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COMPUTERS, STOCHASTIC (Stochastic Auto­
mata - Their Application to Computing). 

I. Introduction 

There is a large class of prohlems which are intract­
able for present analog and digital computers. They 
arise in the control of chemical plant, in the control of 
aircraft, missiles and spacecraft, in the simulation of 
economic systems, and generally in the real-time simula­
tion and control of large, complex systems. Analog 
computers are not suitable for these problems because 
of the large number of operational amplifiers required 
(a reasonable upper limit at present is 400 amplifiers, 
sufficient to simulate about 30 non-linear, fourth-order 
differential equations), and particularly because of the 
defects, size and expense of analog multipliers and 
integrators. Digital computers are not suitable for these 
problems because their bandwidth is limited by the use 
of a central processor to compute sequential solutions 
of differential equations. Williams (1965) has reviewed 
these difficulties in the context of process control and 
demonstrated the impossibility of simulating even a 
simple, linearized model of a mUlti-plate distillation 
column in real time with presently available computers. 
His diagram illustrating the applicability of digital and 
analog computers to processes of different orders 
(number of first-order differential equations) and time­
constants is reproduced in Fig. I. As Wllliams remarks, 
'It is truly unfortunate to note the number of chemical 
process systems which fall into the lower right hand 
corner of Fig. 1', and a similar remark may be applied 
to many other systems of great practical importance. 

There have been many attempts to design computers 
which combine the parallel operation of analog 
computers with the simplicity and accuracy of digital 
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FIG. I. Applicability of analog and digital computers to 
process simulation. 
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computers. Parallel digital differential analysers (Leondes 
1959) using incremental digital stores to. simulate the 
analog integrator (serial DDA's offer only economic 
advantages over the general purpose digital computer), 
and hybrid computers (ConneJly 1962; Truitt 1964) in 
which a digital computer controls the operation of 
an analog computer have heen the most spccessful to 
date, but their computing elements are as complex as 
those of conventional computers and it remains econo­
micaJly infeasible to simulate large, complex systems. 

The main performance measures of a computer are 
size and range of possible problems, speed and accuracy 
of solution, and the physical size, reliability and cost 
of the computer. There are strong interactions between 
these measures and it is unlikely that anyone form of 
computer will ever be optimal on all counts. The simula­
tion of complex plant and multivariable control systems 
requires large numhers of computing elements such as 
multipliers, summers and integrators, working simulta­
neously and costing little. However, these elements do 
not have to compute a solution quickly or accurately, 
for a bandwidth of 10 c/s and an overall accuracy of 
1 per cent is adequate in the simulation of economic and 
chemical processes, and in' control systems where feed­
back operates a computational accuracy of 10 per cent 
may he ample. In these situations it should be possible to 
trade the accuracy of the digital computer and the 
speed of the analog computer for computing size and 
economy, and the stochastic computer is the most 
promising attempt to do this so far. 

The stochastic computer was developed for the type 
of problem where the availability of large numbers of 
low-cost computing elements is more important than 
the speed and accuracy of computation. Lnformation 
within the computer is carried through modulation of 
the statistics of digital 'noise', and the theory underlying 
its computational processes is that of Markov chains 
and stochastic automata. Research on the latter has 
been oriented towards their applications in the design 
of reliable digital computers and the literure is heavily 
biased to this point of view. The next section follows the 
evolutiono! stochastic automata as a natural derivative 
of state-determined machines, and outlines the main 
theoretical results. A brief indication is given of how 
the theory may be applied to problems of computer 
reliability, but the main section of this review describes 
the positive, rather than preventive, applications of 
stochastic automata to computing. 

2. DigitalOomputer Theory 

The basic mathematical object used to represent the 
behaviour of a digital computer is the finite-state auto­
maton (McNaughton 1961; Rabin and Scot! 1959). The 
essential features of this object are a finite set of states, 
inputs and outputs, together with mappings from all 
state-input pairs to the sub-set of states and the sub-set 
of outputs. In a 'noiseless' or perfectly reliable computer 
the input sequence is uniquely specifiable by a control 
(program or data) tape, and the input sequences to 



the automaton can he treated as a representation of the 
actual 'input' to the computer. If the digital computer 
is imperfect then a distinction must he made hetween 
the specified 'input' and the actual 'input'. We shall call 
the former a control and reserve the term input for the 
latter; in a perfectly reliable computer there is a trivial 
isomorphism hetween controls and inputs. 

The automaton taken to represent an unreliable com­
puter is generally larger than that representing the equi­
valent reliable computer, for each of its controls gives 
rise to a set of possible inputs, and its state set must 
contain states which arise through component failure, 
In practice the finite-state automaton subsuming all 
possible faults is so large and unwieldy that a statistical 
approximation to its hehaviour is more useful. The 
mathematical object developed as a statistical represen­
tation of an unreliable computer is the stochastic 
automaton, and the theory of such objects treats 
transitions hetween hyperstates (statistics of state 
distributions) in much the same way that deterministic 
automata theory treats transitions hetween states. 
The theory of stochastic automata is best approached 
through the matrix representation of finite deterministic 
automata, and this is outlined in the next section. 

