff Wulfman for valuable discussions.

REFERENCES
Alexander, J.H., Freiling, MJ., Shulman, S.J., Staley, J.L., Rehfuss, S., and Messick, S.L.

Knowledge level engineering: Ontological analysis, in Proceedings AAAI-86, pages
963-968, American Association for Artificial Intelligence, Philadephia, PA, August,
1986.

Bennett, J.S. ROGET: A knowledge-based system for acquiring the conceptual structure of
a diagnostic expert system. Journal of Automated Reasoning, 1985, I (1), 49-74.

Boose, J.H. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 1985, 23,
495-525.

Clancey, W J. Heuristic Classification. Artificial Intelligence, 1985, 27, 289-350.

Davis, R. Interactive transfer of expertise: Acquisition of new inference rules. Artificial
Intelligence, August 1979, 12(2), 121-157.

de Greef, P. and Breuker, J. A case study in structured knowledge acquisition, in
Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
pages 390-392, Los Angeles, California, August, 1985.

Fox, J., Myers, C.D., Greaves, M.F., and Pegram, S. Knowledge acquisition for expert
systems: Experience in leukemia diagnosis. Methods of Information in Medicine,
April 1985, 24{2), 65-12.

Friedland, P.E. and Iwasaki, Y. The concept and implementation of skeletal plans. Journal
of Automated Reasoning, 1985, 1{2), 161-208.

Hannan, JJ. and Politakis, P. ESSA: An approach to acquiring decision rules for
diagnostic expert systems, in The Second Conference on Artificial Intelligence
Applications, pages 520-525, IEEE Computer Society Press, Miami, FL, December,

1985.

Lane, C.D. Ozone Reference Manual. Technical Report KSL-86-40, Knowledge Systems
Laboratory, Stanford University, 1986.

Marcus, S., McDermott, J., and Wang, T. Knowledge acquisition for constructive systems,
in Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, pages 637-639, August, 1985.

Musen, M.A., Combs, D.M., Walton, J.D., Shortliffe, E.H., and Fagan, L.M. OPAL: Toward
the computer-aided design of oncology advice systems, in Proceedings of the Tenth
Annual Symposium on Computer Applications in Medical Care, Washington, DC,
October, 1986.

Musen, M.A., Rohn, J.A., Fagan, L.M., and Shortliffe, E.H. Knowledge engineering for a
clinical trial advice system: Uncovering errors in protocol specification, in
Proceedings of AAMSI Congress 86, pages 24-27, American Association for Medical
Systems and Informatics, Anaheim, California, May, 1986.

Musen, M.A., Fagan, L.M., and Shortliffe, E.H. Graphical specification of procedural
knowledge for an expert system, in Proceedings of the 1986 IEEE Computer Society
Workshop on Visual Languages, pages 167-178, Dallas, TX, June, 1986.

Newell, A. The knowledge level. Artificial Intelligence, 1982, 18, 87-127.

Phillips, B., Messick, SL., Freiling, M.J., and Alexander, J.H. INKA: The INGLISH
knowledge acquisition interface for electronic instrument troubleshooting systems, in
The Second Conference on Artificial Intelligence Applications, pages 676-681, Miami,
FL, December, 1985.

Shortliffe, E.H., Scott, A.C., Bischoff, M.B., van Melle, W., and Jacobs, C.D. ONCOCIN: An
expert system for oncology protocol management, in Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, pages 876-881, Vancouver,
B.C., August, 1981.

3?>-ll

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Explanation-Based Learning for Knowledge-Based Systems

Michael J. Pazzani
The Aerospace Corporation

P.O.Box 92957
Los Angeles, CA 90009

and
UCLA Artificial Intelligence Laboratory

3531 Boelter Hall
Los Angeles, CA 90024

Abstract

We discuss explanation-based learning for knowledge-based systems. First, we identify
some potential problems with the typical means of acquiring a knowledge base:
interviewing domain experts. Next, we review some examples of knowledge-based
systems which include explanation-cased learning modules and discuss two systems in
detail: ACES (Pazzani, 1986a) which learns heuristics for fault diagnosis from device
descriptions, and OCCAM (Pazzani, 1986b) which learns to predict the outcome of
economic sanction episodes from simple economic theories. We conclude that
explanation-based learning is a promising approach to constructing knowledge-based
systems when the required information is available but not in the form of heuristic rules.
In this case, the role of explanation-based learning is to explicate heuristics which are
only implicit in deep models.

Introduction

The typical image of the development of a knowledge-based system is that a domain expert is
interviewed to explain how he solves a problem in a given area. In the interview, the expert reveals
heuristics which can be encoded as rules in a knowledge-based system. For some applications, there
are a number of potential difficulties with the development of knowledge-based in this manner. Many of
these difficulties could be avoided if the rules for a knowledge-based system could be learned. Potential
problems which must be addressed in the development of knowledge-based systems include:

• Availability of Experts. Domains which are selected for development of knowledge-based
systems are often those domains with few experts. By definition, an expert is someone who
performs extremely well in a problem area. It may be more important for the expert to
continue to solve problems in his area than to devote time to the development of a
knowledge-based system.

• Existence of Experts. In some areas, there may not exist experts with enough experience
to possess the heuristics required by knowledge-based systems. Consider how knowledge
based systems in medicine are developed: typically a physician will report on the symptoms
of various diseases al"!d possibly the certainty of having a disease given a set of symptoms.
This empirical association between symptoms and diseases summarizes knowledge gained
through years of experience. Now, consider if the same methodology could be applied to a
system to diagnose faults in a new satellite. The experts in this case are not really
experienced in diagnosis of this particular satellite. The expert most probably will be

3~-0

someone who is experienced with diagnose of a different satellite, or a designer of the
satellite. lt will be a difficult task for either type of expert to give empirical associations
between atypical behavior and faulty components. This difficulty will be present in any new
system. The problem is especially serious if only a few systems are manufactured. There
may never be enough failures to develop a human expert to "knowledge engineer".

• Experts' ability to report on the processes used In making a decision. A critical
assumption in developing a knowledge-based system by interviewing an expert is that an
expert is able to reveal the heuristics he uses to make decisions. In some areas, such as
vision and natural language understanding, people do not even attempt to explain their
decisions. For example, consider the sentence "Many words have more than one sence".
How did you know the word "sence" is "sense" misspelled and means "meaning" rather than
"capacity to perceive stimuli" or any other meaning? For those who answer the previous
question: were you consciously aware of this when making the decision or are you really
answering the question "How could one (rather than how did I) make the decision"?

Even when an expert is willing to give an explanation for making a decision, can he really tell
us how he made the decision? When a stock broker recommends investing in United
Hotcakes Preferred does he have conscious access to the processes he used to come to the
conclusion that this stock is a good investment? The psychological evidence is mixed. For
example, (Berl et al., 1976) students verbal reports of their decision criteria for deciding on a
college to attend matched well with their apparent actual criteria. However a number of
discrepancies have been found between the information reportedly used to influence a
decision and the information actually used.

• Failure to report an Influential factor. For example, in one experiment (Nisbett and
Wilson, 1977), subjects were given electric shocks of increasing intensity. Some
subjects were given a placebo pill which they were told would produce hand tremors,
butterflies in the stomach (i.e., the symptoms of electric shock). This experiment was
performed to demonstrate that those subjects who attributed the symptoms of the
shock to the pill would tolerate more shock than those who did not. In fact, the subjects
who received the placebo pill withstood an average of four times the amperage of
those who did not. However, 75% of the subjects who received the placebo pill and
tolerated an extreme amount of shock did not report the pill as the explanation.

• Erroneous reporting of noninfluential factors. In one experiment (Nisbett and Ross,
1978), some subjects viewed a film while a power saw made a distracting noise and
the control subjects viewed the film with no distraction. Subjects then rated the film
according to how interesting they thought it to be, how much they thought others would
be affected by it and how sympathetic they found the main character to be. Although
there was no detectable difference of the rating between the two groups, 55% of the
subjects who were distracted by the power saw felt that the distraction had lowered
their ratings.

Ericson and Simon (Ericsson and Simon, 1984) ·have proposed a model which accounts for
some of the conditions which lead to excluding relevant information from protocols as well as
including irrelevant information. At best, however, information arrived at by interviewing
domain experts is only the tip of the iceberg. At worst, this information can be misleading
when the expert is actually answering the questions "How might one solve this sort of
problem?" rather than "How did I solve this problem?".

• Changes In the underlying theory require changes In the knowledge-base. Consider
the problem of several companies which built financial knowledge-based systems. After
spending a considerable amount of time and effort interviewing tax experts, the tax laws
have changed. More interviews with tax experts are now needed to encode the implications
of the new tax code as heuristics which indicate financial strategies. In general, when
changes in the underlying theory occur, the knowledge acquisition process may need to be
repeated to encode changes as new heuristics.

One way to avoid the above potential problems is to eliminate the knowledge engineering's task of
interviewing an expert by having the machine learn its own heuristics. We are exploring this issue in a
number of contexts: ACES (Pazzani, 1986a) which identifies faults in the attitude control system of the
DSCS-111 satellite1 and OCCAM (Pazzani, 1986b) which predicts the outcome of economic sanction
episodes. Both of these programs use explanation-based learning techniques. For example, in ACES,
rather than inducing diagnosis heuristics (i.e., empirical associations between symptoms and device
failures) from a number of training examples (Michie, 1983), diagnosis heuristics are deduced as needed
from device models which describe the system functionality and connectivity.

The idea of explanation-based learning of heuristic rules fits in well with Steels' notion of a Second
Generation Expert Systems (Steels, 1986). For a variety of reasons, including enhanced explanation
capabilities, and robustness, Steels argues that expert systems should contain both "shallow"
associations (i.e., heuristics) which allow for rapid solutions to commonly encountered problems and
"deep" causal models which enable the system to solve uncommon or even unanticipated problems with
general search techniques. An important advantage of second generation expert systems lies in the area
of knowledge acquisition. After searching for a solution to a problem in the deep model, a heuristic can
be created. Explanation-based learning is one such technique for creating heuristics.

Explanation-Based Learning

Let us briefly examine the problem of how explanation-based learning might be used to create heuristics
for financial expert systems. In the proposed new tax law, the interest expense on a home mortgage is
tax deductible, but the interest on an automobile loan is not. A suitable representation of the tax law
would serve as a deep model. Let us assume that the problem that the financial expert system is
intended to solve is to maximize net income. One aspect of maximizing net income is minimizing income
taxes. A general search program, with operators such as take out an automobile loan, and take out a
second mortgage, would find that the taking out a second mortgage on one's home to pay for an
automobile would result in lower income taxes. After, this expensive general search is done once, the
results of the search can be saved as a heuristic:

IF the goa~ is to minimize taxes,
AND the c~ient wants to buy an automobi~e

THEN take out a second mortgage to pay for the car

In addition, the conditions which are necessary to perform the operator (take out a second loan), can be
propagated to the heuristic as additional preconditions (Minton, 1984):

IF the goa~ is to minimize taxes,
AND the c~ient wants to buy an automobile
AND the client owns a home
AND the equity in the home is greater than price of the car

THEN take out a second mortgage to pay for the car

Explanation-based learning systems (DeJong, 1983, Mitchell et al., 1986a) share a common approach to
generalization. First, an example problem· is solved· producing an explanation (occasionally called a
justification, or a proof) which indicates what information (e.g., features of the example and inference
rules) was needed to arrive at a solution. Next, the example is generalized by retaining only those
features of the example which were necessary to produce the explanation. Various systems differ
according to the problem solved, and who does the problem solving. For example, in LEAP (Mitchell et
al., 1986b) a user designs a VLSI circuit to achieve some specified functionality. LEAP produces a
justification which indicates how the circuit implements the specified function. In OCCAM, the reason that
an economic sanctions incident failed or succeeded to achieve the desired effect determines which
features of the incident should be generalized. In ACES, an explanation is produced which indicates why
a fault proposed by a fault diagnosis heuristics was not confirmed by device models.

1The attitude control system is responsible for detecting and correcting deviations from the desired orientation of the satellite.

Fault Diagnosis

Two different approaches have been used for fault diagnosis. In one approach (Davis, 1982,
Genesereth, 1981, Scarf, 1985), the observed functionality of devices are compared to their predicted
functionality which is specified by a quantitative or qualitative model of the device (de Kleer and Brown,
1984, Kuipers, 1984, Forbus, 1984}. For a large system, such as a satellite, with a number of rapidly
changing data values, comparing observed to predicted functionality can be inefficient. The alternative
approach (Shortliffe, 1976, Nelson, 1982, Wagner, 1983) encodes empirical associations between
unusual behavior and faulty components as heuristic rules. This approach requires extensive debugging
of the knowledge base to identify the precise conditions which indicate the presence of a particular fault.
In previous work, (Pazzani and Brindle, 1985, Pazzani and Brindle, 1986) we have described the Attitude
Control Expert System (ACES) in which these two approaches are integrated. Heuristics examine the
atypical features and hypothesize potential faults. Device models confirm or deny hypothesized faults.
Thus, heuristics focus diagnosis by determining which device in a large system might be at fault. Device
models determine if that device is indeed responsible for the atypical features.

Here, we address the problem of revising the fault diagnosis heuristics when they hypothesize a fault
which is later denied. This occurs when all of the possible exceptions to a heuristic are not explicitly
stated. When a fault is proposed, and later denied by device models, the heuristic which suggested the
fault is revised so that the hypothesis will not be proposed in future similar cases.

ACES learns how to avoid a hypothesis failure after just one example. lt does this by finding the most
general reason for the hypothesis failure. Device models provide an explanation for the hypothesis
failure. The device models indicate which features would have been needed to be present (or absent) to
confirm the hypothesis. Explanation-based learning improves the performance of ACES by creating fault
diagnosis heuristics from information implicit in the device models.

Explanation-based Learning of Fault Diagnosis Heuristics
The basic idea behind the learning of fault diagnosis heuristics is that simulating a fault with device
models will result in a number of predictions. If these predictions are not present in a particular system,
the fault which was simulated can be ruled out. When a hypothesizep fault is not confirmed, in addition to
ruling out the fault in the current case, the heuristic which suggested the fault can be revised to not
propose the fault in future similar cases. The top-level diagnosis algorithm is presented in Rgure 1. 2

To diagnose a fau1t in circuit,
First, suggest a fau1t with diagnosis heuristics,
Then confirm (or deny) the fau1t with device mode1s.

diagnose(Circuit,Fau1t) :
prob1em(Fau1t,Ru1e_id),
confir.m(Circuit,Fau1t,Ru1e_id) .

Figure 1: Top level diagnosis algorithm

A simple example of explanation-based learning of diagnosis heuristics should help the presentation of
the learning algorithm. Consider the circuit in Figure 2. The circuit consists of two light bulbs (a parking
light and a taillight) in parallel protected by a fuse.

2This version of ACES is implemented entirely in PROLOG. By providing English descriptions in addition to PROLOG rules, I
hope that anyone will be able to read this section, and that there is enough detail for those who wish to experiment with ACES.

TAILLIGHT

PARKING LIGHT

FUSE

+

Figure 2: A simple circuit consisting of two light bulbs in parallel
protected by a fuse.

ACES utilizes three types of data:

1. Diagnosis Heuristics: shallow associations between atypical data values and faults. Two
simple diagnosis heuristics which define a blown fuse and a burnt out light bulb are
illustrated in Rgure 3. These diagnosis heuristics are interpreted by a PROLOG meta
interpreter. In the second rule, the term,

device_functionality(L,_Any_input,not_working)

gives the modified qualitative functionality for a burnt out light bulb: Given any input, the
light bulb does not work. The normal functionality for a light bulb,

device_functionality(L,_Any_input,_Any_input)

indicates that if the input to a light is working, then the light bulb is working and if the input is
not working, the light bulb will not work.

2. Device Models: a description of the connectivity of a circuit and the functionality of the
components. Rgure 4 illustrates the definition for the circuit in Figure 2.

3. Measurements: Observed data from the device. For this example, let us assume that the
battery is working, the taillight is working and the parking light is not working (see Rgure 5).

IF a device is not working
THEN the fuse of the device's circuit is blown.
sy.mptom(device_functionality(F,_Ahy_input,not_working),rule_OOl) <=

value(D,not_working) &
isa(D,device) &
connected(F,D) &
isa(F,fuse).

IF a light is not working
THEN the light is burnt out.
symptom(device_functionality(L,_Any_input,not_working),rule_002) <=

value(L,not_working) &
isa(L,light).

Figure 3: Initial diagnosis heuristics.

circuit(cl, [battery_l,fuse_l,taillight,parking_light,ground_l]).
connected(battery l,fuse 1).
connected(fuse_l,taillight) .
qonnected(fuse_l,parking_light).
connected(taillight,ground_l).
connected(parking_light,ground_l).
isa(battery l,battery).
isa(ground_l,ground).
isa(fuse l,fuse).
isa(taillight,light).
isa(parking light,light).
isa(light,device).
isa(fuse,device).
device functionality(fuse,Input,Input).
device-functionality(light,Input,Input).

Figure 4: Description of functionality and connectivity for the circuit in Figure 2.

value(taillight,working).
value(parking light,not working).
value(battery-l,working).

Figure 5: Initial data.

34-5

When diagnosis starts the first rule in Rgure 3 (rule_001) will suggest that the fault is a blown fuse
(fuse_1) since a device (parking_light) protected by the fuse is not working. The next step is to confirm or
deny the fault using device models. A qualitative simulation of the circuit with the fuse blown yields a
prediction that the taillight will also not be working. This prediction is denied since the taillight is in fact
working. Therefore, the hypothesis that the fuse is blown can be ruled out. In addition, the rule which
proposed the hypothesis can be revised so that the hypothesis failure does not occur in future similar
cases. (After rule_001 is revised, rule_002 suggests that the bulb of the parking light is burned out. This
fault is confirmed by the device models.) To illustrate how this learning occurs and what exactly is meant
by "similar cases", it is necessary to describe the confirmation process in more detail (see Figure 6).

When the qualitative simulation generates a prediction, it also returns a justification of how the prediction
was arrived at. This justification consists of the conditions which were needed to establish the prediction.
In the current example, the justification consists of the fact that the the taillight is a light, and the taillight is
connected to the fuse (see Figure 7). The justification indicates that no specific knowledge about the
taillight or fuse_1 was needed to make the prediction. The same prediction would be made for any light
which was connected to any blown fuse.

When a prediction fails, the learning process is initiated (Schank, 1982). The fault diagnosis heuristic
which proposed the fault is modified to include a test for the violated prediction in all future cases which
would generate the same prediction for the same reason (i.e, have the same justification). To continue
our example, rule_001 will be modified so that in future cases, to propose a blown fuse, if there is a light
connected to the fuse, the light must not be working. The revised version of rule_001 is shown in Figure
8.

To confi~ a fault:
First generate a prediction,
Next see if the prediction is false
If the prediction is false,

revise the rule which generated the prediction
and rule out the fault
(otherwise, try to generate a new prediction)

Succeed when there are no more predictions are generated.

confi~(Circuit,Fault,Rule_id) :
prediction(Circuit,Fault,Prediction,Justification),
denied(Prediction)
fix_rule_failure(Rule_id,Fault,Prediction,Justification)
I . ,
fail.

confi~(_,_,_).

Figure 6: Confirmation: a failed prediction initiates the learning process.

fault: device_functionality(fuse_l,_Any_input,not_working)
prediction: value(taillight,not working)
from database: value(taillight,working)
justification: connected(fuse_l,taillight) & isa(taillight,light)

Figure 7: Violated prediction of a blown fuse and it's justification.

sy.mptom(device_functionality(F,_Any_input,not_working),rule_OOl) <=
value(D,not_working) &
isa(D,device) &
connected (F, D) . &

is a (F, fuse) &

if connected(F,V037) ~ isa(V037,1ight) ~ ~ \ V037
then value(V037,not working)
else true.

Figure 8: Revised heuristic which proposes a blown fuse- changes underlined.

A Definition of Learning Diagnosis Heuristics
More formally, a diagnosis heuristic can viewed as the implication:

F and conslstent{H) ~ H

where F is a set of features, H is a hypothesis, and consistent{H) is true if believing H does not result in
a contradiction.3 In the previous example, H corresponds to:

device_functiona1ity(fuse_l,_Any_input,not_working)

and F corresponds to:

value(D,npt_working) &
isa(D,device) &
connected(F,D) &
isa(F,fuse).

In our approach to learning and fault diagnosis, consistent{H) is the hypothesis confirmation process
which makes use of information in device models. The confirmation process can be viewed as the
following implications:

H~MH

J 1 and MH ~ P1
J 1and MH ~ P1
Jn and MH ~ Pn

where MH is a new device model which is the same as the correct (or current) model except that one
device (the broken one) has a different functionality. This new device model has a number of predictions
P1 which are checked for consistency with the observed functionality of the device. In general, the
predictions P1 of a modified device model MH only hold under certain conditions J 1•

If in a particular example, F is true, but conslstent(H) is false because not(P1) is true, then the diagnosis

heuristic can revised to4 :

F and J1 and P1 and conslstent(H) ~ H
F and not(J1) and consistent{H) ~ H

In the previous example J1 is:

connected(F,V037) & isa(V037,1ight)

and P1 is:

va1ue(V037,not_working).

The point of revising diagnosis heuristics is that it is less expensive computationally to rule out a
hypothesis by testing for P1 than proving consistent(H). In the above example, after rule_001 is
modified, only one fault hypothesis rather than two are required to correctly identify the failure as a blown
light bulb for the parking light. The number of logical inferences required drops from 451 to 305.

3See (Chamiak et al., 1980), for a more thorough discussion of "consistent".

4We use the equivalent if-then-else construct to avoid proving J1 again.

Learning Heuristics to Diagnosis Attitude Control Anomalies
Explanation-based learning has proved useful in satellite diagnosis. Figure 9 presents the definition of
two fault diagnosis rules. The rules in this version of ACES have a LISP-like syntax since the satellite
diagnosis system is written in a version of PROLOG implemented in LISP. The first element of a list is
the predicate name. Variables are preceded by "?". The part of the rule preceded by ":-" is a fault
hypothesis, and the part of the rule after ":-" is the conditions which are necessary to be proved to
propose the hypothesis. These rules implement two very crude diagnosis heuristics: "if the speed of a
reaction wheel is 0, then the tachometer is broken" and "if the speed of a reaction wheel is 0, then the
wheel drive is broken".

l: (problem (problem wheel-tach ?from
(broken-wheel-tach ?wheel ?from))) ·

;there is a tachometer stuck at 0
(feature(value-violation ?sig ?from ?until 0))
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
;if the speed of a wheel is 0

2: (problem (problem wheel-drive ?from
(broken-wheel-drive ?wheel ?from ?sig))) :

;there is a wheel drive motor not responding to the drive signal
(feature(value-violation ?sig ?from ?until 0))
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
;if the speed of a wheel is 0

Figure 9: Initial Fault Diagnosis Heuristics.

Some information about the attitude control system should help to follow the example. The attitude
control system consists of a number of sensors which indicate the attitude (i.e., the orientation) of the
satellite by the position of the sun and the earth. In addition, there are a set of four reaction wheels
whose speed can be varied to adjust the momentum (and therefore the attitude) of the satellite. The
speed .of the reaction wheels as measured by a number of tachometers is also used as an estimate of
attitude to provide finer control of the attitude.

In this example, five atypical features are detected:

1. (value-violation WSPR+ 9:40 15:00 0): The value of the pitch-roll+ wheel speed is o from
9:40 until the end of the sample period at 15:00.

2. (rate-violation WSPR+ 8:00 9:40 -200 0): The value of the pitch-roll+ wheel speed changed
an atypical amount (from -200 to 0) between 8:00 and 9:40.

3. (rate-violation WSPR- 8:00 9:40 -300 -100): The value of the pitch-roll+ wheel speed
changed an atypical amount (from -300 to 1 00) between 8:00 and 9:40.

4. (rate-violation WSPY+ 8:00 9:40 -200 -400): 'The value of the pitch-yaw+ wheel speed
changed an atypical amount (from -200 to -400) between 8:00 and 9:40.

5. (rate-violation WSPY- 8:00 9:40 -100 -300): The value of the pitch-yaw- wheel speed
changed an atypical amount (from -100 to -300) between 8:00 and 9:40.

The first rule in Figure 9 suggests that the cause of the value violation is a broken tachometer of the
pitch-yaw+ wheel. Next, the device models of the tachometer and the attitude control system confirm or
deny this hypothesis. If the tachometer were stuck at 0, the attitude control system would react by
adjusting the speeds of the other wheels to compensate for the perceived loss of momentum. However,
since the wheel speed is not actually 0, the attitude control system would not have a correct estimate of
the momentum. Changing the speed of the other wheels would result in dist1.1rbing the attitude of the
satellite. Therefore, the hypothesis that the tachometer is faulty is denied and the heuristic which

suggested the hypothesis is modified to prevent suggesting the hypothesis in future similar cases. The
conditions which were necessary to explain why the hypothesis failed are exactly those which should be
added to the heuristic to avoid a hypothesis failure in similar cases. In this example, the heuristic is
modified to test that the attitude is disturbed before postulating a faulty tachometer. Figure 10 contains
the modified heuristic.

(prob~em (prob~em whee~-tach ?from
(broken-whee~-tach ?whee~ ?from))) :

(feature (va~ue-vio~ation ?sig-31 ?from-32 ?end-33 ?va~ue-34))
(isa ?sig-31 attitude-signa~)
;make ~ the attitude has been disturbed
(feature(va~ue-vio~ation ?sig ?from ?unti~ 0))
(after ?from-32 ?from)
;make ~ the attitude disturbance is after the value violation
(measurement ?s~g ?whee~ speed ?tach)
(isa ?whee~ reaction-wheel)

Figure 10: Revised Faulty Tachometer Heuristic- changes underlined.

The primary difference between explanation-based learning and inductive learning is how the class of
"similar" failures is discovered. The goal is to define those failures which have a wheel speed of 0 but are
not a broken tachometer. In explanation-based learning, this class is found to be those failures which do
not have an attitude disturbance after the wheel speed reaches 0. This conclusion is deduced from a
model of the connectivity and functionality of the components of the satellite. In contrast, in inductive
learning, this class would be arrived at by correlating features of a number of positive and negative
training examples. Since the satellite has over 300 signals in the attitude control system alone which are
sampled every second, the time and space demands of correlating these features may make inductive
learning impractical.

(After the tachometer rule is revised, ACES correctly identifies the fault to be in the wheel drive motor.
The second rule in Figure 9 suggests that the pitch-roll+ wheel drive motor is not responding to its drive
signal. The device model confirms this fault. This fault accounts for the pitch-roll+ wheel speed going
from -200 to 0 as the results of friction. The speed of the other three wheels are automatically adjusted
by the attitude control system to conserve the momentum. This occurs without any disturbance of the
attitude.)

Results
There are two standards for evaluating the effects of learning in ACES. First, there is the performance of
ACES using the rules in Figure 9. We call this version naive-ACES. Additionally, there is the
performance of ACES using rules hand-coded from information provided by an expert. We call this
version of the system expert-ACES.

The data in Figure 11 demonstrate that the learning technique presented in this paper improves the
simple fault diagnosis heuristics to the extent that the performance of ACES using the learned heuristics
is comparable to the system using the rules provided by an expert. In one case, the performance of the
learned rules is even better than the expert provided rules.

CASE fault naive-ACES naive-ACES expert-ACES
after learning

1 tachometer 21 1 1
2 whee~ drive-l 4 1 2
3 whee~ un~oad 1 1 1
4 whee~ drive-2 2 1 1

Figure 11: Number of Fault Hypotheses.

Economic Sanctions

Our objective in constructing OCCAM is to build an knowledge-based system which predicts the outcome
of applying economic sanctions. However, instead of heuristics rules, OCCAM relies on a memory of
generalizations built when analyzing the outcome of previous incidents. OCCAM starts with general
knowledge about coercion, and domain knowledge about political and economic relationships. OCCAM
builds specializations of coercion which represent such events as blackmail, kidnapping5 and economics
sanctions. These specializations serve as schemata6 which allow OCCAM to easily make a prediction
when a situation is recognized as similar to previous situations (Schank, 1982). For example, consider
answering the following question:

What might happen if the United States refuses to sell computer equipment to South Korea
unless South Korea improves its record on human rights?

An expert on economic sanctions or someone familiar with this sort of incident might reply:

South Korea will probably buy computers from some other country such as Japan in the same
manner that the USSR imported grain from Argentina when the US refused to sell grain to the
USSR.

On the other hand, someone with no knowledge of previous incidents might arrive at a similar conclusion
through a long inference chain: South Korea will have an increased demand for computers; South Korea
would be willing to pay a higher price for co~puters; There are several countries which export computers;
South Korea may buy the computers from one of them. In OCCAM, this sort of reasoning is done when a
new event is added to memory, saved as a new schema and relied on to answer questions. For example,
OCCAM should generate an answer to the South Korea question by accessing a generalization which
represents those economic sanction incidents which have failed because the threat was to refuse to sell a
product which was easily obtainable elsewhere. A primary question then is how should a schema be
generalized from examples of economic sanctions. How can one determine which features of an
economic sanctions incident are useful predictors of the outcome?

One way to determine which features are predictive is to use a similarity-based learning mechanism
(Lebowitz, 1980) to determine which features are always present for each outcome. The problem with
this approach is that when there are a large number of features, it requires a large number of examples to
distinguish those similarities which are coincidental from those which are relevant. For example, consider
the following two kidnapping examples:

Kidnapplng-1

John was abducted. His father, a wealthy, fair skinned man, received a note which stated
John would be killed unless he paid a $100,000 ransom.

Kldnapping-2

Mary was abducted. Her mother, a wealthy, fair skinned woman, received a note which
stated Mary would be killed unless she paid a $50,000 ransom.

There are a numbe~ of similarities between these two kidnappings. In both instances, the parent who
received the ransom note is wealthy and has fair skin. lt is relevant that the ransom note be sent to a
parent rather than just any person, since parents have a goal of preserving the health of their children. lt
is relevant that the parent is wealthy, since wealthy persons have the ability to pay the ransom. However,
it is just a coincidence that the parents in these two kidnappings have fair skin.

The distinction between relevant and coincidentally similar features is important in making inferences and
predictions. For example, if the only examples of kidnapping encountered are Kidnapping-1 and
Kidnapping-2 and an intelligent person hears about another kidnapping he might want to infer that the

51n the kidnapping domain, the domain knowledge includes interpersonal relationships (Pazzani, 1985).

60CCAM's schemata can be thought of as a special type of chunk (Laird et al., 1984, Larkin et al., 1980) which record causal and
motivational information for events.

parent of the hostage is wealthy. On the other hand, he would not want to infer that the parent has fair
skin. Similarly, if presented with a new kidnapping case where the parent has fair skin but is not wealthy,
an intelligent person would not want to predict that the ransom would be paid. To avoid making
erroneous inferences, a schema should not include all features which are common to all experienced
events.

One way to avoid the problem of coincidentally similar features is to have an a priori set of features which
are relevant (Kolodner, 1984). However, in general, the relevance of features is dependent on the type of
event Consider the following examples:

Cancer-1

John, a wealthy, fair skinned man, was advised by his doctor to wear a 15 SPF sunscreen at
the beach.

Cancer-2

Mary, a wealthy, fair skinned woman, was advised by her doctor to wear a 15 SPF sunscreen
at the beach. · ·

In these examples, fair skinned would be considered relevant since fair skinned persons are more prone
to skin cancer. The fact that Mary and John are both wealthy is incidental. These examples illustrate that
the relevance of feature is not absolute. A key task for a learner, either human or computer, is identifying
which features of a particular event should be expected to appear in future events.

When a proper domain theory exists, explanation-based learning offers a solution to the problem of
identifying relevant features. lt can determine the relevant features from analyzing only one example.
The relevant features are precisely those features which enable the causal and intentional relationships to
be inferred. The explanation-based learning approach used in OCCAM is very similar to that used by
ACES. An explanation is constructed which explains why a certain event occurs. For OCCAM, the
explanation indicates why an economic sanctions incident succeed or failed. In ACES, the explanation
indicates why a hypothesized fault has been ruled out. The explanation is generalized by retaining only
those parts of the example which were needed to produce the explanation. The generalized example and
the explanation are saved so that a single step (or chunk) can be substituted for a longer inference chain.

For some problems, it is important that a schema be created to avoid extremely complex searches. One
situation in which this occurs is when the motivation for a particular course of action is to avoid a potential
goal failure. lt is difficult, if not impossible to determine why the action was decided upon without knowing
about the potential failure. For example, OCCAM notices a similarity between a number of kidnappings
whose victims are all infants with blond hair. However, it is not capable of finding an explanation for this
similarity until it finds a kidnapping case in which there is a goal failure when the victim was not an infant.
After the ransom was paid, the victim was able to give people evidence which led to the arrest and
conviction of the kidnapper (which is, of course, a goal failure for the kidnapper.) With this new
information, an explanation for the kidnapping of infants is found to be avoiding this goal failure since
infants cannot give police evidence nor testify.

In the next section we give an example of OCCAM creating a schema with explanation-based learning. In
addition to the explanation-based learning module, OCCAM consists of a memory indexing scheme which
enables appropriate examples and generalization to be found in memory, and a similarity-based learning
mechanism which can learn some of the domain theories used by the explanation-based learning system.
The interested reader is referred to (Pazzani, 1986b) and (Pazzani, 1985). Here, we concentrate on only
the explanation-based learning module.

. ~-L.l

Economic Sanctions: An Example ·
Consider the following example of economic sanctions:

Economic-Sanctlons-1

In 1983, Australia refused to sell uranium to France unless France ceased nuclear testing in
the South Pacific. France paid a higher price ($300,000,000) to buy 1500 tons of uranium from
South Africa.

What lesson should be learned from Economic-Sanctions-1? That economic sanctions never achieve
their desired goal? This conclusion would be overly general. That economic sanctions never work
against countries that exports wine? This conclusion would be wrong. That economic sanctions won't
work when Australia refuses to sell a country a commodity which is sold by South Africa. This is close to
being true, but is probably too specific to apply to many future cases. The problem here is to identify
which features of Australia, South Africa, France, and uranium as well as the features of demand (to stop
nuclear testing in the South Pacific) and the threat (to not sell uranium) were necessary to explain why
Australia did not achieve its goal. To get an idea of the magnitude of the problem consider the
representation of Economic-Sanctions-1 which is used in OCCAM (see Rgure 12).

In Rgure 12, the Conceptual Dependency representation of Economic-Sanctions-1 is displayed. The top
level concept is coerce. In addition to economic sanctions, coerce underlies the representation of
blackmail and kidnapping. coerce has a number of roles: an actor who performs the coercion; a
target which is the victim of the coercion; an object which is the focus of the coercion (in kidnapping,
the object is typically a relative of the target, in economic sanctions, the object is usually a
commodity); a demand which is an action the actor wants the target to perform; a threat which the
actor will perform if the target doesn't meet the demand; a response which the target performs
in response to the threat; and a result which is the outcome of the coercion. In Figure 12, the
notation (*role* target) indicates that this component is identical to the target of the coerce.

The information in OCCAM's representation about individual countries is derived from the World Almanac.
For example, for South Africa, which is the actor of the response, the language is English, the location
is the southern hemisphere, it has a business relationship with the US, Japan, Australia (the actor), and
France (the target), the continent is Africa, it exports uranium {the object), gold, chromium and
diamonds and it imports oil. In general, the approach in OCCAM has been to provide as many features of
each action and entity as possible. In fact, some features which OCCAM uses, such as the business
relationships of France and Australia were not included in Figure 12 because they would not fit in the
figure. It is an important part of the generalization process to determine which of the features should be
included in a generalization

When generalizing Economic-Sanctions-1, some features of entities such as South Africa are relevant,
other's aren't. lt is the simple economic theories used by OCCAM which indicate the relevancy of
features. Only those features which are needed to establish an explanation of why France was able to
buy uranium from South Africa are considered relevant. A closer examination of the generalization
procedure in OCCAM should help clarify how relevancy is determined.

The first step in generalizing is deciding if.an event should be generalized at all. There are a number of
criteria to determine if a single event is worth generalizing. DeJong (DeJong, 1983) gives a number of
criteria to determine if a single event is worth generalizing {e.g., does the event achieve a goal in a novel
manner). In this case, let's assume that there are no previous examples of economic sanctions in
memory so when Economic-Sanctions-1 is encountered, a goal has failed in a novel manner. This goal
failure initiates the explanation and generalization · process. The goal failure for Australia was
accomplished when France purchased uranium from South Africa. The explanation process tries to
determine why France was able purchase the uranium. The rules in Figure 13 are used by OCCAM to
create an explanation how France was able to purchase the uranium causing a goal failure for Australia.

34-12

(eoarc::a object (c::ommodi.ty type (uranium)
amount (weight number (1500)

unit (tons)))
ac::~or (country name (australia)

J.anguage (english)
location (southern-hemisphere)
government (parliamentary)
continent (australia)
exports (*set* (commodity type (wool))

(*role* object)
(c::ommodi.ty type (di.amond)))

imports (*set* oil))
target (country name (franc::e)

language (french)
government (republic::)
continent (europe)
location (northern-hemisphere)
imports (*set* (*role* object)

(c::ommodi.ty type (oil)))
exports (*sat* (c::ommodi.ty type (wine))

(c::ommodi.ty type (cheese))))
demand (act type (explode)

actor (*role* target)
object (weapons type (nuclear))
location (southern-hemisphere)
mode (nag))

threat (act type (sell)
actor (*role* actor)
object (*role* object)
to (*role* target)
mode (neg))

response (act type (sell)
actor (country name (south-afric::a)

language (english)
location (southern-hemisphere)
business-relationship
(*set* (country name (us))

(country name (japan))
(*role* actor)
(*role* target)
(country name (uk)))

government (parliamentary)
continent (afric::a)
exports
(*set* (*role* object)

(commodity type (gold))
(commodity type (chromium))
(commodity type (di.amond)))

imports (*sat* (oil)))
object (*role* object)
price (money dollars (300000000)

value ·(>market))
to (*role* target))

result (state type (possess)
actor (*role* target)
value (yes)
object (*role* object)))

Figure 12: Conceptual Dependency representation of Economic-Sanctions-1,

34-\3

(def-rule refuse-to-sell->demand-increase
(act type (sell)

result

actor (country exports ?y)
TO ?x
object ?y
mode (neg))

(state type (demand-increase)
actor ?x
value (yes)
object ?y))

(def-rule demand-increase->price-increase

enables

(state type (demand-increase)
value (yes)
actor ?x
object ?y)

(act type (sell)
actor (country exports ?y

business-relationship ?x)

to ?x
object ?y
price (money value (>market))
mode (yes)))

(def-rule sell->possess

result

(act type (sell)
to ?x
object ?y
mode (yes))

(state type (possess)
object ?y
value (yes)
actor ?x))

Figure 13: OCCAM's economic rules.

The first rule in Figure 13 indicates that the result of Australia refusing to sell uranium to France is that
France will have an increased demand for uranium. The second rule allows OCCAM to infer that the
increased demand for uranium will enable a country that exports uranium and has a business relationship
with France (i.e., South Africa) to sell France the uranium at a price greater than the market price. Finally,
the third rule indicates that selling the uranium to France will result in France having the uranium. The
components of the representation of Economic-Sanctions-1 which correspond to the components of the
rules will be included in the generalization of Economic-Sanctions-1. Everything else is irrelevant and will
be discarded. The generalization produced by OCCAM is illustrated in Rgure 14.

The generalization in Figure 14 indicates that if a country that exports a commodity tries to coerce a
country which imports the object by refusing to sell them the commodity, then a response might be to buy
the commodity at a higher price from another country. Although this seems like a simple conclusion,
there are many examples where economic sanctions have failed for this reason (Hufbauer and Schott,
1985) (e.g., in 1961, the USSR refused to sell grain to Albania, who purchased it instead from China, in
1980, the US refused to sell grain to the USSR who purchased it instead from Argentina, and in 1981, the
US refused to sell pipeline equipment to the USSR who purchased it instead from France).

A similar conclusion about the effectiveness of sanctions was arrived at by lan Smith, the former Prime
Minister of Rhodesia which was the target of a decade of economic sanctions following it's indepedence

(coerce result (state type (possess)
actor (*role* target)
object (*role* object)
value (yes))

response (act type (sell)
actor (country exports (*role* object)

business-relationship
(*role* target))

object (*role* object)
to (*role* target)
price (money value (>market)))

threat (act type (sell)
actor (*role* actor)
object (*role* object)
mode (neg))

target (country imports (*role* object))
object (commodity)
actor (country exports {*role* object)))

Figure 14: Generalization of Economic-Sanctions-1 produced by OCCAM.

from Great Britian (cited in (Renwick, 1981)):

We find that we are compelled to export at discount and import at a premium.

lt is interesting to note which features of South Africa were generalized. In Figure 14, the only features of
the actor of the response are that it exports the object and it has a business relationship with the
target. Notice that in the individual episode in Figure 12, the fact that South Africa has a business
relationship with the actor was also included. However, this feature was not necessary to produce the
explanation, so it is not included in the generalization. The features of South Africa which were included
are those that matched against the features of the second rule in Figure 13.

The generalizations produced by OCCAM serve as a means of recognizing when economic sanctions will
fail or succeed at achieving the desired goal. These generalizations summarize a inference chain by
retaining only those surface features of an example which were required to establish an explanation for
the outcome using simple economic theories.

Conclusion

We have demonstrated that explanation-based learning is a viable technique for obtaining expert-like
performance in an knowledge-based system. Explanation-based learning can be used in knowledge
based systems where the heuristics to be learned are implicit in a different representation of the same
knowledge. For example, in fault diagnosis, device models are a natural way of expressing the
functionality of a component. However, they are not the most natural or efficient representation for
diagnosis (Sembugamoorthy arid Chandraskaran, 1985). The ACES system explicates associations
between failures and atypical behavior which are implicit in device models. In OCCAM, explanation
based learning creates schema which recognize when economic sanctions will fail or succeed at
achieving the desired goal. This schemata explicate the implications of simple economic theories such as
supply and demand on economic sanctions incidents.

