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This paper addresses the integration of services for rule-based reasoning in knowledge representation 
servers based on term subsumption languages. As an alternative to previous constructions of rules as 
concept→concept links, a mechanism is proposed based on intensional roles implementing the axiom of 
comprehension in set theory. This has the benefit of providing both rules as previously defined, and set 
aggregation, using a simple mechanism that is of identical computational complexity to that for rules alone. 
The extensions proposed have been implemented as part of KRS, a knowledge representation server written 
as a class library in C++. The paper gives an example of their application to the ripple-down rule technique 
for large-scale knowledge base operation, acquisition and maintenance. 

Introduction 
In recent years there have been major advances in the theory and practice of knowledge 
representation systems originating from semantic nets. In particular the series of term 
subsumption languages commencing with KL-ONE (Brachman & Schmolze, 1985), developing 
through KRYPTON (Brachman, Gilbert & Levesque, 1985) and currently culminating in 
systems such as CLASSIC (Borgida, Brachman, McGuinness & Resnick, 1989) and LOOM 
(MacGregor, 1988) has reached a maturity of technology which offers the promise of knowledge 
representation ‘utilities’ or ‘services’ in Levesque’s (1984) terminology. The logical foundations 
of the subsumption relation, techniques for its correct and complete calculation, and the 
interaction between representation power and the tractability of subsumption algorithms have 
been widely studied (Brachman & Levesque, 1984; Schmidt-Schauss, 1989; Nebel, 1990) and 
are becoming reasonably well-defined. 
It is now feasible to develop knowledge representation servers on a par with floating-point 
arithmetic units and numeric libraries, as software (and perhaps ultimately hardware) modules 
with well-defined functionality and fast, reliable performance. As with arithmetic units, such 
servers by no means solve all the problems of a particular application domain, but they do 
greatly reduce the burden of system development, allowing effort to be focused on the specifics 
of particular systems rather than on what should be general utilities. 
In practical terms, the current generation of term subsumption languages and associated 
theoretical studies may be seen as providing a well-defined and understood semantics for frame-
based knowledge representation systems. However, the focus on terminological definitions has 
not been paralleled by similar in-depth analysis of rules in knowledge-based systems, and the 
provision of rules in term subsumption languages is simplistic compared with that of most expert 
system shells. As rules are regarded as part of the assertional, A-box, component and do not form 
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part of terminological definitions in the T-box, this does not affect the theoretical analysis of 
subsumption. However, it restricts the services offered by a knowledge representation server, and 
requires for many tasks that additional inference engines be written apart from the server. 
This paper addresses the problem of providing a powerful rule representation system well-
integrated with a term subsumption language, with emphasis on knowledge acquisition issues 
such as the natural representation of rules with exceptions. As a side-effect the rule system 
defined also provides for the automatic formation of sets or aggregations of individuals. The next 
sections briefly outline the knowledge representation server and its visual language, the 
representation of rules within it through individuals with intensional, rather than extensional, role 
definitions, and some applications to knowledge acquisition and knowledge-base maintenance. 

KRS: A Knowledge Representation Server 
KRS is a knowledge representation server written as a class library in C++ with semantics that 
are a slight extension of those of CLASSIC (Borgida, Brachman, McGuinness & Resnick, 1989). 
KRS supports a textual input/output language similar to that of CLASSIC, but since its primary 
application is to knowledge acquisition (Gaines, 1990) it also supports an equivalent visual 
input/output language through an interactive grapher (Gaines, 1991). This visual language will 
be used for the exposition in this paper with some examples of its compilation into textual form. 
The visual language provides the means to represent knowledge structures as graphs of labelled 
nodes and arcs. The visual primitives of the language are: 
• Nodes, identified and typed as specified below. 
• Two arc types linking nodes—a line with, and without, an arrow, respectively. 
• Text strings labelling the nodes—with an associated equivalence relation based on lexical 
identity. 
• Five distinctive text surrounds defining the node types—ovals (concepts), marked ovals 
(primitives), rectangles (individuals), no surround (roles or annotation), and marked rounded 
corner rectangles (constraints, e.g. cardinality and set inclusion). 
The semantics of the arc types are overloaded and determined by the nodes joined. A line 
between two primitive nodes defines them as disjoint, for example, male female , 
and between two roles defines them as inverse, for example, parent child . An arrow 
from one concept to another defines the first as subsumed by the second; from a concept to a 
role, that the role is part of the definition of the concept, etc. The graph at the top of Figure 1 
shows the way in which concepts are defined and constraints and values asserted for individuals 
in the visual language. The resultant text statements are shown at the bottom. 
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patient

