
Chapter 2 

STOCHASTIC COMPUTING SYSTEMS 
B. R. Gaines 
Department of Electrical Engineering Science 
University of Essex, Colchester, Essex, U.K. 

1. INTRODUCTION 

The invention of the steam engine in the late eighteenth century made it 
possible to replace the muscle-power of men and animals by the motive 
power of machines. The invention of the stored-program digital computer 
during the second world war made it possible to replace the lower-level 
mental processes of man, such as arithmetic computation and information 
storage, by electronic data-processing in machines. We are now coming 
to the stage where it is reasonable to contemplate replacing some of the 
higher mental processes of man, such as the ability to recognize patterns 
and to learn, with similar c!,pabilities in machines. However, we lack the 
"steam engine" or "digital computer" which will provide the necessary 
technology for learning and pattern recognition by machines. 

In the summer of 1965 research teams working on these topics in 
different parts of the world discovered, quite independently, a new form 
of computer which might provide the necessary technology. The "stochastic 
computer" (1-7), as this has come to be called, is unlikely to prove the 
ultimate answer to the technological problems of machine learning and 
pattern recognition. It is, however, a step in the direction of processing 
by parallel structures similar to those of the human brain, and is of great 
interest in its own right as a novel addition to the family of basic computing 
techniques, and as a system which utilizes what is generally regarded as a 
waste product-random noise. 

This chapter reviews the data-processing requirements of pattern re­
cognition and machine learning, and introduces the concept of stochastic 
computing through the representation of analog quantities by the probabil­
ities of discrete events. The first part of the chapter gives a complete over­
view of stochastic computing and its relationship to other computational 

37 



38 Stochastic Computing Systems [Chapter 2 

techniques. Later sections treat various forms of stochastic computer in 
some detail, and outline the theoretical basis for computing with probabi~ 
listic devices. The final sections describe various systems for pattern re­
cognition and control where the use of stochastic computing elements is 
advantageous. 

1.1. Summaries of Contents of Main Sections 

Section 2 analyzes the computational problems of learning machines 
and pattern recognizers, and discusses to what extent the conventional 
general-purpose digital computer solves them. Matrix operations are taken 
as an example of generally important computations for which a general­
purpose machine is very slow compared with alternative approaches. It is 
concluded that in machine learning and pattern recognition one is inexor­
ably driven toward a data-processing system which makes maximum use 
of every single gate for computational purposes, and has parallel rather 
than sequential processing. 

Section 3 examines the nature and origins of stochastic computing. 
The representation of quantities by probabilities is first introduced and 
constrasted with the representation of numbers in other forms of computer. 
Examples are given of two previous computing systems where numbers 
have been represented as probabilities, and finally the logical development 
of this concept in work on learning machines is outlined. 

Section 4 is an exhaustive account of three stochastic computing systems 
which utilize linear mappings from quantities to probabilities. The first 
representation is for unipolar quantities; the second maps bipolar quantities 
onto two lines; and the third representation maps bipolar quantities onto 
a single line. These last two representations give rise to families of comput­
ing elements which correspond closely to those of the analog computer. 
Stochastic computing elements for addition, subtraction, multiplication, 
squaring, integration, and interfacing are described for each representation. 
Implicit function generation for division and square~root extraction is out­
lined and, finally, the generation of discrete random variables using random 
noise, or pseudorandom feedback shift registers, is analyzed. 

Section 5 gives an overview of some of the theoretical foundations of 
stochastic computing which lie in stochastic automata theory, and discusses 
the relationship between the economy of stochastic computing and equi­
valences between stochastic and deterministic automata. 

Section·6 extends the results of Section 4 to include alternative sto­
chastic representations of quantity, particularly those in which infinite 
quantities have a definite representation. 

Sec. 2] Machine Learning and Pattern Recognition 39 

Section 7 gives a detailed analysis of the main sequential element of the 
stochastic computer, the generalized integrator or ADDlE. The behavior of 
the ADDlE as a smoothing element is compared with that of an equivalent 
deterministic process, and the optimality of the linear ADDlE as an esti­

mator is demonstrated. 
Section 8 gives the first example of a system where stochastic behavior 

is essential to the operation. Digital adaptive threshold logic in which the 
weights take a finite set of values is shown not necessarily to converge to a 
solution, even when one is within the range of the weights. An alternative, 
nondeterministic, adaptive algorithm is shown to converge whenever a 
solution exists, and an example is given of a speech and character recognition 
system which has been constructed using stochastic feedback. 

Section 9 reviews the modeling of linear systems using steepest-descent 
techniques, and analyzes the effect of replacing analog multipliers with 
switching elements, such as relays. An experimental comparison between 
six identification techniques, including polarity-coincidence correlation and 
three stochastic techniques, is outlined, and the different approaches are 
contrasted in their speed of response, interaction between estimates, bias 
due to noise in the system being identified, and variance of the final estimates. 

Section 10 gives a further ~f\ample of system identification where the 
use of stochastic computing elements enables a computation to be carried 
out in a way which would be otherwise impossible. The technique is one 
of maximum likelihood prediction based on Bayes inversion of conditional 
probabilities, and a particular form of ADDlE is described which enables 
normalized likelihood ratios to be estimated directly, and in a form suitable 

for prediction. 
Section 11 considers some functional networks of stochastic computing 

elements for coordinate transformations, and the solution of partial dif­
ferential equation, and compares them with networks of artificial neurons. 

2. COMPUTATIONAL PROBLEMS OF LEARNING 
MACHINES AND PATTERN RECOGNIZERS 

2.1. Character of Computations Required in Machine 
Learning and Pattern Recognition (7a.7b) 

There are so many different approaches to machine learning (8.9) and 
pattern recognition (10.11) that it might seem impossible to draw any general 
conclusions about the nature of their computational requirements. However, 
whatever the algorithms used in the machines, there are certain character-



40 Stochastic Computing Systems [Chapter 2 

istics of their environments, and the problems they are required to solve, 
which seem to be of general occurrence. 

The data input to the machines is generally very great and derived 
from a large number of coexistent sources, and the number of different 
inputs which the machine may receive is usually several orders of magni­
tude greater than the number of outputs from the machine: it has to per­
form a very substantial reduction of a large data stream. For example, an 
alphanumeric character recognizer with an input retina of 10 X 10 photo­
cells has at least 2100 possible inputs and about 64 possible outputs-a data 
reduction of order 1028

• The human eye has some 108 photoreceptors, 
roughly corresponding to a 104 X 104 array, and it is not beyond the bounds 
of present technology to fabricate an electrooptical array with the same 
capacity. Having generated this massive data source, however, how one 
reduces the 108 binary inputs to obtain a meaningful classification of the 
optical input is another matter; it clearly does not solve the problem to 
send 108 signal wires elsewhere. 

Secondly, the adaption, or learning, of the machines, although one 
of their most complex characteristics, may be regarded, in a computational 
context, as requiring that the data-reduction procedure be variable. Since 
this variation will be a function of the "experience" of the machine, it 
implies some feedback from the results of past data-processing to that at 
present. The machine must have internal parameters controlling the pro­
cessing of information which can be adjusted as a result of the effects of 
previous processing. 

Thirdly, it is also a general characteristic of machine learning and 
pattern recognition that the data input is, in some sense, redundant, and 
the machine does not have to make very fine discriminations based on small 
differences in the incoming signal. This effect is difficult to quantify, but it 
seems a universal, and very important, characteristic of the situations in 
which learning machines and pattern recognizers are expected to operate. 
Insofar as the computation is concerned, this means that the data processing 
is global, over whole regions, rather than local, and that any particular part 
of a computation does not have to be performed to high accuracy; a "law 
of large numbers" operates to give sensible overall results from a large 
number of rough local computations. 

Up to this point learning machines and pattern classifiers have been 
grouped together, but it is worth noting their similarities and differences. 
They are similar in that both are devices with inputs and outputs, and a 
variable relationship between input and output contingent upon the results 
of previous input/output decisions. They differ in that a pattern recognizer's 

Sec. 2} Advantages and Disadvantages of Sequential Computation 41 

decisions generally do not affect the sequence of inputs which it is receiving, 
while the outputs (actions) of a learning machine feed back into its environ­
ment and act to change it. Because of this, the decisions of a pattern re­
cognizer may generally be evaluated one by one and its input/output re­
lationship changed accordingly, whereas the decisions of a learning machine 
may be evaluated only over a period of time. For direct comparison, there­
fore, a complete sequence of inputs to a learning machine should be thought 
of as equivalent to a single input to a pattern recognizer. Hence, over eight 
successive steps a learning machine with a to-bit binary input pattern has 
to cope with as much data as a pattern recognizer with 108 cells in its retina. 
Thus the problems of machine learning are similar, but generally more 
difficult, than those of pattern recognition. 

Thus the computational problems of machine learning and pattern 
recognition may be summarized as: the processing of a large amount of 
data with fairly low accuracy in a variable, experience-dependent way. 

In the following sections the defects of a conventional, stored-program, 
general-purpose digital computer for this type of problem are considered, 
in order to illustrate the necessity for new forms of data-processing hard­
ware in the physical realization of learning machines and pattern recognizers. 

2.2. Advantages and Disadvantages of Sequential 
Computation 

No one can fail to be aware of the achievements of the general-purpose, 
stored-program digital computer, which, in the quarter of a century since 
von Neumann made the first step from the physical patching of ENIAC 
to the program control of EDV AC, has had an unequalled impact on 
scientific and commercial data processing. The size and financial perfor­
mance of the computer industry indicate the degree of practical utilization 
of the digital computer, and it is clear that there is room for much expansion 
yet-in particular through multiaccess, interactive systems where the man 
and machine may become true partners. However, in the very strength of 
the conventional digital computer, its sequential, stored-program control, 
lies its greatest weakness insofar as pattern recognition and learning are 
concerned; this manifests itself as a tradeoff between the size of a comput­
ation and the speed of its solution. 

The essential structure of a conventional digital computer is a compar­
atively simple arithmetic/control-unit coupled to a large, uniform store 
structure, generally based on magnetic cores. The arithmetic unit operates 
on small units of data stored as bit-patterns in one part of the store, and 



42 Stochastic Computing Systems [Chapter 2 

the sequence of operations which it performs are determined by a program 
in another part of the store. Although the operations of the arithmetic 
unit are, in themselves, very simple, long sequences of these operations 
may be used to build up more complex transformations on the bit-patterns 
in the core store. 

For example, the user may write a MULTIPLY subroutine, which 
combines SHIFT operations, ADD operations, conditional JUMPS, and 
store TRANSFERS, into a routine which takes two binary numbers in 
named store locations and replaces them with their product. He may then 
use this routine in many places in his program, calling each time on the 
single copy which constitutes the subroutine. Such a procedure is obviously 
very flexible, in that the user-defined routines can perform virtually any 
operation, and it is also very simple and economical in use, since the one 
routine may be called by a single JUMP-TO-SUBROUTINE instruction. 

However, the breakdown of basic operations into a sequence of steps 
and the use of one operator (subroutine) many times in a program have 
important disadvantages, in that the times taken by each simple step take 
longer and longer to perform. In the following section matrix multiplication 
is taken to illustrate this effect, and both the disadvantages of the general­
purpose computer in performing this operation, and the centrality of matrix 
operations in machine learning and pattern recognition, are demonstrated. 

2.3. Computation of Matrix Operations 

Suppose we wish to multiply an N X N square matrix Aij by a vector 
Xj . The computation has the form that the product Yi is given by 

N 

Y i = .:E A;jXj 
j=l 

(1) 

Thus to compute one element of the vector Yi using a general-purpose 
computer requires N additions and multiplications (together with store 
transfers and step counting), and to compute all N elements requires N2 
additions and multiplications. 

Now consider how the requirement to perform matrix multiplications 
might have arisen: in a typical engineering problem the matrix might be 
the voltage/current transfer equations for a network of resistors, and the 
multiplication of a vector by the matrix corresponds to the computation 
of currents in various legs of the network given the voltages at its inputs. 
Think now of the behavior of the original network when the same voltages 
are applied to it and the currents measured: it "computes" the output 

Sec. 2] Computation of Matrix Operations 43 

currents, not through a sequence of steps, but in one single step; the factor 
of N2 times some fairly long time interval has dropped to 1 times a very 
much shorter time interval. This reduction is of very great importance as 
soon as the matrix becomes large in size; for N = 100 it is a factor of some 
100,000 times. 

The speed advantage of a resistive network in performing matrix 
"computations" is very substantial. Karplus and Howard (12) have taken 
advantage of this in a hybrid computing system consisting of a general­
purpose machine coupled through a digital-analog interface to a network 
of resistors. In use the general~purpose machine sets voltages into about 
1000 transfluxor analog stores, and these drive the network of resistors 
representing the coefficients in the matrix. Analog-to-digital conversion 
channels enable the digital machine to read off voltages and currents in 
the network. Karplus (13) has used this system to investigate the dynamics 
of water flow in the Californian underground basins. The basic equations 
to be solved are two-dimensional diffusion partial differential equations, 
but the shapes of the basins, and hence the boundary conditions, are un­
known; simulation results must be checked against field experiments and 
the boundaries adjusted for the best fit. If this computation were performed 
entirely by the general-purpose machine, 95% of its time would be allocated 
to the matrix inversion; when this latter operation is performed by the 
resistive network the time taken is decreased by a factor of at least ten. 

The operation of matrix multiplication is not at all atypical, and in 
fact it is a very common one which underlies many algorithms for machine 
learning and pattern recognition. For example, in the STeLLA (8.14) learn~ 
ing system the behavior of the machine's environment is modeled by a set 
of transition probabilities among the possible states in the environment for 
a given action. Given an expected probability distribution over the set of 
states, the distribution which will follow an action is obtained by multi­
plication of the given distribution by the matrix of transition probabilities 
for the action. The environment of the simplest STeLLA machine, with a 
ten-bit input pattern, has about 1000 possible states, so that N 1000 and 
the speed advantage of matrix multiplication through a resistive network 
over a digital computer is at least some ten million to one. 

The importance of matrix operations in general "image transfor­
mation" has been discussed by PoppeIbaum et al. (Z); they point out that 
matrix operations on the points of a retina provide general linear trans­
formations including: (1) translations, rotations, and magnifications, (2) 
conformal mappings, (3) convolutions, and (4) Fourier transforms. The 
defects of the general-purpose machine in performing these operations led 



44 Stochastic Computing Systems [Chapter 2 

Poppelbaum (15), in an earlier work, to suggest an analog system based on a 
resistive net, and, in the later paper noted above, to describe means for per­
forming general linear transformations using stochastic computing elements. 

2.4. A~omparison of Sequential and Parallel Processing 

The analog computing system based on a network of resistors is faster 
in performing matrix operations than the general-purpose digital machine 
because it is a "parallel" computing system, in which all the operations 
involved in computing the matrix multiplication are performed simulta­
neously. The general-purpose machine, on the other hand, performs the 
operations sequentially, and multiplexes its single processor to each part 
of the computation in turn. Figure 1 illustrates the effect of this mUltiplexing 
on the speed of computation as the size of problem grows. 

The horizontal axis is the size of computation in terms of the number 
of equations to be solved. The vertical axis is the time taken to solve the 
problem. The general-purpose digital machine takes longer over the com­
putation as the size of the problem grows, and the problems suitable for 
this machine lie above the sloping line. The analog computer, assuming 
that a simple resistive net is unsuitable and operational amplifiers have to 
be used, is limited in size rather then speed, and the computations suitable 
for this machine lie to the left of the vertical line. 

This diagram originated in a similar one shown by Williams (16) in a 
paper on process control at the second congress of IFAC. He demonstrated 
that this decrease of speed with size of problem on general-purpose machines 
made it impossible to simulate even a simple, linearized model of a multi­
plate distillation column in real time on presently available computers. 

102 ,---------.--------, 

I 
TIME 

Seconds 

10~ 

Fig. 1. Relationship between problem size and 
solution time for digital and analog computers. 

I 
i. 

Sec. 2] Sources of Low-Cost Computing Devices 45 

Williams remarks that "It is truly unfortunate to note the number of 
chemical process systems which fall into the lower right-hand corner of 
Figure 1;" for the simulation of such systems neither present analog nor 
digital computers are suitable. If one considered an adaptive controller, 
or learning machine, attempting to control a multi plate simulation column, 
then simulation of the column itself, even if the parameters were completely 
known, would obviously be only a minor part of the computations required, 
and hence Williams's remark applies with even greater force to complex 
control systems, such as learning machines, than they do to simulators. 

2.5. The Need for Low-Cost Parallel-Processing 
Hardware 

The arguments of the previous sections have demonstrated that, despite 
its great versatility and variety of successful applications, the stored-pro­
gram, general-purpose digital computer does not, by a very wide margin, 
provide the data-processing facilities required in machine learning and 
pattern recognition. Most experimental studies of these topics have used 
general-purpose machines, since these provide the most powerful and ver­
satile tool available for data-processing at present, but at the same time no 
experimental study of these topics has so far produced a powerful or useful 
learning system, let alone one with facilities comparable to those of the 
human brain. 

The parallel processing of the analog computer and associated resistive 
networks gives very great speed advantages over the general-purpose ma­
chine in certain types of computation, and it is clear that some form of pa­
rallel processing system will be required if learning machines and pattern 
recognizers are to be physically realized. The general-purpose machine 
achieves its relatively low cost through the use of a simple, homogeneous 
core-store structure for data and program storage. The core store is a passive 
system incapable of data processing in its own right, and cannot form the 
basis of a parallel computing system. However, it is reasonable to assume 
that any parallel machine must provide arithmetic units with associated 
data stores in the same proliferation as the magnetic cores in a general­
purpose machine and at the same order of cost. Fortunately, device tech­
nology is coming to the stage where this requirement may be satisfied. 

2.6. Sources of Low-Cost Computing Devices 

There have been many forms of low-cost storage and computing devices 
investigated for application to learning machines and pattern recognizers. 



46 Stochastic Computing Systems [Chapter 2 

The specification required of the elements follows from consideration of 
these machines as being essentially variable-parameter systems with input 
and output. This implies a minimum hardware complement of: stores to 
hold the parameters; multipliers to enable the parameters to weight other 
variable in the system; and parameter-adjustment logic to enable the weights 
to be changed as a result of experience. 

The analog computer (17) provides stores, in the form of analog in­
tegrators, which are fairly easy to adjust incrementally. It also provides 
multipliers for analog variables which, although previously expensive, may 
nowadays be made cheaply using FET switches. At the same time, the 
logic for parameter-adjustment, function-selection, etc., has become avail­
able at low-cost through the advent of FET devices. Although the opera­
tional amplifiers are now available as low-cost integrated circuits and could 
be fabricated in large arrays, the associated storage capacitors are large and 
cannot be miniaturized or made at very low cost. Thus it is unlikely that 
analog computer devices can form the basis of practical learning machines 
and pattern recognizers. However, it is worth noting that analog systems 
have been proposed for adaptive-threshold-logic pattern recognizers (18), 
and that the use of hybrid analog-digital storage techniques may enable 
capacitors to be eliminated from the analog stores (19). 

Other forms of analog store have also been proposed and fabricated, 
including those based on transfluxors eO); electroplating (21); and electro­
lysis (22). However, apart from individual defects in cost, size, and reliability, 
these have all been difficult to integrate into the overall system; the external 
circuitry necessary to adjust the stored value and use it to multiply other 
variables has exceeded the original device in complexity, and cost. 

Optical data-processing systems offer the possibility of operating on 
very large data sources at low cost and high speed (23). At present, however, 
reversible storage elements for use in storing and emitting optical signals 
are not fully developed, although it is clear that photochromic systems (24,25) 
will some day be developed to perform these functions. For pattern re­
cognition systems (26,27) it may well be that optical data-processing devices 
will eventually provide the best hardware. However, the position is fa, less 
clear in their application to general learning systems, and little effort has 
been devoted to this topic as yet. 

2.7. Large-Scale Integration 
There is one area of device technology where it is reasonable to expect 

that very large and complex systems may be fabricated at a low cost in the 
near future, and this is the large-scale integration (LSI) of silicon integrated 

Sec. 2] large-Scale Integration 47 

circuits (28). The implications of LSI go far beyond those of any previous 
technological advance. Whereas the transition from vacuum tubes to tran­
sistors brought about a tremendous increase in reliability and decrease in 
physical volume, any increase in system size was a byproduct of these rather 
than a main effect. What LSI offers is sheer quantity of devices at a low 
cost and in a small space~lOOO logic gates on a single chip of silicon are 
currently being manufactured, and 10,000 gates or more are reliably fore­
cast for 1973 (29). 

Although LSI is expected to offer large numbers of devices at very low 
cost, a major objective of any machine learning, or pattern recognition, 
computer based on it must still be the economic use of hardware. For 
example, the processing unit of a general-purpose machine takes some 103 

gates to provide its variety of functions; computational techniques for per­
forming these functions with far fewer gates, even at greatly reduced speed, 
may be necessary to make emulation of human capabilities feasible. 

The reason for this becomes clear when we consider the total number 
of devices available, and the amount of computation they will perform. 
Ten thousand devices at $1 apiece, each containing 10,000 gates, gives us 
an estimated learning machine selling in 1980 for $30,000 and containing 
108 gates. If each of those gates could provide a computational function, 
such as ADD or MUL TIPL Y, then we have of order 108 computing ele­
ments; our learning machine has a "brain" two or three orders of magnitUde 
down in size from that of a human being. If it takes one thousand gates to 
perform a useful computation, then we are five or six orders of magnitude 
down, and the machine looks pretty hopeless. 

If the gain in computing power of one element entails a loss in speed, 
the power x speed may not change, or favor larger computing elements, 
as the number of gates per computation is changed. Given that it is global 
computing power rather than speed in computation which we require, how­
ever, the high-speed element has to be multiplexed to many data streams to 
achieve the same effect as many local low-speed elements, and the cost, in 
gates, of multiplexing may well exceed that of computing. 

Thus one is inexorably driven toward a data-processing system which 
makes the maximum use of every single gate for computational purposes, 
and distributes its computations through space rather than time. There are 
a number of projects currently under way on the development of such 
computing systems which rely on the imminent coming of LSJ to make 
them economically feasible. Many of these are multiprocessor developments 
of conventional computers, and attempt to give the general-purpose machine 
increased power by increasing processing capability rather than speed (30,31). 



48 Stochastic Computing Systems [Chapter 2 

Other developments are aimed specifically at certain problems, with pattern 
recognition being one of the most prominent (32.33). The stochastic computer 
is one of these, and represents a deliberate attempt to utilize standard digital 
logic gates and flip-flops in a new mode particularly suited to the com­
putations of machine learning and pattern recognition. 

3. EMERGENCE OF STOCHASTIC COMPUTING 

The arguments of the previous section suggest that in the development 
of hardware for learning machines and pattern recognizers which will begin 
to have comparable capabilities to the human brain one requires a non­
multiplexed, parallel system, not necessarily of high speed, which makes 
the maximum use of every single element for computational purposes. These 
characteristics are not possessed by the general-purpose digital computer, 
and while they are possessed, to some extent, by the analog computer, it is 
in the stochastic computer that the required computing power is most 
completely distributed throughout arrays of low-cost elements. 

The distributed computation of the stochastic computer is achieved 
through its peculiar representation of data by the probability that a logic 
level will be ON or OFF at a clock pulse (we will assume throughout this 
chapter that the logic elements of a stochastic computer operate in a syn­
chronous, or "clocked" mode). In any other form of computer the logic 
levels representing data change deterministically from value to value as the 
computation pro cedes, and if the computation is repeated the same se­
quence of logic levels will occur. In the stochastic computer arithmetic 
operations are performed by virtue of the completely random and un­
correlated nature of the logic levels representing data, and only the prob­
ability that a logic level will be ON or OFF is determined; its actual value 
is a chance event which cannot be predicted, and repetition of a computation 
will give rise to a different sequence of logic levels. 

Thus a quantity in the stochastic computer is represented by a clocked 
sequence of logic levels generated by a random process such that successive 
levels are statistically independent, and the probability of the logic level 
being ON is a measure of that quantity; such a sequence is called a Bernoulli 
sequence. 

3.1. Comparison of Data Representations in Computers 

The physical reality behind the mathematical concept of "probability" 
is, of course, that the generating probability of a sequence of logic levels 

Sec. 3] Comparison of Data Representations in Computers 49 

( Q ) o I 1 1 0 1 1 1 0 1 1 I 0 I I 1 

OUTPUT FROM RATE MULTIPLIER 

( b) o 0 0 0 I I I I 1 1 1 I 1 1 1 I 

OUTPUT ,ROM DIFFERENTIAL STORE 

(e) 010 I I I I I I 0011 I 10 

(d) 1111101011111011 

(e) 0011011011110001 

( , ) 1 I 0 1 I 1 I I I 1 0 I I I 1 I 

ENSEMBLE OF STOCHA STlC SEQUENCES 

Fig. 2. Typical computing sequences in various incremental computers. 

corresponds to the relative frequency of ON logic levels in a sufficiently 
long sequence. In its use of relative frequency to convey information the 
stochastic computer is similar to the other incremental, or counting com­
puters, such as the digital differential analyzer (DDA) (34.35), operational 
digital computer (36.37), and phase computer (38.39). In all these computers, 
including the stochastic computer, quantities are represented as binary 
words for purposes of storage, and as the proportion of ON logic levels in 
a clocked sequence for purposes of computation. In previous machines, 
however, the sequences of logic levels are generated deterministically and 
are generally patterned or repetitious, whereas in the stochastic computer 
each logic level is generated by a statistically independent process. 

This distinction is illustrated in Fig. 2, which shows typical sequences 
in the various forms of computer: (a) is the output from a synchronous 
rate multiplier, or from the "R" register of a DDA, corresponding to a 
store i full-it will be noted that the ON and OFF logic levels are distri­
buted as uniformly as possible; (b) is the output of a differential store in 
the phase computer-the OFF logic levels in a cycle all occur before the 
ON logic levels, giving the synchronous equivalent of a mark/space mo­
dulated signal; (c)-(f) are samples of stochastic sequences with a generating 
probability of i-any sequence [including (a) and (b)] may occur, but the 
proportion of ON levels in a large sample will have a binomial distribution 
with a mean of t. 



50 Stochastic Computing Systems [Chapter 2 

One advantage of representing numerical data by a probability is that 
the latter is a continuous variable capable of representing analog data 
without the quantization necessary in other digital computers such as the 
general-purpose machine and DDA. However, a probability cannot be 
measured exactly but only estimated as the relative frequency of ON logic 
level in a sufficiently long sample, and hence, although quantization errors 
are absent, the stochastic computer introduces its own errors in the form 
of random variance. If we observe a sequence of N logic levels and k of 
them are ON, then the estimated generating probability is 

jJ = kiN (2) 

The sampling distribution of the variable k is binomial, and hence the 
standard deviation of the estimated probability jJ from the true probability 
p is 

a(jJ) = [p(l - p)/N]1!2 (3) 

Hence the accuracy in estimation of a generating probability increases as 
the square root of the length of the sequence examined, i.e., as the square 
root of the length, or time, of computation. 

This result enables one to compare the various forms of computer in 
terms of their efficiency in representing data. It is reasonable to say that 
the analog computer is most efficient, since it utilizes a single, continuous 
signal to represent any value of an analog variable. The digital computer 
uses a coded representation of data as binary words, which is the most 
efficient possible if only binary levels are available. The DDA uses the 
relative frequency, or count, of ON logic levels, but this is determined 
completely by the data and is the most precise count possible. The stochastic 
computer uses a generating probability, so that the count only averages to 
the correct value over an extended period. Hence the number of levels 
required by various computers to carry analog data with a precision of one 
part in N is: 

1. The analog computer requires one continuous level. 
2. The digital computer requires log2 kN ordered binary levels. 
3. The DDA requires kN unordered binary levels. 
4. The stochastic computer requires kN2 unordered binary levels. 

Here k > 1 is a constant representing the effects of round-off error or 
variance, k 10, say. The NZ term for the stochastic computer arises be­
cause the expected error in estimating a generating probability decreases as 
the square-root of the length of sequence sampled. 

Sec. 3] Round-off Error Elimination in Analog/Digital Convertors 51 

This progression 1 : (\ogz N):N:N2 shows the stochastic computer to 
be the least efficient in the representation of data, as might be expected, 
since random noise is being deliberately introduced into the data. This 
introduction of probabilistic processes, or "noise" sources, in data proces­
sing is unusual, to say the least, and before treating stochastic computation 
in general some specific examples will be given of the advantages to be 
gained through doing this. It will become apparent that the lack of co­
herency, or patterning, in stochastic sequences enables simple hardware to 
be used for complex calculations with data represented by probabilities. 

The first two examples date from before the invention of stochastic 
computing, but may be regarded as particular forms of stochastic computer; 
the first is interesting because it forms the basis of a commercial instrument, 
and the second because it introduces several of the basic operations of the 
stochastic computer. The third example is a brief case history of the develop­
ment of an adaptive element for learning machines which eventually give 
rise to the stochastic computer. 

3.2. Round-off Error Elimination in Analog/Digital 
Convertors 

A simple example of data-processing where the addition of a little 
noise can do a lot of good is in the avoidance of the cumulative effects 
of round-off error in analog-to-digital convertors. A successive-approxima­
tion digital voltmeter takes a sequence of decisions of the type: is the input 
voltage above half-scale range? If so, set the most significant digit and 
subtract half-scale voltage from the input; is the remainder above quarter­
scale range? if so, etc. The least significant digit, the Nth say, is set in the 
same way by comparison of the (N l)th remainder with 2-N times the 
full-scale range, and the residual remainder is neglected. This residue or 
round-off error can have a maximum magnitude slightly less than 2-(N+l) 

times the full-scale range (FSR). 
Suppose now that a sequence of M readings of a fixed voltage are 

averaged to obtain the best estimate of its value. There is no reason to 
suppose that the round-off errors will cancel, and indeed if the voltage is 
fixed and the convertor is accurate, the errors will all be the same in mag­
nitude and sign. Thus the mean error e in the result is still bounded by 

FSR/2N +1 < e +FSRj2N +1 (4) 

and the averaging has made no reduction in the round-off error. 
Consider now the effect of adding to the input voltage another voltage 



52 Stochastic Computing Systems [Chapter 2 

V whose magnitude lies in the same range as the round-off error, and which 
is selected at random, uniformly in this range, each time a conversion is 
made. This added voltage is too small to affect any but the least significant 
digit, but the latter is now dependent on both the input voltage and the 
random voltage. The greater the round-off error in deterministic conversion, 
the less is the probability that the least significant digit will be set in random 
conversion. Thus there will be a tendency for errors in the least significant 
digit in random conversion to cancel out on averaging. That this tendency 
is exact may be shown by determining the expected state of the least sig­
nificant digit (LSD) and hence its expected value. Let the remainder after 
determination of the (N 1 )th digit be E, 0 :s:: E FSR/2N. The LSD is 
1 if E V exceeds FSRj2N+l, and since V is evenly distributed over its 
range, 

p(LSD (5) 

Thus the expected value represented by the LSD is 

p(LSD 1)FSRj2N = E (6) 

and the average of a set of readings of the input voltage plus random noise 
has no bias or round-off error. It will of course have a variance, since it 
is based on a finite sample of a random process, and it may be shown to 
have an approximately normal distribution with variance: 

2 I e I [(FSRj2N)- I e I] 
a = 4M (7) 

Thus the standard deviation of the random conversion is less than the round­
off error of the deterministic conversion and goes to zero as the number of 
readings becomes large. 