Acknowledgements

The research on ACES was supported by the Aerospace Sponsored Research Program. The research
on OCCAM was supported in part by the UCLA-RAND Artificial Intelligence Fellowship. Carl Kesselman
implemented the PROLOG mete-interpreter and commented on an earlier draft of this paper.

References

Berl, J., Lewis, G. and Morrison, R. Applying Models of Choice to the Problem of College Selection. In
Carroll, J. and Payne, J. (Ed.), Cognition and Social Behavior. Hillsdale, NJ: Erlbaum, 1976.

Charniak, E., Riesbeck, C. and McDermott, D. Artificial Intelligence Programming. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1980.

Davis, R., Shrobe, H., et al. Diagnosis Based on Description of Structure and Function. In Proceedings
of the National Conference on Artificial Intelligence. Pittsburgh, PA: American Association for
Artificial Intelligence, 1982.

de Kleer, J. and Brown, J. A Qualitative Physics Based on Confluences. Artificial Intelligence, 1984, Vol.
24(1).

D~Jong, G. Acquiring Schemata Through Understanding and Generalizing Plans. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence. Karlsruhe, West Germany: , 1983.

Ericsson, K and Simon, H. Protocol Analysis: Verbal Reports as Data. MIT Press, 1984.

Forbus, K. Qualitative Process Theory. Artificial Intelligence, 1984, Vol. 24(1).

Genesereth, M., Bennett, J.S., Hollander, C.R. DART: Expert Systems for Automated Computer Fault
Diagnosis. In Proceedings of the Annual Conference. Baltimore, MD.: Association for Computing
Machinery, 1981.

Hufbauer, G.C., and Schott, J.J. Economic Sanctions Reconsiderd: History and Current Policy.
Washington, D.C.: Institute For International Economics, 1985.

Kolodner, J. Retrieval and Organizational Strategies in Conceptual Memory: A Computer Model.
Hillsdale, NJ.: Lawrence Erlbaum Associates, 1984.

Kuipers, B. Commonsense Reasoning about Causality: Deriving Behavior from Structure. Artificial
Intelligence, 1984, Vol. 24(1).

Laird, J., Rosenbloom, P., and Newel!, A. Towards Chunking as a General Learning Mechanism. In
Proceedings of the National Conference on Artificial Intelligence. Austin, Texas: American
Association for Artificial Intelligence, 1984.

Larkin, J., McDermott, J., Simon, D., and Simon, H. Expert and Novice Performance in Solving Physics
Problems. Science, 1980, 208, 1335-1342.

Lebowitz, M. Generalization and Memory in an Integrated Understanding System (Computer Science
Research Report 186). Yale University, 1980.

Michie, D. Inductive Rule Generation in the Context of the Fifth Generation. In Proceedings of the
International Machine Learning Workshop. Monticello, Illinois: , 1983.

Minton, S. Constraint-based Generalization: Learning Game-Playing Plans from Single Examples. In
Proceedings of the National Conference on Artificial Intelligence. Austin, TX: AAA I, 1984.

Mitchell, T., Kedar-Cabelli, S. and Keller, R. A Unifying Framework for Explanation-based Learning.
Machine Learning, 1986, Vol. 1(1).

Mitchell, T., Mahadevan, S., and Steinberg, L. LEAP: A Learning Apprentice for VLSI Design. In
International Meeting on Advances in Learning. Les Arc, France: , 1986.

Nelson, W.R. REACTOR: An Expert System for Diagnosis and Treatment of Nuclear Reactor Accidents.
In Proceedings of the National Conference on Artificial Intelligence. Pittsburgh, PA: AAAI, 1982.

Nisbett, Richard and Ross, Lee. Human Inference: Strategies and Shortcomings of Social Judgements.
Engelwood Cliffs, NJ: Prentiss-Hall, Inc., 1978.

Nisbett, R., and Wilson, T. Telling More Than We Can Know: Verbal Reports on Mental Processes.
Psychological Review, 1977, Vol. 84(3).

Pazzani, Michael. Explanation and Generalization-based Memory. In Proceedings of the Seventh
Annual Conference of the Cognitive Science Society. lrvine, CA: Cognitive Science Society,
1985.

Pazzani, M. Refining the Knowledge Base of a Diagnostic Expert System: An Application of Failure
Driven Learning. In Proceedings of the National Conference on Artificial Intelligence. American
Association for Artificial Intelligence, 1986.

Pazzani, M., Dyer, M. and Flowers, M. The Role of Prior Causal Theories In Generalization. In
Proceedings of the National Conference on Artificial Intelligence. American Association for Artificial
Intelligence, 1986.

Pazzani, M. and Brindle, A. An Expert System for Satellite Control. In Proceedings of /TC!USA/85, the
International Telemetering Conference. Las Vegas, NV: International Foundation for
Telemetering, 1985.

Pazzani, M. and Brindle, A. Automated Diagnosis of Attitude Control Anomalies. In Proceedings of the
Annual AAS Guidance and Control Conference. Keystone, CO: American Astronautical Society,
1986.

Renwick, Robin. Economic Sanctions. Centerfor International Affairs, Harvard University, 1981.

Scarl, E.A., Jamieson, J., and Delaune, C. A Fault Detection and Isolation Method Applied to Liquid
Oxygen Loading for the Space Shuttle. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence. Los Angeles, CA: , 1985.

Schank, R. Dynamic Memory: A Theory of Reminding and Learning in Computers and People.
Cambridge University Press, 1982.

Sembugamoorthy, V. and Chandraskaran, B. Functional Representation of Devices and Compilation of
Diagnostic Problem Solving Systems (Tech. Rep.). Ohio State University, March 1985.

Shortliffe, E.H. Computer-based Medical Consultation: MYCIN. New York, NY: American Elsevier, 1976.

Steels, Luc and Van de Velde, Waiter. Learning in Second Generation Expert Systems. In J.S. Kowalik
(Ed.), Knowledge-Based Problem Solving. Engelwood Cliffs, NJ: Prentiss-Hall, Inc., 1986.

Wagner, R.E. Expert System for Spacecraft Command and Control. In Computers in Aerospace IV
Conference. Hartford, CT: American Institute of Aeronautics and Astronautics, 1983.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

ANALYSIS OF THE PERFORMANCE OF A
GENETIC ALGORITHM-BASED SYSTEM FOR

MESSAGE CLASSIFICATION IN NOISY ENVIRONMENTS

Elaine J. Pettit
Merit Technology, Inc.
~7770 Preston Road
Dallas, TX 75252

ABSTRACT

Michael J. Pettit
Dept. of Computer Science
Univ. of Texas at Dallas
Richardson, TX 75083

The process of knowledge acquisition must occur continually in
those knowledge-based systems which must operate in noisy, con
textually rich environments. One very important application
with this requirement involves the inferring of the occurrence
of events which cannot be exhaustively predefined from variably
noisy sensor messages. Our paper describes on-going basic re
search for construction of an adaptive system which can per
form high-level, rapid classification of sensor messages, pos
sibly very noisy, concerning objects in its environment. The
paper concentrates on experiments to determine optimal para
meters for this hi-level, genetic algorithm-based system in low,
medium, and high noise environments.

I INTRODUCTION AND MOTIVATION

One of the most stubborn areas of knowledge acquisition for
knowledge-based systems has been the construction of a system
which can acquire knowledge during its field operation. This is
particularly true of many military applications in environments
which preclude the umbilical cord to the knowledge engineer that
most knowledge-based systems require. Many of these applica
tions involve the encoding and classification of messages (from
sensors, intelligence, or direct observation) which a human
analyst must integrate and then attempt from this fused informa
tion to infer the tactics of his adversary. Variations of this
process are known as situation assessment, threat assessment,
information fusion, and tactics analysis.

There are at least two roles which machine learning may play in
such knowledge-based systems: 1) knowledge acquisition in the
building stages of the knowledge-based system (ab initio
knowledge acquisition), and 2) knowledge acquisition in the op
erational system (in situ knowledge acquisition) • The first has
received considerable attention since the popularization of ex
pert systems has underscored the problems, both in time and
quality, of getting information from experts into the system.
In many ways, however, the solution of this problem is of con-

55-0

siderably less benefit over the long term than successfully im
plementing in situ knowledge acquisition. Although ·the
verification of the completeness and consistency of the initial
knowledge base is vital to knowledge-based systems, there is no
escaping the fact that everything a system will eventually en
counter cannot be foreseen at the time of its creation. Without
the capacity to deal with unknown situations, and even more im
portantly, to sieve meaningful information in the presence of
noise, a real-world knowledge-based system will show sharp
degradation under these conditions. This phenomenon of system
brittleness is well-recognized in expert system technology and
has been described as "falling off the knowledge cliff"
(Feigenbaum as cited in Michalski,l986). Although the use of
pre-defined generic scenarios can be useful here, without the
ability to extend and refine those scenarios beyond simple in
stantiation the system will not be able to offer assistance when
the need is most critical: when unanticipated obstacles, in
operative equipment, contradictory information, and loss of ac
·tive personnel combine to present scenarios that are outside the
scope of those originally envisioned. Even for routine military
or civilian missions, the more closely the system knowledge
resembles the real world, the more timely and reliable its ad
vice will be.

There exist some heuristics learning systems which could possib
ly, with modification, exhibit on-site adaptability. However,
for situation assessment problems, satisfaction of the require
ment for adaptability alone is insufficient: noise immunity is
critical. The process of inferring the occurrence of events
from messages produced by sensors and other sources is subject
to noise from two sources: 1) noise in the attributes of the
patterns reported by a given sensor (a characterization
problem); and 2) noise, due to the asynchronous nature of mes
sage traffic, in the number of patterns reported by sensors in a
given time step (a fusion problem). Thus, an automated system
for classifying these messages into meaningful events must
remain immune to noise at two levels of a classification
hierarchy: the message level and the event level. It must first
be able to characterize accurately an event as it is occurring;
secondly, it must be able to distinguish between noise-induced
variations of an ongoing event versus transition to a new event
state. The problem is one of both knowledge representation and
knowledge utilization, as described in Section II, "Related
Work".

To address the above issues, we are currently researching a
hybrid methodology for knowledge representation and operation
built upon genetic algorithms (Holland,l975) and conceptual
clustering (Michalski and Stepp,l983). Conceptual clustering
provides a means for representing and operating upon knowledge

so that synergistic properties are expressible and a spectrum of
deviations are tolerated. Genetic algorithms provide a strategy
for highly effective pseudo-parallel search of feature hyper
space with noncommensurate, ill-behaved optimization criteria.
As an initial step, we have implemented a genetic algorithm
based message classification system to explore how well it
resolves the following issues:

l) How sensitive is it to managing noise in a stable en
vironment versus recognizing when transition to a new en
vironment has occurred? At what point do we alter not
only the low-level message input classifiers but also the
higher level "conceptual classifiers" that aggregate
these messages into meaningful categories? (To what de
gree and in what functions should incremental learning
occur and when should it be postponed?)

2) Assuming a bi-level system architecture driven by ge
netic algorithms and operating with limited resources,
should the rate of change in event recognition clas
sifiers lag considerably behind that of message clas
sifiers or vice versa? Increasing the rate of adaptation
of message classifiers would allow recognition over noise
at the cost of nonconvergent event classification at
first: increasing the rate of adaptation of event clas
sifiers would allow consideration of all possible inter
pretations quickly but with a loss of accuracy. At what
point is there a tradeoff?

Concommitant with the resolution of these application issues was
the need to extend, with sound theoretical underpinnings, the
basis of the genetic algorithms themselves to meet certain imple
mentation requirements. Primary among these was the need to
define composite, variable length classifiers (to represent the
event classifiers) and genetic operators and performance measures
appropriate to these kinds of classifiers. There was a secondary
need to devise a means of handling several different ongoing pat
terns (each of the noisy messages) in the message classifier popu
lation.

Because the research base of using genetic algorithms in
stochastic environments is very sparse, we have concentrated in
this paper on the definition and development of a scientific
framework for empirically testing with appropriate statistical
measures the behavior of various models postulated to meet the
above requirements. We have begun our investigation with a "worst
case" scenario: noise induction is random, adaptation cycles are
below empirically derived "good" limits, and we use "offline per
formance" (described in Section III) which is the least dis
criminating (between control and experimental performance) but

3s-l

probably the most realistic measure of algorithm performance in
this task domain. We feel those strengths that manifest them
selves under these conditions will provide the most fruitful areas
of future research. We present our framework, including details
of our data generation and analysis, and our research findings to
date concerning the efficacy of genetic algorithms in noisy mes
sage classification.

II RELATED WORX

There are currently two primary approaches to dealing with the
problems of noise and adaptability in the development of
knowledge-based systems. One is to define a set of generic ob
jects and the processes governing their behavior, instantiate
those objects with values derived from the situation, and operate
on those objects in accordance with some predetermined inference
strategy for resolving conflicts and focusing ambiguity. This ap
proach is basically differential in nature, treating the
"instantaneous" differences between data items or between data
items and a predetermined template as the modeling basis. Several
artificial intelligence techniques have been proposed to address
the problem of handling preconditions established by incomplete,
ambiguous, or, in the presence of an intelligent adversary, decep
tive data. Most readily applicable are those which deal formally
with nonmonotonic reasoning and uncertainty. These include
Bayesian inference, fuzzy logic, non-monotonic logic, belief revi
sion, endorsement theory, Dempster-Shafer theory of evidence, and
cautious inference. The end result of each of these methods is
that snapshots of parts of the environment are pieced together by
predefined evidential reasoning algorithms to create the most
probable overview at that time.

These methods quantify the contribution of the value of a data
item AFTER a match has been established. What these methods can
not capture is the epistatic interaction AMONG data items in 1)
establishing relevance of data at a conceptual level to the prob
lem (as opposed to matching individual data items); and 2) rein
forcing or negating the individual contributions of data items
taken in all possible combinations. The problem is formally .
isomorphic to the optimal allocation of trials in a search of fea
ture hyperspace for which the probability distributions of
"success" and "failure" are unknown (and because of distribution
overlap, empirically indecidable) for individual dimensions
((Holland,l975) and (DeJong,l975) provide an excellent discussion
of this "k-armed" bandit problem).

Several of the foremost areas in machine learning address these
problems of incorporating adaptability and noise immunity into
knowledge representation and utilization paradigms. Michalski's
INDUCE and CLUSTER paradigms (Michalski,l983) (Michalski and

?S"-3

stepp,l983) have demonstrated noise tolerance in training exam
ples. However, these algorithms employ a search tapering techni
que based on best-first search which, from our analysis, may prove
inefficient, and at worst, non-robust, in the complexity of the
situation assessment domain.

Quinlan's ID3 (Quinlan,l986) and its progeny ID4 (Schlimmer and
Fisher,l986) use a statistic based on object occurrence probabil
ity with a chi-square distribution to determine which attributes
should be rejected in constructing classification decision trees.
However, both these systems are nonincremental, i.e., they require
all the objects to be classified to be available at one time for
iterative processing. They are therefore not applicable to track
ing asynchronous message traffic over time. Furthermore, although
Quinlan's empirical evidence indicates some utility for this
statistic, one must question its use for dependent attributes
since the statistic assumes independence among the variates.

Schlimmer and Granger (1986) have recently presented research
which, of the alternate systems examined, is most directly ap
plicable to the message classification problem. Their STAGGER
system is designed to track "concept drift", which, as in our
system, is the ability to distinguish between local noise in at
tributes and a global change of events. It uses Bayesian propaga
tion of likelihood ratios to incrementally refine weights associa
ted with individual characterizations and the structure of the
characterizations themselves. The primary theoretical difference
between the STAGGER method and the use of genetic operators lies
in the reliance of STAGGER on the robustness of the incrementally
derived probabilities to characterize what we state is an in
decidable probability distribution.

Most prior research on the use of genetic algorithms themselves
has concentrated on their use in a non-stochastic environment,
i.e., where noise in the patterns to be tracked and learned is
minimal and the patterns themselves occur consistently throughout
the tracking period. Booker (1985). has studied the optimization
of parameter settings for genetic algorithm-based message clas
sifier systems in non-noisy environments: his research has served
as a strong basis for the parameter settings in our system, as
well as forming a basis for our application of multiple pattern
tracking in the message classifier population. Smith's genetic
algorithm-based poker playing system (Smith,l980) was highly suc
cessful against Waterman's system (Waterman,l975): he and
(Grefenstette et al.,l985) have supplied a basis for hierarchical
composition of genetic operators. There have also been numerous
successes in applying these theories in areas as diverse as
dynamic system control (Goldberg, 1983), function optimization
(Bethke, 1980), and object movement in a complex environment
(Holland,l986). Previous research by (Pettit and swigger,l983)

has indicated that even in noisy environments, a genetic
algorithm-based system can track the pattern of an environment in
realistic, correlated flux more successfully than a computational
ly prohibitive model which maintains detailed statistical informa
tion regarding the status of each component.

III EXPERIMENTAL METHODOLOGY

III.1 Background on Genetic Algorithms

In one of the first mathematical analyses of the use of biologi
cally based mechanisms in promoting adaptation in artificial
systems, John Holland (Holland,l975) reviewed the prolonged suc
cess of lifeforms iri adapting to an environment through evolution.
The biological organism is faced with testing a large set of pos
sible genetic expressions in its offspring by means of environmen
tal interaction with a relatively small subset of realized struc
tures (its own genotype). Nonlinearity and epistatic interactions
among_gene sets complicate the problem of achieving a successful,
if not optimal, genetic complement in offspring.

Holland has mathematically hypothesized that genetic operators
(e.g., crossing-over, mutation, inversion) exploit the optimiza
tion of reproductive fitness (number of offspring) by a means he
terms intrinsic parallelism. Intrinsic parallelism is the testing
of a large pool of schemata- i.e., the set of all partitions and
combinations thereof of a prototypical structure - by means of a
much smaller subset of realized structures. More simply, consider
the structure A consisting of a string of six binary digits, (1 o
1 1 o 1). Each binary digit may be considered to be a classifier
of a binary feature vector (such as the premises in a rule-based
system). structure A is a member of a set of structures ALPHA
which includes all possible strings of six binary digits. There
exists a superset EPSILON which is the set of strings of length
six composed of concatenations of {1,0,#}, where # represents a
"don't care" position, i.e., its value as 0 or 1 is irrelevant.
For example, let E be an element in EPSILON of the form (1 0 # # o
1). This "E" is termed a schema, and all possible schemata com
pose EPSILON, the "pool of schemata". The occurrence of structure
A, then, is a sample not only of A itself but of the schemata (1 o
0 1), (# # # # o 1), (1 0 1 1 0 #),etc. Thus, parallel sam
pling of applicable schemata can be implemented with relatively
few templates.

Now consider a structure ENVIRONMENT (0 0 1 0 0 1) which
represents the "state" of an environment. One - and by no means
the only - measure of the fitness of structure A in characterizing
ENVIRONMENT is a computation of a metric of difference (e.g., Ham
ming distance) between A and ENVIRONMENT. Schemata thus represent
the contribution to fitness of single detectors as well as of com-

35-5

binations of detectors. A subset of structures from ALPHA con
stitutes a population. It is, by definition, the goal of adapta
tion to modify these structures in order to optimize the fitness
of the population. Holland and others have shown that genetic op
erators such as crossing-over are highly successful in 1) testing
a large number of possible schemata through modifications on a
much smaller number of realized structures, and 2) exploiting
local optima on the way to achieving the global optimum without
becoming entrapped (as often happens in hill-climbing optimization
techniques) •

A general algorithm for genetic adaptation is given below. Algo
rithms for the genetic operators themselves are presented under
Section III.3, "Experimental Design".

GENERAL ALGORITHM FOR GENETIC ADAPTATION

Initialize population (e.g., message classifiers) and environ
ment. Find the performance for each structure in the popula
tion and call it MU(i). Define the random vAriable RAND on
{l, ••• ,M} by assigning probability (MU(i)/L j=l MU(j)) to the
ith structure in the population, where M is tne number of
structures in the population. Make M trials of RAND, each
time storing the structure at position RAND in the population
at successive positions in auxiliary list TEMP-POP. For each
structure in TEMP-POP, apply mutation and other unary genetic
operators with some predefined probability, and, if it is a
structure in an even-numbered position, perform crossover be
tween it and its immediate predecessor. Set the original pop
ulation to TEMP-POP, and repeat all steps except initializa
tion for the desired number of generations.

As stated in the preceding section, it has been demonstrated that
such a model, with the addition of suitable selection criteria and
control structures, can track the pattern of an environment in
flux more successfully than a computationally prohibitive model
which maintains detailed statistical information regarding the
status of each component (Pettit and Swigger,l983). At the same
time the genetic model does not discard instances of new schemata
when an optimum is obtained, allowing for recovery over another
set of absorbing transitions when the pattern is altered in a
realistic, correlated fashion. In contrast, it is possible for a
component-sampling model to lock into a present optimum that was
maintained over sufficient transitions: the capability for change
would eventually become miniscule.

III.2 System OVerview

Figure III.2-l illustrates our general system design. The system
resides in an environment in which objects of four types come and
go. Events are the power set of the set of four object types ex
clusive of the null set and inclusive of the improper subset
(i.e., no more than one object of one type can be present, al
though an extension of the system has been designed to handle this
case in future research). The objects post messages concerning
their type and attributes to the environmenal interface board.
Noise via Markov chain transition matrices are induced in the
values of these messages at an adjustable level. The noisy mes
sages, ranging from 1 to 16 per object, are posted to an in
termediate sensory board.

The message classifier system then uses genetic algorithms to
track the noisy messages as they are posted. The results of this
tracking are posted to the message-to-event-classifiers interface
board. The event classifier system then uses genetic algorithms
to track event components from this board, i.e., number of objects
in the environment and their types. The event classifier system
posts its results to the output board. These results are compared
to the actual environment for the performance measurement.

PERFORMANCE
MEASUREMENT

SYSTEM OVERVIEW

FIGURE III.2-l System Overview

III.3 Experimental Design

Implementation Specification: All software is coded in ZetaLisp
on Merit's corporate Symbolics 3670. The unoptimized compiled
program consisting of five test cases and one control running
under each of three noise levels with a global time period of 10
and a generation limit of between 200 and 400 iterations takes ap
proximately 30 hours to run (since the data sets are of stochasti
cally variable length, runtime varies). It should be noted that
Holland's original design was intended for a parallel imple
mentation. Since the paradigm involves primarily independent
iterations, runtime for a parallel implementation should decrease
in at least a roughly linear proportion to the number of proc
essors available.

Functional Description: The following algorithm describes the
general functional operation of the system. The algorithm was ad
justed as necessary to fulfill the conditions of each experiment
and the control.

function main:
generate an initial population (size 50) of message

classifiers;
generate an initial population (size 50) of event

classifiers;
for time-step from 1 to global_time_limit do
begin

generate new set of environmental objects [1 •• 4 objects
of type 1, 2, 3, 4];

set variability modulus to desired level;
for message genetic timestep from 1 to generation limit

do - - -
begin

induce_message_noise and post noisy messages to
sensory_board (1 to 16 per object);

/* process through message classifiers */
calculate the performance (Pl) of each message

classifier against each message on the
sensory_board to form subpopulations (one
subpopulation of 50 classifiers per entry on
sensory board);

apply genetic algorithms to subpopulations;
select from each subpopulation on the basis of

performance (Pl) against that subpopulation's
basis message an equal proportion (1/no. of
sensory messages) of individuals to become the 50
message classifiers of the next generation;

if (message genetic timestep mod variability modulus =
O) or (variability modulus < 1) then -

begin /* process through event classifiers */

?5-6

select best individual from .each message group
and post to message-to-event-classifiers
blackboard;

calculate the performance (P2) of each event
classifier against each message on the
message-to-event-classifiers blackboard;

apply genetic algorithms to the event classifier
population;

end /* process through event classifiers */
end /* genetic time loop */

calculate performance (P3) of each event classifier to
.actual environment to get performance measure at
current time step;

end /*global time loop */·
end function main.

Data Item Description: Objects in the environment consist of
length 21 binary strings over the alphabet {0,1} with reserved
bits i mod 10 = o or 1 indicating object type.

A random number, between 1 and 16 inclusive, of "noisy messages"
are produced for each object by inverting the value of each bit
with a probability of •noise-level*. The *noise-level*s used for
this set of experiments were 0.25, 0.125, and .0625, signifying
high, medium, and low levels respectively. Noise induction by
this method creates a "worst-case" model of random noise, as op
posed to a correlated, realistic flux (the "systematic" noise of
Schlimmer and Granger,1986). These messages are posted to the
•sensory-board*.

The first level of the system consists of a population of size 50
of message-classifying strings of length 21 over the alphabet
{O,l}. A population of size 50 has been shown by (Booker,l985)
and (DeJong,1975) to demonstrate acceptable convergence in a non
stochastic environment.

These message-classifying strings are compared to the noisy mes
sages posted to the •sensory-board* and are recombined in accord
ance with the general genetic adaptation algorithm. Performance
for reproduction is computed using the M3 method of (Booker,1985):
this method, termed P1 for this model, is explained under the sub
topic "Performance Measures".

The second level of the system consists of a population of size 50
of event-classifying composite strings in which the string ele
ments are themselves strings of length 21 over the alphabet {0,1}.
The composite strings consist of from 1 to 4 of these elemental
strings, with only strings denoting different object types allowed
in the composite.

These event-classifying strings are compared to the results posted
on the messagejevent interface board by the message classifying
strings and are recombined in accordance with the general genetic
adaptation algorithm. Because of the composite nature of these
strings, new genetic operators have been devised, based on the
open and closed variability genetic regions postulated by evolu
tionary ecology (Carson,l975) (Chapman, et al.,l979). Initial
analysis indicates that these operators exhibit properties com
parable to the intrinsic parallelism of (Holland,l975). They are
described further under the subtopic "Genetic Operators". Per
formance for reproduction is computed using a modified M3 method
from (Booker,l985), with modifications which retain the composite
nature of the strings (see subtopic "Performance Measures").

After a preset number of generations, the best match score (see
description of "P3" under "Performance Measures") for the current
event-classifier population is output, and a new set of objects is
generated. Each new set of objects constitutes a time-step, and
global-time-limit number of these time-steps are performed.

Genetic Operators:
Noncomposite Operators (used in the message classifiers):
a) Mutation: Make an equiprobable trial of a random variable X on
{l, ••• ,L}, where Lis the number of positions in the structure un
dergoing mutation. Make an equiprobable trial of a random vari
able CHANGE on the integers 0,1. Replace the value of the element
at position X with CHANGE. The rate of application of mutation
for these experiments was .os, slightly higher than the .02
(ljpopulation_size) suggested by (DeJong,l975), due to the
system•s·operation in a stochastic environment (a higher mutation
rate has been shown to slow allele loss).
b) Crossover: Make an equiprobable trial of the random variable X
on {l, ••• ,L}, where Lis the number of positions in each of the
two structures undergoing crossover. If X = 0 or L, then no
crossing-over takes place. Otherwise, take positions 1 through X
of the first structure and append positions X+l through L of the
second structure. Likewise, take positions 1 through X of the
second structure and append positions X+l through L of the first
structure. The rate of application of crossover for these experi
ments was 1.00, our rationale being that tracking in a stochastic
environment would be improved with frequent exchange of pattern
parts.

No other unary genetic operators were used in the noncomposite
case.

Composite Operators (used in the event classifiers) :
a) Event-mutation: Randomly select an element from the classifier
and replace it with a new, randomly-generated instance of that ob
ject type. This is a highly disruptive operation, guaranteeing no

35-tO

!

preservation of patterns that may have been converging over
several generations, but one which is critical to the avoidance of
local optima. Mutation rate was maintained at .os.
b) Event-crossover: Three types were defined to attempt to repli
cate the effects of noncomposite crossover on the composite popu
lation. Some precedence for these definitions may be found in
(Smith,l980).

External crossover: Randomly select an element of the first
structure. Randomly generate a set of object-types of
which the object type of this element is a member. Ex
change all elements of these object-types for which there
is a corresponding element of the same object-type in the
second structure. This is a conservatively mixing type of
operation.
Internal crossover: Randomly select an element of the first
structure. Find an element of the same type in the second
structure. If there is not one, then exit with no change.
Otherwise, perform a noncomposite crossover between these
two elements and replace the original elements with the new
ones. This provides a less conservative mixing, but a more
conservative method than mutation of avoiding local optima.
Delete-Insert: Randomly select an element of the first
structure. If there is an element of the same type in the
second structure, remove the element from the first struc
ture and replace the same type element from the second
structure with the first structure's element. Otherwise,
delete the element from the first structure and add it to
the second structure. If the donor structure becomes empty
because of this removal, generate a new one-element clas
sifier of the same object-type that was removed to keep the
population at the same level. This operation is designed
to generate composite classifiers with a variable number of
composition elements.

For each pair of structures, one of these three composite
crossing-over operations is selected each generation.

Performance Measures: "Performance" is simply how well the struc
ture being evaluated fulfills the objective{s) of the task domain.
Three types of performance were used in this model: ·
Pl: Pl is based upon the M3 match algorithm of (Booker,l985).
Adapted to a binary alphabet, Pl is equal to the length (L) of the
structure for a perfect match, and (m/L2) for a nonperfect match,
where m is the number of matching positions.
P2: P2 is an adaptation of M3 for composite structures. The Pl of
each element in the composite structure is calculated against each
entry on the interface board; the maxima for each element are
summed; and this value is returned as the performance of that
classifier. P2, unlike P3, does not take into account matching
the number of elements against the number of environment pattern
components: these are unknown to the system. It was assumed that

~5-I\

a classifier with extraneous elements would receive little or no
competitive advantage over one with highly matching, nonextraneous
elements since only one element of each object-type is allowed in
the composite classifier. As we elaborate under "Results and Dis
cussion", this assumption may be invalid.
P3: P3 provides an estimation of "offline" performance and was the
metric for comparison of performance among the models.
"Offline performance" is a term coined by (DeJong,l975) to indi
cate the maximum performance score present in a population at a
given time-step. In contrast, "online performance" (DeJong,l975)
refers to the average performance score of an entire population at
a given time-step. We chose to use a metric of offline per
formance to indicate the best information that could be expected
at a given time-step with each of the models. P3 is calculated as
follows:

PJ = m
n (l+ lk-nl)

where m = number of matching bits
across all elements;

n = number of objects in the
environment;

k = number of elements in the
classifier;

The factor "m" reflects point-by-point accuracy. Division by
(l + lk- nl) penalizes classifiers whose number of elements dif
fers from the actual number of objects in the environment. Divi
sion by n normalizes all results across variable environments. P3
thus represents a proportional accuracy. The maximum value of P3
is 21, implying a complete point-by-point match and an equivalent
number of elements in the event classifier as there are objects in
the environment. No attempt was made in this set of experiments
to determine if object types matched: it was assumed that good
attribute matches implied easy object identification.

Experimental Groups:
Cl: Performance (PJ) with no genetic algorithms invoked. This
group represented expected results on the basis of chance and
served as a control.
C2: Performance (PJ) with genetic algorithms invoked in the mes
sage classifiers but not the event classifiers. Event classifiers
were constructed from messages posted to the message to event
classifiers interface board in the following manner: A random se
lection of object types was made to indicate the number and kinds
of elements in the event classifier. If there were one or more
messages of this type on the interface board, one of these was
selected at random to be an element in a classifier. If not, a
message was selected at random and transformed into this type.
Fifty event classifiers were constructed in this manner at the end
of the genetic generation cycle, and the maximum P3 value was cal-

~5-(2

culated. This group was used as a secondary control to determine
the efficacy of the composite genetic operators and the P2
measure. The *generation-limit* was set at 200.
C3: Performance (P3) with genetic algorithms invoked in the event
classifiers and not the message classifiers. Each cycle the mes
sage classifiers with the highest Pl values were posted to the in
terface board. Again, this group served as a secondary control to
determine how the composite genetic operators and the P2 measure
affected performance. The *generation-limit* was set at 200.
Tl: Performance (P3) with genetic algorithms invoked at the event
classifier le~el at half the rate of the message classifier level.
The event classifiers underwent 200 generations interleaved into
400 generations of the message classifiers.
T2: Performance (P3) with genetic algorithms invoked at the mes
sage classifier level at half the rate of the event classifiers.
The message classifiers underwent 200 generations interleaved into
400 generations of the event classifiers.
T3: Performance (P3) with genetic algorithms invoked at an equal
rate at the message classifier and event classifier levels. The
generation-limit was set at 200.

Ten runs for each group.were conducted under noise levels of 0.25
(high), 0.125 (medium), and 0.0625 (low).

statistical Methods: Analysis of variance (ANOVA) was used to
test for differences between group means at each noise level (A =
0.05). The null hypothesis tested was: Cl= Tl = C2 = T2 = C3 =
T3 (each value represents a group P3 mean). Duncan's multiple
range test was used to discriminate between groups when sig
nificant differences were found. All analyses were performed on
the Statistical Analysis System {Barr et al.,l979).

IV RESULTS AND DISCUSSION

Results: The experimental results are illustrated in Tables IV-1,
IV-2 and IV-3, for the low, medium, and high noise tests respec
tively. The following observations are significant:

Result 1: In all noise levels, C2, the group in which genetic al
gorithms were invoked at the message classifier level but not the
event classifier level, performed significantly better than any of
the other models. In both the low and medium noise environments,
C2 obtained perfect scores of 21 on two trials.
Result 2: An ANOVA of C2 performance means across all noise
levels indicated no significant difference in the performance of
C2 in low, medium, and high noise environments. This result is
consistent with previous findings (Part 1: Test 2 in Pettit and
swigger,l983).

TABLE IV-1 : LOW NOISE
ANOVA: f"- 12.8.5 Prob > f" - .0001

26

2-4

22 DUNCA!I MitT GROUPING

20

a] ,.., 18
ll.
w 16 n! 0

C1 I ~
1-4 C3 I· T2I n] :::1:

IZ:
0

~
...; 12
.;

& +I
10

~
w 8 :::1:

6

4

2

0

0 2 "' 6

EXPERIMENTAL GROlPS

TABLE IV-2 : MEDIUM NOISE

I#OVA! f" - 8. 69 Prob > f"- .0001
26

2-4

22 DUNCA!I MitT GROUPING

20

a[,.... ,.., 18
ll.

nl
.......
w 18 n!

Cl I 0

C3I ~
1-4 T3I :::1:

IZ:
0 ...; ~ 12

&
.; .. 10

~ w 8 :::1:

6

4

2

0

0 2 "' 6

EXPERIMENTAL GROlPS

35 -{4-·

TABLE IV-3 HIGH NOISE
N¥:1Vk F - 6.!51 Prob > F - 0001

26

24

22 DU!ICAM MRT CllOUP IMG

20

~ 18
Q. ai I&J 16

C1 I nl 0 ni C3I ~
14 T2r :I

lt:
0

12 ... 12

~ • •• 10

~ 8 :I

6

4

2

0

0 2 4 6

EXPERIMENT..._ GROlPS

Result 3: In the low and medium noise tests, Tl, in which the
event classifiers underwent adaptation at half the rate of the
message classifiers, performed significantly better than T3, in
which genetic algorithms were invoked at equal rates and for the
same number of iterations for each level.
Result 4: In the low and medium noise tests, Tl (event clas
sifiers at - rate, message classifiers at 400 generations) and T2
(event classifiers at twice rate, message classifiers at 200
generations) occupied the same equivalence class.
Result 5: Tl scored consistently above all the other models ex
cept C2. However, at a sample size of 10, the overlap between
classes made this relative ranking statistically insignificant.

Discussion: The above observations suggest the following
conclusions:

The observations that C2 performed significantly better than any
of the other models (Result 1) and that the noise level had no
significant effect on its performance (Result 2) suggest that ge
netic algorithms as employed in the noncomposite case are highly
robust in promoting noise filtering of message content. Further
experimentation should consider determining the minimum number of
iterations necessary for adequate convergence to reduce tracking
time.

on the other hand, the models utilizing the composite genetic op
erators and performance measure P2 did not perform significantly
better than the control Cl. Results 3 and 4, combined with a
trend suggested by Result 5, suggest that some factor(s) in the
composite models is(are) actually disrupting performance. In the
following analysis we seek to isolate that factor.

As explored in (Holland,l975), (DeJong,l975), (Booker,l985) and
others, the following factors present in our models affect the
performance of genetic models operating without composition in
nonstochastic environments: population size, mutation rate, cross
over rate, selection metrics (Pl and P2 in our models), and number
of iterations (*generation-limit* in our models). The first three
factors were held constant across all models and can therefore be
disregarded.

Increasing the number of iterations (*generation-limit*) usually
improves the performance of genetic models due to their underlying
convergent mechanism. However, the observation (Result 4) that Tl
and T2, with a 200% difference in *generation-limit*s, were not
significantly different in even the low noise environment suggests
that the problem factor(s) damp the effect of increased itera
tions. The two most likely sources of such an effect are the se
lection metric (P2) and the composite operators themselves. A
highly inefficient or directionally inaccurate selection pressure

would slow or impair completely the convergence mechanism. The
use of composite operators inappropriate for efficiently searching
the feature hyperspace would produce similar difficulties.

Result 5, although resting on tenuous statistical ground, at least
weakly suggests that the higher quality of information presented
by increased iterations of the message classifiers serves to off
set somewhat the negative influence of the problem factor(s).
This would indicate that the richness of information provided by
the message classifiers (Results 1 and 2) is not being severely
disrupted in the composite model. We comb.ine this weak indicator
with the statistically strong observations that: 1) in low and
medium noise environments, Tl (best information quality and 200
iterations) and T2 (less information quality and 400 iterations)
were not different; 2) T2 (400 iterations) and T3 (200 iterations
and same information quality as T2) were not different; and 3) Tl
and T3 with the same number of iterations but different informa
tion quality were different. One would expect that if the com
posite operators were inappropriate, information would be
reshuffled to such a degree that the integrity of the search proc
ess would be lost, and Tl would never be statistically better than
T3 (in contrast to Result 3). However, if the selection metric
were directionally appropriate but seriously inefficient, the
richness of the information would not be randomly disrupted, but
the contribution of "good" relative to "meaningless" information
in succeeding generations would be severely reduced. Under these
circumstances, the richer the initial information the better the
performance over the same number of iterations.

From this analysis, we suggest that the use of an attribute-by
attribute matching metric (as P2 and Booker•s M3 are) is insuffi
cient for composite genetic models. There is a need for a metric
which can capture the underlying structure of the "events" dynami
cally, especially when prior information about this structure is
unavailable. We are currently investigating the use of clustering
techniques, including conceptual clustering, to devise this
metric.

Theoretically, the composite genetic operators do not violate the
assumptions of the genetic algorithms. However, since the per
formance of the genetic operators is primarily affected by the
quality of "reproductive information" provided in the selection
process we will not make conclusions concerning their empirical
validity from these data.

V CONCLUSION

This experiment examined the use of composite genetic operators
and a composite adaptation of a noncomposite selection metric in a
bi-level, genetic algorithm-based system for message classifica-

tion into events in low, medium and high noise environments. Our
underlying motivation is the eventual construction of a system for
interpreting asynchronous, noisy message traffic in situation as
sessment problems where these interpretations (events) cannot be
?redefined but must be acquired during the operation of the
system. To this end, in this experiment we have determined that
1) genetic. algorithms are highly robust in filtering even random
noise from message traffic; and 2) the attribute matching selec
tion metric used extensively in genetic algorithm-based systems is
insufficient for a composite model. Both of these are critical
issues in the construction of such a system.

our plans for future research in this area include: 1) devising of
a suitable composite selection metric based on clustering theory;
2) examination of the effects of number of iterations on con
vergence optimization; 3) incorporation of multi-objective func
tions for optimization, such as object identification and
location; 4) introduction of a structured representation similar
to (Forrest,l98S) 's use of semantic networks; S) examination of
the online performance of our model in tracking objects which
gradually come and go in the environment; and 6) recognition by
our model of multiple i~stances of the same kind of object.

ACRNOWLEDGMENTS

This research was supported in part under Merit Technology's in
ternal research and development program in machine learning and in
part by the graduate research program in computer science at North
Texas State University. We would like to thank Dr. Kathleen Swig
ger of NTSU for her generous support, and also Gregg Jernigan and
his artificial intelligence staff at Merit for their encouragement
and suggestions.

REFERENCES

Barr, A.J., Goodniqht, J.H., Sall, J.P., Blair, W.H., and Chilko,
D.M. (1979) SAS User's Guide. SAS Institute. Raleigh, N. Carolina.

Bethke, A.D. (1980) Genetic Algoritbms as Function Optimizers. PhD
dissertation. Ann Arbor: University of Michiqan.

Booker, L. B. (1985) Improvinq the performance of qenetic alqo
rithms in classifier systems. In Proceedings of an International
Conference on Genetic Algorithms and their Applications. J.J.
Grefenstette (Ed.) pp. 80-92. Pittsburqh:Carneqie-Me1lon Univer
sity.

Brindle, A. (1981) Genetic Algorithms for Function Optimization.
Ph.D. dissertation, University of Alberta.

carson H.L. (1975) The genetics of speciation at the diploid
level.' The American Naturalist, Vol. 109, No. 965, pp. 83-92.

Chapman, R.W., Avise, J.c., and Asmussen, M.A. (1979) Character
space restrictions and boundary conditions in the evolution of
multistate characters. Journal of Theoretical Biology, 80, PP•
51-64.

DeJonq, K.A. (1975) An Analysis of the Behavior of a Class of Ge
netic Adaptive Systems. PhD dissertation. Ann Arbor: University
ot Michiqan.

