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Abstract 
Conceptual structures are studied in many different disciplines and represented in a variety of 
forms including natural language, formal logic, and graphical or spatial representations. This 
article analyzes the common foundations of such representations across all disciplines, and the 
relationships between the different forms of representation. Representations of the logical 
relations in conceptual structures are compared, including logical symbolism, Euler diagrams, 
semantic networks, conceptual grids and conceptual spaces. It is shown that these representations 
are formally equivalent and can be inter-translated algorithmically, but provide different and 
complementary visualizations such that the use of multiple representations may provide greater 
insight than any alone. It is shown that a wide range of significant conceptual structures can be 
represented and visualized in a substructural logic having only two logical relations, entailment 
and contrast/opposition, that is naturally represented in Euler diagrams and in semantic networks 
with two types of connecting arrow. It is shown that human everyday reasoning not involving 
definitions and rules but based on abduction over schemata representing traces of past experience 
can be modeled and visualized in these representations. The extension of the visual 
representation to include the constructs of a description logic and bridge from the substructural 
logic to structural mathematical logics is illustrated. It is concluded that interactive, computer-
based visualization tools supporting a range of different representation schemes and inference 
based on a heterogeneous mix of representations can provide significant support for education 
and research across the many disciplines concerned with conceptual structures. 

1 Introduction 
Many disciplines, including linguistics, psychology, anthropology, sociology, philosophy and 
mathematics, study relationships between various forms of conceptual structure. The 
terminology varies across disciplines: concepts, constructs, categories, universals, properties, 
tropes, attributes, taxonomies, genera, determinables, determinants, predicates, propositions, 
statements, postulates, axioms, words, adjectives, adverbs, nouns, and so on; and there are 
disciplinary nuances in how each of these terms is intended to be used. However, there is much 
commonality across disciplines in the ways in which logical relationships between conceptual 
structures are modeled and represented symbolically, graphically, spatially, and so on. 
The research reported in this article is concerned with the relationship between these various 
representations of conceptual structures, in particular: the formal links between the spatial, 
graphical and symbolic notations; and the relative perspicuity of the notations in conveying what 
is represented both naturally and correctly to specialists and non-specialists in the disciplines. It 
is shown that a strict algorithmic correspondence may be defined between several forms of 
representation such that each has the same logical power and is capable of representing the same 
range of conceptual structures. 
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It is shown that some inferences about the structures are more readily apparent in one 
representation than another, and using them together as complementary perspectives may be 
more insightful than using any alone. However, some inferences based on aspects of the notation 
that do not carry representational information may lead to invalid conclusions, emphasizing the 
need to convey precisely the valid usage of the notation to those interpreting it. The use of any 
notation requires skill in proper interpretation, and the ‘naturalness’ of a graphical or spatial 
representation while making some valid inferences more intuitive may also make some invalid 
inferences equally compelling. 
This research parallels recent developments in the study of Euclid’s geometry where Hilbert 
(1902) and Tarski’s (Tarski and Givant, 1999) development of axiomatic formulations of the 
Elements was a major advance in the rigor of its proofs. It avoided false inferences derived from 
misleading figures (Maxwell, 1959) and led to widespread acceptance of the notion that “the 
‘general triangle’ drawn on the page has no genuine role to play in the reasoning” (Tennant, 
1986). However, it also reduced the comprehensibility of geometric proofs relative to those 
conveyed naturalistically through Euclid’s diagrams (Miller, 2007). In recent years there have 
been major advances in providing rigorous logical semantics for the roles of diagrams in 
geometric proofs (Miller, 2007; Avigad, Dean and Mumma, 2009), that axiomatize the 
diagrammatic aspects of Euclid’s proofs as an integral component of the axiomatization of his 
geometry. 
The essence of these recent developments is that they specify a precise interpretation of 
legitimate diagrams such that logical inference based on that interpretation is sound, and 
inference that goes beyond it is not rigorous and likely to be in error. Since the interpretation is 
essentially a translation of the diagram into a logical formalism, there can be no claim that 
diagrammatic reasoning is supra-logical. Fricke (2003) has already noted the misleading nature 
of such a claim for Hyperproof (Barwise and Etchemendy, 1994) in that the reason why the 
visual reasoning in that system was more powerful than its symbolic reasoning was the 
impoverished representational capabilities of the latter. On the other hand, empirical evidence 
that the diagrammatic reasoning in Hyperproof was more readily accomplished than the 
equivalent symbolic reasoning is a reasonable outcome. 
The integration of diagrammatic and symbolic representation/reasoning for geometry provides a 
role model for any visual language for logic: there should be a precise interpretation of the visual 
language in logical terms; and users need to be trained in the skills to follow that interpretation 
even if is naturalistic, since there may be other naturalistic inferences that are misleading. 
The primary objective of the research reported in this article is to develop a framework for the 
study and development of visual languages for the logics of conceptual structures that satisfies 
these criteria and can be used to support studies of knowledge representation and inference from 
psychological, cultural, philosophical and computational perspectives. Some historical, 
philosophical, psychological and linguistic background will be discussed where it provides a 
context for discussing the role and value of different visual representations of the logic of 
conceptual structures. However, the intention is not to attempt to resolve issues in those 
disciplines, but rather to illustrate how the use of visual representation might clarify scholarly 
debate within and across them. 
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2 What are conceptual structures? 
For much of what is discussed it would be appropriate to take the notion of a ‘conceptual 
structure’ as primitive, choose a generic term for such structures from those listed in the first 
paragraph, and focus on the possible logical relations between such structures and the 
visualization of these relations. However, there are major scholarly literatures associated with 
each of those terms and they all have technical connotations, often multiple variant ones, so that 
it would be better to adopt a more neutral term, but one with colloquial connotations that fit the 
general roles of conceptual structures in human activity. 
The words ‘term’ as used in classical logic to denote either subject or predicate, and ‘structure’ 
as an abbreviation of ‘conceptual structure’ come to mind, but both have colloquial connotations 
useful to the discussion and it would be confusing to use them also as technical terms. Goodman 
and Elgin (1988) have addressed the problem by using ‘label’ as a neutral term with few 
connotations. We have used the word ‘distinction’ (Gaines and Shaw, 1984) as a generic term for 
a conceptual structure following Brown’s (1969) notion of “making a distinction” and the 
connotations he ascribes to it: “a universe comes into being when a space is severed or taken 
apart...By tracing the way we represent such a severance, we can begin to reconstruct, with an 
accuracy and coverage that appear almost uncanny, the basic forms underlying linguistic, 
mathematical, physical and biological science, and can begin to see how the familiar laws of our 
own experience follow inexorably from the original act of severance.” 
However, making a distinction seems a somewhat passive word for an activity that may ‘sever a 
space,’ and we have moved to the notion of ‘fitting a templet’ as capturing the essence of the 
way in which conceptual structures are used, and not overloading terms that already have 
significant technical connotations. In this article the generic term ‘templet’ will be used for the 
conceptual structure imputed to underlie the process of making a distinction. It nicely 
accommodates all the various terminologies for conceptual structures listed at the beginning of 
Section 1, and has appropriate connotations. 
Dictionary definitions illustrate how the term ‘templet’ captures significant roles played by 
conceptual structures in human activity. “A model or standard for making comparisons,” 
emphasizes the role of a conceptual templet in enabling experiences to be compared. “A pattern 
or gauge used as a guide in making something accurately,” captures the role of a psychological 
templet in shaping experience, that something is modified to fit the templet. Such modification 
supports a model of “action as the control of perception” as developed by Powers (1973). A 
conceptual structure is often imposed through an active process of changing the world, not just a 
passive process of gauging whether the world fits the associated templet. 
The term templet was first used in this sense by the constructivist psychologist, George Kelly:  
“Man looks at his world through transparent patterns or templets which he creates and then 
attempts to fit over the realities of which the world is composed. The fit is not always very good. 
Yet without such patterns the world appears to be such an undifferentiated homogeneity that man 
is unable to make any sense out of it. Even a poor fit is more helpful to him than nothing at all.” 
(Kelly, 1955, p.8-9). He subsumed the various uses made of conceptual structures under the 
notion of ‘anticipation’ drawing on Dewey’s notion that anticipatory processes underlie all 
psychological processes: “Ability to anticipate future consequences and to respond to them as 
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stimuli to present behavior may well define what is meant by a mind or by consciousness.” 
(Dewey, 1917, p.28).  
Kelly’s axiomatic theoretical psychology formalizes Dewey’s pragmatic instrumentalism which 
accepted Hume’s (1888) argument there is no logical rationale for it to be possible to anticipate 
future events, and hence it is an empirical phenomenon that the world we live in exhibits patterns 
that sometimes enable future experience to be anticipated from past experience. As Dewey 
(1911) notes: “While there is no a priori assurance that any particular instance of continuity will 
recur, the mind endeavors to regulate future experience by postulating recurrence. So far as the 
anticipation is justified by future events, the notion is confirmed. So far as it fails to work the 
assured continuity is dropped or corrected.”  
The connotations of conceptual structures as templets span the range of meanings that Dewey 
and Kelly accommodate within the term anticipation: of prediction of what may happen; of 
action to make something happen; of creative imagination of what might happen or be made to 
happen; and of preparation for eventualities that may well never happen. The term templet will 
be taken as a generic primitive encompassing all other terms for conceptual structures with 
expectation that the specific issues discussed in the literature for various other terms can be 
represented within a logic of templets, and that significant similarities and differences will 
emerge. 