2.1. Matrix representation of finite automata. Any 
finite automaton may he represented by a set of matrices, 
each matrix corresponding to an input and containing 
only ones and zeros, which define the transitions be­
tween its states and the relationships hetween its states 
and outputs. The element in the ith row andjth column 
of a transition matrix for a particular input will he one 
if that input would cause the automaton in its fth state 
to transit to its jth state (at the occurrence of a clock 
pulse). Similarly the ijth element of the output matrix 
for a particular input will be a one if that input gives rise 
to the jth output when the automaton is in its jth state. 
Since a state and input give rise to a unique output and 
next state, these matrices ,are characterized by having 
a single one in every row, and are therefore particular 
examples of probability matrices (whose rows sum to 
unity), This representation of a finite automaton reduces 
it to a semigroup of matrices with its hehaviour deter­
mined by matrix multiplication. 

Let the set of possible inputs to an automaton be: 

(I.), 0 <: i os; N; 

the set of possible states be: 

(S,), 0 <: I"", M; 

and the set of possible outputs be: 

(0,), 0 <: i os; P. 

Let the state of the automaton be S, its ouput 0, its 
input 1, and the state after the next clock pulse S'. 
We have the transition mapping: 

S' = o(S,I); 

and the output mapping: 

o {)(S,1). 
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The Mx M transition matrices, (1"), may now be 
defined. If 1" (P~) is the transition matrix correspond­
ing to an input 1. then: 

~ _ {I .... Si o(S"I,) 
'I - 0 otherwise. 

Similarly the MxP output matrices, (0'), where 0' "" 
(o~) corresponds 10 the input I" may he defined: 

o' = { I - 0; 8{S,,l.) 
'J 0 otherwise. 

The existence and uniqueness of the output and next 
state imply: 

M 

}:Jl.1 =1 
1=' 
p 

}: 0:; = 1. 
1=1 

Having defined the transition and output matrices, 
we may consider the hehaviour of the automaton to he 
determined entirely by the rules of matrix multiplication. 
For example, the sequence of inputs, 1 At followed by 
11, and so on up to lA,., applied when the automaton is 
in state S" leads to state Si if and only if: 

(r'p",p", ... PA,.)'I = 1, 

and the output of the automaton will then he OJ if and 
only if: 

(r,p)., ... p!.,.oA,.),j.= 1. 

These equations could be reduced to matrix/vector 
equations by defining the state of the automaton to he 
an M-vector whose ith element is unity if its state is 8" 
and zero otherwise, and defining the output of the auto­
maton to he a P-vector whose ith element is unity if its 
output is 0" and zero otherwise. Transitions between 
states are determined by post-multiplying the present 
state vector by the transition matrix corresponding to 
the input, and the output is determined by post-multiply­
ing it with the output matrix corresponding to the input. 
This matrix representation of finite automata is cumber­
some in practice, but ideal for the conceptual transition 
from 'noise' at the input to stochastic automata. 

2.2. Stochastk automata. Consider now a set of 
'controls' to the automaton which do not specify the 
input exactly but rather give rise to probability distribu­
tions over the inputs. If the present state and control are 
known then the probability of occurrence of each"nput 
may he used to calculate the probability that the next 
state will be a given state. Thus only the state distribu­
tion, or expectation of a' given state, can be predicted~ 
This distribution will he called a complete hyperstate, 
and the theory of stochastic automata concerns the 
matrix representation of transitions between complete 
hyperstates. 

Let the set of controls to the automaton be: 



and let the application of the control C, give rise to a 
probability vi that the input 11 will occur. Since some 
input must occur we have: 

11 

L.{=l. 
J=l 

If the automaton is in state Si when the control is C. 
then the probability, n~, that it will next be in state Si is: 

11 

~ = L "J>;r 
,=1 

Thus if the hyperstate of the automaton is the distribu­
tion (ni ), where ll, is the probability that t~e auto­
maton is in the state S" then the hyperstate (n,) after a 
control C. is given by: 

AI AI 11 

II; L II,tc,1 = L II, L "J>#' 
i=l 1=1 r=1 

The matrices n' (~) are probability matrices since 
their elements are non-negative and: 

M 

L~=l; 
J=1 

they may be regarded as generalizations of the matrices 
P". 

Probabilistic output matrices relating controls, hyper­
states and outputs may similarly be defined. This struc­
ture of controls, hyperstates, outputs and probability 
matrices is a stochastic automaton. It is interesting to 
note that we may regard the stochastic automaton either 
as a special case of the finite automaton in which proba­
bility distributions are assigned to incompletely specified 
inputs, or as a generalization ofthematrixrep:~entatio~ 
of finite automata in which arbitrary probabIlIty matn­
ces replace those previously containing only ones and 
zeros. 

2.3. Markov chains. The discrete transitions of a system 
from condition to condition are said to form a Markov 
chain (TaUes 1960; Kemeny and Snell 1960) of the nth 
order if the probability of a transition to a new condition 
depends only on the previous n conditions. A Markov 
chain of the zeroth order is called a Bernoulli sequence, 
and is distinguished by the statistically independent 
generation of its elements. If the controls to a stochastic 
automaton are constant, Or fonn a Bernoulli sequence, 
then the state sequences are Markov chains of the 
first order, and the output sequences are Markov chains 
generally of higher order (the output chains are first 
order if there is an inverse mapping from output-input 
pairs to states). If the controls are functions of previous 
outputs or are generated in set sequence, then both 
states a~d outputs may form Markov chains of higher 
order. In stochastic computers processing Markov 
chains, much of the simplicity of computation would be 
lost if the order of the chains increased at each stage of 
processing, and stochastic computing elements are 
designed to receive and emit Bernoulli sequences. 
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The relationship between the average behaviour of an 
ensemble of stocha~tic automata, which is the concep­
tual basis for their operation, and the average behaviour 
over a number of transitions, which is the practical 
means for observing their operation, depends on the 
ergodicity of the Markov process generating the transi­
tions. A hyperstate is said to be stationary for a transi­
tion if it does not change under that transition, and a 
sequence of transitions with one and only one stationary 
hyperstate is said to be ergodic. Stationary hyperstates 
in the stochastic computer correspond to steady states 
in the analog computer , having similar properties in 
that they are far more tractable theoretically than the 
transient, non-ergodic beha'iour, and often act as 
'solutions' in a computation. 