Forrest, s. (1985) Implementinq semantic network structures usinq
the classifier system. In Proceedings of An International Confer
ence on Genetic AlgorithmS and their Applications. J.J.
Grefenstette (Ed.). pp. 24-44. Pittsburqh: carneqie-Mellon Univer
sity.

Goldberq, D. E. (1985) Genetic alqorithms and rule learninq in
dynamic system control. In Proceedings of An International Confer
ence on Genetic AlgorithmS and their Applications. J.J.
Grefenstette (Ed.). pp. 8-15. Pittsburqh: Carneqie-Mellon Univer
sity.

Grefenstette, J.J., Gopal, R., Rosmaita, B., and Van Gucht, o.
(1985) Genetic alqorithms for the travelinq salesman problem. In
Proceedings of An International Conference on Genetic Algorithms
and their Applications. J.J. Grefenstetta (Ed.). pp. 160-168.
Pittsburqh: carneqie-Mellon University.

Holland, J. H. (1975) Adaptation in Natural and Artificial
systems. Ann Arbor:University of Michiqan Press.

Holland, J. H. (1986) Escapinq brittleness: ·the possibilities of
qeneral-purpose learninq alqorithms applied to parallel rule-based
systems. In Machine Learning: An Artificial Intelligence Approach
Volume II. R.S. Michalski, J. carbonell, and T. Mitchell (Eds.).
pp. 625-646. Los Altos:Morqan Kaufman Publishers.

Michalski, R. s. (1983) A theory and methodoloqy of inductive
learninq. In Machine Learning: An Artificial Intelligence Approach
Vol. I. R.s. Michalski, J. carbonell, and T. Mitchell (Eds.). pp.
83-134. Pale Alto:Tioqa Publishinq Co.(now Morqan Kaufmann).

Michalski, R.S. and Stepp, R.E. (1983) Learninq from observation:
conceptual clusterinq. In Machine Learning: An Artificial Intel
ligence Approach Vol. I. R.S. Michalski, J. carbonell, and T.
Mitchell (Eds.). pp. 331-364. Palo Alto:Tioqa Publishinq Co.(now
Morqan Kaufmannl.

Michalski, R.S. (1986) Understandinq the nature of learninq. In
Machine Learning: An Artificial IntelligP.nce Approach Volume II.
R.s. Michalski, J. carbonell, and T. Mitchell (Eds.). pp. 3-26.
Los Altos:Morqan Kaufman Publishers.

Pettit, E. J, and swiqqer, K. (1983) An analysis of qenetic-based
pattern trackinq and coqnitive-based component trackinq models of
adaptation. In Proceedings of the National Conference on Artifi
cial Intelligence, (~ashinqton, o. C.) Los Alt~s:William Kaufmann.

Quinlan, J.R. (1986) The effect of noise on concept learninq. In
Machine Learning: An Art~ficial Intelligence Approach Volume II.
R.S. Michalski, J, carbonell, and T. Mitchell (Eds.). pp. 149-166.
Los Altos:Morqan Kaufman Publishers.

Quirin, W.L. (1978) Prohability and Statisti~. New York:Harper &
Row.

Schlimmer, J.C., & Fisher, D. (1986) A case study of incremental
co~cept induction. In ~oceedings of the Fifth National confer
~·~n:c:e-=o~n~Aart~iafai~cai~aal~I~n~t~e~lalai~g~e~n~c~e~. Vol 1. pp. 496-501. Los Altos:
Morqan Kaufmann.

Schlimmer, J.C., & Granqer, R.H., Jr. (1986) 3eyond incremental
processinq: trackinq co~cept drift. In ~dlngs of the Fifth
National Conference on artificial I:1telligence. Vol 1. pp. 502-
507. Los Altos: Morqan Kaufmann.

Smith, S.F. (1980) ~earning svstem Based on Genetic Adaptive
Algoritbms. PhD dissertation. Ann Arbor: University of Michiqan.

Wate~an, D. (1975) Adaptive production systems. In Proc. 4th In
ternational Joint conference on Artificial Intelligence.

~-A

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Simplifying Decision Trees

J. R. Quinlan1

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139

Abstract: Many systems have been developed for constructing decision trees from collec
tions of examples. Although the decision trees generated by these methods are accurate
and efficient, they often suffer the disadvantage of excessive complexity and are therefore
incomprehensible to experts. It is questionable whether opaque structures of this kind
can be described as knowledge, no matter how well they function. This paper discusses
techniques for simplifying decision trees while retaining their accuracy. Four methods
are described, illustrated, and compared on a test-bed of decision trees from a variety of
domains.

1. Introduction

Since people began building knowledge-based systems, it has become painfully obvious
that the ability to function at an expert level in some task domain does not necessarily
confer a corresponding ability to articulate this know-how. The knowledge for most early
and many current expert systems has been amassed by an interview process in which a
knowledge engineer interacts with a domain expert to extract and refine a set of rules. This
process can be taxing for all concerned because the expert, as Waterman (1986) puts it,

"has a tendency to state [his] conclusions and the reasoning behind them in
general terms that are too broad for effective machine analysis ... the pieces
of basic knowledge are assumed and combined so quickly that it is difficult for
him to describe the process."

Consequently, the productivity of the interview method is usually low. This led Feigen
baum (1981) to identify knowledge acquisition as the "bottleneck" problem in building
knowledge-based systems.

One way around this bottleneck, long advocated by Donald Michie (1983) and others, uses
inductive methods to extract general rules from concrete examples. The expert is not asked

1Permanent address: School of Computing Sciences, New South Wales Institute of Technology, Sydney,
N.S.W. 2007, Australia.

3G-0

to articulate his skill but instead to provide a framework of important concepts in the task
domain, augmented perhaps by a collection of tutorial examples; the hard work is carried
out by a suitable induction engine. Most researchers in Machine Learning will be familiar
with Meta-DENDRAL and its synthesis of chemical knowledge (Buchanan and Mitchell,
1978) and with AQll's results on soybean diagnosis (Michalski and Chilausky, 1980). The
feasibility of this inductive approach to knowledge acquisition has also been confirmed in
several industrial projects, such as British Petroleum's recent successful construction of
a 2500-rule expert system for th~ design of hydrocarbon separation vessels in just one
man-year (Expert Systems User, August 1986, pp16-19).

Many current commercial induction packages (including Ex-Tran, RuleMaster and 1st
Class) express the derived rules in the form of decision trees. From the standpoint of
execution efficiency this is a simple and economical representation, but the trees can be
come complex and thus opaque (Michie, 1986). If a decision tree that measures up very
well on the performance criterion is nevertheless totally incomprehensible to a human ex
pert, can it be described as knowledge? Under the common-sense ~efinition of this term as
material that might be assimilated and used by human beings, it is not, in just the same
way that a large program coded in assembly language is not knowledge.

This paper examines four methods for improving the intelligibility of decision trees and
thereby making them more knowledge-like. Three of the methods involve pruning the
decision tree by replacing one or more subtrees with leaves, while the remaining method
reformulates the decision tree as a set of production rules. Section 2 introduces the methods
and illustrates their operation with respect to a small but real example. Section 3 presents
an empirical comparison of the methods using sets of decision trees from six task domains.

2. Methods for Simplifying Decision Trees

Induction algorithms that develop decision trees view the task domain as one of classifi
cation. The underlying framework consists of a collection of attributes or properties which
are used to describe individual cases, each case belonging to exactly one of a set of classes.
Attributes may be either continuous or discrete. A case's value of a continuous attribute is
always a real number while its value of a discrete attribute is one of a small set of possible
values for that attribute. In real-life tasks it is also important to recognise that a case may
have unknown values for one or more of the attributes.

A decision tree may be either a leaf identified by a class name, or a structure of the form

C1: D1
C2: D2

where the C/s are mutually exclusive and exhaustive logical conditions and the Di's are
themselves decision trees. The set of conditions involves only one of the attributes, each
condition being

A< Tor A> T

for a continuous attribute A, where T is some threshhold, or

A= V or A in {Vi}

for a discrete attribute A, where V is one of its possible values and {Vi} is a subset of
them. To improve legibility, the non-leaf subordinate decision trees above will be indented
when the trees are printed.

Such a decision tree is used to classify a case as follows. If the tree is a leaf, we simply
determine the case's class to be the one nominated by the leaf. If the tree is a structure,
we find the single condition Ci that holds for this case and continue with the associated
decision tree. The only complexity arises when the value of the attribute appearing in the
Ci's is unknown. In this eventuality we explore all the decision trees associated with the
structure and combine their findings with weights proportional to the estimated probability
of the associated condition being satisfied. (Quinlan, 1986) discusses the procedure in more
detail.

Figure 1 shows such a decision tree for the diagnosis of hypothyroid conditions with classes
{primary hypothyroid, secondary hypothyroid, compensated hypothyroid, negative}.
Some attributes such as T S H and FT I are continuous and have real values, while at
tributes like thyroid surgery, with possible values {t, /}, are discrete. To classify a case
with this tree, we would first enquire whether the value of TSH was greater than 6.05. If
the value was below this threshhold we would continue with the decision tree commencing
with T4U measured= t, while a value above this threshhold would lead us to the decision
tree headed FT I < 64.5. In either case we would continue in similar fashion until a leaf
was encountered.

The set of cases with known classes from which a decision tree is induced is called the
training set. Other collections of cases not seen while the tree was being developed are
known as test sets and are commonly used to evaluate the performance of the tree.

This paper focusses on simplifying decision trees, not with the inductive methods used
to construct them in the first place. Various ways of developing trees from training sets
may be found in (Breiman, Friedman, Olshen and Stone, 1984), (Kononenko, Bratko and
Roskar, 1984) a?-d (Quinlan, 1986).

TSH < 6.05:
I T4U measured = t: negative (1918)
I T4U measured = f:
I I age > 43.5: negative (58)
I I age < 43.5:
I I I query hypothyroid = f: negative (41)
I I I query hypothyroid = t: secondary hypothyroid (1)
TSH > 6.05:
I FTI < 64.5:
I I thyroid surgery = f:
I I I T3 < 2.3: primary hypothyroid (51)
I I I T3 > 2.3:
I I I I sex = M: negative (1)
I I I I sex = F: primary hypothyroid (4)
I I thyroid surgery = t:
I I I referral source = SVI: primary hypothyroid (1)
I I I referral source = <other>: negative (2)
I FTI > 64.5:
I I on thyroxine = t: negative (32)
I I on thyroxine = f:
I I I thyroid surgery = t: negative (3)
I I I thyroid surgery = f:
I I I I TT4 < 150.5: compensated hypothyroid (120)
I I I I TT4 > 150.5: negative (6)

Figure 1: Sample Decision Tree

2.1 Cost-Complexity Pruning

Breiman et al (1984) describe a two-stage process in which a sequence of trees T0, T17 ... , T1c
is generated. T0 is the original decision tree and each 1i+1 is obtained by replacing one
or more subtrees ofT; with leaves until the final tree T1c is just a leaf. The second stage
evaluates these trees and selects one of them as the final pruned tree.

Consider a decision tree T used to classify each of the N cases in the training set from
which T was generated, and let E of them be misclassified. If L(T) is the number of leaves
in T, Breiman et al define the cost-complexz"ty ofT as the sum

E
N +a x L(T)

for some parameter a. Now, suppose we were to replace some subtree S ofT by the
best possible leaf. In general, the new tree would misclassify M more of the cases in the
training set but would contain L(S) - 1 fewer leaves. This new tree would have the same

cost-complexity as T if
M

a:= N X (L(S) -1)

As before, let T0 be the original tree. To produce Ti+ 1 from Ti we examine each non-leaf
subtree of Ti to find the minimum value of a: above. The one or more subtrees with that
value of a: are then replaced by their respective best leaves.

To illustrate the process, consider the decision tree of Figure 1. This was generated from
2514 cases, where the number in parentheses after each leaf shows how many of these cases
are covered by that leaf. 2 Consider the sub tree

T4U measured = t: negative (1918)
T4U measured= f:

age > 43.5: negative (58)
age < 43.5:
I query hypothyroid = f: negative (41)
I query hypothyroid = t: secondary hypothyroid (1)

The vast majority of cases at the leaves of this subtree are of class negative which is
clearly the best leaf. If the subtree were replaced by the leaf negative the new tree would
misclassify the lone non-negative case, so M is 1. The new tree would also have three
fewer leaves, giving a value for a: of 0.00013 at which the cost-complexity of the original
and modified trees would be equal. This is the lowest such value for any subtree, so the
tree T1 would be formed by replacing this subtree as above.

The second stage of this process abandons the cost-complexity model and attempts to
select one of the T/s on the basis of reliability alone. We cannot assess this simply from the
proportion of cases in the original training set that are misclassified. Whatever induction
algorithm was employed has almost certainly built the original tree to fit the training set
and thus the error rate on these cases would be expected to understate the error rate on
unseen cases. We therefore assume some test set containing N' cases and use each Ti to
classify all of them. Let E' be the minimum number of errors observed with any Ti, with
the standard error of E' being given by

JE' X (N'- E')
se(E') = N'

The tree selected is the smallest 7i whose observed number of errors on the test set does
not exceed E' + se(E').

2The counts do not sum to 2514 because cases with unknown values of tested attributes cannot be
associated with any one leaf and are therefore not included.

TSH < 6.05: negative (2018)
TSH > 6.05:
I FT! < 64.5: primary hypothyroid (62)
I FTI > 64.5:
I I on thyroxine = t: negative (32)
I I on thyroxine = f:
I I I thyroid surgery = t: negative (3)
I I I thyroid surgery = f:
I I I I TT4 < 150.5: compensated hypothyroid (120)
I I I I TT4 > 150.5: negative (6)

Figure 2: Decision Tree After Cost-Complexity Pruning

In this example, a test set containing 629 cases gave a sequence of eight trees, T0 being the
original tree and T1 the leaf negative. The selected tree was T4 which appears in Figure 2.
This tree is indeed a great deal simpler than the original and would qualify as 'knowledge'
under the most stringent criterion. Notice that the class secondary hypothyro£d, which is
represented by just a single case in the training set, has sensibly been omitted.

Nevertheless, cost-complexity pruning raises several problematic issues. First, it is unclear
why the particular cost-complexity model used above is superior to other possible models
such as the product of error rate and number of leaves. Secondly, it seems anomalous that
the cost-complexity model used to generate the sequence of subtrees is abandoned when
the best tree is selected. Finally, the procedure requires a test set distinct from the original
training set; the authors show, however, that a cross-validation scheme can be employed
to generate these estimates at the time the original tree is constructed, but at the expense
of a substantial increase in computation.

2.2 Reduced Error Pruning

Rather than form a sequence of trees and then select one of them, a more direct procedure
suggests itself as follows. We again assume a separate test set, each case in which is
classified by the original tree. For every non-leaf subtree S of T we examine the change in
misclassifications over the test set that would occur ifS were replaced by the best possible
leaf. If the new tree would give an equal or fewer number of errors and S contains no
subtree with the same property, S is replaced by the leaf. The process continues until any
further replacements would increase the number of errors over the test set.

Using the same example of Figure 1 and the same test set as before, reduced error pruning
generates the tree shown in Figure 3.

TSH < 6.05: negative (2018)
TSH > 6.05:

FTI < 64.5:
I thyroid surgery = f: primary hypothyroid (59)
I thyroid surgery = t:
I I referral source = SVI: primary hypothyroid (1)
I I referral source = <other>: negative (2)
FTI > 64.5:
I on thyroxine = t: negative (32)
I on thyroxine = f:
I I thyroid surgery = t: negative (3)
I I thyroid surgery = f:
I I I TT4 < 150.5: compensated hypothyroid (120)
I I I TT4 > 150.5: negative-(6)

Figure 3: Decision Tree After Reduced Error Pruning

As with cost-complexity pruning, this process generates a sequence of trees. Its rationale
is clearer, though, since the final tree is the most accurate subtree of the original tree with
respect to the test set and is the smallest tree with that accuracy. The disadvantages of
the method are, first, that it again requires a separate test set and second, that parts of
the original tree corresponding to rarer special cases not represented in the test set may
be excised.

2.3 Pessimistic Pruning

When the original tree T is used to classify theN cases in the training set from which it
was generated, let some leaf account forK of these cases with J of them misclassified. As
observed before, the ratio J / K does not provide a reliable estimate of the error rate of
that leaf when unseen cases are classified, since the tree has been tailored to the training
set. A more realistic error rate might be obtained using the continuity correction for the
binomial distribution (Snedecor and Cochran, 1980, pp. 117ff) in which J is replaced by
J + 1/2.3

Let S be a subtree ofT containing L(S) leaves and let L.J and L.K be the correspond
ing sums over the leaves of S. A more pessimistic view of S is that it will misclassify
L.J + L(S)/2 out of L.K unseen cases, where the standard error of this number of misclas
sifications can be determined as before. If S were replaced by the best leaf, let E be the
number of cases from the training set that it misclassifies. The pessimistic pruning method
replaces S by the best leaf whenever E + 1/2 is within, one standard error of L.J + L(S) J2.

3This makes the unsurprising assumption that J / K < 0.5.

All non-leaf subtrees are examined just once to ~ee whether they should be pruned but, of
course, sub-subtrees of pruned subtrees need not be examined at all.

To illustrate the idea we return to the subtree of Figure 1 that commences with the
condition T4U measured= t. As before, L:K is 2018, L(S) is 4, L:J is 0, so the estimate
of the number of errors due to S is 2.0 with standard error 1.41. If the subtree is replaced
by the leaf negative it will give one error, so E is 1. Since 1 + 1/2 < 2.0 + 1.41, pessimistic
pruning would indeed replace this subtree. Repeating this evaluation on all subtrees ofT
gives a pruned tree identical to that of Figure 2.

This method has two advantages. It is much faster than either of the preceding methods
since each sub tree ofT is examined at most once. Unlike these methods, it does not require
a test set separate from the cases in the training set from which the tree was constructed.

2.4 Simplifying to Production Rules

This form of simplification does not give a smaller decision tree at all but instead develops
an 'equivalent' set of production rules, a representation medium widely used in expert
systems (Winston, 1984). The process has two stages: individual production rules are first
generated and polished, and then the rules produced are evaluated as a collection.

Whenever a decision tree is used to classify a case, a path is established between the top of
the tree and one of its leaves. In order for the case to reach that leaf, it must have satisfied
all the conditions along the path. For example, any case that is classified as negative by
the last leaf of the decision tree in Figure 1 must satisfy all the conditions

TSH > 6.05
FTI > 64.5
on thyroxine = f
thyroid surgery = f
TT4 > 150.5

Every leaf of a decision tree thus corresponds to a production rule of the form

if XI A x2 A .•. A Xn then class c

where the X/s are conditions as before and c is the class of the leaf.

Merely rewriting a tree as the collection of these equivalent production rules would not
represent any simplification at alL Instead, the first stage examines each production rule
to see whether it should be generalised by dropping conditions from its left-hand side. Let
Xi be one of the conditions and consider those cases in the training set that satisfy all
the other conditions in the rule. With respect only to these cases, the relevance of Xi to
determining whether a case belongs to class c (given that the other conditions are satisfied)
can be summarised by the 2 x 2 contingency table

~-7

not
class c class c

satisfies xi se se
does not satisfy xi se se

. where se is the number of these cases that satisfy Xi and belong to class c, se is the number
that satisfy Xi but belong to some class other than c, and so on. Fisher's exact test (Finney,
Latscha, Bennett and Hsu, 1963) can then be invoked to assess the probability that the
division by Xi arises merely from chance or, in other words, the significance level at which
we can reject the hypothesis that Xi is irrelevant to whether a case belongs to class c.4

Each X1 is examined in turn to find the one that has the least relevance to classification
and, unless the hypothesis that this Xi is not significant can be rejected at the 0.1% level
or better, the condition is discarded and the process repeated.

Consider the rule above. When the training cases that satisfy all conditions other than
the first are examined, the table for the condition T S H > 6.05 comes out to be

not
class class

negative negative
TSH > 6.05 6 0
TSH < 6.05 154 0

which shows that this condition is entirely irrelevant. On the other hand, the table of cases
satisfying all conditions other than the last is

not
class class

negative negative
TT4 > 150.5 6 0
TT4 < 150.5 0 120

which is significant at better than the 0.1% level. Repeated application of the above process
reduces the original rule to one with a single condition

if TT4 > 150.5 then class negative

The final step in this first stage is to estimate a certainty factor for the simplified rule,
using a device similar to that of pessimistic pruning. If the left-hand side of a rule is

4! am indebted to Donald Michie of the Turing Institute for making me aware of this test and its advantages
over the approximate x2 test.

satisfied by V cases in the training set, W of which belong to the class indicated by the
right-hand side, the certainty factor of the production rule is taken as (W - 1/2) jV. In
the example above, the training set contains 246 cases that match the left-hand side, all
of them being class negative, so this rule's CF is 99.8%.

Note that we need not develop one rule for each leaf of the decision tree. Some leaves give
rise to identical rules while other leaves generate vacuous rules from which all conditions
have been dropped. The number of rules is generally smaller than the number of leaves.

The second stage of this process looks how well the rules will function as a set. This
evaluation depends on the way in which the rules will be used. A simple strategy has been
adopted here:

To classify a case, find a rule that applies to it. If there is more than one,
choose the rule with the higher certainty factor. If no rule applies, take the
class by default to be the most frequent class in the training set.

For each rule in turn, we now determine how the remaining rules would perform on the
training set if this rule were omitted. If there are rules whose omission would not lead
to an increased number of errors classifying the cases in the training set, or would even
reduce it, the least useful such rule is discarded and the process repeated.

Continuing the example, the decision tree of Figure 1 is reduced by this method to just
three rules:

if TSH < 6.05

if thyroid surgery = fA
TSH > 6.05 A
FTI < 64.5

if on thyroxine = I A

thyroid surgery= I A

TSH > 6.05 A
TT4 < 150.5 A

'FTI> 64.5

then class negatz've [99.9%]

then class primary hypothyroid [97.5%]

then class compensated hypothyroid [99.6%]

As with pessimistic pruning, this method does not require a set of test cases apart from
the original training set. In its current implementation it is the slowest of the four tree
simplifying methods. The method should be able to be improved by adopting a more
sophisticated condition-elimination strategy than the simple hill-climbing approach used
above, and by employing a better production rule interpreter.

2.5 Other Methods

The four methods of simplifying decision trees certainly do not exhaust all possibilities. The
cross-validation method of Breiman et al (1984) has already been mentioned. Kononenko
et al (1984) present an information-based heuristic used in their ASSISTANT system,
but this is now being changed to another form of cross-validation (Lavrac, Mozetic and
Kononenko, 1986). I have previously experimented with a form of pruning based on the
path lengths in the decision tree and observed error rates (Quinlan, Compton, Horn and
Lazarus, 1986).

3. Empirical Comparison

The performance of a simplification method can be assessed in terms of the clarity and
accuracy of its final product. Ideally, the pruned decision tree or set of production rules
should be much more comprehensible than the original decision tree but should not be
significantly less accurate when classifying unseen cases.

To test how well the methods of the previous section measure up to these two criteria,
they were compared using decision trees developed for six task domains. For each domain,
the available data was shuffled, then divided into a training set containing approximately
two-thirds of the data and two equal-sized test sets. This division was carried out so as
to make the proportion of cases belonging to each class as even as possible across the
three sets. The training set was used to induce ten decision trees for the domain. Each
simplification method was applied to each tree and the resulting classifier evaluated on
both test sets.

The six domains include both real-world tasks and synthetic tasks constructed to provide
some particular challenge. They are

• Diagnosis of hypothyroid conditions (Hypothyroid): This domain has been encoun
tered in the running example of the previous section. The data comes from the
archives of the Garvan Institute of Medical Research, Sydney, and covers all 3772 thy
roid assays carried out by Garvan's clinical laboratory between January and Novem
ber 1985. The data uses seven continuous and sixteen discrete attributes with quite
high rates of missing information- values of four of the attributes are unknown in
more than 10% of the cases. The 3772 cases, each belonging to one of four classes,
were split into a training set of 2514 and two test sets of 629. This domain is a
good starting point because it uses 'live' data from which, warts and all, extremely
accurate classifiers can be constructed.

• Discordant assay results (Discordant): This domain is taken from the same Garvan
data, this time looking to detect anomalous combinations of thyroid hormone values.

3~-\0

There are two classes and the 3772 cases were divided as above. The percentage
of discordant cases is very low (about 1.5%) and, in contrast with the first domain,
the decision trees generated from this training set perform comparatively poorly on
unseen cases.

• Recognising faulty digits (LED D£g£ts): The third domain comes from (Breiman
et al, 1984). Imagine a seven-element representation for a decimal digit such as
is commonly found on LED or LCD displays. Each element of a faulty display is
subject to a 10% random error, i.e. with probability 0.1 its correct status is inverted.
The data consists of 3000 randomly-generated cases, each described in terms of the
seven binary attributes, with ten equiprobable classes. The training set contains
2000 cases, the test sets 500 each. This artificial domain is interesting because it
tests the ability of the simplification methods to deal with the complex decision trees
commonly obtained from noisy training sets.

• Assessing consumer credit applications (Cred£t): The data for this domain was pro
vided by a large bank. Each case concerns an application for credit card facilities
described by 9 discrete and 6 continuous attributes, with two decision classes. The
690 cases making up the data are divided into a training set of 460 and two test
sets of 115. Some discrete attributes have large collections of possible values (one of
them has 14) resulting in broad, shallow decision trees. This data is also both scanty
and noisy, giving decision trees that are extremely complex and not very accurate
on unseen cases.

• King and rook versus king and knight (Endgame): This domain from a chess endgame
seeks to decide whether the rook's side can capture the opposing knight and/ or
checkmate in 3 ply. Positions are described by 39 binary attributes, with all possible
board positions giving rise to 551 distinct cases. This domain models an idealised
noise-free environment with no missing information in which the accuracy of the
decision tree depends only on the completeness of the training set. Here the training
set contains 367 cases, the test sets 92 cases each.

• Probabilistic classification over disjunctions (Prob-Dis;): The last domain is an arti
ficial one designed to model tasks in which only probabilistic classification is possible
and which contains explicit disjunctions. There are ten boolean attributes a0 through
a9 and the criterion used to generate the data can be expressed as: if a0 A a1 A a2

or a3 A a4 A a5 or a6 A a7 A a8 then the class is Y with probability 0.9, N with prob
ability 0.1; otherwise, the class is N with probability 0.9, Y with probability 0.1.
(The remaining attribute a9 is irrelevant.) Because the class of a case is determined
probabilistically, no classification procedure can achieve more than 90% accuracy on
this task. Six hundred cases with random values for each attribute were generated
and classified as above. Of these, 400 are used as the training set, leaving test sets
of 100 cases each.

Original Cost- Reduced Pessimistic Production
Decision Complexity Error Pruning Rule

Trees Pruning Pruning Form

Hypothyroid 23.6 nodes 11.4 nodes 14.4 nodes 11.0 nodes 3.0 rules

Discordant 52.4 nodes 11.8 nodes 12.4 nodes 13.6 nodes 1.8 rules

LED Digits 92.2 nodes 45.6 nodes 59.0 nodes 56.0 nodes 15.8 rules

Credit 248.0 nodes 9.7 nodes 26.3 nodes 32.5 nodes 7.8 rules

Endgame 88.8 nodes 51.0 nodes 55.6 nodes 62.6 nodes 11.6 rules

Prob-Disj 190.0 nodes 30.4 nodes 43.0 nodes 42.6 nodes 4.2 rules

Table 1: Average Size Before and After Simplification

The results of these experiments are summarised in the following tables. The effectiveness
of the simplification methods in reducing the size of the original decision trees is shown
in Table 1, each entry being the average over the ten decision trees in that domain. As
a general observation, all the methods achieve significant simplification in all domains.
Cost-complexity pruning tends to produce smaller decision trees than either reduced error
or pessimistic pruning, especially in the Credit domain. While the complexity of decision
trees and sets of production rules cannot be compared directly, it would appear that
the last method achieves the greatest reduction overall, its advantages being particularly
noteworthy in the Prob-Disj domain.

The other side of the coin is the effect of simplification on classification accuracy. Table 2
shows the results in each domain of using the ten original decision trees and their simplified
counterparts to classify cases in the two test sets, expressed as the average percentage of
misclassifications over each set. Perhaps surprisingly, the simplified trees on the whole
are of superior or equivalent accuracy to the originals, so pruning has been beneficial on
both counts. Note, though, that both the cost-complexity and reduced error methods
have "seen" the first training set in performing their respective simplifications. The slight
superiority of reduced error pruning, coupled with the fact that cost-complexity pruning
produces smaller trees, suggests that the latter may be slightly over-pruning. Despite not
having seen the first test set, the performance of pessimistic pruning is marginally better
than cost-complexity pruning averaged over all domains. Simplification to production
rules, though, scores pretty clear wins in the last two domains. In the Prob-Disj domain
in particular, this can be explained by observing that disjunctive concepts tend to scatter
cases from some disjuncts throughout the decision tree. Pruning the tree is unable to
re-collect these cases, but simplification of rules can.

Original Cost- Reduced Pessimistic Production
Decision Complexity Error Pruning Rule

Trees Pruning Pruning Form
Hypothyroid

Test 1 0.3% 0.4% 0.3% 0.5% 0.3%
Test 2 0.8% 0.7% 0.8% 0.6% 1.0%

Discordant
Test 1 1.6% 1.1% 1.0% 1.0% 1.1%
Test 2 2.1% 1.6% 1.7% 1.5% 1.5%

LED Digits
Test 1 30.0% 29.9% 27.8% 28.8% 31.3%
Test 2 27.9% 28.7% 28.0% 27.4% 28.3%

Credit
Test 1 20.2% 14.4% 12.9% 15.8% 15.2%
Test 2 21.0% 17.1% 17.4% 16.4% 17.8%

Endgame
Test 1 11.8% 13.8% 10.0% 13.1% 11.1%
Test 2 10.5% 13.4% 11.6% 12.1% 7.3%

Prob-Disj
Test 1 17.0% 14.2% 10.1% 14.0% 10.0%
Test 2 18.4% 17.2% 17.8% 15.8% 10.0%

Table 2: Average Error Rates on Test Sets

One further possibility has been explored. There is no obvious way to merge distinct
decision trees, so pruned trees from different originals cannot be combined to form a
composite tree that reflects the various strengths of its components. No such limitation
applies to the production rule representation, though, because the union of sets of rules
is itself a set. This line of thought led to a final experiment in which, for each domain,
the rule sets produced from all ten decision trees were amalgamated and the collection
winnowed as before. The composite rule set was then used to classify all cases in the test
sets. The results in Table 3 show that these composite sets of production rules are both
compact and accurate classifying mechanisms, matching or outperforming the best of all
other methods on nine of the twelve test sets.

~-13

Number Error Rates
of Rules Test 1 Test 2

Hypothyroid "3 0.3% 1.0%

Discordant 2 0.6% 1.4%

LED Digits 23 28.2% 25.8%

Credit 11 13.0% 15.7%

Endgame 12 9.8% 5.4%

Prob-Disj 4 10.0% 10.0%

Table 3: Error Rates of Composite Rule Sets

4. Conclusion

The intention of this paper has been to investigate methods for simplifying decision trees
without compromising their accuracy. The motivation behind this drive towards simplicity
is the desire to turn decision trees into knowledge for use in expert systems.

Four methods have been discussed, all of which managed to achieve significant simplifica
tion when put to the test on sets of decision trees from six task domains. This simplification
was often coupled with an actual improvement in classification accuracy on unseen cases.
Two of the four methods needed a separate set of test cases in order to carry out the
simplification and, since these did not perform noticeably better than the remaining two
methods, the requirement of additional test data is a weakness. The last m~thod, in which
decision trees are reformulated as sets of production rules, has proved especially powerful.

Acknowledgements

I am grateful to the Garvan Institute of Medical Research for providing access to the
thyroid data, and to Les Lazarus and Paul Compton in particular for their help. This
work has been supported in part by grants from the Australian Research Grants Scheme
and the Westinghouse Corporation.

References

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984), Classification and
Regression Trees, Belmont: Wadsworth~

Buchanan, B.G., and Mitchell, T.M. (1978), Model-directed learning of production rules, in
Pattern Directed Inference Systems, (D.A. Waterman and F. Hayes-Roth, Eds.), Academic
Press.

Feigenbaum, E.A. (1981), Expert systems in the 1980s, in State of the Art Report on
Machine Intelligence, (A. Bond, Ed.), Maidenhead: Pergamon-Infotech.

Finney, D.J., Latscha, R., Bennett, B.M. and Hsu, P. (1963), Tables for Testing Signzfi
cance in a 2 x 2 Contingency Table, Cambridge University Press.

Kononenko, I., Bratko, I., and Roskar, E. (1984), Experiments in automatic learning of
medical diagnostic rules, Technical Report, Jozef Stefan Institute, Ljubljana, Yugoslavia.

Lavrac, N., Mozetic, I. and Kononenko, I. (1986), An experimental comparison of two
learning programs in three medical domains, Proceedings of ISSEK Workshop 86, Turing
Institute, Glasgow.

Michalski, R.S. and Chilausky, R.L. (1980), Learning by being told and learning by ex
amples: an experimental comparison of the two methods of knowledge acquisition in the
context of developing an expert system for soybean disease diagnosis, International Journal
of Policy Analysis and Information Systems 4, 2.

Michie, D. (1983), Inductive rule generation in the context of the Fifth Generation, Pro
ceedings of the Second International Machine Learning Workshop, University of Illinois at
U rbana-Champaign.

Michie, D. (1986), Current developments in expert systems, Proceedings of the Second
Australian Conference on Applications of Expert Systems, Sydney.

Quinlan, J.R. (1986), Induction of decision trees, Machine Learning 1, 1.

Quinlan, J.R., Compton, P.J., Horn, K.A. and Lazarus, L. (1986), Inductive knowledge
acquisition: a case study, Proceedings of the Second Australian Conference on Applications
of Expert Systems, Sydney.

Snedecor, G.W. and Cochran, W.G. (1980), Statistical Methods (7th edition), Iowa State
University Press.

Waterman, D.A. (1986), A Guide to Expert Systems, Addison-Wesley.

Winston, P.H. (1984), Artificial Intelligence (2nd edition), Addison-Wesley.

Knowledge Acquisition for Knowledge-Based 'systems Workshop, Banff, Canada, Nov., 1986

Multiple problem spaces in the knowledge design process

Alain Rappaport*

Neuron Data
444 High St Palo Alto CA 94301

The Robotics Institute
C-MU, Pittsburgh PA 15213

Abstract: Designing a knowledge base is viewed as a problem solving task in which the
skilled individual's knowledge and behavior must be mapped into the system, preserving the
compiled knowledge acquired by experience. The expert's problem space is very large, but its
breakdown into three major subspaces allows one to formalize this approach. Selective
interfaces and high-level heuristics as well as a flexible knowledge representation not only
elicitate knowledge but also allow shifts in the designer's methodologies used in the
knowledge design task. High-level programming, stressing the importance of the mental
models, should allow to bypass the current bottlenecks of having to decompile the
knowledge into a restricted representation and then reconstruct the control structures to
recover the expertise. Thus problem solving, or knowledge design, becomes a functionality
available to domain experts themselves.

The following reflections aim at the construction of a comprehensive theory of knowledge
acquisition and transfer, in the context of a direct relation between the domain-expert and
the machine. This work is linked to the development and use of the NEXPERfl'M hybrid
knowledge-based system.

KNOWLEDGE DESIGN

A problem is defined as an event which requires the immediate allocation of resources
because it cannot be dealt with in an automated fashion and/ or the event is too new or
different. Thus, the dependence between the notions of problem and that of observer of that
problem makes this observer's behavior a critical element of the description of problems in
general.

The lack of formalization of human knowledge is not solely due to its variety of expressions
and to the complexity of the thought processes. It is also due to the fact that a lot of the
interesting human knowledge is compiled knowledge, resulting from more or less long
experiential learning. It is reflected at the behavioral level by the quick allocation of the
correct resources and a high degree of efficiency in the problem-solving activity.

The task of formalizing knowledge of a domain and the associated mental processes in the
building of a knowledge base application is itself a problem-solving task, taking the
information processing viewpoint. The progressive assembly of chunks of knowledge
reflects a task of search through a large problem-space: the expert's domain. We call this
task of incrementally discovering and refining knowledge "knowledge design". It can be
studied according to the "problem-space" principle (Card et al. 1983). Since the expression of
knowledge into the knowledge system reflects the designer's short-term memory at any
time, the design of the tool itself should help to correctly focus the designer's attention.
optimizing the search function by providing heuristics and elicitating high-level
problem-solving techniques.

DECOMPILATION OR NOT

Human knowledge expresses itself at the behavioral level and not only as textbook
knowledge. The behavior level is clitical in the nature of expert knowledge, versus novice
knowledge. It is of course the case that two people could have the same book knowledge.
However, the distinction between the expert and the novice will be in the speed of
recognition (simon chess) and problem-solving techniques used when confronted to a
problem. The expert has accumulated expelience which results in rules of thumb, intuitions
and inductive reasoning.

These elements account for a difference in performance. Is expert knowledge only an
increase in performance of the search functions? Learning processes are certainly not only
limited to skill acquisition. Rather, they result in the acquisition of compiled knowledge,
or elements of knowledge which properties have somehow emerged from the assembly
and/or transformation of past, more elementary or obsolete descriptions. It is the comple.~
result of linear mechanisms (practice) and, most importantly, non-linear ones (analogy,
discovery, examples ...). A given element of knowledge, be it a rule or a structured object,
embodies both objective textbook knowledge and subjective, proprietary heurtstics for its
manipulation relative to the others during problem-solving. For the moment, we shall focus
on the translation of human knowledge into a machine program with a maximum
comparative efficiency.

How much of this human knowledge needs to be decompiled for its translation into a
knowledge-based system? There is an obvious high cost in performing the decompilation,
trying to rediscover the reasons back into the expertence. Retrospection in a process such as
long term learning by expertence is difficult. Furthermore, artificial agents would have to
re-learn by experience in order to reach again the same level of competence, and thus
performance. Although decompilation may be often necessary, and non-compiled
knowledge must be expressed, it is important to develop languages in the AI tools allowing
to directly map this compiled knowledge.

The difference in behavior between the expert and the novice in real life can be best noticed
for instance at the attentional level. The expert rapidly focuses on the most relevant
knowledge and then organizes the agenda in a structured fashion. On the other hand, by that
time the novice has not infered yet the important discrimination factors; s/he has not
dynamically indexed the long-term memory and has not replaced enough search by
knowledge.

Thus, we need an approprtate miX of functions and representations allowing both the
preservation of the compiled knowledge and the decompilation of other aspects of the
expert's corpus of knowledge requiting the representqtion of lower level, algortthmic tasks.
The preservation issue requires the availability of high-level plimitives in the system,
whilst the decompilatlon is addressed here by interface issues. In any case, if the expert is
aware of available compiled knowledge, knowledge systems should be able to directly
capture those heuristics and not force the designer into a low-level representation of the
task requiring a decompilation effort. This effort would moreover have to be followed by one
aiming at reconstructing the efficient behavior using the system's functions from the
decompiled knowledge.

In order to work towards a comprehensive theory for the design of such gystems, we chose to
approach here the lmowledge acquisition issues from the problem-solving perspective. We
need to explore how the problem-space of the domain-expert can actually be searched.

'l.>l-\

KB System Designer rl
Knowledge Designer r• I

Application (+ J
Problem +

FigureL Recursive problem-solving tasks in the design and use of knowledge-based systems. The
knowledge environment designer has to solve the problem of building the system. To do so, information

on how knowledge designers solve the problem of building a knowledge base is useful. In turn, the
application solves the problem. The knowledge designer is the domain expert in this model.

Since we assume that the domain-expert is performing a problem-solving task, we may
consider what techniques are being used (or should be) from the computational point of
view. In the very initial phase, s/he may not have a well structured goal. Either the
problem-solving functionality is unknown to the expert or no particular task or domain
has been identified yet. Using the tool thus consists more in an exploration than in an
actual design. However, the tool must be able to show its functionality and potential. Past
this early phase, the task of the expert is to implement a particular problem in a given
domain. The absence of clear heuristics and in particular experience with the tool from
which to draw upon will gear the expert into the use of domain-independent methods such
as means-ends analysis (creating subgoals and achieving them). As the user becomes
experienced with the tool, s/he can draw upon this experience to design new applications.
Therefore, analogical reasoning becomes relevant. Such approaches may be combined with
others such as plan instanciations. The two main factors to be considered are: there must be
an evolution in the type of problem-solving techniques used and elicited by the tool, in order
to gain performance.

The design of the system's specifications must be influenced by this information processing.
approach (fig 1). We distinguish two overall types of methods, the weak ones address
domain-independent knowledge acquisition while the others are task-dependent. In the
present study, we are concerned mainly with the weak, domain-independent approach, and
the progression towards domain-dependent methods that the tool must favor.

DECOMPOSITION OF THE PROBLEM SPACE

The designer's problem-space is made of all the knowledge available to the expert. Thus, it is
apparently too large to be considered, both in nature and in size. In order to progress, we
should decompose this problem-space in subspaces corresponding to particular functions in
the design task. The following decomposition into three subspaces allows us to formalize
some important design issues. ·

The application space

The application space corresponds to the corpus of domain specific chunks of knowledge
used by the expert. From the specifications point of view, it addresses the representational
component of the design task.

Representation. From the point of view of the tool's design, unless one voluntarily limits the
type of problems to be addressed, the system must support various, though interrelated,
knowledge representations. There is of course no need to work at the level of the actual
"thing", as if the images compared by the mind were compared at their primary level of
perception on the retina. This approach does not make sense from the computational
viewpoint. Thus, the lowest level of representation should be of a high enough symbolic
level, such as objects with a local and global organization, describing the percepts
(instances) or concepts (generalizations) as sets of properties and relations. Such static
representations must coexist with more dynamic ones from various types of constructions
to rules, which by def"mition give a sense of cognitive progression and problem-solving to
the developer. The representation environment can be seen as a multi-dimensional space of
structures related one to the others. For instance, rules address objects, perform
pattem-matching on their multi-level organization, modify their characterictics and their
values.