3 The logic of templets 
A major impediment to developing a logical framework for human psychological processes is 
that notions of what is a logic have been highly conditioned by the success of mathematical logic 
as developed by Boole, Frege, Hilbert, Russell, Tarski, Gödel, et al (Kneale and Kneale, 1962). 
We take for granted the logical constants and modes of inference of such logical systems and 
seek to impose them on all phenomena, in particular using notions of logical conjunction, 
disjunction, negation, definition and rules that may be inappropriate to human reasoning. 
Empirical psychological studies of human rationality (Shafir and LeBoeuf, 2002) then puzzle us 
because people do not use such notions ‘correctly’ and their reasoning processes appear 
‘irrational.’ Hence, it is important to analyze the logic of conceptual structures using a minimalist 
logical framework that presupposes no more than is necessary to account for the phenomena of 
interest. 
We will take a templet having a binary valuation of fit as a logical primitive, and leave as extra-
logical issues what it is that a templet fits, such as ‘experience,’ ‘phenomenon,’ ‘situation,’ 
‘reality,’ and so on, and how the fit is accomplished, whether a fit is possible, and so on. These 
extra-logical issues are important but it should be possible to analyze them through the definition 
of additional templets to represent them, essentially meta-templets—derived rather than 
primitive notions. 
If we consider the possible logical relations between templets that indicate whether one templet 
will fit if the other one does, then there are two possibilities: entailment, if templet A fits then so 
will templet B; and contrast/opposition, if templet B fits then templet C will not. We can 
represent these symbolically by arrows of entailment and contrast/opposition: 
 A → B for A entails B, B ↛ C for B is in contrast/opposition to C 
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Entailment is a transitive, asymmetric binary relation between templets, and contrast/opposition 
is an intransitive, symmetric one. The two relations interact in that if both the relations above 
hold we can also derive A ↛ C. The symmetry of contrast/opposition would allow a non-
directional symbol to be used to represent it, and the symbol “—” has sometimes been used for 
this purpose (Gaines, 1991), but the logical symmetry masks an underlying cognitive asymmetry 
that is reflected in linguistics through such distinctions as that between the marked and unmarked 
sides of a contrast (Lyons, 1968). 
These two logical relations, of entailment and contrast/opposition, were studied in classical times 
as constraints upon the meaning of terms by Plato and Aristotle, and have played major roles in 
psychological, philosophical and linguistic studies ever since. For example, in linguistics, 
Humboldt, Saussure, Abel, Trier, et al, saw them as the fundamental relations between the 
meaning of words constituting a semantic ‘field,’ ‘mosaic’ or ‘network’, and argued that the 
meaning of a word was determined by its location in a network of other words related in 
meaning by entailment and contrast (Reuning, 1941; Nerlich and Clarke, 2000). 
The relations are constraints that exist prior to the fitting of templets, committing us to asserting 
that if one templet fits then some related templets also fit and some others do not. They support 
memory and communication and, if we change them, we undermine both. They are not in 
themselves empirical but they facilitate empirical processes. If we use different relations from 
others in our community we are not asserting different facts but rather talking a different 
language from them. The relations do not tell us how to fit a templet but constrain what other 
templets we may fit when some have been fitted. Induction does not determine the relations but 
may enable us to infer them from the verbal behavior of others. Developmentally, the entailment 
and contrast relations between words are learnt before the capability to fit those words to 
experience (Soja, 1994).  
Relations between templets are not necessarily encoded specifically but may be generated by 
considerations of the internal structure of templets, for example that “has red hair” entails “has 
hair” and contrasts with “has black hair”. Factoring the logic of such internal constraints gives 
rise to other logical forms such as relational structures, but these are secondary to the 
fundamental relations of entailment and contrast/opposition. What we require of any particular 
model of such internal constraints is that it be able to derive the two basic relations from the 
specified internal structures. 
There may also be meta-relations between templets where one templet is fitted to another or to a 
templet structure, for example, that a templet may be difficult to fit or that two templets have a 
particular relation. Such higher-order templets need to be distinguished from lower-order ones to 
avoid category errors, for example to say red is a color is not to say that red is colored but rather 
that if an object is red it is entailed that it is colored (Johansson, 1989, p.15). However, the logic 
of entailment and contrast/opposition relations between templets applies at every level without 
implying any interaction between levels. 
The initial focus of this article will be on the various representations of the two basic relations of 
entailment and contrast/opposition between conceptual structures. Further sections will show 
how these inter-translate, providing different perspectives on the same conceptual structure, how 
much of human reasoning can be captured through these two relationships, and how 
mathematical logic emerges through extension of the relations and their representation. 



 

6 

4 Visualizing the logic of templets 
Any pair of symbols that can represent a transitive, asymmetric binary relation and an 
intransitive, symmetric one that interacts with it as noted above, can be used to portray the 
relations between templets representing conceptual structures. If that portrayal can be naturalistic 
without conveying any relations other than those represented then it may support the 
comprehension of those structures. It is must also be able to represent the lack of either relation 
between templets, that is, conceptual structures where there are no mutual constraints. 
One natural visualizable phenomenon with the desired properties is the spatial enclosure of 
closed curves in some manifold. The enclosure of one enclosure by another is a transitive, 
asymmetric relation, and the separation of a pair of enclosures is an intransitive, symmetric 
relation that interacts with it in the desired manner. Throughout the history of logical scholarship 
one-dimensional lines, separated in a second dimension for visual perspicuity, and two-
dimensional closed curves, have both been used to represent the logical relations between 
conceptual structures (Greaves, 2002, p.115-121).  
Figure 1 on the left shows four templets A, B, C and D represented by horizontal lines. The 
relation A → B is represented by the line for A being included in the line for B, and the relation 
B ↛ C represented by the separation of their lines. Non-inclusive overlap, such as that between 
the lines representing D and those for B, C and D, indicates that neither logical relation applies. 

  
Fig. 1 Line diagrams for entailment and contrast/opposition relations and syllogisms 

On the right some moods of syllogistic reasoning are represented in this way: 
 animal→ mortal together with man→ animal implies that man→ mortal Barbara 
 animal ↛ plant together with man→ animal implies that man ↛ plant Celarent 
 animal ↛ plant together with man→ animal implies that plant ↛ man Camestres 
Barbara and Celarent are the classical mnemonics for two moods of the first figure of Aristotle’s 
syllogistic to which nearly all the other syllogisms may be reduced (Weidemann, 2004), and 
syllogisms in general and their extension to more than three terms can be represented by the two 
relations of entailment and contrast/opposition and their various representations. Engelbretsen 
(1992) has extended linear diagrams for syllogisms to include relationals, and used this in an 
exposition of Sommers’ (1982) logic of terms for modeling reasoning in natural language 
(Englebretsen, 1996). 
Two-dimensional enclosure representations are generally called ‘Euler diagrams’ following 
Euler’s extensive use of them to explain syllogisms in his tutorial letters to a German Princess 
(Euler, Brewster and Griscom, 1840, Letters 102-105). Euler describes the general forms of the 
syllogism and then illustrates them using circles, remarking, “These four species of propositions 
may likewise be represented by figures, so as to exhibit their nature to the eye. This must be of 
great assistance towards comprehending more distinctly wherein the accuracy of a chain of 
reasoning consists.” (Letter 102). Figure 2 shows the conceptual structures of Figure 1 
represented by Euler circles. 



