
I.E.E. 1974 Computer Systems and Technology Conference, London 
October 1974 

INTEGRATION OF PROTECTION AND PROCEDURES IN A HIGH··LEVEL HINICOMPUTER 

B.R. Gaines, Department of Electrical Engineering Science, University 
of Essex, Colchester, U.K. 

M. Haynes and D. Hill, Micro Computer Systems Ltd., Boundary Road, 
Woking, Surrey, U.K. 

Abstract 

This paper discusses those aspects of the design of a "high-levelfl 

minicomputer specifically orientated to eaoe and security of software 
~evelopment with high-level languages in a real-time environment. 
In particular an impleJ11entation of procedure calls is described which 
both supports the requirements of the common languages and integrates 
naturally with a ring-structured protection mechanism based on 
storage segmentation. 



INTEGRATION OF PROTECTIQ.'l AND PROCEDURES IN A Hlrn'-LEVEL MINICOMPUTER 

B.R. Gaines, M. Haynes and D. Hill 

1. Introduction 

In previous pape~sl,2 we have analysed the major current objectives of 
commercial minicomputer design and have proposed a machine architecture to 
satisfY them. The design objectives discussed were: (1) Low cost; 
(2) High reliability; (3) Rapid response; (4) Ease of interfacing; 
(5) Modularity of configuration; (6) Flexible storage relocation/ 
protection linked to procedure calls; (7) Decoupling peripheral device 
requirements from the user environment; (8) Consistency and uniformity of 
treatment of all facilities; (9) A wide range of operand lengths and 
types; (10) More explicit data structures; (11) Separation of instruction 
set and order-code; (12) Extensibility through trapping; (13) Dynamic 
tnicroprogramming; (14) No penalty when the more advanced features are not 
used. 

The first five objectives may be seen as those of the classical ID1n1-
computer market. The later objectives reflect the current trend to 
exploit the availability of low-cost integrated circuit hardware to aid 
software development, reliability and maintenance. In this paper we shall 
concentrate on those aspects of our design primarily concerned with simple, 
secure and swift software engineering, and, in particular, with the 
integration of protection and procedure calls. 

2. Synopsis of Machine Structure 

Figure-I shows the overall structure of the machine. The basic configur
ation is essentially dual-processor: a simple minicomput~r handles all 
input-output and its low-level processing·(buffering, character recognition 
and conversion, directory lookup, etc.); a 'language processor' executes 
the .main system and user processes, supporting a wide range of operations 
on operands of various types and lengths together with memory segmentation. 
The two processors communicate through the store and an interrupt line. 
The use of I/O processors is common on large machines, and its particular 
advantages in the_ present context are discussed in Ref.l. As far as the 
operating system is concerned it means that the language processor sees a . 
device-independent I/O system, and that the only interrupts to it are 
significant events requiring major activities such as scheduling. 

The t language processor' is that most relevant to this paper. It consists 
of three independent units whose functions are:-

2.1 Data operations 

Operands are variable in length in units of 8-bits (one byte) from 1 to 16 
bytes. There is a single variable-length accumulator (ACC) and virtually 
all data operations are between an operand in ACC and one in main store . 
with the result in ACC. As well as the 16 operand lengths, there are 16 
operand types, including LOGICAL, INTEGER, FEAL, COMPLEX, stack MARKER, 
. 

B.Rv Gaines is in the Department of Electrical Engineering Science, 
Uni ve rsi ty of Essex. 

M. Haynes and D. Hill are with Micro Computer Systems Ltd, Woking. 



Fetch/Decode/Address 
computation unit. 
Hi cro prograr..I1ed 
20-bit arith~etic. 

, ~ 

LANGUAGE FROCESSOR 

Segmentation unit. 
16 x 32-bit regs. 
Base/bound and 
protection. 

tUIN STORE Inter
processor 
interupt 

'1 
Up to 11·1 .x: 8-bi t, bytes 

Ilf.PUT/OUTPUT PROCESSOR 

2 

Data operations 
unit. . 
l·1icro programr..led 
l28-bit arith. 

