
THE ROLE OF THE BEHAVIOURAL SCIENCES IN PROGRAMMING 

B R Gaines 

Monotype Holdings Ltd 

Redhill 

Surrey UK 

B R Gaines 1979 

57 



B R GAINES is Technical Director of Monotype and Chairman of the Department of Elec

trical Engineering Science at the University of Essex. He is responsible for all 

technical activities and products throughout the Monotype Group; his main area of 

research is on human factors in computing, particularly on effective dialogue pro-

gramming. Previously he was Technical Director of a timesharing service company. and 

of a minicomputer manufacturing company, and consultant on computer systems engineering 

to a number of British and American companies. He has designed general purpose and 

special purpose computer hardware, and developed operating systems, languages and a 

wide variety of application packages. 

58 



Gaines 

THE ROLE OF THE BEHAVIOURAL SCIENCES IN PROGRAMMING 

INTRODUCTION 

The purchasers of computer systems are people, the specifiers of computer systems are 

people, the users of computer systems are people, the programmers of computer systems 

are people. If we have not always been acutely aware that the behavioural sciences 

are highly relevant to all aspects of computer systems implementation, then it is only 

because in attempting to create a computer 'science' we have modelled it on the stereo

type of the physical sciences and quite deliberately forgotten the human aspects of 

what is still a frontier of human activity. 

This paper is about the role of the behavioural sciences in computer system implement

ation; about the contributions which one might reasonably expect from psychology and 

sociology rather than the actual contributions they have made. Indeed, from the outset, 

it should be made clear that the potential contribution by far exceeds any so far made 

and that the lessons to be learnt are not necessarily direct solutions to problems, but, 

perhaps more importantly, meta-systemic aspects of methodology and experimentation; that 

there are techniques of experimental investigation that may throw light on particular 

problems, but there are also approaches that most certainly will not. Both psychology 

and sociology are more rich in case histories of the experimenter misled, or the theor

ist misinterpreting experiments, than they are in generally useful 'laws'. We are on 

very dangerous ground when we attempt to draw general inferences about people's behav

iour from observations of specific cases, even under closely controlled experimental 

conditions (perhaps, particularly under such conditions man is the most highly adaptive 

animal and changes his behavioural colouration to his local circumstances more rapidly 

than a chameleon changes its optical colouration to its local base!). 

As one of those who has strongly encouraged the growth of mutual awareness and interact

ion between behavioural and computer scientists, particularly in the last ten years 

through the editorial policy of the International Journal of Man-Machine Studies, I am 

acutely aware of the dangers as well as the potential rewards of introducing techniques 

and concepts from the behavioural sciences into computer science and its practical app

lication. It is easy to put into effect a 'human experiment' in any new venture: we 

are installing an interactive timesharing partition into what was previously a batch 

processing environment. What do the users expect to gain? What actually occurs in 

terms of programmer productivity etc? We find that programmers expect much but gain 

nothing and hence we conclude that interactive access has been over-sold and is actually 

of little benefit; we do not ask whether it is because the interactive partition is 

up only 2 hours a day, provides no continuity of on-line storage and has a response 

time of 15 seconds! 

The majority of real-world situations provide little opportunity for experimental 

59 



Gaines 

studies that could lead to significant conclusions. In general, also, moving to the 

'laboratory' situation and creating a micro world that simulates in some aspects the 

real-world again is of limited benefit in leading to significant results applicable 

outside the laboratory. This is not to say that both approaches have not been used 

meaningfully in important and useful studies, but, invariably, such studies also have 

a major component of penetrative intuition grounded on practical experience in their 

design and interpretation. The methodologies of the behavioural sciences provide no 

substitute for thought, doubt, introspection and informal observation. These are the 

substance of our understanding of human behaviour and the formality of empirical ex

periment follows it rather than precedes it. Perhaps this is obvious, particularly 

to an audience of practical systems designers, but there is a danger that the behav

ioural sciences, in presenting themselves as modelled on the physical sciences, may 

appear to offer a route to understanding that does not exist. These sciences themselves 

are unsure of their foundations and this is significant to their application. It by 

no means undermines their relevance since it is the same problem of the essential com

plexity of real-world systems that we face in both the behavioural and computer sciences. 

In the next section I shall develop a framework for understanding the role of the be

havioural sciences in computer sciences, and finally give some illustrations of the types 

of study to date. 