 

7 

 
Fig. 2 Euler circles for entailment and contrast/opposition relations and syllogisms 

Euler diagrams and their extensions have been widely studied formally and computationally as 
tools that can support the human reasoning process (Fish and Flower, 2005; Stapleton, 2005; 
Swoboda and Allwein, 2005; John, Fish, Howse and Taylor, 2006; Mineshima, Okada and 
Takemura, 2009), and have been used as computational interfaces to computer directory and 
library catalogue systems (De Chiara, Hammar and Scarano, 2005; Thièvre, Viaud and Verroust-
Blondet, 2005). 
Venn’s (1881) book on symbolic logic presents a new form of diagram designed to support 
Boole’s (1848) mathematical representation of the syllogistic. Chapter 1 illustrates syllogisms 
using Euler diagrams but Venn criticizes their utility in proving theorems where the relations 
between propositions have to be inferred rather than specified in advance. In Chapter 5 he 
presents a new form of diagrammatic representation that has come to be known by his name. 
Venn’s notation is based on Euler diagrams where all the circles overlap with one another, which 
would mean in Euler’s interpretation that there are no relations between the propositions 
represented, that is, when one templet is fitted it places no constraints upon whether any of the 
other templets fit. Venn then shades the areas of intersection between the circles, or more 
generally closed curves, to indicate that no other circle can be placed in that area. Venn and 
Euler diagrams thus have the same capability to represent relations between templets but do so in 
different ways: Venn by specifying the general situation and then shading it to develop a 
particular one; Euler by specifying the final situation immediately. 
Figure 3 left shows Venn diagrams for two, three or four templets, and on the right the Venn 
diagrams for the relations A → B and B ↛ C. 

           
Fig. 3 Venn diagrams for 2, 3 and 4 templets, and for relations between 2 templets 

The principles of representation of entailment by spatial inclusion and contrast/opposition by 
spatial separation remain the same as for Euler diagrams, but the creation of the shapes is 
through the shading of a generic Euler diagram. Figure 4 shows the Venn representations of the 
relations already shown in Figures 1 and 2. 
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Fig. 4 Venn diagrams for entailment and contrast/opposition relations and syllogisms 

Because they divide space into the 2n possible intersections of n closed curves Venn diagrams 
become increasingly complex for n beyond four and are most familiar for n=3. They are often 
used to show how three binary properties divide possible exemplars into coherent sets, rather 
than for syllogistic inference qua Venn. In the general literature when Euler diagrams are used 
they are often termed Venn diagrams. 
The two forms of arrow used in the linear symbolic representation of relations between templets 
generalize naturally to two-dimensional semantic network representations as shown by the 
representations of the examples of Figures 1, 2 and 4 on the left of Figure 5. On the right are 
shown two examples of interaction with a computer programmed to make deductions from the 
assertions that particular template fits to derive the fit of other templates. A vertical bar indicates 
that a template fits and a horizontal bar that it does not. 

B

A 

C

D

     

plant

man

animal

mortal

     

plant

man

animal

mortal

     

plant

man

animal

mortal

 
Fig. 5 Semantic networks for entailment and contrast/opposition relations and syllogisms 

The leftmost of the two figures shows that when it is asserted that the templet ‘man’ fits it is 
inferred that ‘animal’ fits and hence that ‘mortal’ fits (syllogism Barbara) and that ‘plant’ does 
not (Celarent). The rightmost that when it is asserted that the templet ‘plant’ fits it is inferred that 
‘animal’ does not fit and hence that ‘man’ does not fit (Camestres). The program indicates the 
source of the derivation by coloring the assertions green, the entailments blue, the oppositions 
red, and the inverse entailments black. The inverse entailments where a templet not fitting 
implies that none of its subordinates can fit is particularly significant because it can be seen as 
indicating the relevance of templets. If a superordinate templet does not fit then its subordinates 
are no longer relevant in the sense we should not waste effort in investigating their possible fit, 
and asking a question about them would seem strange since we should know they cannot fit. 
This type of interactive user interface to an inference program can be implemented for any of the 
other graphic representations of conceptual structures shown in Figures 1 through 4. They are all 
logically equivalent to one another and diagrams in any of these forms inter-translate with 
diagrams in the other forms, linear logical symbolism and natural language. 
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5 Comparing different representations 
The preceding section has described four graphic notations equivalent to the linear symbolic 
representation of relations between conceptual structures. This section considers how the 
representations differ in extra-logical features such as clarity of representation, and ease of 
understanding. Four major dimensions of comparison are apparent: do they scale up to represent 
complex conceptual structures; what naturalistic metaphors do they evoke when people attempt 
to understand them and use them to support reasoning processes; do they also evoke misleading 
interpretations; how do they extend to support more logical constants than entailment and 
contrast/opposition? This section discusses the first three questions, and Section 10 addresses the 
fourth. Examples in the remainder of the article illustrate aspects of all four dimensions. 
Line and Venn diagrams are both very useful in presenting simple conceptual structures, but do 
not scale up to represent more complex ones. In particular, the representation of all possible 
combinations in Venn diagrams is inappropriate for complex conceptual structures because 
people manage the exponential increase in complexity by ensuring that a high proportion of 
combinations are irrelevant to any particular application. This corresponds to the majority of the 
2n intersections being grayed out, but usually with little scope for this to be crafted into a visual 
form that clarifies the conceptual structure.  
Euler diagrams and semantic networks do both scale to complex conceptual structures often 
allowing issues associated with them to be clarified in a helpful way, and this article will focus 
on these two forms of graphic representation, extending them to conceptual spaces in Section 8. 
One major difference between the two representations has already been noted: Euler diagrams 
represent templets having no mutual constraints by partially overlapping circles, and semantic 
nets do so by separated circles with no interconnecting arrows; conversely, Euler diagrams 
represent contrasting templets by separated circles and semantic networks by a connecting arrow. 
Hence Euler diagrams, as illustrated in Section 7, become complex when two or more structures 
that have no mutual constraints need to be represented, for example, orthogonal dimensions such 
as taste and color. 
Semantic networks represent such structures without difficulty as separate sub-networks, but 
have problems with large numbers of mutually contrasting structures where there needs to be a 
negated arrow between every structure and every other one. This is typically the situation for 
distinct enumerable templets such as those representing individuals, and semantic network 
systems usually adopt additional notational features to represent mutually contrasting structures, 
such as a rectangle around the unique identifier of an individual. 
The two representations differ in the naturalistic metaphors that they evoke for the entailment 
and contrast/opposition relations and the logical inferences that can be drawn from them. Euler 
diagrams evoke the metaphor of spatial enclosure, with separated enclosures being distinct, and 
enclosures being enclosed in any enclosure of their enclosures. If we place an additional templet 
in the Euler diagram representing a conceptual structure it is immediately apparent what encloses 
it, what overlaps it, and what is separated from it. It is also apparent where we can place further 
templets relative to it that achieve certain relationships, and so on. Our natural grasp of spatial 
relationships through visual perception becomes a powerful logical tool. 
Semantic networks evoke a flow metaphor, that the fit of one template flows outward through the 
arrows of entailment activating the fit of other templets, through the arrows of 
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contrast/opposition inhibiting the fit of other templets, and that the lack of fit of a templet flows 
backwards through the arrows of entailment inhibiting the fit of other templets subordinate to it. 
The visual flow forward from a templet that fits through the outgoing arrows of entailment is 
very similar to the visual flow through layers of enclosure. The visual flow backward from a 
templet that does not fit through the incoming arrows of entailment to irrelevant templets is very 
similar to the visual flow through layers enclosed containing irrelevant templets. Flow through 
arrows of contrast/opposition is less perspicuous than visual separation, but in many common 
conceptual structures, such as taxonomies, it is highly localized so that only one such arrow is 
involved in any particular inference. 
One potentially misleading aspect of spatial representations of the logical relations as graphical 
structures is that the spatial layout portrayed has not only a topological aspect that conveys the 
underlying logical relations, but also a metric aspect that is only loosely constrained by them and 
should not be used in inference. For example, the size and relative orientations of the Euler 
circles in Figure 2 are a matter of visual convenience and carry no logical import; it is only the 
containment, overlap and separation relations that convey the logical structure. Similarly, the 
relative positions of the nodes in the semantic networks of Figure 5 are irrelevant to the logical 
structure which is completely encoded in the connecting arrows. As will be shown in Sections 7 
and 8, there are natural spatial relationships that arise from the logical structure, giving rise to the 
notion of a ‘conceptual space’ (Gärdenfors, 2000), and the way we lay out diagrams often 
reflects this. However, the spatial layout may well reflect nothing more than convenience in the 
way that it is drawn, and, in general, it can be misleading to read more than that into it. 
The impact of the differences in the representation of relations between templets are discussed 
further and illustrated through examples in the following sections. 