2.4. Computer reliability. This section is a digression 
from the main theme but the literature on stochastic auto­
mata is concerned mainly with computer reliability and 
the results obtained must be considered relative to this. 
Detenninistic automata theory investigates the set of 
input sequences which will take the automaton from a 
given initial slate to one of a set of final states (these are 
usually included. as part of the definition of the 'auto­
maton'); these sequences are called the input tapes 
'accepted' by the automaton and are said to define an 
'event', With stochastic automata one may consider 
only the probability that a control sequence will take 
the automaton from a given initial state to one of the 
given final states, and define the set of control tapes, 
accepted by a stochastic automaton to be those for 
which this probability is greater than a threshold, 0, 
0"'0"'1. 

To detennine by experiment whether a given control 
tape is accepted by a stochastic automaton with thres­
hold, 0, requires more and more instances as the actual 
probability of transition to one of the given final states 
approaches o. It is only if this prohability is bounded 
away from 0 for all possible control tapes that an experi­
ment of pre-determined length may be used to decide 
whether a tape is accepted by the automaton with any 
required confidence; a threshold with this property is 
said to be isolated. 

Rabin (1963) and paz (1966) have shown that for 
every stochastic automaton with an isolated threshold 
there is a detenninistic automaton which is equivalent 
in that it accepts the same set of control tapes. However, 
the deterministic automaton may be less economical in 
storage, requiring more internal states than the stochas­
tic automaton. There is of course no real gain in storage 
since an external store is required for the results of the 
series of experiments which detennine whether the stoch­
astic automaton "accepts' a particular tape. However ~ 
this result has its practical applications, for example, in 
the 'Enhancetron', a waveform averager described in 
Section 3.1. The first stage of the 'Enhancetron' may 
be regarded as a two-state, stochastic automaton, receiv­
ing input tapes of unitJength (in fact analog voltages, 
buttaken to be finely quantized for the sake of this exam­
ple). The shift of storage burden is an advantage in this 



application because an external store is already needed 
for the averaging process. 

Whilst the statistical approximation to the behaviour 
of an unreliable computer through stochastic automata 
reduces the large input set to a smaller control set, it 
leaves the state set unchanged. This is a serious defect, 
~ince consideration of the states arising through faults 
in a computer, especially one with much redundancy, 
leads to a very large state set and an unwieldy automa­
ton. One would like to group the states of the automa­
ton in some way, but so doing generally leads to a Mar­
kov chain which is not of first order and hence equally 
unwieldy. Kemeny and Snell (1960) call a transition 
matrix 'lumpable' if states can be grouped without rais­
ing the order of the chain, but the conditions for lum­
pability are highly restrictive. Pierce (1965) has conside­
rably generalized their. results by obtaining probability 
bounds on the hyperstates after grouping even when the 
matrix is not lumpable. . 

The first application of. the theory of stochastic au­
tomata to computer design was that of von Neumann 
(Shannon and McCarthy 1956) who showed that under 
certain conditions arbitrary reliability could be obtained 
from a computer made of unreliable components 
through the use of parallel redundancy. This result bears 
a striking resemblance to Shannon's coding theorem for 
a discrete channel and the work ofWinograd and Cowan 
(1963) shows that this resemblance is more than super­
ficial. In practice digital computers are still designed with 
little redundancy and with error-detection rather than 
error-correction, and work on computer reliability is 
more suggestive of the advantages of brain-like, home­
ostatic artifacts, than of new developments in conven­
tional computers (Cowan 1965). 

3. The Use of Noise in Data-Processing 

The application of the theory of stochastic automata 
to the design of reliable ,computers has been purely 
negative-the stochastic properties are a defect to be over­
come rather than an essential feature of the computer. 
The emphasis of the remainder of this review is on the 
converse situation where probabiiistic behaviour is used 
constructively and randomness is essential to the perfor­
mance of the computer. Before introducing the general 
notion of stochastic representations of quantity, two 
simple examples are given of the advantageous introduc­
tion of noise into computers. 

3.1 Round off error in analog-digital convertors. 
A simple exampie of data-processing where the addition 
of a little noise can do a lot of good is in the avoidance 
of the cumulative effects of round-off error in analog 
to digital convertors. A successive-approximation digital 
voltmeter takes a sequence of decisions of the type: is the 
input voltage above half-scale range 1-if so set the most 
significant digit and subtract half-scale voltage from the 
input; is the remaInder above quarter-scale range1- if 
so etc. The least significant digit, the Nth say, is set in the 
same way by comparison of the (N-I)th remainder 
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with 2-JV times the full-scale range, and the residual re­
mainder is neglected. This residue or round-off error can 
have a maxiffium magnitude slightly less than 2-18 ~1) 
times the full-scale range (FSR). 