THE VIRTUAL MACHINE HIERARCHY AS A FRAMEWORK FOR HUMAN FACTORS 

In charting the quicksands of current human studies in computer science one needs some 

kind of framework in which to place the results. Human factors appear in virtually all 

aspects of computing; some machines are 'easier to program' than others; some languages 

are 'easier to learn' than others; some interactive programs seem 'more natural' than 

others. Are these different phenomena and must one treat human problems in computing 

piecemeal? Or, is there some underlying model which encompasses a range of phenomena? 

At one extreme one may study the human aspects of machine architecture, both of special 

purpose and general purpose computers, asking such questions as what makes a computer an 

'analogue computer' (006), and what makes one instruction set more comprehensible than 

another? (007). At the other extreme one may study the problem of programming dialogue 

between naive users and the computer and look for general rules relating to effective 

dialogue programming (009,010). The results suggest that there is a strong commonality 

between the principles that are drawn from hardware, software, and end-user dialogue 

situations, that gives hope that the same underlying psychological phenomena are rele

vant to these diverse aspects of computing. 

The concept in computing science that has been most fruitful in enabling an integrated 

and uniform view to be taken of hardware and software is that of a virtual machine. It 

is a term which originally arose in the context of emulation, when it was necessary to 

speak of one hardware processor being emulated by a program on another. Functionally 

the combination of hardware and software in one machine is equivalent to the hardware 

alone of the other; it is a 'virtual machine' equivalent to a real one. It was natural 

for the term to be quickly extended to situations where no hardware 'machine' existed 

or was even likely to exist: operating systems add functionality to a machine and the 

calls on an operating system may be regarded not as links to other software but as the 

use of a machine with an enhanced instruction set; similarly, the run-time system of 

a FORTRAN compiler may consists of a set of library routines that are called by the main 

program. These may alternatively be regarded as instruction set enhancements generating 

a new virtual machine, a 'FORTRAN machine' • 

60 



Gaines 

Research on virtual machines as such (014) has tended to concentrate on effective emu

lation, nowadays not just of hardware but of the hardware plus operating system. How

ever, it is very useful to extend the use of the term to its logical conclusion and 

think of any system seen from the outside as a 'black box' defined not by the way it is 

1mplemented but solely by its actual functionality. I have often quoted John Cleary's 

remark at EUROCOMP '74 that: 'The only virtual machine of interest to a user [isJ 

one that has abolished all lower levels of system and presents an understandable and 

sympathetic face to its user' and have developed formal rules for the virtual machine 

that a naive user needs to see for effective man-computer communication (009) - even 

concepts such as 'sympathy' and 'understanding' have well-defined explanations. Be

tween the hardware level and the end-user applications level there is a complete and, 

nowadays often very lengthy, hierarchy of virtual machines. The dialogue you have at 

a terminal in order to learn statistics is written as a program in an 'author language' 

that is itself written in a 'string-processing' language that is itself written in 

'FORTRAN' that itself compiles to an 'intermediate assembly language' that runs under 

an 'operating system' in the 'instruction set' of a HAN269 computer that is emulated in 

the 'microinstruction' of •..• One wonders sometimes whether there is anything out there 

actually doing something, or whether it is not an infinite regression of virtual mach

ines, particularly when the response time exceeds 30 seconds! 

Figure 1 shows such a hierarchy of virtual machines. Note that it is not just a linear 

chain of levels but rather a true branching structure in that the same virtual machine 

may run many different programs, and that the hierarchy is embedded in a lattice in 

that different virtual machines may run the same program. Note also, however, that 

there is nothing in Figure 1 to indicate that virtual machines at different levels have 

any common properties, that there is some degree of recursion in the hierarchy. This 

appears only when we examine the human factors relating to the virtual machine. 

VM' 
M3 

QEQ21 

Figure 1: A virtual machine hierarchy 

VMn+4 
language 

VMn 
of HAL269 

61 



Gaines 

The interrelationship between machine, problem and programmer 

Consider now the relationship between two levels of virtual machine in Figure 1 in 

terms of implementation. At level n+4, for example, the 'author language' has to be 

implemented in LISP, i e, the facilities provided by one level of virtual machine are 

used to implement the next higher level. We may clearly ask technical questions about 

whether LISP is a suitable language in which to write the required author language, 

does it provide suitable data types, structures, and operations upon them? However, 

if we try to relate the discussion in the literature on 'structured programming' to 

such a technical relationship between virtual machines we rapidly find that the two

part relationship expressed is inadequate to capture many significant concepts. In 

discussing programming we have to bring in the programmer and we find that he (she or 

it) has also a relationship to each of the virtual machines is he fluent in LISP? 

how does he think of the author language? We have actually to consider the three-part 

relationship shown in Figure 2 between: 

• The programmer 

• The virtual machine which provides implementation facilities 

• The virtual machine which is the problem whose solution is to be implemented. 