This technique has been used to good effect in the "Enhancetron," (40) 
a device for averaging evoked potentials to decrease the effects of noise, 
or for averaging any phase-locked voltage waveform. Averaging devices 
for this purpose must use digital stores, since analog integrators have too 
short a leakage time constant. The normal practice is to sample the wave­
form at regular intervals, convert it into a 12-bit digital form, and add this 
into a digital store corresponding to the particular sampling instant. The 
enhancentron is remarkable in that it converts to a single bit, using random 
conversion to prevent the tremendous round-off error which would other­
wise accrue. The .. block diagram of Fig. 3 illustrates its operation: the in­
coming waveform is compared with a sawtooth (simulating a uniform 
random distribution) in a comparator; the output is commutated around a 

Sec. 3J linearization of the Polarity-Coincidence Correlator 

Clock 
COUNTER 

Address 

CORE 
STORE 

W 
COM""'RATOR 1---l~WL.._ 

ovdorll Fo.t IIC1wtooth, 
to be onolyzcd o.yncllronolNl with cl ocl! 

Fig. 3. Principle of the "Enhaneetron." 

53 

ring of digital stores; at a clock pulse the appropriate store is incremented 
by one unit if the output of the comparator is ON and decremented other­
wise; the ring of stores will eventually average out the noise at the input 
and the noise of random conversion, and contain a sampled representation 
of any repetitive signal whose phase is locked to their cycling rate. Thus the 
use of random conversion has replaced a 12-bit analog-to-digital convertor 
by a simple comparator, and replaced l2-bit binary addition by simple in­
crementing/decrementing. 

3.3. Linearization of the Polarity-Coincidence 
Correlator 

One of the most frequent computations on the analog computer is to 
cross-correlate two waveforms. Given two voltage waveforms with zero 
means, it is required to compute their covariance: 

] T 

J U(t)V(t)dt 
T 0 

(8) 

which is an awkward function because it involves integration over extended 
intervals and multiplication, both of which tax analog computing elements 
to their utmost. If the two waveforms have almost-Gaussian distributions, 
it may be shown that the correlation between their heavily-limited forms 
(in which only their signs are taken into account) is uniquely related to 
eT (41). If 

1 T J sign [U(t)] 
o 

[V(t)]dt (9) 

then as T--'!> 00 

(l0) 

where a is a constant dependent on the variance of U and V. 
This nonlinear relationship does not necessarily hold for non-Gaussian 



54 Stochastic Computing Systems [Chapter 2 

distributions, and does not yield. a simple additive effect if uncorrelated 
noise is added to the waveforms. Despite these limitations the polarity­
coincidence correlator is very attractive because multiplication of two num­
bers whose modulus is unity can be carried out by a simple gate or relay, 
and if the waveforms are sampled at regular intervals the integration may 
be carried out digitally by a reversible counter; thus both analog multiplier 
and integrator may be replaced by economical and reliable digital devices. 

The limitations can be completely removed if the polarity-coincidence 
correlator is converted to a simple stochastic computer by adding to the 
input voltages randomly-varying voltages with zero means and uniform 
distributions. Let ACt) be a random waveform uniformly distributed in a 
range greater than that of U(t) and having a a-function autocorrelation, 
and let B(t) be a similar uncorrelated waveform for Vet). Let PT,N be the 
sampled polarity-coincidence correlation of (U + A) against (V B): 

PT,N ~ '~lSign[U(iT/N) + A(iT/N)] sign [V(iT/N) + B(iT/N)] (11) 

Then it may be shown (41) that as T -+ <Xl 

eT a lim PT,N (12) 
N......)-IX) 

where a is a contant. 
Thus the polarity-coincidence correlator gives an unbiased estimate 

proportional to the covariance of the input signals no matter what their 
distribution, provided the signals are sampled rapidly enough over a suf­
ficient period. The addition of random noise again introduces additional 
variance into the estimate, but this can be made negligible by taking a 
longer sample of the waveforms or sampling more often; thus the power of 
this correlator may be less than that of a normal cross-correlator, but its 
accuracy is the same. 

A block diagram of one realization of a polarity coincidence correlator 
with added noise is shown in Fig. 4: the random waveforms are again 
approximated by very fast anharmonic sawtooths feeding inputs to com­
parators, on the other side of which are the waveforms to be correlated; 

U(U 

Vltl 

Fig. 4. Linearized polarity-coincidence correlator. 

Sec. 3] An Adaptive Element for Learning Machines 55 

the logic levels out of the comparator are fed to an equality gate whose 
output is ON only when its inputs are equal; the output from this gate 
represents the product of the signs of the signals plus noise, and this is 
used to determine whether a binary counter shall increment or decrement 
at a clock pulse (sampling instant); the state of the counter eventually 
represents the covariance between the inputs. This is a digital circuit, more 
economical in its realization than an analog multiplier and integrator, and 
is the classic example of the advantages to be gained through the intentional 
introduction of noise into data processors. 

3.4. An Adaptive Element for Learning Machines 

At the University of Illinois (1-3) the stochastic computer developed 
out of a study of microplasmas in Zener diodes for noise generation, and 
was intended for use in general image transformers and pattern recognizers. 
In Britain a virtually identical computing system was developed as part of 
a program of research on the structure, realization, and application of 
advanced automatic controllers in the form of learning machines at the 
Standard Telecommunication Laboratories of ITT (4-7). 

Although algorithms for search, identification, policy-formation, and 
the integration of these activities (in the STeLLA (14) learning machine), 
could be established and tested by computer simulation, there was no hard­
ware available to make construction of the complex computing structure 
required in a learning machine feasible. 

An element was required to hold the value of a weight representing 
some aspect of the accumulated experience of the machine. This weight 
had to be changed incrementally as the machine learned, and its value had 
to be multiplied by other variables in the machine. Analog and electro­
chemical elements proved unsatisfactory in this application and the decision 
was made to use standard digital flip-flops and gates. A binary up/down 
counter has the properties of an incremental store; however, while the 
weight was only required to a precision of a few bits, 1% say, the increments 
to the weight were required to be very much smaller. Rather than extend 
the counter to the precision required to accept small increments of variable 
size, it was decided to investigate the possibility of making "fractional in~ 
crements" of less than the unit increment of the counter by incrementing a 
stochastic process. Thus if an increment of the value corresponding to one 
tenth of the least significant bit was required, the counter would be jncre~ 
mented by unity with a probability of one tenth; while individual increments 
would clearly not be "fractional," on average the required effect would be 
achieved. 



56 Stochastic Computing Systems [Chapter 2 

This is the basic principle of stochastic computing, to represent analog 
quantities by the probabilities that discrete events will occur~an increment 
of one tenth of a unit is represented by a unit increment with a probability 
of one tenth that it will occur. The basic principle was immediately extended 
from its first application in the incrementing of stores, to the other com­
putations which were required. For example, if the count in the counter 
was represented by a probability proportional to it that a logic line would 
be ON, then the value of the count could readily be made to multiply 
other variables as required if they also were represented as probabilities; 
the probability that the output of a two-input AND gate will be ON is 
the joint probability that its two inputs will be ON, and this is the product 
of the individual probabilities that each of its inputs is ON. Thus a simple 
AND gate acts as a multiplier for two variables represented as probabilities. 

The adaptive element developed in this way was called an ADDlE, 
and is described in detail in later sections (Sections 4.9 and 7). Many 
variations of the ADDlE with different computational functions are now 
known, and it was the development of these which demonstrated that 
stochastic computing was, in some sense, "naturally" related to machine 
learning: computations which previously had been approximated in the 
digital machine because of the inordinate amount of computation required 
could be performed very simply by stochastic elements which had no analog 
computing equivalent (see the discussion of Bayesian prediction, Section 
10); computing processes which were previously inefficient in their use of 
hardware now made maximum use of every bit of storage (see the discussion 
of adaptive threshold logic, Section 8). While a major part of this chapter, 
and of published work on the stochastic computer, is devoted to describing 
stochastic computing elements equivalent to analog computing elements, it 
is clear that the most important aspect of the stochastic computer is that it 
provides computational elements which have no direct equivalent in any 
other form of computer; these are the elements of main interest. 

In the following section the present informal introduction to stochastic 
computing is systematized and a complete set of computing elements for 
linear representations of quantities as probabilities is described. 

4. THE uLlNEAR" STOCHASTIC COMPUTER 

In some applications of the stochastic computer, such as the Bayesian 
and Markovian estimators described later, one is dealing with the estimation 
of probabilities of external events, and the (0, 1) range of generating prob- j 

I 

Sec. 4] Linear Mappings from Analog Variables to Probabilities 57 

abilities in the computer itself has a natural interpretation. Generally, 
however, it is necessary to map some other variable into this range, in the 
same way that one maps quantities into the range of voltages of an analog 
computer. In this section we shall consider only linear transformations 
between a continuous variable and the (0, 1) range of generating probabil­
ities; other transformations are considered in Section 6 and later sections. 
The linear transformations give rise to computing structures closely allied 
to those of the conventional analog computer, and a complete range of 
computing elements, similar in function to the invertors, adders, multipliers, 
and integrators of the analog computer, will be described. 

4.1. Linear Mapping from Analog Variables to 
Probabilities 

4.1.1. Representation I. Unipolar 

Given a quantity E in the range ° E < V, represent it by the binary 
variable A with generating probability p: 

p = peA = 1) EjV (13) 

i.e., the magnitude of a positive bounded quantity is represented by a logic 
level which is always ON for maximum quantity, always OFF for zero 
quantity, and fluctuates randomly for intermediate quantities. 

Suppose the value of A is noted at each of N clock intervals, and it 
takes the value Ai (Ai = 0, I) at the ith clock pulse. Then the estimated 
value of the generating probability {J is 

N 

{J = (ljN) Ai (14) 

The expected value of p, Exp(p), is 

Exp(p) P (15) 

Thus the expected value of the estimate is independent of the number of 
samples taken. The accuracy of the estimate is, however, determined by 
its variance, and this is a function of N. 

The variance of p, Var(p), is given by the following equation: 

Var(p) Exp[({J - p)2] (16) 

It is shown in Section 5.7 that if Ai is a stationary Bernoulli sequence of 
random variables, then the expression for the variance of the estimate of 



58 Stochastic Computing Systems [Chapter 2 

its mean may be simplified to the form 

Var(p) [Exp(Al) - p21/N (17) 

Since Ai is a binary variable taking the values zero and unity only, We have 

(18) 

Hence: 
(19) 

so that 
Var(p) = (p p2)/N = p(1 - p)/N (20) 

The standard deviation of the estimated value of p is 

a(p) = [Var(p)J1/2 = [P(1 p)/N)1/2 (21) 

Thus the expected error in the estimate of p is zero when the probability 
is zero or unity, which both correspond to deterministic sequences, and 
takes its maximum value when p = 0.5; the error decreases as the square 
root of the length of the sequence sampled. 

4.1.2. Representation 1/. Two-Line Bipolar 

The above representation may be extended to bipolar quantities by 
representing the sign of the quantity as a logic level on one line, and the 
magnitude stochastically as above. This may be transformed to an equivalent 
but preferred arrangement in which positive sign and ON magnitude cor­
respond to the UP line U being ON (U = 1), while negative sign and ON 
magnitude correspond to the DOWN line D being ON (D = 1). In this 
case for a quantity E such that = V E V we have 

E/V=p(U= 1) - p(D = 1) (22) 

so that maximum positive quantity is represented by the UP lirie always 
ON, and the down line always OFF; maximum negative quantity is re­
presented by the UP line always OFF, and the DOWN line always ON; 
and zero quantity is represented either by both lines always OFF, or by 
them both fluctuating randomly with equal probabilities of being ON. 

This representation does not give rise to a unique relationship between 
the probabilities and the quantities they represent. Because two signal lines 
are used to represent a quantity, there are four possible conditions of the 
lines, and hence three independent probabilities to be determined. It is 

Sec. 4} Linear Mappings from Analog Variables to Probabilities 59 

convenient to use a mnemonic notation for these probabilities, so that: 

with the constraint that 

Then we have: 

p(U = 0, D 0) = v 

p(U 1, D 0) = u 

p(U 0, D 1) = d 

p(U I, D 1) = c 

p(U= 1) = u + c 

p(U 1) = d + c 

Hence, substituting from Eq. (22), 

E/V= u - d 

(23a) 

(23b) 

(23c) 

(23d) 

(23e) 

(23f) 

(23g) 

(24) 

which shows that the conditions where the UP and DOWN lines are both 
ON, or both OFF, correspond to zero magnitude and do not contribute 
to the quantity represented. 

The mean and variance of an estimate of the quantity represented may 
be obtained by considering a three-level, or ternary, random variable, Bi 
(Bi = 1,0, -1) at the ith clock pulse, such that 

(25) 

where Ui = I if the UP line is ON, and Di 1 if the DOWN line is ON, 
at the ith clock pulse. The expected value of Bi over N clock pulses is 

R v·O+u·1 d·-l+c·O u-d=E/V (26) 

as required. The variance of R is, as shown in Section 5.7, 

Var(R) = [Exp(Bi2) R2]/N 

= [v·O + u·l + d·l c·O (u - d)2]jN 

= [u(l - u)/N] [vel v)/N] + [2ud/N] 

[u + v - (u = v)2JjN 

(27) 

From Eq. (34) it can be seen that the variance of the estimate is mini­
mized if either d 0 (u > d) or u = 0 (u < d). Thus the minimum variance 



60 Stochastic Computing Systems 

representation of a bipolar quantity in this way is 

p(U 1) = E/V 

o 

p(D 1) = E/V 

o 

if E 2::. 0 

if E < 0 

if E 0 

if E >0 

[Chapter 2 

(28a) 

(28b) 

This still does not uniquely determine the probabilities c, d, u and v, because 
of the trivial equivalence between both lines being ON and OFF. This can 
be eliminated by assuming that both lines do not come ON together Ca 
condition which may always be converted to both lines OFF by appropriate 
gating), so that c = O. Equations (23e)-(23g), together with (28a) and 
(28b), then determine a unique, minimum variance representation, which 
is characterized by only the UP line, or only the DOWN line, ever being 
active, depending on whether the quantity represented, E, is positive or 
negative, respectively. The values of the generating probabilities for this 

representation are: 
v = 1 I E/VI (29a) 

u E/V if E>O 
(29b) 

=0 if E<O 

d -E/V if E<O 
(29c) 

=0 if E>O 

c 0 (29d) 

It may be noted, and will be demonstrated later, that although the minimum 
variance representation may be established initially, it is not necessarily 

maintained in a computation. 
A further constraint upon the four probabilities c, d, u, and v may 

be obtained if it is assumed that the probability of one line being ON is 
independent of the probability that the other line is ON. Then the probability 
of both lines being ON is equal to the product of the probabilities that each 

will be ON, i.e., 
p(U 1, D 1) p(U = l)p(D 1) 

So that, from Eqs. (23d), (23!), and (23g) we have 

U (u ~- c)(u -r v) 

(30) 

(31) 

Sec. 4] Linear Mappings from Analog Variables to Probabilities 61 

which, by substitution from Eq. (23e) may be put in the form 

ud cv (32) 

the condition for statistical independence between UP and DOWN lines. 
It is clear that if c 0, then either u or d must also equal zero if Equation 
(29c) is to be satisfied. Hence the minimum variance representation pro­
posed above is the only one in which the lines are statistically independent 
and cannot both be ON together. 

4.1.3. Representation Ill. Single-Line Bipolar 

Alternatively, a bipolar quantity E (- V E V) may be represented 
by a binary variable C on a single line using the transformation 

p = p(C = 1) (E/2V) + t (33) 

i.e., ~aximum positive quantity is represented by a logic level always ON, 
maXImum negative quantity by it always OFF, and zero quantity by a 
logic level fluctuating randomly with equal probability of being ON or OFF. 

The inverse transformation is clearly 

E/V 2p - 1 (34) 

This is a linear transformation of the expected value of the generating 
probability, and if fi is an estimate of p obtained as in Section 4.1.1, then 
the best estimate of E/V, EjV, is 

E/V= 2fi - I (35) 

The variance of this estimate may be obtained from Eq. (20) using the r(}.SuIt 
of Section 5.7: 

Var(EjV) = 4p(1 - p)/N [1 - (E/V)2]/N (36) 

Hence the variance of the estimate of E is zero when E has its maximum 
positive or negative value, and the variance is maximum when E is zero. 

This result may be contrasted with the corresponding results for the 
minimum variance version of representation Il, where the variance is zero 
both for extremal values of E and for zero value of E. This difference be~ 
comes important when the zero value of a variable is critical to the solution 
of a problem; e.g., if E were the error in a control system. In this event 
representation Il is to be preferred, while otherwise representation III re­
quires less lines, and hence less computational hardware. 



62 Stochastic Computing Systems [Chapter 2 

4.2. Stochastic Computing Elements 

The computing elements of a stochastic computer are networks of 
gates and flip-flops, i.e. finite automata, whose inputs are Bernoulli se­
quences of logic levels representing numerical data. The outputs of the 
automata are generally also Bernoulli sequences, and it is the relationship 
between the generating probabilities of input and output sequences which, 
together with the transformation mapping analog variables into probabil­
ities, determines the computation performed. 

As an example of the use of logic gates for analog computations con­
sider a two-input, single-output gate for binary variables. Such a gate can 
realize one of the sixteen different logical functions of two binary variables, 
and the particular function realized may be represented by a table of output 
values corresponding to each of the four different conditions of the input 
lines. If the input variables are A and B and the output is C, then the table 
of values of C for an AND gate is as shown in Table I. If now a second 
table is constructed of the probabilities of occurrence of each input config­
uration, so that for A and B independent Bernoulli sequences, the prob­
abilities of the four input conditions are as shown in Table 11, then cross-

TABLE I 

Values of Output C Corresponding to Inputs A and B for an AND Gate 

B 

o 

B 

o 

A = 0 

o 

o 

TABLE 11 

A = 0 

c 

A = 1 

o 

c 

A = 1 

[I - p(A)][1 - p(B)] p(A)[1 - p(B)] 

[I - p(A)](p(B) p(A)p(B) 

Sec. 4] Invertors 63 

TABLE III 

Table of Values for an OR Gate 

c 
B 

A = 0 A = 1 

o o 

multiplication of the corresponding entries in the two tables and summation 
of the results gives the generating probability of the output. 

Thus from Tables I and 11 we get for an AND gate 

p(C) = p(A)p(B) (37) 

The table for an OR gate is given in Table Ill; from this the generating 
probability of the output of an OR gate is 

p(C) = p(A)[1 - p(B)] + [l - p(A)]p(B) + p(A)p(B) 

= peA) + p(B) - p(A)p(B) (38) 

Thus, insofar as the probabilities themselves are concerned, an AND gate 
performs multiplication, and an OR gate performs imperfect addition [Eq. 
(38) is a good approximation to addition if peA) and p(B) are small]. The 
overall calculation performed also depends on the transformation represent­
ing numerical quantities as probabilities. In the following sections standard 
analog computing elements for each of the three representations defined 
above are systematically described and analyzed. 

4.3. Invertors 

To multiply a quantity in representation 11 by -1 requires only the 
interchange of UP and DOWN lines (Fig. 5a). In representation III a 
simple logical invertor whose output is OFF when its input is ON performs 
arithmetic inversion (Fig. 5b). There is clearly no inverting element in 
representation I, since negative quantities cannot be represented. 

The inverting action of the logical invertor of Fig. 5b may be confirmed 
by consideration of the relationship between the generating probability of 



64 Stochastic Computing Systems [Chapter 2 

(a) 

(b) 

Fig. 5. Stochastic invertors. 

its input sequence, PI and the generating probability of its output sequence, 
Po; since the output is OFF when the input is ON, we have 

Po = 1 PI (39) 

From Eq. (33) the relationship between these probabilities and the quan~ 
tities they represent is 

Pi t.EdV + t (40) 

and hence 
(41) 

From the symmetry of Equations (27) and (36) it is clear that multiplication 
by 1 does not change the variance of the quantity represented. 

4.4. Multipliers 

4.4.1. For Representation I 

To multiply together two quantities in representation I, a simple AND 
gate suffices (Fig. 6a). If the two inputs to the gate have generating probabil­
ities PI and P2' and the output has a generating probability Po, then, since 
the output is ON only when both inputs are ON, we have 

Po = PIP2 (42) 

From Eq. (13) the relationship between these probabilities and the quantities 
they represent is 

Pi = Ei/V (43) 

and hence 
(44) 

Sec. 4] Multipliers 65 

( b) 

( c ) 

Fig. 6. Stochastic multipliers. 

This is multiplication of El by E2 , normalized with respect to the range of 
the variables, so that the result cannot lie outside the range of representation. 

From Eq. (20) the variances of estimates of the Pi over N clock pulses 

are 
(45) 

Substituting for Po from Equation (42), we bave 

The variances of estimates of PI and P2 are not themselves sufficient to 
determine that of Po, because they do not uniquely determine the correspond-

ing probabilities. 

4.4.2. For Representation 11 
For multiplication of quantities in representation n, since they are 

bipolar and two positive quantities, or two negative quantities, must multiply 
together to give a positive quantity, it is required that the UP output be 
ON when both UP inputs are ON, or when both DOWN inputs are ON, 



66 Stochastic Computing Systems 
[Chapter 2 

and that the DOWN output should be ON when one UP input and one 
DOWN input is ON. This may be realized by the gating shown in Fig. 6b. 

If the four conditions of the input and output lines have probabilities 
as defined in Eqs. (23a)-(23d), indexed by 0 for the output, and I and 2 
for the inputs (so that, e.g., the probability that both output lines will be 
ON is co), then the equations governing the output probabilities are 

Uo = U1UZ + d1dz 

do = u1dz d1u2 

Hence, from Eqs. (48) and (49) we have 

(47) 

(48) 

(49) 

(50) 

(51 ) 

Since, from Eq. (24b) the relationship between these probabilities and the 
quantities they represent is 

EdV U,: - di (52) 
we have 

(53) 

which is again normalized multiplication of El by E
2

• 

If both quantities represented on the input lines to the multiplier are 
in the minimum-variance form of Eqs. (29a)-(29d), then at most one of 
the four terms u1UZ , d1d2 , u1d2 , and dIuZ is nonzero. Hence, from Eqs. (48) 
and (49) either Uo or do is zero, so that the output representation also has 
minimum variance. Thus the product of two quantities in the minimum­
variance form of representation II is also represented with minimum 
variance. 

The actual variance of an estimate of the quantity represented at the 
output may be obtained by consideration of Eq. (27) for the input and out­
put variances: 

(54) 

Substituting for (uo do) from Eq. (51), we have 

Var(Eo/V) = (u I + VI) Var(E2/V) + (u2 + V2) Var(Et/V) 

- NVar(Et/V) Var(E2/V) (55) 

Sec. 4] Squarers 67 

4.4.3. For Representation III 

In representation III again two quantities of like sign must multiply 
together to give a positive quantity, so that a gate is required whose output 
is ON when its inputs are either both ON, or both OFF. Figure 6c shows 
such a gate whose output is ON only if its inputs are equal, and it can be 
seen to be an EXCLUSIVE-NOR function, or inverted half-adder. 

If the two inputs to the gate have generating probabilities PI and P2 
and the output has a generating probability Po, then the relationship be­
tween input and output probabilities is 

(56) 

From Eq. (33) the relationship between these probabilities and the quantities 
they represent is 

[Ed2V] (57) 

so that, substituting these values in Equation (56), 

Eo E1E2/V (58) 

The variances of estimates of the input and output variables over N 
clock pulses in representation III are, from Eq. (36), 

Var(Ei/V) [1 - (EdV)2]/N (59) 

so that, substituting from Eq. (58), 

Var(Eo/V) = Var(E1/V) + Var(E2 /V) NVar(Et!V) Var(Ez/V) (60) 

4.5. Squarers 

It is convenient to represent any of the multipliers described in the 
previous section, and shown in Fig. 6, by the analog multiplier symbol of 
Fig. 7a. An important phenomenon is illustrated by the use of any of the 
mUltipliers as a squarer. If the two inputs to the multiplier are connected 
together, then: in representation I (Fig. 6a) the output is the same as the 
input; in the minimum variance form of representation II (Fig. 6b) the 
output is the modulus of the input; and in representation III (Figure 6c) the 
output is always ON. . 

These difficulties arise because we have assumed that the stochastIc 
input sequences are statistically independent in obtaining the r~sul~s of the 
previous section. Fortunately, a statistically independent rephcatlOn of a 



68 Stochastic Computing Systems 
[Chapter 2 

(a) MULTIPLIER SYMBOL 

(b) SQUARER 

Fig. 7. Multiplier used as a squarer. 

Bernoul1i sequence ma! be obtained by delaying it through one clock pulse. 
~he delay may b~ r~ahzed by placing a D-type flip-flop in one of the input 
hnes to the multIplier (two flip-flops for UP and DOWN I' . . . ' Ines, In repre-
sentatI?n Ill, to realIze a stochastic squarer as shown in Fig. 7b. 

FlIp-~ops used i~ ~his w~y act as stochastic isolators, performing no 
computatIOn but statIstIcally Isolating two cross-correlated lines. The ne­
ce~slt~ for sto~hastic isolation in the squarer is an example of a general 
prInCIple applymg to all stochastic computation. It is assumed that when­
eve: sequences of logic levels are brought together at the inputs of a com­
pu.tll1g element they are independent Bernoulli sequences; i.e., they are 
neither cross-correlated nor autocorrelated. Correlation effects may, if nec­
~ssary, be r~moved by ~se of a dela~ line of random length. For example, 
If a stochastI~ sequence IS fed to a shift register and the output is connected 
randomly, WIth equal probability, to any of the stages of the shift register 
~hen the generating probability of the output will be equal to that of th~ 
ll1put; however, a Markov chain of depth N (Section 5.4) at the input will 
be r~duced to ~ne of depth zero Ca Bernoulli sequence) at the output, 
prOVided the shift register has more than N stages. 

4.6. Summers 

. Having seen how readily inversion and multiplication may be performed 
by SImple gates,. ?ne is tempted to assume that similar gates may be used 
to perfor~ addItIon. However, this is not so, and stochastic logic elements 
must be Introduce<;l to sum the quantities represented by two stochastic 
sequences. For ex~mple, c~nsider two stochastic sequences in representation 
III one representIng maximum positive quantity and hence always ON, 

Sec. 4] Summers 69 

the other representing maximum negative quantity and hence always OFF. 
The sum of these quantities is zero, and this is represented by a stochastic 
sequence with equal probabilities of being ON or OFF. A probabilistic 
output cannot be obtained from a deterministic gate with constant inputs, 
so that stochastic behavior must be built into the summing gates of a 
stochastic computer. 

An alternative way of viewing the problem of summation in the stoch­
astic computer is to consider whether a computation can generate a result 
which is outside the range of representation of the computer. Probabilities 
lie in the range [0, I) but the sum of two probabilities, as is required in 
representation I, lies in the range [0, 2] and cannot be itself a probability. 
The weighted sum of two probabilities, ap1 + (1 - a )P2' where ° aI, 
does lie in the range [0, 1], however, and such a weighted sum can be 
formed accurately, and without approximation. 

The weighted sum of the generating probabilities of binary sequences 
on several different lines may be obtained by selecting one of the lines at 

. random, with a certain probability of selecting each one, and connecting 
the selected line to the output for one clock interval. If there are k lines, 
each with an independent Bernoulli sequence of generating probability Pi 
(0 i < N), and the probability that the ith line will be connected to the 
output is ai, then the generating probability of the output, Po, is 

N 

Po = I: aiPi (61 ) 
i=1 

It is important to note that the selection probabilities (ai) are not statisti­
cally independent, in that only one input line must be connected to the output 
at a time. In practice, they are obtained by gating together several lines hav­
ing independent sequences-effectively converting a binary code to a "one­
in-N-line," or linear, code. 

Figure 8 shows a two-input weighted summer for the generating prob­
abilities PI and P2 of binary sequences on the two lines Xl and Xz. The 

:',: t:t:D 
3 

Fig. 8. Stochastic weighted summer. 



70 Stochastic Computing Systems [Chapter 2 

state of a third line X3 determines which of these two lines shall be switched 
to the output Xo. It will be noted that this gate is virtually identical to the 
multiplier for quantities in representation III (Figure 6c). The relationship 
between generating probabilities at the inputs and that at the output is 

(62) 

Equation (45) gives the variances of estimates of the Pi over N clock 
pulses in terms of the generating probabilities, and, substituting for Po, 
we have 

The final term of this equation may be regarded as the noise variance in­
troduced by the stochastic summing process. 

4.6.1. For Representation I 

The summer of Fig. 8 acts directly to sum quantities in representation 1. 
Equation (43) gives the relationship between the input and output prob­
abilities and the quantities they represent, and, substituting this in Equa­
tion (62) (except for P3 which is regarded as a weight), we have 

(64) 

The variance of an estimate of the output may be readily obtained from 
Eq. (63). 

4.6.2. For Representation 1/ 

Two summers of the form shown in Fig. 8 may be used-one to sum 
the UP lines of the input to provide the UP line of the output, and the other 
to sum the DOWN lines of the inputs to provide the DOWN line of the 
output. From Eq. (62) we have 

so that 

(65) 

(66) 

(67) 

and, substituting from Eq. (52) for the quantities represented by these 
probabilities, Eq. (64) is again obtained. 

Sec. 4] 
Summers 

X, 

<;" 9 Minimum variance summer for representation 11. rIg .. 

71 

Equation (54) gives the variances of estimates of the quantities .re­
presented at the input and output of the summer in terms of the generatmg 
probabilities. Substituting for Uo and do from Eqs. (65) and (66), we have 

Var(Eo/V) = P3 Var(E1/V) (1 P3) Var(E2 /V) 

+ [(E1fV) - (E2/V)]2 Var(Pa) (68) 

From Eqs. (65) and (66) it is clear that even if both El ~n~ E2 ~r.e 
represented in minimum variance form, then Eo is not necessarIly In minI­
mum variance form. For example, if U l and d2 are both zero, an~ U2 and d j 

are nonzero (quantities of opposite sign~), t~en both Uo and :o.w~ll be n?n­
zero. In the particular case of equal weIghtIng, when P3 = 2'. It IS posslb:e 
to reduce the variance of the output by the additional gatmg shown In 
Fig. 9, which allows positive signals on one set of inputs to cancel ~ut 
negative signals on the other. The relationship bet,;een ~he generatmg 
probabilities of the output and input sequences for Fig. 9 IS 

Uo P3(1 - d2)Ul + (l - P3)(1 - d j )u2 

so that 

Uo do PiUl - d l ) + (1 - Pa)(U2 

(69) 

(70) 



72 Stochastic Computing Systems [Chapter 2 

Hence if Ps 

(72) 

so that, substituting for the quantities represented from Eq. (52), we have 

(73) 

However, adding Eqs. (69) and (70), we have 

(74) 

Substituting (72) and (74) in (54), we have 

Var(1!o/V) ! Var(1!l/V) + ! Var(1!2/V) + {[(Et/V) (E2/V)]2/4N} 

[(u1d2 uA)/N] (75) 

Comparison of Eq. (75) with Eq. (68) shows that the variance of the 
output is reduced by the term (uld2 U2dl)/N. 