6 Visualizing taxonomic structures 
Conceptual structures are human constructs which evolve to support human activity and their 
logical structure emerges through that process of evolution and reflects the nature of that process. 
For example, we may fit a templet in order to classify our current experience in order to compare 
it with past experience, or shape it to be like some past experience, in order to anticipate further 
aspects of the current experience. If the outcome is unsatisfactory we may change the templet we 
are using to a contrasting one, or may refine it further through contrasting sub-templets that 
entail it but make additional distinctions. This process leads naturally to the growth of taxonomic 
structures of templets classifying and shaping our experience. The contrasting sub-templets of 
‘mortal’, ‘animal’ and ‘plant’ in the conceptual structure represented in various ways in the 
preceding section, illustrate the nature of this process. 
De Morgan (1847) discusses the logic of such conceptual structures having two contrasting 
propositions both entailing the same proposition which constrains where they are applicable, and 
terms the constraining templet the ‘universe’ of the contrasting propositions. Boole (1848) 
adopted the term as the ‘universe of discourse’ in the exposition of his logic, and Kelly (1955) 
terms it the ‘range of convenience’ of a ‘bipolar construct,’ the fundamental building block of his 
psychology. The essence of such a construct is the way in which the templet “mortal” 
characterizes a significant similarity between sub-templets such as a man and a tree, and the 
contrast between templets “animal” and “plant” characterizes a significant difference. The line 
diagram of Figure 1, Euler diagram of Figure 2 and semantic network of Figure 5 all represent 
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this structure of similarity and difference very clearly without the additional subordinate templet 
“man” in any way obscuring it. A Venn diagram with three circles also represents the triad 
clearly, but the representation of a fourth templet, “man,” obscures it, illustrating the problems of 
scalability for Venn diagrams. 
The growth of a taxonomic structure through the refinement of subordinate templets to represent 
a universe of discourse for further contrasts is illustrated in Figure 6. On the left is a conventional 
representation of a taxonomy of which the mortal-animal-plant construct is part, with the 
entailment relation represented by a line and its direction by the vertical ordering, and the 
contrast/opposition relation by the vertical alignment and horizontal separation of the contrast 
pairs. In the center is an Euler diagram representation of the taxonomy where the relations are 
represented through enclosure and separation, and on the right a semantic network where the 
relations are represented by two types of arrow. 

 

animal

man

plant

immortal mortal

material
object

beast

inanimate animate

 
Fig. 6 Taxonomy with Euler diagram and semantic network representations 

The linear symbolic representation of this taxonomy is: 
inanimate ∨ animate → material object,   inanimate ↛ animate 

immortal ∨ mortal → animate,   immortal ↛ mortal 
animal ∨ plant → mortal,   animal ↛ plant 

man ∨ beast → animal,   man ↛ beast 
where the disjunctions on the left are convenient abbreviations for two separate entailments with 
no implication that there is a templet representing the disjunction. All four representations 
convey the same information and do so formally in that each can be translated algorithmically to 
the same linear symbolic form. The use of vertical ordering and horizontal separation in the 
conventional diagram works very well for taxonomic structures, and is still apparent in the other 
representations, but does not generalize well to non-taxonomic conceptual structures where the 
more explicit representation of the relations in the other diagrams enables layouts to be used that 
do not have to conform to spatial relationship conventions. 
Taxonomies have a simple and elegant structure because they show only one family of contrasts 
refining their superordinate templet, and one entailment of each templet. This reflects the origins 
of taxonomies in the representation of biological species where evolutionary speciation splits one 
species into others that have much in common initially but diverge in their characteristics 
because members cannot inter-breed. More generally however, there may be several families of 
templets refining a common superordinate templet, and large numbers of entailments reflecting 
connotations of a templet. For example, the templet “mortal” might be refined through the 
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contrast “short-lived—long-lived” rather than, or as well as, “animal—plant,” and the templets 
“animal” and “plant” both have many more entailments beyond “mortal.”  
The biological schema has been extended to other forms of ‘natural kind’ by abstracting the 
criterion that ‘kinds’ have large numbers of entailments in common (Hacking, 1991). The 
“animal—plant” contrast differentiates kinds of “mortal” through two templets each of which has 
many more significant entailments than does “mortal”, whereas the contrasting templets 
generated by “short-lived—long-lived” does not. It is usual to term “short-lived” a ‘property’ and 
“animal” a ‘kind’ to mark this distinction between contrasts that are logically the same in 
structure but have different impacts in the way they partition a conceptual structure. However, 
there is no absolute basis for the distinction since what are significant entailments depends on 
what use we are making of the conceptual structure, and communities with different objectives 
develop different taxonomies (Medin, Lynch, Coley and Atran, 1997). 
There is an analogy between chemical structures as bonds between atoms and conceptual 
structures as bonds between templets. Section 4 introduced the basic notions of templets and the 
logical relations that bond them, and illustrated a fundamental construct of contrasting templets 
entailing a common superordinate templet, similar in status to that of a benzene ring. Section 6 
showed how more complex structures are formed through bonding multiple instances of this 
basic construct to form taxonomies, just as benzene rings bond to form complex organic 
molecules. Just as in chemistry, the graphic presentations make these structures, their 
relationships, their construction and their properties, more perspicuous than a natural language 
description or linear symbolic representation. 
There are several other generic ‘molecular’ conceptual structures that are also common 
components of more complex conceptual structures, and the following sections discuss some of 
the major ones. 

7 Deriving and visualizing the spatial structure of conceptual dimensions 
The basic construct of contrasting templets entailing a common superordinate templet 
constraining their universe of discourse has been illustrated for a pair of contrasts but generalizes 
to ‘contrast sets’ (Frake, 1969) where there are several mutually contrasting templets refining a 
common superordinate. Johnson (1921) introduced the terminology ‘determinable’ for the 
superordinate templet, and ‘determinants’ for its subordinate contrast set, and this is widely used 
in the philosophical literature. The taxonomy illustrated in the previous section shows that a 
given templet can be both a determinant for a templet it entails and a determinable for those 
which entail it. 
Johnson introduced this terminology as part of an analysis of conceptual structures which he 
argued did not fit Aristotle’s notion of genus and differentia, for example that the concept red 
was subordinate to color but had no entailments to differentiate it, for example, from green— 
something is attributed the property of red without there being any specifiable reason. This is 
arguably a specious distinction if one accepts as entailments of red, “evoking the perception I 
have learned to term ‘red’,” “being termed by others whose perception I trust as ‘red’,” and so 
on. However, other parts of Johnson’s analysis are significant, in particular that there are often 
additional relationships between determinants other than contrast, such as ordering and 
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graduation along a scale, a well-known phenomenon linguistically (Cruse, 1986) and 
psychologically (Rosch and Lloyd, 1978). 
The ordering and grading of templets in a contrast set is not an immediately apparent 
consequence of the logical relations of entailment and contrast/opposition between them, and 
there is a temptation to assume that it must be introduced as the extra-logical imposition of a 
metric space (Denby, 2001), or by the use of a multi-valued logic (Fourali, 2009) such as 
Łukasiewizc infinitely-valued logic (Rescher, 1969), nowadays often known as ‘fuzzy logic’ 
(Gaines, 1976) following Zadeh’s (1965) terminology. However, Gaines (2009) shows that order 
relations between templets emerge naturally from the logical relations between templets and can 
be derived algorithmically. 
Figure 7 show an Euler diagram for the conceptual structure that Gaines (2009, Fig.10) uses as 
an example of a logical structure equivalent to a rating scale.  

