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INTRODUCTION 

The Stochastic Computer was developed as part of 
a program of research on the structure, realization and 
application of advanced automatic controllers in the 
form of Learning Machines.1-2 Although algorithms for 
search, identification, policy-formation and the integra­
tion of these activities, could be established and tested 
by simulation on conventional digital computers, there 
was no hardware available which would make con­
struction of the complex computing structure required 
in a Learning Machine feasible. The main problem 
was to design an active storage element in which the 
stored value was stable over long periods, could be 
varied by small increments, and whose output could 
act as a 'weight' multiplying other variables. Since 
large numbers of these elements would be required 
in any practical system it was also necessary that they 
be small and of low cost. Conventional analog in­
tegrators and multipliers do not fulfill requirements of 
stability and low cost, and unconventional elements 
such as electro-chemical stores and transfluxors are 
unreliable or require sophisticated external circuitry 
to make them usable.3 Semiconductor integrated cir­
cuits have advantages in speed, stability, size and cost, 
and it was decided to design a computing element 
based on standard gates and flip-flops which would be 
amenable to large-scale integration. 

A binary up/down counter has the properties of 
an incremental store, but requires many bits if the 
increments are too small and of variable size. If in­
crementing is made a stochastic process, however, 
'fractional increments' may be effected in the stored 
count. Thus, if an increment of one-tenth of the 
value corresponding to the least significant bit is 
required, the counter may be incremented by unity 
with a probability of one-tenth—this is the basic prin­
ciple of stochastic computing- to represent analog quan­
tities by the probability that an event will occur. This 
principle was first embodied in the ADDIE, a smooth­
ing and storage device with stochastic input and output 

for realization of the STeLLA learning scheme,1 and 
later extended to give rise to a family of computing 
elements capable of performing all the normal func­
tions of an analog computer—this was called a Sto­
chastic Computer.4 

It is impossible within the scope of this paper to do 
more than describe briefly a few basic stochastic com­
puting elements and configurations; Reference 4 dis­
cusses the theoretical basis of stochastic computing and 
describes some previous uses of random variables in 
data-processing, whilst Reference 5 describes the ap­
plication of stochastic computing to process identifica­
tion by means of gradient techniques, Bayes estima­
tion and prediction, and Markov modelling. 

Stochastic representation of numerical data 

The stochastic computer is an incremental, or 
'counting,' computer whose computations involve the 
interaction of unordered sequences of logic levels 
(rather than digital arithmetic between binary 'words'), 
and is in this respect similar to the Digital Differential 
Analyser,6 Operational Hybrid Computer,7 and Phase 
Computer.8 In all these computers quantities are rep­
resented as binary words for purposes of storage, and 
as the proportion of ON logic levels in a clocked se­
quence (or frequency of pulses in the operational com­
puters and asynchronous DDAs) for purposes of com­
putation. In conventional computers, however, the 
sequences of logic levels are generated deterministical-
ly and are generally patterned or repetitious, whereas 
in the stochastic computer each logic level is generated 
by a statistically independent process; only the generat­
ing probability of this process is determined by the 
quantity to be represented. 

This distinction is illustrated in Figure 1 which 
shows typical sequences in the various forms of com­
puter: (a) is the output from a synchronous rate 
multiplier, or from the 'R register' of a DDA, cor­
responding to a store 3A full—it will be noted that 
the ON and OFF logic levels are distributed as uni­
formly as possible; (b) is the output of a differential 
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Figure 1—Typical computing sequences in various incremental 
computers 

store in the Phase Computer—the OFF logic levels 
in a cycle all occur before the ON logic levels giving 
the synchronous equivalent of a mark/space modulated 
signal; (c) through (f) are examples of stochastic 
sequences with a generating probability of 3A—any 
sequence [including (a) and (b)] may occur, but the 
proportion of ON levels in a large sample of such 
sequences will have a binomial distribution with a 
mean of %. 