Whether a unification of the mental and physical models is possible or even desirable is
difficult to assess and is case-dependent. The observer-dependent components of the
knowledge base can be rules as well as objects. Previous studies (Larkin 1983) have shown
the shift in the nature of the representation from novices to experts. What we would like to
stress is the need to be able to represent the psychological representation of problems in the
expert's mind.

In modelling processes for example, the descrtption of the device can often be more or less
abstracted and reduced to the main events which may occur and their impact on the system.
This description can be very dependent upon the expertise and experience of the
domain-expert. More classic simulations aim at linking an intelligent system to or using
the language to program a ve:ry precise descrtption of the system's functioning. The result is
a greatly increased difficulty in both the debugging and the maintenance of the system. The
implementation of the expert's model of the key events and functions can be as powerful and
provide a more dynamic, maintainable model.

Another example of adaptiveness of the representation is the composition of models in
terms of instances and classes. These notions are useful to direct the transfer process from
the expert to the system. However, one must be able to reflect, in the organization of those
structures not only material, physical relations but also psychological manipulations.
Down-inheritance allows one to describe the hierarchical physical nature of things. Whilst
the description may be correct, it use by the mind looks often more like a heterarchical
world. When one sees the ve:ry front of a car one can surely infer the calor of that car before
seeing the entire object. The system allows rapid transformations from prototypical objects
to generalizations and vice-versa, as experts do. The dynamics of the structural
representation is a graph of unt- or bi-directional relations. This flexibility is essential in
reproducing the use of concepts and examples in reasoning (as well as metaphors), and in
establishing correponding learning mechanisms.

Structure editing and compilation. Because of the variety of domains, tasks and even
approaches to similar tasks, we need to insure a basic flexibility in the editing mechanisms,
so that the designer can talk about objects, classes or properties in a rule before creating the
latter ifs/he has a better sense of the dynamics than of the overall representation. Indeed,
the high level implementation - not exclusive of the rest, is best allowed by not forcing any
particular framework of development such as static knowledge first followed by dynamic
operations on the knowledge space. Rather, an approach allowing a permanent shift
between the different aspects of the domain (mainly the static and dynamic components)
should best capture the natural equilibrium betweeen those concepts in the actual task.

Hence, being able to extract as much information about the structures from the rules at the
compilation is critical, for the rule compiler automatically assumes part of the work at the
descriptive level as well. Furthermore, the rules applied to previously created objects should
be able to bring about important information about the more precise nature of objects and
their properties. We call this concept of editing objects and classes from their description in

rules cross-compilation of lmowledge structures. The objective is to adapt the system to the
great fluidity and complexity of the overall model of the task, reflecting both the mental
and physical components of the model. Furthermore, in order to allow a continuous
development, incremental compilation of structures by the tool is necessary.

Selective interface. Whatever the application domain, it is necessary to capture the chunks
of lmowledge involved in the task to be modelled. These chunks can be rules, schema, frames
or other representation. In any case, there is, for the domain-expert, the task of finding or
discovering what those chunks are and entering them into the system. Thus, the primary
work takes place at what we call the microscopic level. Even though the designer certainly
has in real life a global vision of his/her task, this perception may be lost when it becomes
necessary to work at the microscopic level.

It is thus important that the tool allows one to take a global view at the space of lmowledge
elements, objects or rules, that is to say automatically reconstructs the structural links
between them, thereby generating a global image of the corpus of lmowledge (as a whole or of
part it). To provide such functions, one must take advantage of the selectivity of visual
perception (Arnheim 1969) and its powerful global/local relation. It maintains the correct
focusing of the attention on more or less complex arrangements of chunks of lmowledge.
Such visual thinking provides a powexful incentive to create new chunks and structure the
lmowledge.

Provided that the visual tool is part of an interactive environment, the visualization greatly
enhances the tasks of unification, organization and integration of lmowledge. It also allows
the reformulation of parts of or entire problems. This elicitation factor is even more
important when one lmows that mental representations of a problem are by essence more
fluid, changing more often than the physical ones.

NEXPERT allows one to represent the macroscopic structure of the lmowledge chunks via
the Network functionality. In general, the meshed networked structure of lmowledge does
not only result from the fact that certain concepts share attributes in their definition, but
also from the way they are processed by the rules. Thus. there are functional links between
the elements of a lmowledge base. as follows in the figures showing examples of the Network
of rules (fig. 2, 3).

..
actiorL4?~

o EquaLtanks?
=> Show XDRC-FOB

Figure 2. Deductive navigation in a knowledge-base (rule plane) using the NEXPERI' network.

37-~

The possibility of navigating through a knowledge base by simulating/viewing inference
functions (deductive/backward and evocative/foxward), and the structural organization of
objects is crucial in the understanding of the knowledge processing task by domain-experts.
The evocative navigation simulates some of the foxward processing notions, such as the
immediate agenda set-up upon volunteering of one or several data values. Furthermore, in
both ways, the declarative conflict resolution method in NEXPERI' can be also visualized, as
well as the object representation.

Figure 3. Evocative navigation. Clicking on the CRr_and_KDU item With the forward icon
displays the goals or subgoals in which this attrtbute Is involved.

Figure 4. Overview of a navigation in parts of a knowledge base. It was noticed that domain-experts
recognize the Visual patterns of rules belonging to their knowledge base, facilitating the use

of this zooming mechanism.

37-5

The cognitive continuum between the user and the knowledge thus results from two
important elements: the representation must attract the user's attention with the highest
gain, and the actions resulting from this observation must be rapidly integrated.

At the same time as the interface can correctly keep the designer's attention on the
incremental editing of knowledge, lower-level interface optimizations must prevent the
perturbation of this effort by distractions due to a bad display organization and/ or
non-optimized click-distances.

The Methodological space

The methodological space addresses the system's ability to model the behavior of the expert,
or the dynamics mental model in terms of available inference functionalities. It thus
addresses the functional component of the overall problem-space.

Human reasoning vs. theorem-proving. There are fundamental issues to tackle as well
concerning the logical mechanisms available to the developer. The philosophical attenpts
to establish a relation between formal logic and identity has now been overcome by a large
body ofwork, and new approaches to logic tend to formalize a more psychological approach
to logic (McDermott and Doyle 1980, Doyle 1982, Harman 1985). Flexibility in the
representation of facts and logical dependencies is thus necessary. In theorem-proving
situations, the facts cannot be contradicted because of their universal validity, whilst in
human reasoning, new data come and contradict previous inferences all the time.
Inferences at the mental level reflect the application equivalence relations based on the
permanent matching to the environment. On the contrary, formal logic approaches do not
clearly distinguish facts from theorems and are search-driven instead of being
event/ concept-driven. We feel that the logic must be somewhat more adaped to the
non-monotonic nature of human reasoning. More formal approaches can be applied to local
subproblem spaces to which they are relevant.

The main charactistic we emphasize is the need for the knowledge designer to be able
concentrate on the implementation (mapping) of his/her thought process rather than on
having to focus permanently on the consistency of the underlying representation language,
as in prolog-like systems. The result is an acyclic graph of rules.

Agenda levels. As said above, a major way of distinguishing an expert's behavior from that
of a novice is to study the focus of attention, which reflects a compiled set of heuristics to
perform an optimized search in the problem-space.

In NEXPERT for instance, the context allow sets of related rules to be linked together by
what are called weak links. Such links represent shifts in the focus of attention, products of
highly compiled knowledge. They are not symetric and thereby allow the easy sequencing of
a job, the representation of intuitive, inductive knowledge (which does not need to be
decompiled). The first result from a computational and knowledge design point of view is an
important economy in the number of rules used to represent the problem.

Different levels of granularity in the focus of attention can be distinguished, from the
prompting order directed by knowledge of a cost efficiency measure to the selection of
overall goals on experience-defined criteria. These agendas are easily implemented using
declarative mechanisms at different levels of the representation. This corresponds to a
controllable, dynamically updated, declarative agenda, opposed to the lack of accessible
control structures of lower level languages which operate while generating of large
quantities of eventually useless information. Sets of rules can be as small as one desires.

In order to insure all levels of implementation. the system must integrate various

37-~

methodologies for such mappings as well as more classic issues, from agendas to
prodution-system-like mechanisms. Figure 5 shows an architecture where different
granularity levels for the focus of attention are used in the same knowledge base in the
NEXPERf system. It shows a sample architecture of a knowledge base, with its different
levels of knowledge processing.

Each ellipse encircles a knowledge island , an independent set of rules, sharing no attributes
with one another. Within each island, progression occurs in an integrated forward (fwd) and
backward (bwd) fashion. The islands are linked by a forward indexing mechanism, the
context. indicating future focus of attention. New directions of search can also be selectively
induced as a result of right-hand side (RHS) actions. The flow of control from one island to
another or the effects of any RHS action can be controlled from the rules themselves. For
instance, the consequences of RHS actions may or may not be investigated. The overall
result is the possibility to organize the search according to psychological evidence. The
fluctuations of the focus of attention are not necessarily trivial and declarative access to
this mechanism should enable the implementation of many variations.

Figure 5. Management of the focus of attention by declarative heuristics. The top·level flow of control from the
original task is concerved by the system. Horizontal (e.g. scheduling) as well as hierarchical

(refinement) or mixed representations can thus be implemented.

The concepts of contexts and knowledge islands represent the type of shortcuts necessary to
embody intuitive reasoning without haVing to go back to a description of the physiology of
the problem or of the causal mechanisms (deep knowledge). Contexts act as declarative
heuristics limiting the search space. However, within each island, the problem-solving task
can be quite similar to more classic systems. Still, inside each island the focus of attention
can be controlled as well, simply at a lower granularity scale.

Thus, the control of the flow of information must be accessible by the use of "cognitive
primitives": local and global priorities, context links, revisions, conflict detection ... At the
same time, more classic approaches, closer to the algorithmic calculations and searches,
such as Prolog or OPS can be used to perform subroutine work in adequate, relevant
problem subspaces. Thus, cognitive primitives represent the high-level programming,
embodying control mechanisms, while languages that lack control structure should be used
to perform sub tasks (recognition, filtering, tree searching etc ...) of a more algorithmic
nature, as treated by production systems.

'37-7

The mosaic conception of uncertainty treatment. When solving complex problems or
assessing complex situations, different qualities of knowledge are often applied. Regarding
uncertainties in the knowledge itself or from the user, this knowledge mosaic must be
treated with a corresponding mosaic of methodologies, for no uncertainty treatment
method found to date has a universal value. Thus, it is necessary to be able to implement
different methodologies within the same knowledge base. From the designer's standpoint,
limitations in the uncertainty treatment prevent the implementation of adequate
mechanisms. Rather than orienting the search problem of the designer, it perturbs it.

For instance consider a situation assessment requiring the use of empirical test results.
These can be processed using conditional probabilities. However, the same treatment may be
unsuitable for other elements of the knowledge base which do not lend themselves to this
type of analysis. More arbitrary techniques such as certainty values or knowledge based
techniques such as default assumptions provided by the domain expert(s) to solve particular
problems may become relevant for other parts of the same knowledge base. In the latter case,
uncertainty is solved by situational rules derived from an expert's experience. Furthermore,
as mentioned previously, logical dependencies are necessary in order to backtrack along
previous reasoning paths, to revise beliefs and conclusions. Uncertainty design results from
the availability of different tools to adapt the methodologies to the nature of the knowledge
being treated.

The processing space

The processing space is the problem-space in the design task concerned with the execution
of the program. It precisely addresses the relation between form and function, and makes a
bridge between the two subspaces above.

The runtime environment for the designer must allow a selective reduction of the overall
search space, setting its boundaries by allowing to interactively discover inconsistencies,
irrelevances, redundancies as well as potential unifications and refinements.

Figure 6. This display of a Rule Network graph shows the state of part of the body ofknowledge during
a session. The icons and different fonts and styles indicate the various states of the conditions and

goals. Rules can be edited during the session by calling the rule editor
which then compiles modifications incrementally.

Insuring the cognitive continuum between the user and the system requires that the relevant
design tools remain available during the verification phase, in which the user tests the
current state of the lmowledge base. The notion of example and trial execution is central to
the development process, addressing the refinement and verification functions. Execution
of the inference process based on the available knowledge at any time focuses the designer's
attention on selecting the most relevant chunks oflmowledge.

While the use of the Network in a non-interactive manner favors a rapid growth of the
corpus of knowledge, the same visual information obtained during execution (fig 5) is of a
different order: it sets boundartes to the designer's search space, and prevents the designer's
inference process from drifting to unnecessary subspaces of knowledge.

Hence, it is necessary to integrate these functions into a coherent psychological
environment. The execution phase brings new information which needs to be rapidly
included in the system. Since such modifications stemming from testing the dynamics of
the system's knowledge are of a particular order, they should be tested as quickly as possible
within the same execution environment. This functionality requires an incremental
compiling mechanism (creating, modifying or deleting a rule) available during the
execution. Coupled with dynamic visualization, this allows one to maintain the designer's
focus all along the debugging of knowledge. These facilities constitute an interactive
knowledge design environment.

Yet another important issue addressed in the processing space is the tracking of
inconsistencies. When lmowledge based systems use formal logical statements, thereby
confusing rules with theorems, inconsistencies exist only in the internal anatomy of the
knowledge (theorem) base. The consistency checking is therefore mostly independent of the
problem solved, and pre-processed according to laws and constraints which may have little
to do With the nature and human treatment of the problem. Because of the necessity to
represent reasonings such as default reasoning or to live with inconsistencies which are
actually dynamically solved by the data of the problem, the high transparency of the
execution phase is a critical asset for the design environments. Inconsistencies are
incrementally discovered.

METHODOLOGICAL PROGRESSION

Weak methods, analogy and learning

Considering such powerful techniques,we can now come back to the actual search process
taking place in the expert's mind. Initially, the expert is lacking knowledge on how to make
a knowledge-base and must rely on an intensive exploration of the tool's capabilities. This
will involve the use of the many different mechanisms but can only be useful if certain
properties such as incremental compilation and fully interactive environments are
available, with the smallest amont of low-level tasks (variable declaration for instance
which can be handled automatically as in NEXPERr from reading the structures). In this
first phase, the approach is weak, in the sense of weak methods for problem-solving, i.e.
domain-independent (Laird and Newelll983). At this level, the interface issues as well as the
format and editing mechanisms of the knowledge structures are critical to gain acceptance
and keep the attention focused.

The tool is then supposed to elicitate not only the extraction of knowledge from the domain
expert, with the incremental discovery of new lmowledge chunks and refinements, but also
to tiigger shifts in the approaches to the construction of the knowledge-base, which will
reflect a better understanding of the tool and its use to formalize a problem. We shall not
dwell here upon the obvious practice effect on the use of the tool's text and graphic,
menu-oriented interface. One important thing in this regard is of course the adaptlveness of
the commands' access as practice is acquired and most skills are built. We are concerned
here rather with the internal representation and approaches of the knowledge design task in
the designer's mind.

)7-4

The visual navigational tools have the major advantage of combining a macroscopic
reconstruction and a complete description of the world of inferences and structures involved
in the task. The visualization helps to develop models which are symbolic descriptions of
rules or objects which perform certain functions in given contexts. This occurs with any
individual learning a tool's use, but we are concerned here with the rapid facilitation of this
process in order to make the reasoning functionality available to domain experts directly.

Thus, there is a clear progression from what is initially a weak, domain-independent
approach to more structured, domain-dependent thinking involving in particular the
notions of chunking and reasoning by analogy. Chunking (as in Rosenbloom and Newell
1985) is facilitated by the interactive interface which favors the unification of elements of
knowledge as part of the refinement process. While chunking may result in the generation of
new structures, the interface also favors the exploding of too compact chunks, the reverse
process. The interactivity of the tool allows one to take advantage of those mechanisms.

At a somewhat higher level, reasoning by analogy is also enhanced by the tool. It applies to
the use of control structure mechanisms such as the various levels of agenda in the
architecture, as well as analogies at much lower levels of granularity such as "copying and
editing" a rule acting as a template.

The following text is an example of an account of a knowledge acquisition process by a
user. The domain expert in chemical engineering had no prior knowledge of AI or
programming.

Expert System Building steps using NEXPERT™
1. General Description of the problem

This expert system (ES) is a troubleshooting-diagnostic program for quality defects on a
production line. In the past, the operators were instructed by a line specialist. This system attempts
to replace the line specialist for most of the routine problems, while recognizing the possibility of a
difficult problem that might still require the line specialist.

The operator will identify a defect and then use the ES to correct the production line. He will be
guided through several steps to correct the problem, anyone of these steps or actions might correct
the problem, but there is no real certainty which of the actions will do it. Therefore it is important to
constantly check to see if the action was carried out and if the problem was corrected.
2. Identify Knowledge Islands

At first I implemented a set of rules from an old troubleshooting guide. I then realized that this
problem was fairly nicely divided into five knowledge islands. I spent soma time learning how to
organize the overall problem. lt took me awhile to grasp how the rules could both be forward and
backward chaining and then to understand the use of context to control 'weak links'.
3. Develop Meta rule for ordering the rules

Concentrating on the first knowledge island, I worked out a system for setting the order that the
rules would be fired in. At first I used categories, but I then decided that it would be better to use a
meta-rule to control the rule order. Once I had debugged this structure I cloned the same structure
for the other knowledge islands.
4. Develop method for cycling each rule

After demonstrating the initial ES several people commented that in the real world the expert will
verify if the action was in fact taken and if it worked, until a positive response is given he will not
precede. Therefore, I developed a method for cycling each question and checking to see if the
problem was solved. I again debugged this procedure on the first knowledge island and then cloned
the procedure for the other islands.

Tablel. Protocol obtained from a designer with NEXPER'fl"M.

A rapid analysis of the report in Table 1, paragraph by paragraph, allows us to distinguish
some interesting mechanisms:

(0 description of the nature of the task at the basis of the application.

(ii) exploration phase based on previous models and design of an overall architecture, from

~7-(0

the focus of attention Viewpoint.

(iii) work on a sub-problem using specific methodologies provided by the tool (reset,
categories, meta-rules. Then notion of "cloning", or mapping the same structure to another
part of the problem. This is the simplest level of analogical reasoning, where the problems
(or subproblems) are very similar.

(w) modifications are suggested at the cognitive level (cognitive debugging) concerning the
temporal course of the task. The overall progression described before is re-used (analogy)
and the system is updated. The notion of "cloning" is adopted as a problem-solving
technique. The problem-solving strategy used previously is mapped to the current problem,
in a derivational analogy-like process. A technique has been acquired for solving a
particular problem and is re-instanciated as a whole after having been identified as
relevant.

In reporting the structure of the knowledge base, the designer also describes the use of a
technique, or operator recursively applied recursively. In this instance the system can use
the same control strategy at different scale levels of the architecture. The implementation is
made possible by means of the reset operator and control over the propagation of new
information.

Finally, it is of interest to note the learning process exposed by the expert. We can observe
the shift in methodology and representation from what seems to be a type of exploratory
approach to an experienced based approaches, as in cognitive development (Piaget 1954,
Carey 1984). In this particular case, the overall architecture built here is currently being
transposed to a similar task to be modelled.

The protocol described in Table 2 by a knowledge designer working on a complex task
reflects both similarities with the other one and another aspect of the knowledge design
task. The initiation of the project with textbook knolwedge, rapidly followed by an
implementation of the expert's knowledge. The textbook knowledge serves as a primer
example on which the initial learning takes place. The interactivity of the tool is critical in
this phase, for the domain-expert to focus on the tool and obtain a sense of the
problem-solving methodology.

1. Map sequential textbook steps into intermediate hypotheses (DE)
2. Determine use of certainty factors (how, what for, thresholding, techniques (OS, Fuzzy sets ...))
(DE)
3. Code and debug first set of rules (DE)
4. Demonstrate to human experts (DE)
5. Select the right approach for easy extension (DE+ AI eng)
6. Determine operator-prompting sequence
7. Generate Show and Apropos files (DE, long task)
8. Code and debug a second set with a new architecture taking into account more assumptions,
concepts and ideas (DE+ AI eng)
9. Categories to achieve prompting sequence (DE+ AI eng)
10. Determine appropriate strategies (DE+ AI eng)
11. Extend second set of rules (DE)
12. Debug with intensive use of the Network, this task was extremely simple (DE + AI eng)
13. Multiple level Apropos, mutiplication of the second set into many such sets to deal with pther
aspects of the problem and complete the knowledge base, and linking the sets (DE).
14. Demonstrate to human expert (DE)

The expert did all the coding. The AI engineer identified problems in the way the DE implemented the
problem and was there to provide advise and debuggin help. Furthermore, the AI engineer did not
have to know much about the application.

Table 2. Protocol of a development by a domain-expert, illustrating the major role domain
expert in the design process. (DE : domain expert, AI eng: AI engineer).

?7-(l

This example also illustrates the replication approach, allowed by the ability to test and
understand the behavior of the system on small but representative sets of rules. Moreover,
and this is the second aspect, the tool is in the hands of the domain-expert and the AI
knowedgeable person intervenes by "looking over the shoulder''. providing (important}
advise. This transfer of power to the expert is critical in the end-result mapping of its
thought process.

Elicitating problem-solving methodologies. We are thus concerned here with the
optimization of the elicitation of such process by means of automated tools. The examples
above concerns specific tasks to be modelled . Other types of applications have been built
where the same type of reasoning process takes place with the expert. The ability to provide
quickly and concisely a report on the making of an application by an AI novice is
illustrative, in our sense, of the "mapping" effect .looked for. The extensive use of the
Network also recalls the notion of "perception of analogies" put forward by Polya (Polya
1945} in problem-solving activities.

Such behaviors can only be elicitated and maintained if the tool's mechanisms are close
enough to the cognitive mapping concept and is thus based on very high level primitives, the
rest of the knowledge invoved being dealt with with classical methods (by the same system
though).

It is thus indispensible to provide not only powerful interfaces but an underlying language
allowing these high level implementation. If most of the work is concerned with making
sure that the language's rules and low level indiosyncrasies are consistently used, it is that
much less work done at the high-level. In other terms, if the reconstruction of the control
structure requires programming in a forbidding language, the tool will remain as obscure as
it can be. Hence, the need for high-level primitives such as the context and other declarative
accesses to the inference mechanisms, which can be quickly understood and manipulated by
the domain expert (because they are close to the cognitive description the expert has of the
task}.

Thus, we observe a progression in the problem-methodologies used by the domain-expert.
Much research and implementation remains to be done though in this direction, to find
more adapted techniques. The shift in methodology is typical of a basic learning process,
involving first weak-methods and progressively showing capabilities in reasoning by
analogy or discovering macro-operators for the design of a task. As those techniques are
applied, the body of knowledge on how to construct a knowledge base increases and can be
used for new, different domains, allowing the rapid identification of similarities between
tasks and domains. The aim is to considerably reduce the overall learning curve.

Automated integrated tools

Such techniques could be associated to automated interviewing tools for knowledge
acquisition. The work based on Personal Construct Psychology for interactive interviewing
(Boose 1985, Gaines 1981} illustrates the progress of such techniques. A structural analysis
can yield rules used by an expert system. However, there cannot be any a priori as to how the
rules should be processed. A forward-only or backward-only inference mechanism would be
too "prejudiced" to allow a correct cognitive debugging. On the other hand, a more
opportunistic system with symetric rules as in NEXPERT will allow one to fully test the
meaning of the resulting rules and , along with the visualization mechanism. will allow the
progressive refinement (unification, selection etc ... } of the initial knowledge (Shaw and
Gaines 1986). Also relevant are automated techniques based on the analysis of reports from
skilled individuals (Nisbett and Wilson 1977, Ericsson and Simon 1983).

Furthermore, learning techniques performing comparable tasks (Winston 1980,
Rosenbloom and Newell 1985, Carbonell 1985, Cheng and Carbonell 1986) could be

progressively included into the tool so as for the latter to automatically analyse, from its
perspective, the structure of the knowledge and adapt its reasoning methodologies. Learning
mechanisms should not result into the implementation of a black box but should also be
interactive. Task-dependent knowledge can also be used to guide the exploration of the
problem, as in classification applications (Eshelman and McDermott 1986).

CONCLUSION

While graphical interfaces were not studied in previous work (Card et al. 1983), they actually
play a fundamental role in the design of intelligent systems. As in the case of automatic
algorithm design (Kant 1985), the problem-solving approach is a powerful heuristic for
building both perceptual and automated tools. New issues in the psychology of the
human-computer interface arise from systems as the one described here, leaving plenty of
perspectives for a hardening of the psychological approach (Newell and Card 1985).

HIGH-LEVEL PROGRAMMING

Exploration

Analogy

Visual lhinklng

lnteractivi!y

... ···'
Macro-operators

Mapping

········
... ...

OBSERVER

...
····· ,,, ..

'··· ······
Compiled knowledge

Domain-specific methods

Domain knowledge

Heuristics

Algorllhms

'•

... ...

.. ..

Incremental compilers TASK
MODEL

flexible representation

user-defined control

focus of attention

PROBLEM

Figure 7. The distance between the problem-solving activity and the model being implemented must be
minimized. While low-level programming requires decomposition of the problems into many, small
elements of knowledge and then the reconstruction of the control structure, high-level programming

attempts to preserve via elicitatlon and high-level operators a maximum of compiled knowledge.

Based on a cognitive analysis of the task of formalizing knowledge, key issues in the design
of knowledge-based systems can be identified which limit the need for the knowledge
engineer and gears the technology towards the status of a functionality per se, directly
available to the domain-experts. The resulting concept is that of high-level programming
(fig 7).

In general, progress is sought both on the impact of artificial systems on the reasoning of the
human experts and on computational methodologies alloWing an implementation of the
expert's design of a task as opposed to an implementation of the expert itself.

31-l~

ACKNOWLEDGEMENTS
The author thanks Albert Gouyet, Bruno Jouhier, Patrick Perez and Chris Shipley for most
helpful comments on earlier drafts. Special thanks also to Jaime Carbonell and Brian
Gaines for some insightful discussions. This research was made possible by the support of
Neuron Data.

REFERENCES

Boose J.H. (1985) A PCP-based method for building expert systems, Boeing Computer
Services Report BCS-G2010-24.

Carbonell J.C. (1985) Derivational Analogy: a theory of reconstructive problem solving and
expertise acquisition, in Machine Learning II :371-392, Morgan Kaufmann, Los Altos CA

Card S.K., Moran T.P. and Newell A (1983) The Psychology of Human Computer Interaction,
Lawrence Erlbaum Associates, Hillsdale, NJ.

Carey S. (1986) Conceptual Changes in Childhood, MIT Press, Cambridge MA

Cheng P. and Carbonell J.G. (1986) The FERMI system: Inducing Iterative Macro-operators
from Experience, Proceedings of the Fifth National Conference on Artificial Intelligence,
Morgan Kaufmann Loas Altos, CA 1:490-495.

Doyle J. (1983) Some theories of Reasoned Assumptions, Technical Report, Carnegie-Mellon
University, Dept. ofComputerScience, CMU-CS-83-125, Pittsburgh PA

Ericsson K.A and Simon H.A (1984) Protocol Analysis, MIT press. Cambridge, MA.

Eshelman Land McDermott J. (1986) MOLE: a lmowledge acquisition tool that uses its head,
Proceedings of the Fifth National Conference on Artificial Intelligence, Morgan Kaufmann
Los Altos, CA 1:950-955.

Gaines B.R and Shaw M.L.G. (1981) New directions in the analysis and interactive
elicitation of personal construct systems, in Recent Advances in Personal Construct
Technology, Shaw M. (ed) Academic Press, New York NY.

Harman G. (1985) Change in view, MIT Press, Cambridge MA.

Kant E. (1985) Understanding and automating algorithm design, Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, 2: 1243-53, Morgan Kaufman
Publishers, Los Altos CA

Larkin J. (1983) The role of Problem Representation in Physics, in Mental Models, Gentner
D and Stevens AL (Eds), Lawrence Erlbaum Associates, Hillsdale NJ.

Laird J. and Newell A (1983) A Universal Weak Method , Technical Report, Carnegie-Mellon
University, Dept. Computer Science, Pittsburgh PA.

McDermott D and Doyle J (1980) Non-monotonic logic I, Artificial Intelligence, 13:41-72.

Newell A and Card S.K. (1985) The prospects for psychological science in human-computer
interaction, Human Computer Interaction, 1: 209-242.

Nisbett RE. and Wilson T.D. (1977) Telling more than we can know: verbal reports on
mental processes, Psychological Review 84:231-259.

Piaget J. (1954) The construction of reality in the child, Basic Books, New York NY.

~1-\4

Polya G. (1945) How to solve it, Princeton University Press, Princeton NJ.

Rosenbloom P.S. and Newell A (1985) The chunking of goal hierarchies, in Machine
Learning II :247-288. Morgan Kaufmann, Los Altos CA

Shaw M.L.G. and Gaines B.R (1986) Interactive elicitation of knowledge from experts, Future
Computing Systems, 1: in press.

Schank RC. (1982) Dynamic Memory, Cambridge University Press, London.

Winston P.H. (1980) Learning and Reasoning by Analogy: the Details, Technical Report,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, AIM 520.

NEXPERfl'M is a trademark of Neuron Data Inc. Figures 2,3,4,6 obtained using NEXPERfl'M, With the
permission of Neuron Data.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Df~!\f.T

Ontology and Inventory:
a Foundation For a

Knowledge Acquisition Methodology

Stephen Regoczei
Computer Studies
Trent University

Peterborough, Ontario
K9J 7B8

Edwin P.O. Plantinga
Department of Computer Science

University of Toronto
and Redeemer College
(Hamilton, Ontario)

Ontology recapitulatu philology.
James Grier Miller as quoted by W.V.O. Quine

If you can.'t build a model of it1 it i.sn.'t true.
Buckminster Fuller

The 6cien.ce of per6on.al relation.6 i6 n.ot a66i.sted by the fact that
on.ly a few p6ych.ologi.su are con.cern.ed to discover valid per6on.al
way6 in. which. per60n.61 an.d relation.6 between. per6on.61 can. be
6tudied by per6on.6.
R.D. Laing

~e-o

1 Introduction

Systems analysis, software requirements definition, conceptual database design and knowledge
engineering for expert systems can all be viewed as activities which have essentially the same
structure. The goal of all these processes is to acquire the world knowledge possessed by an
informant who, depending on the situation, may be called .an expert or a user. Through the
mediation of at least one other person, generally called the analyst, programmer, or knowledge
engineer, the process culminates in a "smartened-up machine" .

The bottleneck in developing knowledge-based software is the knowledge acquisition (KA)
phase. Given the importance of this problem, why is the literature in this area so small,
especially when compared with the literature addressing the knowledge representation (KR)
issues?1 We suggest three reasons for this phenomenon.

The first reason is obvious. The problems associated with the representation of knowledge
are easier to deal with than the problems of "acquiring" knowledge. Representational issues
are also easier to write about and discuss since they ignore the informant-analyst relation.
Here is the first reason why the literature on knowledge representation is so much more
extensive than the knowledge acquisition literature.

The second reason is slightly more complex. KA is a real dollars and cents issue in
industry, that is in places where software must be pushed through the door within budget
and on time. In most industrial settings, the analyst needs those crucial bits of knowledge
which .the informant possesses. In order to construct a working and workable knowledge-based
system, this knowledge must be acquired.

Contrast this with a typical situation in the academic world. An academic Computer
Scientist, engaged in research, is not producing software for some user community. The
academic knows what he wants so there is no need for aKA phase. In the academic world,
the analyst and informant are one and the same. The key issue from this point of view is
representation. The acadeniic wonders how he should encode or represent the knowledge in
his head in such a way that it is useable by a machine.

When academics publish in the domain of knowledge-based systems, they, in clear con
science, address those issues which they consider to be crucial. Although we agree with
academics that there are important representational issues, we alsri side with those in indus
try who stress that the acquisition of knowledge is the crucial problem at present. However,
people in industry do not publish their results for fear of losing their competitive advantage
in the marketplace. This, we submit, is the second reason for the imbalance in the favour of
representation in the knowledge engineering literature.

But there is a third reason. The view of the human mind, which is dominant in our
culture, is simply too static to explain the difficulties analysts encounter in the KA process.
Systems analysts frequently complain that "the user keeps changing his mind." We believe
that this is to be expected, that the user "changing his mind" is the rule rather than the
exception. Daniel McCracken and Michael Jackson have argued that

1 A good recent summary of KR is Ronald Brachman's and Hector Levesque's ReCJdinga in Knowledge Repre
&entCltion.

1

Systems requirements cannot ever be stated fully in advance, not even in principle, because
the user doesn't know them in advance-not even in principle. To assert otherwise ia to
ignore the fact that the development process itself changes the user's perceptions of what is
possible, increases his or her inaights into the applications environment, and indeed often
changes that environment itself. We suggest an analogy with the Heiaenberg Uncertainty
Principle: any system development activity inevitably changes the environment out of
which the need for the system arose2 •

We take these comments by McCracken and Jackson very seriously. How can someone con
struct a system for a user if the user keeps changing his or her mind? We take this comment
as a. challenge and in response to this challenge, we have developed our KA methodology.

The human mind is not well understood. When confronted with a poorly understood
phenomenon, people invariably search for metaphors or analogies whereby they can think
of the abstract entity in terms of a more concrete entity. We think that it is a distinct
possibility that many of those currently involved in knowledge engineering view the human
mind as an expert system. Using this metaphor, the KA problem becomes one of acquiring
the production ruleset of the informant. Presumably this ruleset is fairly static. An analyst
who works with the expert system metaphor becomes upset when the informant "changes his
mind." We believe that it is time for a new metaphor: mind as an anthill in which the ants
are constantly in motion. We develop this metaphor in section 3 of the paper under the
heading, "The Mental Models Hypothesis."

To give a comprehensive account of KA, we have to depart from the standard descriptions
of KA practices as published in the academic Computer Science literature. We believe that
it is essential that the "architecture" of the informant and the acquirer be considered. While
studying the "architecture" of these persons could be considered to be outside the bounds of
Computer Science, it is very much in the domain of Cognitive Science and therefore not at
all out of place in a paper dealing with issues of Artificial Intelligence and expert systems.

2 Overview of the Methodology

There is a group of historians, philosophers, and literary critics in our culture who call them
selves post-structuralists3; Post-structuralists ask questions such as the following:

1. When history is written, whose history gets written? Just the kings' and queens', or are
the historians also prepared to write histories of the poor, the insane, and the prisoner?

2. Who decides what metaphors mean?[ll]

3. Who gets to speak? Is the madman allowed to speak? Is the pauper's voice heard?

2 Da.niel D. McCracken and Micha.el A. Ja.ckaon "'Life Cycle Concept Considered Harmful" Software Engineer
ing Notu, Vol 7, No 2, April1982, p. 31

8 The most celebrated member of the post-structuralist camp, Michel Foucault, died last year.

2

The post-structuralists object that those who hold the power impose their discourse on those
who are powerless.

We believe that this discussion is relevant to KA and software development. Software
developers (those who hold the power) can impose their discourse (in the form of a user
interface) on the powerless (the user)''. We believe the informant or user is to be respected;
we believe the words of the informant are to be taken seriously. Who is allowed to speak?
The informant, but only for so long. System developers have a job to do and that job must
be completed in a finite period of time and within budget. Our methodology seeks to be
realistic by providing the best possible system description within the constraints imposed on
the project and all the while taking the words of the informant very seriously.

Our methodology relies on interviewing, diagramming, and conceptual analysis. An an
alyst interviews an informant and then diagrams the sentences produced in the interview in
a graphic notation. When the analyst and informant have agreed that the graphical nota
tion for the domain of discourse is complete, the analyst performs conceptual analysis [18,17]
on the graphs. This leads to an ontology, a list of entity types, and an inventory, a list of
instances of these entities.

The purpose of the ontology is to reduce the inherent fluidity of the KA process which
McCracken and Jackson have described [8). The ontology list, that is, the list of entities that
"exist", defines the entity population of the domain of discourse. The document, in a sense,
is a contract between the informant and the analyst that these are the only entities that will
be talked about in the future and that these are the only entities the machine is expected
to be able to recognize. Without such a contract, the expectations placed upon the machine
are infinite. This phenomenon is well known to constructors of expert systems. After having
constructed a well-functioning system in a limited problem domain, users of the system are
shocked that the system cannot, for example, fix flat tires.

The ontology gives to both constructors and evaluators of expert systems a reasonable
framework that defines what "exists". An ontology is, in fact, a definition of what constitutes
the domain of discourse.

Trying to construct an expert system on the basis of collecting rules or propositions is only
possible in clearly defined knowledge domains such as medicine. H the knowledge domain is
not clearly defined and codified, so that it is possible to state clearly what is in and what
is not in the domain, then project management, budgeting, time schedules, and evaluation
criteria become uncontrollable. Not only do users change their minds, so do managers. As
a matter of sound practical project management practice, the ontology defines the problem
domain in a field not previously codified.

4 "Powerlesa"' users are adaptive organisms and are fairly reluctant and slow to rebel against poor interfaces.
The issue of developing a user interface with minimal imposition on the user is discussed in "Towards
Automated Methods for Developing User Interfaces"' written by one of the authors of this paper, Edwin
Plantinga. This is available as Technical Report 109 from the Department of Computer Science, University
of Western Ontario.

3

Informant

TEXT

Knowledge Represented
in a fixed, publicly

examinable form

Figure 1: A Model of the Person-to-Person KA Process

3 The Mental Models Hypothesis

In figure 1, we show the essential components of the person-to-person KA process based
on the mental models hypothesis. The mental models hypothesis states that an individual
understands the world by forming a mental model, that a cogniting5 agent understands the
world by forming a model of the world in his or her head.

Suppose you want to form a mental model of Alberta. You cannot look at Alberta because
your eyes are not big enough to take in all of Alberta, so what you do is consult a map of
Alberta. A map of Alberta is a physical model of Alberta. You fold the map up and put it
away. Whatever fragmentary information that remains in your head is your mental model
of Alberta based on looking at the map. It is not your mental model of Alberta based on
"reality"; you have not seen Alberta-you were looking at a map. But if you do want to look
at Alberta, you can get in a car and go for a ride. After the trip, your head will contain
fragments of information about Alberta based on the trip; after the trip you will have a

6 We will make use of the word "cogniting'" which is a gerund formed from the verb "to cognit". We believe
(tongue in cheek) that this is what the French philosopher Rene Descartes had in mind when he claimed
Cognito, ergo 1um. Through a typographical error, this has become Cogito, ergo 1um. Agents who cognit
are studied by Cognitive Science.

4

mental model of Alberta based on "reality."
How do different people's mental models get harmonized? Harmonization cannot be done

directly~we cannot rub mental models together. What actually transpires is that the in
formant and the analyst are constantly revising their mental models {MMs}. This is the
complaint of the systems analyst: the ants keep moving. This revision of MMs takes place
under the influence of input such as text. The stochastic process which connects text in
put with mental model revision is just as little understood as the "reminding" [16] process
discussed in Section 8 of this paper.

MMs are rarely harmonized. But in order to construct knowledge-based software, the
analyst and informant must come to an "understanding". In the interests of attaining "un
derstanding", the knowledge must become accessible. Although the knowledge in people's
heads is not publicly examinable, the KA process requires that the knowledge be represented
in a fixed, publicly examinable form. We believe that the publicly examinable representation
should be pictorial, or graphical, or diagrammatic. Words are a refuge which either analyst
or informant might hide behind to avoid making explicit the contents of the mental models.
Our methodology requires that the analyst diagram his "interpretation" of what the infor
mant said. If the informant does not "agree with the interpretation", the process is repeated
until both analyst and informant converge on a set of diagrams. We expect the informant
to keep "changing his mind"; we expect the ants to keep moving. We believe, however, that
confronting the informant with the "meaning" of the informant's words (as interpreted by the
analyst) will help him to "make up his mind." Is it not striking that before the recent inven
tion of tape recorders, there did not even exist a fixed publicly examinable way of recording
what actually was said?

There are a number of candidate representation languages. Our choice of John Sowa's con
ceptual graphs [2,3,18,19] as our fixed, publicly examinable form of knowledge representation
was made on the basis of the following considerations:

1. Conceptual graphs stay close to the structure of natural language used by both infor
mant and analyst.

2. Conceptual graphs are a clear notation in which to build models of MMs for public
examination.

Other obvious choices are KL-ONE graphs [1] and the object-role information model of
ENALIM (Evolving Natural Language Information Model} diagrams used in Control Data's
Information Analysis methodology [9]. ·

4 Providing Machines with Mental Models

One of the advantages of Sowa's conceptual graph notation is that the graphs (in their linear
form) are directly machine representable. If the analyst can diagram the text which he receives
from the informant, and if the informant can agree with the diagrammed representation, and
if the diagram can be programmed into the machine, then we can provide the machine with

5

TEXT

Intormant

PROGRAMMING

Figure 2: A Model of the Knowledge Acquisition Process

a mental model. This process is shown in figure 2 and we believe that this figure captures
the essence of what any KA methodology must provide.

Sowa's notation is preferable over other notations for the following reasons:

1. The translation of a conceptual graph in its pictorial form to its linear form {the repre
sentation portion of figure 2) is a trivial operation.

2. The linear forms of the graph can be directly represented without programming.

Notice {from figure 2) that an automated version of this KA methodology would coalesce the
role of the analyst and the machine.

The knowledge acquisition methodology which we present is based on the following hy
potheses:

1. Cogniting agents, including computers, understand the world by forming MMs.

2. MMs have a structure.

3. The structures of MMs can be modelled with conceptual graphs.

4. The operations on MMs can be modelled by using operations on conceptual graphs.

6

5 Know ledge Acquisition and Terminological Confusion

There is a good deal of terminological confusion surrounding many KA kinds of activities.
Let us consider the word "knowledge", which in English is used as a mass noun, indicating
something of substance and bulk. "Acquiring" knowledge suggests that it is a concrete entity
that could be "acquired". Reality does not support the metaphor.