The effect of this is best seen by considering the two inputs to be equal 
in magnitude, but opposite in sign, and in minimum variance form: Ul = d

2 

a, and U2 = dl = 0, say. From Eq. (68) the variance of the output of a 
summer based on Fig. 8 is a/4N, while from Eq. (75) for the summer of 
Fig. 9 it is a(l - a)/4N. Hence the larger the quantities to be cancelled 
out, the greater is the advantage of the more complex summer. 

4.6.3. For Representation III 

The summer of Fig. 8 may be used directly to add quantities in re­
presentation Ill; substitution of Eq. (57) in Eq. (62) leads immediately 
to Eq. (64). Substitution of Eq. (59) in (64) gives 

Var(1!o/V) = Ps Var(1!dV) + (1 - Ps) Var(1!2/V) 

+ [(EdV) - (E2/V»)2 Var(Pa) (76) 

4.7. Integrators 

The elements so far considered have all involved only combinational, 
or memoryless, logic elements. In the three linear representations discussed, 
the operations of inversion, addition (and hence subtraction), multiplication, 
and operations derived from these may be performed with combinational 
elements alone. For, other operations, such as division and square-rooting, 
implicit functions must be generated using integrators, and clearly inte­
gration itself involves storage, and hence the use of elements with memory. 

Sec. 4] Integrators 73 

Stochastic computing systems with nondigital storage elements have been 
described and constructed, but in this present exposition only digital storage 
elements, based on flip-flops, will be considered. The behavior of stochastic 
computing systems containing sequential circuits is far more complex than 
those constructed 'solely of combinational circuits, and the detailed discus­
sion of this behavior is postoponed to Section 7, which follows an outline 
of some of the necessary stochastic automata theory in Section 5. In the 
present section only the hardware form of suitable stochastic integrators 
and superficial demonstrations of their behavior will be discussed. 

The basic integrator in any form of incremental computer, such as the 
DDA or operational digital machine, is a counter, usually a binary counter 
which may be incremented or decremented by unit count. A symbol for 
such a counter is shown in Fig. lOa; the count increases by unity at a clock 
pulse if the INCREMENT line is ON and DECREMENT line is OFF, 
whereas it decreases by unity at a clock pulse if the converse situation holds. 
If the lines are both OFF or both ON, then the count remains unchanged. 

It is convenient to consider the counter as having N + 1 states, labeled 
So, SI' ... , S N, and to assign a numerical value to each state, Si, where Si 

is the output of the counter when it is in its ith state. For example, a linear 
mapping of the count in the counter into the range (0, 1) is 

(77) 

At any given clock pulse the counter will be in some state S, S = Si say, 
and its output will have some value s, S = Si' In operation, if the counter 
is driven by stochastic sequences, its actual state and output may be un-

INCREMENT 

oiCREMENT 

rE] ,. 

OFF 

INe 

,. DEC 

(0) COUNTER 

COUNTER 

(b) REPRESENTA nON «(l) 

(,I REPRESENTATION (b) 

Fig. 10. Stochastic integrators. 



74 Stochastic Computing Systems [Chapter 2 

predictable, and instead only the probability ni that it is in the ith state 
may be known. In this event the output is a random variable, and its ex­
pected value s may be defined: 

N 

S = 2: nisi 
i=o 

(7S) 

If the input lines to the counter are driven from a pair of Bernoulli 
sequences such that the probability that the INCREMENT line will be 
ON and the DECREMENT line OFF is w, and the probability that the 
DECREMENT line will be ON and the INCREMENT line OFF is e, 
then the expected change in the output of the counter at a clock pulse is 

os = (w - e)/N (79) 

If the clock interval is T seconds, then the expected change in the output 
of the counter over a period of time may be written 

11.-1 11.-1 

senT) 5'(0) 2: os(mT) 2: [w(mT) e(mT))jN (SO) 
m=O m=O 

This last expression may be seen as a simple, zero-order numerical inte­
gration formula for Wet) - e(t), and the equation written in approximate 
form: 

1 It set) -= s(O) + WT 0 wCr) - e(r) dr (81) 

Thus the counter may be regarded as an integrator with respect to time, 
whose gain is l/NT. More complex integration formulas than Eq. (80) are 
generally used for numerical integration, since this requires fine quantiza­
tion of time to achieve a reasonable accuracy. However, in the stochastic 
computer time has to be finely quantized anyway because of the inefficiency 
of the stochastic representation of quantity, and a more complex formula 
gives no advantage. The exact relationship between analog integration and 
the stochastic behavior of the counter is discussed in more depth in Sec­
tion 7. 

4.7.1. For Representation I 

The counter may be used as an int~grator for quantities in all three 
linear representations previously described. In representation I only positive 
quantities are represented, and hence the counter need only increment. 
This is achieved by connecting the line representing the quantity to be 

Sec. 4] Integrators 75 

integrated to the INCREMENT line of the counter and setting its DE­
CREMENT line OFF (Fig. lOb). If El is the quantity being integrated, and 
Eo is the quantity represented by the counter in the counter, we have 

Hence from Eq. (81) 

w=EdV 

e 0 

s Eo/V 

1 It Eo(t) -= Eo(O) = NT 0 EIC.) dr 

4.7.2. For Representation " 

(82) 

(83) 

(84) 

(85) 

In representation 11 the UP and DOWN lines carrying the sequences 
representing the quantity to be integrated may be connected directly to 
the INCREMENT and DECREMENT lines, respectively, of the counter 
(Fig. lOc). Since the output of the counter now has to cover the range of 
bipolar quantities, it is convenient to use a transformation similar to that 
of representation III between the expected output of the counter and the 
quantity it represents: 

Eo/V = (25' - 1) (S6) 

If the quantity represented on the input lines is El, represented by prob­
abilities VI' Ut, dB and Cl [Eqs. (23a )-(23d) J then 

e d1 

E1IV = ul - d1 = W - e 

Substituting these in Eq. (81), the integration equation is obtained: 

(87) 

(88) 

(89) 

(90) 

It will be noted that the effective gain of the integrator has been increased 

to 2INT. 
In many applications a two-input summing integrator which integrates 

the sum of two variables is required. This may be realized, in any of the 
representations, by placing the appropriate summer (Fig. 8 or 9) before the 



76 Stochastic Computing Systems [Chapter 2 

INC 2 

INC 1 

COUNTER 

DEC 1 

DEC 2 

Fig. 11. Two-input summing integrator for representation Il. 

integrator. However, there is an alternative possibility for two-input, equally­
weighted integration, using a counter which can increment or decrement by 
either one or two units. Figure 11 shows appropriate gating for two quan­
tities in representation 11 to be summed and integrated in such a counter: 
the INCREMENT 2 line is ON only if both UP lines are ON; the IN­
CREMENT 1 line is ON if either, but not both, UP lines are ON; similar 
logic applies to the DECREMENT and DOWN lines. Using the same 
nomenclature for input quantities and probabilities as before, we have that 
the expected change in s, bs, is 

Os = [2UIU2 UI(1 - U2 - d2) + u2(1 - UI -dl ) dl{l U2 d2) 

- d2(1 - UI - dl ) (2dl d2)J/N 

= (uI - dl + U2 d2)/N (91) 

Hence, by the same argument that led to Eqs. (81) and (90) / 
(92) 

This two-input integrator is'readily realized in hardware, but suffers 
from one defect in that it is rather more difficult to analyze theoretically 
than the standard counter preceded by a summer. The source of this dif­
ficulty is the manner in which the cottnter may "jump" over a state in its 
chain of states when it increments, or decrements, by two units. The normal 
counter has to pa'ss through every state in counting from one extremity to 
the other, and it will be found (Section 7) that this greatly simplifies the 
analysis of its behavior. 

Sec. 4] Integrators 77 

4.7.3. For Representation III 

The counter may be used as an integrator for quantities in representa­
tion III by connecting the line representing the quantity to be integrated 
both to the INCREMENT line of the counter and also, inverted, to the 
DECREMENT line of the counter (Fig. 12a). If the generating probability 
of the input sequence is PI' representing a quantity El according to Eq. (33), 
then the increment and decrement probabilities are 

W PI 

e = 1 PI 

so that from Eq. (35) 

Substituting in Eq. (81), we once again obtain Eq. (90). 

(93) 

(94) 

(95) 

The integrator of Fig. 12a only utilizes the two possibilities of the 
counter, either incrementing or decrementing. By taking advantage of the 
third possibility, that no change occurs, it is possible to realize a two­
input, summing integrator without using the modified counter necessary 
for representation Ill. Figure 12b shows the required input gating; the 
counter increments by unity only if both input lines are ON; it decrements 
by unity only if they are both OFF; otherwise it does not change its count. 
Using the notation of Eq. (57) for quantities and probabilities, we have for 
the increment and decrement probabilities 

e = (1 - Pl)(l - Ps) 

[El-'l!!lo---~····~DINECC I _______ ...J 
~ COUNTER 

(a) SINGL E - INPUT 

(b) TWO. INPUT SUMMING 

Fig. 12. Integrators for representation Ill. 

(96) 

(97) 



78 Stochastic Computing Systems [Chapter 2 

so that 
IV e Pl + Pa- 1 = [(2Pl - 1) + (2Pa - 1)]/2 

= (El + E2)2V (98) 

Hence, substituting in Eq. (81), we have 

1 -t 

Eo(O) + NT J 0 E1(7:) + E2(7:) d7: (99) 

4.8. Stochastic Output from Integrators 

The counters in the integrators described in the previous section re­
present the integral as a stored count in parallel binary form, and have no 
stochastic output which may be used for further stochastic computation. 
Such an output may be obtained by comparing the count in the counter 
with a random variable taking the integer values 0 through N - 1 with 
equal probability. If the output of the comparator is ON when the count 
in the counter is greater than the random variable, then the probability 
that the comparator output will be ON, Po, when the counter is in its ith 
state is 

Po = i/N Si (100) 

The generation of the random variable for comparison is not a trivial 
problem, and will be discussed later in Section 4.15 in the context of the 
general requirement for probability generators in the stochastic computer. 

A counter with the necessary generator and comparator is shown in 
Fig. l3a, and it is convenient to subsume these within the counter symbol, 
presenting the comparator output as a stochastic output of Fig. l3b. This, 
together with the input arrangements of Figs. lOb and 12b, is a complete 
integrator for representations I and Ill, respectively. 

In representation II the UP line of the output may be driven ~tly 
from the comparator output, and the DOWN line from the inverted output 
(Fig. l3c). We then have 

Uo Po 

so that 

Po 

(101) 

(102) 

(103) 

which, from Eq. (8'6), is the required relationship. This is not a minimum 
variance output, however, and an alternative form of counter/comparator 
may be used in which the counter has 2N + 1 states,labeled - N . .. 0 ... + N 