person

age One
young

old

old
patient

age old

patient

Fred

age old

height 72

height
Integer
10!100

Primitive(person)

Primitive(patient, person,

  (All age, (One young, old))

  (All height, (Integer 10!100))

)

Concept(old patient, patient,

  (All age, (Include old))

)

Individual(Fred, patient,

  (Fills age, old)

  (Fills height, 72)

)  
Fig.1 Definitions and assertions in KRS visual and text languages 

Integration of Rules 
CLASSIC (Borgida, Brachman, McGuinness & Resnick, 1989) and LOOM (MacGregor, 1988) 
provide a basic form of rule in which the two concept definitions are linked in such a way that 
recognition of an individual as satisfying the constraints of the first concept leads to the assertion 
that it satisfies the constraints of the second. For example, if the following rule is added to the 

graph of Figure 1: 
old

patient
Then risk pneumonia  

and the inference engine is run then the individual Fred will be recognized as an “old patient” 
and the constraint will be asserted will be made that the role “risk” for Fred includes 
“pneumonia.” 
The incorporation of rules as asserted concept→concept links integrates well with the way in 
which definitions in the T-box classify assertions in the A-box: if an individual is classified as 
falling under the first concept it is asserted to fall under the second; the first concept definition 
may be seen as specifying sufficient conditions for classification, and the second concept as 
additional necessary conditions. 
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McGregor (1988) has shown how such rules may be used to recognize recursive structures such 
as lists, and Figure 2 shows his construction in the visual language. The individual “c2” is 
recognized to be a “cons list” because it is asserted to be a “cons” and its cdr, “null”, is asserted 
to be a “list”. Hence, c2, through the rule, is asserted to be itself a “list”. Then the individual “c1” 
is similarly recognized as a “cons list” because its cdr, “c2”, has been asserted to be a “list”. 

list

cons cdr

cons

list

cdr

Then

Nullc1 c2 cdrcdr

1

 
Fig.2 Recognition of a recursive structure using a rule 

It may appear that a major limitation of this form of rule is that, since a single individual is 
classified at a time, it corresponds to an OPS5-style rule with only one free variable (McGregor, 
1988). However, since the roles of an individual may be filled with other individuals, a rule 
classifying one individual may involve classifying, and making assertions about, several 
individuals. For example the rule with two free variables: ((data ?d) (clock ?c) (connected ?d ?c) 
→ (connection-error ?d ?c)) in CADIE (Franke, 1990), has an equivalent in KRS as shown in 
Figure 3. 

data clockconnected

Then

connection

error

connected

 
Fig.3 Rule with two free variables 

If an individual that is asserted to be a “clock” is asserted to be “connected” to one that is 
asserted to be “data” then both individuals are asserted by the rule to have a “connection error”. 
This construction in general clearly depends on the roles linking the free variables and would not 
be applicable to a rules whose premise references several completely independent individuals. 
However, this may be seen as a desirable constraint on rules integrated with frame-based 
knowledge representation schema—that a frame should exist, or be created, which brings into 
relation individuals accessed by the premise of a rule. 