Contrary to the way that English speakers use the word "knowledge", it is obvious that
the concept is as intuitively elusive and as difficult to define precisely as the concepts of
information and entropy. Yet the successful handling of entropy in thermodynamics and the
precise and fertile definition of the Shannon-Weaver concept of information should give us
hope that the concept of knowledge will also yield to a fruitful and operationally meaningful
definition. Unfortunately, that time has not yet arrived.

As a substitute, and following suggestions made in the literature (18,5], for the purposes of
this paper, we define knowledge as the semantic content of mental models. Tying knowledge
to a mental model implies that there is no knowledge without a knower. This is our intent.
Knowledge is possessed by a knower only in so far as the MMs "contain" this knowledge .

. We assert that:

1. There is no knowledge without a knower.

2. There is no acquisition without an acquirer.

3. There is no acquisition without a source and, for us, the source is a cogniting agent.

Now let us consider systems analysis as a typical KA process. The role of analyst is played
by the "systems analyst" and the role of informant is played by the "user".

Let us consider the problems in this scenario:

1. The "user" may in fact have nothing to do with the use of the system under construction.
The "user" may only act as a source of expertise in creating specifications for the future
system. In what sense is this kind of a "user" a user?

2. The systems analyst thinks that he is analyzing a system, but this system does not exist,
except perhaps in the mind of the analyst. In trying to analyze a non-existent system,
certain distortions and inaccuracies are created as a side effect of the informant-analyst
knowledge transfer.

3. The systems analyst would normally use the systems approach: He would interpret
information received in terms of his view of the system which is usually an input-process
output modeL At times, the crucial issue is the structure of information which goes
through the input and output processes and not so much the nature of the processes or
the nature of the transformation which the information undergoes. While information
flows are analyzed and carefully diagrammed on data flow diagrams, the structure of
the information that flows is ignored. It is pushed over to database design.

7

Actually, a process of fact-finding does take place. Knowledge is being acquired by the
analyst and this knowledge will be built into the computer system. If the systems analyst
is analyzing anything, he is analyzing chaos. His job is create order out of chaos. Attempts
to describe exactly what goes on during the process of systems analysis, conceptual database
design, and requirements specification writing illustrate the confused state of the discourse
about KA issues.

6 Providing Machines With Ontologies and Inventories

How does a machine know what is "out there in the world?" Write a program in the Fortran
programming language which accepts as input, two integers, and returns, as output, their
sum. Run the program and enter a real number and the letter k. What happens? The
program aborts. Somewhere between the programmer and the user, somebody lied to the
machine. The machine, when executing this program, "thinks" that there are only integer
numbers "out there in the real world."

Does the computer, when executing this program have an ontology? Only implicitly. We
define an explicit ontology to be a publicly examinable list of entity types. In a similar vein,
we define an explicit inventory to be a publicly examinable list of instantiations listed in the
explicit ontology.

Each cogniting agent has, as a minimum, an implicit ontology: man, animal, and ma
chines all have implicit ontologies. Very few cogniting agents have explicit ontologies. The
clearest example of an explicit ontology is a database schema which can be printed and is
comprehensible to those who understand the data definition language. Databases also have
explicit inventories in the form of population tables.

Fire insurance companies sometimes request that their policy holders complete an ex
plicit ontology and an explicit inventory. Many accounting procedures (such as recording an
inventory) can be viewed from the point of view of ontology and inventory. Philosophers
are also interested in compiling ontologies although inventories are a foreign notion to them.
Anthropologists, it could be argued, are also in the ontology and inventory business. They
visit foreign cultures and as part of their field work, attempt to compile an explicit ontology.
We believe that KA for systems development is fundamentally an anthropological activity.

How does a machine know what is "out there in the world?" This is the inverse of the
situation confronting the anthropologist. The anthropologist seeks to find out; the machine
wants to be told which entities are "out there." It is humans who are providing the machine
with a MM. The analyst or programmer ultimately decides which entities in the world will
be known to the machine. If the analyst or programmer misses a few, the system might fail
at some point. This makes it imperative that the machine know about all of the relevant
entities in the domain of discourse. In fact, the entities which the analyst-programmer team
tells the machine about will constitute the domain of discourse.

What should be the basis for the ontology which we construct for the machine? The obvi
ous choice would be to use "things in the world" , things like employees, managers, employee
numbers, departments, and department budgets.

8

Table 1:

1 system subsystem component
2 set subset element
3 domain of discourse sub domain entity
4 mental model model fragment concept
5 conceptual graph sub graph concept-node

There is a problem with this approach.6 Both informants and analysts speak of non
existent entities-things like systems. The system will only exist (hopefully) at some point
in the future. And in what sense is an employee number a "thing in the world"? If we base
the ontology on the "things in the world", we are restricting ourselves unnecessarily.

A second possibility is to use the names of entities as the basis for an ontology. This
approach leads to three problems. First, names are also entities. Thus this approach requires
distinguishing between lexical and non-lexical entities as is done in ENALIM diagrams with
their distinction between LOTs (lexical object types) and NOLOTs (non-lexical object types)
[9]. Second, the same name, as we all know, can refer to different entities. An ontology
based on names is bound to lead to confusion. Third, many entities in the "real world" lack
a name although they are part of the implicit ontology of an informant. Let us consider an

. example from systems analysis. In a manufacturing environment, some partially assembled
structure must be moved from one department to another. The analyst wishes to describe
this inter-departmental transfer and asks the informant for the name of the sub-assembly.
The informant can provide no name: the subassembly is an unnamed object.

Restricting the ontology to "real world" entities will not work. Nor will a name based
ontology work. We believe that the only basis for constructing an ontology is concepts.
Concepts are components of MMs and can be connected to entities which are unnamed.
Concepts can be named allowing the informant and analyst to discuss entities such as "system"
for which no real world referent exist. While there are those who wish to keep their ontologies
pure of "non,-existing entities", we believe that a KA methodology should be more descriptive
than normative.

To clarify our terminology, and to allow the reader a glimpse of our mental models we
offer Table 1:

Items in a given column of table 1 are in the same taxonomic relationship to items in
the other columns. Lines 1 and 2 give the hierarchical taxonomy of systems theory and set
theory respectively. The ontology of the computer is restricted to line 5. The inventory of
the computer consists of instantiated concept-nodes.

•The relationship between •data" and "reality" is discussed very thoroughly in William Kent's Data and
Realitv.

9

7 Knowledge Acquisition Through Text

If there is no knowledge without a knower, then knowledge is not to be found "in" a text.
All the same, discourse, whether oral or written, does deservedly occupy a special, privileged
place in KA.

How does a person go from words to knowledge? Words "create" knowledge by causing a
cogniting agent to form new MMs or alter existing MMs. During discourse, the MMs of both
informant and analyst are harmonized; the MMs are "brought together" using language as a
technology of harmonization. 7 -

From our point of view, KA reduces to Natural Language Understanding (NLU). We seek
knowledge; we are given words. KA reduces to NLU: generating meaning for words. To
generate a meaning for a word means to map a word into a concept where the concept can
be represented as a conceptual graph.

John Sowa has provided a mechanism for connecting words and concepts. That mechanism
is a conceptual lexicon which Sowa [18], in an example, organizes as a look-up table. For
example, the lexeme "occupy" maps into the concepts (OCCUPY-ACT]. (OCCUPY-STATE],
and (OCCUPY-ATTENTION]. These three concepts are illustrated by the following sentences:

• The enemy occupied the island with marines.

• Debbie occupied the office for the afternoon.

• Baird occupied the baby with computer games.

Some would say that the word "occupy" is being used in different senses. The "sense" of a
word is a fairly crucial issue which will require further elaboration.

The sense of a word is defined in the Concise Oxford English Dictionary as: "meaning,
way in which word etc. is to be understood." For the purpose of this paper, we define the
"sense" of a lexeme "lex", where "lex" could be--and in fact typically would be--a phrasal
lexeme, as the ordered pair

("lex", (LEX n])

where (LEX n] is the nth concept associated with the lexeme "lex". The sense predicate

S ("lex". (LEX n])

asserts that ("lex". (LEX n]) is a sense of the lexeme "lex".
It is doubtful that lexemes and concepts are associated in human memory as a simple

look-up table. The process of "reminding" in the human mind is not very well understood. 8

Likewise, very little is known about the process that associates a lexeme with a concept.9

However, from the point of view of KA, only the resulting concept [LEX n] is of significance
and not the process that forms the pair

1 'we owe this key insight to Roy Hagman. See pages 104-107 of his Language, Life, and Behalliour.
1 All this talk of reminding reminds us of Roger Schank's book Dvnamic Memory.
11There is a body of psycholinguistic literature on this subject but there seems to be little agreement in the
literature on how the lexeme-concept association process works.

10

("lex". (lEX n]).

in the mind of the informant.
Having acquired the concept (CONC), the analyst can describe [CONC] to the informant

using both natural language and the formalism of conceptual graphs. Feedback from the
informant further modifies the MM of the analyst. On the basis of the feedback, the analyst
may create a new concept (CONC1). This process can continue until both the analyst and the
informant are satisfied or until the allotted time for the KA phase of the project has expired.

It should be noted that there are more sense relations than are defined in a dictionary.
These "extra" senses are particular to individuals and hence idiosyncratic. Dealing with these
complexities can be accomplished through a formalization of the meaning triangle [13].

8 An Interviewing Procedure for Knowledge Acquisition

While the interviewing process associated with a knowledge acquisition process may be quite
extensive, in this paper we will restrict our attention to the particular task of compiling an
ontology and inventory list for a particular domain of discourse. Statements by the informant
would be about entities. A complete ontology list contains all the concept types and a
complete inventory list contains all the instances that statements of the informant might refer
to. We note that these statements are of no concern to us during the interview, except in so
far as they give clues about the "existing" population of entities in the domain of discourse.
Descriptive information is of use only in so far as it describes the conceptual components of
the mental models of informant and analyst.

With these restrictions, the step-by-step procedure of interviewing is as follows:
Step 1. Establish a text. The text should be in a permanent, publicly accessible form.

In practice, this would mean a written document, a voice tape, or a videotape.
Step 2. Select the contentives. Select all contentive lexemes, paying special attention

to all the phrasal lexemes and subfragments of noun phrases.
Step 3. Produce a lexeme-to-concept mapping. The mapping is done either through

a conceptual lexicon, if one exists, or through free association by the informant or analyst.
Step 4. Diagram the concept. Concepts that are semantic primitives are diagrammed

as a single concept node containing the concept itself. For non-primitive concepts, the con
ceptual graph is as elaborate as necessary.

Step 5. Test the concepts. Elicit further comments from the informant on the appro
priateness of the graphs. This step may produce more text which is to be cycled to Step 1 to
produce a new version of the text.

Step 6. Model mental models. Model, using conceptual graphs, the relevant mental
models of the informant to test the adequacy of the coverage. The main techniques are
conceptual analysis and further dialogue with the informant. This step may produce only
diagrams, in which case the interviewing procedure is complete, or more text, in which case
cycle back to Step 1.

Clearly, the process may not terminate within a preset time limit. Cutoff criteria may
have to be established for termination conditions.

11

The final product of this algorithm consists of two lists:

1. The Ontology List: a list of concepts, each defined by a conceptual graph. A conceptual
graph consisting of a single concept node is a semantic primitive relative to this ontology.

2. The Inventory List: a list of instantiations of concept types relative to the particular
domain of discourse.

It is assumed that there is a domain of discourse. The mental models of the informant
a,;e assumed to represent this domain of discourse. As a matter of practical fact, the mental
models of the informant define the domain of discourse, if it is assumed that knowledge about
the domain is only accessible through the informant. The analyst's task is to establish a
set of mental models in his own mind which are coherent with the set of· mental models of
the informant. The analyst makes a publicly examinable record of his own mental models
by drawing diagrams. If the diagrams do not adequately model the mental models of the
informant, then a process of adjustment will have to take place. If we look upon language as a
form of technology, then the process can be described as follows: the analyst and the informant
are asked to synchronize mental models using the technology of language [4], assisted by a
diagramming technique such as conceptual graphs.

9 Know ledge Acquisition - An Example

To illustrate our methodology we will run through a typical knowledge acquisition problem.
In our example, the analyst is trying to find his way to a party and the informant provides
directions. Admittedly, the matter is not one that requires a high degree of sophisticated
expertise, but we have all been confronted by cases where the directions were so ineptly
phrased that careful conceptual analysis was required to create order out of chaos.

To make the example more interesting, and to illustrate how two different ontologies and
two different domains of discourse can be established for what, at an abstract level, are the
"same" instructions, we shall give two versions of the text:

1. An object-oriented version.

2. A procedure-oriented version.

Giving the full analysis of the two texts would be too ·lengthy for this paper. Some selected
examples will illustrate the techniques.

The following texts are two sets of instructions given by two informants to an analyst on
how to get to a party:

1. Text 1: Object-o~ented
"We live at 251 Elm St.. Elm is a north-south street. The nearest major intersection
is George and Hunter. We are in the southwest quadrant."

12

38-12.

Table 2:

we live 251
Elm St. Elm St.
251 Elm St. north south
north-south street north-south street
nearest major intersection
major intersection nearest major intersection George
Hunter southwest quadrant
southwest quadrant

2. Text 2: Procedure-oriented
"Where are you now? OK. Drive down George until you get to Hunter. Turn right.
Turn left after the fourth block. That's Elm. Now go down six houses and we are on
the right."

We believe that it will become apparent that the ontology and the domains of discourse
are quite different for the two examples, in spite of the fact that they are talking about the
"same" thing.

Let us step through the procedure described in the previous section. This is artificial
because the two cogniting agents, the p.erson who gave the instructions and the person who
received the instructions, are not present. We have to invent their responses and we have to
make some guesses about the mental models of both analyst and informant.

Let us take the object-oriented version first.
Step 1. Establish the text. This is done above.
Step 2 List the contentives.

Normally, this would be a very long list, but this text is relatively short. We produce this list
in table 2.

Step 3. Produce a lexeme to concept mapping.
Looking at this list of contentives for Text 1, the analyst may decide to try to compile the

first version of the ontology list. The concepts associated with the lexemes may turn out to be
semantic primitives with no further definition, or may be defined by conceptual graphs which
are constructed out of primitives and other non-primitive concepts. We show the lexeme to
concept association in table 3.

Lexemes such as "intersection" and "quadrant" may be difficult to handle at this stage
for the analyst. We shall illustrate some possible techniques for dealing with this later. We
note that at this stage that the ontology and inventory lists for text 1 may look as shown in
tables 4 and 5.

We note that conceptual graphs would be required to connect the concepts [COMPASS
DIRECTION] and [STREET-TYPE]. The analyst may also want to connect this object
oriented text to procedural information. In this case he may ask at some future point in the

13

Table 3:

Oontentive Lexeme or Phrase Associated Concept
we lPARTY-HOSTJ
live [RESIDENCE]
251 Elm St. [ADDRESS}
251 [HOUSE-NO]
north [COMPASS-DffiECTION]
street [STREET]
north-south street [STREET-TYPE]
nearest
George
southwest

[NEAR]
[STREET:George]
[COMPASS-DffiECTION]

Table 4:

Text 1 Ontology List: version 1
[PARTY-HOST]
[RESIDENCE]
[ADDRESS]
[HOUSE-NO]
[COMPASS-DIRECTION]
(STREET]
[STREET-TYPE)
(NEAR]

Table 5:

Text 1 Inventory List by Concept Type: version 1
[ADDRESS: 251 Elm St.]
[HOUSE-NO: 251]
[STREET-TYPE: north-south street)
[COMPASS-DffiECTION: north, south, southwest]
[STREET: Elm, Hunter, George]

14

Table 6:

where you now
OK drive drive down
George get get to
Hunter turn turn right
tum left block fourth
fourth block after the fourth block Elm
go go down SlX

houses six houses we
right left on the right

process: "Yes, I hear what you are saying, but how do I actually get to your house?" At this
point more text will be generated.

To contrast, let us look at the first two steps for Text 2.
Step 1. Establish the text.

This is done above.
Step 2. List the contentives.

The contentives are shown in table 6.
We note that Text 2 is not only procedure-oriented, but. also more colloquial. Colloquial

language is usually ill-formed and idiosyncratic, and also makes references to entities which
require a great deal of background knowledge to understand. But the analyst can still try to
associate concepts with lexemes, although the process may require further information from
the informant.

Now let us return to the processing of Text 1.
Step 3. Produce a lexeme-to-concept mapping (cont.)

The analyst may now want to tackle some of the more difficult concepts. Let us say that the
analyst starts with the lexeme "intersection". Relying on his own mental models, and using
his own "reminding" processes, the analyst may come up with the following natural language
phrasings to capture the various sense of the lexeme "intersection":

1. "a place where one can pass from one street to another"
(captures the concept [INTERCHANGE])

2. "a place where two streets meet"
(captures the concepts of [T-JUNCTION], as well as (FORK-IN-THE-ROAD])

3. "a place where two streets meet at right angles creating four quadrants"
(capturing the concept of (CROSSROADS])

The analyst may not be satisfied with any of these natural language phrasings of the sense
for "intersection" and may, if there is no conceptual lexicon available, consult dictionaries and
other sources for further information.

15

Suppose the analyst decides that Sense 2 and Sense 3 are the best candidates. For the
sake of version control, he may not add the statements of Sense 2 and Sense 3 to the text as
yet.

Step 4.. Diagralll the concept using a conceptual graph.
The analyst decides initially that for [INTERSECTION2) the concept will be [JUNCTION]

and that for [INTERSECTION3) the concept will be [CROSSROADS].
He draws conceptual graphs for [INTERSECTION1] and (INTERSECTION2] and shows

them to the informant.
Step 5. Elicit comments from the informant.

The informant expresses his opinion that (CROSSROADS] is the concept that best matches
his mental models, i.e. that [CROSSROADS) is what he "had in mind" when he was giving
instructions. He volunteers the following extra prose:

Well, think of analytic geometry. The two axes intersect, dividing the plane into
four quadrants. The four city blocks around an intersection, provided it is an
intersection formed by two streets intersecting at right angles, are similar to the
four quadrants. You remember how they are labelled: the first quadrant, the
second quadrant, the third quadrant, and the fourth quadrant. Well, when you
look at a compass rose, you see the same thing. Obviously, the southwest quadrant
according to the compass rose is the third quadrant of analytic geometry.

This step provided more text, namely the natural language description for the sense
predicateS ("intersection". [INTERSECTION3]) above, plus the extra information provided
by the informant. This text should be added to the original version to produce Version 2 of
the text. Now the analyst can enlarge the list of contentives above to produce Version 2 of
the contentives list. Then, he may update the ontology list by adding the conceptual graph
for [INTERSECTION3) to the list.

At the end of this iteration from Step 1 to Step 5 we have

• Text - Version 2

• Contentives list - Version 2

• Ontology list- Version 2

Step 6. Model through diagrams the mental models of the informant.
Making an appropriate decision on the depth of the analysis, the analyst could proceed to
elicit additional information about the mental models of the informant. Conceptual analysis
is described by Aaron Sloman (17] and John Sowa (18], as well as by Christopher Riesbeck in
[15}. The process may not converge, unless decisions are taken by informant and analyst on
what does, or does not, belong to the domain of discourse. ,

The final product is an ontology list which contains all the concepts that are semantic
primitives, as well as the concepts that are defined by more complex conceptual graphs. The
inventory list is assembled on the basis of the contentives list. Each item in the inventory is

16

an instantiation of a concept type. Matching up items on the contentives list with concept
types is based on information from the informant.

For example, the concept (STREET] may be accepted as a semantic primitive, and the
cont"'ntives "Elm", "George", and "Hunter" as instances of [STREET). This could be recorded
as a population table, or in the linear notation of conceptual graphs, as

(STREET:Eim, George. Hunter]

10 Conclusion

The necessity of relying on an outside expert as the source of the knowledge in the creation
of knowledge-based systems forces us to state more clearly than ever before exactly what
steps must be carried out during the KA process. Writing such a "procedures manual" for
people engaged in person-to-person KA work is a prerequisite for creating the architecture
and specifications for an automated knowledge acquisition methodology. We are still a long
way from an acquisition methodology which can be automated: that future seems distant.
We offer our methodology as a workable approach for performing person-to-person knowledge
acquisition today, in the present.

17

References

[1] Brachman, Ronald and Levesque, Hector, eds.
Readings in Knowledge Representation, Los Altos, CA: Morgan Kaufmann, 1985.

[2] Clancey, W.J.
"Review of J.F. Sowa's Conceptual Structures", Artificial Intelligence, 27 (1985),
pp. 113-128.

[3] Fargues, Jean, Marie-Claude Landau, A.nne Dugourd, Laurent Catach.
"Conceptual Graphs for Semantics and Knowledge Processing", IBM Journal of Re
search and De11elopment, Volume 30, Number 1, January 1986, pp. 70-79.

[4] Hagman, Roy S.
Language, Life, and Human Nature, Current Inquiry into Language and Human
Communication 41, Edmonton: Linguistic Research, 1982.

[5] Johnson-Laird, Philip
Mental Models, Cambridge, Ma.: Harvard University Press, 1983.

[6] Kent, William
Data and Reality: Basic Assumptions in Data Processing Reconsidered, New York:
Elsevier Science Publishers, 1978.

[7) Laing, R.D.
Self and Others, Harmondsworth, England: Penguin Books, 1961.

[8] McCracken, Daniel D. and Jackson Michael A.
"Life Cycle Concept Considered Harmful", $oftware Engineering Notes, Volume 7,
No. 2, April 1982, pp. 29-32.

(9] Olle, T.W., Sol, H.G. and Verrijn-Stuart, A.A. (eds.)
Information Systems Design Methodologies: Proceedings of the IFIP WG 8.1 Work
ing Conference, Noordwijkerhourt, The Netherlands, 10-LI May {1982}, Amsterdam:
North Holland, 1983.

[10] Plantinga, Edwin P.O.
"Towards Automated Methods for Developing User Interfaces", Techn1"cal Report
109, Department of Computer Science, University of Western Ontario, 1983.

[11] Plantinga, Edwin P.O.
"Who Decides What Metaphors Mean?", Proceedings of the Conference on Comput
ing and the Humanities-Today's Research, Tomorrow's Teaching, Toronto, April
1986, pp. 194-204.

[12] Quine, W.V.O.
Word and Object, Cambridge, Ma.: MIT Press, 1960.

18

[13] Regoczei, Stephen
"Formalizing the Meaning Triangle", Trent University Technical Report, To appear.

[14) Regoczei, Stephen
"Can Computers~r, for That Matter, People-Understand Natural Language, and
if Not, Why Not?-the hnpact of the Cognitive Revolution", To appear.

[15] Schank, Roger C., (ed.}
Conceptual Information Processing, Amsterdam: North Holland, 1975.

(16] Schank, Roger C.
Dynamic Memory: .A Theory of Reminding and Learning in Computers and People,
Cambridge: Cambridge University Press, 1982.

(17] Sloman, Aaron
The Computer Revolution in Philosophy: Philosophy, Science, and Models of Mind,
Harvester Studies in Cognitive Science, Atlantic Highlands, New Jersey: Humanities
Press, 1978.

(18] Sowa, John F.
Conceptual Structures: Information Processing in Mind and Machine, Reading, Ma.:
Addison-Wesley, 1984.

[19] Sowa, John F., and Way, Eileen
"hnplementing a Semantic Interpreter Using Conceptual Graphs", IBM Journal of
Research and Development, Volume 30, Number 1, January 1986, pp. 57-69.

19

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, f'.bv., 1986

TECHNIQUES FOR KNOWLEDGE ACQUISITION AND
TRANSFER

Mildred L G Shaw & Brian R Gaines
Department of Computer Science, University of Calgary

Calgary, Alberta, Canada T2N 1N4

Abstract: This paper gives a state-of-the-art report on the use of techniques based on
personal construct psychology to automate knowledge engineering for expert systems. It
presents the concept of knowledge support systems as interactive knowledge engineering
tools, states the design criteria for such systems, and outlines the structure and key
components of KSS 1 and its KITTEN implementation. KSS 1 includes tools for interactive
repertory grid elicitation and entailment analysis that have been widely used for rapid
prototyping of industrial expert systems. It also includes tools for text analysis, behavioral
analysis and schema analysis, that offer complementary and alternative approaches to
knowledge acquisition. The KITTEN implementation integrates these tools around a
common database with utilities designed to give multiple perspectives on the knowledge
base.

KNOWLEDGE SUPPORT SYSTEMS
Problems of knowledge engineering have been recognized since the early days of expert
systems. It was possible that knowledge engineering might develop as a profession on a
par with systems analysis and programming, and that an initial shortage of skilled
knowledge engineers would cause problems to be overcome eventually be as the profession
developed. However, this scenario now appears less and less likely. There is certainly a
shortage of knowledge engineers and problems in developing applications, but doubts have
been cast on the notion that human labor is the appropriate solution to the knowledge
engineering problem:
• The decline in costs of both hardware and software support for expert systems has

brought the technology into a mass-market situation far more rapidly than originally
envisioned;

• This has lead to a growth in demand for expert systems that is proceeding far more
rapidly than the growth in supply of trained and experienced knowledge engineers;

• The declining costs of expert system technology are also making the expense of human
labour in tailoring the technology for particular applications appear to be the dominating
constraint and an excessive cost;

• A move towards a labor-intensive activity such as knowledge engineering is contrary to
all trends in industry;

• In particular it is contrary to the trend towards automatic programming techniques in the
computing industry;

• The role of the knowledge engineer as an intermediary between the expert and the
technology is being questioned not only on cost grounds but also in relation to its
effectiveness-knowledge may be lost through the intermediary and the expert's lack of
knowledge of the technology may be less of a detriment than the knowledge engineer's
lack of domain knowledge.

The considerations of the previous section have heightened interest in the possibility of
providing knowledge support systems (KSSs) to automate knowledge engineering as a
process of direct interaction between domain experts and the computer.· Gaines & Shaw
(1980) proposed that personal construct psychology (Kelly 1955, Shaw 1980) could
provide foundations for expert systems, particularly in systems that combined interactivity
with database access and expert advice to provide decision support, and gave examples of
algorithms and programs that extracted entailment rules from repertory grid data. Shaw &
Gaines (1983) reported on further enhancements of these techniques and a preliminary
experiment to validate them empirically as a knowledge engineering technique for priming
expert systems. This work led to industrial studies of the methodology applied to the
development of expert systems: Boeing Computer Services (Boose 1984, 1985, 1986) and
Lockheed Software Technology Center (Wahl1986) have reported success in applications;
and validation has been reported in a statistics domain (Gammack & Young 1985).

This paper gives a state-of-the-art report on the use of techniques based on personal
construct psychology to automate knowledge engineering for expert systems. It is based
on four areas of advance since the previous paper:
• Improved techniques for the derivation of rules from repertory grid data which give: a

natural knowledge representation for uncertain data combining fuzzy and probabilistic
logics; and an information-theoretic measure of the significance of a derived rule (Gaines
& Shaw 1986a); .

• Widespread applications experience in prototyping expert systems using the methodology
(Boose 1985, Gaines & Shaw 1986b);

• Improved interactive techniques for on-line knowledge engineering from groups of
domain experts interacting through a computer network (Shaw 1986, Shaw & Chang
1986);

• KSS1, and its KITTEN implementation, a knowledge engineering workbench that
provides next generation KSS facilities including textual analysis, induction of models

from behavior, multi-level and multi-expert repertory grid elicitation, and hierarchical
construct laddering, to automate knowledge engineering for a wide range of problem
domains.

KNOWLEDGE SUPPORT SYSTEM DESIGN CONSIDERATIONS
Knowledge engineering may be seen in very broad terms as:

the acquisition, elicitation, structuring and encoding of knowledge for application in
inferential, goal-directed, explanatory, decision and action support systems.

Knowledge support systems have even broader scope, encompassing both aids to
knowledge engineering and support of human knowledge processes-in the long term the
division between knowledge engineering tools and expert system shells will break down,
and integrated systems will be necessary. The general requirements for a KSS are:
1. The KSS tools should be domain independent;
2. The KSS tools should be directly applicable by experts without intermediaries;
3. The KSS tools should be able to access a diversity of knowledge sources including text,

interviews with experts, and obsexvations of expert behavior;
4. The KSS system should be able to encompass a diversity of perspectives including

partial or contradictory input from different experts;
5. The KSS system should be able to encompass a diversity of forms of knowledge and.

relationships between knowledge;
6. The KSS system should be able to present knowledge from a diversity of sources with

clarity as to its derivation, consequences and structural relations;
7. Users of the KSS should be able to apply the knowledge in a variety of familiar domains

and freely experiment with its implications;
8. The KSS should make provision for validation studies;
9. As much of the operation of the KSS as possible should be founded on well-developed

and explicit theories of knowledge acquisition, elicitation and representation;
10. As the overall KSS develops it should converge to an integrated system.

All of these requirements are subject to caveats-some domain dependence may be
appropriate for efficiency in specific KSSs-some human intexvention may be helpful or
necessary when an expert is using a KSS-and so on. However, the broad design goals
stated capture the key issues in KSS design currently.

The PLANET system for repertory grid elicitation and analysis (Shaw 1980, 1982, Shaw
& Gaines 1986b,c) is a primitive KSS satisfying requirements 1 and 2 for domain
independence and direct use. Its foundations in personal construct psychology, which
itself has strong systemic and cognitive science foundations (Gaines & Shaw 1981, Shaw
& Gaines 1986a), are attractive in terms of requirement 9. Boose (1985) in evaluating ETS
has noted the limitations of basic repertory grid techniques in terms of requirement 5-that
the methodology is better suited for analysis than for synthesis problems, for example,
debugging, diagnosis, interpretation and classification rather than design and planning, and
that it is difficult to apply to deep causal knowledge or strategic knowledge-and is
attempting to overcome these use grid hierarchies in NeoETS (Bradshaw & Boose 1986).
The TEIRESIAS extension to MYCIN is an early form of KSS providing debugging
support for an expert system using basic analogical reasoning (Davis & Lenat 1982). The
development of KSSs has become a major area of activity recently, for example, MORE
(Kahn, Nowlan & McDermott 1985), SALT (Marcus, McDermott & Wang 1985), SEAR
(van de Brug, Bachant & McDermott 1985), and MOLE (Eshelman & McDermott 1986).

The following section describes our work on KSS1, a knowledge support system that
draws on many concepts and techniques for knowledge engineering to begin to encompass
requirements 3 through 8, while attempting to satisfy 9 by relating them all through
personal construct psychology, and 10 by building a workbench of tools around a common
database.

KSSl: A KNOWLEDGE SUPPORT SYSTEM
Figure 1 shows the structure of KSS 1 (in its workstation implementation termed KITTEN:
Knowledge Initiation & Transfer Tools for Experts and Novices). KSS 1 consists of a:
knowledge base; various analytical tools for building and transforming the knowledge base;
and a number of conversational tools for interacting with the knowledge base. The
KITfEN implementation is written in Pascal and currently runs on a coupled IBM AT and
Apple Macintosh to combine processing power and interactivity.

Figure 1 KSSl-KITTEN-
Knowledge Initiation and Transfer Tools for Experts and Novices

The KSS 1 structure is best understood by following sequences of activity that lead to the
generation of a rule base and its loading into an ES shell.

A typical sequence is text input followed by text analysis through TEXAN which clusters
associated words leading to a schema from which the expert can select related elements and
initial constructs with which to commence grid elicitation. The resultant grids are analyzed
by ENTAIL which induces the underlying knowledge structure as production rules that can
be loaded directly into an ES shell (Gaines & Shaw 1986a).

An alternative route is to monitor the expert's behavior through a verbal protocol giving
information used and decisions resulting and analyze this through ATOM which induces
s~cture from behavior and again generates production rules (Gaines 1977).

These two routes can be combined. KSS 1 attempts to make each stage as explicit as
possible, and, in particular, to make the rule base accessible as natural textual statements
rather than technical production rules.

The ES shell being used in KITTEN currently is Nexpert (Roy 1986) which gives a variety
of textual and graphical presentations of the rule base enabling the expert to see the impact
of different fragments of knowledge. ·

The group problem-solving component of KSS 1 is particularly important because it goes
beyond the stereotype of an "expert" and "users", and allows the system to be used to
support an interactive community in their acquisition and transfer of knowledge and mutual
understanding. The SOCIO analysis allows members of a community to explore their
agreement and understanding with other members, and to make overt the knowledge
network involved (Shaw 1980, 1981).

The KITTEN implementation is an initial KSS 1 prototype offering a workbench with
minimal integration of the knowledge base, but each of tools has already proven effective,
and their combination is proving very powerful in stimulating experts to think of the
knowledge externalization process from a number of different perspectives.

The following sections describe and illustrate some of the tools.

ENTAIL: ENTAILMENT ANALYSIS
PLANET and ETS access the expert's personal construct system by interactively eliciting a
repertory grid of constructs classifying elements characterizing to part of the domain of
expertise. A repertory grid, such as that of Figure 2, may be viewed as a component of a
database in entity-antribute form with elements as entities, constructs as attributes and
ratings of elements on poles of constructs as values.

The entailment analysis of a repertory grid treats each pole of a construct as a fuzzy
predicate to which the elements have degrees of membership given by their ratings, and
induces the logical implications between these predicates. The original ENT AIL program
produced all entailments consistent with the grid and allowed the expert to prune any that
seemed spurious before using them as inference rules in an expert system. ENT AIL II
rank orders entailments in terms of the uncertainty reduction they induce in the distribution
of the data, and hence tends to reject spurious entailments (Gaines & Shaw 1986a).

Figure 3 is an ENTAIL II analysis of the grid of Figure 2. The entailments are shown with
three values in the range from 0 to 1: first, the truth value of the hypothesis; second, the
probability of the hypothesis being true; and third, the information content (uncertainty
reduction generated) of asserting the hypothesis. For example, L1-7L9 has a truth value of
0.80, a probability of 1.00, and an information content of 0.29. The information content
measures the significance of the hypothesis and is used to ensure that trivial entailments
consistent with the data are pruned.

The data of Figure 2 may be regarded as that of an expert on staff appraisal concerned with
deriving his overall rating (construct 13) from behavioral assessments such as intelligent
and creative. The ENTAIL analysis of Figure 3 shows that L1, lA, L6, L9, L10 and L12
imply L13, that intelligent, creative, reliable and professional self-starters requiring little
supervision receive a high overall rating, whereas R2, R4, R5, R6, R9 and R12 imply
R13, that being unwilling, less motivated, not so reliable, less professional, needing
supervision and needing a push leads to a low overall rating.

* 1 2 3 4 5 6 7 8 9 10 *

intelligent 1 * 1 1 4 5 3 3 5 2 3 5 * 1 dim
* *

willing 2 * 1 2 4 5 1 1 4 3 1 2 * 2 unwilling
* *

new boy 3 * 1 2 3 5 4 4 4 1 4 3 * 3 old sweats
* *

little supervision reqd 4 * 3 1 4 5 2 1 5 2 2 3 * 4 need supervision
* *

motivated 5 * 1 1 4 5 2 2 5 3 3 2 * 5 less motivated
* *

reliable 6 * 3 2 2 5 1 1 5 1 2 3 * 6 not so reliable
* *

mild 7 * 3 4 5 2 2 3 1 5 4 5 * 7 abrasive
* *

ideas men 8 * 1 1 5 4 2 3 1 3 4 4 * 8 staid
* *

self starters 9 * 2 1 5 5 1 3 5 3 4 5 * 9 need a push
* *

creative 10 * 1 1 5 5 2 3 4 3 4 5 * 10 non-creative
* *

helpful 11 * 4 3 4 2 3 5 1 4 5 5 * 11 unhelpful
* *

professional 12 * 1 2 3 3 2 1 5 2 4 4 * 12 less professional
* *

overall rating high 13 * 2 1 3 4 1 2 5 2 3 4 * 13 overall rating low
* *

messers 14 * 2 2 5 4 3 5 1 5 3 1 * 14 tidy

* * * * * * * * * 510

* * * * * * * * 59

* * * * * * * 58

* * * * * * 57

* * * * * 56

* * * * ss
* .* * 54

* * 53

* 52
51

Figure 2 Repertory grid elicited on staff appraisal

Figure 4 shows Nexpert in operation loaded with the entailments of Figure 3. Interaction
with Nexpert enables the expert to see the derived rules in action. He can determine their
consequences with test data, analyze new hypothetical cases, and see the inter-relations
between rules presented graphically. The logging and explanation facilities of Nexpert
enable him to track down spurious inferences that may arise with the rules derived by
ENT AIL, or proper inferences that are missing. He can then edit the rules and test the
revized system using Nexpert' s facilities.

In some applications the data in the grid about elements may also be relevant and can be
loaded in as a set of rules based on the ratings of the elements on the constructs (Boose
1984), for example, that S1 is intelligent. In other applications the relations between the
constructs of different experts may be significant and can be derived by combining multiple
grids (Bradshaw & Boose 1986).

Entail Truth !?rob. Inf. (Cutoff 0.17) Implication Usually
L1-+L9 0.80 1.00 0.29 intelligent-+self starters
L 9-+ L13 1.00 1.00 0.29 self starters-+overall rating high
R9-+R1 0.80 1.00 0.28 need a push-+dim
L10-+ L 8 1.00 1.00 0.28 creative-+ideas men
L 1-+ L10 0.80 1.00 0.26 intelligent-+creative
R 8-+ R10 1.00 1.00 0.26 staid-+non-creative
LlO-+ L 9 0.80 1.00 0.26 creative-+self starters
R13-+ R 6 0.80 1.00 0.26 overall rating low-+not so reliable
L 9-+ L10 0.80 1.00 0.24 self starters-+creative
R10-+ R 1 0.80 1.00 0.24 non-creative-+dim
L10-+ L 1 0.80 1.00 0.23 creative-+intelligent
R13-+ R 9 1.00 1.00 0.23 overall rating low-+need a push
R 4-+ R13 0.80 1.00 0.22 need supervision-+overall rating low
R5-+R4 0.80 1.00 0.22 less motivated-+need supervision
R 5-+ R13 0.80 1.00 0.22 less motivated-+overall rating low
R 9-+ R10 0.80 1.00 0.22 need a push-+non-creative
L1-+L3 0.80 1.00 0.21 intelligent-+new boy
L 6-+ L13 0.80 1.00 0.21 reliable-+overall rating high
R10-+ R 9 0.80 1.00 0.20 non-creative-+need a push
R1-+R6 0.60 1.00 0.19 dim-+not so reliable
R 1-+ R10 0.80 1.00 0.19 dim-+non-creative
R9-+R4 0.60 1.00 0.19 need a push-+need supervision
R 9-+ Rl2 0.60 1.00 0.19 need a push-+less professional
R 9-+ R13 o. 60 1.00 0.19 need a push-+overall rating low
R12-+ R13 0.80 1.00 0.19 less professional-+overall rating low
R13-+ R 4 0.80 1.00 0.19 overall rating low-+need supervision
R13-+ R12 0.80 1.00 0.19 overall rating low-+less professional
L4-+L5 0.80 1.00 0.18 little supervision reqd-+motivated
L4-+L9 0.60 1.00 0.18 little supervision reqd-+self starters
R6-+R4 0.80 1.00 0.18 not so reliable-+need supervision
R 6-+ R13 0.80 1.00 0.18 not so reliable-+overall rating low
L12-+ L 9 0.60 1.00 0.18 professional-+self starters
L13-+ L 4 0.80 1.00 0.18 overall rating high-+little supervision
L13-+ L 5 0.80 1.00 0.18 overall rating high-+motivated
L13-+ L 9 0.60 1.00 0.18 overall rating high-+self starters
L1-+L8 0.80 1.00 0.17 intelligent-+ideas men

Figure 3 ENTAIL analysis of repertory grid on s~aff appraisal

Is there evidence of:
reliable

reqd

Figure 4 Inference rules derived by ENT AIL in Nexpert expert system shell

TEXAN: TEXT ANALYSIS
Repertory grid techniques depend on eliciting elements and constructs from experts that are
representative of a domain and comprehensive in their classification. The interative
elicitation program PEGASUS in PLANET uses online analysis of the grid to feed back
comments to the expert which stimulate the addition of elements and constructs to achieve
comprehensiveness (Shaw 1980). However, this structural feedback is only applicable
when a grid has been partially completed and the initial selection of elements has had no
computer-based support

TEXAN is a text analysis program designed to pump-prime the grid elicitation process
when a manual or text book is available that the expert regards as having reasonable
coverage of the domain. It uses techniques that were originally designed to map subject
matter concepts against student concepts in computer-managed instruction systems (Smith
1976). The text is fully indexed by all non-noise words grouped by their stems, and a
coupling matrix of word associations is calculated using a simple distance-in-text measure.
The high-frequency associations in the text are clustered and presented to the expert as a
prototypical schema for the subject area which he can edit for spurious words and
associations, and then use to suggest knowledge islands and associated elements and
constructs.

Figure 5 shows a TEXAN clustering of an evaluation study of data logging, analysis and
presentation methodologies for human performance evaluation in complex systems (Gaines
& Moray 1985). Figure 6 shows an independent mapping of the main knowledge islands
for an expert system design based on the analyzed report (Gaines 1986). The TEXAN
analysis was done some time after the production of Figure 6, and the shading of Figure 5
shows the relationship of some of the groupings in the schema with the knowledge islands.
There is not a one-to-one correspondence but this, and similar analyses, show that basic
text analysis can focus attention on salient features of the domain and pump-prime the
knowledge elicitation process.