Suppose now that a sequence of M readings of a fixed 
voltage are averaged to obtain the best estimate of its 
value. There is no reason to suppose that the round-off 
errors will cancel, and indeed if the voltage is fixed and 
the convertor is accurate the errors will all be the same 
in magnitude and sign. Thus the mean error, e, in the re­
suUis still bounded by: 

-FSR/2N +l <: e <: +FSR/2N +l, 

and the averaging has made no reduction in the round­
off error. 

Consider now the effect of adding to the input voltage 
another, V, whose magnitude lies in the same range as. 
the round-off error, and which is selected at random 
uniformly in this range each time a conversion is made. 
This added voltage is too small to affect any but the least 
significant digit, but the latter is now dependent on both 
the input voltage and the random voltage. The greater 
the round-off error in deterministic conversion the less 
the prohability that the least significant digit will be set 
in random conversion. Thus there will a tendency for 
errors in the least significant digit in random conversion 
to cancel out on averaging. That this tendency is exact 
may be shown by determining the expected state of thee 
least significant digit (LSD) and hence its expected value. 
Let the remainder after determination of the (N - 1 )th 
digit be E, 0 E.i E <= FSR/2JV• The LSD is one if E+ V 
exceeds FSR/2N +\ and since V is evenly distributed 
over its range: 

p(LSD 1) = p(E+ V:> FSR/2N +l) 
E 

FSR/2N ' 

Thus the expected value represented by the LSD is: 

p(LSD = I) FSR{2N = E, 

and the average of a set of readings of the input voltage 
plus random noise has no bias or round-off error. It will 
of course have a variance since it is based on a finite 
sample of a random process, and it may be shown to 
have an approximately normal distribution with a vari-
ance: 

2 _ 1 £ I (FSR/2N -I e I) 
Cl - 4M . 

Thus the standard <'leviation of the random conversion is 
less than the round-off error of the deterministic conver­
sion and goes to zero as the number of readings beComes 
large. 

This technique has been used to good effect in the 
'Enhancetron', (Schumann 1965) a device for averaging 
evoked potentials to decrease the effects of noise, or for 
averaging any phase-locked voltage waveform. Averag­
ing devices for this purpose must use digital stores since 
analog integrators have too short a leakage time­
constant. The normal practice is to sample the wave­
form at regular intervals, convert it into a twelve-bit di-



gital form, and add this into a digital store correspond­
ing to the particular sampling instant. The Enhancet­
ron is remarkable in that it converts to a single bit, using 
random conversion to prevent the tremendous round-off 
error which would otherwise accrue. The block diagram 
of Fig. 2 illustrates its operation: the incoming wave-

Commutator -:,. 

Waveform ~ v1IVL~ • -...!< L __ ':-..l 
tObe~'- '\ 

ove,..,ged Fast sowlooth 

FrG. 2. Principle oj'Enhancetron'. 

form is compared with a sawtooth (simulating a uniform 
random distribution) in a comparator; the output is 
commutated around a of digital stores; at a clock 
pulse the appropriate store incremented by one unit if 
the output of the comparator is ON and decremented 
otherwise; the ring of stores will eventually average out 
the noise at the input and the noise of random conversion, 
and contain a sampled representation of any repetetive 
signal whose phase is locked to their cycling rate. Thus 
the use of random conversion has replaced a twelve-bit 
analog to digital convertor by a simple comparator, 
and replaced twelve-bit binary addition by simple incre­
mentingjdecrementing; both considerable economies. 

3.2. The polarity coincidence correlator (Veltman 
and Van den Bos 1965). One of the most frequent com­
putations on the analog computer is to cross-corre­
late two waveforms. Given two voltage waveforms with 
zero means it is required to compute their co-variance: 

!r 
1 • 

T J lI(t)V{t) dt, 

which is an awkward function because it involves integ­
ration over extended intervals and mUltiplication, both 
of which tax analog computing elements to their ut­
most. If the waveforms have almost Gaussian distri­
butions, it may be shown that the correlation between 
their heavily limited forms (in which only their signs 
are takeD into account) is uniquely related to Cf', If: 

" PT = ~ J sgn (U(t» sgn (V(t» dt, 
o 

then as T ->- = C,,-a sin (~PT)' where ais a constant 

dependent on the variance of fJ and V. 
This non-linear relationship does not necessarily hold 

for non-Gaussian distributions, an!1 does not yield a 
simple additive effect if uncorrelated noise is added to 
the waveforms. Despite these limitations the polarity 
coincidence correlator is very attractive because multi­
plication of two numbers whose modulus is unity can be 
carried out by a simple gate orrelay, and if the waveforms 
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are sampled at regular intervals the integration may be 
carried out digitally by a reversible counter; thus both 
analog multiplier and integrator may be replaced by 
economical and reliable digital devices. 

The limitations can be completely removed if the po­
larity coincidence correlator is converted to a simple 
stochastic computer by adding to the input voltages 
randomly varying voltages with zero means and uni­
form distributions. Let A(t) be a random waveform uni­
formly distributed in a range greater than that of U(t)and 
having a o..function autocorrelation, and let B(t) be a 
similar uncorrelated waveform for V(t). Let P f'. N be the 
sampled polarity coincidence correlation of (U+A) 
against (V+B): 

1 !i-I • 

p ... N = - .E {sgn(U[ITjNl+A[iTjNDsgn(V[ITIN] 
N i=O 

+B[iT{N])}. 