Mediating Rules through Aggregation 
There is a more subtle criticism that can be made of the way in which rules are introduced into 
term subsumption languages. A rule is introduced as a new construct which links two concepts. 
It acts as an inferred assertion involving the classification of all individuals in the domain by the 
concepts that form the premise of a rule. However, the sets of individuals resulting from this 
classification are lost except in so far as it results in individuals being re-classified by the 
conclusion of the rule. There is a need in many applications of term subsumption languages for 
an aggregation operation that forms sets in a natural way (Allgayer & Reddig-Siekmann, 1990), 
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and it is attractive to consider an alternative way of incorporating rules as the side effect of such 
aggregation. 
The definition of role fillers is normally extensional in that specific individuals are named as 
fillers. Suppose one introduces a complementary way of filling a role intensionally by defining 
the concept which a role filler must satisfy and specifying that all individuals in the domain that 
satisfy it are fillers. This operationalizes Frege’s axiom of abstraction or comprehension, that 
every concept defines a set. Introducing intensional role filling instead of rules as a new 
construct has the advantage of providing an explicit aggregation operator. Rules can be realized 
as a natural side-effect of the individuals actually being asserted to be in the intensional role. 
That is, the premise of the rule is now the intensional role definition, and the conclusion is the 
intensional role constraint. 
As a first step to an aggregation operation, consider how Frege’s axiom can be represented using 
inverse roles. Figure 4 shows a concept “intension x” whose role “member of” includes 
“extension x” whose role “member” is inverse to “member of” and constrained by “intension x”. 
An individual asserted to be an “intension x” will be inferred to fill the “member” role of 
“extension x”, and, conversely, an individual asserted to fill the “member” role of “extension x” 
will be inferred to be an “intension x”. 

intension

x

extension

x

member

of

member  
Fig.4 Axiom of comprehension with inverse roles 

This construction is available in existing knowledge representation systems. For example, in 
LOOM, it is: 

(defconcept intension-x :is (filled-by (:inverse member) extension-x)) 

The assertions of conceptual constraints on individuals: 
(tell (intension-x ind1)) (tell (intension-x ind2)) 

then result in the query about members of extension-x: 
(retrieve ?l (member extension-x ?l)) 

returning ind1 and ind2 as required. 
The construction of Figure 4 is readily extended to have the side effect required for rules by 
having the arrow from “member” go, not to “intension x”, but instead to another concept, 
“intension y” say, representing the conclusion of the rule. However, inverse roles alone cannot 
implement intensional role filling since it is still necessary to make the explicit assertion that an 
individual is an “intension x” rather than recognize this as being so. 
Figure 5 shows how intensional role filling is introduced in KRS as a link from a concept, 
“intension x”, to an individual, “extension x”. This results in the inference engine aggregating 
the set of all individuals in the domain that are recognized as “intension x” and filling the 
“member” role of “extension x” with them. If the “member” role is constrained by a concept, 
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“intension y”, this also results in all the individuals recognized as “intension x” being 
additionally asserted to be “intension y”, thus implementing a rule. 

intension
y

extension
x

member
intension

x
 

Fig.5 Intensional role, aggregation individual and rule 
Intensional roles are proposed as a preferred alternative to concept→concept rules in term 
subsumption languages. They provide set aggregation and rules in one construct. Implementation 
in the inference engine involves no more computation than for rules alone. The additional 
storage space for the aggregations has not proved a significant overhead in a wide range of 
applications of KRS. Note that a “rule” in KRS is represented as an individual with an 
intensional role, and that the individual can have additional roles, and can itself be used as a role 
filler in other individuals. The availability of these features and explicit aggregations has proved 
invaluable in applications involving planning, configuration and scheduling. 

Rules with Exceptions 
A limitation of the rule schema described above is that they make no provision for the 
representation of rules with exceptions. Logically, if one does not require default reasoning, rules 
with exceptions can always be expanded into an equivalent, although generally larger, set of 
rules without exceptions. However, in knowledge representation for knowledge acquisition 
systems in particular, it is important to be able to encode expert knowledge in exact conformity 
with the expert’s representation, which is often as a rule with exceptions. Hence, KRS offers a 
further extension in which one rule can be an exception to others. 
As shown in Figure 6, an arrow from one individual to another means that the first individual 
acts as an exception in aggregation to the second. That is, that individuals are aggregated in the 
“member” role of the “aggregation rule” if they are classified as “premise rule” but not as 
“premise exception”. Thus the exception mechanism provides for both exceptions to rules and 
differential aggregations. Since one individual may be an exception to many others, and may 
have many exceptions to itself, complex structures are readily represented. To reduce the number 
of arrows the exception arrow is taken to be transitive, so that an individual is an exception to all 
those individuals along its outgoing paths of exception arrows. 