In the long term more sophisticated text analysis techniques may be used to derive
knowledge from text without human intervention. However, for many domains the
knowledge is not yet that explicit and pump-priming of elicitation from experts will remain
a significant requirement

ANALOG: SCHEMA ANALYSIS
The groupings of Figures 5 and 6 when combined with the construct classifications of
repertory grids as in Figure 2 may be viewed as schema structuring a knowledge domain.
ANALOG is a program that maps schema to schema based on their structure without regard
to content. It is based on a theory of analogy that explicates analogies as pullbacks of
faithful functors between categories (Gaines & Shaw 1982) and generates maximal sub
graph isomorphisms between two classificatory data structures. It may be regarded as a
generalization of the copy-edit process being used in the encoding of commonsense
knowledge in CYC (Lenat, Prakash & Shepherd 1986). ANALOG produces meaningful
results on artificial examples and grids in related domains. It will also find meaningless
analogies between unrelated domains which cannot be rejected by information-theoretic
statistical procedures such as those used in ENTAIL and ATOM. It seems likely that
effective application of ANALOG depends on the expert pump-priming the matching with
known or hypothesized relations and the program extending these rather than attempting to
generate them completely.

ATOM: BEHA VIOR ANALYSIS
Michalski and Chilausky (1980) have demonstrated that inductive modeling of an expert's
behavior may produce effective rules when those elicited by interview techniques are
clearly inadequate. ATOM is an algorithm for inducing the structure of a system from its
behavior using a search over a model space ordered by complexity and goodness of fit. As

~-7

problem

Figure 5 TEXAN clustering of word associations from text
with annotation showing knowledge islands

Figure 6 Knowledge islands specified by expert for performance measuring system

in ENT AIL, models are evaluated in terms of the uncertainty reduction induced by the
model in the distribution of the modeled behavior (Gaines 1976, 1977, 1979). A version
of ATOM has been incorporated in KITTEN that takes a set of sequences of arbitrary
symbolic data and generates a set of production rules that will reconstruct it. These can be
loaded into the ES shell to give a simulator of the behavioral system. This has proved
effective with inter-personal interaction data such as that analyzed by Mulhall (1977) and
interactively elicited by Stevens (1985).

SOCIO: MUTUAL AGREEMENT AND UNDERSTANDING ANALYSIS
This paper has already emphasized the need for knowledge elicitation methodologies to
cope with a group of experts as well as the individual. Much expertise only resides within
the social context of cooperating individuals and requires elicitation across the group. The
SOCIO analysis program supports group elicitation techniques in which the construct
systems of a number of users are compared. Grids are elicited separately but then
exchanged in two ways: a user can place elements on a colleague's constructs from his own
point of view, and the analysis system then allows him to explore their agreement; or he
can attempt to place them from his colleague's point of view and hence explore his
understanding.

The SOCIO program has been used to develop a Participant Construct System, PCS,
which supports multiple interacting users in group problem solving activities through
terminals on a network of Macintoshes (Shaw 1986). It follows the paradigm suggested
by Chang (1986) of a participant system in which computer-based communication between
multiple users is essential to the performance of their tasks, rather than merely incidental to
their use of a timeshared computer or computer network PCS supports its users in:
• seeing the relationship of their points of view to those of others;
• exploring differing terminology for the same constructs;
• becoming aware of differing constructs having the same tenninology;
• extending their own construct systems with those of others;
• providing others with constructs they have found valuable;
• exploring a problem-solving domain using the full group resources.

Figure 7 shows a construct being elicited using the natural click-and-drag techniques of the
window /mouse interaction rather than numeric rating scale of Figure 2.

don't need superuision
RJ
B

UK
needs superuision

MM

m

Now place the other managers on the scale-click and drag each one
near to the most appropriate point

Figure 7 Rating elements on a construct spatially using click and drag

Figure 8 shows the natural representation of the construct match screen supporting element
elicitation .

• File Edit EHchange Compare

=I Construct Match ~ ..
poor communicator narrow uiew

~
UK-1 1-UK

'

1-CLB '

CLB ... AJ : AJ"'
~
<

MM- ~MM
·:

~

~

BH~ BH

<
~
~

good communicator open minded ~

Think of another manager that is either poor communicator and !
open minded or good communicator and narrow uiew :·

I Cancel) New manager 11 I ;:
:·

Figure 8 Eliciting an element by breaking a construct match

Figure 9 shows the presentation of agreement when one participant has made his own
assignment of elements to constructs elicited from another participant.

File Edit EHchange Compare

Agreement with Fred

liuely dull
works long hours finishes early

knows more than 1 do not uery knowledgeable 'imiiiiiimil
been here a long time new to job Jlii

sticks to the rules skates round rules
quick decision maker takes foreuer to decide

gets things done doesn't do much

Cancel J
~

:-:~ '"X • "' •• ;.-.-_..-••••••• -:-:•,• •!•.• .•:-:·:······ •.•• •••• •.·'•·' •,•'•' '!•''!•'•' '•'' •-. •'•'•'•:-"•'•:•: .. X•:•:···: ,•'•!'•''•'•!•!•,• • '•'•'• ,'•0:•'»".-!'•!•'•'• .·.;~.;.; .;.;-:-: ···:·:-:·····:·····:·····:

Figure 9 Presentation of degrees of agreement when one participant has
rated elements using another's constructs

CONCLUSIONS: STEPS TOWARD AN INTEGRATED KSS
This paper has presented the concept of knowledge support systems as interactive
knowledge engineering tools, stated the design criteria for such systems, and outlined the
structure and key components ofKSS1 and its KITTEN implementation. KSS1 consists
of a set of knowledge engineering tools, some of which already have track records of
successful use in knowledge acquisition studies. In developing KITTEN the integrity of
each of these tools has been preserved, enabling each to be utilized effectively in a stand
alone mode. However, the first steps have also been made towards an integrated
knowledge support system by building the tools around a common database, providing
access to the same data in each of its intermediate forms, and providing conversion utilities
between different data forms.

The objective of integrating the tools has raised a number of new and significant questions.
ENT AIL transforms a repertory grid to a set of production rules-is it possible, and useful,
to convert production rules to a repertory grid? Technically the result is a possible world of
grids that might have generated the rules, and the capability does prove useful, particularly
given the other grid analysis tools available in KITTEN. Similar considerations apply to
the transformations between other forms of knowledge representation. The next generation
of knowledge support tools will be increasingly flexible in handling all aspects of
knowledge acquisition, representation, processing and presentation. They will not be
optimized with a particular knowledge representation, uncertainty calculation, inference
mechanism, and so on, that are in some sense right Rather they will provide a wide range
of perspectives on the knowledge base, preserving source data and chains of derivative
processes, so that users can freely explore the knowledge or follow a very specific path
according to their choices and needs.

ACKNOWLEDGEMENTS
Financial assistance for this work has been made available by the National Sciences and
Engineering Research Council of Canada The PCS implementation is being carried out by
Alberta Research Council. We are grateful to John Boose and Jeff Bradshaw of Boeing Al
Center, and Ernie Chang of Alberta Research Council for stimulating discussions relating
to knowledge support systems.

REFERENCES
Boose, J.H. (1984). Personal construct theory and the transfer of human expertise.

Proceedings AAAI-84, 27-33. California: American Association for Artificial
Intelligence.

Boose, J.H. (1985). A knowledge acquisition program for expert systems based on
personal construct psychology. International Journal of Man-Machine Studies
20(1), 21-43 (January).

Boose, J.H. (1986). Rapid acquisition and combination of knowledge from multiple
experts in the same domain. Future Computing Systems, In press.

Bradshaw, J.M. & Boose, J.H. (1986). NeoETS. Proceedings of North American
Personal Construct Network Second Biennial Conference. pp. 27-41.
University of Calgary: Department of Computer Science (June).

Chang, E. (1986). Participant systems. Future Computing Systems, in press.
Davis, R. & Lenat, D.B. (1982). Knowledge-Based Systems in Artificial

Intelligence. New York: McGraw-Hill.
Eshelman, L. & McDermott, J. (1986). MOLE: a knowledge acquisition tool that uses its

head. Technical Report. Camegie-Mellon University: Department of Computer
Science.

Gaines, B.R. (1976). Behaviour/structure transformations under uncertainty.
International Journal of Man-Machine Studies, 8(3), 337-365 (May).

Gaines, B.R. (1977). System identification, approximation and complexity.
International Journal of General Systems, 3, 145-174.

31-l (

Gaines, B.R. (1979). Sequential fuzzy system identification. International Journal of
Fuzzy Sets and Systems, 2(1), 15-24 (January).

Gaines, B.R. (1986). Development of performance measures for computer-based man
machine interfaces: Application to previous SHINMACS evaluation. Technical
Report DCIEM-PER-SUP:MAR86.

Gaines, B.R. & Moray, N. (1985). Development of performance measures for computer
based man-machine interfaces. Technical Report DCIEM-PER-FIN:WL85.

Gaines, B.R. & Shaw, M.L.G. (1980). New directions in the analysis and interactive
elicitation of personal construct systems. International Journal of Man-Machine
Studies 13(1) 81-116 (July).

Gaines, B.R. & Shaw, M.L.G. (1981). A programme for the development of a systems
methodology of knowledge and action. Rec.kmeyer, W.J., Ed. General Systems
Research and Design: Precursors and Futures. pp. 255-264. Society for
General Systems Research (January).

Gaines, B.R. & Shaw, M.L.G. (1982). Analysing analogy. Trappl, R., Ricciardi, L. &
Pask, G., Eds. Progress in Cybernetics and Systems Research. Vol. IX, pp.
379-386. Washington: Hemisphere.

Gaines, B.R. & Shaw, M.L.G. (1986a). Induction of inference rules for expert systems.
Fuzzy Sets and Systems, 8(3), 315-328 (April).

Gaines, B.R. & Shaw, M.L.G. (1986b). Knowledge engineering for an FMS advisory
system. Lenz, J.E. (Ed.) Proceedings of the Second International Conference
on Simulation in Manufacturing: AMS'86. 51-61. Bedford, UK: IFS
Conferences (June).

Gammack, J.G. & Young, R.M. (1985). Psychological techniques for eliciting expert
knowledge. Bramer, M., Ed. Research and Development in Expert Systems,
pp. 105-116. Cambridge University Press.

Kahn, G., Nowlan, S. & McDermott, J. (1985). MORE: an intelligent knowledge
acquisition tool. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence. pp. 581-584. California: Morgan Kaufmann.

Kelly, G.A. (1955). The Psychology of Personal Constructs. New York: Norton.
Lenat, D., Prakash, M. & Shepherd, M. (1986). CYC: Using common sense knowledge

to overcome brittleness and knowledge acquisition bottlenecks. AI Magazine 6(4),
65-85.

Marcus, S., McDermott, J. & Wang, T. (1985). Knowledge acquisition for constructive
systems. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence. pp. 637-639. California: Morgan Kaufmann.

Michalski, R.S. & Chilausky, R.L. (1980). Knowledge acquisition by encoding expert
rules versus computer induction from examples-A case study involving soyabean
pathology. International Journal of Man-Machine Studies, 12, 63-87.

Mulhall, DJ. (1977). The representation of personal relationships: an automated system.
International Journal of Man-Machine Studies, 9(3), 315-335 (May).

Roy, J. (1986). Expert systems in Nexpert. MacTutor, 2(2), 48-51 (February).
Shaw, M.L.G. (1980). On Becoming a Personal Scientist. London: Academic

Press.
Shaw, M.L.G. (1981). Conversational heuristics for eliciting shared understanding. Shaw,

M.L.G., Ed. Recent Advances in Personal Construct Technology. pp. 31-44.
London: Academic Press.

Shaw, M.L.G. (1982). PLANET: some experience in creating an integrated system for
repertory grid applications on a microcomputer. International Journal of Man
Machine Studies, 17(3), 345-360.

Shaw, M.L.G. (1986). PCS: a knowledge-based interactive system for group problem
solving. Proceedings of 1986 International Conference on Systems, Man
and Cybernetics, to appear (October).

Yf-lZ

Shaw, M.L.G. & Chang, E. (1986). A participant construct system. Proceedi,ngs of
North American Personal Construct Network Second Biennial
Conference. pp. 131-140. University of Calgary: Department of Computer Science
(June).

Shaw, M.L.G. & Gaines, B.R. (1983). A computer aid to knowledge engineering.
Proceedings of British Computer Society Conference on Expert Systems,
263-271 (December). Cambridge.

Shaw, M.L.G. & Gaines, B.R. (1986a). A framework for knowledge-based systems
unifying expert systems and simulation. Luker, P.A. & Adelsberger, H.H., Eds.
Intelligent Simulation Environments, 38-43 (January). La Jolla, California:
Society for Computer Simulation.

Shaw, M.L.G. & Gaines, B.R. (1986b). Interactive elicitation of knowledge from experts.
Future Computing Systems, 1(2), to appear.

Shaw, M.L.G. & Gaines, B.R. (1986c). An interactive knowledge elicitation technique
using personal construct technology. Kidd, A., Ed. Knowledge Elicitation for
Expert Systems: A Practical Handbook. To appear. Plenum Press.

Smith, R.A. (1976). Computer-based structural analysis in the development and
administration of educational materials. International Journal of Man-Machine
Studies, 8(4), 439-463 (July).

Stevens, R.F. (1985). An on-line version of the personal relations index psychological
test. International Journal of Man~Machine Studies. 23(5), 563-585
(November).

van de Brug, A, Bachant, J. & McDermott, J. (1985). Doing R1 with style. Proceedings
of the Second Conference on Artificial Intelligence· Applications. IEEE
85CH2215-2, pp. 244-249. Washington: IEEE Computer Society Press.

Wahl, D. (1986). An application of declarative modeling to aircraft fault isolation and
diagnosis. Luker, P.A. & Adelsberger, H.H., Eds. Intelligent Simulation
Environments, pp. 25-28 (January). La Jolla, California: Society for Computer
Simulation.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Knowledge Base Debugging Using Apprenticeship Learning Techniques

Abstract

David C. Wilkins

Department of Computer Science
Stanford University
Stanford, CA 94305

This paper describes the ODYSSEUS apprenticeship learning program, which is designed to
refine and debug any knowledge base for the HERACLES expert system shell. The input to
ODYSSEUS is the observable behavior of a specialist solving a problem. ODYSSEUS analyzes
the observable behavior using two underlying domain theories: a procedural theory of
hypothesis-directed reasoning, and an empirical inductive theory based on past problem
solving cases. ·

Two key components of ODYSSEUS, the global and local learning critics, are being imple
mented as HERACLES-based expert systems. This allows META-ODYSSEUS, which consists
of copies of ODYSSEUS, to semi-automatically refine and debug ODYSSEUS in an appren
ticeship learning setting. ODYSSEUS is being developed in the domain of medical diagnosis,
a task domain where apprenticeship learning plays a crucial role in the creation of human
experts.

1 Introduction

Debugging a knowledge base associated with a knowledge-intensive task is a very difficult
problem, and techniques to automate this process have met with very limited success. This
paper describes a solution approach for the knowledge acquisition "end-game": we assume
that a reasonable knowledge base has been created, and the problem is to debug and refine
this existing knowledge base.

The most effective method that human problem solvers use when confronting the "end
game" knowledge acquisition task is apprenticeship learning. For example, high-level per
formance in medicine is obtained by spending two or three years acquiring "first-principles"
textbook knowledge and then spending five to eight years in an apprenticeship role, called
an internship and residency. This is the most effective method known to create human

experts, and hence it provides motivation to investigate its efficacy in creating artificial
experts.

There are many types of apprenticeship learning scenarios. One important type involves
having a novice expert watch a master expert solve problems. The novice uses his or
her existing knowledge to follow the line of reasoning of the expert and thereby detects
when the expert is using different knowledge. If a knowledge base deficiency is suspected,
the problem solving context helps the novice know what question to ask of the expert to
clarify the misconception. Often the problem solving context allows the novice to identify
the missing or wrong knowledge without querying the expert, though we always confirm the
knowlege base change with the expert before modifying the knowlege base. Our research
focuses on giving an expert system such an apprenticeship learning capability.

The ODYSSEUS learning apprentice is designed to improve any expert system that uses the
HERACLES expert system shell. Our task domain is medical diagnosis, and the knowledge
base we are interested in refining and debugging is the NEOMYCIN knowledge base for
meningitis and neurological problems [Cla84].

2 The Perfo_rmance Learning Model

The learning task faced by an apprentice learner will be introduced using the performance
model of learning [BMSJ78] shown in Figure 1. The major functional components of the
performance learning model are the performance element, the training instances generator,
the intelligent editor and the learning critic. Each of these will be explained in turn.

The performance element to be improved is a diagnostic expert system. More specifically,
the ODYSSEUS learning system is designed to improve any expert system that is imple
mented using the HERACLES expert system shell for classification problem solving [Cla85].
HERACLES is a generalization of NEOMYCIN [Cla84], and was created by removing the
domain knowledge from NEOMYCIN.

The training imtances presented to the learning system consist of the normal observable
problem solving behavior of an expert. In our experiments, the expert is given a chief
complaint of a patient, and the expert then makes a series of data requests to gather
information that allows the patient's illness to be determined. The expert also provides
clarification requests made by the learning system critic, relating to goal information. For
example, the expert's goal might be to confirm a particular hypothesis or to discriminate
between two likely hypotheses.

The intelligent editor can reason about the performance element's knowledge structures.
In our case, this means it knows how to modify the HERACLES domain-specific parameter
and rule files, thereby correcting bugs or adding new knowledge.

PERFORMANCE ELEMENT
- any diagnostic expert system

created using HERACLES shell

LEARNING CRITIC
-evaluator
- diagnostician
-therapist

BLACKBOARD

INTELLIGENT EDITOR
-reasons about

performance element's
knowledge structures

TRAINING INSTANCES
- problem solving behavior

of an expert
- answers to clarification

requests of learning critic

WORLD MODEL

Figure 1: Performance Learning Model

The heart of the learning system is the learning critic. It has three functions: evalua
tor (global critic), diagnostician (local critic), and therapist (repair). The global critic,
which is being implemented as a HERACLES-based expert system, has the responsibility
of differentially modeling the specialist who is solving problems against the expert sys
tem knowledge base, and determining if an action of the specialist suggests the use of
underlying knowledge that is different from that in the expert system knowledge base. For
each action of the specialist, ODYSSEUS generates a set of Line of Reasoning Explanations
(LOREs), and then tests them for plausibility. The most important function of the global
critic is to answer a yes or no question: does an observed action of the expert suggest a
knowledge base deficiency in the expert system? Since a "yes" answer relates a knowledge
base deficiency to a particular action of the specialist, the global critic significantly con-

40-2

tributes to localizing the knowledge base deficiency. The local critic, which is also being
implemented as a HERACLES-based expert system, isolates where the knowledge base is
buggy or incomplete and suggests a knowledge base modification. repair is straightforward:
a call is made to an which knows how to modify HERACLES' knowledge

3 Odysseus Learning Methodology

The ODYSSEUS apprenticeship learning program has three major phases of operation.
These phases are to expand the rule base and derive rule justifications, to observe actions
and determine knowledge base differences, and to rationalize discrepancies and postulate
new rules. This section describes the methodology of these three phases.

3.1 Phase 1: Expand Rule Base and Derive Rule Justifications

We assume that an initial expert system has been created manually or semi-automatically
using methods such as described in [Boo84] [KNM85]. There are two ways in which
this existing expert system must be augmented before differential modeling of a human
specialist can commence. First, the set of heuristic rules must be expanded via induction
over past problem solving cases. The original set of rules is adequate for problem solving
but, in our experience, is too impoverished to model the problem solving behavior of other
specialists in an apprentice context. Second, rules should be justified from first-principle
knowledge or experience. Rule justifications allow a learning system to reason about the
rules during the process of rationalizing discrepancies. For example, the LEAP learning
apprentice for circuit design justifies rules in terms of circuit theory, a strong theory of the
domain [MMS85]. By contrast, only a weak theory underlies the majority of medicine, and
ODYSSEUS's justifications for heuristic rules rely on the empirical predictive power of the
rules. More complex rule justifications for heuristic rules are possible, as an apprenticeship
learning system for the DIPMETER ADVISOR demonstrates [SWMB85].

The induction subsystem of ODYSSEUS is principally concerned with searching the space of
rules of the form lhs ---+ hypothesis (CF), where CF is a MYCIN-type certainty factor. A
constrained rule generator and a candidate rule evaluator find alllh.s forms that meet given
constraints of minimal rule generality (coverage), minimal rule specificity (discrimination),
maximal rule colinearity (similarity), and maximal rule simplicity (number of conjunctions
and disjunctions). The method of searching the space of rules is constrained rule gener
ation from the most general hypothesis to the most specific hypothesis, and bears many
similarities to META-DENDRAL [LBAL80,BM78]. The rule evaluator always gives prefer
ence to colinear forms of heuristic rules contained in the original rule base. The expanded
rule set produced by the induction subsystem is incomplete; however, it boots traps the
differential modeling process that leads to its refinement. Later we will discuss how the

40-3

induction subsystem suggests missing rules to the repair subsystem during the process of
rationalizing discrepancies.

3.2 Phase 2: Observe Actions and Detect KB Differences

Using the expanded rule base, ODYSSEUS must decide whether an action of the specialist
suggests a significant domain or strategic knowledge difference between the specialist and
the expert system. This is the global credit assignment problem [BM78]. The VLSI designer
observed by the LEAP learning apprentice for VLSicircuit design informs LEAP when there
is a missing circuit refinement rule [MMS85]. By contrast, the diagnostician's actions
observed by ODYSSEUS only indirectly reflect the domain knowledge to be learned.

(HUMAN)

Problem to Solve

l
Human

Problem Solver

Problem Solving Actions

(MACHINE)

Apprentice Expert System
(With Buggy KB)

Odysseus Global Critic
Expert System

Odysseus Local Critic
Expert System

Knowledge Differences Between
Apprentice and Expert

Figure 2: Apprenticeship learning Scenario: Apprentice is watching expert.

For each observed action of the specialist, ODYSSEUS generates a set of Line of Reasoning
Explanations (LOREs). A LORE relates an an action A to an abstract strategic goal G via
a skeletal rule path, that is, A--+ R 1 --+ R 2 --+ · · · --+ G. A typical goal might be the
confirmation of a particular hypothesis. Given A, all skeletal rule paths beginning with A
and leading to a goal are in the LORE set of A; from the perspective of the apprentice, the
set delimits the possible interpretations that can be attributed to the specialist's action
A. Using the original NEOMYCIN rule base, the average is 20 and the maximum size is
approximately 400.

40-4

The function of the global critic in ODYSSEUSis performed by a HERACLES-based expert
system. There are three reasons why we choose to implement the global critic as an

- expert system. First, the task that confronts the global critic is a knowledge intensive
task [DB81]. Second, with an expert system architecture, the reasoning method used by
the critic can be made explicit and easily evaluated, since the knowledge is declaratively
encoded using HERACLES knowledge relations. Third, since ODYSSEUS is designed to im
prove a HERACLES-based expert system, it can improve itself in an apprenticeship learning
setting.

As we have said, ·oDYSSEUS generates a set of LOREs (line of reasoning explanations) for
each action of the specialist. The purpose of the global critic expert system is to select
one or more LOREs that correspond to the specialist's LORE or to decide that none of the
LOREs provide an adequate explanation of the specialist's action. Deciding there is no
adequate LORE is very difficult, since there are often weakly plausible explanations for any
action of the specialist; yet to learri, the program must recognize when none of its LOREs
are sufficiently plausible.

To accomplish its task, the global critic gets information that relate to LOREsfrom a va
riety of knowledge sources (KSs). The more important ones are: a H eracles simulator
KS, multiple interpretations KS, user model KS, strategic distance KS, and a patterns of
interpretation KS. A description of each of these KSs follows.

The H eracles simulator KS processes the information obtained during the problem solving
session and this provides information on the current status of findings, hypotheses, and
rules. Global critic rules relate these to individual LOREs. For example, if the Heracles
simulator KS believes that particular hypotheses have already been confirmed or discon
firmed, then there is a rule that attaches negative evidence to all LOREs that have as a
goal or subgoal the confirmation one of these hypotheses.

The multiple interpretations KS provides information that is used by global critic rules
that encode heuristics used by medical domain experts to arbitrate between multiple in
terpretations of a specialist's action. For instance, early in the consultation session LOREs
relating to more general hypotheses are preferred to LOREs with more specific hypotheses.

The user model KS records user characteristics such as individual diagnostic style prefer
ences, and these are used by global critic rules that arbitrate between competing action
justifications. For example, some problem solvers have a depth-first problem-solving style,
meaning that they pursue a particular hypothesis as soon as there is weak evidence con
firming it. A global critic rule would add support to those LOREs consistent with this
style.

The strategic distance KS provides information that aids in determining the similarity
between the expert system's preferred strategic action and the strategic action associated
with each LORE. We assume that HERACLES strategic knowledge exemplifies good strategic
reasoning. Therefore, if the strategic action associated with a LORE is close to HERACLES'

40-5

preferred strategic action, it is favored.

Finally, the patterns of interpretation KS provides information that is used by global critic
rules that rate competing justifications according to the overall coherence they lend to the
specialist's strategic plan.

If the global critic expert system is uncertain about an important fact, such as the expert's
focus on a previous question in the consultation, the expert system can query the user,
but this this goes against our Aof trying to automate the knowledge acquisition process as
much as possible. ~~\ ·

When the specialist being observed is NEOMYCIN and the rule induction phase has been
omitted, ODYSSEUS always selects the correct LORE from the LORE set. However, when ob
serving other novice and master medical specialists, if the rule induction phase is omitted,
ODYSSEUS almost never selects the correct LORE; indeed, the correct LORE was not in the
LORE set generated from the original NEOMYCIN knowledge base 75% of the time. This
incompleteness was due to sparse domain knowledge, and motivated the initial induction
phase to expand the rule base. Observing actual specialists also showed the need for more
global critic rules.

3.3 Phase 3: Rationalize Discrepancies and Postulate New Rules

A learning opportunity exists when the ODYSSEUS global critic concludes that no LORE
adequately explains the specialist's action. The task of determining the knowledge base
difference is the responsibility of the local critic, which is also being implemented as a
HERACLES.;based expert system. The motivation for implementing the local critic as an
expert system is similar to those reasons described in the previous subsection for imple
menting the global critic as an expert system.

The purpose of the local critic is to identify the missing or buggy knowledge relation, that
will allow an adequate LORE to be constructed. In HERACLES, domain knowledge is declar
atively specified by a user by instantiating knowledge relations. These knowledge relations
are predicate calculus representation of domain facts. For example an instantiation of the
knowledge relation template (SUGGESTS $PARM $HYP) is used to represent the fact that
if a particular parameter is true then this suggests that a particular hypothesis is true.
An instantiation of the template (ANTECEDENT-IN $FINDING $RULE) represents the fact
that a particular finding is an antecedent in a particular rule.

The local critic selects one or more knowledge relations from among the seventy HERACLES
knowledge relations, that are believed to be the reason for no LORE being found by the
global critic. The information used by the local critic includes many of the KSs used by the
local critic and information produced by the global critic itself. For instance, the global
critic has conjectures regarding the most likely goal(s) that the expert was pursuing at

the time when the global critic concluded that no LORE explained the specialist's action.
In addition, the local critic draws heavily on the induction subsystem of ODYSSEUS, when
testing conjectures regarding missing or buggy knowledge. The global critic performs a
bidirectional search for a skeletal path of rules between the unexplained action of the
specialist and the goals conjectured by the global critic, calling on the the induction sub
system to check for rules that could connect the two search frontiers. This process aims
at producing a new LORE that is considered satisfactory by the global critic.

4 Example

This example illustrates ODYSSEUS debugging an expert system in an apprenticeship learn
ing situation. The domain is medical diagnosis. We are in the middle of a meningitis case
which is being discussed in the presence of an apprentice. The analysis begins with ques
tion 12, at which time the apprentice believes the expert's current goal is to pursue the
diagnostic hypothesis of acute bacterial meningitis. Two earlier questions will later become
relevant: The expert's question 4 asked for information on headache onset; the headache
onset was abrupt. The expert's question 9 asked whether the patient had meningismus,
and the answer was no.

912 of Expert: Does the patient have a history of pneumonia?

Ql2 Odysseus Analysis: There are two potential LOREs (Line of Reasoning Explana
tions): testing hypotheses of diplococcus pneumoniae and mycobacterium tb menin
gitis. The :first LORE is consistent with my previous interpretation, since diplococcus
pneumoniae is a subtype of acute bacterial meningitis; therefore I accept this LORE.
I'll update my belief model to reflect the fact that the expert is focusing on diplo
coccus pneumomae.

Ql2 Answer: Yes.

Ql3 of Expert: Does the patient have an abnormal chest X-ray?

Ql3 ODYSSEUS Analysis: There is only one potential LORE for this action: testing
hypothesis diplococcus pneumoniae. This is very consistent with my previous LORE,
so I am satisfied with this interpretation. I'll update my belief model to reflect the
fact that the expert continues to focus on diplococcus pneumoniae.

Ql3 Answer: Yes.

Ql4 of Expert: Has the patient traveled recently?

4:o-7

Q14 ODYSSEUS Analysis: The only potential LORE is that the expert is testing hypoth
esis Coccidioides. This is not consistent with our previous interpretation; therefore,
at least one of the following is true: (a) Change of goal, (b) Missing or erroneous
knowledge, (c) Previous interpretation iiawed.

[Exploring (a)]. To switch from pursuing diplococcus pneumoniae to pursing
Coccidioides (a form of fungal meningitis) is unlikely, because of their distance apart
in the disease lattice. Further, there has been no previous evidence for pursuing
Coccidioides. Therefore, it is unlikely that the expert's behavior is accounted for by
a change in goal.

[Exploring (b)]. I asked the induction subsystem of ODYSSEUS to search for a rule
sequence that links travel to diplococcus pneumoniae. None is found. I then asked the
induction subsystem to determine whether a combination of previously determined
findings provides motivation for pursuing Coccidioides. Answer is negative.

[Exploring (c)]. Perhaps the expert was not focusing on diplococcus. But there
are no LOREs other than diplococcus for question #13. There is only one alternative
for question #12: mycobacterium tb meningitis. Upon being queried, the induction
subsystem of ODYSSEUS confirms that abnormal chest x-ray suggests mycobacterium
tb meningitis. In answer to another query, it confirms that travel to Mexico suggests
mycobacterium tb meningitis. Perhaps these rules were used by the expert. If so, I
will add them to my knowledge base.

The problem still is not fully resolved, because I know of no reason why the
expert should be focusing on mycobacterium tb meningitis. Upon request, the in
duction subsystem of ODYSSEUS considers all previous questions, and discovers that if
headache-onset is abrupt and there is no evidence of meningismus, then this strongly
suggests mycobacterium tb. I'll verify my analysis by presenting a summa.zy to ex
pert:

Q14 ODYSSEUS Query: Expert, on questions 12 thru 14 were you pursuing mycobac
terium tb? And did you first suspect this hypothesis based on the answers to ques
tions 4 and 9?

Q14 Expert Response: Well, yes. Now you're learning!

5 Diagnosis and Apprenticeship Learning

Figure 3 provides an interesting perspective on the classic apprenticeship learning scenario
of an apprentice expert system watching an expert solve problems. In our formulation of
Figure 3, there are three diagnosticians. The first diagnostician is the human expert, who
observes the behavior of a physical system and identifies its faulty behavior. One can view
the human diagnostician as differentially modeling the physical system against a mental
model of the physical system. The .second diagnostician is ODYSSEUS, which internally

Diagnosis Level 3:
Meta-Odysseus
dx's Odysseus

Diagnosis Level 2:
Odysseus

dx's apprentice

Diagnosis Level 1:
Expert dx's

physical system

Agents doing diagnosis
shown in this column

Meta-Odysseus
KB3 + KB4

Meta-Odysseus
KB3 + KB4

Odysseus
KB3 + KB4

Human Expert
Implicit KBl

Systems being diagnosed
shown in this column

Odysseus
Local Critic KB

KB4

Odysseus
Global Critic KB

KB3

Apprentice
Expert System KB

KB2

Physical System

Figure 3: Diagnosis everywhere. The expert is debugging a physical system, Odysseus is

debugging the apprentice expert system knowledge base, and Meta-Odysseus is debugging

Odysseus' (and its own) global and local critic knowledge bases.

is organized as two HERACLES-based diagnostic expert systems. ODYSSEUS differentially
models the behavior of the human expert against the apprentice expert system knowledge
base. When a discrepancy is discovered, ODYSSEUS assumes that the problem resides
with the apprentice expert system knowledge base. The third diagnostician is META
ODYSSEUS. It comprises two expert systems, that observe and analyze the performance of
the ODYSSEUS global and local critic expert systems. It is able to do this because ODYSSEUS
has been fashioned to differentially model the actions of a problem solver against an expert
system implemented using the HERACLES shell, and ODYSSEUS has itself been implemented
as a diagnostic expert system using the HERACLES expert system shell. When ODYSSEUS
makes a mistake, thus exhibiting faulty behavior, META-ODYSSEUS can attempt to isolate
the problem and to correct it by modifying the ODYSSEUS' knowledge base.

6 The Synthetic Agent Method of Validation

We are taking an unusual approach to validating ODYSSEUS, and we hope it will lead to
a general methodology for evaluating apprentice learning systems. Part of our validation
approach for assessing ODYSSEUS is what one would expect: physicians will solve problems,
and ODYSSEUS will watch them and attempt to recognize when they are using knowledge
that is lacking from the apprentice expert system. This provides us with a lower bound on
performance. We are very interested in also establishing an upper bound on performance.
Our approach to this is called the synthetic agent method. We feel that this puts validation
of an apprenticeship learning on a more principled scientific footing.

The synthetic agent method involves using an expert system with a relatively good knowl
edge base as a synthetic domain expert. We will refer to this expert system as the master
expert system. Initially, the master and apprentice expert systems have identical knowl
edge bases, but then pieces of knowledge are systematically removed from the apprentice.
We are interested in seeing if the apprentice can recover this knowledge or its equivalent
in an apprenticeship learning situation.

We are especially interested in seeing how hard it is to learn different types of knowledge
relations (Cla86]. As described in Section 3, domain knowledge is declaratively specified
by instantiating approximately seventy different types of knowledge relations, which are
a predicate calculus representation of domain facts. Clearly, an apprenticeship setting is
not a panacea for human experts and we would like to quantify its limits for an apprentice
expert system.

40-tO

7 Related Research

Some of the earliest work in machine learning was directed at developing apprentice learn
ing systems, such as Samuel's checker program [Sam63] and programs for learning LISP
functions from examples [Bie76].

Davis's TEIRESIAS program addresses the knowledge acquisition problem for expert systems
(Dav82]. However, the arrangement of having the specialist watch the expert system,
instead of vice-versa, bypasses the machine learning problems dealing with automating the
global critic, local critic, and the semantical aspects of repair.

The SEEK system for knowledge base refinement also address the problem of "end-game"
knowledge acquisition [PW84]. SEEK differs from ODYSSEUS in that SEEK is a manual aid
more oriented toward suggesting experiments for tuning existing knowledge than adding
new knowledge. Also, SEEK does not have recourse to an underlying theory of the problem
solving process.

For both SEEK and INDUCE-PLANT [Mic84], a training instance is an entire problem solving
session, not a problem solving step. They are not able to recognize discrepancies based
on the order in which the expert requests data during diagnosis. The training instances
used by ODYSSEUS are finer-grained, and can exploit the sequence information contained
in problem-solving protocols.

Waterman's exemplary programming system is directed at synthesizing an algorithmic
activity by observing multiple instances of it's application [Wat78]. This contrasts to
the task faced by ODYSSEUS of learning via watching heuristic problem solving. heuristic
program for a domain.

The LEAP system is the premier example of an apprentice learning system for a knowledge
intensive task [MMS85]. LEAP, a learning system for VLSI circuit design, justifies rules in
terms of circuit theory, a strong theory of the domain [MMS85]. By contrast, a weak the
ory underlies medical diagnosis, and ODYSSEUS justifies rules based on their experiential
predictive power. In LEAP, the exact input and output of each problem solving step is
observable; in contrast the medical specialist's actions observed by ODYSSEUS only indi
rectly reflects the problem-solving knowledge to be learned. The specialist solves the global
critic problem for LEAP by telling the learning system whenever there is believed to be a
potential knowledge discrepancy. More importantly, LEAP does not address the problem
of knowledge base debugging, central to ODYSSEUS. LEAP assumes that all knowledge in
the apprentice is good, that all new knowledge is guaranteed to be correct, and that no
interaction of knowledge in the system can lead to problems.

4-0-l{

8 Implementation Status

The implementation of the ODYSSEUS induction subsystem was completed in June 1985.
The global critic's Line of Reasoning Explanation (LORE) generator is also completely
implemented. An implementation of the LORE ranking subsystem exists and it correctly
follows the line of reasoning of NEOMYCIN. It can also recognize situations where NEOMYCIN
has used knowledge that is missing from the apprentice expert system, although this ca
pability has not been strenuously tested yet. The global critic is presently being reimple
mented as a HERACLES-based expert system: an initial vocabulary and rule set has been
defined. The local critic has been designed but is not yet implemented.

9 Summary and Conclusions

This paper described the ODYSSEUS apprenticeship learning approach to automating "end
game" knowledge acquisition for classification expert systems. The performance learning
model was used to elucidate the apprentice learning situation in Section 2, the ODYSSEUS
learning methodology was described in Section 3, and 4, and an example was provided
to illustrate how learning takes place in Section 5. The validation approach and related
research were described in Sections 6 and 7, respectively.

Three aspects of the HERACLES expert system shell make ODYSSEUS possible: distinctions
are made between the different types of knowledge in the knowledge base, such as heuristic,
definitional and control knowledge [Cla83]; the method of reasoning, called hypothesis
directed reasoning, approximates that used by human experts [Cla84]; control knowledge
is explicitly represented as a procedural network of subroutines and MYCIN-type metarules
that are free of domain knowledge [Cla86].

ODYSSEUS has a number of distinctive features. First, because the duties of the learn
ing critic are very knowledge-intensive, the ODYSSEUS learning critic has been formulated
as two diagnostic expert systems and they are being implemented in HERACLES. Second,
ODYSSEUS is designed to debug any HERACLES expert system, hence it can examine and
reason about its own knowledge and knowledge structures. This ability is very helpful, be
cause it allows ODYSSEUS to semi-automatically refine and debug itself using apprenticeship
learning techniques. Third, while apprenticeship learning is a form of explanation-based
learning, one of the underlying theories used heavily by ODYSSEUS is the empirical predic
tive power of heuristic rules. As the learning example in Section 4 demonstrates, ODYSSEUS
fruitfully combines similarity based learning and explanation based learning

10 Acknowledgments

The advice and inspiration of Bruce Buchanan and Bill Clancey have been invaluable.
Substantive comments on earlier versions of this paper by Marianne Winslett were very
helpful. We are grateful for critiques of this work provided by past and present members
of the GRAIL learning group at Stanford, especially Tom Dietterich and Paul Rosenbloom,
and members of the GUIDON tutoring group, especially Mark Richer. Finally, we extend
our thanks to physicians who have served as our domain experts: doctors Larry Fagan,
Curt Kapsner, Randy Miller, Mark Musen, Roy Rada and Ted Shortliffe.

This work was supported in part by NSF grant MCS-83-12148, ONR/ ARI contract N00014-
79C-0302, Advanced Research Project Agency (Contract DARPA N00039-83-C-0136), the
National Institute of Health (Grant NIH RR-00785-11), National Aeronautics and Space
Administration (Grant NAG-5-261), and Boeing (Grant W266875). We are grateful for the
computer time provided by the Intelligent Systems Lab of Xerox PARC and SUMEX-AIM.

References

[Bie76] A. W. Biermann. Approaches to automatic programming. In Advances in
Computers, Academic Press, New York, 1976.

[BM78] B. G. Buchanan and T. M. Mitchell. Model-directed learning of production
rules. In D. A. Waterman, , and F. Hayes-Roth, editors, Pattern-Directed
Inference Systems, pages 297-312, New York: Academic Press, 1978.

[BMSJ78] B. G. Buchanan, T. M. Mitchell, R. G. Smith, and C. R. Johnson. Models
of learning systems. In J. Belzer, editor, Encyclopedia of Computer Science
and Technology, chapter 11, Marcel Dekker, New York, 1978. Also Stanford
Report STAN-CS-79-692.

[Boo84] J. H. Boose. Personal construct theory and the transfer of human exper
tise. In Proceedings of the Third National Conference on Artificial Intelligence,
pages 27-33, August 1984.

[Cla83] W. J. Clancey. The epistemology of a rule-based system: a framework for
explanation. Artificial Intelligence, 20:215-251, 1983.

(Cla84] W. J. Clancey. NEOMYCIN: reconfiguring a rule-based system with application
to teaching. In W. J. Clancey and E. H. Shortliffe, editors, Readings in Medical
Artificial Intelligence, chapter 15, pages 361-381, Addison-Wesley, Reading,
Mass., 1984.

[Cla85] W. J. Clancey. Heuristic classification. Artificial Intelligence, 27:289-350,
1985.

[Cla86] W. J. Clancey. Representing control knowledge as abstract tasks and
metarules. In M. Coombs and L. Bole, editors, Computer Expert Systems,
Springer Verlag, 1986. Also, Knowledge Systems Lab Report KSL-85-16, Stan
ford University, April 1985.

[Dav82] R. Davis. Application of meta level knowledge in the construction, mainte
nance and use of large knowledge bases. In R. Davis and D. B. Lenat, editors,
Knowledge-Based Systems in Artificial Intelligence, McGraw-Hill, New York,
1982.

[DB81] T. G. Dietterich and B. G. Buchanan. The role of the critic in learning systems.
Technical Report STAN-CS-81-891, Stanford University, Computer Science
Dept., December 1981.