Then it may be shown that as T.... =: 

CT -+ a lim p". N, 
N .... "" 

where a is a constant. 

Thus the polarity coincidence correlator gives an 
unbiased estimate proportional to the covariance of the 
input signals no matter what their distribution, provided 
the signals are sampled rapidly enough over a suffieient 
period. The addition of random noise again introduces 
additional variance into the estimate, but this can be 
made negligible by taking a longer sample of the wave­
forms or sampling more often; thus the power of this 
correlator may be less than that of a norll!al cross~orre­
lator but its accuracy is the same. 

A block diagram of one realization of a polarity coin­
cidence correlator with added noise is shown in Fig. 3: 
the random waveforms are again approximated by very 

Fast sowlOOlh .. Al t) 

Input,. U( t ) 

Input2' VII ) 
Fas! sowtoo!h" B ( t J 

FIG. 3. Polarity coincidence correlator. 

fast anharmonic sawtooths feeding inputs to compara­
tors, on the other side of which are the wavefonns to be 
correlated; the logic levels out of the comparator are fed 
to an equality gate whose output is ON only when its 
inputs are equal; the output from this gate represents 
the product of the signs of the signals plus noise, and 
this is used to determine whether a binary counter 
shall increment or decrement at a clock pulse (sampling 
instant); the state of the counter eventually represents 
the covariance between the inputs. This is a digital cir­
cuit, more economical in its realization than an analog 
multiplier and integrator, and is the classic example 
of the advantages to be gained through the intentional 
introduction of noise into data-processors. The full ex-



ploitation of these advantages in the stochastic computer 
depends on the use of general stochastic representations 
of quantity, and these are described in the next section. 

4. Stochastic Representation of Quantity 

The basic principle of the stochastic computer is to 
use the generating probability of Bernoulli sequences of 
logic levels to carry information. In th: first example 
above, the probability that the least sIgnificant digIt 
would be set was proportional to the voltage to be repre­
sented by the LSD, and hence the LSD's in a sequence 
of readings form a stochastic representation of this volt­
age. This is called the 'asymmetric binary representa­
tion' and its most general form is: 

given any quantity E in the range 0 "" E "" V, repre­
sent it by a Bernoulli sequence of binary logic levels 
with generating probability: 

p(ON) E/V. 

Thus the maximum voltage is represented by a logic lev­
el always ON, zero voltage by it being always OFF, and 
values in between by some probability that it will be 
ON. 

A second representation was exemplified by the pola­
rity coincidence correlator where both positive and ne­
gative voltages had to be represented. The representa­
tion used was an example of the 'symmetric binary re­
presentation' whose most general form is: 

given any quantity in the range - V "" E "'" + V, re­
present it by a Bernoulli sequence of binary logic levels 
with generating probability: 

E+V 
p(ON) = 2V = tE/V+:!. 

Thus the maximum positive voltage is represented by a 
logic level always ON, maximum negative voltage by it 
being always OFF, and zero voltage by a random se­
quence with equal probability of ON or OFF. 

Many other forms of stochastic representation are 
possible, and those which have definite representations 
of infinite quantities are especially interesting. A binary. 
representation may be regarded as a mapping from a line, 
the range of an analog variable, to the interval [0, 1]. the 
range of probabilities. There is a natural 'distance' be­
tween two probabilities, defined by the reciprocal of the 
length of experiment necessary to distinguish between 
them. This gives the natural topology of the interval to 
the range of probabilities, so that it is usual for the map­
ping of an analog variable into this range to be mono­
tonic, if not cOIltinuous. The computing elements des­
cribed in the remainder of this paper operate in the bi­
nary symmetric representation. 

4.1. Comparison of stochastic and other forms of repre­
sentation. Stochastic representations of quantity may 
be compared with those which characterize other forms 
of computer. The most direct representation is that of 
the analog computer where continuous voltage levels 
replace analog quantities. In the digital computer a 
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quantity is represented by an order~d set of binary logic 
levels or binary word. The DDA and pulse-counting 
computers represent a quantity by the number of ON 
logic levels occurring during an interval. In the stochas­
tic computer only the probability of occurrence of a 
logic-level carries information. 

If one compares the efficiency of these representations, 
in terms of the number of levels required to carry infor­
mation to a precision of one part in N, then: 

the analog computer requires one continuous level; 
the digital computer requires logz kN ordered binary 
levels; 
the pulse-counting computer or DDA requires kN 
unordered binary levels; 
and the stochastic computer requires kN' unordered 
binary levels-where k >- I is a constant representing 

the effects of round-off error or variance, k = 10 say. 
This progression from I : log. N : N : N' shows the stoch­
astic computer to be by far the least efficient in its re­
presentation of quantity, but it is through this. ineffici­
ency that it gains in simplicity and economy. In the po­
larity coincidence correlator, for example, a simple equa­
lity gate performs multiplication, whereas multiplication 
in the analog computers requires several operational 
amplifiers-in the digital computer a complex central 
processor and sub-routine-and in the DDA two integ­
rators. The next sections describe stocbastic computing 
elements to perform the complete range of analog 
computing functions, inversion, multiplication, addi­
tion, integration and so on. 