premise
rule

conclusion
rule

aggregation
rule

member

premise
exception

conclusion
exception

aggregation
exception

member

 
Fig.6 Representation of a rule with an exception 

Figure 7 shows the solution to Cendrowska’s (1987) contact lens problem represented in KRS as 
a set of two rules with three exceptions. This compares favorably with the minimal solution 
without exceptions, of nine rather more complex rules. 
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Fig.7 Solution to contact lens problem through rules with exceptions 
The implementation of intensional roles, aggregations, rules and exceptions in KRS is more 
subtle than has been indicated because no closed-world assumptions are made. Hence 
subsumption and recognition return one of three values, true, false or open, that is able to 
become either true or false as more assertions are made. If an individual is open in recognition 
for an intensional role this acts as false as far as placing it in the role is concerned but as true as 
far as exception propagation is concerned. Thus, the basic inference engine acts as a 
conservative, monotonic, reasoner in worlds where some roles or fillers are open. 
It also supports a simple extension of the exception scheme to default reasoning in that the 
inference engine generates a list of open concept-individual pairs. Non-monotonic inference can 
commence with the default assumption that none of the open pairs will become true and hence 
not propagate open exceptions. If this leads to a consistent world it is the unique default 
extension. If it does not, a truth maintenance search can be invoked for maximal subsets of the 
open pairs that can be assumed false, resulting in zero to a number of possible extensions. 

Ripple-Down Rules 
Compton and Jansen (1990) have developed techniques for the acquisition and maintenance of 
large rule-based systems. They have applied their “ripple-down rule” techniques to the Garvan 
ES-1 knowledge base for thyroid diagnosis, which has grown to a size and complexity where it 
has become difficult to maintain.. The techniques rely on the efficient management of rules with 
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a large number of exceptions, and the acquisition and maintenance procedures require access to 
aggregations of previously classified cases. Hence they provide a useful test of KRS capabilities 
in a domain where ongoing maintenance through continual knowledge acquisition is important, 
and where large rule sets and case bases are available. 
The acquisition and maintenance procedures assume that an expert is available to make decisions 
about changes in the knowledge base. The objective of the ripple-down rule representation is to 
simplify the expert’s task by allowing a new rule to be entered for a misdiagnosed case through a 
simple procedure that has only to take account of one existing rule and the cases that have 
already fallen under it. That is, the activities take place in a minimal context with a guarantee 
that no change will be made to the system’s behavior outside that context.  
Consider an empty knowledge base in which information about an individual “case 0” has been 
entered with a known diagnosis “diagnosis b”. The expert creates a concept, “concept j”, that 
will recognize “case 0” and attaches it to a rule, “rule j”, that leads to “diagnosis b”. Figure 8 
shows the resultant state of the knowledge base. 

case
0

concept
j

rule
j

member
diagnosis

b

 

Fig.8 Initial case and rule entered in ripple-down rule base 
Now consider the entry of further cases. If a case is identical to an existing one but has a 
different diagnosis then there is a conflict, otherwise there are four possibilities: 
1. “Case 1” is identical to “case 0” and has same diagnosis. There is no need for a new rule or for 

the entry of the case. 
2. “Case 2” falls under “concept j” and has “diagnosis b” but is not identical to “case 0”. There is 

no need for a new rule but the case needs to be entered. 
3. “Case 3” does not fall under “concept j” and has “diagnosis c”. The expert proposes a new 

covering concept, “concept k”, and rule, “rule k”, following the same procedure as for “case 
0”. The existing rule, “rule j”, is made an exception to this new rule. 

4. “Case 4” falls under “concept j” but has a different diagnosis, “diagnosis a”. A new rule is 
created by adding constraints to “concept j” that apply to “case 4” but not to “case 0” to 
create “concept i” subsumed by “concept j”. The resultant “rule i” with “diagnosis a” is 
entered as an exception to “rule j”. 