We can now see the programmer as a medium through which a virtual machine at one level 

is transformed to one at anotner (less mystically, a virtual machine at level m may De 

regarded as one at level m-I plus a program!). 

If we now bring in the three-part relationship of Figure 2 into the virtual machine 

hierarchy of Figure 1, we get the diagram of Figure 3. Two features of the hierarchy 

are now immediately apparent. 

62 

Programmer - problem 
relation e g does he 
understand author -
language structure? 

Programmer 

Problem - machine relation 
e 9 does LISP have data 
structures suited to the 
author language? 

Programmer - machine 
relation e 9 is he fluent 
in LISP? 

Vt4m 
'Resource' 

e g LISP 

Figure 2: The three-part relationship between programmer, problem and virtual machine 



Gaines 

VMn 
of HAL269 

Figu~e 3: Human factors in a virtual machine hierarchy 

First, the isolation between levels that is possible: the programmer at level m has 

to consider only the machines at level ID and m+l: one given to him as a resource and 

the other as a problem to be solved using the resource. He does not have to consider 

virtual machines at lower or higher levels, i e, how the resource he has been giVen has 

been implemented, or how the resource he is creating will be used. Or, if he does 

have to consider such factors then the degree of isolation superficially apparent has 

not really been achieved~ the problem is inadequately specified; the resource given 

is inadequate in definition or quality. 

Secondly, the recursive nature of the virtual machine hierarchy becomes apparent~ at 

each level there is a 'programmer' who is an intermediary between resource and problem 

he is an algorithmic problem-solver and, whilst there are differences between the prob

lems and resources at different levels, there are also very strong similarities. A 

good example of this is the command structure at each level whereby the resources are 

controlled. Consider virtual machine A with 400 commands each of which is very signif

icant and useful but has to be understood in isolation. Contrast this with virtual 

machine B which has also 400 commands that may, however, be regarded as 8 main functions 

each of which has 5 modes of operation on 10 different types of data structure. The 

two machines A and B present very different problems of learning and comprehension to 

the programmer - it is the difference between remembering 400 things and 8+5+10=23 

things. This principle applies at every level of the virtual machine: to the micro

instruction set, to the main instruction set, right down to the information entry and 

access commands used by the ultimate end-user, e g, a nurSe in a hospital running a 

patient administration system. 

Similar universality and transfer of experience, and principles derived from it, apply 

to a range of phenomena relating to human factors in the problem-programmer-machine 



Gaines 

triad at all levels. The virtual machine framework of Figure 3, also encompassing 

this three-part relationship as it occurs at each level, seems to provide an adequate 

conceptual base for the discussion of nearly all aspects of human factors in 'struct

ured programming'. Clearly it has inherent within it models of both 'top-down' and 

'bottom-up' approaches to overall system design, and it also makes ostensive notions 

of 'modularity' and its advantages. 

Dijkstra (003) notes the fundamental significance of the virtual machine in his orig

inal paper on structured programming and it has become a significant theme in later 

work (018). As Cremers and Hibbard (002) recently remarked, 'Systematic software 

design can be based on the development of a hierarchy of virtual machines, each repres

enting a level of abstraction of the design process'. The virtual machine hierarchy 

is an intuitively meaningful concept which can also be modelled formally (003), and it 

has also been suggested that the role of the programmer in it can also be encompassed 

through a suitable formalism (008). 

Explicit inclusion of the programmer within the framework also allows for, and models, 

the conflicts that can arise between what is clearly good practice and what actually 

occurs in practice: the fluid dynamicist who writes a natural language dialogue program 

in FORTRAN, despite the very poor problem-machine relationship, because his knowledge of 

FORTRAN is very good and his knowledge of more suitable languages is virtually non-ex

istent; or, conversely, the programmer who creates a highly inefficient and ineffect

ive implementation when the problem-machine relationship is actually very well matched 

because he himself has a very poor understanding of the intrinsic requirements of the 

problem; and so on. 

DIRECTIONS IN HUMAN FACTORS RESEARCH 

I have dwelt at l~ngth on a conceptual framework for human factors in programming be

cause to my mind this is the most urgent prerequisite for advances in the next decade. 

We do now have a body of pUblished material on such human factors (001,004,005,009, 

010,011,012,013,015,016,017,019-031) and, both as a research area and as a topiC of 

direct commercial significance, studies in this area are coming very much into vogue. 