<> 
Direct 
memory 
access 
ports 

Microprogra~~ed 8/l6/24-bit operations and instructions. 
r·leoory protection 'fence' for foreground/backGround. 

I/O highway for all peripherals 

FIGURE 1 Or:J.:8nisation of High-level Irinico:rDuter 

REFERENCE, and procedure CALL. I The data operations unit provides 128 
· possible operations on pairs of operands (mixed in length/type) of which 
64 operations are hardware defined and the remainder are extracodes. The 
operations include moves~ arithmetic (ADD t SUBTRACT, REVERSE SUBTRACT, 
MULTIPLY, DIVIDE, REVERSE DIVIDE, COMPARE) ~ logic (Boo1ean), relational 
(giving a logical result based on a relational test), shifts, field 
extraction, etc .. 

The type/length of an operand are specified in an a-bit 'descriptor', one 
of which is associated with the accumulator. Descriptor housekeeping is 
discussed in detail in Refs.l & 2: that of an operand inthe store may be 
defined - (a) by default in the processor status word - (b) in certain 
ins~ructions - (c) in certain forms of indirect address (data structure 
controllers) - (d) as a tag with the data (used mainly with stacks). 

2.2 Segmentation 

Sixteen physical segment registers (PSR's) provide access to 16 relocat
able segments, each up to 64K bytes in length, variable in units of 16 
bytes, in a total store of up to lH.bytes. Each segment may be marked as 
CODE, DATA or PRIVATE at one of 8 levels corresponding to 8 protection . 
rings: CODE - executable from any ring - no write access - read from 
rings at or within protection level; DATA - not executable - write from 
rings at or within protection level - read from anywhere; PRIVATE - not 
executable - write from rings within protection level - read from rings at 
or within protection level. 

Program segments are accessed through- a logical segmentation scheme g~v~ng 
up to 128 shareab1e logical code segments~ and up to 112 logical code 
segments local to a particular job. One of the PSR's identifies the 
active logical code segment. Other PSR's give access to frequently-used 
library and run-time system procedures, executive procedures, and data 
segments. .' 



3 

. 2.3 Fetch/decode/address comoutation 

Instructions are encoded in l6-bit 'words' or multiples thereofo There 
are 'short forms' of the most commonly used operations and accessing modes, 
but these are all contractions of unrestricted 'full forms' and the use of 
contracted forms may be left to the linking editor. The address modes 
include: literal - for constants; direct - to all 16 physical segments; 
and various forms of indirection. The advent of semiconductor main 
stores has made it attractive to do away with separate index regis~ers and 
gain the same facilities through address computation on indirection. 
Facilities include: add an offset to the indirect address (lA); offset 
is in bytes or is in operands; offset is literal in instruction, or is in 
ACC, or is sum of both; operand address is lA or lA + offset; replace lA 
with lA + offset or leave unmodified. 

The ,indirect addresses have themselves been generalised: an escape code 
in a (normally one word) indirect address indicates that it is a multi
word 'data structure controller' containing an operand type/length 
descriptor, bounds on a data structure, accessing mode, and trap 
information on violation. 

3. Modularity, Procedures and Protection 

The preceding synopsis of the machine indicates how we have attempted to 
I 

fulfil objectives 7 through 11 of the introduction and provide a mini-
computer that avoids the need for hand~coded programs to take advantage 
of, or overcome, the quirks of the machine - in particular, a minicomputer 
that can support the full compilation of extended versions of current 
high-level languages. Objective 6, which is the topic of this section, 
requires further expansion. 

We ha~ in mind that the larger minicomputers are commonly used on-line to 
. other plant, performing a variety of real-time control and data-
acquisi tion tasks in the foreground with some data-processing in the back
ground 0 As always, software development on such systems does not cease 

. with their installation. It presents major problems becau~e: (a) it is 
unlikely to be economic to provide a duplicate configuration for develop
ment only; (b) the new software is rarely an unrelated module that can be 
developed in isolation from the existent system. What happens to these 
systems in practice is that they 'freeze' at the point where the danger of 
side-effects in modifying them outweighs the potential advantages of doing 
.so. This balance could be tilted very favourably if new software modules 
could be added within an environment sufficiently isolated to ensure 
adequate system operation despite any malfunction in the new module, and 
accessed through standardised interfaces providing complete error contr~l. 