Figure 9 shows the state of the knowledge base after this procedure has been followed. 
Compton and Jansen’s insight was that the procedure described could be repeated indefinitely as 
more cases are entered. It leads to a linear chain of rules such that a case may be seen as being 
entered at the beginning of the chain and rippling up (or “down”—KRS arrows are in the 
opposite direction to the original implementation diagrams) until it is recognized by the premise 
of a rule. The diagnosis is then determined by the conclusion of the rule. 
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Fig.9 Ripple-down rule base after initial case entries 

In knowledge acquisition and knowledge-base maintenance, if the case does not fall under any 
rule, a new one is created at the end of the chain as for “case 3” above. If it comes under a rule 
with an incorrect diagnosis, a new one is created with a premise that is subsumed by that of the 
existing rule and does not cover any of the cases that have already been diagnosed using the 
existing rule. This new rule is inserted in the chain as an exception to the one with the incorrect 
diagnosis. 
A new rule can always be created using these procedures since a concept may be created that has 
precisely the constraints necessary to recognize uniquely the new case. However, the expert will 
often be able to generalize such a specific concept and, in so doing, need only consider 
discriminating the previous cases attached to the one rule. 
The KRS rule mechanism supports both the chain of exceptions and the case aggregation 
required for ripple-down rules. The ripple-down version of the Garvan rules, 547 rules, together 
with 669 cases evaluated on 17 attributes, were loaded and run in KRS on a Macintosh II. The 
diagnoses took 0.4 seconds a case on average. Thus, even a microcomputer is able to support a 
significantly large knowledge-base operation, acquisition and maintenance using the ripple-down 
rules technique. 
On obvious question regarding knowledge bases created through the ripple-down rules technique 
is the size-efficiency of the resultant knowledge base. Since rules, once entered, are not changed, 
if the expert over-generalizes or over-specifies, more rules will be generated than needed. 
Clearly size-efficiency is an empirical issue that can only be investigated over a number of 
knowledge bases created by different experts. When the data set of 669 cases are run through 
Induct (Gaines, 1989), an empirical induction algorithm that generates rules from cases with 
similar efficiency to C4.5 (Quinlan, 1987), a rule set giving correct diagnoses with 269 rules is 
generated, that is a reduction by about 50%. The resultant rule set, while smaller, may not be as 
understandable or acceptable as knowledge structure, and this is subject to further empirical 
investigation. 
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Conclusions 
Developments in the theory and practice of term subsumption languages make possible generic 
knowledge representation servers offering efficient implementation of principled artificial 
intelligence techniques. 
This paper has addressed the issue of integrating services for rule-based reasoning with 
knowledge representation servers based on term subsumption languages. As an alternative to 
previous constructions of rules as concept →concept links, a construction based on intensional 
roles is proposed. This has the benefit of providing rules as previously defined, and set 
aggregation, with a simple mechanism that is of identical computational complexity to that for 
rules alone. This mechanism extends simply to the representation of rules with exceptions. 
It is interesting to examine what representational issues in the A-box are addressed by the new 
constructs. The exception mechanism itself implements concept negation in rule expression. In 
addition, since multiple concepts can point to the same aggregation individual, disjunctive rules 
can be expressed. These mechanisms also provide for the formation of set aggregations on a 
differential basis, essentially introducing concept disjunction and negation in both rules and set 
aggregation in the A-box. 
The computational cost of the intensional role aggregation operation is identical to that of the 
rule mechanism it replaces. Intensional roles are processed exactly as if they were the premises 
of rules. The subsumption lattice that is computed as part of the KRS implementation of a term 
subsumption language is used to ensure very rapid recognition of those individuals which fall 
under the concept defining an intensional role. The exception links are processed quite separately 
after such recognition in a time that is negligible compared with the recognition itself. 
The extensions proposed have been implemented as part of KRS, a knowledge representation 
server written as a class library in C++. The paper gives an example of their application to the 
ripple-down rules technique for large-scale knowledge base operation, acquisition and 
maintenance, and some evaluation of the space/time performance on the Garvan ES-1 
knowledge-base. 
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