Sec. 4] The ADDlE 

INC 

OEC 

STOCHASTlC 
OUTPUT 

(0) OUTPUT GENERATION 

INC ] 
~~~O=~~-L _____ C_OU_N_T_E_R ____ ~~----~>~ ~ _ STOCHASTlC 

OUTPUT 
(b) SYMBOL 

u 

INC ~ 
: DEC COUNTER 
~- 0 

(c) REPRESENTATION (b) 

Fig. 13. Stochastic output from counters and integrators. 

79 

and the generator generates a random variable, as before, in the range 0 
through N 1. The magnitude of count in the counter is compared with 
the random variable to determine whether an output line shall be ON, and 
the sign of the count determines which line this shall be. If the random 
variable is R, then the relationship between count and output probabilities 
when the counter is in its ith state is 

so that 

Uo = (I i 1 + i)/2N 

do (I i 1 i)/2N 

Uo - do i/N 

(104) 

(105) 

(106) 

which, since i now takes both positive and negative vaules, is the required 

result. 

4.9. The ADDlE 
It is convenient to use the standard analog integrator symbol (Fig. 14a) 

for the two-input, summing stochastic integrators with equal weighting 
shown in Fig. 12b. An important configuration is such an integrator with 



80 Stochastic Computing Systems [Chapter 2 

[> [/(E1+E2) d~ 
lIO 

(al INTEGRA.TOR SYMBOL 

19 [E]-llll_-- [[&-kt E d~ 
110 

(bl A.DO) E 

(.1 SECOND - ORDER FILTER 

Fig. 14. Integrator configurations. 

inverted feedback from its stochastic output to one of its inputs (Fig. 14b). 
The equivalent analog computing configuration is an operational amplifier 
with a feedback network consisting of a resistor and capacitor in parallel. 
This is a "leaky integrator," and takes an exponential, or running, average 
of the quantity at its input, and has a transfer function of the form 1 j(as+b). 
A similar result may be proved for the stochastic integrator with neg~tive 
feedback, which acts as an averaging, or smoothing element for the quat\tity 
represented at its input .. 

The true significance, and importance, of this configuration is, however, 
best appreciated by consideration of the relationship between the expected 
count in the counter and the generating probability of its input. In terms of 
the notation of Section 4.7, if s is the expected fractional count in the 
counter which has N + 1 states, then, for a Bernoulli sequence of generating 
probability p at the input, it may be shown that s tends exponentially to­
ward an unbiased estimator of p, with time constant NT: 

senT) p + [s(O) - p]e-nIN (107) 

Sec. 4] The ADDlE 81 

The final variance of s may be shown to be 

Var(s) = p(l p)jN (l08) 

Thus the integrator with feedback acts to form an estimate of the 
generating probability of a sequence of logic levels in the form of a count 
in a digital counter. This element was, as described in Section 3.3, the first 
element of the stochastic computer to be invented, primarily as a probability­
estimating device for learning machines, and it was originally called an 
"ADDlE" (ADaptive DIgital Element). The ADDlE converts a probability 
to a parallel number and hence acts as a natural interface between the 
stochastic computer and general-purpose machines, or between stochastic 
representations and numerical representations of quantity. 

The use of an ADDlE as a readout device for probabilities throws new 
light on the data representation in the stochastic computer. From Eq. (I08) 
it may be seen that the variance of the count in the counter decreases with 
the number of possible states of the counter. However, from Eq. (107) we 
see that the time taken for the count in the counter to become an estimate 
of p increases with the number of counter states. Hence any quantity re­
presented linearly in the stochastic computer may be read out to any re­
quired accuracy by using an ADDlE with a sufficient number of states, 
but the more states, the longer is the time constant of smoothing. If the 
quantities represented in the computer are static and do not vary with time, 
so that the corresponding Bernoulli sequences are stationary, then this 
increased time constant would only affect the speed of computation. If, 
however, as is required in practice, these quantities are time-varying, then 
the smoothing acts to reduce their higher harmonic content, and restricts 
the bandwidth of the stochastic computer. 

It may be shown that the distribution of the count in the counter is 
binomial, and hence the source of variance in s may be regarded, for rea­
sonably large N, as a Gaussian noise source added to the quantity repre­
sented by the generating probability p. The variance of s, in representation 
Ill, is then the energy ofthis noise source. From Eqs. (107) and (108) we have 
the relationship 

(Noise energy) X (Bandwidth) :: IjT (109) 

Thus, regardless of the actual output arrangement, there is a fundamental 
constraint on any stochastic computer, that its noise/bandwidth product 
can only be improved by decreasing the clock period (i.e., increasing the 
clock frequency). For a given clock frequency, accuracy can be improved 
only at the expense of bandwidth, and vice ver/ia. However, this tradeoff 



82 Stochastic Computing Systems [Chapter 2 

may be manipulated as required by use of readout devices with an appro­
priate number of states, but without any other change in the computing 
elements. 

The full theory of the ADDlE and similar sequential stochastic ele­
ments is developed in Section 7. 

4.10. Integrators with Feedback 

The ADDlE is the simplest example of an integrator with negative 
feedback used for smoothing. Other smoothing networks may be set up 
using classical linear network theory as applied to the design of active 
filters. Figure 14c shows a simple second-order filter with variable natural 
frequency and damping ratio, realized by the use of two stochastic inte­
grators in cascade. The second integrator is connected as an ADDLE and 
receives the damping feedback, while the first integrator receives its feed­
back from the inverted output of the second integrator, and hence provides 
oscillatory negative feedback. 

If the first integrator has M 1 states and the second integrator has 
N 1 states, then the relationship between the quantities represented at 
their inputs and outputs, as labeled in Figure 14c is, from Eq. (99) 

Hence we have 

Eo (El Eo)/NT 

(Rz - Eo)/MT 

(110) 

(Ill) 

(112) 

Thus Eo follows E2 through a stable, second-order transfer function whose 
undamped natural frequency is 

1 /2nT( M N)1/2 ~13) 

Fig. 15. Response of second-order stochastic filter. 

Sec. 4] Dividers and Square-Root Extraction 83 

and whose damping ratio is 

k = (M/N)l/2/2 (114) 

Typical step responses of the second-order stochastic transfer function 
are shown in 15 for the two conditions M 210, N 210 and M = 210, 

N = 29. These can be seen to be identical in form to those which would 
be produced by standard analog computing elements, with the addition of 
a small amount of random noise. 

4.11. Dividers and Square-Root Extraction 

The computing elements described so far make available a complete 
complement of computing elements for the normal arithmetic operations 
of the analog computer-addition, subtraction, multiplication, and inte­
gration. Many other operations, in particular, matrix arithmetic and the 
solution of linear differential equations, can be realized by combinations 
of these elements. However, there are other operations, such as division, 
square-root extraction, and switching functions, which cannot be set up 
directly in terms of these elementary operations. For many of these, ap­
proximate computational processes are available which can be used to 
attain any desired standard of accuracy, usually at the expense of comput­
ing speed or bandwidth. In Section 6 some alternative forms of stochastic 
data representation are discussed which enable a wider range of basic 
operations to be performed-in particular, division. In the present section 
some approximate procedures are outlined for the linear representations 
discussed so far. 

Division is inherently difficult when the range of quantities represented 
is finite, because division by a small enough quantity leads to a result outside 
the range of representation, and hence a result that must be approximated. 
Addition of two probabilities Pl and P2 also leads to a result, (PI P2) 
which is outside the range of probabilities. In Section 4.2 it was shown that 
an OR gate may be used for approximate addition; it forms the result 
(PI P2 PIP2), which is a reasonable approximation when either PI or P2, 
or both, is near zero. In Section 4.6.1 it was shown that a weighted sum, 
(PI + P2)/2, could be formed exactly. Clearly, no such exact result is possible 
for division, as the result of a computation may be infinity, and cannot be 
scaled to lie within the range of the computer. However, approximations 
of the first kind are readily obtained, particularly through the use of inte­
grators in "steepest-descent" configurations. 

A simple circuit which gives an approximate form of division is shown 



84 Stochastic Computing Systems [Chapter 2 

10 FF 
k 

CLOCK 

Fig. 16. Approximate divider. 

in Fig. 16: a JK flip-flop is driven by two lines such that at a clock pulse it 
triggers into the state SA if the line Xl is ON alone; it triggers into SE if 
the line X 2 is ON alone; it reverses its state if both lines are ON; and it 
remains in the same state if neither line is ON. The output of the circuit· 
comes from one side of the flip-flop, and is ON when it is in state SA, 
and OFF when it is in state SB' If the generating probability of the sequence 
on Xl is PI' and that on Xa is P2, then the probability that when the f1ip­
flop is in S B it will change to SA is PI' and the probability of the reverse 
transition wheI\}t is in SA is pz. If Po is the generating probability of the 
output sequence, then the probability that the flip-flop is in SA is also Po, 
and the probability that it is in S B is (1 Po). The expected occurrence of 
transitions from SA to SE is (l PO)PI' and this must equal the expected 
occurrence of transitions in the reverse direction, popz; hence 

(115) 

If PI is very much smaller than P2' then Po '" PI/Pa; clearly, for fixed PI' 
as P2 itself becomes smaller, the approximation becomes less exact. 

A single JK flip-flop acts as an approximate divider for probabilities, 
and hence for quantities in representation I. A better approximation may 
be obtained by considering a dynamic error-reducing procedure. Suppose 
Po is an approximation to PI/Pa, so that PaPo should be equal to PI' D~ne 
the error e to be the difference in these terms: 

e = P2Po PI (116) 

Now e2 is always positive and bounded below by zero, so that any procedure 
which changes Po to make the derivative of this term negative must eventually 
force e to zero. We have 

(117) 

Since P2 is positive, this inequality clearly holds if e and Po have opposite 

Sec. 4] Dividers and Square-Root Extraction 85 ()r I COUNTER .. 
I 

(PVPz) (::)~ 

'" 
Fig. 17. Divider in representation I. 

signs, and we may set 

(118) 

This equation may be readily realized using the counter with stochastic 
output of Fig. Bb. The stochastic output represents Po and is fed back 
through an AND gate, together with the line carrying pz, into the DECRE­
MENT line of the counter, to form the term P2PO' Similarly, as shown in 
Fig. 17, the line carrying PI is fed to the INCREMENT line of the counter. 
A simple explanation of how division occurs is to consider that in equilib­
rium the probability that the count will increase must equal the probability 
that it will decrease, so that P2PO = PI' and Po = PI/P2' However, this 
equation cannot hold exactly, since the probability of an increment when 
the counter is full must be zero, not PI- The error introduced by this effect 
requires a deeper analysis of the behavior of the counter, which is given 
in Section 7; it clearly corresponds to the "limiting" of an analog integrator 
when the integral would exceed the range if linear operation. 

A similar approach may be taken to the division of quantities in re­
presentation Ill. If Eo is an approximation to E1/E2 , we define the error E 
to be 

(119) 

then the descent to a solution requires 

(120) 

[EJ ---------;'1'\ 

[E~-l!"--tr=~::ffi~~J 

Fig. 18. Divider in representation Ill. 



86 Stochastic Computing Systems 

E2 is now bipolar, so that this inequality holds if 
signs, and we may set 

[Chapter 2 

and Eo have opposite 

(121) 

A suitable circuit to realize this equation is shown in Fig. 18. It utilizes the 
multiplier of Fig. 7a, the squarer of Fig. 7b, and the two-input integrator 
of Fig. 14a. This circuit again only gives approximate division because of 
limiting in the integrator. 

The computational approach to division described in Eqs. (119)-(121) 
is equally applicable in representation II, and the necessary computing 
elements, multipliers, squares, and summing integrators have been describ­
ed in previous sections. 

Square-root extraction may be performed using similar dynamic error­
reduction, or steepest-descent, configurations. If, e.g., 

e = P02 PI (122) 

then 

d(e2)/dt = 4epopo < 0 (123) 

which is satisfied if 

(124) 

A circuit realizing this equation is shown in Fig. 19. It will be noted again 
that the equation cannot be realized exactly because this would imply a 
finite probability of the counter incrementing beyond its full state. 

Similar configurations for square-root extraction may be realized in 
representations II and Ill. The steepest-descent equations have a wide range 
of application apart from the solution of implicit equations, and further 
examples of their use in system identification are given in Section \ 

[E]..,;o.-----l 

Fig. 19. Square-root extraction. 

Sec. 4] Discontinuous Functions and Function Generators 87 

4.12. Discontinous Functions and Function Generators 

A commonly required computational function is a switching, or thresh­
old, element whose output changes stepwise as its input changes through 
certain values, e.g., an element whose output is ON if the quantity represent· 
ed at the input is positive, and OFF if it is negative. A step wise change in 
output for a small change in probability at the input is clearly impossible 
for a stochastic computing element, since a probability cannot be measured, 
but only estimated over a long sequence of inputs. However, as in the 
implicit computations described in the previous sections, an integrator may 
be used whose steady-state final condition satisfies the equation of the 
discontinuity; accuracy in computation may again be traded for a time delay. 

The detection of the sign of a quantity in both representations II and III 
may be performed by a basic counter as shown in Fig. lOa without a sto­
chastic output. The output line of the sign detector is connected to the most 
significant bit of the counter, so that it is ON when the counter is half full 
or more, and OFF otherwise. For quantities in representation II the UP 
lines of the input is connected to the INCREMENT line of the counter 
and the DOWN line to the DECREMENT, as shown in Fig. lOCo From 
Eq. (90) the quantity in the counter represents the integral of the quantity 
represented at the input, and hence, eventually, the counter will become full 
or empty depending on the sign of the input quantity. A similar result may 
be obtained for quantities in representation III by feeding the input line to 
the counter as in 12a; a comparator for two quantities in this repre­
sentation may be made by using the two-input summing configuration 
of Figure 12b. 

Arbitrary functional relationships between input and output probabil­
ities are also readily realized with integrators connected as ADDIE's. The 

p+------t 

~C;;e;;cI::;~~ f(p} 
.- STOCHASTtC 

NOISE U 
GENERATO R OUTP T 

Fig. 20. ADDlE as a function generator. 



88 Stochastic Computing Systems [Chapter 2 

counter in the integrator eventually contains an estimate of the probability 
that the input line will be ON, and networks of gates attached to the counter 
may be used to apply arbitrary transformations to the stored count. This 
transformed quantity can then be applied to the comparator, as before, to 
obtain a stochastic output; a diagram of this configuration is shown in 
Fig. 20. Because of the random variance on the count in the counter, any 
discontinuities in the function generated will be partially smoothed out. 
As discontinous a function as required may be realized, however, by using 
a counter with a sufficient number of states; the settling time of the function 
generator will, of course, increase proportionately. 

4.13. The Outward Interface 

The input and output of data to the stochastic computer can be per­
formed in a number of ways, and there are no standard interface elements 
which would be generally present. A stochastic sequence of logic levels may 
be regarded as a rate-, or frequency-, modulated pulse stream, which may 
sometimes be fed directly to systems outside the computer. For example, in 
a process control system a stepping motor is a convenient actuator which 
may be regarded as the equivalent of a digital counter, and used as an in­
tegrator in the way described in Sections 4.6 and 4.7. If a voltage level is 
required out of the system, and the clock pulse rate of the stochastic com­
puter is constant, then the sequence of logic levels representing a quantity 
to be output may be used to trigger a monostable flip-flop which provides 
constant-area pulses to a resistor-capacitor low-pass network. 

The natural outward interface of the stochastic computer is, however, 
the digital counter used as an integrator. This provides a parallel binary 
representation of the quantity to be output, and this may be used directly, 
or converted to any other required form using standard general-purpose­
computer interface elements. If no integrator containing the 1qUired 
quantity is already present in the system, then an integrator conn cted as 
an ADDlE may be used to convert the required probability to a arallel 
binary number. 

4.14. The Inward Interface 

Some transducers naturally produce a stochastic output which may be 
used almost directly as the input to a stochastic computer. A photo multiplier, 
e.g., converts individual photons to separate electrical impulses, provided 
the flux is not too great. Similarly, particles from radioactive sources may 
be individually detected by using a scintillation screen coupled to a photo-

Sec. 4] The Inward Interface 

)' 
STOCHASTIC 

OUTPUT 

Fig, 21. Synchronizer for stochastic sequences. 

89 

cell. The stochastic sequences produced in this way are asynchronous, and 
must be converted to clock streams of logic levels before they may be used 
in the stochastic computing systems described in this chapter (asynchronous 
stochastic computing systems have been investigated, but they too are 
restricted in their maximum pulse rate). 

Figure 21 shows a synchronizing element for converting asynchronous 
stochastic sequences into clocked Bernoulli sequences: the first pair of 
NOR gates act as an RS flip-flop, or memory element, recording that an 
impulse has occurred on the input line; at a clock pulse the state of this 
flip-flop is transferred to a clocked JK flip-flop driving the output line. 
Provided two or more pulses do not arrive on the input line during one 
clock pulse, it is clear that the pulse stream at the output replicates that at 
the input, except for superimposed time delays of less than one clock period 
to ensure syncronization. However, the input pulse train is assumed to be 
stochastic, and hence the number of pulses occurring in one clock interval 
is not known, or bounded. The distribution of the number of discrete in­
dependent, random events occurring within a given time interval is a Poi~son 
distribution, whose only parameter is the expected number of events in the 
given interval. 

The probability that m pulses will occur in one clock interval when 
the expected number is k is: 

(125) 

The output will be ON if there is one or more pulse(s) during the preceding 
clock interval. Hence the generating probability of the outputp is one minus 
the probability that there will be no pulses: 

p = I-po = I - (126) 

The difference ~ between the output probability p and the expected rate of 
pulses at the input k is the error in representing the input at the output: 

~=p-k=l (127) 



90 Stochastic Computing Systems [Chapter 2 

- 0·4 ..---------------, 

-0·2 

o 
o K 

Fig. 22. Error in synchronizer. 

A graph of (; against k is shown in Fig. 22; it may be seen that when the 
expected number of pulses is down to one in five clock intervals (k = 0.2), 
then the error is approximately 2% of full-scale; while when only one pulse 
in ten clock intervals is expected, the error is 0.5%. 

The behavior of p for both small and large values of k is of inter-
est. For small values of k, e-k may be approximated by (\ k (k2j2) 

(k 3 /6) . .. ), so that Eq. (127) becomes 

(128) 

and hence p is a good approximation to k up to second-order terms. For 
large values of k Eq. (126) shows that p is asymptotic to unity, but never 
reaches it, so that it always contains information about the magnitude of k. 
Hcnce, although the synchronizer is showing nonlinear behavior, it is not 
destroying information, and k may always be determined from p. This result 
holds because the input to the synchronizer is itself a stochastic sequence; 
with nonprobabilistic inputs, limiting would take place and the value of k 
would be lost. Thus the stochastic nature of the input enables it to be 
transformed without loss of information in a way which would ftherwise 
be impossible. In practice, the transformation will not be perfect\because 
no account has been taken of the finite width of a clock pulse, and other 
divergencies from the theoretical behavior of the input element. 

The conversion of analog voltages to stochastic sequences may be per­
formed by generating a Bernoulli sequence of random voltages and compar­
ing the input voltage with a member of this sequence at each clock pulse; 
if the input voltage is greater than or equal to the random voltage, then the 
output is ON, otherwise it is OFF. If the probability density function of the 
random sequence is fleX), so that flex) dx is the probability that the random 

Sec. 4] The Inward Interface 91 

voltage will lie in the small interval [x, x + dx], then the generating prob­
ability of the output, p, given an input voltage Eis 

'P 
p = f ~oo flex) £Ix (129) 

The distribution (x) may be suitably determined to generate any mapping 
from quantity to probability. For the linear representations discussed so 
far flex) is a binary function taking the value zero outside the range of 
variation of the input quantitie,s and a constant over the total range of 
variation within it [so that the integral of fleX) over all x is unity]. 

The comparators in Figs. 3 and 4 are examples of this type of con­
version, since they use a pseudorandom voltage generated by sampling a 
sawtooth waveform whose repetition period differs from that of the clock 
pulse. In these examples the sawtooth lies in the range V through + V, 
and there is equal probability that a sample from it will lie in any small 
interval forming part of this range. We have 

fleX) 0 for x V 

1/2V for -V x V (130) 

=0 for x> V 

Hence from Eq. (129) 

p = r dxj2V -v ~ (E/2V) (131 ) 

and hence the input quantity is converted to representation HI. Conversion 
to representation I may be achieved using a random voltage evenly distri­
buted over the range o-v. Conversion to representation 11 may be achieved 
by taking the magnitude of the input and converting to representation I, 
and determining from the sign of the input whether this shall be switched 
through to the UP or DOWN line. 

Conversion using a comparator in this way involves the generation of 
analog random sequences, which is generally rather more difficult than the 
generation of equivalent digital sequences. In particular, the analog levels 
generated by sampling a sawtooth waveform will be correlated with one 
another unless the frequency of the sawtooth is very much greater than 
that of the clock and is an harmonic to it. Ratios of 1000: 1 or greater have 
been found necessary in practice, and result in such a low clock rate that 
for a given accuracy the bandwidth of the stochastic computer is ridiculously 
low; e.g., from Section 3.1 a clock rate of 1 kHz and an accuracy require­
ment of 1% leads to a bandwidth of about 1/200 Hz! 



92 Stochastic Computing Systems [Chapter 2 

A variation on this technique is to generate random numbers digitally, 
as described in the following section, and convert them to an analog voltage 
for comparison; this is expensive, as it requires a digital-analog convertor 
for each channel. Since the bandwidth of the input to the- stochastic com­
puter is restricted by accuracy requirements to be several orders of magnitude 
below that of the clock frequency, comparison of the input voltage at every 
clock pulse is unnecessary. The analog input could be sampled at a low rate, 
converted to digital form by a conventional analog-digital convertor, and 
the digital result could be loaded into a stochastic integrator whose output 
would then be the required sequence of logic levels. This is a reasonable 
system, since a single analog-digital convertor may serve many channels. 

A direct and simple conversion from an analog voltage to a synchronous 
stochastic sequence may be performed if a random pulse source is available 
whose mean rate may be varied by an applied voltage. Several noise sources 
with this characteristic are known, including gas-discharge tubes and micro­
plasmas in Zener diodes. The behavior of these latter phenomena have been 
extensively investigated by the Computer Science Department at the Uni­
versity of Illinois (1). Certain diodes have been shown to generate essentially 
band-limited Gaussian noise. If this is compared with an applied voltage 
in a comparator, then the switching of the output of the comparator is a 
random variable, and the probability that the output will be in one state 
varies monotonically with the applied voltage. 

The output of the comparator may be fed to a synchronizing JK flip­
flop and a stochastic sequence generated whose generating probability is a 
monotone function of the applied voltage. This function is, however, very 
nonlinear, and it is necessary to use this voltage-controlled generator in 
an analog feedback configuration to obtain accurate analog/stochastic con­
version. Figure 23 shows such a converter: the synchronous stochastic 
output is normalized in voltage so that OFF corresponds to Vo volts and 
ON to VI volts; this normalized output is applied to one input of an opera­
tional amplifier connected as a summing integrator; the other i~ut of the 
summing integrator is connected to the voltage to be converted, ~; the out­
put of the integrator feeds back to the voltage-controlled noise source with 
negative sense. In equilibrium the output of the integrator will attain a value 
such that the mean voltages at the inputs sum to zero. Thus if p is the 
generating probability of the stochastic output, 

(J p)Vo+pVI+E 0 (132) 

and hence 
(\33) 

Sec. 4] The Inward Interface 

StOC.h<lltlc Output 

Analog 
Integrator 

Voltage 
to be converted 

Fig. 23. Analog-to-stochastic convertor. 

93 

By taking Vo = 0 and VI = V representation I is obtained; by taking 
Vo = V, and VI = V representation III is obtained; representation II 
may b~ obtained by converting magnitude as for I and using the sign to 
determme whether UP or DOWN lines should be activated. 

The feedback loop of Fig. 23 is stable provided the time constant of the 
integrator is sufficiently dominant over the time constant of the Zener diode. 
Since the relationship between the generating probability of the output and 
the voltage controlling the noise source is nonlinear, the loop gain varies 
with the mean input voltage; however, this is not a major effect. The main 
defect of the circuit is that the stochastic output is only uncorrelated, and 
a BernoulIi sequence, if the bandwidth limiting the Gaussian noise is wide 
compared with the clock frequency; this restricts the clock frequency to a 
few hundred kHz at present. 

The use of an analog integrator with stochastic pulse sequences and 
analog levels at its inputs has a wide range of potential application in 
stochastic computing systems. For example, analog integrators may be 
used to replace the stochastic integrators in the circuits for stochastic 
division and square-root extraction described in Section 4.11. Such circuits 
wi~1 not b.e detailed in the present chapter; they have the disadvantage of 
bemg subject to drift, etc., and of containing a capacitor not amenable to 
large-scale integration; they have the advantage of comparatively low cost 
at present. 

The conversion of analog quantities to stochastic sequences is one of 
the less elegantly solved problems of the stochastic computer. However, in 
very many applications, particularly in machine learning, the requirement 
does not arise. The variables entering the computer are nonnumerical 
logical inputs, denoting that certain events have occurred, and computation~ 
are performed with the probabilities of these events. Similarly, in pattern 
recognition the input may often be completely quantized as a binary (or 
N-ary, for small N) array, and analog variables need not be taken into 



94 Stochastic Computing Systems [Chapter 2 

account. For simulation problems in process control, where all the variables 
may be essentially continuous, the data and parameters may all be entered 
in digital form, and no conversion is required. 

4.15. Generation of Stochastic Sequences 

It was assumed in Section 4.6 that a stochastic sequence with generating 
probability Ps was available as an input to the weighted summers. Similarly, 
it was assumed in Section 4.8 that a random variable taking the values 0 to 
N 1 with equal probability was available to convert the counts in counters 
to stochastic sequences. Throughout the stochastic computer there are re­
quired numbers of random variables forming Bernoulli sequences with 
known generating probabilities, and these random variables must be un­
correlated, one with another, if they ever come together in a computation, 

The analog-to-stochastic convertor of Fig. 23 could clearly be used 
to derive sequences with any required generating probability, but the 
generation of stable sequences with precisely known distributions is best 
performed by using only sources whose generating probability is one half. 
These may be shown to be adequate for all purposes in the stochastic 
computer. Let Ai, i = 1, 2, 3, ... , be a set of independent binary random 
variables, each with a generating probability of l. Consider the Boolean 
functions of these variables: RI = AI; Rz A1·Az ; Ra = A1 ·A2 ·Aa; 
R4 = Al ' A2 • A3 , A4; etc. These have the property that no more than one 
of the Ri may be ON in any given clock interval, i.e., Ri' Bj = 0 for i # f 
The generating probability of Ri is 2-\ so that it is binary weighted, and 
since the set of Ri is independent, the generating probabilities sum if several 
sequences are fed to an OR gate. Hence if x = X1X2X3 • •• is a fractional 
binary number (Xl = 0 or 1) representing, e.g., the fractional count in a 
counter, then the binary variable X 

(134) 

has a generating probability equal to x. \ 
A circuit using NAND gates to realize this logical functio~ is shown 

in Fig. 24. It has a simple repetitive structure which is readily realized in an 
integrated circuit array. It may be noted that this circuit replaces the numer­
ical noise generator and comparator of Fig. Ba with a set of binary noise 
generators and a simple logical array. The circuit of Fig. 24 can clearly be 
used to generate constants in the stochastic computer, either through wiring 
in the values of the Xi' or by setting them in a register. 

Thus the only digital noise sources required in the stochastic computer 

Sec. 4J Generation of Stochastic Sequences 95 

X 

Fig. 24. Variable-probability generator. 

are those which generate binary Bernoulli sequences with a probability of 
!. One such generator, based on the noise diodes described in the previous 
section, is shown in Fig. 25; the noise pulses now trigger a flip-flop between 
its two states, and the state of this flip-flop at a clock pulse is sampled by a 
JK flip-flop. The generating probability of the output must clearly be !, 
but successive logic levels will only be statistically independent if the first 
flip-flop is toggling at a far higher mean rate than the clock frequency. 
The error if this is not so may be determined from Eq. (125); it is required 
that the probability of the first flip-flop being in either of its two states is 
equal, no matter what its previous state, and hence that the probability of 
an even number of pulses in a clock interval is equal to the probability of an 
odd number of pulses: 

Po + pz + P4 + ... = PI + Ps + Ps + ... (135) 

For k = 3 the left-hand side sums to 0.5013 and the right-hand side to 
0.4987. However, the probability of eight or more pulses occurring within 

v 

Pc 1/2 

~stlC 
N 

+ 
Output olle 

Diode 
CLOCK 

Fig. 25. System for generating output of probability!. 



96 Stochastic Computing Systems [Chapter 2 

one clock interval is 0.0121, so that the first flip-flop must be capable of 
toggling at about ten times the clock rate. Hence a clock frequency of 1 MHz 
in the stochastic computer requires noise sources with a mean rate of 3 MHz, 
and logical elements capable of operating at 10 MHz. 

The most difficult of these conditions to realize is to keep the mean 
noise rate at about the geometric mean of the clock pulse frequency and the 
upper limit of operation of the flip-flop. The Zener-based noise sources are 
very temperature-dependent, so that completely open-loop operation is not 
satisfactory. Instead, a similar feedback arrangement to that of Fig. 23 
must be used, with the noise source maintained at the required mean fre­
quency by feedback through the integrator. This makes the generation of a 
single binary noise source rather cumbersome and expensive, and the circuit 
of Fig. 25 only becomes attractive if an inherently stable noise source is 
available. A radioactive source with long half-life emitting alpha particles 
and painted on the surface of silicon detectors is one possibility. It should 
be fairly easily realized in integrated-circuit form with very many sources 
available on a single chip of silicon; however, no research has yet been 
carried out on the feasibility of such a system. 

4.16. Pseudorandom Stochastic Generators 

The random generators described so far have all relied on truly random 
phenomena generated by amplified quantum-mechanical effects in suitable 
physical systems. In recent years much research has taken place, initially 
in the context of coding theory, on the generation by normal, deterministic 
automata (i.e., arrays of flip-flop and gates) of digital sequences which have 
many of the properties of random sequences (42-44). For example, the so 
called "pseudorandom" sequences generated by linear feedback networks 
around shift registers have an autocorrelation function which is virtually a 
delta function but repeats after a very long interval. Since these pseudo­
random sequences may be generated using the standard synchronous logic 
devices already found in the stochastic computer, theYfe an attractive 
source of "random" digital noise. In particular, they hav~ the additional 
advantage that simple gate configurations may be used to obtain delayed 
replicas of the basic sequence, and hence multiple uncorrelated sources may 
be obtained from the same generator. 

The source of pseudorandom digital noise investigated in most detail 
to date is the '~maximal length null sequence" generated by a shift register 
with feedback to its input from a combination of the outputs of its various 
stages gated together in EXCLUSIVE-OR gates. The shift-register without 

Sec. 4] 

o 
1 

Pseudo random Stochastic Generators 97 

TABLE IV 

Truth Table for Exclusive-Or Function 

o 

o 
o 

feedback, with an output formed by gating together various states in a chain 
of EXCLUSIVE-OR gates, is a general-purpose linear digital filter. The 
theory of its behavior has been documented in great depth (42-46), and 
practical applications to noise generation have also been described (47,48). 

The filter is "linear," and its behavior may be treated within the frame­
work oflinear systems theory because the EXCLUSIVE-OR gates act as an 
adder, modulo 2, and the shift register acts as a pure delay. The exclusive-or 
function between two variables A and B, written symbolically as A Et) B, is: 

AEt)B A·jj+A·B (136) 

The truth table for this function is shown in Table IV. It may be seen that 
this is equivalent to adding the truth values of A and B, modulus 2; that is, 
so that 2 = 0 (modulus 2). Modulus addition is a linear operation in that 
it obeys the superposition principle, provided superposition is evaluated 
by modulus 2 arithmetic. This makes the behavior of shift-register EX­
CLUSIVE-OR gate combinations particularly amenable to theoretical 
analysis. It will also be noted that the exclusive-or operation is information­
lossless in that A Et) Band B may be used to regenerate A: 

A = (A Et) B) Et) B (137) 

This is not true of the AND, OR, NAND, NOR operations. 
Figure 26 shows a shift register consisting of three flip-flops acting as 

Fig. 26. Feedback shift register. 



98 Stochastic Computing Systems 

TABLE V 

Time PPl 

0 I 
1 0 
2 
3 0 
4 0 
5 
6 
7 
8 

1 

o 

o 
o 

[Chapter 2 

o 
1 
o 
o 

-and so on 

delays in cascade, with feedback to the input from the output of the first 
and third flip-flops, gated together in an EXCLUSIVE-OR gate. If the 
three flip-flops all initially have their outputs ON (l), then the states of the 
flip-flops at successive clock-pulses are as shown in Table V. It will be noted 
that the flip-flops pass through everyone of their 23 possible combinations, 
except 000, which is clearly a stable combination in its own right. They do 
not pass through these states in numerical order, as does a binary counter, 
and it is this property of arbitrary, or pseudorandom, passage through all 
combinations except zero which makes the feedback shift register a useful 
digital noise generator. 

The behavior offeedback shift registers in general and the determination 
of feedback configurations having the maximal-length, pseudorandom, prop­
erty is aided by use of a notation similar to that of ordinary algebra. Let 
the binary variable at the input of the shift-register be A, and let the previous, 