There is very, much more to be gained from these studies as a whole if they can be re

lated to one another and compared with one another even though their practical contexts 

and applications are very different. It is easier and safer to interpolate in the gaps 

of a diagram such as Figure 3 than to extrapolate from one isolated study to a differ

ent context. 

To give a feel for the type of work that has so far been undertaken I will give some 

examples from the literature which illustrate different approaches. 

Sime and his group at Sheffield University (026,027,028) have taken a classical experi

mental psychology approach to the study of human aspects of programming language con

structs and performed laboratory experiments in which groups of Subjects are compared 

in performance and nature of errors in programming up the same problem using different 

families of allowed constructs. Their methodology is of interest whenever specific 

pOints of major significance have been isolated, e g, the merits of the'GOTO' construct 

compared with alternatives. Laboratory experiments are, of course, notoriously diffic

ult to extend to the real world. However, the very exercise of constructing a laborat

ory situation, even as a gedanken experiment, is invaluable in clarifying one's thinking 

and arguments. What are the key features? In what context must they be tested? What 

64 

• 



Gaines 

interfering factors must be eliminated? Is there interaction with the knowledge and 

experience of the programmer? and so on. Many a loose and woolly argument has either 

become transparently ridiculous or simplified to the point of tautology when exposed 

to the discipline of experimental design. The operational viewpoint - how can I act

ualise precisely what I am talking about and nothing else - is a necessary technique 

to effective human factors thinking. 

Most other studies reported in the literature are ernologiaal and/or introspeationist. 

In the ethological approach one studies actual animals going about their natural habitat, 

in this case programmers programming, users using, and so on. For interactive users 

it is possible to take transcripts of the interaction automatically which enable the 

programmers' behaviour to be analysed in great detail. Even in a batch environment it 

is possible to follow the successive stages of programming debugging and even to analyse 

the comparative differences between successive generations of a program automatically 

(015). At a coarser level the logged statistics of use of a computer may be used to 

prOVide valuable information on the pattern of activities of users as a whole and the 

differential behaviours of different classes of user (004,016). This often generates 

very interesting results (e g, Doherty (004) reports that for each additional second of 

system response time the user response time also increases by one second) which are by 

no means easy to interpret in terms of individual action (for example, does the user's 

attention wander individually as a random walk, or do some users get fed up and do some 

intervening task - either phenomenon might account for the data) and this often points 

to the type of more detailed laboratory experiment that would be worthwhile (e g, moni

tor individual users in a regime of controlled variation of system responsiveness) • 

The introspectionist approach through self-analysis of one's own experience, behaviour 

and attitudes, played a key role in the early development of psychology but fell into 

disrepute as the behaviourist view came to hold sway. Introspection is invaluable in 

practice, however, as an adjunct to the observation of others - we gain insight into 

the behaviour of others by mentally putting ourselves in their place and relating their 

behaviour to our own experiences. The literature on high level skills such as chess 

has a major component in the self-analysis of chess masters, and the literature on pro

gramming skills has a similar component based on the self-analysis of experienced pro

grammers. Again such introspection often suggests more objective ethological observat

ions of others or laboratory experiments. There are also techniques for the formal 

gathering and analysis of introspective data through questionnaires, and these have 

been used in important studies of human factors in computing (005). 

CONCLUSIONS 

Programming is a human skill and the behavioural sciences have a part to play in our 

understanding the process of programming and improvements in programming facilities 

and techniques. The commercial significance of this has been appreciated and, for ex

ample, various IBM research laboratories figure largely in any list of published re

search on human factors in programming. The behavioural sciences themselves offer no 

royal road to understanding but can contribute basic features of human behaViour, 

particularly cognitive skills, and a wealth of material on the methodology of experi

ments on, and observation of, human behaviour. The fundamental framework of a virtual 

machine hierarchy which has proved a dynamic concept in structured programming may be 

extended to take account of human factors and this throws new light on important feat

ures of the concept. Future developments in the formal analysis of this framework, 

coupled with human experiment and observation in the ~ight of experience, have a vital 

65 



Gaines 

role to play in our coming to grips with the complexities of modern computer systems 

implementation. 