[KNM85] G. Kahn, S. Nowlan, and J. McDermott. MORE: an intelligent knowledge
acquisition tool. In Proceedings of the Ninth IJCAI, pages 573-580, August
1985.

[LBAL80] R. Lindsay, B. G. Buchanan, Feigenbaum E. A., and J. Lederberg. Applica
tions of Artificial Intelligence for Organic Chemistry: The DENDRAL Project.
McGraw-Hill, New York, 1980.

[Mic84] R. S. Michalski. A theory and methodology of inductive inference. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach, chapter 4, pages 83-134, Palo Alto: Tioga,
1984.

[MMS85] T. M. Mitchell, S. Mahadevan, and L. I. Steinberg. LEAP: a learning apprentice
for VLSI design. In Proceedings of the Ninth IJCAI, pages 573-580, August
1985.

[PW84] P. Politakis and S. M. Weiss. Using empirical analysis to refine expert system
knowledge bases. Artificial Intelligence, 22(1):23-48, 1984.

[Sam63] A. L. Samuel. Some studies in machine learning using the game of checkers. In
E. Feigenbaum and D. Feldman, editors, Computers and Thought, McGraw
Hill, New York, 1963.

(SWMB85] R. G. Smith, H. A. Winston, T. M. Mitchell, and B. G. Buchanan. Repre
sentation and use of explicit justifications for knowledge base refinement. In
Proceedings of the Ninth IJCAI, pages 673-680, August 1985.

(Wat78] D. Waterman. Exemplary programming in RITA. In D. A. Waterman and
F. Hayes-Roth, editors, Pattern-Directed Inference Systems, Academic Press,
New York, 1978.

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, Nov., 1986

Case Generation for Rule Synthesis

Edward Wimiewski 1

Howard Winston
Reid Smith

Michael Kleyn
Schlumberger-Doll Research

Old Quarry Road
Ridgefield, CT 06877-4108

ABSTRACT

We present an Interesting Situation Generator (ISG) that assists in the synthesis of interpretation rules from
basic domain knowledge. The program discovers equivalence classes of situations (e.g., types of geological
formations) that give rise to qualitatively distinct manifestations (e.g., different patterns of geophysical
measurements corresponding to types of geological formations). The equivalence classes can be used by a
rule generator to construct an initial set of interpretation rules of the form manifestation => situation.

1 Introduction

Traditionally, the design of knowledge-based systems has involved a process of interaction between a domain
expert and a computer scientist, or knowledge engineer. During this interaction, the knowledge engineer
formalizes the domain knowledge of the expert into inference rules and data structures [3]. Once the system
has been implemented, failures in its performance may necessitate additional modification. As a result, the
development of knowledge-based systems often involves a lengthy interaction between computer scientist
and domain expert. This has been called the knowledge acquisition bottleneck [6]. To relieve this bottleneck,
recent research in AI has focused on partially automating the knowledge acquisition process. One approach
has been to de\·elop interactive Learning Apprentice Systems (LASs) .. As defined in [7j, such systems are
'interactive knowledge-based consultants that directly assimilate new knowledge by observing and analyzing
the problem solving steps contributed by their users through their normal use of the system.'

We are currently examining the utility of the learning apprentice approach to the design of geological inter
pretation systems. The task for our systems is to infer the geological structures penetrated by an oil-well
borehole, given a variety of petrophysical data recorded by logging tools (e.g., the tilt, or dip, of rock for
mations penetrated by the borehole, indexed by depth, as measured by a dipmeter tool) [10]. In [11] we
discussed the utility of explicit justifications for information in the knowledge base. These justifications can
be used to construct possible explanations for failures observed during routine use of the system, and help
to identify faulty items to be refined in the knowledge base. We noted that these justifications contain error
propagation information-how errors propagate across dependency links that relate interpretaqon rules to
the domain theory upon which they are based.

In this paper, we address some aspects of the problem of initial knowledge base construction. Our approach

1 Current address is Honeywell Systems and Research Center, 3660 Marshall Street NE, Minneapolis, MN 55418.

41-0

is to construct a set of initial linkage rules that embody fundamental, "textbook" knowledge of a domain
[18,12]. This knowledge forms the underlying justification for a specialist's conclusions. A log interpreter,
for example, may see a series of patterns and conclude that the data indicate the presence of an overturned
antiform-a particular type of fold. The justification for such a conclusion can be explained by some set of
basic principles, or deeper domain knowledge, combined with simplifying assumptions and approximations
of the domain. Our formalization of this knowledge into linkage rules is one of the explicit inputs to the
ISG2 •

The central focus of the paper is instance &election [2]; that is, selection of representative problem situations
to drive the rule generator during knowledge base construction and refinement. We describe an lntereating
Situation Generator (ISG) that discovers equivalence classes of situations that give rise to qualitatively
distinct manifestations.

The ISG is an active instance selector. It does not rely on an externally supplied choice of training instances.
Instead, it uses the linkage rules together with error propagation information to systematically discover and
operationalize [4,9] representative situations by backpropagating given manifestation classes into situation
classes. Given a specific situation-manifestation pair, the largest variation in the description of the man
ifestation is determined such that the manifestation retains its qualitative features. By interpreting this
variation as an error, the ISG can use error propagation information to determine the corresponding error
in the description of the situation. By correcting the situation by this backpropagated error, it arrives at
a description of a situation that lles on an equivalence class boundary. Thus, the boundaries of manifes
tation equivalence classes can be backpropagated to determine the corresponding boundaries of situation
equivalence classes.

In the rest of this paper we will show how the ISG utilizes linkage rules that describe the way in which
individual situations (e.g., such geologic structures as folds, or such pathological states in medicine as
infections) produce particular manifestations of sensed data (e.g., dip of rock formations in geology, or
symptoms like fever in medicine) to discover classes of situations that give rise to qualitatively similar
manifestations. From these results the rule generator can then synthesize interpretation-or diagnostic
rules of the form manifestation => situation (e.g., sequence of dip patterns => overturned antiform fold, or
fever => meningitis).

2 Related Work

Two other examples of learning systems that employed active instance selectors are Mitchell's LEX program
~s; and Lenat's AM program [5]. Given a set of integral tranformations, LEX could learn the heuristics that
suggest the conditions under which particular transformations are useful. lts instance selector generated
practice problems for the performance element to solve. The solutions to these problems were then analyzed
in order to propose and refine problem solving heuristics. LEX's problem generator autonomously looked
for problems that could lead to refinement of existing, but partially learned heuristics, and problems that
could lead to discovery of new heuristics.

AM could discover new mathematical concepts and relations from an initial set of facts, together with
a collection of heuristics for synthesizing and evaluating new facts. Its instance selector autonomously
generated new tasks that either suggested new concepts to explore or new extensions to existing concepts.
Task were ordered by a measure of how 'interesting' they appeared to be. Given that far more tasks could be
proposed than explored, this ordering ensured that AM explored the most promising tasks first, effectively
executing a best-first search through a space of mathematical concepts.

2The ISG is most useful in those cases where it is easier to formalize a domain-theory as a set of linkage rules than it is to
acquire a complete and consistent set of interpretation rules.

4(-1

One of AM's heuristics for identifying interesting new concepts is very similar to the method our ISG uses
to partition a set of situations by backpropagating the boundaries of manifestation equivalence classes. This
heuristic states:

If f is a function which transforms elements of A into elements of B, and B is ordered, then
consider just those members of A which are transformed into extremal elements of B. This set is
an interesting subset of A.

If a domain theory that maps situations into manifestation.s is substituted for J, a set of situations is sub
stituted for A, a set of corresponding manifestations is substituted for B, and a manifestation partition is
substituted for the order relation on B, then this heuristic expresses the ISG's basic strategy for partitioning
a set of situations. The interesting subset of A-discovered by the above heuristic-corresponds to the
boundaries of the situation equivalence classes.

3 Background

We will discuss the ISG in terms of a geological domain-dipmeter interpretation. The method, however,
is domain-independent and is applicable whenever (i) a domain theory is available that can map situations
into their corresponding manifestations, (ii) situation and manifestation parameters belong to well-defined
datatypes; and, (iii) manifestation parameters are linear functions of situation parameters. The last re
quirement can be waived if the boundaries of the set of situation classes do not have to be determined with
complete accuracy. For example, this might occur in cases where errors in the initial set of interpretation
rules can be recovered from during subsequent rule refinement operations.

The dipmeter records the slope, or dip, of rock layers as it ascends an oil-well borehole. These recordings
can be characterized in terms of primitive patterns. Recordings of increasing dip3 with borehole depth are
known as red patterns, while those of decreasing dip with depth are referred to as blue patterns. The length
of such a pattern is the depth at which the pattern ends minus the depth at which it begins. The rock
layers of geological objects like folds and faults manifest themselves as composites of such patterns. One
manifestation might consist of a red pattern, followed in depth by a blue pattern (a red/blue composite).
Another manifestation might consist of a blue pattern followed in depth by a red pattern (a blue/red
composite).

For example, Figure 1 shows a cross-section of a geologic situation, called a fold, with its associated mani
festation consisting of a red/blue/red (R/B/R) composite pattern. The heavy curved line is a representative
bedding layer within the fold, and the horizontal and vertical lines establish a coordinate system such that
the horizontal line is parallel to the earth's surface. The entire fold is composed of layers parallel to the
representative layer. If a vertical borehole penetrates this fold, it initially encounters rock layers parallel to
the top flank part of the representative bedding layer. These layers all have a local slope parallel to the slope
of the top tangent (tangent-1). As the borehole passes through the fold's hinge, the slope of the bedding
layers it encounters first increases from the slope oftangent-1 to the slope of the vertical line (i.e., 90°), then
decreases from 90° to 0°, and finally increases from 0° to the slope of tangent-2. The borehole exits the fold
through rock layers parallel to the bottom flank part of the representative bedding layer. These layers all
have a local slope parallel to the slope of the bottom tangent (tangent-2). The top borehole interval within
w,hich the slope is increasing produces a red pattern in the corresponding dipmeter log, the middle interval
within which the slope is decreasing produces a blue pattern, and the bottom interval within which the slope
is increasing produces another red pattern. This explanation assumes continuity of the subsurface region.
Also, the angle at which the borehole penetrates the region will affect the dipmeter recordings. Nevertheless,

3 Patterns of monotonically increasing, decreasing, or constant dip are required to have uniform azimuth. That is, the dip
direction must remain constant.

4\-Z.

0

depth

~ red
1

Figure 1: Change in Dip as a Function of Depth

this is the type of explanation that might justify why a geological structure manifests itself by a particular
pattern.

Figure 2 shows an example of a linkage rule that maps geologi~ regions having a certain type of geomet
ric structure into their corresponding R/B dipmeter patterns. All these regions have their top-tangent
(i.e., tangent-1) in quadrant Ill and their bottom-tangent (i.e., tangent-2) in quadrant IV. The slope of a
line swept from the top-tangent to the bottom-tangent first increases (red-pattern), then decreases (blue
pattern), and finally increases again (red-pattern). The top dip of a red or blue pattern is defined as the dip
magnitude at the depth at which the pattern starts, and the bottom dip of a red or blue patttern is defined
as the dip magnitude at the depth at which the pattern ends. Clause A-3 sets the top-dip of the red-pattern
to be the angle between tangent-1 and -x axis, and clause A-6 sets the bottom-dip of the blue-pattern to
be the angle between tangent-2 and the ..l-x axis. Clause A-4 assigns the bottom-dip of the red-pattern to
be 90°, and clause A-5 assigns the top-dip of the blue-pattern to be 90°.

A set of p1anifes~ations can be partitioned into a collection of equivalence classes by specifying an equiva
lence relation over the manifestations. For example, let two manifestations be equivalent iff they consist of
the same sequence of primitive patterns. Then one equivalence class would be the set of all manifestations
that consist of red/blue composites. In this equivalence class, the length of the primitive patterns is not
a determining factor for membership, because the equivalence relation does not require the lengths of cor
responding primitive patterns within two red/blue composites to be equal in order for the two composites
to be equivalent. For example, manifestations consisting of red/blue composites with short red patterns
are equivalent, or qualitatively similar, to manifestations consisting of red/blue composites with long red
patterns.

Associated with any situation or manifestation is a set of parameters. Situation parameters are those
properties of the most specific situation classes within the domain theory that are left unspecified. A fold,
for example, can be described by its fold angle()! (the angle between the flanks of the fold) and its orientation
00 with respect to the earth's surface (see Figure 1). If any of these properties are left unspecified in the

4(-3

IF
Cml

C-2
C-3

THEN
Aol
A-2
Am3

A-4
Am5
A-6

(C-1 C-2 C-3)
(There-exists a Region :R)
(Tangent-! of :R lies in Quadrant III)
(Tangent-2 of :R lies in Quadrant IV))
(Aol A-2 A-3 A-4 A-5 A-6)
(Create a Red-Pattern :Red)
(Create a Blue-Pattern :Blue)
(Assign the Top-Dip of :Red to be (- (The Orientation of Tangentol)

180))
(Assign the Bottom-Dip of :Red to be 90)
(Assign the Top-Dip of :Blue to be 90}
(Assign the Bottom-Dip of :Blue to be (- 860

(The Orientation of Tangent-2)))

Figure 2: R/B Linkage Rule

description of fold structures, then they are parameters of fold situations. For example, if folds in some
domain model were only differentiated according to their fold angle, then orientation would be the only
parameter of fold situations.

Manifestation parameters are defined with respect to some partition of the set of manifestations. They are
manifestation properties that can be used to distinguish, or index, members of the partition's equivalence
classes. For the manifestation partition described above, we chose primitive pattern lengths to be the man
ifestation parameters. For example, in this case, a red/blue composite is a manifestation whose parameters
are the lengths of its component red and blue patterns. Note that we could have alternatively chosen the
top and bottom dips of the primitive patterns to be the manifestation parameters because they can also be
used to distinguish manifestations within the same equivalence class. In the worked example, presented in
Section 4, top and bottom dips were used instead of pattern lengths because dip values have lower (0°) and
upper bounds (90°) whereas pattern lengths only have lower bounds (0). As explained below, this provides
more constraints on determining the boundaries of situation equivalence classes.

The ISG algorithm requires that the datatype of each situation and manifestation parameter be an ordered
set of values for which a metric is defined. That is, the domains of situation parameters and the ranges of
manifestation parameters must be partially ordered sets (posets), and the distance between any two values
of a parameter must be defined. In our example, the domain of fold angles 81 is the interval (0°, 180°), the
domain of fold orientations eo is the interval (0°' 90°), and the domain of primitive red and blue pattern
lengths is the interval (0, oc). The order relation on these intervals is the standard ordering of the real
numbers (i.e., a:::; b iff b- a is nonnegative), and the metric is the usual metric for the real numbers (i.e.,
d(a, b) = lb- al). As explained below, the ISG uses this information to (i} define maximal parameter errors;
and, (ii) check the validity of parameter values.

For the ISG to be applicable, the domain theory must define causal relations between situation and manifes
tation parameters. That is, it must be possible to infer the values of manifestation parameters based on the
values of situation parameters. Suppose some critical value of a situation parameter causes a manifestation
parameter to assume a value that represents the lower or upper bound of its range. By definition, the
manifestation having this extreme value for one of its parameters lies on the boundary of a manifestation
equivalence class. Thus·, situations having parameter values less than the critical value must give rise to a
different set of manifestations than situations with parameter values greater than the critical value.

The ISG uses causal relations between situation and manifestation parameters to differentiate situation
classes with respect to critical values of their situation parameters. Each differentiated subclass corresponds

41-+

Acute-1 Acute-2 Acute-3
11/:(0,90) 9/:(0,90) 111:(o,9o)

Bo:(O,a) Bo:(a,b) 90 :(b,90)

m:R/B m:R/B/R m:B/R

Fold
BJ:{0,180)

11.;:{0,90)

Right
11/:90

11 0 :(0,90)

Right-1 Right-2 Obtuse-1
8/:90 111:90 8/:(90,180)

9o:(0,45) 9o:(45,90) 8o:(O,d)
m:R/B m:B/R m:R/B

Figure 3: Differentiated Folds

Given:
situation class S
ordering of S parameters
manifestation class M
set of M parameters
manifestation partition 'KM

linkage rules L
Find:
situation partition trs

Table 1: The ISG Problem

Obtuse-2 Obtuse-S

9 /:(90,180) 8 ,:(90,180)

90 :(d,e) 9o:(e,90)

m:B m:B/R

to a single manifestation. Thus, the ISG induces a partition of situation subclasses from a given partition
of manifestations. All the possible manifestations of the given situation class are determined and each is
associated with one or more of the situation's induced subclasses.

4 The IS G Algorithm .

4.1 Input/ Output Behavior

This section will explain how the ISG works by showing how it generates the tree of fold classes in Figure 3.
As shown in the hierarchy, Folds are classified as Acute, Right, or Obtuse depending on the value of
their fold angle 91 . Each of these subclasses can in turn be divided according to the fold's orientation
90 • Each of the terminal situation classes shown in Figure 3 has a single manifestation m. For example,
the manifestation of class Acute-1 is a composite R/B pattern. The input/output behavior of the ISG is
summarized in Table 1.

Given a domain theory of linkage rules L that map situations in S into manifestations in M, a set of

180°

B

135° a c

I d e
goo

't B/R

45° f h

R/B/R
oo

a 45°
So

Figure 4: Fold Parameter Space

manifestation parameters, and an ordering of S's situation parameters, the ISG finds the partition 1rs of S
induced by a given partition 'KM of M.

In our example, the situation class S is the set offolds parametrized by fold angle f1t and orientation 90 (i.e.,
the Fold class shown in Figure 3). The fold angle must lie between 0° and 180°, and the fold orientation
must lie between 0° and 90°. We will order these parameters such that the situation partition 1rs produced
by the ISG first. differentiates S with respect to 90 and then with respect to f1t'' The manifestation class
M is the set of primitive red and blue patterns together with composite patterns made up of sequences of
red and blue patterns. The set of linkage rules L is a simple geologic model that maps folds in S into their
corresponding manifestations in M~ The set of manifestations is given a partition 'KM, such that any two
manifestations are equivalent iff they are composed of the same sequence of red and blue patterns. In this
example, the top and bottom dips of the red and blue patterns comprising a manifestation will be used as
the manifestation parameters. Given the above information, the ISG will find the partition 1rs of S shown
in Figure 3.

In this example, the ISG will explore the situation parameter space shown in Figure 4. Regions of the
parameter space are labelled with the manifestations they produce, and the situations corresponding to some
representative points are illustrated in Figure 5; where only the orientations of the top and bottom tangents
with respect to the horizontal and vertical axes are shown. For example, Figure 5 (g) is a representation of
the situation depicted in Figure 1.

In the following, for any manifestation M, the set of manifestations that are members of the same equivalence
class as M will be denoted [M] and will be called the equivalence class generated by M. Similarly, for any
situation S, the set of situations that are members of the same equivalence class as S will be denoted [S] and
will be called the equivalence class generated by S. The boundary of [S] (i.e., those elements of [S] with the

'If the order of these parameters were reversed, the ISG would grow a tree of fold clas~es such that the top· level differentiated
folds with respect to 60 and the bottom-level differentiated folds with respect toe,. The particular ordering selected for our
example was chosen so that the situation equivalence classes discovered by the ISG correspond to those typically used by
geologists [1].

4l-0

1

1 R/B 2
(a)

R/B
(d)

R/B
(f)

2

B 1
(b)

lR/B/R
(g)

2

B/R
(c)

B/R
(e)

B/R
(h)

2

1

2

1

2

1

Figure 5: Fold Situations

4l-7

fold-1·1
fold fold-1 6t:45

Bt:(O,l80) 8t:45 6o:10
80 :(0,90) 9o:(0,90} m:R/B

Figure 6: ISG Intermediate Results - 1

largest or smallest values of the situation parameters) will be denoted as 8[S]. Similarly, the boundary of
[M] (i.e., those elements of [M] having the largest or smallest values of the manifestation parameters) will
be denoted as 8[M]. The goal of the ISG is to determine 8[SJ from S, M, and 8[M].

4.2 · Getting Started

The ISG starts by randomly selecting an initial situation S0 from ·the Fold class. Suppose this situation
corresponds to point p = (8~, 8~) = (10°, 45°) in the situation parameter space. By applying the linkage
rules L to S0 , the ISG determines that this situation produces a particular R/B manifestation M0 •

With this information, the ISG begins to grow (dep~h-first) the tree in Figure 3 by creating the structure
shown in Figure 6. Node fold-1 represents what will become the Acute class and node fold-1-1 represents
what will become the Acute-! subclass. For now, node fold-1-1 represents the initial situation 80 •

4.3 Error Propagation Information and the Inverse-Problem for Rule-Based
Systems

The ISG. uses error propagation information to find situation equivalence classes that correspond to given
manifestation equivalence classes. Given an initial situation-manifestation pair (So, Mo), the ISG deter
mines the situation parameter errors that correspond to the largest errors that can be made in the man
ifestation parameters, such that the qualitative features of Mo are preserved. By correcting So by these
backpropagated situation param~ter errors, the ISG finds the situations that define 8[So]5 . This section
briefly describes the nature of error propagation information and its use in addressing the inverse-problem
for rule-based systems.

When a rule is successfully a·pplied to a knowledge base, information is generated about the way in which
potential errors in the rule and knowledge base could be propagated to the rule's conclusions. To take a
simple example, suppose we apply a rule to calculate the area of a rectangle from its height and width.
Obviously, over-estimating or under-estimating the height or width of the rectangle will produce an over
estimation or under-estimation, respectively, in its area. Such error propagation information is stored in the
data structure that records the support, or justification, of the the rule's conclusion. If the application of
other rules depends on the area of the rectangle, then the error in its value may propagate to the conclusions
made by these rules. Thus, during the course of rule application, the error propagation generator determines
the way in which errors propagate from one rule application to another.

Error propagation information is locally determined with respect to the values referenced and created by

5 As explained in Section 4.4, the ISG also forward propagates maximum situation parameter errors in an effort to extend the
boundaries of [So] that are discovered by backpropagation.

4l~

a rule application. That is, if a rule computes a value of y = 'Jio based on values of :z:, = Xi,oo then the
associated error propagation information is essentially (8yf8x1) evaluated at :z:, = x0,01 and tells us how
deviations of z, from z0,0 would propagate to deviations in y from Yoi provided the other justifiers of y (i.e.,
z;;ti) are held constant. For example, in the rule for computing the area of a rectangle as A = H x W, the
error propagation information relating H and A states that an error 6H in H would cause an error 6A in
A such that sign[6A] = sign[(8A/8H)6H] = sign[W] sign[5H] = sign[5H], and I6AI = i(8A/8H)6Hi = W
I5HI. Thus, the induced error in A depends upon the value of W that obtained when the rule was applied.

The ISG is a method for finding the inverse-image of parameter values that characterize manifestations
on the boundary of equivalence classes. Because the linkage rules connecting situations to manifestations
cannot in general be inverted, the ISG uses error propagation information to backpropaga.te these values
by backpropaga.ting their differences from reference va.lues6 • If these differences are interpreted as errors in
the reference values, error propagation information can reveal the corresponding error between the unknown
situation parameter values and the reference values that correspond to the reference manifestation parameter

. values 7 • By correcting the reference situation parameter values by this backpropagated error, the unknown
parameter values characterizing boundary situations can be determined. As explained in Section 5 below, the
locality of error propagation information restricts the accuracy with which the unknown situation parameter
values can be calculated.

4.4 Finding the First Situation Equivalence Class

Given So and M0 , the ISG will backpropagate the largest possible errors in M0 and forward propagate the
largest possible errors in So to determine a[S0]. The maximum manifestation errors are the largest changes
that can be made to M0 's parameter values such that the resulting manifestation is still qualitatively similar
to M0 (i.e., these changes correspond to the distance between Mo 's parameter values and the parameter
values of the manifestations that lie on a[Mo]). Maximum situation errors are the largest changes that
can be made to S0 's parameter values such that the resulting situation is not an element of a. previously
determined equivalence class.

Error propagation information (generated when So was mapped into M0) records the way in which changes
in the situation parameters are related to changes in the manifestation parameters. This information will be
used to find the interval of orientations surrounding 8~ = 10° such that any situation having an orientation
within this interval and fold angle 8~ = 45° will produce a manifestation qualitatively similar to Mo (i.e.,
a R/B manifestation that is a member of [Mo]). Figure 7 shows how this is accomplished. The situation
parameters are 80 and 81. The manifestation parameters, Rtop 1 Rbot, Btop 1 and Bbot 1 are the top and bottom
dips of the red and blue patterns that comprise the R/B manifestation. Error propagation information relates
the way in which changes in 80 are related to changes in these manifestation parameters. This information
will be used to find the values of 80 that corre~pond to the maximum (90°) and minimum (0°) values of the
manifestation parameters. Any of these backpropagated 80 values that lie within previously explored regions
of its domain will be ignored8 The interval around 80 that determines [So] will be obtained by selecting the
smallest ba.ckpropaga.ted value greater than 80 and the largest ba.ckpropa.ga.ted value smaller than 80 • The
largest and smallest values of 80 , not already included in an equivalence class interval, will be added to this
set of backpropa.gated values if they forward propagate into valid manifestation parameter values.

In Figure 7, the manifestation parameter values corresponding to (8~,8~) = (45°,10°) are indicated by the

6 The manifestation parameter values characterize manifestations on o[Mo], and the reference manifestation parameter values
characterize Mo.

7 The unknown situation parameter values characterize situations on o[So], and the reference situation parameter values
characterize So.

sThis occurs for those 90 values obtained from backpropagating manifestation parameter extrema that do not characterize
o[So].

0 45 180s,
so
I

~

'b 0 J a~ So
10 90
so

0

.,.
0
----------..,&-s,

9
,.;>8 Rtop

Q {J '

::---------------,~· R!.ot
0 90

.,...------------=~ Btop
0 90

<=-+

0 6 Q
90

Figure 7: Extending Fold-1-1

4{-to

solid circles (•). The arrows above these points show how decreasing (-)or increasing (~) 00 affects these
values. That is, they illustrate how errors in situation parameter values propagate to errors in manifestation
parameter values. The manifestation parameters change in the direction indicated by the single-arrows
(double-arrows) when 00 is decreased (increased). For example, increa1ing00 from(}~ causes Rtop to increa1e
from fJ and Bbot to decrease from 6. Note that Rbot and Btop are not affected by altering 00 • As explained
below, the open circles (o) show the results of forward propagating extreme situation parameter errors and
backpropagating extreme manifestation parameter errors.

The equivalence class [So] will be determined in two steps.

1. Elements of a[Mo] will be backpropagated, using error propagation information, to find elements of
a[S0]. By definition, manifestations on a[Mo] are manifestations one of whose parameters has either
the largest or smallest value of all manifestations in [Mo]. Situations on a[So] are defined to be those
situations in [S0 J that correspond to manifestations on 8[M0].

2. The ISG tries to extend a[So] (obtained by backpropagating extreme M0 parameter errors in step 1)
by forward propagating extreme So parameter errors. This is accomplished by checking to see if the
l~gest or smallest values a situation parameter can assume (i.e., the endpoints of the largest interval
surrounding a situation parameter value that doesn't include values characterizing other equivalence
classes) map into valid values of all the manifestation parameters. If so, the extreme situation parameter
value is taken as belonging to a situation on a[S0].

Step 1-Backpropagation

• Because Rbot and Btop are equal to 90° for all R/B patterns, they are not effective in distinguishing
members of [Mo], so that forward and backward propagation of maximal errors does not take place
between 00 and these manifestation parameters. Thus, these manifestation parameters do not play a
role in determining [So].

• However, the elements in [Mo] can be distinguished by their Rtop and Bbot values. By definition, the
elements of [Mo] that lie on the 8[M0] have the largest or smallest values of these parameters. If Rtop
= 0° characterizes one of these boundary points, then it will backpropagate into a valid value of 00

that characterizes a situation on 8[So]. That is, if Rtor> = fJ suffers the largest possible parameter
overestimation error such that it should equal 0°, then the corresponding error in 00 should put its
corrected value between 0° and 90°. However, using error propagation information, we find that
correcting 00 would cause it to be less than 0° and lie outside the domain of valid fold orientations.
Thus, a manifestation with Rtop = 0° does not lie on B[Moj and cannot be used to determine a 00

value of a situation that lies on 8[50]. Similarly, if Boot = 90° for an element of arMo]. then 00 would
also be less than 0° for the correspon-ding element of 8[50]. Because this lies outside the domain of fJ 0 ,

there is no manifestation with Bbot = 90° on 8[M0], and this point is discarded in looking for a[S0].

• However, Rto, = 90° backpropagates into 00 = a', and Bbot = 0° backpropagates into fJ 0 = a; where
(}~ < a < a'. The amalleBt of these two backpropagated values greater than (}~ is selected as the upper
bound of 00 values for situations in [So]. This is because values of 00 between a and a' would map into
valid values of Rtop between some value 7 and 90°, but would also map into invalid values of Bbot less
than 0° (see Figure 7).

The ISG has at this point discovered the upper bound of the interval surrounding (}~ that contains values
of (}0 belonging to elements of [So]- This upper bound is 80 = a, and characterizes a situation on 8[50].

Although backpropagation did not extend the interval below (}~, the next step will.

Step 2-Forward Propagation

R/B 1 R/B 1 R/B
9. = o• '· = 10° '· = .. (f) (p) (q)

Figure 8: Situations in [So]

• The smallest value of 80 less than 10° that is not already included in another situation equivalence
class is 0°. Using error propagation information, the ISG determines that this value maps into Rt.op =
a, and Bbot = a. These are valid values for manifestation parameters. Therefore, the interval {10°, a)
is extended to {0°, a). We now know that [So] situations with 80 in (0°, a) and 81 = 45° map into the
same equivalence class of R/B patterns. Note that, in general, a will depend on 81.

• The largest value of 80 greater than 10° that is not already included in another situation equivalence
class is 90°. We do not have to forward propagate this value because we have already extended the
interval to the right of 8~ by a smaller amount. That is, we already determined that a situation with
90° > 80 =a> 8~ lies on 8[So].

The above procedure for determining [So] can be given a geometric interpretation that makes the application
of the ISG to this example clearer. The initial situation So corresponds to point p in Figure 4, and its
corresponding situation is represented by diagram p in Figure 8.

Manifestation parameter Rt.op is the dip of tangent-! (equal to f3 in So), Rbot and Btop are both the dip of
the vertical line (90°), and Bbot is the dip of tangent-2 (equal to 6 in S0). For situation So at point p, Rt.op
is greater than Bbot as shown by Rtop = f3 > 6 = Bbot in Figure 7.

The following equations relate the geometric and situation parameters.

a = (1/2)8,

f3 = {1/2)8/ + 80

6 = {1/2)8/ - 80

I = 8,

Suppose we start with situation S0 shown in diagram p in Figure 8.

• If the orientation 80 is increased by rotating the tangent vectors counter-clockwise, the dip of tangent-1
increases and the dip oftangent-2 decreases. When 80 reaches some value a, the dip oftangent-2 (Bbot)
becomes 0°. This corresponds to the situation depicted in diagram q in Figure 8. The dip of tangent-!
(Rt.op) becomes equal to 1, and the bottom dip of the red pattern and the top dip of the blue pattern
remain equal to 90°.

41-tl

• Starting with So, if the orientation 80 is decreased by rotating the tangent vectors clockwise, the dip
of tangent-! decreases and the dip of tangent-2 increases. When 80 becomes equal to 0°, the dips of
tangent-! and tangent-2 become equal to o (i.e., Reo, = B&ot = o). Again, the bottom dip of the red
pattern and the top dip of the blue pattern remain equal to 90°. This corresponds to the situation
depicted in diagram fin Figure 8.

Using Figure 8, we can redo step 1 of the ISG algorithm by reinvestigating the situations corresponding to
extrema of the R/B manifestation equivalence class [M0].

Rtop = 0° If Rtop equals 0°, tangent-! would be horizontal. To obtain this situation, the tangents in diagram f
would have to be further rotated clockwise beyond 80 = 0°. Thus, the orientation 80 would be negative.
Because this lies outside the domain of 80 , a manifestation with Rtop = 0° is not on 8[M0].

B&ot = 90° Similarly, if B&ot equals 90°, tan·gent-2 would be vertical, and the orientation would again be
negative. Thus, a manifestation with B&ot equal to 90° cannot lie on 8[Mo]~

B&ot = 0° If B&ot equals 0°, t.angent-2 would be horizontal. The corresponding manifestation must lie on
8[M0], because if the orientation is further increased a qualitatively new R/B/R manifestation arises
(see Figure 5 diagram g). Thus, the value of 80 that corresponds to B&ot = 0° gives the upper bound
of 80 values in [So], and hence a situation on 8[So].

R,op = 90° If Reo, = 90°, tangent-! would be vertical. To obtain this situation, the tangents in diagram f
would have to be rotated counter-clockwise such that 80 > a. However, as explained above, manifesta
tions of such situations are R/B/R patterns that lie outside of [M0]. The ISG excludes these situations
by taking the smallest backpropagated value of 80 greater than fJ~ (i.e., taking a as the value of 80 for
a situation on a[S0]).

Again, using Figure 8, we can redo step 2 of the ISG algorithm by reinvestigating the manifestations that
correspond to extrema of S0's parameters. ·

f)0 = 0° If the orientation of S0 is decreased from 10° to 0°, we obtain the situation shown in diagram fin
Figure 8. Its corresponding manifestation is still a R/B pattern that belongs to [Mo], and we make
situation f the lower bound of [So].

80 = 90° If the orientation of So is increased from 10° to 90°, we obtain situation h in Figures 4 and 5. The
corresponding manifestation is now a B/R pattern that lies outside of [Mo]. Thus, a situation with
80 = 90°, must lie outside of [So].

4.5 Finding other Progeny of Fold-1

At this point, we can extend the tree of partial results shown in Figure 6 into that shown in Figure 9 by
extending the orientation of the fold-1-1 class from 80 = 10° to 80 E (0°, a).

To continue partitioning the domain of 80 , a new child of the fold-1 class (i.e., fold-1-2) is created having
a 80 value that lies in the unexplored region outside of (0°, a) For example, this new situation S1 might
correspond to (8~,8}) = (40°,45°); where 40° > a. If the method by which situation So was extended
to [So] is applied to situation S1 , the ISG will find that members of [S1] have values of 80 in the interval
(a, b). Here, b (like a) depends upon 81 . Because the fold-1-1 and fold-1-2 subclasses offold-1 do not yet
cover the entire domain of fold-1 orientations, a third child of the fold-1 class (i.e., fold-1-3) is created
that represents a situation S2 having a 80 value in the interval (b, 90°). Node fold-1-3 is expanded into
[S2]. It turns out that values of 80 for members of this equivalence class lie in the interval (b, 90°). At this

4(-\3

f'old-1-1
fold f'old-1 8/:45

6/:(0,180) 8/:45 Bo:(O,a)
. 8o:(0,90) 6o:(0,90) m:R/B

Figure 9: ISG Intermediate Results • 2

fold
11/:(0, 180) t------i

6o:(0,90)

f'old-1
8/:45

6o:(O, 90)

f'old-1·3
9/:45

80 :(b, 90)
m:B/R

f'old-1·2
6/:45

Bo:(a, b)
m:R/B/R

f'old-1·1
6/:45

80 :(0, a)
m:R/B

Figure 10: ISG Intermediate Results - 3

point, the ISG has found a complete set of fold-1 subclasses such that each subclass corresponds to a single
manifestation (see Figure 10).

4.6 Extending the Fold-1 Class

The ISG now tries to extend the fold-1 class by looking for an interval surrounding 9~ = 45° such that as
90 is varied from 0° to 90° the same sequence of manifestations (RiB, R/B/R, B/R) are produced. That is,
the ISG tries to enlarge fold-1 to include situations with fold angles other than 45° that have the same set
of subclasses fold-1-1, fold-1-2, and fold-1-3. Figure 11 shows how this is done.

Here, 80 (R/B) represents the proportion of 90 values that correspond to R/B manifestations (i.e., a/90),
80 (R/B/R) represents the proportion of80 values that correspond to R/B/R manifestations (i.e., (b-a)/90),
and 90 (B/R) represents the proportion of 90 values that correspond to B/R manifestations (i.e., (90-b)/90).
These are second-order manifestation parameters because they distinguish, or index, members of second
order manifestation equivalence classes9 • First-order manifestation equivalence classes were composed of
sequences of primitive red and blue patterns. For example, the set of sequences of red followed by blue
patterns comprise the R/B first-order manifestation equivalence class. The elements of second-order mani
festation equivalence classes are sequences of first-order manifestation equivalence classes. For example, the
set of sequences of R/B, followed by R/B/R, followed by B/R manifestations comprise the second-order
(R/B, R/B/R, B/R) manifestation equivalence class. Each element of this class can be distinguished by the

9 The ISG actually uses the unnormalized lengths of 60 intervals occupied by first-order manifestations as its set of second-order
manifestation parameters. In this case, second-order manifestation parameters would range from 0° to 90°.

4(-l4

....q

~0~--~4~5----~90~------~1~80 81

8~

0:--------------5> 8o(R/B)
0 1

<=-+
~0---------:el 8o(R/B/R)

0:-------------:e 8o(B/R)
0 1

Figure 11: Extending Fold-!

fractions of the 80 interval (0°, 90°) that are occupied by the R/B, R/B/R, and B/R patterns; where

90 (R/B) + 90 (R/B/R) + 90 (B/R) = 1.

In Figure 11, the fraction of 90 's range that corresponds to a RjB, R/B/R, or B/R manifestation for (J~ = 45°
are indicated by the solid circles (•), and the arrows above t~ese points show how decreasing (+-) or increasing
(::::?) e1 affects these fractions. For example, increasing e, from 9J causes 80 (R/B) to increase, 9o(R/B/R)
to decrease, and 90 (B/R) to increase. As explained below, the open circles (c) show the results of forward
propagating extreme situation parameter errors and backpropagating extreme second-order manifestation
parameter errors.

The fold-1 class is extended by applying the ISG algorithm to the situation parameter e, and the second
order manifestation parameters 80 (R/B), 90 (R/B/R), and 80 (B/R). Elements on a[(R/B, R/B/R, B/R)1
have the largest or smallest values of the second-order manifestation parameters. Backpropagating these
extreme values and forward propagating extreme situation parameter values give us the values of e1 that
characterize situations Oil a[fo}d-1].

In order to use the ISG algorithm to extend the fold-! class, second-order error propagation information
is needed that relates changes in e, to changes in 80 (R/B), 90 (R/B/R), and 8o(B/R). This information
is empirically determined by recomputing the boundaries of the R/B, R/B/R, and B/R equivalence classes
as e1 is increased and decreased from 8~ = 45°. For example, the upper bound of 90 values (i.e., a) that
characterizes the situation whose corresponding manifestation lies on a[R/ B] depends upon the situation's
fold angle 91. Values of this upper bound are recomputed for 81 = 9J + 1 and for fJ1 = 8J - 1. Because the
upper bound (a) increases and the lower bound (0°) remains constant as (JJ increases, 90 (R/ B) increases as (JJ

increases. Thus, a parameter over-estimation or under-estimation error in e, would cause a parameter over
estimation or under-estimation error, respectively, in Bo(R/ B). The same procedure is followed to determine
how errors propagate between 81 and the other second-order manifestation parameters 80 (R/B/R) and
9o(B/R).

fold-1-3
6/:(0, 90)

60 :(b, 90)

m:B/R

fold-1-2
fold fold-1 61:(0, 90)

61:(0, 180) 1------1 6/:(0, 90) ~----l 6o:(a, b)

6o:(0,90} 60 :(0,90} m:R/B/R

fold·1·1
61:(0, 90)

60 :(0, a)
m:R/B

Figure 12: ISG Intermediate Results • 4

Step 1-Bac:kpropagation

Extreme values of the second-order manifestation parameters (i.e., 0 and 1) are backpropagated into the
domain of9,. In this case, if80 (R/B) = 0, 80 (R/B/R) = 1, or 80 (B/R) = 0, then 81 = 0°. If8o(RJB) = 1,
80 (RJB/R) = 0, or 80 (BJR) = 1, then 81 = 90°. These backpropagated values are combined by

• taking the smallest backpropagated value of 81 greater than 8~ = 45° (i.e., 90°) as the fold angle of an
element on a[rold-1], and

• taking the largest backpropagated value of 81 &maller than 8~ = 45° (i.e., 0°) as the fold angle of an
element on a[fold-1].

Thus, [fold-1] now consists of those situations having a fold angle 81 between 0° and 90° (i.e., the Acute
class in Figure 3).

Step 2-Forward Propagation

e The largest value of(} J greater than 45° that is not already included in another situation equivalence
class is 81 = 180°. If this value is forward propagated, it will map into in\'alid values of the second
order manifestation parameters. Thus, the upper bound of the interval of 8 J values determined by step
1 (90°) is not extended to 180°.

• The smallest value of 81 smaller than 45° that is not already included in another situation equivalence
class is 81 = 0°. Because this value is already included in the interval of 8 J values that character
ize situations in [fold-1], it is not forward propagated into the range of second-order manifestation
parameters.

After extending the fold-1 class, the ISG's intermediate. results are shown in Figure 12. The interval of
81 values (0°, 90°) characterize a situation equivalence class that produces the same sequence of first-order
manifestations (R/B,R/B/R,B/R) as 80 is varied through its domain from 0° to 90°. In other words, we
have distinguished Acute folds as the set of situations whose manifestations go through the sequence R/B
-+ R/B/R -+ B/R as their orientation is increased from 0° to 90°.

41-10

4. 'T Completing the Example

At this point, the ISG has grown the branch of Acute folds in Figure 3; where fold-1 corresponds to Acute,
fold-1-1 corresponds to Acute-1, fold-1-2 corresponds to Acute-2, and fold-1-S corresponds to Acute-S.
These folds have fold angles 91 between 0° and 90°. It remains for the ISG to complete the differentiation
of situations in the top-level fold class that have fold angles in the interval (90°, 180°_).