5. Stochastic Computing Elements 

The elements of a stochastic computer consist of logic 
units, gates, and storage devices, together with random 
generators whose outputs are Bernoulli sequences of 
logic levels. For convenience in exposition the stochas­
tic computer will be assumed to run synchronously, so 
that the inputs, outputs and states of elements· within 
the computer change only at the occurrence of a 'clock 
pulse'. The properties of the most common binary ele­
ments are shown in Fig. 4, together with their graphic 
symbols. The logical computations performed by the 
computing elements induce arithmetical computations 
in the quantities represented by their input lines, and 
these depend on the particular representation in use. 

5.1. Stochastic invertors, multipliers and isolators. Con­
sider the simple logical invertor (Fig. 4a) whose output 
is the complement orits input. The relatiOnship between 
the probability that its input will be ON and the proba­
bility that its output will be ON is: 

Po.,(ON) = l-p,.(ON). 

In the binary symmetric representation the relationshij:t 
between these probabilities and the quantities they re­
present is: 

hence 

p,.(ON) = t+tE'n/V 
Pout(ON) = t+tEont/V, 

E01.lt = -EiA' 



A~P 

:==I>--p 
:~P 

:=m-r 

p 

""ii J K 

~=::1 Counter 
E)Digital 

outpul 

p 

t t-y X-1 Comparator 

(a) Logical lnvertor P A. the output is the 
completnent of the input. 

(b) AJ>.'J) Gate P = A. B. the output is ON <=> both 
inputs are ON. 

(c) OR Gate P = AAB. the output is ON <=> either 
Or both inputs are ON. 

(d) ~=i::C~:=::::= P A.BAA.B. the output is ON if 
the same. 

(e) JK Flip_Flop The output is the same as the internal 
state of the flip_flop. At a clock pulse the state 
becomes ON if the J line alone is ON! and OFF if the 
K line alone is ON. It complements if they are both 
on, and remains the same if they are both OFF. 

(f) Unit Delay F(t) A{t_l), the JK flip-flop i. connected 
so that its output reproduces its input delayed through 
one clock pulse, 

(g) C ounte't' A store with states S •••.• SN: in state ~ 
at a clook pulse. it goc;:s to .stat~ SI +1 if Its J line is 
on alone, and to state s,~ 1 if its Kttme is on alone; 
otherwise it remains ln~e same state. 

(h) Comparator Ps (X~ Y). the output is determined by 
the relative magnitude of the (analog or digit.l) 
quantities at the inputs. 

FIG. 4. Properties of binary elements used in the stochastic computer. 

so that the logical invertor acts to give the negative of 
a number (in other representations it may subtract the 
number from a constant or compute its reciprocal). 

The equality gate (Fig. 4d) is used to carry out multi­
plication in the binary symmetric representation. 
Consider the two input streams to represent quantities 
E..,E;', by probabilities p""p;'. The output is ON when 
the inputs are both ON or both OFF, and hence: 

Pou,(ON) P,.(ON)p' ",(ON) + 
[1-PIn(ON)l[I-P',.(ON)] 

~so that 
E •• t = Eu,E'lnIV. 

An important phenomenom is illustrated by the use 
of a stochastic multiplier as a squarer. It is not sufficient 
to short-circuit the inputs of the equality gate together, 
for its output will then always be ON. This difficulty 
arises because the multiplier inputs must be statistically 
independent if the probability oftheir conjunction is to be 
the product oftheir generating probabilities. Fortunately 
an independent replication of a Bernoulli sequence may 
be obtained by delaying it through one event, and Fig. 5 
illustrates a squarer utilizing a flip-fiop as a delay, (Fig. 
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4f), and an equality gate as a multiplier. The flip-fiop 
used in this way is a stochastic 'isolator', performing no 
computation but statistically isolating two cross-corre­
lated lines. 

FIG. 5. Stochastic squarer. 

The necessity for stochastic isolation in the squarer is 
an example of a general principle applying to all stG­
chastic; computation. It is assumed that whenever se­
quences of logic levels are brought together at the inputs 
of a computing element they are independent Bernoulli 
sequences; that is they are neither cross-correlated nor 
autocorrelated. Both these conditions may be neglected 



to advantage in pseudo-random realizations of the 
computer, but isolation must normally be used to 
maintain statistical independence. 

5.2. Stochastic addition. Having seen how readily 
inversion and multiplication are effected by simple 
gates, one is tempted to assume that a similar gate may 
be used to perform addition. However, this is not so and 
a stochastic logic element must be introduced to effect 
addition in the symmetric binary representation. Con­
sider the situation when one input is always ON, repre­
senting the maximum positive quantity, and the other 
is always OFF, representing the maximum negative 
quantity. The sum of the quantities represented by the 
inputs is zero, and hence the output must be random, 
with equal chances of being ON or OFF. A probabilistic 

,output cannot be obtained from a deterministic gate 
with constant inputs, so that stochastic behaviour must 
be built into the gate itself. 

One realization of a stochastic adder in the binary 
symmetric representation is illustrated in Fig. 6: flip­
flop, is in a random state which is transferred to flip-

I!E,~ P,. 

FIG. 6. Stochastic adder. 

flop. at a clock pulse; dependent on the state of flip­
flop" one or the other of the input lines is reproduced 
at the output. Thus the prohability that the output will 
be ON is half the sum of the generating probabilities of 
the inputs: 

P ••• (ON) = tp,.(ON)+tp;.(ON), 

and hence: 
Eout = t(E,.+E;.). 

A multi-input adder may be realized by reproducing any 
one of its inputs 'at random as the output, and a weighted 
adder may be realized by biasing the probabilities that 
given inputs will be reproduced at the output. 