Although a probability is a continuous variable 
capable of representing analog data without quantiza­
tion error, this variable cannot be measured exactly 
and is subject to estimation variance. The effect of 
this variance on the efficiency of representation may 
be seen by comparing the number of levels required 
by various computers to carry analog data with a 
precision of one part in N: 

• The analog computer requires one continuous 
level; 

• The digital computer requires log2 kN ordered 
binary levels; 

• The DDA requires kN unordered binary levels; 
and 

• The stochastic computer requires kN2 unordered 
binary levels; 

where k > 1 is a constant representing the effects of 
round-off error or variance, k = 10 say. The N2 term 
for the stochastic computer arises because the ex­
pected error in estimating a generating probability 
decreases as the square-root of the length of sequence 
sampled. 

Although this progression from 1: log2N : N : N2 

shows the stochastic computer to be the least efficient 

in its representation of quantity, the lack of coherency 
or patterning in stochastic sequences enables simple 
hardware to be used for complex calculations with 
data represented in this way. 

Stochastic computing 

Although there are occasions when the [0, 1] range 
of probabilities may be used directly in computation, 
e.g. Bayes estimation and prediction,5 it is usually 
necessary to map analog variables into this range both 
by scaling and shift of origin. Many mappings have 
been investigated, but the two considered in this paper 
are of particular interest because they give rise to 
computations similar to those of the conventional 
analog computer. These are: 

(i) Single-line symmetric representation.—Given a 
quantity, E, in the range —V — E ^= V, represent it 
by a sequence with generating probability, p, such 
that: 

p(ON) = VfcE/V + V2 (1) 
so that maximum positive quantity is represented by 
a logic level always ON, maximum negative quantity 
by its being always OFF, and zero quantity by a ran­
dom sequence with equal probability of being ON or 
OFF. 

(ii) Dual-line symmetric representation.—The first 
representation suffers from the disadvantage that zero 
quantity is represented with maximum variance, and 
when values near zero must be distinguished it is 
better to use a two-line stochastic representation. Let 
the quantity, E, in the range —V ^ E ^ V, be rep­
resented by sequences on two lines, the UP and 
DOWN lines, such that: 

p(UP = ON) = | E / V « E > 0 ( 2 ) 

p(DOWN = ON) = | " 0
E / V * I < 0 (3) 

These equations give a minimum variance representa­
tion which is not necessarily maintained during a com­
putation, and the most general form of the Dual-Line 
Symmetric Representation follows from the inverse 
equation: 
E /V = p(UP = ON) - p(DOWN = ON) (4) 

The next sections describe stochastic computing 
elements to perform the complete range of analog 
computing functions, inversion, multiplication, addi­
tion, integration, and so on, using synchronous logic 
elements acting on stochastic sequences. 

Stochastic invertors, multipliers and isolators 

To multiply a quantity in representation (ii) by 
—1 requires only the interchange of UP and DOWN 
lines. In representation (i) the logical invertor, whose 
output is the complement of its input, performs the 
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same function. Consider the relationship between the 
probability that its output will be ON, p' , and the 

(i) [E] * — - [ > V - > [El 

(ii) [E] 
.UP 

\ 
UP 

\ 
'DOWN DOW 

Figure 2—Stochastic invertors 

ff 
[El 

probability that its input will be ON, p; that is 
P' = 1-P (5) 

From equation (1) , the relationship between these 
probabilities and the quantities they represent is: 

p = % E / V + Vz (6) 
p ' = V2W/V + 1/2 (7) 

hence 
E' = - E (8) 

Multiplication of one quantity by another may be 
effected by an inverted exclusive-OR gate in represen­
tation (i), and by a pair of similar gates in represen­
tation (ii); realizations of these stochastic multipliers 
in NAND logic are shown in Figures 3(i) and 3(ii) 
respectively. 