delayed value be written CA, and the value before that, D2A, and so on; 
for convenience we write A = lA. The equation for the shift register of 
Fig. 26 may be then written 

(138) 

and hence, adding A to both sides, since A E8 A = 0, 

(D:> + D + l)A = 0 (139) 

The polynomial in D which multiplies A on the left-hand side of Eq. 
(139) is called the characteristic polynomial of the shift register with feed­
back, and completely defines its behavior. Peterson (42) has shown that for 

Sec. 4] Pseudorandom Stochastic Generators 99 

the maximal-length sequence to be generated, the characteristic polynomi~l 
must be primitive; Le., it must be irreducible and have no factors, a.nd It 
must not itself be a factor of (Dm E8 I) for any m < 2n - I, where n IS the 
degree of the polynomial. If the polynomial is not primitive, th~n the feed­
back shift register does not have just two state cycles, the maXimal-length 
sequence and the single state zero, but has a number of state trajectories, 
some forming cycles. For example, if feedback is taken from stages one and 
two, instead of one and three in Fig. 26, then the characteristic polynomial is 

(D2 E8 D E8 1) = (D3 E8 l)/(D E8 1) 

Figure 27 shows the state trajectories for the maximal-length feedback ~f 
Fig. 26 compared with the alternative configuration where feedback IS 

from the second flip-flop rather than the third; it will be seen that there are 

Fig. 27. State trajectories for feedback shift registers. 



100 Stochastic Computing Systems 

Number of stages 

6 
7 
9 

10 

11 
15 
18 

22 
28 
33 

TABLE VI 

Stage to be fed back 

1 
4 
3 
2 

7 
1 
3 

13 

[Chapter 2 

Length of sequence 

63 
127 
511 

1,023 
2,047 

32,767 
262,143 

4,194,303 
268,435,455 

8,589,934,591 

still only two cycles, but the longest has decreased from seven states to 
three in length, and the remaining four states are not in a cycle. 

Tables of irreducible polynomials enabling maximal-length generators 
to be designed have been given (42,47). In all cases one of the terms to be fed 
back is the output of the last stage, since otherwise the last stage would 
be without effect and the shift register could be shortened. In many cases 
it is necessary to feed back only one other stage, using a single EXCL USIVE­
OR gate. When this stage is the first one it is possible to remove even this 
gate, by replacing the first flip-flop by a JK flip-flop, both of whose inputs 
are connected to the output of the last stage. Examples of maximal-length 
feedback configurations which may be obtained by feeding back the out­
puts of the last stage and one other, combined in an EXCLUSIVE-OR 
gate, are shown in Table VI. 

One of the remarkable features of maximal-length sequences is that 
delayed versions of the sequence may be generated by combining the out­
puts of the various stages in cascaded EXCLUSIVE-OR gates. Thus a 
delayed sequence may be obtained without using any more flip-flops. It 
may be shown that any combination of the outputs of various "stages through 
EXCLUSIVE-OR gates is a delayed sequence, and that a seqhence of any 
required delay may be obtained in this way. The computation of the combi­
nation required for any given delay is simple, and involves manipulation 
of the characteristic equation. 

For example, the configuration shown in Fig. 26 has the characteristic 
equation (139), If DO A is required, we may write 

Sec. 4] 
Pseudorandom Stochastic Generators 101 

that DO A may be obtained by combining the output of the second and third 
so . bb'd stages in an EXCLUSIVE-OR gate. Similar expresswns may e 0 tame 
C' all other delays. For sequences with many states this procedure must lor . . I 
be applied repeatedly, and automatic analysis on a computer IS essen.ha. 

Since the length of a maximal-length sequence generated by a regIster 
of length N is 2N 1, the autocorrelation function is repetetive with period 

2N I. Its value is 
2N-2 

cj>(m) 1: (DiA)(Di+mA) (141) 
;=0 

This product can be evaluated by noting that for two binary variables A 

and B taking the values zero and unity 

(2A - 1)(2B - 1) = 1 2(A EB B) (142) 

so that 
(143) 2AB = A + B - A EB B 

Now DiA Di+"'A is some delayed replica of A, Di+d, say, unless m 0, 
whe~ it is identically zero. Hence, combining this result with Eqs. (140) 

and (141), we have (for m 0) 

(144) 
i=O 

Each of the terms being summed is the number of 1"s in a complete cycle, 
which is 2T-l, and for m = 0 the last, negative term is not present. Hence 

cj>(0) 2N-l (145) 
cj>(m) = 2N -

2
, 

Thus the discrete autocorrelation function assumes only two values, one 
at zero delays, and another at any other delay. It is this which gives the 

noise generated its "pseudorandom" properties. 
The generating probability of the output of anyone of the stages may 

be determined by noting that the maximal-length sequence from an N-st~te 
configuration contains 2N - 1 ones and 2N - 1 - 1 zeros. Hence the generatmg 

probability p is 

p (146) 

For N greater than eight, p is within 1 % of t, and for large~ N it is a 
correspondingly better approximation to i. Since delayed replIcas of the 



102 Stochastic Computing Systems [Chapter 2 

output sequence may be obtained so easily, the maximal-length-sequence 
generator offers a number of BernouHi sequences with generating probabil­
ities of t which are independent of one another up to long time delays. 
For example, a 33-stage generator has 8.6 x 109 states, and hence may be 
used to generate 1000 sequences which are completely independent of one 
another over a period of almost nine million clock periods. Equally, it 
could be used to generate a million sequences which are uncorre1ated over 
a shorter period. This is more than adequate for any application of stochastic 
computing envisaged to date. 

Some doubts have been raised in the literature as to the degree of 
randomness of "pseudorandom" numbers generated by shift register con­
figuration (49,50). As Korn (47), has emphasized, while the first-order statistics 
and autocorrelation function of maximal-length sequences are very good 
approximations to those of a random telegraph waveform (binary Bernoulli 
sequence), the higher moments of the distribution are not the same, and 
this may have some effect on computations. For example, the subset of the 
maximal-length sequence regarded as binary numbers would have a binomial 
distribution if the noise were truly random. Experimentally, the agreement 
with a binomial distribution is found to be virtually perfect until the length 
of the sequence exceeds the number of flip-flops in the generating shift 
register; then the distribution takes on a distinctly skew form. Modifications 
to the generator to remove this effect have not been successful. 

In the stochastic computer the longest sequence used as a binary 
number is that in the integrator, and one may hypothesize that, provided 
the number of bits in the shift register generating pseudo random noise is 
greater than the number of bits in the integrator counters, no bias in com­
putations will result. This hypothesis has not yet been tested exhaustively 
in practice, and although preliminary experiments with pseudorandom­
noise-based stochastic computing configurations have not shown bias phe­
nomena, the inherent difficulties in testing random processes for small 
deviations from their theoretical form means that they may yet exist. 

One interesting feature of a stochastic computer using pseudorandom 
noise generators is that, although the theory of its operation t~ based on the 
behavior of stochastic automata, it is an entirely deterministic system, and 
hence subject to conventional automata theory. The relationship between 
the two possible approaches to the theoretical study of the behavior of such 
a pseudostochastic computer is an interesting topic for investigation. It may 
well throw light on'the relationship between the behavior of sampled-data, 
non linear systems and that of Markov chains, an important topic to which 
little attention has been paid since Kalman's pioneering paper (51). Until 

Sec. 4] Summary 103 

ently the relationship between the essentially continuum-based analysis 
r~c stochastic processes and the discrete, state-space analysis of automata 
:as not amenable to theoretical study. Work by Arbib (52) and De Backer 
and Verbeek (53), on the topological properties of automata, and related 
developments in topological semigroups (54,55), suggest that f~ndamental 
advances in the analysis of nonlinear systems may take place m the next 
few years. , 

The pseudorandom stochastic computer has. many adva~tages-m 
particular, the noise generation is simply, economIcally, ~nd. reh~b~y per­
formed by a single central element. However, this centra1tzatlOn IS Itsel~ a 
disadvantage, as it works against the "neural-net" type of approach which 
is so attractive in the basic concept of a stochastic computer. To force all 
elements to run synchronously under the influence of a single central noise 
generator is unsatisfactory, and 'in this respect ~he true nO,ise ~enerators 
described in the previous section, particularly sohd-state radlOactlv~ gener­
ators, offer the best approach. Noise generation is, however, defimtely the 
weakest link in the stochastic computing structure at present. It may well 
be that noise-based computers will only really become useful when the data 
transmission is naturally stochastic, e.g., in an optical computer. For the 
present, in building working models of small stochastic computers pseudo-
random generators are the best noise source. • \ 

4.17. Summary 

This section has provided an extensive description and analysis of 
those elements of the stochastic computer which are most similar to c,o~­
ventional analog computing modules-invertors, adders, subtractors, multt­
pliers, squarers, integraters, dividers, explicit and. implicit function gener­
ation, and interface conversion units for connectmg the computer to the 
outside world. 

Configurations of these elements behave in a very similar.way t~ their 
analog counterparts, with the essential difference that all v~nabl~s I.n the 
stochastic computer have superimposed Gaussian noise. ThiS no~se IS not 
constant in amplitude, but varies both with the value of the vanable ~nd 
the bandwidth which is required of the computer. In a given configuratlOn, 
however bounds may be placed upon the peak value of the noise, and 
comput;tions of the associated noise variance have been given for all the 
elementary computing elements. 

The analysis of more complex computing elements, esp~cially those 
with memory, such as the integrator, is more difficult, and requtres a knowl-



104 Stochastic Computing Systems [Chapter 2 

edge of stochastic automata theory and discrete Markov chains. A brief 
overview of these topics is given in the following section, and integrator­
like elements are analyzed in some depth in Section 7. 

The stochastic computer becomes of greatest interest, however, when 
the difference, rather than the similarity, between its operations and those 
of conventional computers are being examined. In Section 6 a nonlinear 
representation of data, particularly those with a representation of infinite 
quantities, are considered. Although these representations could be used 
with analog computing elements, even the most elementary operations, such 
as addition, involve a number of multiplications, and hence the simplicity 
of stochastic multipliers is particularly important. In Sections 8-,10 appli­
cation of the stochastic computer to particular computations in pattern 
recognition and machine learning are considered, with special emphasis on 
those computations where there is no equivalent computing system using 
conventional techniques. 

5. THE THEORETICAL FOUNDA TlONS OF 
STOCHASTIC COMPUTING (55a) 

The necessary foundations for a rigorous theoretical analysis of stoch­
astic computing lies in stochastic (or probabilistic) automata theory, which 
is a comparatively recent development (51l,57). The relevant material on 
stochastic processes themselves, and particularly the analysis of discrete 
Markov chains (58,59), is of a somewhat earlier date (1906), but probability 
theory, and the notion of randomness, are themselves comparatively recent 
concepts. 

The theory of stochastic automata is peculiar in that, unlike determin­
istic automata theory, it was not developed primarily for the purpose of 
synthesizing systems with the behavior studied. Instead, it has been regarded 
as far more relevant to the analysis of unwanted behavior in systems intended 
to be deterministic; the problems of unreliability antt-race hazards in se­
quential circuits are best treated as if they were caused by random disturb­
ances to an otherwise deterministic system. Thus the problems tackled by 
stochastic automata theorists, and the results obtained to date, are not 
necessarily central to the requirements of stochastic computers (in which 
noise is used constructively). 

It this section the relationship between stochastic automata and deter­
ministic automata with stochastic inputs is examined and the notion of a 
Markov chain introduced. The centrality of the Rabin-Paz theorem on 

Sec. 5] Matrix Representation of Finite Automata 105 

equivalence between stochastic and deterministic automata is discussed, and 
finally some results in probability theory, relevant to the measurement of 
stochastic processes, are outlined. 

5.1. Models of Imperfect Digital Computers 

The basic mathematical object used to represent the behavior of a 
digital computer is the finite-state automation (60-62). The essential features 
of this object are a finite set of states, inputs and outputs, together with 
mappings from all state-input pairs to the subset of states and the subset 
of outputs. In a "noiseless," or perfectly reliable, computer the input se­
quence is uniquely specifiable by a control (program or data) tape, and the 
input sequences to the automaton can be treated as a representation of the 
actual "input" to the computer. If the digital computer is imperfect, then 
its inputs will not exert complete control over the behavior and a distinction 
must be made between the specified "input" and the actual "input." We 
shall call the former a control and reserve the term input for the latter; 
in a perfectly reliable computer there is a trivial isomorphism between 
controls and inputs. 

The automaton taken to represent an unreliable computer is generally 
larger than that representing the equivalent reliable computer, for each of 
its controls gives rise to a set of possible inputs, and its state set must 
contain states which arise through component failure. In practice the finite­
state automaton subsuming all possible faults is so large and unwieldy that 
a statistical approximation to its behavior is more useful. The mathematical 
object developed as a statistical representation of an unreliable computer 
is the stochastic automaton, and the theory of such objects treats transitions 
between hyperstates (state distributions) in much the same way that de­
terministic automata theory treats transitions between states. The theory of 
stochastic automata is best approached through the matrix representation 
of finite deterministic automata, and this is outlined below. 

5.2. Matrix Representation of Finite Automata 

Any finite automaton may be represented by a set of matrices, each 
matrix corresponding to an input and containing only ones and zeros, 
which define the transitions between its states and the relationships between 
its states and outputs. The element in the ith row and jth column of a 
transition matrix for a particular input will be 1 if that input would cause 
the automaton in its ith state to transit to its jth state (at the occurrence 



106 Stochastic Computing Systems [Chapter 2 

of a clock pulse). Similarly, the ijth element of the output matrix for a 
particular input will be 1 if that input gives rise to the jth output when the 
automaton is in its ith state. Since a state and an input give rise to a unique 
output and next state, these matrices are characterized by having a single 1 
in every row, and are therefore particular examples of probability matrices 
(whose rows sum to unity). This representation of a finite automaton 
reduces it to a semigroup of matrices, with its behavior determined by 
matrix multiplication. 

Let the set of possible inputs to an automaton be (Ii)' 0 < i < N; 
the set of possible states be (Si), 0 < i < M; and the set of possible out­
puts be (Oi), 0 < i < P. Let the state of the automaton be S, its output 0, 
its input f, and the state after the next clock pulse SI. We have the transition 
mapping 

S' (1(S, I) (147) 

and the output mapping 

o = O(S, I) (148) 

The M X M transition matrices (Pk) may now be defined. If pie (p~j) 
is the transition matrix corresponding to an input- lie, then 

k 
Pi} 

o 
if Sj = (1(S;, fie) 

otherwise 
(149) 

Similarly, the M X P output matrices (Ok), where Ok === (o~j) corresponds 
to the input I k , may be defined 

k 
Oil = I 

o otherwise 
(150) 

The existence and uniqueness of the output and next state imply 
-...------

M le 
Pi} 

P le 
l:: 0ij = 1 
j=l 

(I51) 

(152) 

Having defined the transition and output matrices, we may consider 
the behavior of tHe automaton to be determined entirely by the rules of 
matrix multiplication. For example, the sequence of inputs 1)'1 followed 
by I}'2 and so on up to fAn' applied when the automaton is in state Si, leads 

Sec. 5J Stochastic Automata 107 

to state Sj if and only if 

(153) 

and the output of the automaton will then be Dj if and only if 

(154) 

These equations could be reduced to matrix/vector equations by defin­
ing the state of the automaton to be an M-vector whose Hh element is unity 
if its state is Si' and zero otherwise, and defining the output of the autom­
aton to be a P-vector whose ith element is unity if its output is Ot, and zero 
otherwise. Transitions between states are determined by post-multiplying 
the present state vector by the transition matrix corresponding to the input, 
and the output is determined by post-multiplying it with the output matrix 
corresponding to the input. This matrix representation of finite automata is 
cumbersome in practice, but ideal for the conceptual transition from "noise" 
at the input to stochastic automata. 

5.3. Stochastic Automata 

Consider now a set of "controls" to the automaton which do not 
specify the input exactly, but rather give rise to probability distributions 
over the inputs. If the present state and control are known, then the prob­
ability of occurrence of each input may be used to calculate the probability 
that the next state will be a given state. Thus only the state distribution can 
be predicted. This distribution will be called a complete hyperstate, and the 
theory of stochastic automata concerns the matrix representation of tran­
sitions between complete hyperstates. 

Let the set of controls to the automaton be (Ct ), 0 < i Q, and let 
the application of the control Ci give rise to a probability 'Vii that the input 
I j will occur. Since some input must occur, we have 

N 

l:: 'V/ (155) 
j=1 

If the automaton is in state Si when the control is CL:, then the probability 
n~, that it will next be in state Sj is 

(156) 

Thus if the hyperstate of the automaton is the distribution (ni), where ni 



108 Stochastic Computing Systems [Chapter 2 

is the probability that the automaton is the state Si, then the hyperstate 
(n/) after a control Ck is given by 

M N-l 

= ~ ni ~ v{p[j 
i=l f=O 

(157) 

The matrices n k == (ni) are probability matrices, since their elements are 
nonnegative, and 

:11 
le 

~ nij 
j=l 

they may be regarded as generalizations of the matrices pk. 

(158) 

Probabilistic output matrices relating controls, hyperstates, and outputs 
may similarly be defined. This structure of controls, hyperstates, outputs, 
and probability matrices is a stochastic automaton. It is interesting to note 
that we may regard the stochastic automaton either as a special case of the 
finite automaton in which probability distributions are assigned to incom­
pletely specified inputs, or as a generalization of the matrix representation 
of finite automata in which arbitrary probability matrices replace those 
previously containing only ones and zeros. 

5.4. Markov Chains 

The discrete transitions of a system from condition to condition are 
said to form a Markov chain (58,59) of the nth order if the probability of a 
transition to a new condition depends only on the previous n conditions. 
A Markov chain of the zeroth order is called a Bernoulli sequence, and is 
distinguished by the statistically independent generatiQll~f its elements. If 
the controls to a stochastic automaton are constant, or from a Bernoulli 
sequence, then the state sequences are Markov chains of the first order, and 
the output sequences are Markov chains generally of higher order (the out­
put chains are first order if there is an inverse mapping from output-input 
pairs to states). If the controls are functions of previous outputs, or are 
generated in set sequence, then both the states and the outputs may form 
Markov chains of higher order. In stochastic computers processing Markov 
chains much of the simplicity of computation would be lost if the order of 
the chains increased at each stage, and stochastic computing elements are 
designed to receive and emit Bernoulli sequences. 

, i 
I1 

Sec. 5] The Computations of Stochastic Automata 109 

The relationship between the average behavior of an ensemble of 
t chastic automata, which is the conceptual basis for their operation, 
so. h' l' h t' I d the average behavior over a number of transitIOns, w IC liS t e prac lca 
an h d" f th means for observing their operation, depends on t ~ er~o IClty o. e 
Markov process generating the transitions. A hyperstate IS said to be statIon­
ary for a transition if it does not change under that transition, a~d a ~equence 
of transitions with one and only one stationary hyperstate IS saId to be 
ergodic. Stationary hyperstates in the stochastic computer .co~respond to 
steady states in the analog computer, having similar properties ~n that t~ey 
are far more tractable theoretically than the transient, nonergodlC behavIOr, 
and often act as "solutions" in a computation. 

5.5. The Computations of Stochastic Automata 

Deterministic automata theory investigates the set of input sequences 
which will take the automaton from a given initial state to one of a set of 
final states (these are usually included as part of the definition of the "autom­
aton"); these sequences are called the input tapes "accepted" by the autom­
aton and are said to define an "event." With stochastic automata one may 
consider only the probability that a control sequence will take the automaton 
from a given initial state to one of the given final states, and define the ~et 
of control tapes accepted by a stochastic automaton to be those for WhICh 
this probability is greater than a threshold 15 (0 15 < I). 

To determine by experiment whether a given control tape is accep~ed 
by a stochastic automaton with threshold 15 requires more and. more In­

stances as the actual probability of transition to one of the gIven final 
states approaches 15. It is only if this probability is bounded away from 
15 for all possible control tapes that an experiment of predetermined 
length may be used to decide whether a tape is accepted by the a~tom~­
ton with any required confidence; a threshold with this property IS Said 
to be isolated. 

Rabin (56) and Paz (57) have shown that for every stochastic auto~ato? 
with an isolated threshold there is a deterministic automaton whIch IS 
equivalent in that it accepts the same set of control tapes. Ho:v~ver, the 
deterministic automation may be less economical in storage, requmng more 
internal stages than the stochastic automaton. There is, of course, no real 
gain in storage, since an external store is required for the results of the 
series of experiments which determine whether the stochastic automaton 
"accepts" a particular tape. However, this result has practical applications, 
e.g., in the "Enhancetron," the waveform averager described in Section 3.2. 



110 Stochastic Computing Systems [Chapter 2 

The first stage of the "Enhancetron" may be regarded as a two-state, stoch­
astic automaton, receiving input tapes of unit length (in fact, analog voltages, 
but taken to be finely quantized for the sake of this example). The shift of 
storage burden is an advantage in this application because an external store 
is already needed for the averaging process. 

5.6. Current Status of Stochastic Automata Theory 

Stochastic automata theory is a comparatively new field of research, 
and although there has been steady progress since the pioneering work of 
Rabin and Paz, there are as yet few major studies or results. Much present 
effort is devoted to the determination of theorems equivalent to those al­
ready obtained for deterministic automata-e.g., on state minimization 
(63,6J), decomposition (65), equivalences between machines (66,67), etc. Some 
of the previous studies concerned with computer reliability and Markov 
processes are also relevant to these developments. 

The first application of the theory of random processes to computer 
design was that of von Neumann (68), who showed that under certain con­
ditions arbitrary reliability could be obtained from a computer made of 
unreliable components through the use of parallel redundancy. This result 
bears a striking resemblance to Shannon's coding theorem for a discrete 
channel, and the work of Winograd and Cowan (69) shows that this resem­
blance is more than superficial. In practice, digital computers are still 
designed with little redundancy and with error-detection rather than error­
correction, and work on computer reliability is more suggestive of the 
advantages of brainlike, homeostatic artifacts than of new developments 
in conventional computers eO). 

5.7. The Variance of Bernou/li Sequences 
/ 

One property of zero-order Markov chains, or Bernoulli sequences, that 
has been used many times in the section on the linear stochastic computer is 
the relationship between the variance of the estimated mean value of the 
sequence and the mean value of each member of the sequence squared. 
Since the properties of random variables can only be estimated with a 
certain expectation of error, it is important to have some advance knowl­
edge of the error inherent in a computing configuration, and this result is 
the basis for such 'knowledge. 

Suppose Xi is a stationary Bernoulli sequence of random variables 
taking real, finite values. The stationarity of the sequence implies that the 

Sec. 5] The Variance of Bernoulli Sequences 111 

distribution function of the random variable is not a function of i. The 
fact that the sequence is "Bernoulli" implies that the distribution of Xi is 
independent of that of the value of Xj for j i. In particular, it implies 

j (159) 

where X is the expected value of Xi (and of Xj because of the stationarity 

of the sequence). 
The mean value of Xi, from i = 1 to N, say, is an estimate of the ex-

pected value of Xi: 
N 

X= 1: XilN (160) 
;=1 

The variance of this estimate is defined to be the expected value of the square 
of the difference between the estimated value of the mean of Xi and the 

expected value of Xi: 

Var(X) 

N 

Now 

(Xi X)(Xj - X)] 

(161) 

EXP[(Xi - X)(Xj X)] EXP(XiXj) - X Exp(X;) X Exp(Xj) X2 

o (162) 

using Eq. (159). Hence from Eq. (161) 

Var(X) 

(1/N2)[N EXp(X;2) - NX2] 

[Exp(Xn - X2]IN (163) 

This expresses the variance of an estimate of the mean of a Bernoulli 
sequence in terms of the expected value of the square of the sequence, and 
hence enables the expected error in estimation to be calculated from the 
distribution of the random variable. 



112 Stochastic Computing Systems [Chapter 2 

6. ALTERNATIVE STOCHASTIC REPRESENTATIONS 
OF QUANTITY 

The three representations of analog quantities by probabilities discussed 
in depth in Section 4 are basic examples of linear mappings between quantity 
and probability. There is an infinite variety of possible mappings, all of 
which lead to a certain range of computations and associated computing 
elements. The choice between these mappings must be based largely on the 
type of computation to be performed, both upon the range of variables 
required and the type, and relative numbers, of operations required. The 
representations II and III of Section 4.1 give rise to a family of stochastic 
computing elements similar to those of the conventional analog computer; 
the range of variables is bipolar and bounded, and the operations which 
may be performed include addition, subtraction, multiplication and inte­
gration. If quantities near zero are especially important, then represen­
tation H has the advantage of enabling more accurate representation of 
small quantities than IH, but otherwise has the disadvantage of requiring 
two lines to represent one quantity. 

The main difference between these stochastic computing elements and 
those of the analog computer is that stochastic multiplication is a very 
cheap and simple operation. This has already been taken advantage of in 
the steepest-descent implicit-function generators of Section 4.11. It is, how­
ever, an important factor in determining the relative attractiveness of othcr 
stochastic representations of quantity. All the mappings of quantity into 
probability proposed for the stochastic computer can also be clearly used 
with the conventional analog computer, but if the basic operations in 
these representations, whatever they are, demand the multiple use of expen­
sive elements, such as multipliers, then the representation is not attractive. 

The theoretical treatment of nonlinear representations of quantity is 
generally difficult because the expectation operator in t¥theory of random 
variables is essentially linear-for a scalar a and random variables A and B 
we have Exp(aA + B) a Exp(A) + Exp(B), but in general, Exp(A/B) 
o:j::: Exp(A)/Exp(B), and Exp[f(A)J o:j:::f(Exp(A)]. In dealing with nonliner 
representations it is important to have a "feel" for stochastic variables, 
and in the following section some metric properties of probability spaces 
are examined to this end. 

6.1. The Equal-Accuracy Metric on a Probability Space 

When a quantity is mapped into a probability the evaluation of com­
putations using that quantity is complicated because the accuracy of estima-

" 

Sec. 6] The Equal-Accuracy Metric on a Probability Space 113 

tion of a probability varies with that probability. The variance o~ an estimate 
of a probability is greatest when the probability is one half and IS zero when 
the probability itself is unity or zero. This induces a topology on, the space 
of input quantities in that quantities which map near zero .0: Ulllt~ proba­
bility are easily distinguished at the output, whereas quantItIes WhICh map 
near t probability are difficult to distinguish. An obvio~s measure of t?e 
"distance" between two quantities is the inverse of the tIme taken to dIS­
tinguish between them with a given accuracy. 

In Section 4.1.1 it is shown that the variance in the estimate of the 
generating probability p of a binary Bernoulli sequence is a2 = p(l . P ~J N, 

where the estimate is taken over N clock pulses. The standard deViatIOn, 
which is the square root of this variance, is a measure of the difficulty of 
discriminating between a generating probability p and one of p + op a 
small amount away. The difference between the two probabilities may be 
measured to any accuracy dependent on the number of standard deviations 
between them, so that for constant accuracy of discrimination we have op/a 
is constant. 

If we define probabilities which may be discriminated in a given time 
with a given probability of error as being unit distance apart, then we have 
that the increment of distance Os corresponding to the increment of prob­
ability op is 

Os = opj[p(l - p)]1/2 /jpJ(pq)1!2 (164) 

where q 1 - p, and the scaling factor in s has been set at unity. This 
may be regarded as a first-order differential equation relating sand p, and 
it is clearly satisfied by 

s 1) (165) 

A graph of s against p is shown in Fig. 28, and it can be seen that for values 
of p around t the rate of change of s with p is rather less than at the two 
extreme values of p. 

From Eq. (165) it appears that for a bipolar quantity E such that 
V E < V a mapping of the form 

p sin [n(E + V)/4V] (166) 

leads to an equivalence between the data space and the probability ~pace, 
in that equal changes in the data cause equally discriminable changes ~n the 
probabilities representing them. The computation~ perfor~ed b~ SImple 
logic elements in a computer using this representatton are mterestmg, and 



114 Stochastic Computing Systems [Chapter 2 

s 
Ot------7"'------4 

-11/2 ---------___ ..1 
o p 

Fig. 28. Metric on the probability interval. 

readily ascertained from the standard trigonometric relationships for sin A, 
sin B, and so on, but do not appear to be particularly useful. 

In practice, of course, it is rare that uniform absolute accuracy is re­
quired over the range of data, and a requirement for something approaching 
uniform proportional accuracy, as on a slide rule, is more common. Truly 
proportional accuracy has the defect of requiring an infinite expansion of 
the scale about zero, and a compromise is necessary in any real system. 
This compromise is of the wrong form in the linear stochastic computing 
using representation III because it is the extremes of the range which are 
expanded to have greatest accuracy. In the following sections mappings are 
discussed which compress the scale of large quantities, even to the extent of 
enabling numerical data with an infinite range to be expressed in a finite 
probability interval. 

6.2. Single-Line Representation of Unipolar Quantities 
with Infinit~ .Range. . / 

Let E 0 be a posItive quantIty, not necessanly bounded, and consider 
the transformation from E to a generating probability P of a binary sequence 
in a stochastic computer, such that 

P = E/(e + E) (167) 

where e > 0 is a scaling factor. When E is zero, so is the generating prob­
ability; when E = e the generating probability is i; and, for the probability 
representing E to become unity, E itself must be infinite in magnitude. This 
appears most clearly in the inverse transformation: 

E = ep/q (168) 

Sec. 6] Single-line Representation of Unipolar Quantities 115 

Differentiating Eq. (68), we have 

dE/dp e/q2 (169) 

and, substituting this in Eq. (161), 

os el/ 2 oE/[(e + E)E1I2] (170) 

Hence the discrimination between different values of a quantity E, this 
representation varies as E-1/2 for small values of E and as E-3/2 for large 
values of E (compared with e). This may be compared with a truly propor­
tional scale, in which the discrimination would vary as E-l. Such a scale 
is logarithmic, and a range of quantities cannot be mapped into a finite 
range. The representation of Eq. (167) gives a scale which is similar to a 
proportional one for values of E near e, but varies more slowly below this 
value and more rapidly above it. 

The standard gating functions forming PIPZ, (PI + P2)/2, etc., described 
in Section 4 also perform computations in this representation. For example, 
the EXCLUSIVE-OR gate of Fig. 6c such that the output probability Po, 
is related to the input probabilities PI and pz by 

(171 ) 

with a representation such that 

Pi E;/(e + Ei ) (172) 

performs the computation 

Eo (e 2 + E I E2)/(El + E2 ) (173) 

whieh is reminiscent of the addition of hyperbolic tangents. 
The standard arithmetic operations of addition, multiplication, and 

division may be performed in this representation by using a JK flip-flop 
in a similar configuration to that for approximate division (Section 4.11). 
First it may be noted that a logical invertor forms the reciprocal of the 
quantity represented on its input line; the relationship between the generat­
ing probability of the output Po and that of the input Pl is 

Po I - Pl (174) 

and henee from Eq. (172) 
(175) 

Thus any multiplier in this representation may also be used as a divider by 
inverting one of its inputs. 



116 Stochastic Computing Systems [Chapter 2 

[01 M UL TlPLi ER 

(bl DIVl DER 

Icl SUMMER 

Fig. 29. Computing element in p/q representation. 

A multiplier for the quantities on two lines may be formed by putting 
the two lines directly into an AND gate feeding the J input of a flip-flop, 
and both inverted into an AND gate feeding the K input of a flip-flop, 
as shown in Fig. 29a (a similar configuration to that of the two-input 
summing integrator of Figure 126. The output is taken from the side of 
the flip-flop corresponding to the J input, and its generating probability 
Po is the probability that the flip-flop will be in the corresP~ing state. 
The equilibrium equation for the flip-flop is: 

(176) 

where j is the generating probability of the sequence on the J input and 
k is that of the sequence on the K input. If PI and P2 are the generating 
probabilities of the input sequences, than .i PIP2 and k = qlqZ' so that 

(177) 
and hence 

(178) 

A divider formed from the same circuit by inverting one of the inputs is 
shown in Fig. 29b. 

Sec. 6] Two-line Representation of Bipolar Quantities 117 

A two-input, equally-weighted summer may be constructed by replacing 
the AND gate on the J input with an EXCLUSIVE-OR gate, as shown 
in Fig. 29c. We now have j = PlqZ + PZql' so that from Eq. (176) 

(179) 

and hence 
(180) 

Subtaction is clearly impossible in this repr(lsentation, since there is no 
representation of negative quantities. 

6.3. Single-Line Representation of Bipolar Quantities 
with Infinite Range 

Unbounded quantities taking both positive and negative values may 
be represented on a single line using a modified version of representation 
Ill. Let the generating probability"p of a binary sequence corresponding to 
an arbitrary real quantity E be defined by 

E = e(p q)J(2pq) (181 ) 

The inverse relationship is 

P [E - e + (E2 + e2 )1/2]j(2E) (182) 

so that P takes the value t when E is zero, tends to zero as E tends to minus 
infinity, and tends to unity as E tends to plus infinity. 

In this representation the invertor acts to form the negative of the 
quantity on its input line. Unfortunately, other computing elements are 
not so readily constructed. For example, forming a reciprocal involves 
mapping a probability just less than t into one near zero, and one just 
greater than t into one near unity. Clearly, an element with considerable 
memory would be required to form a good approximation to this com­