5.3. Stochastic integrators, the ADDlE, and Interface. 
Integration in the Polarity Coincidence Correlator 
(Fig. 3) is realized by a counter which increments its 
count by unity when its input is ON, and decrements it 
by unity when its input is OFF. However, the counter 
itself has the third possibility of not changing its count, 
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and this is used to advantage in the two-input summing 
integrator illustrated in Fig. 7: the counter changes its 
state at a clock pulse only if the 'hold' line is ON; it 

E~::E"I~(O)+JTEm+E~ clt 
o 

FIG. 7. Stochastic two-input summing integrator. 

increments by unity if both its inputs are ON, and 
decrements by unity if they are both OFF; otherwise it 
remains in the same state. With both inputs joined to­
gether the two-input integrator behaves as the incremen­
tal digital store previously described. 

A stochastic output from the integrator, representing 
the stored quantity, is obtained by comparing its count 
with a randomly varying digital quantity, uniformly 
distributed over the range of the store. If the store has 
N + 1 possible states, S • .... S N, then when it is in 
state S. the prohability that its output will be ON at th 
next clock pulse is: 

Pout(ON) kfN. 

The integrator with unity feedhack illustrated in Fig. 
Sb is called an ADDIE, and performs the important 

~ 
;Q>-~~ 

!?:] Hold 

( a) Integrator 1>ymbol (b)lntegrotor connected as ADDlE 

FIG. S. 

function of exponentially averaging the quantity repre­
sented by its input line. The count in its store is an 
unbiased estimator of the generating probability of its 
input, and it may be read out in . analog or digital 
form as the natural outward interface of the stochastic 
computer. The count in an N + 1 state ADDlE, with an 
input of constant generating probability, p, is approxi­
mately normally distributed with a variance: 

o' = P(l-p)N, 

and hence the standard deviation of the quantity repre­
sented, <1(E), expressed as a fraction of the range is: 

<1(E) 1 [ (E)'11 1 TVT = N~ 1- V "'" Nt' 

Thus quantities within the stochastic computer may be 
read out to any required accuracy by using ADDIE's 
with many states, but the more states the 10I\8er the 
time-constant of smoothing and the lower the band­
width of the computer. Hence variables within the 
computer may be regarded as degraded by Gaussian 



noise, whose power increases with the bandwidth 
required from the computer. 

The integrator or ADDlE may be used to realize 
arbitrary functions by imposing suitable non-linear 
relationships between the count in its store and stochas­
tic output. For example if all counts above the mid-level 
give rise to an ON output, and all those below it give 
rise to an OFF output, then the input/output relation­
ship approximates to a discontinuous relay or switching­
function. Integrators with their hold lines OFF may be 
used to store a constant during integration, and thus 
act as a 'potentiometer' if coupled to a multiplier. 

The inward interface of the stochastic computer 
consists of comparators, one side of which accepts the 
analog or digital input, and the other side of which is 
driven by a random analog or digital waveform; 
these have been described fOf both the 'Enhancetron' 
and the polarity coincidence correlator. In tbe binary 
symmetric representation the random waveform will 
have a uniform distribution over the range of the inputs, 
symmetrical about zero; other representations may be 
obtained by transforming the input or biasing the 
random distribution. 

6. Applications of Stochastic Computing Elements 

The stochastic computing elements described form 
a complete set in the binary symmetric representation: 
invertor, adder, multiplier, integrator, function genera­
tor, inward and outward interfaces. These may be made 
available through a patch-board identical to that in 
conventional analog computers, so that the elements may 
be interconnected at will to simulate specific systems. 
Stochastic computing elements are constructed of 
such simple digital circuits, however, that many ele­
ments can be fabricated on a single chip of an integrated 
circuit, and to take full advantage of the compactness 
and economy offered it is desirable for interconnexions 
between elements to should be fabricated on the same 
chip. Thus practical computing units tend to be fairly 
large complexes of the basic elements interconnected to 
perform a specific computation. Some simple examples 
of such complexes are given in the concluding sections. 

6.1. A second-order transfer function. A stable second­
order transfer function With variable natural frequency 
and damping-ratio is shown in Fig. 9: two integrators 

FIG. 9. Second-order transfer function. 

are connected in series, and inverted feedback from the 
final output is taken to both their inputs. If the first 
integrator has (M + 1) states and the second has (N + 1) 
states, then the transformation realized is: 
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where f is the 
clock frequency. 

This is a stable second-order transfer function with: 

undamped natural frequency = f 
2nCMN)t' 

damping ratio = tCM/N)t. 

A simulated response of this stochastic computing 
unit to a step in position and velocity is shown in Fig. 
10, for M N = 2000, corresponding to a damping 

+()o$t.... 
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FIG. 10. Response of stochastic second-order transfer 
function. 

ratio of t. Gaussian noise, superimposed on the normal 
overshoot and oscillatory decay, can clearly be seen. 

6.2. Steepest descent computer. The most ubiquitous 
of computing configurations is that of 'steepest descent', 
(Donaldson and Kishi 1965; Tou and Wilcox 1964) 
and its uses range from implicit four-quadrant division 
to parameter identification and pattem recognition. 
Its usage is nonnally restricted by the nomber of multi­
pliers and storage elements required for its imple­
mentation, but these requirements make it ideal for 
stochastic realization. 