SYMBOL 
(i) C = A.BvA.B 

[E] : 

[El I 
5 £> u' 

D' 

[EE/V] 

(ii) 
U"= U-U'v D.D' 

D*= U.tf v D-U' 

Figure 3—Stochastic multipliers 

That multiplication does occur may be confirmed 
by examination of the relationship between input and 
output probabilities for the gates of Figure 3. For 
3(i) we have: 

p(C) = p(A)p(B) + d - p ( A ) ) ( l - p ( B ) ) (9) 
and from equation ( 1 ) : — 
p(A) = VzB/V + 1/2 (10) 
p(B) = ViEVV + i/2 (11) 

so that:— 
p(C) = ^ ( E E ' / V ) / V + V2 (12) 

which is normalized multiplication of E by E'. A 
similar result is obtained for 3(ii) by substitution from 
equation (4) in the relationships:— 
p(Ux) = p(U)p(U') + p(D)p(D' ) - (13) 

p(U.U'.D.D.') * 
and:— 
p(Dx) = p(U)p(D') + p(D)p(U' ) - (14) 

p(U.U'.D.D') 
An important phenomenon is illustrated by the use 

of a stochastic multiplier as a squarer. For example, 
it is not sufficient to short-circuit the inputs of the gate 
in Figure 3 (i), for its output will then be always ON. 
This difficulty arises because we have assumed that 
the stochastic input sequences are statistically inde­
pendent in obtaining equation (9) above. Fortunately 
an independent replication of a stochastic sequence 
(in fact a Bernoulli sequence) may be obtained by 
delaying it through one event, and Figure (4) illustrates 
how a squarer may be constructed using the multiplier 
of Figure 3(i) together with a flip-flop used as a 
delay; similarly the multiplier of Figure 3(ii) may be 
used as a squarer by feeding delayed replicas of U and 
D to U' and D' respectively. Flip-flops used in this 
way act as stochastic 'isolators', performing no com­
putation but statistically isolating two cross-correlated 
lines. 

[E] K=3^- [E 2 ] 

CLOCK 

Figure 4—Stochastic squarer 

Stochastic summers 

Having seen how readily inversion and multiplica­
tion may be performed by simple gates, one is tempted 
to assume that similar gates may be used to perform 
addition. However this is not so, and stochastic logic 
elements must be introduced to sum the quantities 
represented by two stochastic sequences. For example, 
consider two stochastic sequences in representation (i), 
one representing maximum positive quantity and hence 
always ON, the other representing maximum negative 
quantity and hence always OFF. The sum of these 
quantities is zero, and this is represented by a sto­
chastic sequence with equal probabilities of being ON 
or OFF. A probabilistic output cannot be obtained 
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from a deterministic gate with constant inputs, so that 
stochastic behaviour must be built into the summing 
gates of a stochastic computer. 

Stochastic summers may be regarded as switches 
Yviiicii, a t a c±u^A.-puiSc;, Laiiu.Oiuiy oo icvt One *JL m e 

input lines and connect it to the output. The output 
line then represents the sum of the quantities repre­
sented by the input lines, weighted according to the 
probability that a particular input line will be selected. 
The random selection is performed by internally-
generated stochastic sequences, obtained either by 
sampling flip-flops triggered by a high bandwidth 
noise source, or from a delayed sequences of a central 
pseudo-random shift-register; these sequences we call 
'digital noise.' 

IV-1 

[El 

(i) 

B 
0> 

FFp^J 

[(E+E)/2J 

< DIGITAL 
NOISE 

p(D*) = %p(D) (l-p(U')) + ttp(iy) 
(1-P(U)) (18) 

Stochastic integrators, the ADDIE and interface 

XIXQ uaaiw iiai.isgi.aii/jL u i a o i i X u d S u v w m j / u i C i ib a 

reversible counter—if this has N-f-1 states, then the 
value of the integral when it is its k'th state is:— 

/ = (2k/N - 1)V (19) 
If this quantity is to be used in further computations 
it must be made available as a stochastic sequence, 
and this may be generated by comparing the binary 
number in the counter with a uniformly distributed, 
digital random number (obtained from a central 
pseudo-random shift-register or a sampled cycling coun­
ter). In representation (i) the integrator output line 
is ON if the stored-count is greater than the random 
number. In representation (ii) the stored count is 
regarded as a number in twos-complement notation, 
whose magnitude is compared with the random num­
ber, and whose sign together with the result of this 
comparison determines whether the UP or DOWN 
output lines shall be ON. 