As re-discovered many times in many fields, isolation and standardisation 
have their own dangers if pursued too far, leading to inefficiency and 
inflexibility. Enforcement at a hardware level should be the minimum 
logically necessary, and constraints beyond this should be conditional on 
requests 0 It is enabling these requests to be embedded in a simple and 
natural manner within current languages that represents a major hurdle for 
the machine designer.' Too much detailed effort in setting up different 
protection structures for separate parts of a software system is self
defeatin~ in that it will not be done, or is itself prone to error. 
Organick reports how little-used has been the 32-layer ring structure of 
MULTICS and its associated protection facilities. The binary foreground/ 
background system has much to commend it in its simplicity and ease of 



4 

conceptualisation. 

We finally selected an a-level protection system in which a given 
procedure could execute within any of 8 'rings' and, according to the 
ring, would have various access rights to data segments, executive 
routines, input-output, etc. We envisaged a binary tree structure for 
the use of these rings with 0-3 for system programs, 4-7 for user 
programs - even numbered rings for normal ~se, odd-numbered for develop
ment - 4/5 for a user-level executive (control and privileged programs) -
6/7 for applications programs. As in MULTICS, the rings are in 
descending order of ca,pabili ty, and a resource available in an outer 
(higher-numbered) ring is also available in those of lower number. 

The following sub-sections describe how, the procedure call mechanism 
interacts naturally with the protection mechanisms to allow simple and 
natural control of protection through procedure calls in a high-level 
language. 

3.1 Procedure call and workspace 

Figure 2 illustrates the environment for a procedure call o Two of the 
PSR's have specialised functions in that they provide local workspace to 
procedures and the segments are physically mapped within other, enclosing 
segments. To a particular p~ocedure they are physical segments 0 and 1, 
but the actual store areas they access varies with each call. The STACK 
FRAME SEGMENT provides dynamic local workspace and is mapped in stacklike 
fashion within the STACK SEGMENT. At the base of the FRAME is a pointer 
to the top of the current evaluation stack - this is used implicitly by 

. zero-address instructions (complete l-address and O-address families are 
provided). The OWN FRAME SEru1ENT provides static local works pace and is 
always mapped into the same area on each call of a procedure. The OWN 
FRAMEs of all procedures within a given code segment have to be mapped 
somewhere within an olm SEGMENT corresponding to the code segment. 

The FRAME SEGMENT's provide the two types of local workspace required by 
procedures, e.g. in FORTRAN (FORTREV specification 4) subprogram locals 
will normally be in the STACK FRAHE unless they are SAVEd in which case 
they will be in the OWN FRAME (and retain their values between calls on 
the subprogram). The use of segment registers to access local workspace 
has obvious advantages in allowing short references to be generated 
giving fast, compact programs. The fact that the protection status of 
the enclosing segment need not be the same as that of the enclosed FRAME 
(FRAHEs are always read/write enabled at all levels) is the key to other 
benefits. For example an untrusted procedure may not have write-acces~ 
to the whole of the o\m SEGMENT but only to its local area within it. 
When a similar consideration is applied to the STACK SEGMENT a natural 
mechanism for outward calls and imlard returns is generated. 

Procedures are ,called via a lS-bit two-part transfer vector giving the 
logical segment number of the procedure and its number within a table of 
pointers to procedure heads (gates) within that segment. The procedure 
head specifies the offset and size of its OHN FRAME, the minimum level at 
which it may be executed, and other status information. The actual 
minimum ring in which a procedure may execute may be restricted by this 
head, the level of its segment (to trap loader errors) and by the caller. 
To simplify parameter validation a procedure may raise its level, e.g. to 
that of the caller, for part of its execution - it may drop it freely 
subject to the (unchangeable) minimum. 