It is required to find weights, W, •••• W.v, for inputs, 
x"" ,XN' which give the best approximation (in terms 
of r.m.s. error) to the required output, y, by a weighted 
som of the inputs, z. That is to find {w,} such that: 

f' 

(eo) = -} J (z- y). dt is minimized, 

where Z WIXl+WOX.+ •.•• ,+w.II'x"" 

It may be shown that the best values of the weights can 
be est!lblished on-line through the computation (assum­
ing no secondary minima): 

!V, <xx,(Y - z), where «,.. 0 is the slope of descent. 



A stochastic computer realizing this computation is 
shown in Fig. 11: the weights are represented by the 
outputs of integrators (only one section is shown), 
whose inputs receive feedback from the error between 
actual and required output which is multiplied by the 

Tr'lputS(Above section duplicated 
for ecx:h in~' and fed to the 
same Adder) 

00 
Required outpuf 

FIG. 11. Steepest descent computer. 

appropriate input. When the 'hold' lines of the integrators 
are ON the computer makes a steepest descent approach 
to the best linear relationship between inputs and 
required output, and when the 'hold' lines are OFF the 
'actual output' simulates the 'required output' by using 
this relationship. Note the need for isolation of the 
input feedback, and the use of three multipliers for each 
weight. Stochastic computing elements allow by far the 
most economical realization of the steepest descent 
computer. 

6.3. Partial differential equations and neural nets. 
Analog computers have one natural independent 
variable and that is time. Partial differential equations 
involving several independent variables are usually 
solved iteratively on a hybrid computer, or through a 
discrete approximation on the digital computer. The 
use of stochastic computing elements makes it feasible 
to simulate the equations by spatial arrays of special­
purpose computing elements, with one spatial dimension 
for each independent varia,ble, and these arrays bear an 
interesting resemblance to 'neural nets'. A stochastic 
solution oi"Laplace's equation will be used to illustrate 
this technique. 

Laplace's equation in two dimensions: 

with boundary 

conditions on a closed curve, may be simulated by expres­
sing it in discrete form: 

u(x-e, y)-2u(x, y)+u(x+e, y)+u(x, y-e)-2u(x, y)+ 

u(x, y+ e) = O. 

If u(x, y) is represented as the output of a stochastic 
integrator, then the above relationship can be enforced 
by feedback to its input, assuming other integrators are 
representing neighbouring grid-points. A suitable 
computing element, the 'Laplacian', is shown in Fig. 12: 
an ADDlE receives the output of an adder, which sums 
the peripheral terms of the above equation, together 
with the normal inverted feedback from its output; the 
value represented by the ADDlE can settle only when 
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the above equation is satisfied. Networks of these units, 
interconnected as shown in Fig. 13, can be used to 
solve Laplace's equation in two-dimensions for arbitrary 
shapes and boundary conditions. 

FIG. 12. Two-dimensional Lapiacian element. 

1fi t// 
I f/ / 
=":.:~ 

----_/ -------_ ... 

FIG. 13. Net ofLaplacians. 

The properties of these spatial arrays have interesting 
resemblances to those of the 'neural nets' simulated by 
Farley and Clark (1954) and Beurle (1956), and the 
computing elements themselves are reminiscent of the 
'neurons' of Harmon (1961) and other workers. 
Neurons in the brain are known to show stochastic 
behaviour, and it is possible that stochastic computing 
may provide not only a new impetus to work on neural 
nets, but also a reasonable model of some cortical 
functions; for example, the cross-correlational processes 
of visual disparity and auditory formant separation. 

7. Summary and Conclusions 

The place for the stochastic computer in the diagram 
of Fig. 1. should now be clear, and is shown in Fig. 14. 
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FIG. 14. Applicability of anolog, digital and stochastiC' 
computers to process simulation. 



The main limitation is its speed, and systems suitable 
'for simulation by a stochastic computer lie above a 
horizontal line cutting the time axis at approximately 
·0·01 minutes. There remains an area in the lower right 
hand corner which is intractable for all forms of compu­
ter, but this is now bounded by a horizontal rather than 
a sloping line, implying that the stochastic computer 
suffers no loss in speed as the size of problem increases. 
It is interesting to note that advances into the missing 
area of large, fast systems are largely independent of 
increases in the speed or size of digital computers; 
sequential processing is a grave disadvantage in the 
'simulation of systems with many interacting components. 

The diagram is anomalous in making it appear that 
analog and stochastic computers are everywhere 
alternatives to the digital computer. Figure 14 represents 
the physical constraints in real-time process simulation, 
and neglects the many applications where the digital 
computer proves cheaper, more flexible and easier to 
use. A combination of the three types of computer in a 
hybrid stochastic computer would prove very powerful 
in control applications; the digital computer providing 
flexible sequencing and supervision of operations, the 
analog computer providing fast but simple models 
for iterative optimization, and the stochastic computer 
'providing real-time, realistic simulation for identifica­
tion of process states and dynamics. 

The application of complex adaptive controllers has 
been inhibited by the lack of suitable hardware, and the 
'ease of multiplication and storage in the stochastic 
computer offers opportunities for parameter optimiza­
tion which have not previously been avaIlable. The 
development of learning machines which take full 
advantage of the properties peculiar to stochastic 
:hardware, and the development of stochastic computing 
-elements to fulfil the particular requirements of learning 
machines are potentially the richest fields of research in 
,both computation and control. 
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See also: Automata, mite-state. Control by hybrid 
~mputers. Control, identification techniques for. Neu­
ronal nets. Reliable co",,,,,..tion with unreliable ele­
ments. 
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