CLOCK 

[E] 
SL 

&TT-
ilji3"-* 

(ii) 

F3> L> 

CLOCK 

[£+EY2] 

- « DIGITAL 
NOISE 

Figure 5—Stochastic summers 

Two-input stochastic summers for quantities in 
representations (i) and (ii) are shown in Figures 5(i) 
and 5(ii) respectively; the cross-coupling between the 
inputs in Figure 5(ii) reduces the variance of the out­
put. That addition does occur may be confirmed by 
examination of the relationship between input and out­
put probabilities for the gates of Figure 5. For 5(i), 
assuming symmetrically distributed digital noise, v/e 
have:— 

p(C) = i/2P(A) + i/2p(B) (15) 
and hence from equations (10) and (11):— 

p(C) = 1/2 (1/2 (E + E ' ) ) / V + 1/2 (16) 
which is normalized summation of E and E'. A similar 
result is obtained for 5(ii) by substitution from equa­
tion (4) in the relationships:— 
p(U*) = %p(U) ( l - p ( D ' ) ) + ttp(U') 

(1-P(D)) (17) 

imi 

[E] * 

[El 
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Figure 6—Stochastic integrators 

Figure 6 shows two-input stochastic integrators for 
each representation with output lines as described 
above, and gating at the input of the counters to form 
the sum of the quantities represented by the input 
lines (stochastic summing is not required because the 
number of lines used to represent the sum is greater 
than the number of lines used to represent each input). 
A HOLD line at the input of the integrators determines 
whether they are in the integrate or hold modes, and 

http://iiai.isgi.aii/jL
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the normal integrator symbol is used for the overall 
device as shown in Figure 7. 

(/E+E*J 

Figure 7—Integrator symbol 

That integration does occur may be confirmed by 
examination of the expected increment, 8, in the coun­
ter at each clock-pulse. For 6(i):— 

2V 
8 = N [p(A)p(B) - ( l - p ( A ) (1- -p(B))] (20) 

= (E + E')/N (21) 
by substitution from equations (10) and (11), which 
is equivalent to an integrator with a time-constant: 
T = N/f (22) 
where f is the clock-frequency. A similar result may 
be obtained for 6(ii) by substituting from equation (4) 
in the relationship:— 

8 =^[2p(U)p(U ' ) + p(U) ( l - p ( U ' ) ) + p(U') 

( l - p ( U ) ) -2p(D)p(D' ) - p ( D ) ( l - p ( D ' ) ) 
- p ( D ' ) ( l - p ( D ) ) ] (23) 

= ^ [ p ( U ) - p ( D ) + p(U') - p(D')] (24) 

= 2(E + E')/N (25) 
which is equivalent to integration with a time constant: 
T =N/2f (26) 
where f is the clock-frequency. 

[Ee*t] 

HOLD 

Figure 8—ADDIE 

The integrator with unity feedback illustrated in 
Figure 8 is called an ADDIE, and performs the im­
portant function of exponentially averaging the quan­
tity represented by its input. In terms of the quantity 
represented it may be regarded as a transfer function: 
l/(s-f-l), and in terms of the stochastic sequences 

it may be shown that the fractional count in the store 
tends to an unbiased estimate of the probability that 
the input line will be ON at a clock-pulse (for the 
integrator of Figure 6(i) connected as in Figure 8). 
That is, for an N-f-1 state store in its k'th state: 

p(INPUT = ON) = k/N (27) 
with an estimation time of order N clock-pulses, and 
a final variance: 

o-2(p) = p ( l - p ) / N (28) 
Thus any quantity represented linearly by a probabil­

ity in the stochastic computer may be read out to any 
required accuracy by using an ADDIE with a sufficient 
number of states, but the more states the longer the 
time-constant of smoothing and the lower the band­
width of the computer. Since the distribution of the 
count in the integrator is binomial, and hence ap­
proximately normal for large N, variables within the 
stochastic computer may be regarded as degraded 
by Gaussian noise whose power increases in propor­
tion to the bandwidth required from the computer. 