putation. Despite these defects, this representation is one which enables 
completely arbitrary unbounded quantities to be represented by a digital 
sequence on a single line, and for that reason alone merits attention. 

6.4. Two-Line Representation of Bipolar Quantities 
with Infinite Range 

Examination of Eq. (181) shows that the representation of quantities 
of arbitrary sign and magnitude is obtained from a numerator in represen-



118 Stochastic Computing Systems [Chapter 2 

tation III giving sign and magnitude information, and a denominator which 
is always positive and acts as a scaling factor. The defects of the represen­
tation emanate from both numerator and denominator being functions of 
the generating probability on a single line. If two lines are used, then many 
of the problems may be overcome. 

For example, suppose that the numerator is a quantity x in represen­
tation III such that -e x < e, and it is represented on the X line by a 
binary sequence with generating probability P; and the denominator is a 
quantity y in representation I such that 0 y < 1, and it is represented 
on the Y line by a binary sequence with generating probability p'. Then for 
any real quantity E it is possible to choose p and p' such that 

E e(p q)/p' = X/Y (183) 

The choice of p and pr is not unique-clearly, 0 p' < mine!, ell El), 
and minimum variance will be attained by letting pr min(l, ell El). 

An invertor on the X line changes the sign of quantities in this repre­
sentation. Multiplication is readily carried out, since, if 

then (184) 

and the numerator is a product in representation III which can be realized 
by an EXCLUSIVE-NOR gate on lines Xl and X 2 , while the denomi­
nator is a product in representation r which can be realized by an AND 
gate on lines Y1 and Yz. If the weighted sum of El and E2 is to be 
formed, we have 

(185) 

The denominator is formed by an AND gate on lines Yl and ~s before. 
The numerator is a weighted sum of two quantities, Xl and x2, in represen­
tation In, and can be formed by the configuration of Fig. 8 (Section 4.6); 
the weighting probabilities will not be Pa and 1 - Pa, but, letting w = Pa, 
they will be WY2 = PaP2' and (1 W)Yl = (l - P3)Pl'. Hence a two more 
AND gates are required to form the weighting probabilities. 

Division remains a difficult operation in this representation, since it 
requires conversion of the magnitude of a quantity in represcntation III to 
a quantity in representation I, and this involves converting, e.g., a stochastic 
sequence with a gegerating probability of t to a deterministic sequence with 
a "generating probability" of zero. Clearly, an element with memory, such 
as an ADDlE, is required. 

, I 

Sec. 6] Versatile Two- Line Representation of Arbitrary Quantities 

6.5. A Versatile Two-Line Representation of 
Arbitrary Quantities'" 

119 

The problems in division with the representation of Eq. (183) may be 
removed by making it completely symmetrical and putting both numerator 
and denominator in the bipolar representation Ill. If the quantity x in the 
numerator is defined as before, but the quantity in the denominator y, 
is now in the range - 1 Y < 1 and repr~sented by a binary sequence 
with generating probability p' in representation Ill, we have 

E = x/y e(p _ q)/(p' _ q') (186) 

An invertor on either X or Y lines change the sign of a quantity in 
this representation. Interchange of X and Y lines gives the reciprocal of 
the quantity represented. Thus elements for addition may be used to perform 
subtraction, and elements for multiplication may be used to perform division. 
Multiplication follows from Eq. (184), as before, except that both multi­
pliers are EXCLUSIVE-NOR gates. Weighted summation follows from 
Eq. (185), where the products Y2Xl and YIXZ are first formed using EX­
CLUSIVE-NOR gates as multipliers, and then their weighted sum is formed 
by the configuration of Fig. 8. 

Thus between two and four elements of the complexity of an EX­
CLUSIVE-NOR gate can, in this representation, perform the operations of 
addition, subtraction, multiplication, and division. Since the quantities in 
the computations are completely arbitrary, being bipolar and unbounded, 
the representation forms the basis of a very versatile, if not "universal," 
computing system. It has a defect, however, in that for large quantities, 
as the denominator approaches zero its sign becomes less and less deter­
minate, and hence a result of large magnitude could be obtained with the 
wrong sign. This phenomenon can occur for quantities of any magnitude, 
since x and y may be scaled together to any small magnitude without affect­
ing their ratio, but it is clearly of the greatest importance for large quantities, 
where it is an inherent defect. The defect does not arise in the representation 
discussed in the previous section because the denominator is then always 
positive. 

An improvement in this representation may be obtained by expressing 
either the denominator, or both numerator and denominator, in the two-

* The versatility of this representation was first pointed out to the author by John Esch 
at the Department of Computer Science, University of Illinois, Urbana, who has been 
studying this representation and its applications in some depth. 



120 Stochastic Computing Systems [Chapter 2 

line representation n, giving an overall representation on three lines or four 
lines, respectively. In either case, both change of sign and formation of the 
reciprocal reduce to appropriate interchange, or simple operations on the 
lines, and both addition and mUltiplication are readily performed. If the 
minimum variance representation is maintained in the denominator (which 
is always possible in addition and multiplication, since only multiplication 
of denominators is involved-Section 4.4.2, then the sign of the denominator 
is well-determined, and hence the sign of a large quantity is not indeter­
minate. 

All the representations discussed in this section, even though they enable 
computations to be carried out with quantities of unbounded magnitude, 
are equally applicable to computations using standard analog computing 
elements. However, since analog multipliers have, to date, been expensive, 
unreliable elements of limited bandwidth, the fact that even addition in 
these representations requires a number of multipliers has acted against 
their use. 

6.6. Use of Nonrandom Sequences with Stochastic 
Computing Elements 

It was noted in Section 3 that the essential difference between the 
sequences of logic levels used in the stochastic computer to represent 
quantities and those used in other "counting" computers such as the DDA 
is that the sequences in the former are unpatterned-they are Bernoulli 
sequences in which successive logic levels are completely unpredictable 
from those which have occurred before. It is this feature of stochastic 
sequences which enables multiplication to be performed by a simple AND 
gate. However, this factor is not as necessary as it may first appear, and it 
is of interest to investigate further whcther there are, e.g., ytf1er sequences 
for which an AND gate acts as a multiplier. 

Clearly, if one sequence at the input of an AND gate is a Bernoulli 
sequence and the other is not, then multiplication of the generating prob­
ability of one by the relative proportion of ON logic levels in the other 
still occurs, since, if the generating probability of the stochastic sequence 
is p and the number of times the lOgic level of the other sequence is ON 
is k during N clock intervals, then the expected number of times that the 
output of the AND gate will be on is pk, and the relative frequency of ON 
logic levels at the ,output is p(kjN). 

The output of the AND gate will be a stochastic sequence, but not 
a Bernoulli sequence, and it will have gained a patterning, or nondelta-

Sec. 6] Nonrandom Sequences with Stochastic Elements 121 

function auto correlation, from the nonstochastic sequence. The variance 
of the output function merits careful consideration; it is clearly not a 
function of the pattern in the nonstochastic sequence, if that is defined as 
having k out of N logic levels ON. If, however, this sequence is defined 
only by the mean number of ON logic levels in a sufficiently long sequence, 
then for any shorter sequence the proportion of ON logic levels may fluctuate 
widely. A form of sequence which minimizes these fluctuations is that shown 
in Fig. 2a, where ON logic levels are uniformly distributed. 

The variance in the proportion of ON logic levels in the output for 
a nonstochastic sequence of this type with k ON levels in N clock intervals, 
multiplied by a Bernoulli sequence with generating probability p is the 
variance of the stochastic sequence over k clock intervals normalized over 
the whole interval; i.e., 

Var = [p(1 p)jk](k2 jN2) = pk(l p)jN2 (187) 

The variance of a stochastic sequence with generating probability pkjN is 

Var pk[1 - (pkjN)]/N2 (188) 

Hence the variance is reduced by a factor of 1 + p(1 - kjN)/(l - p). 
It is interesting to consider whether the variance, which is a major 

factor limiting the accuracy and bandwidth of the stochastic computer, 
could be reduced still further by the avoidance of all stochastic sequences 
and the use of a second nonstochastic sequence. This would clearly have 
to be "uncorrelated" with the form of nonstochastic sequence so far discus­
sed, and it is easy to see that over an arbitrary, or variable, interval there is 
no uniformly "uncorrelated" sequence. However, over any given interval 
containing a fixed number of clock pulses there is an orthogonal sequence 
-in fact, one of the form shown in Fig. 2b, where all the ON logic levels 
are grouped together at one end of the interval. A sequence of the form 
shown in Fig. 2a will multiply with one of the form shown in Fig. 2b in 
an AND gate in an equivalent manner to that of stochastic sequences. 
Moreover, it may be shown that the output has no variance, only a quan­
tization error which is the minimum possible. 

This phenomenon was first noted in studies of the application of the 
stochastic computer to automatic radar tracking (38), which is essentially 
a sampled-data problem where computations have to be carried out during 
prescribed intervals, and nonstochastic orthogonal sequences are possible. 
It has led to the development of a nonstochastic computer, the "phase 
computer," (38.39) which has some of the characteristics of the stochastic 



122 Stochastic Computing Systems [Chapter 2 

computer, especially economy of hardware, but attains far greater speed in 
computation for a given accuracy of result. 

The phase computer is interesting because it shows clearly the relation­
ship between the stochastic computer and the DDA, and also because it 
has a programming section similar to that of a general-purpose machine, 
which is readily built in because of the all-digital computing elements used. 
Its main disadvantages over the stochastic computer is that, whereas two 
Bernoulli sequences in the stochastic computer interact together to give a 
further Bernoulli sequence which is immediately available for further com­
putation, the two types of sequence in the phase computer interact together 
to give a third type of sequence, related to neither, which has to be con­
verted back to a standard form using a counter, or "integrator." 

Thus stochastic computing techniques are particularly amenable to 
the construction of networks of computing elements in which the output 
of anyone element is in a form suitable for feeding to any other. When 
such a construction is not required and the data is not already in the form 
of random pulse sequence alternative nonstochastic computing techniques 
are advantageous. These are important considerations in determining the 
range of application of stochastic computing techniques. 

7. SEQUENTIAL STOCHASTIC COMPUTING 
ELEMENTS 

The general stochastic computing configuration is a stochastic autom­
aton, and is amenable to theoretical analysis using the theory of Markov 
chains, etc. Often the system will be ergodic, and its stationary hyperstate 
is fairly easily determined by writing down th~ ~orresponding)l1atrix eq~a­
tion. Solution of this equation may not be tnvIal, and Camlot necessanly 
be thrashed out numerically using a digital computer, because of the vast 
dimension of the matrix involved. Low-order statistics of the stationary 
hyperstate may be calculated fairly readily by summation appropriate to 
the scalar product required, but manipulation of the entire matrix is gener­
ally impossible. 

For example, the two-integrator configuration of Fig. 14c, with two 
ten-bit integrators, has over 106 possible states. From the transition equa­
tions for these states, which can be written in a reasonably closed form, 
since the two integrators may be separated and the transition probabilities 
are linear functions of the states, it is readily established that the final 
hyperstate is such that the expected generating probability of the output is 

u 

Sec. 7] Transition Equations for the Generalized ADDlE 123 

equal to that of the input, i.e., the steady-state solution is that determined 
from Eq. (112). Further than this, however, the analysis becomes more 
difficult, and proof that the transient behavior of the system is a damped 
sinusoid is not yet available. 

There is one special form of stochastic automaton which is amenable 
to theoretical analysis, and fortunately this is one that is important in 
practice. An automaton with a chain structure, such that its states are 
completely ordered and transitions can only occur from one state to itself, 
or to adjacent states, has particularly simple equations for its stationary 
states because, in simple terms, it cannot jump over states in the chain, 
and in going from onc state to another it must pass through all states in 
between. The importance of this structure in stochastic computing may also 
be stated in simple terms: since the variables in the stochastic computer 
are probabilities and the sequences which represent them fluctuate with 
random variance, the sequential elements of the computer are always re­
quired to have some "inertia," and not to jump from one state to another 
which is remote from it-state transitions are required to be local, and the 
chain-structured automata embodies this restriction in its strictest dynamic 
form. Since the ADDlE (Section 4.9) is the prime example of a chain­
structured automaton, they have been given the generic name of ADDlEs 
and the particular one described earlier is called a linear ADDlE. 

In the following sections the behavior of forms of the ADDlE are 
analyzed, and, in particular, both the steady-state and transient behavior 
of the linear ADDlE are treated in some detail. Finally, the optimality 
of the linear ADDlE as probability estimator is discussed. 

7.1. Transition Equations for the Generalized ADDlE 

The ADDlE is a chain-structured automaton with an ordered set of 
states, So, SI' ... , S N, and a single binary input A 0, 1 and generating 
probability p (it is convenient to take q p) whose transition prob­
abilities are constrained so that when automaton is in state SI' and A = 0, 
it can either remain in state Si or move to state Si-I (provided i > 0). 
When it is in Si and A = 1, it can either remain in Si or move to state 
Si+1 (provided i < N). 

The matrices of transition probabilities for the ADDlE have a very 
simple structure, consisting of the main diagonal plus one adjacent diagonal 
-the one above if the input is ON, and the one below if the input is OFF. 
It is convenient to label these off-diagonal elements in a different way from 
the general form adopted in Section 5.3. Let the probability that, when the 



124 Stochastic Computing Systems [Chapter 2 

automaton is in state Si and the input is ON, its next state will be Si+l be Q: 

(189) 

Let the probability that, when the automaton is in state Si and the input is 
OFF, its next state will be Si-l be Pi: 

(190) 

The probability that it will remain in the same state when its input is ON 
is clearly 1 - Qi, and when its input is OFF this probability is I Pi; 

all other elements of the transition matrix are zero. 
There are some further constraints on the transition probabilities. At 

the ends of the range we must have 

(191) 

To avoid trivial and nonergodic situations, in which the chain structure 
has become disconnected, we shall assume 

o <i <N (192) 

It will also be true in general that 

(193) 

i.e., that forward transitions are rarer at the upper end of the chain and 
backward transitions are rarer at the lower end; this is the real basis for 
the use of the ADDIEs as estimators. A state diagram of a generalized 
ADDlE with these constraints is shown in Fig. 30. /. 

The transition equation for the hyperstate of the generalized AD DIE 
may be written in terms of the Pi and Qi' Let the probability that the 
ADDIE is in the ith state at time T be ni(T). Then 

ni(T + 1) pQi-1ni-l(T) + qPi+lni+l(T) 

(194) 

Fig. 30. State diagram of generalized ADDlE. 

u 

Sec. 71 Output from the Generalized ADDlE 125 

This is the fundamental equation for the transient behavior of the ADDlE, 
(the boundary conditions are satisfied if undefined terms are set to zero). 

The behavior of the ADDIE is clearly ergodic [from inequalities (192)] 
and the single stationary hyperstate ni may be determined by the above 
equation. However, this may be simplified either directly from the equation 
or by considering the equilibrium between two adjacent states. Under 
stationary conditions the probability of a transition from one state to 
another up the chain must equal the reverse probability down the chain. 
Hence 

O<i<N (195) 

This is the fundamental equation for the stationary behavior of the ADDIE. 
One may solve this set of equations for ni; let 

. . i-l Qr 
Yi = p"qN-'(i/Pi ) IT - 0 < i < N 

.=1 Pr 
(196) 

1 0 

and let 

(197) 

then 
(198) 

This is the solution for the stationary hyperstate in the general case. In 
the case of the linear ADDIE we have 

(199) 
so that 

(200) 

which are the terms, NCipiqN-i, of the binomial expansion for (p + q)N. 

Hence if; = 1, and we may write 

(201) 

so that the hyperstate has a binomial distribution. 

7.2. Output from the Generalized ADDlE 

Since the ADDIE is intended as a computing and estimating element, 
it will have a numerical value, or output Of" when it is in its ith state. For 
most practical purposes we are less interested in the actual hyperstates and 
their behavior than in the expected output and other statistics of the output, 



126 Stochastic Computing Systems [Chapter 2 

which are scalar functions of the hyperstates 

N 

(J(T) L ni(T)0i (202) 
i=o 

the expected output at time T, and 
N 

(J = L n/li (203) 
;'=0 

the expected output in the steady state; similarly for the variances of the 
outputs, (12(T), (12, e.g., 

N 
(12 L n.i(Ji2 - (J2 (204) 

i=o 

These statistics depend on 0i and on n., which is a function of an the 
Pi, Qi, and of p. The (Ji is an arbitrary function of the ADDlE's state and 
its statistics depend both upon the transition probabilities and the input­
the meaning of the expected output is thus dependent on establishing 
accurately all the output values and the transition probabilities-it is 
"openloop." However, Eq. (195) makes it feasible that with a suitable 
relationship between Pi and Qi the expected forward transition probability 
will have p as a sufficient statistic. Thus if we put 

(205) 

the situation is now very much "closed-loop" -variations in Pi affect both 
output and transitions; it remains to show that cancellation occurs: From 
(195) 

N-l N-l 

~ pQini ~ qPi- 1n i+1 (206) 
;'=0 i=o 

Using (191), 
N N 

P ~ Q·iniq ~ Pin. (207) 
i=O i=o 

Substituting from Eqs. (205) and (203), 

N 

P ~ Qini = qO (208) 
i=o 

The only relationship between Qi and Pi which can ensure that p is a suf­
ficient statistic or 0 is a linear one, say 

aPi + bQ;, = 1 (209) 

Sec. 7] Behavior of the Linear ADDlE 127 

Then 
o = p/(ap + bq) (210) 

Thus if the output of the ADDlE is taken to have the same value as 
the backward transition probability (or, equally, some linear function of 
that probability) and the forward and backward transition probabilities 
are linearly related, then the generating probability of the input is sufficient 
to completely determine the expected output, no matter what the actual 
values of the transition probabilities. This is a very important practical 
result, since it implies that close control over the actual transition prob­
abilities is not necessary in an ADDlE acting as a weight in a learning 
machine. It is easy to establish a linear relationship between Pi and Qi by 
taking the line generating Qi to be the inverse of the line generating Pi' 
We then have 

(211 ) 

and the expected output is 

(212) 

Thus any device with a number of states, having a means of incre­
menting and decrementing to adjacent states, and a probabilistic output 
which varies from state to state, preferably monotonically, can be made 
to act as an estimator, or a memory, for holding the probability on its 
input line. The variance of the estimate and the time taken to attain it will 
obviously vary with the actual transition probabilities, but because of the 
inherent feedback the estimate itself is independent of them. 

7.3. Behavior of the Linear ADDlE 

The general solution for the motion of the hyperstate of a linear 
ADDlE has no simple closed form. However, the behavior of statistics of 
the hyperstate and the form of the terminal, or stationary hyperstate, are 
readily determined. In calculating the behavior of the ADDlE under in­
crements and decrements (input line ON or OFF) it is worth noting that 
the ADDlE is self-dual; if 

Increment ? Decrement 

p 

P 

q 

Q 

~ N i 

(A~A) 



128 Stochastic Computing Systems [Chapter 2 

then none of the ADDIE equations, such as Eq. (194), are changed. Hence 
any result obtained for an increment may be dualized for a decrement and 
vice versa. 

7.3.1. Change in Expected Output 

The change in the expected output 0+ after a single increment may be 
calculated from Eq. (194), with p 1 

n·i(T + I) = PinlT) Qi-lni-l(T) 

= (IIN)niCT) + [(N i + l)IN]ni-l(T) 

for 0 < i < N. Hence from Eq. (202) 

N 
O+(T + 1) I: (i/N)ni(T 1) 

i=o 

N N 
= I: (i2/N2)ni(T) + (i l)(N - 1)/(N2)ni(T) 

i=o 

= (1 - l/N)O(T) + IIN 

(213) 

(214) 

The change in expected output f)- after a single decrement may be obtained 
by dualizing this equation: 

1 - O-(T + I) [1 (l/N)][I - O(T)] + (IIN) (215) 

so that: 

O-(T I) [1 (I/N)]O(T) (216) 

Equations (214) and (216) show that the expected output of a linear 
ADDIE is a sufficient statistic of its expected output following an increment 
or decrement. 

7.3.2. Change in Variance of Expected Output 

The change in the expected variance (j2+ after an increment may be 
obtained by substituting from Eq. (213) into (204): 

+ N 
(j2 (T + 1) = L (i/N)2niCT + I) 02(T + 1) 

i=o 

;=0 

= - [1 - (1/N)]202(T) 

= [(N - 2)(j2(T)IN] + {O(T)[I 0(T)]}/N2 (217) 

Sec. 7J Behavior of the Linear ADDlE 129 

This result is symmetrical, and dualizing gives the same equation, so that 
the change in variance is the same for an increment or decrement. Similar 
results may be obtained for the third and higher moments, and in general 
it may be shown that the moments up to order K of a linear ADDlE are 
sufficient statistics for all future moments up to order K, given the inter­
vening input sequence. 

7.3.3. Expected Number of Increments to Cause a Transition 

In the state Si an increment has a probability, Qi = 0i of causing a 
transition to the state Si+! , and hence the expected number of increments 
needed to cause a transition is I/fh. 

Hence for a linear ADDIE the expected number of increments from 
the state Si to the state Sj is 

j-l i-I 

"ir,j = I: 1/0r = I: N/(N r) 
r=i r=i 

""" N In[(N i)/(N - j)] (218) 

7.3.4. Variance of the Stationary Hyperstate of a Linear ADDlE 

The stationary distribution of the linear AD DIE has already been 
shown to be a binomial distribution [Eq. (201)] and the expected output 
is equal to the generating probability of the input [Eq. (212)]. The variance 
may be obtained either from the properties of the binomial distribution or 
by manipulating the equilibrium equation for the linear ADDlE. From 
Eq. (195) this is, for 0 < i < N 

p(N- i)ni q(i + 1)n'l+l (219) 

Multiplying this equation by ijN2 and summing from i = 0 to N 1, 
changing limits 

N N N 

P L (ijN)n, - P 2: (ijN)2ni q L (i l)in.;/N2 (220) 
i=O i=O i=o 

so that 
(j2 = 0(1 - O)/N pqlN (221) 

The variance of the input sequence with generating probability p is equal 
to pq. Thus Linear ADDIE variance (Input variance)jN, and the ratio 
e(p ), 

Estimation variance 
e(p) = Input variance pq 

(222) 



130 Stochastic Computing Systems 
[Chapter 2 

is a performance measure for the ADDlE as an estimator; it gives a measure 
of the accuracy to be expected in the estimate of the generating probability 
of the input sequence. It is not the only performance measure, and in practice 
must be weighed against response time, which generally goes in the opposite 
direction. It is a function of the generating probability itself, and an overall 
performance measure of this type can only be obtained when the distri­
bution of possible inputs is known. If this distribution is p(p) [i.e., the 
probability of the input being between p and p + dp in its generating prob­
ability is p(p) dp J, then one may define the overall performance measure of 
accuracy in estimation as 

"1 

e = J p=o Q(p) dp(p) (223) 

We have from Eq. (219) 

e(p:linear ADDlE) l/N (224) 

In thc following section various performance measures for the linear 
ADDlE are compared with those of a nonstochastic, continuous estimation 
process, and in the final section the optimality of the linear ADDlE, in 
terms of the performance measure of Eq. (223) is analyzed. 

7.4. Comparison of Linear ADDlE with Continuous 
Estimation Process 

Equations (214) and (216), taken together, have a remarkable resem­
blanee to the well-known exponential smoothing, or stochastic approxima­
tion, technique for measuring means and trends in random variables. If the 
input sequence to an ADDlE A(T) is regarded as a randO-IIfvariable and 
its mean M(N 1) is computed over N 1 clock periods, then this 'is an 
unbiased estimator of the generating probability p. We have 

N~l 

M(N - I) ~ A(i)/(N - 1) 
i=1 

(225) 
and 

Exp[M(N - l)J = p (226) 

Now suppose that the mean is calculated over N clock periods as M(N) 
and express this in terms of M(N- 1): 

N 

M(N) ~ A (i)/N = [(N- l)/N]M(N - 1) + [A(N)/N] .=1 (227) 

Sec. 7] Linear ADDlE with Continuous Estimation Process 131 

This gives a new estimate of the generating probability of the sequence 
A(i) in terms of the previous best estimate and the latest value in the se­
quence. Suppose now that instead of increasing N with each new value that 
comes in we assume that our previous estimate was based on the N 1 
values, and generate the next estimate using Eq. (227). This gives us an 
"exponential average" rather than a true moving avera~e, a?d has ~he 
advantage that our averaging period does not increase WIth tIme (whICh 
would be a disadvantage if p was varying with time) and that we do not 
have to remember the N past values of A (i) as we do with a moving average. 
If the value of the exponential average at time T is denoted by E(T), we have 
from Eq. (227) 

E(T + 1) [1 ~ (l/N)]E(T) + [A(T)/NJ (228) 

Comparison with Eqs. (214) and (216) shows that the expected output of 
an ADDlE follows the same equation as an exponential average of the 
input sequence. A heuristic argument explaining this relatio~ship is inte:­
esting because it bears out the original assumptions behmd stochastlc 
computing given in Section 3.3. Consider an ADDlE in its ith state, so 
that the value of its output is i/ N, which receives an increment, and compare 
it with the analog weighting process of Eq. (228) with E(T) also equal to 
i/N. The change in E(T) is 

E(T+ 1) E(T) (N i)/N2 (229) 

On the other hand, the probability that the ADDlE will change to state 
S· and the value of its output will increase by 1/ N is Qi I - (if N) 

'c-(N _ i)/ N. Hence the expected change in value of the ~DDIE .is ~qual 
to the actual change in value of the equivalent analog weIght. ThIS IS the 
advantage gained through stochastic computing: analog variable~ m.ay be 
replaced by digital ones. A comparison of other per~ormance cntena for 
the two processes indicates what has been lost by thIS replacement. 

7.4.1. Expected Number of Increments for a Transition 

Writing out Eq. (228) for E(T), E(T - 1), etc., and substituting one 
in another, we have 

)J [1 ( I/N)]2 + [1 (l/N)]T-l} E(T + 1) {I/N){l + [1 (ljN + 
+ [1 - (l/N)]TE(l) 

1 - [I - (ljN»)T[l E(1)] (230) 



132 Stochastic Computing Systems 

Thus if T increments are required to go from E(1) 
we have 

[1 (l/N»)T = [1 (jfN»)/[l 

so that 
TIn[l (l/N)] = In[(N j)/(N 

[Chapter 2 

i/Nto E(T + 1) = jfN, 

(i/N)] (231) 

i) ] (232) 

and, using the approximation that 10g(1 x) """ x for small x, we have: 

T """ Nln[(N - i)/(N - j)] (233) 

This is identical to Eq. (218) for an ADDlE. 

7.4.2. Variance of Estimate 

If we square both sides of Eq. (228) and take expected values, we have 

Exp(E2)= [1 ~ r Exp(£2) + 2[1 (1/N)] !XP(A) Exp(E) + EX~:2) 

= [ I - ~ r Exp(E2) + 2[1 - ~/N)]P2 + ;2 (234) 

Hence 
Var(E) = pq/(2N 1) (235) 

This may be compared with Eq. (221) for an ADDlE, from which it will 
be noted that 

e(p:linear ADDlE) 
2 - (l/N) (236) 

e(p : exponential smoothing) 

Hence exponential smoothing with the same time cOnsbmt gives an 
estimate with only half the variance of that for the ADDlE. Or, in alterna­
tive terms, to attain the same accuracy with an ADDlE as with exponential 
smoothing, the risetime of response has to be \1'2 times as long. The extra 
contribution to the variance may be viewed as the internal noise of the 
stochastic processes in the ADDlE itself. 

7.5. Sub-ADDlEs 

One variation on the ADDlE which is of interest is the truncated 
ADDlE, or "sub-ApDIE," formed by setting Pj and Qk of another ADDlE 
to zero, where 0 <j < k < N. Since the states of the sub-ADDlE can 
only range between Sj and Sk, states outside of this range may be omitted 

Sec. 71 
Sub-ADDlEs 133 

to give a (j, k) sub-ADDlE of the parent ADDlE. Rather than renumber 
the states from 0 to k - j (the sub-ADDlE has (k .- j + 1) states 1, it is 
convenient to call the state of the sub-ADDlE corresponding to the ith 
state of the parent its Ith relative state, and label it S/. Much of the be­
havior of a sub-ADDlE can be expressed simply in terms of that of its 

parent. 

7.5.1. Stationary Hvperstate of a Sub-ADDlE 

Let the stationary hyperstate for the relative states of a (j, k) sub-AD­
DlE of an (N - 1) state ADDlE be n/. We have 

k 

~ n/ = 1 
j 

(237) 

and for stationary equilibrium, from Eq. (195), using the definition of a 

sub-ADDlE 
pQin2' qPi +1n i+1 

pn/ = qPj+1nJ+l 

pQk-lnk-l = qn,,' 

j<i<k-l (238) 

(239) 

(240) 

the original Tti [Eq. (198)] satisfies the first equation, and hence we define 

Ui n; j<i<k (241 ) 

Uj Qjnj 
(242) 

Uk Pknk 
(243) 

Let 
k 

U= ~Ui (244) 

Then 
n/ = uJU j i < k (245) 

is the stationary hyperstate of the sub-ADDlE expressed in terms of that 

of the parent ADDlE. 

7.5.2. Variance of the Stationary Hvperstate of a Linear Sub­
ADDlE 

To obtain the variance of the stationary hyperstate of a sub-ADDlE 
of a linear ADDlE, it is convenient to use Eqs. (238)-(240), substituting 



134 Stochastic Computing Systems [Chapter 2 

for Qi, etc., mUltiplying the first equation by ilN, the second by j/N, and 
the third by kiN. Adding all three and summing over i, we have 

k-1 

dU/N)n/ +p 2: i(N i)n//N2 
i=j+l 

k-2 
= q[(k - l)/N]nk' + q 2: f(i + I)n//N2 

i=j 

Hence the variance is 

(}'2 (pq/N) + p(J/N)n/ + q[(N k)/NJnk' 

(246) 

(247) 

This may be compared with the variance for the parent ADDlE, which 
is pq/N, and the variance for the ADDlE with the same number of states, 
which is pq/(k - j). It can be seen that, provided the probability of the 
sub-ADDlE being in either of its end states is mall, the variance of the 
hyperstate of the sub-ADDlE is less than that of a complete ADDlE with 
the same number of states. This approximate result is given a more rigorous 
basis in the following section. 

7.6. Optimality of the Linear ADDlE 

The extent to which a linear ADDlE is a minimum variance estimator, 
in terms of Eq. (221), may be determined by considering the effect of small 
perturbations on its transition probabilities. Consider the (N + 1) state 
linear ADDlE which is almost linear, in that its kth transition probability 
has been slightly changed; let 

Pi ilN 

= k(l + e)jN 

fiN 

O<i<k 

k 

k<i<N 

where e is small, so that terms which are O(e) may be neglected. 

(248) 

The stationary hyperstate for this ADDlE satisfies Eq. (195), and this 
is satisfied for i above and below k by 

Hence it is reasonable to put 

ni Bi(I + ae) 

= Bi(l + be) 

Bi(l + ce) 

O<i<k 

k 

k<i N 

(249) 

(250) 

sec. 7] 
Qptimality of the Linear ADDlE 135 

Substituting these in Eq. (195) we have, for i k - 1, 

peN k + 1)(1 + ae)Bk- 1 = qk(1 + e)(1 + be)Bk (251) 

so that 
a 1 + b (252) 

Similarly, for i = k, we have 

p[N - k(l + e)](l + be)Bk = q(N - k - 1)(1 + ce)Bk+1 (253) 

Hence 
c = b - [k/(N - k)] 

Thus in terms of b, we have 

ni B i(1 + be + e) 

= Bk (1 + be) 

Bi[(l + be ke)/(N k)] 

Summing these equations for all i, we have 

O<i<k 

k 

k<i N 

(254) 

(255) 

N k--l N ( 56) i ni (1 + be) 2: Ri + e 2: Bi - [ke/(N - k)] 2: Bi 2 
i=O i=o ,=0 i=k+l 

Hence, making use of the fact that the binomial terms sum to unity, 
k 

b = [k/(N - k)] + [(Bk - N)/(N - k)l ~o Bi 
(257) 

2 
To determine the variance of the stationary hyperstate, we sum niP; 

over all i: 

[ke/(N 
N 

k)l 2: O/N)2Bi 
i=k+l 

(258) 

Substituting for b and for the sum of binomial second moments, we have 
k 

(12 - (pq/N) = e[p2 + (pq/N)][(Bk - N)/(N - k)] i~O Bi 

+ [eN/(N - k)] :f U/N)2B; + e(k/N)2Bk 
;=0 

(259) 

This term can be simplified by using the properties of the partial 



136 Stochastic Computing Systems [Chapter 2 

moments of the binomial distribution. It is readily shown that 

k k-l 
1: (i/N)2B i = [p2 + (pq/N)] 1: B, - [pq(N - 1)kBk/N2] + p(k/N)2Bk 
~ ~ ~ 

Substituting this in Eq. (259), we have 

e[p2 + (pq/N)1kBk 
N k 

_L epk2Bk ek2Bk 
, N-k+---:fj2 

= eBk Z [~ p] 

epq(N - l)kBk 
N k 

(261) 

Thus the effect of a perturbation is to change the variance of the station­
ary hyperstate by an amount proportional t;: the perturbation itself; the 
expectation of being in the perturbed state; and the difference between the 
output in the perturbed state and the generating probability of the input. 
It is this last term which is critical, since it determines the sign of the change. 
The variance will be reduced if outputs with values above the generating 

p p 

10 STATE 10 

(e) (IO.20) Subll".(Ir id) (4.14) SUAII".ar 
fN-J2} 

Fig. 31. Variation of output probability with state for various ADDlES. "' l 
\ 
! 

Sec. 8] Adaptive Threshold logic 137 

probability p are reduced and those below it are increased. A graph roughly 
indicating this form of perturbation is shown in Fig. 3Ib for p = 0.5. 
Graphs of the state versus output for various linear sub-ADDlEs are also 
shown to indicate their better approach to optimality. 

Optimality as a Function of the Input Distribution 

The results of the previous section apply only to the optimality of an 
ADDIE for a given generating probability, or to a small range of probabil­
ities. In general, it is the mean performance measure of the ADDlE over 
its range of possible inputs which is to be optimized, and Eq. (261) must 
be substituted in Eq. (223) to obtain an overall performance measure: 

e = f: (a2fpq)p,(p) dp = f: {(t/N) + eBk[(k/N) p]/pq}p,(p) dp 

(tIN) + e(k/N)NCk f>k-lqN-k-l[(kIN) p)]p,(p) dp (262) 

Thus for the linear ADDlE to be optimal for the input distribution 
p,(p) it is necessary and sufficient the last integral vanish for all k. Inte­
grating this integral by parts, we have: 

e (263) 

The integral will be indentically zero for dp,/dp = 0, in which case 
p,(P) = 1, a uniform distribution. 

Thus the linear AD DIE is optimal, in that it minimizes the mean 
expected reduction of variance for a uniform distribution of input generat­
ing probabilities. It will also be noted from Eq. (261) that the changes in 
linear ADDlE outputs required for input probabilities above and below 
the output are in opposite directions. Thus the linear AD DIE cannot be 
improved for all inputs simultaneously, and hence it is an admissable 
estimator when the input distribution is unconstrained. 

8. ADAPTIVE THRESHOLD LOGIC 

One of the most attractive forms of "learning module" for batch 
fabrication at low cost is the adaptive-thresho1d-logic element (ATLE) 
studied by many workers as a pattern classifier, and given the various names 
of Perceptron (71), Adaline (72), Learning Matrix (73), and so on (74). 
This device is simple enough to allow detailed analysis of convergence under 



138 Stochastic Computing Systems [Chapter 2 

certain conditions, but it is also powerful enough to be utilized as the basic 
building block of complex, hierarchical control systems. 

In this section the structure and analysis of convergence for a standard 
form of adaptive threshold element are first described, and then the problems 
encountered in utilizing a digital version of the element are outlined; these 
appear as lack of convergence under certain conditions, even when a solution 
is within the range of the element. Finally, the equivalent stochastic comput­
ing element is analyzed to demonstrate that convergence will always take 
place when a solution is available, and hence that the stochastic A TLE is 
more economical than a deterministic ATLE using the same components 
and with the same capabilities. 

8.1. Convergence of Adaptive Threshold Logic Elements 

The basic problem given an ATLE is to learn to classify two subsets of 
a set of input patterns into opposite classes. In the learning phase it is 
given a sequence of patterns together with information about the class to 
whic~ they belong. In the classification phase it is given only the patterns, 
and Itself has to classify them. 

The input patterns to the A TLE are represented as binary n-vectors, 
of the form Y; 1, for 1 < i n (there are alternative forms of re­
presentation, but the end result, and theory of operation, are similar). 
Its internal classification procedure is based on the use of a variable weight 
vector Wi and a fixed threshold 0 O. The output of the A TLE is a ternary 