 
Fig. 7 Euler diagram for a graded conceptual structure with nine points on a scale 

Figure 8 shows the same structure as a semantic network with five-, seven- and nine-point scales 
indicating the graded structure. 
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Fig. 8 Semantic network for a graded conceptual structure 

The linear symbolic representation of this structure is: 
very light gray ∨ light to mid gray ∨ mid to dark gray ∨ very dark gray → achromatic 

very dark gray ↛ very light gray 
white ∨ light gray → very light gray, light gray ↛ white 
black ∨ dark gray → very dark gray, dark gray ↛ black 

light to mid gray ↛ white ∨ very dark gray 
mid to dark gray ↛ black ∨ very light gray 

mid gray→ light to mid gray ∧ mid to dark gray 
Gaines derives the scalar relation between the templets by associating each templet with a feature 
vector of the other templets that fit or, in complemented form, do not fit when the primary 
templet fits. The matrix whose columns are the feature vectors for each templet characterizes the 
network of relations in the conceptual structure intensionally in terms of its templets and is 
sufficient to regenerate that network. Kelly (1955, p.270) terms this matrix a ‘conceptual grid’ 
and his ‘repertory grid’ elicitation technique, that is widely used to elicit conceptual structures, 
generates such a matrix. Gaines notes that the cardinality of the symmetric difference between 
the feature vectors is a distance measure establishing a metric that characterizes the scalar 
relationship between templets. This metric is not imposed from without but generated 
algorithmically from the conceptual structure’s internal relations. 
Figure 9 shows the conceptual grid generated algorithmically from the conceptual structures 
represented in Figures 7 and 8. The first column indicates that if it is true that “achromatic” fits 
then there are no further implications about what other templets fit; the second that if it is true 
that “white” fits” then it also true that “achromatic” and “very light gray” fits, and false that any 
of the other templets fit; and so on for each templet. 
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Fig. 9 Conceptual grid of feature vectors  

Figure 10 shows the inter-templet distances derived as the cardinality of the symmetric 
difference between the set of features in the feature vectors for the four templets that Gaines 
takes as salient, “white,” “very light gray,” “very dark gray” and “black.” For example, the 
achromatic templet entails none of the features and the white templet entails four of them, 
‘white: t,’ ‘very light gray: t,’ ‘very dark gray: f,’ ‘black: f,’ so that the cardinality of the 
symmetric difference is 4. 

       1  2  3  4  5  6  7  8  9 10 
  1:   0  4  3  4  3  4  3  4  3  4 : achromatic 
  2:   4  0  1  2  3  4  5  6  7  8 : white 
  3:   3  1  0  1  2  3  4  5  6  7 : very light gray 
  4:   4  2  1  0  1  2  3  4  5  6 : light gray 
  5:   3  3  2  1  0  1  2  3  4  5 : light to mid gray 
  6:   4  4  3  2  1  0  1  2  3  4 : mid gray 
  7:   3  5  4  3  2  1  0  1  2  3 : mid to dark gray 
  8:   4  6  5  4  3  2  1  0  1  2 : dark gray 
  9:   3  7  6  5  4  3  2  1  0  1 : very dark gray 
 10:   4  8  7  6  5  4  3  2  1  0 : black 

Fig.10 Inter-templet distances derived from conceptual grid based on salient attributes  
This distance matrix can be analyzed for its underlying spatial structure through multi-
dimensional scaling (Davison, 1983), a technique that Gardenförs (2000, Sect.1.7) uses to derive 
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conceptual spaces from psychological data. Figure 11 shows a plot of first two principal 
components of such an analysis of the data of Figure 9. 

1: 67.5%

2: 20.0%

achromatic white

very light gray

light gray

light to mid gray

mid gray

mid to dark gray

dark gray

very dark gray

black

Percentage variance in each component
1: 67.5%  2: 20.0%  3: 7.5%  4: 5.0%  

Figure 11 Multi-dimensional scaling of the inter-templet distances 
The expected ordering of templets along a linear scale is apparent horizontally, and there is 
smaller but significant vertical component representing the similarity of the extremities of the 
scale in that they are both distant from the center of the scale.  
This derivation shows that the order and similarity properties that Johnson (1921) discusses for 
determinables, and the metric space that Denby (2001) introduces to model them, need not be 
imposed ad hoc but can be derived from the logical relations between the determinants. It also 
provides an insight into the notion of ‘salient.’ Analysis of the distance matrix based on all the 
features in Figures 7 and 8 produces a similar model to that of Figure 11. A salient set of the 
features may be defined as a minimal subset of features that produces the same spatial structure 
of ordered dimensions as analysis of the full set. There may be more than one such subset, or 
‘basis.’ 
In a recent paper on counseling techniques for overcoming conflict arising from polarized 
thinking Fourali (2009) models ‘shades of gray’ through an Euler diagram of overlapping 
concepts illustrated in Figure 12, and suggests that this be modeled through fuzzy logic. 

 
Fig. 12 Euler diagram: “semantic ambiguities between levels of happiness” (Fourali, 2009) 

This conceptual structure is interesting because it is proposed to model the scalar properties of 
contrast sets entirely through the contrast relations. It also exemplifies Körner’s notion in his 
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debate with Searle on the nature of determinables (Körner and Searle, 1959) that it is the overlap 
due to ‘inexactitude’ of concepts in a contrast set that makes the set coherent. 
The equivalent semantic network is shown in Figure 13. 

moderately
unhappy

moderately
happy

very
happy

very
unhappy

more or less
happy

 
Fig. 13 Semantic network of semantic ambiguities between levels of happiness 

The linear symbolic representation of this structure is: 
moderately unhappy ↛ moderately happy 

very unhappy ↛ very happy ∨ moderately happy 
very happy ↛ moderately unhappy 

more or less happy ↛ very unhappy ∨ very happy 
Figure 14 shows the conceptual grid generated by the conceptual structures of Figures 12 and 13. 

more or less happy
moderately unhappy

moderately happy
very happy

very unhappy

more or less happy: f more or less happy: t
moderately unhappy: f moderately unhappy: t

moderately happy: f moderately happy: t
very happy: f very happy: t

very unhappy: f very unhappy: t

t . . f f
t t . f t
t . t t f
f f . t f
f . f f t

 
Fig. 14 Conceptual grid for happiness  

Figure 15 shows the spatial structure resulting from multi-dimensional scaling of the distance 
matrix generated from Figure 14 and it can be seen that it verifies Körner and Fourali’s 
hypothesis that chained overlap does imply an underlying scale. 
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1: 64.1%

2: 35.9%
more or less happy

moderately unhappymoderately happy

very unhappy

Percentage variance in each component
1: 64.1%  2: 35.9%

very happy

 
Fig. 15 Multi-dimensional scaling of the inter-templet distances for happiness 

It is notable that a rating scale has emerged only from the standard logical relation of 
contrast/opposition, and that no non-standard logic has been imposed. In addition a second multi-
valued logical dimension has emerged. While the horizontal axis in Figure 15 may be seen as 
representing a ‘degree of membership’ to happiness, the vertical dimension may be seen as one 
mediating between moderation and extremism in happiness. This second dimension is an 
important one psychologically because the preferred templet whose fit is homeostatically 
maintained is often that between the extremes, for example, in Berlyne’s (1960) model of 
arousal, Csikszentmihalyi’s (1990) of optimal experience, and Gaines’ (1997) of the optimal 
error rate to maximize learning. 

8 Deriving and visualizing conceptual spaces 
The derivation of scalar dimension from the relations between templets representing the 
determinants of a determinable raises the question of whether a similar analysis of several 
independent systems of determinables and determinants will generate a multi-dimensional space. 
Kelly (1955, Ch.6) saw his conceptual grid as a tool for representing the “geometry of 
psychological space” (Shaw and Gaines, 1992), and Gardenförs (2000) has developed a theory of 
conceptual spaces providing a “geometry of thought.” Is the spatial allusion only a metaphor, 
does the metric need to be imposed or is it latent in the logical relations forming a conceptual 
structure, and, conversely, are those relations also latent in the geometry of a psychological 
space? 
The techniques described in the previous section for extracting the latent spatial dimensions of a 
conceptual structure may be used with any arbitrary structure, and in particular ones with several 
independent sub-structures that one might expect to correspond to different dimensions. For 
example, Figure 16 is an Euler diagram derived from that of Figure 12 by adding a second chain 
of overlapping templets for healthiness. Since they are independent of the first chain they overlap 
every member of it, and all the templets have been elongated and one set rotated to portray this. 