Integrators or ADDIEs form the natural output 
interface of the stochastic computer. Integrators with 
their HOLD lines OFF also form the input interface 
for digital or analog data, since binary numbers may 
be transferred directly into the counter to generate a 
stochastic output sequence, and analog quantities may 
be converted to binary form by comparison with a 
standard ramp generated by a cycling counter driving a 
digital/analog convertor. Similarly an integrator may 
be used to hold a constant and thus act as a 'potenti­
ometer' if coupled to a multiplier. Arbitrary functional 
relationships may be realized by imposing a suitable 
nonlinear relationship between the stored count and 
the stochastic output; for example, an integrator whose 
output is ON when the count is equal to or above 
mid-value, and OFF when it is below mid-value [in 
representation (i)] approximates to a switching func­
tion. 

Time 

Figure 9—Stochastic second order transfer function—response 
to unit step in position and velocity 
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Higher-order smoothing than that of the ADDIE 
may be realized by connecting integrators in cascade 
with appropriate feedback loops. The inset of Figure 
9 shows a stable second-order stochastic transfer-func­
tion using two stochastic integrators in representation 
(i) . If the first integrator has M + l states, and the 
second N-f-1, then the transformation realized is:— 

MN 
—T- JL-l0Ut + ED Ein (29) 

where f is the clock-frequency. So that the undamped 
natural frequency is: 

f 
fn = 2II(MN7/; ( 3 0 ) 

and the damping ratio is: 

2 = i/2(M/N)'/2 (31) 

The responses to unit step in position and velocity 
for the two conditions: M=21 0 , Nr=210 and M=2 9 , 
N=2 1 0 : are shown in Figure 9; these were obtained 
on the Mark I Stochastic Computer at STL. 

Generation of stochastic sequences 

The central problem in constructing a stochastic 
computer is the generation of many stochastic sequences 
(K for each integrator, where K is the number of flip-
flops in the integrator counter), which are neither 
cross-correlated nor autocorrelated, and which have 
known, stable generating probabilities. This reduces to 
a requirement for a number of independent sequences 
each with a generating probability of Vz, since any 
probability may be expressed as a fractional binary 
number and realized to any required accuracy by ap­
propriate gating of a set of lines equally likely to be 
ON or OFF. For example, Figure 10 illustrates one 
technique for generating stochastic sequences with a 
generating probability of V2 by sampling flip-flops 
toggling rapidly from a noise source: the following 
NAND gates convert two of these sequences to one 
with a generating probability of 3A. This may be con­
firmed from the relationship:— 
p(C) = ( l - p ( A ) ) + P(A) P (B) = % (32) 

The generation of digital noise as shown in Figure 10 
is quite attractive since radio-active or photon-emit­
ting sources may be coupled directly to semiconductor 
devices to form random pulse generators. It suffers 
from the disadvantage that very high toggling rates 
must be attained in FFX and F F / and sampled by 
very narrow strobes in FF2 and FF«', if a high clock-
frequency is to be used. 

The Mark I Stochastic Computer had six ten-bit 
integrators, each with their own internal digital noise 
source consisting of ten-bit counters cycling at a high 
clock-frequency. These counters were sampled at a 
very much lower and anharmonic clock-frequency to 

Random Pulse 

Generators 

FF 

FT 
• CLOCK 

FE1—r 

FT 
O 
*z 

1 \? 
\{C «• A v A.B 

Figure 10—Generation of stochastic sequence (p=%) 

give an effectively random output. This was not a 
practical arrangement since the sampling frequency 
had to be so low (500 cs), that the overall bandwidth 
of the computer was only 0»1 cs ! ; as an experimental 
tool, however, it has enabled us to check out con­
figurations, such as that of Figure 9, whose behaviour 
is difficult to determine theoretically. 

®—<-
H>-Lfl FF FF.T. 

CLOCK 

;̂ -®3-PSEUDO-RANDOM 
OUTPUTS < — — ( f t " 

< & : : 
Figure 11—Central pseudo-random generator 

The Mark II Stochastic Computer, at present under 
construction, uses entirely different techniques which 
have reduced both size and cost and increased the 
clock-frequency to lMcs. A single, central pseudo­
random shift-register9-16 is used to generate stochastic 
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sequences for all computing elements. Different se­
quences for each element are obtained by appropriate 
exclusive-OR gating of the shift-register outputs, giving 
delayed replicas of the sequence in the shift register 
itself. Such a generator is illustrated in Figure 11, and 
with 43 flip-flops it is capable of supplying 100 16-bit 
integrators for one hour without cross-duplication. 