level, Z 1, 0, + 1, where 1 andj-l represent assignment of the input 
pattern to each of the two possible classes, and 0 represents inability to 
make a classification. The value of Z is determined within the ATLE by 
the rules. Let 

n 
S 2: WiYi 

i=1 
(264) 

then 
Z if S <-() 

0 if -0 S<O (265) 

1 if ()<S 

This defines the "threshold logic" action of the A TLE-the discrete 
variable Z is a logical function of the binary variables, Yi , and yet it is 
obtained by them 'partly through continuous, arithmetic operations. The 
:'adaptive" nature of the element comes through procedures for adjust­
ll1g the values of the Wi during the learning phase. 

Sec. 8] Novikoff's Proof of Convergence 139 

Let the input sequence to the A TLE during the learning phase be YeT), 
and let the correct assignment of YeT) to one of the two classes, labelled 
±1, be U(Y(T». The weights of the AT LE are changed after each input 
according to the rules: 

W;(T+ 1) 
{ 

Wi(T) if Z(T) 

Wi(T) 'r Yi(T)U(Y(T» if Z(T) 

U(Y(T) 

U(Y(T» 
(266) 

This is an error-correcting procedure which changes Wi(T) only when the 
ATLE makes a wrong assignment, and in such a way as might reduce the 
difference between Z(T) and U(Y(T». 

The analysis of this process is simplified if the input vectors are rede­
fined to include their classification; for any input vector, Yi , let: 

(267) 

The weight vector, Wi , now gives the correct assignment if: 

11 

Sf = 2: WiXi > (j (268) 
;=1 

And the error-correcting procedure becomes: 

WJTf' 1) {Wi(T) if Sf (T) > () (269) 
Wi(T) + X;(T) if S' (T) () 

Not all assignments of input patterns to arbitrary classes can be realized 
by an ATLE-it is clear from Eq. (268) that Y i and Yi cannot both be 
assigned to the same class-and whenever the assignment can be realized 
by threshold logic, the two classes of input patterns are said to be linearly 
separable. Clearly the A TLE cannot converge to an error-free classifier of 
two sets of inputs if they are not linearly separable. It may be shown, 
however that the procedure of Eq. (268) always leads to a solution, jf one 
is possible, in a finite time. 

8.2. Novikoff's Proof of Convergence 

Suppose that the input sequence to the AT LE frequently contains all 
those input patterns to be classified. For each input pattern, either the 
weights will be changed or they will retain their previous value. Consider 
the input sequence with the patterns which do not cause a change removed­
let this sequence be Xi(N); since it consists of patterns which the A TLE 



140 Stochastic Computing Systems [Chapter 2 

miscIassifies, it is sufficient to show that this sequence is bounded in number. 
For every member of this sequence we have 

n 

2.; W;(N)Xi(N) e (270) 
;=1 

We also have that 

(271 ) 

Since the classification is assumed to be realizable by an ATLE, there exists 
at least one set of weights, Wi say, which is a solution, so that for each N 

n 

2.; WiXi(N) > e (272) 
;=1 

We may suppose, without loss of generality, that Wi(O) O. Multi-
plying Eq. (271) through by Wi , summing for 1 n, and summing 
all the equations for 0 N < M, we have 

n :\f-I n 
L Wi(M)Wi = L L WiXi (273) 

N=O ;=0 

Using the Schwarz inequality on the left-hand side, and inequality (272) 
on the right-hand side, we have 

n n 
L Wi2(M) > M 202j W,2 , (274) 
i=1 

Squaring both sides of Eq. (271) and again summing foyJ:«':::' i n, 
for we have, 0 N < M, 

n M-I n 

L L [2W;(N)Xi(N) + Xi(N)Xi(N)] 
;=1 N=o i=1 

2MO + Mn (275) 

using inequality (270). 
Inequalities (274) and (275) together imply that 

(276) 

Hence M is bounded above and the sequence of miscIassified inputs must 
always terminate. This is the standard convergence proof for ATLEs, first 
given by Novikoff (15). 

;\ 

I, 

Sec. 8J Lack of Convergence if Weights Are Bounded 141 

8.3. Lack of Convergence if Weights Are Bounded 

The weight-adjustment procedure of Eqs. (266) and (271) is interesting 
because, if the initial values of the weights are integers, then so are all future 
values. Hence the A TLE may be realized with digital elements and the 
weights, since they are changed only by ± 1, may be represented as the 
counts in binary counters. The original A TLEs used analog weights, 
such as motorized potentiometers, electrochemical cells, and transfluxor 
stores, but these are bulky, expensive, and unreliable, and it is very at­
tractive to replace them with all-digital elements fabricated by large-scale 
integration. 

The use of digital elements makes manifest a defect in the weight­
adjustment procedures discussed above. The counts in digital counters can 
only take a finite number of values, and hence only a restricted set of weight 
values are possible for any particular size of counter. Since the number of 
possible dichotomous classifications of a set of binary n-vectors is finite, 
there will clearly be some size of counter with which all linearly seperable 
classifications are realizable. In addition, inequalities (275) and (276), taken 
together, give a bound on the magnitude of the weights necessary for con­
vergence. We may take 0 to be near unity, and obtain 

rt;nax (for convergence) < n3!2 rt;nax (for separability) (277) 

This bound may be improved, but its main implication is that the range 
of weight values necessary for linear separability may be rather less than 
that necessary for the adaptive procedure to attain a solution. 

Since the range of weights is a function of the storage of the counters, 
in bits, this raiscs the question as to whether the capacity for adaptation of an 
ATLE requires storage elements which are unnecessary to the implementa­
tion of a solution once it is found. Inequality (277) does not prove that 
this is so, but a simple example shows that lack of convergence can occur 
even when a solution is within the range of weights. 

The set of binary 4-vectors: A = (1,1,1, -1), B = (1, -1, -1, I), 
C (-1, 1, 1,1), and D = 1, 1,1, 1) may be discriminated from 
the opposite set, -B, -C, -D, by the weight vector: W (1,1,1,2), 
since W·A W·B = W·C W·D = +1 > e = t and W·(-A) = W 
X (-B) W· C) W· (-- D) -1 < -0. Hence weights with the 
possible values Wi = -2, 1,0, +1, +2 should be capable of converging 
to a solution. Given the repetitive training sequence of inputs, A, B, C, 
D, - A, - B, - C, - D, A, B, C, D, etc., however, the weight-adjustment 
procedure of Eq. (266) (with "limiting" of the weights) causes the weights 



142 Stochastic Computing Systems 

to oscillate cyclically, and a solution is never attained: 

W(O) 
A 

W(l) 
B 

W(2) 
C 

W(3) 
D 

W(4) 
-A 

W(5) 
-B 

W(6) 
C 

W(7) 
-D 

W(8) 
A 

W(9) 
B 

W(10) 
C 

W(11) 
D 

W(l2) 

0 

1 

2 
1 

0 

1 

2 

0 

2 

1 

0 

o o o 
1 

000 

1 1 1 

o 0 2 
1 1 

002 

I 1 2 

002 

1 
002 

-1 2 

002 

[Chapter 2 

Hence it appears that the range of the counters used to hold the weights 
must be greater than the minimum necessary for a solution to exist. In the 
following section it will be shown that this inefficiency in the use of storage 
is unnecessary if the weight changes are made stochastically. 

8.4. Convergence of Stochastic Adaptive Threshold 
Logic 

The adaptive procedure of Eq. (271) implies that when an error is 
made all the weights are adjusted so as to decrease the error. Suppose now 
that only some of the weights are changed, and thq,t the decision to change 
each weight is made independently according to a probabilistic law. If the 
probability of change is zero, then no correction is made and the algorithm 
obviously does not converge. Equally, if the probability of change is unity, 
then the process reduces to the deterministic algorithm of Eq. (271), which 
has been shown not to converge. For intermediate values of the probability, 
however, it may be shown that convergence is guaranteed provided there 
is a solution within the range of weights. 

Using the notation of Section 8.3, suppose X(N) is a sequence of mis­
classified, normalized input patterns so that Eq. (270) still holds, and that 
there exists a solut\on W i so that Eq. (272) still holds. The weight-adjust­
ment procedure of Eq. (271) is, however, modified to 

(278) 

( , 

! 

I 
.\ 
l' 
! 

'I 

Sec. 8] Convergence of Stochastic Adaptive Threshold Logic 143 

where <Pi(N) 0, I is a random variable from a family of independent 
random variables whose generating probability is p, such that 0 < p < 1. 

Consider now the change in the deviation of Wi(n) from Wi . From 

Equation (278) we have 

n " 'Z [Wi(N + I) 
i~() 

WJ2 = 'Z [Wi(N) 
i~O 

n 

+- 2 'Z Wi(N)[Wi(n) 
i=l 

Combining Eqs. (270) and (272), we have 

n 
'Z [Wi ( N)- WdXi ( N) < 0 
i=1 

W i + Xi(N)/2]Xi(N) 

(279) 

(280) 

Hence there must be some value of i, f say, such that 

(281 ) 

There is a finite probability that 

(282) 

(the Dirac o-function) and in this event, combining Eqs. (279) and (282) 

and using inequality (281) we have 

n 
'Z [W,(N + 1) Wd 2 

n 
'Z [W,(N) (283) 

;=1 i=l 

Thus if any of the decisions of the stochastic A TLE are incorrect, 
they give rise to weight adjustments which have a finite probability of 
decreasing the distance of the weight vector from an arbitrary solution 
vector. Since the weights are bounded, and can take only a finite set of 
values there is a finite probability that over any sequence longer than a 
certai~ length [in fact, longer than 'Z?~1 (WiZ W,7",x)} the weights will 
have converged to an arbitrary solution. Hence the probability that the 
stochastic A TLE will have converged goes to unity with the length of the 

learning period. 
Thus, provided there is a solution within the range of its weights, the 

stochastic ATLE will always converge to a solution; it does not require the 
extended range of weights of the A TLE necessary only to ensure con­

vergence. 



144 Stochastic Computing Systems [Chapter 2 

8.5. An Application of Stochastic ATLEs 

Gene Clapper of IBM has developed an adaptive recognizer for classi­
fying speech, or handwritten characters, into one of sixteen categories ('6). 
The characters are written with a metal stylus, on a 3 X S matrix of metal 
tabs, and thus creates a IS-bit input pattern. The speech input is separated 
by filters into four frequency bands, and the presence or absence of energy 
in each of these bands for each of the first three discrete segments of the 
word spoken is noted. A fifth channel records whether or not each segment 
lasted more than 100 msec. Hence speech inputs are also coded as IS-bit 
input patterns. 

The decision-making part of recognizer is a set of four ATLEs, each 
with a binary output, so that, taken together, they are able to classify inputs 
into 16 categories. In order to ensure linear separability for the patterns 
of interest, Clapper incorporates a recoding network between the IS-bit 
input patterns and the A TLEs. This expands the original inputs into 
3S-bit patterns, by taking each three-bit row of the original 3 x S ma­
trix and transforming it, through binary-to-linear conversion, to a l-in-7 
line code. 

The A TLEs incorporates 3S weights each, which can each take one 
of the five values - 2, -1, 0, I, 2. These weights are adjusted after each 
decision of the recognizer according to an algorithm similar to that of 
Eq. (266). Thus the situation is similar to that described in the previous 
section, with A TLEs having discrete bounded weights being used in a 
deterministic adaptive loop. Since the input patterns have 3S ~ = 35, 
and for subsets of input patterns which may be linearly separated with 
weights taking values up to two in magnitude, the upper bound on the 
weight values required for convergence is 2 X 3'58/2 = 400. Even if this 
bound is very much higher than necessary, one might suspect that Clapper's 
recognizer with deterministic feedback would run into problems of non­
convergence as illustrated in Section 8.4. 

Clapper did indeed find this nonconvergence with deterministic feed­
back. When a fixed set of input characters was presented cyclically during 
the learning phase, "After 12 runs the machine got into a vicious circle that 
prevented 100% learning. It had most of the 16 patterns down pat, but was 
continuously confused by a few similar pairs." Most interestingly, however, 
he noticed that this did not seem to occur with speech inputs, and hypo­
thesized that these "are varied enough even when the same person does 
all the speaking." In order to get a variety of inputs from characters similar 
to those produced by speech, Clapper introduced a stochastic perturbation 

Sec. 8] Inefficiency and Redundancy in ATLEs 145 

which randomly turned off some of the ones in the 3S-bit input patterns to 

the ATLEs. 
He states that, "Without this technique, called statistical conditioning, 

the machine would have to learn the full set of input patterns without seeing 
anything less than complete characters, a difficult task. With this condition­
ing, however, it learns that each digit is represented by one of several sets 
of identifying features, each set smaller than the one describing the com­
plete character." In the same situation where the machine had previously 
reached a "vicious circle" he found that when, "the random number gen­
erator was switched on, and the same patterns were presented again, in the 
same order, the machine learned all of them perfectly in six trials." 

Clapper's "statistical conditioning" introduces exactly the required 
random variation in the weight-adjustment process which was shown in 
Section 8.S to be necessary for the convergence of discrete A TLEs with 
bounded weights. His justification of it in terms of the extraction of a subset 
of features from the entire set corresponding to an input character is an 
interesting variation on the mathematical approach taken in that section, 
and throws some light on the nature of the learning process in A TLEs. 

8.6. Inefficiency and Redundancy in ATLEs 
The requirement of linear separability of the two input classes for there 

to exist a solution realizable by an ATLE is a very strong one, The propor­
tion of dichotomies of binary vectors which are linearly separable is not 
known in analytical form, but it has been shown to be asymptotic to zero 
with the size of the vector. Ridgeway (77) has shown experimentally that 
the number of binary patterns which may be classified arbitrarily averages 
about twice the number of weights, and hence the proportion of patterns 
which may be classified ad lib goes down as n/2n-I, a very rapid fall off. 

However, this measure of the efficiency of the ATLE as a pattern 
classifier only determines what possible classifications out of an arbitrary set 
are possible for it. It does not indicate how efficient the ATLE is in the use 
of its own storage, i.e., how many different dichotomies it can realize com­
pared with the number of different weight vectors it can implement. Two 
factors work against the utility of the proportion of linearly separable input 
patterns as a measure of the efficiency of the ATLE. First, linear separability 
is a topological property which may be essential to the existence of "con­
vergence" phenomena in pattern classifiers; certainly there is no other 
adaptive pattern classification algorithm with the universality and power 
of the ATLE. Second, the number of dichotomies of binary n-vectors is 22n, 
so that 2n bits of storage are required to label every possible dichotomy. 



146 Stochastic Computing Systems 
[Chapter 2 

This is very large indeed in practice; e.g., in Clapper's recognizer 215 = 3 
X 10

1 
bits would be necessary; for a 10 x 10 input retina some 1030 bits 

are required to store one out of all possible classifications. 

Hence one does not wish to have all possible classifications available, 
and a more reasonable question to ask is how many different classifications 
can an A TLE with a certain number of bits of storage make. This question 
does not become meaningful until the A TLEs have discrete weights, since 
continuous weights correspond, in theory, to an infinite range of possible 
values. Aleksander and Albrow (,8) make this comparison for an ATLE 
and for their adaptive classifier used in a threshold logic mode, and point 
out the inefficiency of storage in the A TLE due to the requirements of the 
adaptive algorithm. 

The stochastic A TLE has no redundancy, which is necessary only for 
convergence. However, there remains some inefficiency in the use of storage, 
since, e.g., the weight vectors W i and 2 Wi will realize the same dichotomy. 
At present the information necessary to determine the extent of this redun­
dancy is not available, since two questions concerning discrete threshold 
logic elements remain unanswered despite considerable research effort ('9,80). 
First, what is the maximum weight, as a function of n, necessary to realize all 
linear separations of binary l1-vectors using integer weights? Second, a more 
difficult question which includes the first, what is the number of different 
linear separations possible with weights taking a certain range of values? 

Thus there are two levels at which the efficiency of an A TLE can be 
evaluated: (1) The proportion of all dichotomous classifications of binary 
l1-vectors which it can realize; and (2) the ratio of the number ur-different 
linear separations which it can realize to the number of different confi­
gurations which its weight values may take. Neither of these functions is 
yet known, but the second is of greatest practical importance. This section 
has shown that the second measure of efficiency may be greatly improved 
through the use of stochastic A TLEs, but the upper limit of this improve­
ment is not yet known. 

9. GRADIENT TECHNIQUES FOR THE IDENTIFICA TION 
OF LINEAR SYSTEMS 

The problem of identifying a linear system, or measuring its internal 
parameters from its input-output behavior, is a basic one in adaptive 
control, and a wide variety of possible techniques for doing this have been 
suggested and tested by simulation or by experiment (81.82). One of the 
commonest and most widely applicable approaches to linear system identi-

Sec. 9] Analysis of Model-Reference Parameter Identification 147 

fication is to cross-correlate the input and delayed output of the system 
. I . d bt' tl' Ise response (83,84,48), over a range of time de ays 111 or er to 0 am le lmpu ..' 

from this all other characterizations of a linear system may be obtamed. 
Direct correlation techniques for measuring the impulse response have 

a number of disadvantages-in particular, the computation is open-loop, 
in that the value of the measured cross-correlation is used d!rectly and 
must be measured accurately; other disadvantages are the reqUIrement for 
many time delays, the fact that the form of the results is an impulse response 
rather than a model of the system, and the uncertainty about the "meaning" 
of the results if the system identified is not linear. 

All these disadvantages are overcome in what is essentially a null­
point variation of the correlation technique, the gradient technique for 
minimizing the "satisfaction error" between the output of the system and 
the output of a linear model driven from the same input (85-89). The "mo.del" 
consists of a number of signals derived from the input, multiplied by weIght­
ing coefficients and summed to give the output. The satisfaction error be­
tween the model output and the system output is multiplied by the delayed 
terms and fed back through integrators to the corresponding weighting 
terms in such a sense that excessive value of a weight causes it to be reduced, 
and vice versa. The weights will clearly attain stable values only when the 
cross-correlation between the satisfaction error and the delayed inputs are 
all zero. Hence this is a null technique, and has been termed "error-de cor­
relation. (90)" 

The model-reference gradient technique has the advantages that: the 
computation is closed-loop, and errors in the measured parameters are fed 
back in such a sense as to reduce themselves; the model used may be a 
simple and natural physical model of the system, and the par~meters ~ave 
a direct interpretation; only the zero crossings of the correlatIOn functIOns 
have to be accurately measured; and, if the system is nonlinear, the match 
between it and the model may be interpreted in terms of minimum satis­
faction-error. 

In this section the theoretical basis for model-reference parameter 
estimation is introduced, and an experimental study is outlined of vario~s 
hardware implementations of the technique, including three stochastIc 
computing approaches. 

9.1. Theoretical Analysis of Model-Reference 
Parameter Identification 

Gradient techniques for implicit function generation have already been 
described in Section 4.11, in the context of stochastic division and square-



148 Stochastic Computing Systems 
[Chapter 2 

root. extractio~, a~d the ~heory behind system identification using the 
gradIent techn~que IS essentIally the same as given in that section. However, 
~ecause the sI~nals to be matched are now essentially time-varying, a 
~Igorous ~nalysIs of the behl~vior and convergence of the gradient technique 
IS more ?Ifficult. In this section a reasonable heuristic analysis will be given 
to explam th~ model-reference parameter identification technique and the 
problems WhICh can arise in its application. 

. Suppose Xi = Xi(t) (0 < i < K) is a family of signals, or functions 
of tll~e, ~nd that the output Y == yet) of an unknown system is a linear 
combmatlOn of these signals: 

K 

Y= ~ aiXi 
i=o 

(284) 

Let Z be the output of a "model" formed by taking some linear combination 
of the signals: 

K 

Z = ~ WiXi 
i=o 

(285) 

It i~ r~quired to make the model fit the system by minimizing the squared 
?eVIatlOn of the model output from the system output over some interval' 
I.e., by minimizing , 

S == SeT) = f; (Y - Z)2 dt (286) 

This integral can be put into a convenient form by letting-­

Aij == A,:j(T) = f; XiXj dt (287) 

s~ that Aij is the covari~nce of Xi and Xi over the given interval, assuming, 
wIthout loss of generalIty, that all the signals, except Xo, have a mean of 
zero; Xo is the dc component. If we also put 

(288) 
then Eq. (286) may be written 

K l{ 

S = ~ ~ eiA,:jej 
i=o j=o 

(289) 

assuming that both ai and Wi are constant. 

Equation (288) S?oWS that in general the effect of an error ei is depend­
ent not only on the sIgnal Xi, but also on the covariance of Xi with other 

Sec. 9] Analysis of Model-Reference Parameter Identification 149 

signals. This is reasonable, since any covariation between signals implies 
that they have a common component, which is multiplied by both their 
coefficients. These co variance terms make for difficulties in the convergence 
of any process which is trying to drive the ei to zero (e.g., if Xl = - X 2 , 

then a term of the form wXI + wX2 can be added into the output of the 
model without affecting S, and hence a l and a2 cannot be individually de­
termined), and it is usual to choose the Xi to be orthogonal signals, so that 

(290) 

Equation (289) also shows that the effect of an error ei in the perfor­
mance measure S is a function of Aii , which itself corresponds to the energy 
present in the signal Xi' If Xi should be of low strength, then the error ei 
will have little effect, and any procedure estimating ai cannot be expected 
to derive an accurate estimate; i.e., the part of the system corresponding 
to ai has not been "excited." 

Assuming that the signals are orthogonal and present in reasonable 
strength, if we set 

Wi = -a(A - Y)Xi (291) 

where 0 < a ~ 1, then the Wi may be shown to tend to the ai at a rate 
proportional to Aii , the energy present in the signal Xi, since rewriting 
Eq. (291), 

K 

ei = -a ~ ejXjXi 
j=O 

(292) 

This informal analysis indicates the type of computation and assump­
tions involved in obtaining a model of a linear system using a gradient 
technique. In practice, the model used will probably not contain all the 
terms necessary to match the system, and the signals will not be completely 
orthogonal. The most important practical complication, however, is that 
the signals Xi will not themselves be exactly known for substitution in Eq. 
(291). Instead, there will be available estimates of the Xi contaminated 
with noise: 

(293) 

where the Ni are noise sources, each with zero mean, assumed uncorrelated 
both among themselves and with the Xi' 

The effect of this added noise is to introduce a bias in the estimates 
of the parameters ai' For, substituting Yi instead of Xi in Eqs. (285) and 
(291) [not in Eq. (284), because the noise is only on the signals measured 



150 Stochastic Computing Systems 
[Chapter 2 

for purposes of modeling], we have 

K 

-a 2:; (eiXi + WiNj)(Xj + N j ) 
j=o (294) 

Under the same assumption as before, ei will be zero on average when 

Aiiei + Wi f: Ni2 dt = 0 (295) 

i.e., 

(296) 

and the estimate of ai is reduced by an amount which depends on the relative 
energies of Xi and Ni; this effect is called the noise bias in the estimate 
of ai' 

9.2. Linearization of Polarity-Coincidence and Relay 
Correlators 

Before comparing the realization of gradient techniques in the stochas­
~ic. comp~ter with alternative implementations of the same technique, it 
IS mterestmg to make the same comparison for open-loop identification 
using cross-correlation to obtain the impUlse response. When covariances 
are computed for many delays at the same time the cost of analog multipliers 
is substantial, and there have been many attempts to reduce the cost of 
correlators by replacing these with relays or gates, and using mixed analog/ 
digit~l (17.91), or purely digital (92.93) computation. The" relay correlator ap­
prOXImates to the product XY with the term X[sign( Y)], and can be realized 
by a comparator fed from Yand driving a relay selecting either X or - X. 
The polarity-coincidence correlator takes the sign of both channels, form­
ing [sign(X)][sign(Y)], and hence may be considered as a logical operation 
on two binary variables, in fact, an EXCLUSIVE-OR operation. Under 
low-noise conditions with Gaussian signals these techniques may be shown 
to give results in a 1:1 correspondence with the true correlation function (41). 
However, in the presence of noise or with strongly asymmetrical distribu­
tions this correspondence no longer holds, and the structure of the true 
impulse response is lost. 

Addition of appropriate random signals to the correlator inputs has 
been suggested as a means of overcoming these defects (47.94). and leads to 
a structure identical to that of a stochastic mUltiplier and integrator for 
quantities in the single-line bipolar representation HI (Section 4). This has 

Sec. 9] Comparison of Hardware for Gradient Techniques 151 

been described in one of the examples of prestochastic computing using 
noise signals (Section 3.3). The accuracy of the results for a given period 
of integration may be increased by utilizing the two-line representation 11. 
This may be seen as an application of coarse quantization (95.96) together 
with stochastic interpolation. Similarly, the action of a stochastic representa­
tion in removing the effects of noise on polarity-coincidence correlation 
and emulating analog multiplication may be viewed as statistical linear­
ization (97,98) of the relay switching function. 

9.3. Comparison of Hardware for Gradient Techniques 

The same considerations as to economy in hardware by replacement 
of analog multipliers apply in closed-loop parameter determination using 
gradient techniques. However, while the linearization inherent in the sto­
chastic representation is essential in obtaining unbiased results from an 
open-loop determination of process parameters using polarity-coincidence 
correlation, it is by no means obvious that the same is true of closed­
loop determinations. 

It has been suggested that relay correlation may lead to interactions 
between coefficients which are otherwise orthogonal (88), and it might be 
expected that the noise bias would be greater for polarity-coincidence tech­
niques. Since, however, the zero crossings of the polarity-coincidence func­
tion and the true correlation function are the same for Gaussian inputs (41) 
even in the presence of noise, the noise bias of null-seeking gradient tech­
niques should be virtually independent of the method of correlation used. 

Because of the practical importance of gradient techniques in both 
communication and control, a detailed comparison of the performance of 
various forms of hardware would be of great interest. However, no general 
comparison is available in the literature, except for a minor one by the 
present author (5), which included various stochastic techniques; this is 
outlined below. 

The problem selected for study was the determination of the pa­
rameters of the first-order lag whose transfer-function is I/(al + azs). 
In terms of the general equation (284) the input-output relationship is 

(297) 

The signals X and X (the time derivative of X) were chosen because they 
are orthogonal in the sense of Eq. (290). 

Writing E Z .- Y Eq. (291) and assuming Xl = X, X z X, the 
equation for variation of the model weights may be written Wi -aEXi . 



152 Stochastic Computing Systems [Chapter 2 

Six different techniques for approximating this equation have been com­
pared: 

a. Steepest Descent Technique. Here 

(298) 

and analog multipliers are required for both the weights and their adaption. 

b. Relay Correlation Technique. Here 

(299) 

and analog multipliers (which may be simple motorized potentiometers) 
are required for the weights only. 

c. Stochastic Relay Correlation Technique. Here 

Wi = -a signee +- v) Xi (300) 

where v is a random variable, uniformly and symmetrically distributed 
over the range of E; this effectively represents E as a stochastic sequence 
in representation III (Section 4), and linearizes the relay. 

d. Polarity-Coincidence Technique. Here 

Wi = -a signee) sign(Xi ) (301) 

where Wi now takes discrete values and the integration is performed by a 
counter, so that no analog multipliers are required. 

e. Stochastic Two-Line Technique. Here 

Wi= -asign(E)sign(XD[1+sign(iEi-v)][l-/-sign(jXd - 6)]/4 (302) 

which may be regarded as a polarity-coincidence correlation with stochastic 
weighting according to the magnitude of the inputs (v and 6 are random 
variables uniformly distributed in the range of magnitudes of E and Xi, 
respectively), or as stochastic multiplication in representation Il. 

t. Stochastic Single-Line Technique. Here 

Wi = -a signee -/- v) sign(Xi 6) (303) 

which may be regarded as polarity-coincidence correlation with statistical 
linearization of the comparators (v and 6 are random variables symmetri­
cally and uniformly distributed in the range of magnitudes of E and Xi, 
respectively), or as stochastic mUltiplication in representation Ill. 

Sec. 9] Experimental Comparison of Gradient Techniques 153 

9.4. Experimental Comparison of Gradient Techniques 

There are four figures of merit which have to be determined for the 
various techniques. 

a. Speed of Response. How rapidly are the weights adjusted in 
response to a step change? This is not simple to define, since the equivalent 
gain of a relay is a function of the input amplitude. Hence when E becomes 
large following a change in the system parameters, the speed of response 
of methods a, c, e, and f is greater than that of methods band d. As the 
estimates converge and E becomes small, however, the speed of the first 
group decreases, while that of the second pair remains constant. This cross­
over shows clearly in the graph of Fig. 32, which compares methods a and b 
in estimating ao with noise-free data. 

b. Bias Due to Noise on Data. All the techniques will under­
estimate the magnitude of the weights when uncorrelated noise is added to 
Z and each of the (Xi)' For the reason stated earlier it was expected that 
this bias would not be greater for methods c and d than for the others, but 
this was subject to check under realistic conditions. 

c. Interaction between Weights. In order that a step-change in 
one parameter shall not cause transient changes in the estimates of the 
others, it is necessary to choose the (Xi) to be orthogonal functions. The 
a1 and a2 multiply orthogonal functions with respect to methods a, c, e, 
and f, but it is not obvious that they remain orthogonal for band d (al­
though the results of Veltman and van den Bos (41) would suggest that they 
do under reasonable conditions). 

----------------~----___ ==d ACTUAL VALUE 

STEEPEST D~iH!''''''''''' 

r 
/ 

r'/ 
I 

o 5 
TIME - In process time cOhStan\s 

Fig. 32. Response of various parameter estimators. 

10 



154 Stochastic Computing Systems {Chapter 2 

cl. Variance in the Final Estimates. Under noise-free condi­
tions E tends to zero and the estimates reach fixed stable values (apart 
from the one-unit relay "chatter" in methods band d, and the stochastic 
variance in methods c and f). Noise on the (Xi), however, induces variance 
in the (w.;) which increases with the gains a of the various methods. If the 
speeds of response are matched (in some sense), then the gain-varying 
methods (b and d) would be expected to have more variance in their esti­
mates, as would also the stochastic binary techniques (c and e). 

The gain of each method was adjusted so as to equalize their speeds 
of response (time taken to traverse 0.9 of the step) under high-noise con­
ditions (uniformly-distributed noise, 0.2 of signal). The noise bias in the 
estimate was measured under these conditions together with the variance 
of the final estimate. The interaction between coefficients was measured 
under noise-free conditions by examining the effect of a step in one pa­
rameter on the estimate of the other. The overall time of convergence 
was set to be about five process time constants. 

It was found that: 

1. The noise-bias was the same in every case (estimate about 0.8 of 
true value). 

2. The interaction was the same in every case. 
3. The variances of the final estimates were approximately in the ratios: 

steepest descent (I): relay correlation (4): stochastic relay correlation (2): 
polarity coincidence (10): stochastic two-line (1): stochastic single-line (2). 

Thus the high value of a necessary to give the relay and pola-illy­
coincidence techniques a sufficient speed of response leads to excessive 
gain in the converged condition and a lowered overall accuracy. 

There are several features of interest in these results: (I) use of relay 
correlation and polarity-coincidence correlation do not lead to the artifacts 
in the results which would occur in the open-loop measurement of impulse 
response-this demonstrates the essential robustness of the null-point tech­
nique; (2) the stochastic representation (e) not only gives the same accuracy 
as the best deterministic technique (a), but also gives the same speed of 
response (the experimental response curves are virtually identical)-this 
equal efficiency derives from the fact that identification is itself an essentially 
slow process, and the time taken is a function of the process time constant, 
rather than the speed of computations; (3) these results are a very clear 
demonstration of the value of added noise (99) and statisticallinearization, 
and emphasize the close links between these processes and the linear forms 
of the stochastic computer. 

Sec. 10] Bayes' Predictor for Binary Inputs 155 

9.5. Identification of Low-Bandwidth Parameters in 
High-Bandwidth Systems 

In the stochastic identification techniques discussed in the previous 
sections the entire computation has been carried out with the data represent­
ed as a stochastic sequence, and hence the bandwidth of the model has been 
severely limited. In many cases of interest, however, such as the identifi­
cation of the characteristics of communication links, the system to be iden­
tified contains very-high-bandwidth signals, but its, parameters are varying 
very slowly. In this event the stochastic techniques may be applied only in 
the parameter-adjustment loop. 

This is acbieved by simultaneously sampling the signals in the system 
and its output, using a strobe pulse, or window, which is narrow compared 
with response time of the system. The samples taken at the same instant 
obey the system equations, and a set of them is sufficient to identify the 
system parameters (lOO). Information is clearly lost by infrequent sampling, 
but since the parameters of the system are assumed to be very slowly varying, 
there is an over-abundance of information about the system available, and 
inefficient use of it does not matter. 

The configuration adopted will be very similar to that of Fig. 34, with 
strobed sample/hold circuits placed before the analog/stochastic convertors. 
In the forward path of the model, however, the input must be fed through 
directly, without conversion, to an analog, rather than a stochastic, summer. 
The weight values, formed in the counters of the stochastic integrators, 
must be used to multiply analog quantities. This may be done precisely 
by having the digital output of the counter control the switched summing 
resistors of an operational amplifier, but this leads to transients in the 
analog channel which decrease its available bandwidth, and is expensive. 
In fact, an exact linear relationship between the digital output and the analog 
coefficient is not essential, because the multiplier is within the adaptive loop; 
only a monotonic relationship without wide variation in slope is required. 
This may be achieved by using the digital output to control a photoemissive 
source driving a photoconductive input resistor to an amplifier; by this 
means low-bandwidth digital control of very-high-bandwidth analog 
channels is economically performed. 

10. BAYES' PREDICTOR FOR BINARY INPUTS 

Statistical inference based on Bayes' theorem is fundamental to modern 
probability theory (lot-103), and devices to implement various predictors 



156 Stochastic Computing Systems [Chapter 2 

based on the theorem have been put forward many times as basic com­
ponents of learning machines (1OH07). The estimation of the likelihood 
ratios involved in a form convenient for prediction is not very readily 
realized in hardware, however, and the techniques proposed in the literature 
have involved approximate estimation and prediction procedures. In this 
section the theory behind the Bayes predictor is first outlined, and then a 
stochastic computing system which simply and naturally performs the re­
quired computations without approximation is described. 

10.1. Maximum Likelihood Prediction 

Consider some event E whose occurrence [designated e(n) I] is 
dependent upon which members of a set of events {Ei} have occurred (for 