 

19 

 
Fig. 16 Euler diagram for two independent dimensions 

Figure 17 show the equivalent semantic network. 

more or less
happy

moderately
unhappy

moderately
happy

very
happy

very
unhappy

more or less
healthy

moderately
unhealthy

very
healthy

very
unhealthy

moderately
healthy

  
Fig. 17 Semantic network for two independent dimensions 
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Figure 17 shows the latent structure derived from the conceptual matrix of feature vectors for 
each templet generated from their logical relations with the entire set of templets. The first two 
components are precisely the expected orthogonal five-point scales. The curvature noted in 
Figure 14 representing moderation-extremism dimensions is represented in the remaining 
components and does not appear in the two-dimensional plot. 

1: 28.9%

2: 28.9%

moderately unhealthy

moderately healthy

very healthy

very unhealthy

Percentage variance in each component
1: 28.9%  2: 28.9%  3: 20.2%  4: 16.2%  5: 5.8%

moderately happy moderately unhappy

more or less healthy
very happy more or less happy very unhappy

 
Fig. 18 Scaling of the joint inter-templet distances for happiness and health 

Figure 19 is a three-dimensional plot of the conceptual space latent in a semantic network 
consisting of that shown in Figure 17 together with a third network of the same type where the 
nodes are labeled for pleasantness rather than happiness or health. It can be seen that the three 
major components generate a spatial structure with three five-point orthogonal scales as axes.  
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very happy

moderately unhealthy

moderately healthy

very healthy
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very unhealthy

Percentage variance in each component
1: 18.7%  2: 18.7%  3: 18.7%  4: 13.1%  5: 13.1%  6: 10.4%  7: 3.7%  8: 3.7%

moderately unhappy

more or less happy

very unhappy
2: 18.7%

3: 18.7%
very pleasant

very unpleasant

more or less pleasant

moderately pleasant

moderately unpleasant
moderately happy

more or less wealthy

 
Fig. 19 Scaling of the joint inter-templet distances for happiness, health and wealth 

An Euler diagram for three independent structures cannot be drawn with simple shapes in a plane 
and, even if drawing one with suitable closed curves is possible with a computational tool 
(Flower and Howse, 2002), it would be so convoluted as to be meaningless to human perception. 
The natural extension of Figure 16 to three dimensions is to use three chains of overlapping 
ellipsoids to represent templets such that every ellipsoid in each chain overlaps every ellipsoid in 
the other two chains and no ellipsoid contains any other. 
The use of circles or ellipses in Euler diagrams is a common convention, but any closed curve 
serves the same purpose and Charles Dodgson (aka Lewis Carroll) used rectangles for Venn 
diagrams (Abeles, 2007). If this is done in Figure 16 then the partitioning of the two-dimensional 
space is similar to the normal way of doing so on graph paper, but the adjacent rectangles have a 
slight overlap rather than abutting. Similar considerations apply to an extended Euler diagram 
using rectangular prisms instead of ellipsoids. 
These considerations of multi-dimensional Euler diagrams also address the issue of how 
conceptual space partitions naturally into regions representing specific concepts, and whether the 
logical structure of such concepts can be recovered from their spatial relationships. Gardenförs 
(2000, Section 3.9) suggests that Voronoi tessellations provide the convex partitions of 
conceptual space predicated by prototype theory (Rosch, 1983). Such partitions can be treated as 
overlapping closed curves in an Euler diagram if the adjacent partitions are taken to have a slight 
overlap. The examples described in this section show that the logical structure of the Euler 



 

22 

diagram will generate a conceptual matrix and associated a distance matrix such that multi-
dimensional scaling will reconstruct the connectivity of the original tessellation of the space. The 
metric used to portray this connectivity is somewhat arbitrary since the distance measure used in 
constructing the spaces from the logical relations is not unique, for example, any Minkowski 
metric might be used (Shaw, 1980, pp.155-161). As Kelly (1969, p.105) notes ‘psychological 
space’ is a topological structure characterized by its connectivity rather by a metric. 
The procedure for deriving conceptual spaces from logical relations also takes into account the 
similar effect of other logical relations. For example, the Euler diagram of Figure 7 uses a 
mixture of entailments represented by enclosure, contrasts represented by separation, and 
independence represented by overlap and its the latent geometry is that of a nine-point scale. 
Thus, similar spatial structures may arise from different networks of logical relations. The 
general principle is that the topology of the space can be represented through the connectivity of 
neighboring regions and the lack of connectivity of distant regions. The presence of a templet 
enclosing other templets indicates a connection between those templets, as does overlap between 
those templets. The interpretation of these connections through Euler diagrams provides a formal 
derivation of the logical structure of the conceptual space. 
For complex, multi-dimensional spaces a semantic network will be the most convenient form of 
representation, but the logically equivalent generalized Euler diagram provides an intuitive 
bridge to the geometry of the logically equivalent semantic space, even if both are so high in 
dimension as to be beyond human visualization. 

9 Visualizing anticipation as abduction over prototypes in conceptual space 
The logical relations between templets discussed in the previous sections are internal constraints 
of the systems of meaning that we impose on phenomena, requiring that when it is asserted that 
one or more templets fit some phenomenon it is implicit that some other templets also fit or do 
not fit the phenomenon. The act of fitting the templets ascribes meaning but it is normative, not 
anticipatory. Our assertions describe the phenomenon but additional logical processes are 
necessary to go beyond the description we have fitted to anticipate the fit of additional templets 
that do not form part of our description. 
There are many possible mechanisms for anticipation, but a foundational one is the comparison 
of stored descriptions of past phenomena, schemata or prototypes, with that of the current 
phenomena to anticipate other templets that might fit it because we have fitted them to similar 
phenomena in the past. As Dewey (1910, p.174-175) phrases it, “To be able to use the past to 
judge and infer the new and unknown implies that, although the past thing has gone, its meaning 
abides in such a way as to be applicable in determining the character of the new.” Bartlett (1932) 
termed the traces of templets that we had fitted to past phenomena ‘schemata’ to emphasize that 
memories were not recordings of phenomena but traces of the abstract structures we had fitted to 
phenomena. Rosch (1983) termed them ‘prototypes’ in order to emphasize their role in 
facilitating comparison with new phenomena.  
Goodman and Elgin (1988, p.8) emphasize that the system of templets and associated schemata 
that we use determines the similarities we will find and hence the anticipations that may arise: 
“A system integrates an expression into a network of labels that organizes, sorts or classifies 
items in terms of diversity to be recognized. It thus reflects or establishes likenesses; and systems 
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that describe the matter differently may share a realm.” Kelly (1955) emphasizes that the system 
of templets that we chose to fit to a phenomenon is our choice, constrained only by our 
willingness to accept the other templets that our meaning constraints require us fit as a 
consequence. Schütz (1943) notes that these requirements include a wide range of social 
constraints: an end’s relationship with other ends; the consequences and side-effects of achieving 
an end; the means appropriate to the end; the interaction of such means with other ends and 
means; the accessibility of those means; the construal that others might place on the actions; its 
interaction with their own planned actions; and so on. Kelly (1955) coined the term “constructive 
alternativism” for the availability to choice of different systems of templets to provide alternative 
meanings for what we choose to construe as the ‘same’ phenomenon. In a philosophy of science 
context, Giere (2006) terms the recognition of the availability of such choice ‘perspectivism.’ 
This process of choosing a system of templets to fit a phenomenon and comparing it with traces 
of past phenomena in order to anticipate that other templets fitted in the past might also fit now 
can be modeled within the framework of templets and relations already developed. The 
additional step required is that of the selection of the traces from which we might chose a 
possible anticipatory fit. 
Figure 20 illustrates the general templet structure involved. At the center is a templet that we 
might choose to fit to a new phenomenon, to put it in ‘perspective,’ to embed it in a ‘conceptual 
space,’ to ‘frame’ it. This templet entails a number of universes of discourse, templets 
superordinate to a network of templets that, as already noted, Kelly terms the ‘range of 
conveniences’ of a ‘construct,’ Johnson the ‘determinable’ of a set of ‘determinates,’ and 
Gardenförs the ‘dimensions’ of a ‘conceptual space.’ It is entailed by templets that Bartlett terms 
‘schemata’ and Rosch ‘prototypes, which encode traces of past phenomena characterized by the 
determinates of the determinables above that had previously been fitted to them. 
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Fig. 20 General templet structure for anticipation through abductive inference 