REFERENCES 

001 BROOKS R 

Toward a theory of the cognitive 

processes in computer programming 

Intl J Man-Machine Studies vol 9 

pp 737-751 (Nov 1977) 

002 CREMERS A Band HIBBARD T N 

Formal modelling of virtual 

machines 

IEEE Trans Software Eng vol SE-4 

pp 426-436 (Sept 1978) 

003 DIJKSTRA E W 

Notes on structured programs 

In Structured Programming 

Academic Press New York (1972) 

004 DOHERTY W J 

Human factors: impact on inter

active programming 

SHARE Meeting Cambridge UK 

(Sept 1977) 

005 DZIDA W, HERDA Sand ITZFELDT W D 

User-perceived quality of inter

active systems 

IEEE Trans Software Eng vol SE-4 

pp 270-276 (July 1978) 

006 GAINES B R 

varieties of computer - their 

applications and interrelationships 

IFAC Symp Budapest (April 1968) 

007 GAINES B R 

66 

COmputer technology and its utilization 

today and tomorrow 

Proc conf on Small computer applications 

in industry Nat Eng Lab East Kilbride UK 

(March 1973) 

008 GAINES B R 

Analogy categories, virtual machines 

and structured programming 

Lecture Notes in Comp Sci vol 34 pp 

691-699 GI-5 Jahrestagung (1975) 

009 GAINES B R 

Programming interactive dialogue 

Pragmatic Programming & Sensible 

Software pp 305-320 On-line Uxbridge 

(1978) 

010 GAINES BRand FACEY P V 

Some experience in interactive system 

development and application 

Proc IEEE vol 63 pp 155-169 

(June 1975) 

011 GANNON J D 

An experiment in the evaluation of langu

age features 

Intl J Man-Machine Studies vol 8 pp 

61-73 (Jan ]976) 

012 GILB T 

Software metrics 

Studenlitteratur Sweden (1976) 



on 

ons 

UK 

013 GILB T and WEINBERG G M 

Humanized input 

Winthrop Publishers Cambridge Mass 

(1977) 

014 GOLDBERG R P 

Survey of virtual machine re

search 

computer vo1 7 pp 34-1~ 

(June 1974) 

015 GOULD J D 

Some psychological evidence on 

how people debug computer programs 

Int1 J Man-Machine Studies vo1 7 

pp 151-182 (March 1975) 

016 HARALAMBOPULOS G and NAGY G 

Profile of a university computer 

user community 

Intl J Man-Machine Studies vol 9 

pp 287-)13 (May 1977) 

017 HOC J M 

Role of mental representation in 

learning a programming language 

Intl J Man-Machine Studies vol 9 

pp 87-105 (Jan 1977) 

018 HORNING J J and RANDELL B 

ru- Process structuring 

Comp Surv vol 5 pp 5-30 

(1973) 

019 MARTIN J 

Design of man-computer dialogues 

Prentice-Hal1 New Jersey (1973) 

020 MILLER L A 

Programming by non-programmers 

Intl J Man-Machine Studies vo1 6 

Gaines 

pp 237-260 (March 1974) 

021 MILLER L A and THOMAS J C 

Behavioural issues in the use of inter-

active systems 

Int1 J Man-Machine Studies vol 9 

pp 509-536 (Sept 1977) 

022 NAGY G and PENNEBAKER M C 

A step towards automatic analysis of 

student programming errors in a batch 

environment 

Intl J Man-Machine Studies vo1 6 

pp 553-578 (Sept 1974) 

023 REISNER P 

024 

Use of psychological experimentation as 

an aid to tbe development of a query 

language 

IEEE Trans Software Eng SE-3 pp 218-229 

(May 1977) 

SHNEIDERMAN B 

Exploratory experiments in programmer 

behaviour 

Int1 J Comp Infor Sci vol 5 pp 123-143 

(June 1976) 

025 SHNEIDERMAN B 

Measuring computer program quality and 

comprebensi on 

Intl J Man-Machine Studies vol 9 

pp 465-478 (July 1977) 

026 SIME M Er GREEN T R G and GUEST D J 

Psychological evaluation of two condit

ional instructions used in computer 

languages 

Intl J Man-Machine Studies vol 5 

pp 105-113 (Jan 1973) 

67 



Gaines 

027 SIME M E, GREEN T R G and 

GUEST D J 

Scope marking in computer con

ditionals - a psychological evalu

ation 

Intl J Man-Machine Studies vol 9 

pp 107-118 (Jan 1977) 

028 SIME M E, ARBLASTER A T and 

GREEN T R G 

Reducing programming errors in 

nested conditions by prescribing 

a writing procedure 

Intl J Man-Machine Studies vol 9 

pp 119-126 (Jan 1977) 

029 THOMAS J C and GOULD J D 

A psychological study of query 

by example 

Proc '75 Comp Conf pp 439-445 

(May 1975) 

030 WEINBERG G M 

The psychology of computer 

programming 

Van Nostrand Reinhold (.1971) 

031 YOUNGS E A 

68 

Human errors in programming 

Intl J Man-Machine Studies vol 6 

pp 361-376 (May 1974) 