1 iN). Let the binary vector {ei} be such that ei 1 if the event E; 
has occurred and ei 0 otherwise. Then the probability that e(n) 1, 
given {e;(n)}, is to be used to make the best prediction of E. The simplest 
utilization is that of maximum liklihood prediction, in which E is predicted 
to occur if 

preen) = 11 {ei(n)}] > 0.5 (304) 

but more complex procedures may be used if further information is available, 
e.g., if the costs of predicting incorrectly one way or the other are known. 

To estimate the conditional probability of E occurring for each possible 
combination of events from {Ei} would not only require great storage 
capacity, but also much experience, and in practice it is necessarYro-make 
certain simplifications which are equivalent to having the machine generalize 
from its experience. An estimating and predicting scheme based on Bayes' 
theorem together with certain assumptions about the nature of the events E 
and {Ei} is developed below. 

10.2. Estimation and Prediction Based on Bayes' 
Theorem 

Bayes' theorem is best regarded as a simple manipulation of conditional 
probabilities, in which the conditional probabilities of one event given 
another, p(AIB), and its converse, p(BIA), are both expressed in terms of 
the probability of their joint occurrence, p(A. B), and of their individual 
occurrences, peA)"~ p(B). By definition 

p(AIB) = p(A· B)/p(B) 

p(BIA) p(A. B)/p(A) 

(305) 

(306) 

Sec. 10] Estimation and Prediction Based on Bayes' Theorem 157 

and hence 
p(AIB) = p(BIA)p(A)/p(B) (307) 

This apparently simple result is dignified with the name of a theorem 
because its foundations are far more complex than is implied here-the 
events A and B will not generally be simultaneous, and the effect on the 
probability of one event of the occurrence of a future event is not a simple 
concept-however, the debate on the meaningfulness of Bayes' theorem is 
of no concern in the present context. 

In terms of the events e(n) and ei(n) of the previous section, consider 
the likelihood ratio 

L(n) = preen) 11 {ei(n)U/p[e(n) = O!{ei(n)}] (308) 

By Bayes' theorem this can be re-written 

L(n) = p[{ei(n)}le(n) = l]p[e(n) 1] 
p[{ei(n)}le(n) = O]p[e(n) 0] 

(309) 

Now assume that the components ej(n) are statistically independent under 
the occurrence of E, so that 

n 
p[{ei(n)}le(n) 1] = n p[ei(n)!e(n) 1] (310) 

;=1 

and apply Bayes' theorem to the expanded terms: 

L(n) = p(e 1) IT p(e ll ei)p(e = O)~ 
p(e = 0) i=1 p(e = 0lei)p(e = 1) 

(311) 

which may be written 

N 

L(n) = Lo(n) IT Li(n) (312) 
i=1 

where 
Lo(n) p(e 1)/p(e 0) (313) 

and 

Li(n) 
Ole;) p(e = 1) 

(314) 

where the notation is obvious. The quantities Li(n) are the normalized 



158 Stochastic Computing Systems [Chapter 2 

likelihood ratios relating E and E i , and it can be seen that Li(n) is unity 
if the occurrence of Ei does not affect the probability of occurrence of E. 

Equation (314) gives the overall likelihood ratio L(n), which is sufficient 
for maximum likelihood prediction, since, from Eq. (304) the condition 
for predicting the occurrence of E is now 

L(n) > 1 (315) 

This quantity is expressed as the product of Lo(n), the unconditionallikeli-

~ I 
1 
] 

I 

hood ratio, and the product of the normalized likelihood ratios for those :-0 

events which have occurred. These likelihood ratios are difficult terms with 
which to compute, since they range in value from zero to infinity. It is 
customary to take the logarithm of Eq. (314), turning the product into a 
sum for easier computation; the quantity In [Li(n)] is in fact the information 
in the event Ei relative to the event E (l08). The logarithms of the likelihood 
ratio take values in the range from minus infinity to plus infinity, however, 
and some truncation is necessary. Estimation of L i , In(Li ), or even the 
unormalized likelihood ratios is also difficult because they are nonlinear 
and unbounded functions. In practice, no compatible estimation and pre-
diction scheme using simple computing elements has been developed for the 
Bayes predictor. 

10.3. Stochastic Computing Realization of Bayes' 
Estimator and Predictor 

Estimation of the Li(n) and prediction from them can be a'\;hieved 
very simply using a form of stochastic integrator, or ADDlE, with the~ikeli­
hood ratios represented by the p/q mapping described in Section 6. To each 
event Ei there corresponds an ADDlE estimating a probability Pi such 
that 

1 <i<N (316) 

A single integrator connected to the outputs of these estimators implements 
Eqs. (314) and (315) for maximum likelihood prediction. 

The gating necessary for the fractional count Pi in the counter of an 
ADDlE to obey Eq. (316) is shown in Fig. 33a. The input lines correspond­
ing to the events E and Ei are ON only when these events occur. The line 
representing Ei feeds both the input gates of the ADDlE so that no change 
occurs in the stored count if this event has not occurred. The line represent­
ing E goes to the gate on the INCREMENT line directly, and to that on 
the DECREMENT line inverted. The stochastic output of the integrator 

Sec. 10] Stochastic Realization of Bayes' Estimator and Predictor 159 

E _----.------l 

(0) ADDlE 

(b) SYMBOL 

Fig. 33. ADDIE for Bayes estimation. 

feeds back to the input gates in the normal way. The main difference be­
tween the configuration and that of a linear ADDlE is that another line, 
labeled Eo, feeds both inputs. This is the output of a linear ADDlE esti­
mating the unconditional probability of occurrence E, and hence its gener­
ating probability isp(Eo) = p(e = 1) = Po. 

The equilibrium equation for the stochastic integrator with this gating 
at its input is 

(317) 

Now Eo is independent of the other two terms, so that this equation may 
be rewritten 

(318) 

which, from Eqs. (314) and (316), is the required relationship. It is con­
venient to use a three-input integrator symbol for the ADDlE with this 
gating, as shown in Fig. 33b, even though it does not form the sum of its 
inputs, as does the two-input summing integrator previously described; 
the Ei input must be differentiated from the other three, and is shown as a 
track/hold input to the integrator. 

This form of ADDlE performs the direct estimation of normalized 
likelihood ratios. To use these for maximum likelihood prediction, it is 

. only necessary to compute whether inequality (315) holds, and this is 



160 Stochastic Computing Systems [Chapter 2 

equivalent to 
N N 
IT Pi > IT (1 Pi) (319) 
i=o i=O 

where the product is taken over the events Ei which have occurred. Figure 34 
shows a complete estimation and prediction system for performing this 
computation: the ADDlEs estimating the likelihood ratios change their 
state only when the ESTIMATE line is ON; the integrator at the output 
is an (N + 1) input version of the same type of ADDlE; its counter incre­
ments only when all its inputs are ON and decrements only when they are 
all OFF-hence the output of the integrator, used as a switching function, 
is ON or OFF depending on whether inequality (319) is or is not satisfied. 

Thus an estimator and predictor for binary events based on Bayes' 
theorem and maximum likelihood prediction is simply and economically 
realized using stochastic computing elements. 

ESTIMATE 

E 

Y2 

E2 ~ - -1-L-------L.l1.J"" )(2 

(0) ESTIMATO R 

~ ;JCOUNT£Rt--
(b) PREDICTOR 

Fig. 34. Bayesian estimator and predictor. 

Sec. 11J Solution of Partial Differential Equations 

11. NETWORKS OF STOCHASTIC COMPUTING 
ELEMENTS 

161 

It was noted in Section 6.6 that stochastic computing techniques are 
particularly amenable to the construction of networks of computing ele­
ments in which the output of anyone element is in a form suitable for 
feeding to another. Examples of stochastic computing nets have already 
been given: the adaptive threshold logic element of Section 8 uses a number 
of ADDlEs and gates uniformly connected to give a general-purpose 
pattern classifier; the steepest-descent identifier of Section 9 uses ADDlEs 
and gates, or analog weighting elements driven from the ADDlEs, uni­
formly connected as a general-purpose identifier of linear systems; the 
Bayesian estimator and predictor of Section 10 uses special-purpose AD­
DlEs and gates, uniformly connected to form an identifier of discrete, 
probabilistic systems. 

Further examples of uniform computing networks have been given in 
the literature on stochastic computing: Poppelbaum et al. (2) have described 
a stochastic array computer in which a network of general computing ele­
ments is interconnected to derive a particular function; they have also 
described a stochastic image transformer to perform general matrix opera~ 
tions on a retina, and hence realize translations, rotations, magnifications, 
Fourier transformations, and so on; Ribeiro (3) has described spatial inte­
grators and matrix multipliers consisting of uniform networks of stochastic 
computing elements. 

The following subsection gives a brief description of the application of 
stochastic computing techniques to the solution of partial differential equa­
tions, where uniform networks of computing elements again naturally arise. 

11.1. Solution of Partial Differential Equations 

Analog computers have one natural independent variable, and that is 
time. Partial differential equations involving several independent variables 
are usually solved iteratively on a hybrid computer, or through a discrete 
approximation on the digital computer. The use of stochastic computing 
elements makes it feasible to solve the equations with spatial arrays of 
special~purpose computing elements, with one spatial dimension for each 
independent variable. A stochastic solution of Laplace's equation will be 
used to illustrate this technique. 

Laplace's equation in two dimensions, 

(320) 



162 Stochastic Computing Systems 

A 
8 
C 
o 

.lr:~ 
c 

Fig. 35. "Laplacian" element 

[Chapter 2 

w.ith boundary conditions defined on a closed curve, may be expressed in a 
dIscrete form by taking intervals of e in each of the independent variables: 

u(x e,y) 2u(x,y) + u(x + e,y) + u(x,y e) 2u(x,y) 

+ u(x, y + e) = 0 (321) 

so that 

4u(x, y) = u(x e, y) + u(x + e, y) + u(x, y e) + u(x, y + e) (322) 

The function u(x, y) is defined at each point of a rectangular grid in x 
an~ y, and Eq .. (322) ~ives a relationship between the value .of\u at one 
~omt on the gnd and Its value at the four neighboring points. Ir u(x, y) 

IS .represented by the output of a stochastic integrator at each point of the 
grid, then Eq. (322) may be enforced by feeding back to its input its inverted 
ou.tput together. with the outputs of the four neighboring integrators. A 
sUitable com~utmg gement, the "Laplacian," is shown in Fig. 35: a linear 
ADDlE receIves the output of an adder, which sums the peripheral terms 
?f the above equation together with the normal inverted feedback from 
Its output; :he :alue. repres~nted by the ADDIE can settle only when the 
~bo~e equatIOn IS satIsfied. Networks of these units, interconnected as shown 
m ~lg. 36, can be used to solve Laplace's equation in two-dimensions for 
arbltrary shapes and boundary conditions. 

11.2. Relationship to IINeural Nets ll 

. Spatial arrays of such stochastic computing elements as that shown in 
FIg. 37 and described elsewhere in this chapter have interesting resemblances 

Sec. 11] 

, , , 
I 

• . 
I 

I 
\ 
\ 

\ 
\ 
\ 

\ 
\ 1 I 
" \ J , 

BOUNDAlU',' _ 
CONDI TIONS: --

Relationship to "Neural Nets" 

Fig. 36. Network of "Lapiacians" for solving Laplace's 

equation. 

163 

to the "neural nets" simulated by Farley and Clark (109) and Beude (110), 
and the stochastic computing elements themselves are reminiscent of the 
artificial "neurons" studied by Harmon (111) and other workers. Neurons 
in the brain are known to show stochastic behavior, and it is possible that 
stochastic computing may provide not only a new impetus to work on neural 
nets, but also a reasonable model of some cortical functions, e.g., the cross­
correlational processes of visual disparity and auditory formant separation. 

Other examples of stochastic computing elements whose behavior may 
be relevant to the functioning of the human nervous system have been given 
in preceding sections. The synchronizing element of Fig. 21, described in 
Section 4.14, is of interest not only because it synchronizes the input stream, 
but because the rate of pulses at the output is strictly limited to be less than 
the "clock" rate, and yet the element never overloads and loses information, 
no matter what the pulse rate at the input. The conversion of a stochastic 
pulse stream whose pulse rate may vary by several orders of magnitude to a 

(I 

p 

OUTPUT 

Fig. 37. Adaptive stochastic convertor. 



164 Stochastic Computing Systems [Chapter 2 

stochastic pulse stream which is bounded in its rate is a problem faced by 
the photoreceptors and neurons in the retina of the eye. 

The basic synchronizing element of Fig. 21 shows no memory of its 
past firing rate, and hence has no equivalent of the time constants in darkl 
light adaption. Consider a model of a sensory receptor in the eye in which 
an incoming photon causes a nervous impulse to be emitted if it is absorbed 
in a molecule of "pigment". In being absorbed it bleaches the pigment and 
hence reduces the probability that another photon will be absorbed; pigment 
regenerates at a slow rate. The overall effect will be that the rate of nervous 
firing is a monotone function of the rate of input of photons, but tbe function 
is clearly nonlinear, since the proportion of photons which is absorbed 
decreases with the mean rate of input. 

In the stochastic computer this phenomenon may be simulated by and 
ADDlE, made up of a counter with stochastic output (representing the 
fraction of pigment unbleached), which is fed back in the normal way to 
AND gates on its INCREMENT and DECREMENT lines. The other 
inputs to the AND gates are not driven from the same input, as in the 
normal linear ADDlE, however; the gate on the DECREMENT line is 
fed from the input line, on which there is a stochastic sequence with gener­
ating probability p; the gate on the INCREMENT line is fed from a constant 
stochastic sequence of generating probability a (representing the rate of 
spontaneous regeneration of the pigment). 

The output of the device is the DECREMENT line to the counter, 
on which there is a stochastic sequence with generating probability y. If 
~he stochastic output of the integrator has a generating probabil~ty s, the 
mtegrator has N + 1 states, and the unit of time is taken to be oVe clock 
interval, then we have . ' 

y ps (323) 
and 

N!; -ps a(1 s) (324) 

Hence, assuming p is constant after time zero, 

set) = S(O)e--(a+p)tfN + [a(l - e-(al-p)tIN)/(a + p)] (325) 

so that 

yet) y(O)e-(a+P)tIN + {(I e-(a+PltIN)p/[l + (pia)]) (326) 

The steady-state solution for this equation is such that the output prob­
ability tends to pl[l + (pia)], and hence it is half the input probability 
when p a. When p becomes unity the output probability goes to 1/ 

Sec. 12] Summary and Conclusion 165 

[1 + (l/a)]; if the counter were operated asynchronously, then p could go to 
infinity, but the output probability would still be asymptotic to unity. Hence 
this element again performs a normalizing function for a wide range of 
inputs. However, it is interesting to note that the behavior now has a time 
constant, and that this is different for increasing and decreasing p. The 
actual time constant is N/(a + p). Hence, in "dark adaption," when p has 
suddenly gone to azero, the time constant is Nla, whereas in light adaption, 
when p has become large, Ka say, the time constant is NI(K + l)a. This 
difference in time constants corresponds to a similar effect in the time 
response of the human eye. 

At present these remarks on the similarities between stochastic comput­
ing processes and the activity of the human nervous system are purely 
speculative, and no rigorous model of neuronal functioning based on sto­
chastic computation has been investigated. However, it is apparent that sto­
chastic computing systems have a greater similarity to neural systems than 
any alternative form of computer, and there is clearly scope for research to 
investigate the potential value of stochastic computing concepts in brain 
modeling. 

12. SUMMARY AND CONCLUSION 

It is difficult to summarize the state of the art in stochastic computing 
at present. This review has ranged fairly comprehensively over topics which 
have already been investigated in reasonable depth. Other work has not 
been mentioned because its scope and implications are tenuous, or because 
it does not have an essential constituent of purely stochastic computing. 
The stochastic computer has as yet had no major practical impact on data­
processing systems. Equally, the analogy between nervous processes and 
stochastic computing has not been carried to a stage where the stochastic 
computer can be justified solely as a model of the central nervous system. 
Indeed, present justification for interest in stochastic computing is of a 
scientific nature-it extends the range of known data-processing systems. 

The original reason for investigating stochastic computation was to 
find a suitable data-processing technique for machine learning and pattern 
recognition. In Section 2.1 the computational problems of these topics 
were summarized as: the processing of a large amount of data with fairly 
low accuracy in a variable, experience-dependent way. In Section 2.7 it 
was shown that the solution of these problems required a data-processing 
system which makes the maximum use of every single gate for computational 
purposes, and distributes its computations through space rather than time. 



166 Stochastic Computing Systems 

102 

1 
TIME 

Seconds 

10 2 

104 

1 102 
10

4 
SIZE 

Fig. 38. Relationship between problem size and solu­
tion time for digital, analog, and stochastic computers. 

[Chapter 2 

In many ways the stochastic computer satisfies these requirements, and 
networks of stochastic computing elements offer low-cost, high-density 
parallel processing. In other ways the stochastic computing systems en­
visaged and made so far are not suitable for real computational problems. 
In particular, the generation of stochastic sequences by present techniques 
is inelegant and unsatisfactory. If true stochastic processes are utilized, 
e.g., from light photons or radioactive sources, then it would seem better 
to establish computing elements working directly with the original sources; 
photon/photon interactions brought about by certain electron systems would 
seem to offer a great potential for "natural" stochastic computa,tio~. 

Although the practical application of the stochastic compute~ is not 
yet apparent, it is possible to see its place in terms of the problem-size/ 
solution-time criteria advanced in Section 2.4. Figure 38 illustrates that 
since the stochastic computer is limited in speed rather than size, computa­
tions which it may perform lie above a horizontal line cutting the time 
axis at about O. I sec (for an accuracy of I % and a clock frequency of 
1 MHz). There remains an area in the lower right-hand corner which is 
intractable for all forms of computer, but this is now bounded by a hor­
izontal rather than a sloping line, implying that the stochastic computer 
suffers no loss in speed as the size of the problem increases. 

It is interesting to note that advances into the missing area of large, 
fast systems are largely independent of increases in the speed or size of 
conventional digital computers; only parallel processing can make inroads 
on this area. The' diagram is anamalous in making it appear that analog 
and stochastic computers are everywhere alternatives to the digital com­
puter. Figure 38 represents two of the constraints limiting all dat!l.-processing 

Chapter 2] Acknowledgments 167 

systems-within these constraints many other cri:eria play a part in :he 
selection of an appropriate computational techmque, e.g., low cos:' !n­
creased reliability, and increased flexibility give the advantage to the dIgItal 
computer in many applications where an analog computer w.ould sufIic~. 

A combination of the three types of computer in a hybnd stochastIc 
mputer would prove very powerful in many control applications: the 

co d . . f a digital computer providing flexible sequencing an superVISIOn o. ope~ -
tions; the analog computer providing fast, but simple, m~dels. for ~tera:Ive 
optimization; and the stochastic com~uter providi~g r~al-tIme IdentIficatIOn 
of complex, nonlinear process dynamICS. The applIcatIOn of complex adap­
tive controllers has been inhibited by lack of suitable hardware,. a~d t~e 
ease of system identification, linear, nonlinear, and pa:~ern cl~sslfymg m 
the stochastic computer offers a data-processing capabIhty WhICh has not 
previously been available. 

It would be wrong, however, to extrapolate from past to future system 
organization-even though the stochastic computer has simil~rjties to. both 
analog and digital computers, it is radically different from eIther. It IS. not 
the similarities, but the differences which are important-:-the ~omputatJo~s 
which are most relevant to future development are those m WhiCh stochas:lc 
computing provides a simple and elegant solution to what wo~ld otherWIse 
be a difficult problem, e.g., in the Bayesian predictor or adaptive threshold 
logic systems. System design is fashioned by many factors, not the l~ast of 
which is ease of realization-there has been little time as yet to d,Iscover 
all that is simple and easy with stochastic computing elements, .and VIrtu. ally 
no time for it to influence system design. The design of learmn~ machI~es 
and pattern recognizers which take full advantages of the properties peculIar 
to stochastic computers offers the greatest promise for the future develop­
ment and exploitation of the systems surveyed in this chapter. 

ACKNOWLEDGMENTS 

Much of the work described in this chapter was supported by Standard 
Telecommunication Laboratories, ITT (Europe). . 

I would like to thank Dr. J. H. Andreae (now Professor of Elect:lcal 
Engineering, University of Canterbury, New Zealand) for many frUItful 
discussions on machine learning and stochastic computers, and Mr.. P. L. 
Joyce for building the stochastic computer Mk 1. I would also lIke to 
acknowledge, with much pleasure, my discussions with Professor W. J, 
Poppelbaum and Mr. J. W. Esch, University of m,inois, and thank them 
for access to their parallel research on the stochastlc computer. 



168 Stochastic Computing Systems [Chapter 2 

REFERENCES 

1. W. J. Poppelbaum and C. Afuso, Noise Computer, University of Illinois, Dept. 
Computer Science, Quarterly Technical Progress Reports (April 1965-January 1966). 

2. W. J. Poppelbaum, e. Afuso, and J. W. Esch, Stochastic Computing Elements and 
Systems, in "Proc. American Federation of Information Processing Societies, Fall 
Joint Computer Conference," Vo!. 31, pp. 635-644, Books, Inc., New York (1967). 

3. S. T. Ribeiro, Random Pulse Machines, IEEE Trans. Electronic Computers EC-16 
261-276 (June 1967). 

4. B. R. Gaines, Stochastic Computing, in "Proc. American Federation of Informa­
tion Processing Societies, Spring Joint Computer Conference," VoL 30, pp. 149-
156, Books, Inc., New York (1967). 

5. B. R. Gaines, Techniques of Identification with the Stochastic Computer, in "Proc. 
International Federation of Automatic Control Symposium on Identification, Pro­
gue, June 1967." 

6. B. R. Gaines, Stochastic Computer Thrives on Noise, Electronics 40 (14), 72-79 
(July 10 1967). 

7. B. R. Gaines, Stochastic Computing, in "Encyclopaedia of Information, Linguistics 
and Control," pp. 766-781, Pergamon Press, New York and London (1968). 

7a.J. T. Tou, Engineering Principles of Pattern Recognition, in "Advances in Infor­
mation Systems Science," VoL 1, J. T. Tou, ed., Plenum Press, New York (1969). 

7b.K. S. Fu, Learning Control Systems, in "Advances in Information Systems Sci­
ence," Vo!. 1, J. T. Tou, ed., Plenum Press, New York (1969). 

8. J. H. Andreae, Learning Machines-A Unified View, in "Encyclopaedia of Inform­
ation, Linguistics and Control," Pergamon Press, New York and London (1968). 

9. E. Feigenbaum and J. Feldman, "Computers and Thought," McGraw-Hill Book 
Co., New York (1964). 

10. L. Uhr, "Pattern Recognition," John Wiley and Sons, New York (1966). 
11. J. T. Tou and R. H. Wilcox, "Computer and Information Sciences," Spa~an Books, 

Washington, D.e. (1964): \ 
12. W. J. KarpJus and J. A. Howard, A Transfiuxor Analog Memory Using Frequency 

Modulation, in "American Federation of Information Processing Societies," VoL 
26, Part 1, pp. 673-683, Books, Inc., New York. 

13. W. J. Karplus, A Hybrid Computer Technique for Treating Nonlinear Partial 
Differential Equations, IEEE Trans. Electronic Computers EC-13 (5) 597-605 fl964). 

14. B. R. Gaines and J. H. Andreae, A Learning Machine in the Context of the General 
Control Problem, in "Proc. 3rd International Congress International Federation 
of Automatic Control, London, 1966," Institution of Mechanical Engineers, London 
(1967). 

15. W. J. Poppelbaum, Hybrid Graphical Processors, in "Computer Technology," 
IEEE Con/. Publ., Vo!. 32 (July 1967). 

16. T. J. WilIiams, Process Dynamics, in "Proc. 2nd International Congress International 
Federation of Automatic Control, Basle, 1963." 

17. G. A. Korn and T. M. Korn, "Electronic Analog and Hybrid Computers," McGraw­
Hill Book Co., ,New York (1964). 

18. J. R. Smith and C. O. Harbourt, An Adaptive Threshold Logic Gate Using Capaci­
tive Analog Weights, IEEE Trans. Electronic Computers EC-17 (1), 78-81 (1968). 

19. H. Schmid, Sequential Analog-Digital Computer (SAn C), in "American Federa­
tion of Information Processing Societies, Joint Computer Conference," Vol. 27, 
Part 1, pp. 915-928, Books, Inc., New York (1965). 

Chapter 2] References 169 

20. D. L. Greer, Characterization of the Magnetic Second-Harmonic Memory, IEEE 
Trans. Electronic Computers EC-17 (6), 551-558 (1968). 

21. B. Widrow, An Adaptive ADALINE Neuron Using Chemical Memistors, ERL 
Tech. Rep. No. 1553-2, Stanford University (1960). 

22. G. Nagy, A Survey of Analog Memory Devices, IEEE Trans. Electronic Computers 
EC-12 388-393 (August 1963). 

23. S. Larach, "Photoelectronic Materials and Devices," D. van Nostrand, Englewood 
Cliffs, New Jersey (1965). 

24. D. R. Bosomworth and H. J. Gerritsen, Thick Holograms in Photocromic Materials, 
Appl. Optics 7 (1), 95-98 (1968). 

25. G. U. Kalman, Holographic Graphical Storage in Thick Alkali-Halide Crystals, 
iEEE Int. Cony. Digest,. p. 35 (1968). 

26. J. K. Hawkins and e. J. Munsey, Parallel Computer Organizations and Mech­
anizations, IEEE Trans. Electronic Computers EC-t2 (3), 251-262 (1963). 

27. D. K. Pollock, e. J. Koester, and J. T. Tippett, "Optical Processing of Informa­
tion," Spartan Books, Washington, D.C. (1963). 

28. S. J. Mathis, R. E. WHey, and L. M. Spandorfer, "Microelectronics and Large 
Systems," Spartan Books, Washington, D.e. (1965). 

29. R. L. Petritz, Technological Foundations and Future Directions of Large-Scals;: 
Integrated Electronics, in "American Federation of Information Processing So­
cieties, Fall Joint Computer Conference," Vol. 29, pp. 65-87, Books, Inc., New 
York (1966). 

30. D. L. Slotnick, W. e. Borck, and R. C. McReynolds, The Solomon Computer­
A Preliminary Report, in "Computer Organization," pp. 66-92, Spartan Books, 
Washington, DC, (1963). 

31. W. A. Cl ark, S. M. Orstein, M. J. Stuki, A. S. Blum, T. J. Chaney, R. E. Olsen, 
R. A. Dammhoehler, W. E. Ban, C. E. Molnar, A. Antharvedi, Macromodular Com­
puter Systems, in "American Federation of Information Processing Societies, Spring 
Joint Computer Conference," Vol. 30, pp. 355-401, Books, Inc., New York (1967). 

32. R. H. Fuller and R. M. Bird, An Associative Parallel Processor with Application 
to Picture Processing, in "American Federation of Information Processing Societies, 
Fall Joint Computer Conference," Vo!. 27, Part 1, pp. 105-116, Books, Inc., New 
York (1965). 

33. J. C. Murtha, Highly Parallel Information Processing Systems, in "Advances in 
Computers," Vo!. 7, pp. 1-116 Academic Press, New York (1966). 

34. E. L. Braun, "Digital Computer Design," Chapter 8, Academic Press, New York 
(1963). 

35. F. V. Mayorov and Y. Chu, "Digital Differential Analysers," Iliffe Books (1964). 
36. W. J. Karplus, Analog and Digital Techniques Combined, in "Computer Control 

Systems Technology," pp. 148-155 McGraw-Hill Book Co., New York (1961). 
37. Digital Operational Techniques, Computer Design 1963 (November), 12. 
38. B. R. Gaines and P. L. Joyce, Phase Computers, in "Proc. 5th International Con­

gress AICA, Lausanne, 1967." 
39. B. R. Gaines, A Modular Programmed DDA for Real-Time Computation, in 

"Proc. IFlP 68, Edinburgh, 1968." 
40. W. R. Sehumann, Method and Apparatus for Averaging a Series of Transients, 

United States Patent 3, 182, 181 (May 5, 1965). 
41. B. P. Th. Veltman and A. van den Bos, The Applicability of the Relay Correlator 

and Polarity Coincidence Correlator in Automatic Control, in "Proe. 2nd Inter­
national Congress International Federation of Automatic Control," Basle, 1963. 



170 Stochastic Computing Systems [Chapter 2 

42. W. W. Peterson, "Error Correcting Codes," John Wiley and Sons, New York 
(1961). 

43. W. H. Kautz, "Linear Sequential Switching Circuits," Holden-Day, San Francisco 
(1965). 

44. S. W. Golomb, "Shift Register Sequences," Holden-Day, San Francisco (1967). 
45. A. Gill, "Finite-State Machines," McGraw-HilI Book Co., New York (1962). 
46. A. Gill, "Linear Sequential Circuits," McGraw-HiIl Book Co., New York (1967). 
47. G. A. Korn, "Random-Process Simulation and Measurements," McGraw-HiII Book 

Co., New York (1966). 
48. P. A. N. Briggs, P. H. Hammond, M. T. G. Hughes, and G. O. Plumb, Correlation 

Analysis of Process Dynamics Using Pseudo-Random Binary Test Perturbations, 
in "Advances in Automatic Control," pp. 37-51, Institution of Mechanical En­
gineers, London (1965). 

49. R. P. Gilson, Some Results of Amplitude Distribution Experiments on Shift­
Register Generated Pseudo-Random Noise, IEEE Trans. Electronic Computers 
EC-15 (6), 926-927 (1966). 

50. R. e. White, Experiments with Digital Computer Simulations of Pseudo-Random 
Noise Generators, IEEE Trans. Electronic Computers EC-16 (3), 355-357 (1967). 

51. R. E. Kalman, Nonlinear Aspects of Sampled-Data Control Systems, in "Proc. 
Symp. Nonlinear Circuit Analysis," pp. 273-313, Polytechnic Institute of Brooklyn, 
New York (1957). 

52. M. Arbib, Tolerance Automata, in "Kybernetika Cislo 3," pp. 223-233 (1967). 
53. W. De Backer and L. Verbeek, Study of Analog, Digital, and Hybrid Computers 

Using Automata Theory, ICC Bulletin 5, 215-244 (1966). 
54. M. Arbib, "Algebraic Theory of Machines, Languages and Semigroups," Academic 

Press, New York (1968). 
55. K. H. Hofman and P. S. Mostert, "Elements of Compact Semigroups," Merrill 

Books, Columbus, Ohio (1966). 
55a.J. T. Tou, ed., "Applied Automata Theory," Academic Press, New \rork (1968). 
56. M. O. Rabin, Probabilistic Automata, Information and Control 6, 230\245 (1963). 
57. A. Paz, Some Aspects of ProbabiIistic Automata, Information and Control 9, 26-60 

(1966). 
58. W. Feller, "An Introduction to Probability Theory and Its Applications," John 

WHey and Sons, New York (1957). 
59. L. Takacs, "Stochastic Processes," Methuen, London (1960). 
60. R. McNaughtoD, The Theory of Automata-A Survey, in "Advances in Com­

puters," Vo!. 2, pp. 379-421, Academic Press, New York (1961), 
61. J. Fox, "Mathematical Theory of Automata," Polytechnic Institute of Brooklyn 

Press, New York (1963). 
62. T. L. Booth, "Sequential Machines and Automata Theory and Sons, New York" 

John WHey (1967). 
63. G. C. Bacon, Minimal-State Stochastic Finite State Systems, IEEE Trans. CT-H, 

307-308 (1964). 
64. G. H. Ott, Reconsider the Minimization Problem for Stochastic Finite State Systems, 

in "Proc. IEEE 7th Symp. Switching and Automata Theory," pp. 251-261 (1966). 
65. G. C. Bacon, The Decomposition of Stochastic Automata, Information and Control 

7, 320-339 (1964). 
66. e. V. Page, Equivalences between Probabilistic Machines, Tech. Rep. 03105-41-T, 

University of Michigan (1965). 

Chapter 2] References 171 

67. J. W. CarJyle, State-Calculable Stochastic Sequential Machines, Equivalences and 
Events, in "Proc. IEEE Symp. Switching Circuit Theory and Logical Design," 
pp. 258-263 (1965). 

68. J. von Neumann, Probabilistic Logics and the Synthesis of Reliable Organisms from 
Unreliable Components, in "Automata Studies," Princeton University Press, Prince­
ton, New Jersey (1956). 

69. S. Winograd and J. D. Cowan, "Reliable Computation in the Presence of Noise," 
MIT Press, Cambridge, Mass. (1963). 

70. J. D. Cowan, The Problem of Organismic Reliability, in "Cybernetics of the Nervous 
System," Elsevier Amsterdam (1965). 

71. F. Rosenblatt, A Model for Expedental Storage in Neural Networks, in "Computer 
and Information Sciences," (J. T. Tou and R. H. Wilcox, eds.), pp. 16-66, Spartan 
Books Washington, D.e. (1964). 

72. B. Widrow and F. W. Smith, Pattern-Recognizing Control Systems, in "Computer 
and Information Sciences," (1. T. Tou and R. H. Wilcox, eds.), pp. 288-317, Spartan 
Books Washington, D.e. (1964). 

73. K. Steinbuch and U. A. W. Piske, Learning Matrices and Their Applications, 
IEEE Trans. Electronic Computers EC-12 (5), 846-862 (1963). 

74. N. J. Nilsson, "Learning Machines," McGraw-HiII Book Co., New York (1965). 
75. A. Novikoff, On Convergence Proofs for Perceptrons, in "Automata Theory," 

pp. 615-622, Polytechnic Institute of Brooklyn Press, New York (1963). 
76. G. L. Clapper, Machine Looks, Listens, Learns, Electronics 1967 (October 30),91-102. 
77. W. e. Ridgeway, An Adaptive Logic System with Generalizing Properties, Report 

SEL-62-040, Stanford Electronics Laboratories (April 1962). 
78. I. Aleksander and R. e. Albrow, Adaptive Logic Circuits, Computer J. 11 (1), 

65-71 (1968). 
79. S. Muroga, Lower Bounds on the Number of Threshold Functions and a Maximum 

Weight, IEEE Trans. Electronic Computers EC-14 136-148 (1965). 
80. Sze-Tsen Hu, "Threshold Logic," University of California Press, Berkeley, Calif. 

(1965). 
81. M. Cuenod and A. P. Sage, Comparison of Some Methods Used for Process Identi­

fication, in "Proc. International Federation of Automatic Control Symposium on 
Identification in Automatic Control Systems, Prague, June 1967." 

82. P. Eykhoff, Process Parameter and State Estimation, in "Proc. International Fe­
deration of Automatic Control Symposium on Identification in Automatic Control 

Systems, Prague, June 1967." 
83. M. J. Levin, Optimum Estimation of Impulse Response in the Presence of Noise, 

IRE Natl. Conv. Record 4, 147-182 (1959). 
84. W. W. Lichtenberger, A Technique of Linear System Identification Using Correlat­

ing Filters, IRE TrailS. Automatic Control AC·6 (2), 183-199 (1961). 
85. Y. Kaya and S. Yamamura, A Self-Adaptive System with a Variable Parameter 

PID Control, AIEE TrailS. Appln. Ind. 58, 378-386 (1962). 
86. M. Margoiis and C. T. Leondes, A Model-Referenced Parameter Tracking Techni­

que for Adaptive Control Systems, IEEE Trans. Appln. Ind. 68, 241-261 (1963). 
87. B. G. Madden, Simultaneous Determination of System Parameters from Transient 

Response, IEEE Trans. Appln. Ind. 69, 327-331 (1963). 
88. P. e. Young, The Determination of the Parameters of a Dynamic Process, Radio 

and Electronic Engineer 29 (6), 345-361 (1965). 
89. D. D. Donalson and F. H. Kishi, Review of Adaptive Control System Theories and 



172 Stochastic Computing Systems [Chapter 2 

Techniques, in "Modern Control Systems Theory," McGraw-Hill Book Co., New 
York (1965). 

90. P. E. K. Donaldson, Error Decorrelation Studies on a Human Operator Performing 
a Balancing Task, Med. Electron. Bio!. Eng. 2, 393-410 (1964). 

91. T. F. Potts, G. N. Ornstein, and A. B. Clymer, The Automatic Determination of 
Human and Other System Parameters, in "Proc. Western Joint Computer Con­
ference, Los Angeles, pp. 645··-660 (1961). 

92. C. L. Becker and J. V. Wait, Two-Level Correlation on an Analog Computer, 
IRE Trans. Electronic Computers EC-I0 (4), 752-758 (1961). 

93. Y. Lundh, A Digital Integrator for On-line Signal Processing, IEEE Trans. Electronic 
Computers EC-12 (1), 26-28 (1963). 

94. P. Jespers, P. T. Chu, and A. Fettweis, A New Method to Compute Correlation 
Functions, in "International Symp. Information Theory, Brussels, 1962." 

95. B. Widrow, Statistical Analysis of Amplitude-Quantized Sampled Data Systems, 
IRE Trans. eT-3 (1956). 

96. D. G. Watts, HA General Theory of Amplitude Quantization with Applications to 
Correlation Determination," lEE Monograph No. 481 M (November 1961). 

97. A. K. Nath and A. K. Mathalanabis, Method of Statistical Linearization, hoc. 
lEE 113 (12), 2081-2086 (1966). 

98. A. A. Pervozanskii, "Random Processes in Nonlinear Control," Academic Press, 
New York (1965). 

99. O. J. Elgard, High-Frequency Signal Injection: A Means of Changing the Transfer 
Characteristics of Nonlinear Elements, WESCON (1962). 

100. G. R. Cooper, R. L. Gassner, and C. D. McGillem, in "Proc. 21st National Elec­
tronics Conference," pp. 656-661, National Electronics Conference, Chicago, Il­
linois (1965). 

101. L. J. Savage, "The Foundations of Statistical Inference," Methuen, London (1962). 
102. S. Watanabe, Information-Theoretical Aspects of Inductive and Deductive Infer-

ence, IBM J. Res. Dev. 14 (2), 208-231 (1960). . 
103. D. Middleton, "Topics in Communication Theory," McGraw-:~Iill Book Co., New 

York (1965). .\ 
104. M. E. Maron, Design Principles for an Intelligent Machine, IRE Trans. Information 

Theory IT-8 (5), 179-185 (1962). 
105. M. Minsky and O. G. Selfridge, Learning in Random Nets, in "Information Theory," 

pp. 335-347, Butterworths, London (1961). 
106. K. S. Fu, A Learning Control System Using Statistical Decision Processes, in 

"Proc. International Federation of Automatic Control Symp. Self-Adaptive Control 
Systems, Teddington, England, 1965," Plenum Press, New York (1965). 

107. D. R. Hill, An ESOTerIC Approach to Automatic Speech Recognition, Int. J. 
Man-Machine Studies 1 (1) (January 1969). 

108. S. Kullback, "Information Theory and Statistics," John WHey and Sons, New 
York (1959). 

109. B. G. Farley and W. A. Clark, Simulation of Self-Organizing Systems by Digital 
Computer, IRE Trans. Information Theory IT-4, 76-84 (September 1954). 

110. R. L. Beurle, Properties of a Mass of Cells Capable of Regenerating Pulses, Trans. 
Roy. Soc. (London) B240, 55-94 (August 1956). 

111. L. D. Harmon, W. A. Bergeijk, and J. Levinson, Studies with Artificial Neurons, 
Kybernetik 1, 89-117 (December 1961). 