Goffman (1974) discussed the choosing of the central templet as an act of ‘framing’ and that 
term has entered the artificial intelligence literature through Minsky’s (1974) use of it to model 
computer vision, the linguistics literature through Fillmore’s (1985) use it to model the semantics 
of natural language, and the cognitive psychology literature through Barsalou’s (1992) analysis 
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of the role of frames in human cognition. In the library science literature Ranganathan (1964) 
terms this structure a ‘faceted taxonomy.’ 
The process of selecting one or more schema from the stored schemata as being compatible with 
and extending the schema we have fitted to a new phenomenon is one that Peirce (1931) termed 
‘abduction.’ The inference form is to choose a schema that entails the same templets as the ones 
fitted to the target phenomenon to be anticipated, and thus ‘explains’ it, while also entailing 
additional templets which can be hypothesized to fit the target as well. 
The contrast/opposition relations play an important role in ruling out schemata that could not fit 
the target phenomenon without contradiction. Andersen (2000) notes that contrast sets are central 
to Kuhn’s account of family resemblance, noting that “it diverges from Wittgenstein’s account 
by including dissimilarity between instances of contrasting concepts on a par with similarity 
among instances of a single concept.” The entailment relation supports generalization creating a 
volume in conceptual space encompassing the traces of many relevant schemata, and the 
contrast/opposition relations supports bounding these volumes so that only the phenomena they 
anticipate correctly fall within them. 
Gaines (2009) uses a simple test case from the knowledge acquisition literature to illustrate 
anticipatory inference using semantic networks with additional notation to represent all the 
logical constructs of a description logic (Baader, Calvanese, McGuinness, Nardi and Patel-
Schneider, 2003), essentially a subset of first-order logic (FOL) capable of representing 
definitions and rules. The problem is one of prescribing hard or soft contact lenses for a client 
using the values of four attributes (Cendrowska, 1987). The principle is that a patient whose tear 
production is normal will be prescribed a hard lens if astigmatic and a soft lens if not. However, 
there is an exception to the soft prescription if the patient is presbyopic and myopic, and to the 
hard if hypermetrope and old. Figure 21 shows the twenty four possible cases. 
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Fig. 21 Stereotypical cases for a simple expert system problem 
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Figure 22 shows an instance of the general templet structure for anticipation through abductive 
inference shown in Figure 20 that solves the contact lens problem. The four determinables at the 
upper left are those whose determinates are necessary to characterize the client and allow the 
appropriate determinant of the determinable, “prescription,” at the upper right to be inferred. The 
“contact lens client” frame in the center entails the determinables, making their determinates 
relevant to the problem. The seven schemata at the bottom are sufficient to solve the problem. 
The conceptual grid of test cases at the middle right holds the data of Figure 21 and is used to 
check the solution. 
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Fig. 22 Prototypes in a conceptual space solving a simple expert system problem 

Figure 22 shows a stage in a solution for a client with the characteristics of “none case 9” where 
the templets “contact lens client,” tear production is “normal” and astigmatism is “astigmatic” 
have been asserted to fit. The logical relations between the templets have already classified the 
soft prescription and reduced tear production schemata as irrelevant, leaving the hard 
prescription and exception schemata as possible. Asserting that the templet “hypermetrope” fits 
will exclude the “prescribe hard 2” templet as irrelevant. Asserting “pre-presbyopic” will also 
exclude “prescribe hard 1,” leaving only “exception hard” to be inferred abductively as the best, 
and only remaining, fit, which then entails that the prescription sub-templet “none” fits. 
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The abductive inference process can be treated as deduction by introducing the metalogical 
constraint that one of the schemata must fit, and abductive reasoning in general has solid logical 
foundations (Gabbay and Woods, 2005; Aliseda, 2006). It is noteworthy that the logic of 
entailment and contrast/opposition between templets is sufficient to support the anticipatory 
process with the introduction of only one metalogical abductive constraint, and that this 
constraint applies only to the schemata—a hypothetical assertion that at least one of them fits. 
This brings the psychology and the logic nicely together in the defeasible assumption that some 
trace of a past phenomenon must fit the target one. If the ensuing anticipation turns out to be 
misleading then the adjustment necessary is clear and localized, to add a schema for a more 
appropriate anticipation and change those schemata that led to the misleading outcome so that 
they do not fit when the new schema does. This adjustment may be possible with the existing 
construct dimensions or may involve adding an additional one to discriminate the schemata. The 
overall process exemplifies Mill’s (1875, Book 3 Ch.8) “joint method of agreement and 
difference” for the inductive development of models of phenomena. 
Figure 22 is just one example of a very large number of instances of the generic structure of 
Figure 20 that can solve the contact lens problem. There are several possible structures for the 
non-binary constructs, “presbyopia and “prescription.” There is a very large number of possible 
sets and logical arrangements of schemata, even if one does not take into account those with 
preferences over schemata. The set of twenty four cases in Figure 21 will obviously serve as 
schemata, as will subsets of those together with more skeletal schemata, schemata with 
additional irrelevant construct dimensions, and so on. 
This illustrates some of the problems of eliciting conceptual models for purposes such as 
“knowledge engineering” (Hayes-Roth, Waterman and Lenat, 1983). The conceptual structures 
in use may be highly idiosyncratic and vary greatly between individuals of similar competence. 
Even the simple problem represented in Figure 22 can be solved through a very large range of 
conceptual structures. Conceptual structures involving more dimensions, with their associated 
range of possible structures and the combinatorial explosion of equivalent sets of schemata, can 
become very complex and difficult to compare. 
These issues are difficult to convey textually or through logical symbolism but can be made very 
apparent through graphic representation of the logical structures, and exploratory interaction with 
them to see the effect of the logical constraints as templets are fitted to particular situations. 
This and the preceding sections have presented a number of visualization tools for representation 
and inference in a system of logic based on only two connectives, those of entailment and 
contrast/opposition, and shown how many aspects of the conceptual structures people use in 
meaning creation, representation, communication and reasoning can be modeled with this 
minimalist logical system and illustrated through the associated visualization tools.  
Section 3 noted that a background in mathematical logic tends to lead to a tacit preconception 
that other logical constructs such conjunction, disjunction, definition and rules, are an automatic 
and essential feature of any logical system, but that these notions from mathematical logic may 
be misleading if applied to modeling many aspects of human reasoning. However, they play a 
major role in reasoning in mathematics and the exact sciences, and the following section outlines 
how the visualization tools and techniques can be extended to facilitate understanding of such 
formal reasoning. 
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10 Visualizing conjunction, disjunction, negation, definitions, rules, and 
individuals 
Logical constants such as disjunction, conjunction and negation have not been defined or used in 
any of the examples in previous sections. They have a natural interpretation as procedures for 
forming new templets from existing ones, but such templets are not necessarily needed or created 
in everyday human reasoning and, indeed may be problematic to create. However, their role in 
allowing primitive templets to be combined in various ways to define non-primitive templets 
derived from the primitives is foundational for mathematics and the sciences that depend on it. 
The issues involved can be illustrated in terms of the visualization methods already discussed, 
and it is instructive to do so since it throws light on the nature and role of the logical constants, 
and the differences between mathematical logic and natural human reasoning. 
Figure 23 left shows an Euler diagram for the formation of a new templet representing the logical 
conjunction of A and B, C ≡ A∧B, as the spatial intersection of the templets A and B. The new 
templet is the grey region and its label is white, with the convention that the white label names 
the gray region. On the right is shown an Euler diagram for the formation of a new templet 
representing the logical disjunction of A and B, D ≡ A∨B, as the spatial union of the templets A 
and B, again with the convention that the white label names the entire gray region. 

           
Fig. 23 Euler diagrams for the formation of conjunction and disjunction templets 

Figure 24 shows the essential features of conjunction and disjunction. On the left the templet E 
has been placed inside the templet C and it can be see that it entails not only C but also A and B. 
On the right the templet F has been placed to enclose the templet D and it can be seen that it is 
entailed not only by D but also by A or B. 