This is accomplished by randomly selecting a fold angle outside the fold-1 class and creating a new child
of the fold class (i.e., fold-2) with this value of e,. Suppose this fold angle is 100°. An instance (i.e.,
fold-2-1) of fold-2 is also created that has a specific orientation 90 between 0° and 90°. This branch of the
fold tree is extended by the ISG into the branch of Obtuse folds in the same way as the original branch
shown in Figure 6 was extended into the branch of Acute folds. It turns out that this new branch includes
situations having fold angles between 90° and 180°.

A third child of the fold class (i.e., fold-S) is created having the remaining unexplored fold angle 91 = 90°.
An instance (i.e., fold-S-1) of fold-S is also created with a specific orientation between 0° and 90°. The
ISG extends this branch of fold situations into the branch of Right folds shown in Figure 3.

At this point the ISG has finished partitioning the initial set of fold situations. The output of the algorithm
is the tree structure shown in Figure 3; except that the progeny of fold have labels of the form fold-k, and
the progeny of each of these children have labels of the form· fold-k-1.

5 Conclusion

5.1 Summary

We have presented the ISG as a domain-independent weak method that exploits error propagation infor
mation to backpropagate a given partition of manifestations into a partition of interesting situations. Each
interesting situation-manifestation pair can be used by the rule ~enerator to synthesize an interpretation
rule of the form manifestation ~ situation.

The ISG takes the most specific situation classes specified in a domain model and further differentiates them
into equivalence classes that correspond to distinct manifestations. In this sense, it can help to 'complete' a
domain model. If each of the given situation classes already maps into a single manifestation, the ISG makes
no further divisions in the situation class hierarchy. Thus, the ISG picks up where the domain theory specifier
leaves off and continues to differentiate the most specific situation classes until each of them corresponds to
a single manifestation.

When a complete partitioning of the situations already exists, the ISG can be used to verify its correctness and
completeness. In particular, the output of the ISG might be used to look for cases where two or more situation
classes correspond to the same manifestation. In this way, the ISG could assist in focussing attention on those
parts of the domain-model that require additional specification in order to be unambiguously detectable.

5.2 Current Status

The ISG can successfully differentiate folds with orientations between 0° and 90° and fold angles between 0°
and 180° into 3 equivalence classes. It discovers that: (i) acute folds (those with fold angles less than 90°)
produce red/blue, red/blue/red, and blue/red patterns; (ii) right angle folds (those with fold angles equal

41~7

to 90°) produce red/blue and blue/red patterns; and, {iii) obtuse folds (those with fold angles greater than
90°) produce red/blue, blue, and blue/red patterns. In another test of the algorithm, the ISG successfully
differentiated folds with orientations between 90° and 180° and fold angles between 0° and 180°.

In its current form, the ISG program is implicitly tied to the fold domain. It cannot be applied to other
problems, because its inputs (see Table 1) cannot be explicitly specified. For example, when applied to the
fold problem, the program assumes the specific manifestation partition that distinguishes, for example, R/B
from B/R patterns. The program cannot be run with a manifestation partition that only distinguishes, for
example, composite patterns based on the number of their constituent primitive patterns so that R/B and
B/R both belong to the same two-primitive-pattern equivalence class.

5.3 Limitations

The ISG starts with error propagation information that describes how local changes in situation parameters
affect manifestation parameters. During forward and backward error propagation, it uses this information
to extrapolate the value of the manifestation parameters that result from larger changes in the value of
situation parameters, and vice versa. This information is the basis for determining an equivalence class of
situations that produce equivalent manifestations. The extrapolation is correct only in those cases where the
situation and manifestation parameters are linearly related. Thus, the accuracy of the situation partition
produced by the ISG depends upon the extent to which manifestation parameter values are linear functions
of situation parameter values in the context of backpropagating each manifestation equivalence class.

The ISG is exponential in the number of undifferentiated situation parameters. That is, it is O(PN); where
P is the average number of intervals into which a situation parameter domain is partitioned, and N is the
number of situation parameters. This result implies that the ISG can usefully be employed as a way of
elaborating an almost-complete domain theory. It is not a practical way of partitioning situation classes
that have more than a few undifferentiated parameters.

5.4 Future Plans

We plan to isolate the ISG algorithm from the context of the folding problem. Once this is done, more of
the ISG's inputs can be explicitly specified and independently varied. For example, we plan to experiment
with the ISG by checking the results of varying {i) the order of situation parameters, {ii) the definitions of
manifestation partitions, and {iii) the content of the domain theory that maps situations into manifestations.

At this time, the ISG program can only handle situations inYo]ving 2 parameters (e.g., folds with the
parameters orientation and fold angle). After generalizing the program to handle any number of situation
parameters, we plan to reapply it to the fold problem by adding another situation parameter-the orientation
of the borehole. In this paper, we assumed the borehole had a vertical orientation.

As a weak-method, the ISG suffers from the limitations mentioned in Section 5.3. We need to better
understand the extent to which these limitations constrain its utility. In particular, more experience and
analysis is required in order to find out whether the ISG always terminates its search for interesting situations,
and if it doesn't-under what conditions would one expect to observe divergent behavior. We need to have
a better understanding of how the local nature of error propagation information compromises the accuracy
with which the ISG partitions situation classes. If this will usually be the case, then we need to know whether
it will be possible to and under what circumstances can we recover from such initial partitioning errors.

References

[1] Schlumberger Dipmeter Interpretation. Schlumberger Limited, New York, 1981.

[2] B. G. Buchanan, T.M. Mitchell, R.G. Smith, and C.R. Johnson. Models of Learning Systems. Encyclo
pedia of Computer Science and Technology, 11:24-51, 1978. also Stanford Report STAN-CS-79-692.

[3] B.G. Buchanan and E.H. Shortliffe. Rule-Based Expert Systems: The MYCIN Experiments of the
Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA, 1984.

[4] R.M. Keller. Learning by Re-expressing Concepts for Efficient Recognition. In Proceedings of the
National Conference on Artificial Intelligence, pages 182-186, Morgan Kaufmann, Washington, D.C.,
1983.

[5] Douglas B. Lenat. AM: Discovery in Mathematics as Heuristic Search. In Knowledge-Based Systems in
Artificial Intelligence, chapter 1, pages 1-225, McGraw-Hill International Book Company, New York,
1982.

[6] T.M. Mitchell. Learning and Problem Solving. In Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, pages 1139-1151, August 1983. ·

[7] T.M. Mitchell, S. Mahadevan, and L.I. Steinberg. LEAP: A Learning Apprentice System for VLSI De
sign. LCSR Technical Report 64, Rutgers University Department of Computer Science, New Brunswick,
NJ, 1985.

[8] T.M. Mitchell, P.E. Utgoff, and R.B. Banerjii. Learning by Experimentation: Acquiring and Refining
Problem-Solving Heuristics. In Machine Learning, chapter 6, Tioga, Palo Alto, CA, 1983.

[9] D.J. Mostow. Machine Transformation of Advice into a Heuristic Search Procedure. In Machine
Learning, chapter 12, Tioga, Pala Alto, CA, 1983.

[10] R. G. Smith and R. L. Young. The Design of the Dipmeter Advisor System. In Proceedings of the ACM
Annual Conference, pages 15-23, ACM, New York, October 1984.

[11] R.G. Smith, H.A. Winston, T.M. Mitchell, and B.G.Buchanan. Representation and Use of Explicit Jus
tifications for Knowledge Base Refinement. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 673-680, August 1985.

[12] W.R. Swartout. XPLAIN: A System for Creating and Explaining Expert Consulting Programs. Arti
ficial Intelligence, 21:285-325, 1983.

[13] H.A. Winston, R.G. Smith, M. Kleyn, T.M. Mitchell, and B.G. Buchanan. Learning Apprentice Systems
Research at Schlumberger. In Machine . Learning: A Guide to Current Research, Kluwer Academic
Publishers, l\orwell, MA, 1986.

t(-(q

Knowledge Acquisition for Knowledge-Based· Systems Workshop, Banff Ca d No 1986 , na a, v.,

Mapping Cognitive Demands and Activities in Complex Problem

Solving Worlds

David D. Woods

W estinghouse Research & Development Center

Pittsburgh, PA 15235 USA

Erik Hollnagel

Computer Resourses International

Copenhagen, Denmark

Knowledge Acquisition for Knowledge-Based Systems W orksbop

Banff, Canada; November, 1986

Building a Cognitive Description of a Complex World

Tool builders have focused, not improperly, on tool building - how to build better

performing machine problem solvers, where the implicit model is a human expert

solving a problem in isolation. A critical task then for the designer working in this

paradigm is to collect human knowledge for computerization in the stand alone

machine problem solver.

But tool use involves more. Building systems that are "good" problem solvers in

isolation does not guarantee high performance in actual work contexts where the

performance of the joint person-machine system is the relevant criterion. The key to

the effective application of computational technology is to conceive, model, design,

and evaluate the joint human-machine cognitive system (Hollnagel & Woods, 1983).

Like Gestalt principles in perception, a decision system is not merely the sum of its

parts, human and machine. The configuration or organization of the human and

4'2-0

2

machine components is a critical determinant of the performance of the system as a

whole (e.g., Sorkin & Woods, 1985). The joint cognitive system paradigm (Woods,

1986) demands a problem-driven, rather than technology-driven, approach where the

requirements and bottlenecks in cognitive task performance drive the development of

tools to support the human problem solver.

In this paper we describe an approach to understand the cognitive activities

performed by joint human-machine cognitive systems. The real impediment to

effective knowledge acquisition is the lack of an adequate language to describe

cognitive activities in particular domains - what are the cognitive implications of

some application's task demands and of the aids and interfaces available to the

people in the system; how do people behave/perform in the cognitive situations

defmed by these demands and tools. Because this independent cognitive description

has been missing, an uneasy mixture of other types of description of a complex

situation has been substituted - descriptions in terms of the application itself, of

the implementation technology of the interfaces/aids, of the user's physical activities

or user psychometrics.

We describe one approach to provide an independent cognitive description of

complex situations that can be used to understand the sources of both good and

poor performance, i.e., the cognitive problems to be solved or challenges to be met.

The results from this analysis help to define the kind of solutions (tools) that are

needed for successful performance, and the results can be deployed in many possible

ways - exploration training worlds, graphic interfaces, decision aids, machine

problem solvers (c.f., e.g., Roth et al., 1986 and Bennett et al., 1986). The method

can address existing joint cognitive systems in order to identify deficiencies that

cognitive system redesign can correct and prospective joint cognitive systems as a

design tool during the allocation of cognitive tasks and the development of an

effective joint architecture (e.g., Pew et al., 1986).

To build a cognitive description of a complex world the first hurdle is to escape

from the language of the application and to characterize the kinds of cognitive

demands that arise in the course of performing domain tasks (Clancey, 1985). To

carry out this translation we start from the constraints imposed by the design and

proper function of the system in question (Lind, 1981) via a kind of goal directed

analysis to map a functional representation of the domain (e.g., Davis, 1984;

Rasmussen, 1983; 1986). The resulting functional representation serves as a
framework and guide to identify - what kinds of problem solving situations can

arise in this world? what must people know and how they must use that

42-\

3

knowledge to solve these problems (what are the difficult cognitive demands)? how
do people actually respond in these types of problem solving situations (where do
breakdowns such as fncation effects occur, Woods, 1984)?

Thus, the approach combines an analysis of the domain to determine psychological,

particularly cognitive, demands and a psychological analysis of human, especially

problem solving, performance given those demands. One can think of problem

solving situations as composed of three basic elements: the world to be acted on,

the agent who acts on the world, and the representation of the world utilized by

the problem solving agent. To build a cognitive description of a world we need to

capture the relationships between the cognitive demands of domain tasks, how the

available representation of the world effects problem solver's information processing

activities and problem solving performance, and the ·characteristics of the problem

solver (cf., Woods, in preparation). There is an intimate relationship between these

three elements so that cognitive description is at once a psychological description

and a domain description. In our particular approach to describe cognitive activities
we begin with and build on an analysis of the cognitive demands imposed by the

requirements of the domain. This variant of the general approach, .which we will

focus on here, has been developed and refined over a number of years in the

context of thermodynamic systems, e.g., problem solving during power plant

emergencies (Lind, 1981; Rasmussen, 1983; Woods & Roth, 1986). It has also been

applied on a smaller scale to electrical distribution systems, data communication

network management, and logistics maintenance systems. A variant on this

technique has been applied to emergency management, CAD/CAM, office systems

and library systems (Rasmussen, 1986). A similar technique has been used to aid

designers of aerospace cockpits (Pew et al., 1986). Embrey & Hum!ihreys (1985)

and Boel & Daniellou (1984) have begun to developed methods to develop goal

directed structures starting from analyses and interviews of domain problem solvers

rather than from knowledge about proper system function (in part to map errors in
people's knowledge about system structure and function).

The approach helps the cognitive technologist to ask meaningful questions and

provides a framework to integrate the answers acquired from diverse sources: some

questions relate to domain technical knowledge so the knowledge acquisition

problem is finding the right specialist to talk to or to point you to the right

documents/analyses; sometimes the path is look empirically at how the problem is

solved, e.g., critical incident analysis (Pew et al., 1981) or putting the problem

solver in the situation of interest or simulations of it either formally (experiments)

or informally; and sometimes the path is simply to ask the person who performs

42-2

4

the task. All of these specific techniques are potentially useful; the choice depends

on the resources and constraints of the knowledge acquisition enterprise and on

where information about the domain in question resides.

The result of using this approach is a characterization of the kinds of problems to

be solved in the domain and the relevant psychology of human performance in

those situations. We will describe the approach primarily in the context the

cognitive activities that arise in what we· call disturbance management tasks (e.g.,

for problem solving in power plant emergencies). The approach was developed and

has been used in for several efforts to provide support systems to improve joint

cognitive system performance - in training systems that utilize the Steamer

methodology (Bennett et al., 1986), in information management to aid problem

formulation (Woods et al., 1986), in graphic representations to aid situation
assessment (Woods, in preparation).

Mapping the Problem Space: Goal-Directed Representation

The paper is addressed to complex worlds, not because of limited applicability, but

because complex worlds are the strongest tests of a methods effectiveness. Woods &

Roth (1986) describes four dimensions that contribute to the complexity of problem

solving: dynamism, the number and interactions between parts, uncertainty and

risk, multiple agents. A domain's position (or the position of an application within

a domain) along these four dimensions begins the description of its cognitive

characteristics. The approach has been utilized most extensively in a world that is

high on all four of these dimensions - power plant emergencies and is therefore
well suited for dynamic worlds where large numbers of parts interact, where

multiple failures can occur, and where the problem solver must cope with

consequences of disturbances as well as repair causes of disturbances (disturbance

management tasks). The technique for goal-directed representation is designed to

map the relationships between parts, how the parts work, how evidence testifies to

- the state of these parts, and how each can change. This serves as a framework to

describe the cognitive situations that arise in the course of carrying out domain

tasks.

The mapping of cognitive demands begins with a goal-directed analysis that conSists
of defining the units of description (goals) and the relationships between those units
that are ·appropriate for domain tasks (cf., Warfield, 1973; Lind, 1981; Pearl et al.,

1982; Rasmussen, 1983 for descriptions of this type of analysis). A goal-directed

42-3

5

representation is constructed by structuring domain tasks in terms of the goals to

be accomplished, the relationships between goals (e.g., causal relations, constraints)

and the means to achieve goals (how a process functions, options, pre-conditions,
post-conditions).

The basic unit of description is a goal-means inter-relationship. A function (the

means) provides some commodity (the goal) that is needed or required in order for

a higher level function to work properly. A function consists of the set of processes

that affect this goal. Processes that make up a function, in turn, need to be

supplied with commodities by lower level functions in order to work properly

themselves (Figure la).1

• Goal: What the function should provide; some value of some commodity,

e.g., the amount of material within control volume A (a reservoir)

greater than Y.

• Function: The set of processes that provide the commodity and

knowledge about how they work to achieve this goal, e.g., a balance of

material inflow and outflow processes around the reservoir). A process

consists of a set of alternative versions and their inter-relationships with

respect to the goal (e.g., mutually exclusive, simultaneously active) and a

model, in terms of functional elements, of how the process effects the

goal; the functional elements of a model can themselves be processes
'(subprocesses) which possess models and alternatives.

• Requirements: What is needed for a process to be able to work properly

if it is demanded, e.g., a source of material is needed for an inflow

process to be capable of functioning (source reservoir level greater than

Y). A requirement serves as a goal for a lower order function, e.g., the

set of processes that can provide material to replenish the source

reservoir. Requirements can occur at any level of decomposition of a

process - the entire process, alternatives, a model functional element, or

alternative versions of a functional element.

1 All of the specific examples uaed to illustrate the technique come from thermodynamic systems, in particular,

emergency operations in nuclear power plants. The technique ill general to any large complex system including

logistics maintenance systems, power plants, chemical processes, &ir traffic control, fiightdecks, medicine, data

communications network management, and electrical distribution centers.

42-~

6

To see how this network is built consider a heat exchanger. Williams, Hollan &

Stevens (1983) examined the mental models average people have of how a heat

exchanger functions. Here our objective is to explore the representation an expert

should have of a particular heat exchanger in a specific system context. Let us

begin with the assumption that the designer of a complex thermodynamic system

such as a power plant I'equires that the temperature within some control volume
stay below some limit value. He or she then designs a process or processes, in this
case a heat exchanger, to achieve this goal. In principle there are many aspects of

the thermodynamics of a heat exchanger that the designer could use to control the

temperature of interest - the amount of mass, the rate of circulation, the kind of

mass (different materials have different heat transfer properties), or the energy of

the mass on either the primary or secondary side of the heat exchanger. In practice

the designer chooses to use only some of these possibilities to control temperature

in a particular case and the remainder are flXed at some value or range of values

as a part of the environment of the heat exchange/temperature control process. For

example, the primary side mass and circulation are flXed and temperature control is

achieved through variations in the secondary side varibles in commercial electric

power plants. These decisions define what is included in the temperature control

process, how this particular process works, and what are the requirements needed

for the process to be able to work properly (the primary side mass and circulation

variables in this example). The variables that are flXed as features of the

environment define other goals which must be achieved. For example, a function is

needed to keep the amount of mass on the primary side of the heat exchanger

above the minimum value necessary for proper heat transfer; namely a balance of

material inflow and outflow procesess around the primary side of the heat

exchanger. -These judgements about what constitutes the "system" under

consideration versus exogenous factors are often required when decomposing complex

systems (e.g., Iwasaki & Simon, 1986).2 Note that the term goal here is used to

indicate domain goals, not the current objective of the problem solver.

This analysis can capture the interconnections between goals. Different functions

can impose criteria to be achieved on a single commodity (Figure 1b). This means

that breakdowns in the lower order function can result in violations of multiple

criteria placed on a single commodity and therefore the disturbance can propagate

2Note that in the case of an existing design this technique is a post hoc rationalization of the design and not a

psychological description of the design process. The technique can also be used as a design evolves to aid design

decision making.

42-5

·, 7

in multiple directions in the functional topology of the domain. Second, a process

may affect more than one goal, i.e., participate in several functions (Figure le). For
example, a mass balance process will affect the goal of system material inventory,

but because of thermodynamics, it also affects goals on system pressure and

temperature. Each goal specifies a different reason to be interested in a process or

a context in which to view that process. Goals can also be interconnected because

of shared physical equipment, for example, a chemical carried by water when

inventory of both materials is relevant. Thus, the goal-directed analysis can capture

the kinds ·and extent of inter-goal constraints or side effects that exist in a domain:

given a goal-of-interest, what constraints imposed by related goals govern the

operation of a process to achieve the goal-of-interest.

A function is mapped by specifying the set of processes that can effect the goal in

question. Each process is modeled qualitatively to represent how it works to provide

a goal by decomposing the process into its functional elements and their inter

relationships (see Lind, 1981 for one grammar of decomposition for thermodynamic

processes). For example, a material inflow process to a reservoir can be

decomposed into three functional elements: a source of material, a transport

mechanism, and points of entry. Another part of decomposition is determining what

if any are the alternatives for each process or functional element within a process

(i.e., the redundancy and diversity in the system) and what is their inter

relationship, such as mutually exclusive, simultaneously capable of effecting the

goal, large versus small capability. For example, there may be multiple, mutually

exclusive inflow processes to deliver the same material to the same destination that

vary in how much or how quickly they can affect the goal commodity. Functional

elements can continue to be decomposed into alternatives and models consisting of

functional elements as is required to capture how the system being analyzed works.

Thus, functions consist of processes, each of which has a model and alternatives,

and the functional elements of a model can themselves be processes (subprocesses)

which possess models and alternatives. Requirements can occur at any level of

decomposition of a process - some value of a commodity may be needed in order

for the entire process to function properly, for an alternative version of the process,

for a functional element of the process's model, or for alternative versions of a

functional element. Decomposing how processes effect goals is a kind of qualitative

modeling (Bobrow, 1985) which in this case exists inside a knowledge representation

network.

The goal-means network is a canonical description of the domain. It is a technically

accurate description but not strictly normative because alternative, technically

8

accurate decompositions can exist. For example, a material process can be described

as an inflow-outflow balance which can be decomposed into alternative inflow and

outflow subprocesses which consist of source-transport and transport-sink functional

elements, respectively. If some of the outflow sinks double as sources for inflow,

then an alternative description would be to decompose the process into multiple

recirculation versus injection processes.

The network that results from the goal-directed analysis has several interesting

properties (Figure 2 is a portion of the network for the primary system

thermodynamics in a nuclear power plant. First, moving up through the network

defines reasons and the consequences that can result from disturbances if they are

not checked. Moving down through the network defm.es causal chains and maps the

routes for analysis of correctable causes for disturbances. Second, because the

representation is not based on how the system fails (root cause faults) but on the

system should function normally, it does not depend on complete enumeration of

diagnostic (fault) categories or possible incidents. It represents a fault in terms of

the disturbances (departures from normal functioning) produced by the fault and

how those disturbances propagate over time (a disturbance chain).

are represented by their respective disturbance chains and

disturbances interact. Thus, particular scenarios including

Multiple failures

by how those

their temporal

characteristics are represented in terms of the disturbances associated with the

initiating fault and how those disturbances propagate over time and. interact with

the disturbances generated by other failures.

The network provides a framework to discover the kinds of problems that can

arise, to deflne the kinds of information processing requirements, and to provide a

conceptual foundation for investigations of actual problem solving performance.

Cognitive Demands

Now we have a framework with which to capture the kinds of cognitive demands

and situations that can arise in a particular domain which the problem solving

agent must be able to cope with. At one level cognitive demands involve collecting

and integrating available evidence to answer the questions about plant state

(evidential uncertainty, data sampling, situation assessment). A second layer of

cognitive demands occurs across units in the goal-means structure - given an

assessment of system state (the mapping of available evidence into unit/attribute

states at some point in a scenario), what cognitive situations arise in the choice of

42-7

9

a response including diagnosis, problem formulation (to choose the goal that should

be focused on at that time in the problem solving process), plan generation or

selection, choice under uncertainty and risk, plan monitoring and adaptation.

Cognitive Demands I: Evidence Utilization

One kind of demand is to determine the state of the system or parts of the

system. There are evidence processing requirements associated with each unit in the

goal-means network that must be carried out to accurately specify the state of the

system. These requirements can be determined by considering the monitoring and

control activities that are needed to maintain goals. The particular questions that

the person investigating the domain needs to answer are: what evidence can be

used to determine (a) is a goal satisfied? (b) what constraints imposed by other

goals are active? (c) is a process disturbed which depends on the questions should a

process be active and is a process active? {d) can a process work if demanded? {e)

how to initiate, tune, transfer or terminate processes. Figure 3 shows how these

cognitive activities map into the structure of the goal-means network.

The goal directed framework specifies the units of description . for situation

assessment (independent of particular situations). The above categories specify the

attributes of those units, e.g., a process may be inactive-available, inactive

unavailable, active-should be active, active performing correctly, etc. These

unit:attribute categories define the situation assessment space; that is, they specify

the set of questions that must be answered or what judgements must be made in

order to characterize system state. The plant data that are or could be available

form the raw material from which answers to these questions can be built. The

problem solving agent must be able to collect and integrate data to answer these

questions about plant state. For example, what parameters, targets, and limits

indicate that a goal is satisfied or what data (e.g., tank levels, valve positions,

pump status, flow rates) indicate that the function performed by a process is

working correctly (e.g., a material flow process consisting of sources and transport

mechanisms). In effect, a particular piece of plant data signals multiple messages or

interpretations. At a high level, it signifies or activates a category in the situation

assessment, e.g., x > y signifies a violation of goal A; at another level, the datum

signifies that, of the set of things that represent violations of goal A, the particular

signal is x > y.

Uncertainty is one of the dimensions of the complexity of problem worlds.

Uncertainty in how evidence testifies to the state of units of the goal-means

structure occurs because a given datum may or may not be an accurate

42-8

...... "" 10

measurement/entry (e.g., sensor failure, misentry, overdue update on manual entry).

Uncertainty also arises because a given datum may be evidence with respect to the

state of several units in the goal-means network, in other words,there is a one to

many data to unit mapping (Figure 6). In this approach, this form of uncertainty

is represented explicitly by multiple evidential links from datum to unit. This is

needed to be able to handle the flexibility with which experts can solve non-routine
cases, to handle revisions of problem formulation especially in dynamic worlds, and

to handle the possibility of multiple failures.

The problem solving agent's ability to meet these evidence processing demands is a

joint function of several factors. First, the cognitive demands imposed by the

domain can vary - how much collection and integration of data is needed to

answer the situation assessment questions, the kinds of integration required, how

the world can change over time (which affects, for example, data sampling rate

requirements). Performance also depends on the kind of representation of the

available data provided to the problem solver (independent of different task

demands, problem solving performance is a function of the problem representation).

Each of these factors in turns depends on the processing characteristics of the

problem solving agent. A complete cognitive analysis must address the interaction

of each of these factors; failure to do so has been one source of failures in the

history of decision support (see Woods et al., 1986 for one example - the history

of the alarm problem in process control and the various attempts to treat it). Here

we are only focusing on how to map the flrst of these factors; see Woods (1984; in

preparation) and Cole (1986) for examinations of how variations in problem
representation effect human performance. Demands on the collection and integration

of data are one potential source or contributor to performance difficulties on

domain tasks, and it is one location in the cognitive landscape where support

systems or decision automation may be deployed.

Cognitive Demands 11: Pragmatic Reasoning Situations

How can we use the goal-means network plus answers to the information processing

demands as a problem space to specify the kinds of cognitive situations that can

arise? Traditionally, cognitive situations are described in global categories like

diagnosis and planning or in terms of elementary information processing tasks

(Card, Moran & Newell, 1983; Johnson & Payne, 1985). But the goal-means
problem space offers a mechanism to describe at an intermediate level the kinds of

situations the problem solver may confront. The result can be thought of as

pragmatic reasoning situations, after Cheng et al. (1986) and Holland et al. (1986),

424

11

m that the situations are abstracted from the specifics of the domain language and

the reasoning involves knowledge of the things being reasoned about. The goal
means problem space provides the knowledge about the relationships between units

(e.g., goal, inter-goal constraints, process decompositions, requirements) and about

the state of units (especially about desired/actual state mismatches) that can be

used to describe the reasoning situations that arise for particular incidents in

particular worlds.

For example, planning a response to a goal-of-interest should take into account the

constraints imposed by related goals in order to avoid unintended effects (missing

side effects is a typical error in complex systems; Dorner, 1983). For example, does

the problem solver know that a requirement relatio.n exists and is now relevant

between units A and B (or a post-condition, goal, process alternative, inter-goal

constraint, or other relationship)'? If, for other reasons, A needs to be done, then B
must first .be satisfied; therefore, check if B is satisfied. If B is not satisfied, then

A cannot or must not be done; therefore, do not even consider A with respect to
the original reason you were interested in it or act to satisfy B so as to able to do

A. If B is satisfied, then A can be done (e.g., Cheng & Holyoak, 1985). Similar

reasoning processes can easily be seen for other relationships such as post-conditions

where the problem solver is biased towards one alternative over another because of

the negative post-conditons associated with one of the paths.

To illustrate a few of the kinds of pragmatic reasoning situations that can arise

and be described in terms of the goal-means space, consider one of the four

dimensions that contribute to the complexity of a problem domain: the level of

interconnections between parts. When interconnection are extensive, actions

involving one part can often have side effects in addition to the intended effect; a

single fault can have consequences for multiple parts; independent faults can have

consequences for the same part. Extensive inter-relationships between parts also

introduce complexity because they can produce "effects at a distance" (Boel &

Daniellou, 1984 contains one example); that is, a fault in one place can produce

disturbances at other distant locations (given either a physical or functional

distance metric). Automation (multiple agents) is a potent source of effects at a

distance. Highly coupled systems produce the opportunity for situations to arise

where there are competing goals. Competing goals can take two forms. One is a

choice involving goal sacrifices where the tradeoff is between repairing or replacing

one means to achieve the primary. goal (can I repair it? how much time is

available to attempt repair?), and an alternative means that entails as post

conditions the sacrifice of other goals in order to meet the primary goal. A second

42.-(0

12

case is multiple mutually constrained goals where two or more goals must be

simultaneously satisfied in circumstances where the means to achieve each

constrains how the others can be achieved.

When a large number of interconnected parts is combined with another dimension

of complexity, dynamism, the disturbance management cognitive situation arises. In
this situation the problem solver must cope with the consequences of disturbances

in the short run as well as diagnosis and treat the underlying fault (get the plane

into stable flight, then figure out how to restart the failed engine). The problem

solver in this kind of problem situation first becomes aware of a disturbance

(actual/desired state mismatch). The problem solver has several possible strategic

responses: attempt to adjust the disturbed process, find and correct, if possible,

what produced the disturbance (diagnosis), respond t"o cope with the effects of the

disturbance (if there is insufficient time to repair or because of an inability to

repair or replace the affected process).

In disturbance management, various pragmatic reasoning patterns are relevant, e.g.,

if there are no pressing consequences of a disturbance and no more urgent

disturbances on the agenda, then try to find a correctable cause. Note that

knowledge about the time response of various processes is often an important

element in disturbance management, e.g., the time available until a disturbance

propagates from one part to another, responses to buy more time before

consequences propagate, the time it will take to adjust or repair a process. Also,

judgments about prospective solutions can play a significant role will I be able

to adjust or repair the process (implying knowledge of why it failed) before

undesirable consequences occur.

Figure 4 illustrates a case of competing goals in terms of the goal-means structure

that is abstracted from a real incident (NUREG-1154, 1985 and see Woods &

Roth, 1986 for the cognitive analysis) and from multiple simulated incidents. One

of two alternatives within a function was disturbed. The alternative process (B)

needed to be activated to prevent consequence propagation (which would occur in
about 30 minutes), but activation of the alternative would have a significant

negative impact with respect to a second relatively less important goal. Another

path open to the problem solvers was to try to diagnosis and correct the

disturbance in alternative A. Actual problem_ solvers chose to try to repair A

because they judged that they would he able to do this within the time available

(in p~t because they saw the disturbance as a misstart rather than as a failure).

Although they needed to be prepared to adapt their response if conditions changed

4'2.-l (

-, 13

which increased the urgency of preventing consequence propagation or if repair

efforts met difficulties.

The cognitive situation of diagnosis of correctable causes is represented in the goal

means space in terms of working down through a function's decomposition and

requirement links. Figure 5 illustrates the causal chain for a case where the

problem solver begins with a goal violation - reservoir level is low. The first step

illustrates one difficult kind of diagnostic situation where multiple processes are

simultaneously capable of effecting the goal. Thus, any one is capable of being the

source of the disturbance. This situation is particularly difficult when multiple

processes are active because the effect of one contributor partially occludes the

effect of the other. For example, when one is identified as a contributor to the

disturbance, the diagnostic search at that level can be terminated prematurely.

Figure 5 continues a trace of the causal chain; the problem solver terminates the

search when a correctable item is located. This depends on the purpose _of the

problem solver and on the action set available to him or her.

Summary

We have described briefly an approach to map the cognitive demands imposed by

the characteristics of a problem solving world and illustrated some examples of the

descriptive power of this approach. The approach is part of an effort to develop a

cognitive language of description that is independent of the language of the domain

itself and the language of interface/decision support technology so that we can

understand not only the cognitive demands imposed on a problem solver, but also

the various shapes and guises of decision support systems and decision automation.

References

Alterman, R. An adaptive planner. In Proceedings of the AAA!. AAAI, 1986.

Bennett, K., Woods, D., Roth, E. & Haley, P.
dynamic tasks: A preliminary investigation.
Factors Society. 30th Annual Meeting, 1986.

Predictor displays for complex,
In Proceedings of the Human

Bobrow, D. G. (ed.). Qualitative Reasoning About Physical Systems. Cambridge,
Mass.: The MIT Press, 1985.

Boel, M. & Daniellou, F. Elements of Process Control Operator's Reasoning:
Activity Planning and System and Process Response Times. In D. Whitfield
(Ed.), Ergonom,·c Problems in Process OperaUons. Inst. Chem. Eng. Symp.

42-rL

14

Ser. 90, 1984.

Card, S. K., Moran, T. P. & Newell, A. The Psychology of Human-Computer
Interaction. Hillsdale, N .J .: Lawrence Erlbaum Associates, 1983.

Cheng, P. W. & Holyoak, K. J. Pragmatic reasoning schemas. Cognitive
Psychology, 1985, 17, 391-416.

Cheng, P. W., Holyoak, K., Nisbett, R. & Oliver, L. Pragmatic versus syntactic
approaches to training deductive reasoning. Cognitive Psychology, 1986, 18,
293-328.

Clancey, W. J. Heuristic Classification. Artificial Intelligence, December 1985,
27(3), 289-350.

Cole, W. G. Medical Cognitive Graphics. In Chi'86 Conference Proceedings.
ACM, 1986.

Davis, R. Reasoning from first principles in electronic troubleshooting.
International Journal of Man-Machine Studies, 1983, 19, 403-423.

Dorner, D. Heuristics and cognition in complex systems. In R. Groner, M. Groner
& W. F. Bischof (Eds.), Methods of Heuristics. Erlbaum, 1983.

Embrey, D. & Humphreys, P. Support for decision making and problem solving in
abnormal conditions in nuclear power plants. In Knowledge Representation for
Decision Support Systems. Durham, England: International Federation for
Information Processing, 1985.

Holland, J. H. Escaping brittleness: The possibilities of general purpose machine
learning algorithms applied to parallel rule-based systems. In R. S. Michalski,
J. G. Carbonell & T. M. Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach. Los Altos, CA: Kaufmann, 1986.

Holland, J. H., Holyoak, K. J ., Nisbett, R. E. & Thagard, P. R.
Processes of Inference, Learning, and Discovery. Cambridge, MA:
1986.

Induction:
MIT Press,

Hollnagel, E. & Woods, D. D. Cognitive Systems Engineering: New wine in new
bottles. International Journal of Man-Machine Studies, 1983, 18, 583-600.

Iwasaki, Y. & Simon, H. A. Causality in device behavior. Artificial
Intelligence, 1986, 29, 3-32.

Johnson, E. & Payne, J. W. Effort and accuracy in choice. Management
Sciences, 1985, z, x-x.

Lind, M. The use of flow models for automated plant diagnosis. In J. Rasmussen
& W. B. Rouse (Eds.), Human Detection and Diagnosis of System Failures.
New York: Plenum Press,. 1981.

Pearl, J., Leal, A. & Saleh, J. GODDESS: A goal-directed decision structuring

42-13

15

system. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1982, P AMI-4, 250-262.

Pew, R. W. et al. Cockpit Automation Technology (Tech. Rep. 6133). BBN
Laboratories Incorporated, 1986.

Pew, R. W., Miller, D. C. & Feehrer, C. E. Evaluation of Proposed Control Room
Improvements Through Analysis of Crits"cal Operator Decisions. Palo Alto, CA:
Electric Power Research Institute, 1981. (NP-1982).

Rasmussen, J. Skills, rules, and knowledge; signals, signs, and symbols; and other
distinctions in human performance models. IEEE Transactions on Systems,
Man, and Cybernetics, 1983, SMC-12, 257-266.

Rasmussen,J. A Framework for Cognitive Task Analysis. In Hollnagel, E.,
Mancini, G. & Woods, D. D. (Eds.), Intelligent Decision Support. New
York: Springer-Verlag, 1986.

Rasmussen, J. A cognitive engineering approach to the modelling of decision making
(Tech. Rep. Riso-M-2589). Riso National Laboratory, 1986.

Roth, E., Woods, D. & Gallagher, J. Analysis of expertise in a dynamic control
task. In Proceedings of the Human Factors Society. 30th Annual Meeting,
1986.

Sorkin, R. D. & Woods, D. D. Systems with human monitors: A signal detection
analysis. Human-Computer Interaction, 1985, 1, 49-75.

Warfield, J. N. Intent structures. IEEE Transactions on Systems, Man, and
Cybernetics, 1973, SMC-9, 133-140.

Williams, M. D., Hollan, J. D., & Stevens, A. L. Human reasoning about a simple
physical system: a first pass. In D. Gentner & A. S. Stevens (Ed.), Mental
models. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1983.

Woods, D. D. Visual Momentum: A concept to improve the cognitive coupling of
person and computer. International Journal of Man-Machine Studies, 1984, 21,
229-244.

Woods, D. D. Some results on operator performance in emergency events. In
D. Whitfield (Ed.), Ergonomic Problems in Process Operations. Inst. Chem.
Eng. Symp. Ser. 90, 1984.

Woods, D. D. Paradigms for Intelligent Decision Support. In Hollnagel, E.,
Mancini, G. & Woods, D. D. (Eds.), Intelligent Decision Support in Process
Environments. New York: Springer-Verlag, 1986.

Woods, D. D., Elm, W. C. & Easter, J. R. The Disturbance Board Concept for
Intelligent Support of Fault Management Tasks. In Proceedings of the
-International Topical Meeting on Advances in Human Factors . in Nuclear
Power. , 1986.

16

Woods, D. D. Cognitive Technologies: The Design of Joint Human-Machine
Cognitive Systems. AI Magazine, 1986, 6, 86-92.

Woods, D. D. The Design of Problem Representations. Manuscript in preparation.

Woods, D. D. & Roth, E. The Role of Cognitive Modeling in Nuclear Power Plant
Personnel Activities: A Feasibility Study. Washington D. C.: U. S. Nuclear
Regulatory Commission, 1986. (NUREG-CR-4532}.

42-16

Goal: Provide X

~
Means: Function A

'>
Req/Goal: Needs Y

Provide Y

Q.
Means: Function B

~
Req/Goal: Needs Z

Provide Z

<J.
Means: Function C

Figure 1 (a): Structure of the goal-means network: the goals
to be accomplished, the relationships between goals
and the means to achieve goals.

e e
Needs Gl: Pl Needs Gl: P2

\Pcovide G1 (Pt · P2)/
8

Figure 1 {b): Different functions may place different requirements
on a single goal (Gl); or from a different point of view
function C must satisfy multiple criteria on Gl.

Gl G2

Figure 1 (c): Given Gl as goal-of-interest, Process 2 provides Gl and
affects G2 (G2 is a side effect of, or a constraint on Process 2
if Gl is the object of interest and visa versa if G2 is the object
of interest.

@ 1985 Westinghouse Electric Corp.

~
\ -'-J

r

Figure 2.

t.

Simplified example of goal-means
network for one part (primary system
thermodynamics) of a nuclear power
plant.

© 1985 Westinghouse Electric Corp.

J

J

GOAL-MEANS NETWORK COGNITIVE DEMANDS:
EVIDENCE UTILIZATION

~
I

ffi

Figure 3.

@ 1985 Westinghouse Electric Corp.

r ...

~
I _..,
~

r
'·

RELATIONSHIPS:

1. ALT A DISTURBED (should be active with respect to Goal 1, but ie not)

2. ALT B ACTIVE RESULTS IN DISTURBANCE IN FUNCTION B
(ahould not be active with respect to Goal 2, but would be)

3. GOAL 1) GOAL 2

DECISION PROBLEM: ATTEMPT TO REPAIR ALT A BEFORE DISTURBANCE PROPAGATES TO GOAL 1

OR SWITCH TO ALT B AND ACCEPT TRADEOFF

GOAL 1: TEMP
GOAL 2: BARRIER

INTEGRITY

Figure 4. Illustration of disturbance
management cognitive situation.

@ 1985 Westinghouse Electric Corp.

J

. '

GOAL: RESERVOIR INVENTORY

FUNCTION I

I PROCESS I : PROCESS 2: I
MATERIAL BALANCE

INFLOW -- OUTFLOY

All 1 ••• N

SOURCE·-- TRANSPORT

• • •

ENERGY BALANCE

GOAL VIOLATION:
RESERVOIR LEVEL LOW

SIMULTANEOUSLY ACTIVE ALTERNATIVES:
MATERIAL IMBALANCE" ENERGV IMBALANCE?

IF MATERIAL IMBALANCE, THEN
EXCESSIVE OUTFLOW? INSUFFICIENT INFLOW?

YHICH INFLOW OR OUTFLOW PROCESS?

IF INSUFFICIENT INFLOW, THEN
INADEQUATE SOURCE? INADEQUATE TRANSPORT?

Figure 5. Illustration of diagnosis in terms of
goal-means structure.

© 1985 Westinghouse Electric Corp •

~
\

6

j

PROCESS
ALT 2

.. , ... 1 ""

.-~· :• ~.;~!

PROCESS DISTURBANC£
ml

ABNORMAL SIN~

PROCESS DISl11Duur"

ALT 2

GOAL VIOLATION

Figure 6. Illustration of diagnosis in terms of
multiple evidential links.

© 1985 Westinghouse Electric Corp.

.c

oi!

' ' .I!IlLlll
·~·

•,' WlWIIW