Serial arithmetic is used in the integrators of the 
Mark II computer so that the counter may be realized 
using shift registers and the comparators by far fewer 
gates. In this way a sixteen-bit stochastic integrator 
may now be fabricated from only six dual in-line 
packages. A clock-frequency of 16 Mcs in the shift-
registers gives rise to a clock-frequency of 1 Mcs in 
the stochastic computer, and respectable bandwidths 
of 100 cs or so may now be attained. 

Applications of stochastic computers 

The Stochastic Computer was developed for prob­
lems arising in automatic control, and immediate ap­
plications are apparent mainly in the fields of adaptive 
control and adaptive filtering. Gradient techniques for 
process identification and on-line optimization are the 
simplest examples of powerful control methods which 
lack the hardware necessary for their full exploita­
tion. Direct digital control using conventional computers 
is not practical with a small plant, and conventional 
analog computers are expensive because of the large 
numbers of multipliers required. Two-level or polarity-
coincidence multiplication10-11 has been suggested12 as 
one means of realizing gradient techniques cheaply 
and reliably using digital integrated circuits; however 
a comparison of six techniques for multiplication in a 
steepest-descent computation has shown that, for the 
same convergence-time, polarity-coincidence and re­
lay multiplication give much greater variance in param­
eter estimates than cloes the equivalent stochastic-
computing configuration.5 In this particular computa­
tion the stochastic multiplier may be regarded as a 
statistically-linearized1314 polarity-coincidence multi­
plier, and the addition of sawtooth dither to the input 
signals, which has been suggested as a means of ef­
fecting such linearization,11'15-16 may be seen as a tech­
nique for obtaining a pseudo-stochastic sequence. 

Maximum likelihood prediction based on Bayes in­
version of conditional probabilities is the basis of many 
'learning machines' for control and pattern-recognition, 
but the equations for estimation and prediction are 
difficult to realize with conventional computing ele­
ments, and a stored-program digital computer has been 
required for experiments with this technique. Using a 
three-input variation of the ADDIE, however, the 
estimation of normalized likelihood ratios, and pre­

diction based on them, become very simple operations 
requiring little hardware.5 

The theoretical basis for the economy in hardware 
offered by stochastic computing lies in a theorem of 
Rabin17 and Paz,18 to the effect that a stochastic (or 
probabilistic) automaton is equivalent to a determinis­
tic automaton which generally has more states. An 
immediate practical example of this phenomenon may 
be found in adaptive threshold logic as used in pattern-
classifiers such as the Perceptron19 or Adaline,20 An 
adaptive threshold logic element with discrete weights 
will not necessarily converge under the Novikoff con­
ditions,21 even though the weights can take values 
giving linear separation, whilst the equivalent stochas­
tic element may be shown to converge under the 
same conditions.5 

A pictorial explanation of this difference is that the 
direction of steepest descent followed in adaptive 
threshold logic with continuous weights cannot be 
taken if the weights are discrete, and there are then 
several directions of 'almost steepest descent.' Deter­
ministic logic has to 'chose' one of these directions and, 
if it is the 'wrong' one, may get into a cycle of wrong 
decisions, whereas stochastic logic has a probability of 
taking any of the possible directions of descent and is 
bound to take the right one eventually. 

CONCLUSION 

The main performance measure of a computer are 
size and range of possible problems, speed and ac­
curacy of solution, and physical size, reliability and 
cost of the computer. There are strong interactions 
between these measures and it is unlikely that any 
one form of computer will ever be optimal on all 
counts. The identification and simulation of complex 
processes, and the realization of multi-variable control 
systems, requires large numbers of computing ele­
ments such as multipliers, summers and integrators, 
working simultaneously and costing little. However 
these elements do not have to compute a solution 
quickly or accurately, for a bandwidth of 10 cs and 
an overall accuracy of 1% is adequate in the simula­
tion of economic and chemical processes, and in con­
trol systems where feedback is operative a computa­
tional accuracy of 10% may be ample. In these situa­
tions it is advantageous to trade the accuracy of the 
digital computer and the speed of the analog computer, 
for the economy of the stochastic computer. 
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