         
Fig. 24 Euler diagrams for inferences from conjunction and disjunction templets 

Figure 25 shows the same conceptual structures as Figure 24 as a semantic network: 
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Fig. 25 Semantic network for inferences from conjunction and disjunction templets 

For both representations, we have: 
E → C implies that E → A and E → B 
D → F implies that A → F and B → F 

which are the logical definitions C as A∧B and D as A∨B. 
Now consider the situation in which the templets C and D are not defined, or not definable 
within the conceptual system represented. If we place templets E and F as shown, we still have: 

E → A and E → B,   A → F and B → F 
and we might write this in abbreviated form as: 

E → A∧B, A∨B → F 
without there being any implication that A∧B or A∨B correspond to templets in the conceptual 
structures of which A, B, E and F are part.  

A system of conceptual structures that lacks templets corresponding to the normal logical 
constants is said to have a ‘substructural’ logic, a term based on Gentzen’s use of the word 
‘structural’ in his generic sequent calculus for any logical system (Doŝen, 1993). If, following 
Tarski’s (1956) minimalist axiomatization of what it is to be a ‘logic,’ we characterize a logic 
entirely in terms of its consequence operator, then the operations associated with the other 
logical constants can be defined in terms of the consequence operator but the conceptual 
structures they generate will not necessarily exist within the conceptual system being modeled. 
The definitions of conjunction and disjunction in this way can be visualized in terms of the 
diagrams of Figures 24 and 25. The templet E is a proto-conjunction of the templets A and B 
since it entails both of them. Any templet with this property that is maximal in the sense that it is 
entailed by any other templet having the property is a standard structural conjunction (Koslow, 
1992). In Figure 24 left it is apparent that if templet E expands to the maximum size that will fill 
the shaded space it satisfies this condition; templet C if existed would have this property. 
Similarly in Figure 25 if the proto-conjunction E is maximal in entailing no other proto-
conjunction it would have this property. 
The templet F is a proto-disjunction of the templets A and B since it is entailed by both of them. 
Any templet with this property that is minimal in the sense that it entails any other templet 
having the property is a standard structural disjunction (Koslow, 1992). In Figure 24 right it is 
apparent that if templet F contracts to the minimum size that will enclose the shaded space it 
satisfies this condition; templet D if existed will have this property. Similarly in Figure 25 if the 
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proto-disjunction F is minimal in being entailed by no other proto-disjunction it will have this 
property. 
Similar diagrams and definitions can be given for absolute negation and complementation, that is 
negation relative to an entailed templet. Thus, the role of the standard logical constants can be 
illustrated and explained through the visualization techniques already described. In particular, it 
is apparent that templets for them may not exist and yet much human reasoning can still be 
modeled as shown in previous sections. For Venn, the use of the shaded areas in Figure 22 to 
visualize the definitions of the logical constants on which Boole’s new mathematical logic was 
founded was a significant tutorial tool. However, the assumption as that logic became generally 
adopted, that such constructions corresponded to universally available concepts in human 
thought, can be misleading. 
This is important for the human sciences where definitions and rules have been found to be 
inappropriate models for much human activity. It was natural early attempts to model human 
reasoning to assume that all concepts were similar to those in mathematics, in that they were 
defined through necessary and sufficient conditions. However, Waismann (1945) in a 
symposium on whether scientific concepts should be defined through their verifiability 
conditions argued that all such concepts were essentially ‘open’ in being “always corrigible or 
emendable.” Weitz (1977) analyzes the openness of human concepts in depth in his book on the 
opening mind and his analysis has come to be accepted in many disciplines. Conversely, 
mathematical concepts are not open and can be uniquely characterized as having no connotations 
other than their definitions (Tharp, 1989). The open nature of human concepts has been 
confirmed empirically in developmental psychology (Smith and Medin, 1981; Keil, 1989), 
anthropology (Rosch and Lloyd, 1978) and scientific practice (Nersessian, 2008). 
A templet implementing a structural conjunction represents a definition in that the satisfaction of 
its entailments is a sufficient condition to require it be fitted. If only a subset of the entailments 
are sufficient then the templet represents a rule such that when those entailments are satisfied the 
templet has to be fitted and its remaining entailments imply that other templets will also be fitted. 
The omission of definitions and rules in models of human activity is equivalent to postulating 
that human reasoning is based on a substructural logic where the normal logical constants are not 
freely available. However, the logical constants have become tacitly accepted as freely available 
constructions in any rational system, and one needs persuasive visualization techniques to 
demonstrate that they are very strong constructions that are not necessary for much that we 
associate with human rationality. 
It is possible to extend the semantic network representation to support all the logical constants 
including structural conjunction and disjunction, definitions, rules, relations, cardinality 
constraints and individuals (Gaines, 2009). Logical systems for such extended semantic networks 
have become called description logics, and have been studied in depth as tractable sub-sets of 
first-order logic suitable for computer implementation and used to support the semantic web and 
other practical applications of formally defined ontologies (Baader et al., 2003). Figure 26 shows 
an extended semantic network representing the conceptual structure of family relationships 
Handbook (Baader et al., 2003, p.52) in which the heavy arrows indicate necessary and 
sufficient, definitional entailments and contrast/oppositions, the unboxed text relations, the 
boxed text cardinality constraints and the double-ringed templet one defined disjunctively. There 
are three primitive templets, “person,” “female” and “woman,” and the remaining nine are 
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defined in terms of these. The impact of the definitional structure in reducing the number of 
primitive, “open” conceptual structures is apparent, and minimal primitives is highly appropriate 
to mathematics and, perhaps, to legalistic definitions of family relationships, but less so for the 
more open conceptual structures of everyday life. 

 
Fig. 26 Defined conceptual structure of family relationships (Gaines, 2009) 

The semantic networks studied in this article are a subset of such extended networks restricted to 
non-definitional entailment and contrast/opposition relations. Given how much can be achieved 
without the extensions and the difficulties of developing large-scale systems emulating human 
reasoning with systems based on definitions and rules, it is an interesting open question whether 
there may be weaker substructural extensions that are better suited to such emulation. 

11 Conclusions 
Conceptual structures are foundational to many disciplines concerned with human reasoning and 
their logical structures and applications are significant in education, research, scholarly studies 
and industrial applications. However, the properties of such structures, their logical relationships, 
the inferences that may be drawn from them, are not easy to comprehend, particularly given that 
the logic underlying much human activity is known to be non-standard, involving neither 
definitions nor rules and hence also not involving the structural logical constants that are 
normally taken for granted. 
A number of techniques for visualizing conceptual structures have been developed in order to 
support their study, including modeling and simulating them, and communicating about the 
research issues and their proposed resolutions. This article describes seven different 
representations of conceptual structures, linear symbolic logic, line diagrams, Euler diagrams, 
Venn diagrams, semantic networks, conceptual grids and conceptual spaces. These are shown to 
be rigorous and formally equivalent representations such that one can translate between them 
algorithmically and use them in a heterogeneous mix as alternative perspectives if appropriate. 
The relative merits of these representation schemes for different types of conceptual structure 
have been discussed and illustrated, and has been shown that each has features that make them 
useful for some forms of exposition and analysis. In particular, the power of Euler diagrams and 
semantic networks, both representing only two types of logical relation, entailment and 
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contrast/opposition, has been demonstrated through examples of the representation of significant 
conceptual structures such as taxonomies, determinables and determinants, frames and schemata. 
It has been shown that the spatial structures of ordered scales and multi-dimensional spaces 
arises naturally and algorithmically from the logical relations within conceptual structures treated 
as features of their components. Conversely, it has been shown that the logical relations between 
components of a conceptual structure represented in a conceptual space may be derived from the 
spatial relations between the components regarded as a multi-dimensional generalization of an 
Euler diagram. 
The relations between the substructural logic underlying everyday human reasoning and the 
structural constructs of mathematical logic have been illustrated using the visualization 
techniques presented. The converse issue of bridging from the representations of the 
substructural logic by extending the visualization techniques has also been addressed and links to 
research on visual languages for description logics. 
In conclusion, logical and psychological studies of the entire range of human reasoning from 
everyday life through to mathematics and the exact sciences is now at advanced stage across 
many disciplines and it is reasonable to hope that we are approaching a synthesis of value to all 
disciplines. Computer graphics, human-computer interaction, and theorem-proving technologies 
are also all at an advanced stage where it should be possible to support the education and 
research effort required to support the scholarly community in achieving this synthesis and 
benefiting from it in many domains. Hopefully, this article and the others in this special issue 
will contribute to these objectives. 
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