5 

3.2 Outward calls and inward returns 

The STACK SEGMENT has associated with an additional register, the BAR, 
such that the segment is accessed normally below the BAR (it is normaily 
set up as a DATA segment of the innermost ring), but is read/write 
enabled above the BAR at all levels. The BAR is not changed for calls on 
procedures in the same or inner rings, but an outward call causes it to be 
advanced to the base of the new stack frame, thereby write-disabling 
previous STACK FRAHEs to the called procedure.. All the return information 
is stored in the STACK FRA~~ of the caller (the address of the base of this 
frame is stored at the top of it where it is accessible as the location 
below the new STACK FRAME), and hence becomes inaccessible on an outward 
call. Thus inward returns can be made with the assurance that the return 
information is valid (they also reset the BAR). 

If a violation occurs in a procedure for which no error provision has been 
made, then an error-return is made to the caller indicated by the BAR (the 
last outHard call). Hence proper control can be provided simply and 
automatically over unforeseen errors in untrusted packages. 

3.3'Parameter passing 

The use of operand type/length descriptors allows parameters to be passed 
to procedures with the minimum of constraint on both caller and procedure. 
Parameters are placed on the e~aluation stack (and hence are automatically 
tagged as to type and length) with the final para~eter in the ACC being 
the number of parameters passed. A pointer to the previous evaluation 
stack is passed automatically to the caller. The caller is able to 
unstack reference variables pointing to the parameters and hence is able 
to use them regardless of type. H~ce parameters may be passed not only 
differing in type and length from that expected, but they may also be 
passed ,in different ways without explicit action by the called procedure. . . 

4. Conclusions 

This paper has given a brief over-view of some aspects of the design of a 
'high-level' minicomputer specifically orientated to ease and security of 
software development with high-level languages in a real-time environment. 
It indicates an important trend in minicomputer design made possible by the 
decline in costs of the basic circuit technology. 

5. References 

1. Gaines, B.R., Facey, P.V., Williamson, F.K., Maine, J.A.: 'Design 
Objectives for a Descriptor Organized Minicomputer' European Computing 
Congress Conference Proceedings~ London: Online 1974 29-45. 

2. Williamson, F.Ko, Gaines, B.R., Maine, J.A., Facey, P.V.: tA High
Level Min~computerr Proc. lFlP Congress, Stockholm 1974. 

3. Organick, E.l.: The Multics Sxste~, M.I.T. Press 1972. 

4. Working Document of ANSC X3J3 (73-06-09) Bell Labs., Holmdel, N.J., 
U.S.A. 



6 

ODD ;--~ r-1 .0 
... __ ..J 1.--1 

Accumulator (AGe) 1 - 16 x 8-bit bytes 

14-bi t seg:J.entII15-bi t l.;ord] 
Program counter 

14-bi t t:rpel (4-1i t lenct:rJ 
AccUDulator de~";Gl'ipt;o:::.' 

Top of current stack 
~~----------~--~~~----~ Stack 

fraJ!le 
segment 

DyneJ:lic local 
i-rorkspace 

• 

Evaluation 
stack 

mapping 

& (Jurrent Stack 
segment 

Tables for 
this process 

'1J . 
._rey~ous. 

'stack franes I stack frame 

Own 
frame 
segment 

Ourrent 

read-only 

Static '\.;orkspace 
local to a procedure 

Oim Globale I Own frames for procedures in code seg. 
segI:lent 

Current 
code 
se f:,"1Ile n t 

Library 
code 
segment 

Executive 
code 
segr:lent 

Executive 
data and 
tables 

'rable of 
procedure gates 

t 

Procl I 

• 
(Run-time syste!:l for lun.£11age of current 
" code segnent'). . 

(Executing in inner rings) 

(Read-access in inner rings, write-access 
in innermost ring) 

Figure 2 The Environment for a Procedure Call 

, .~. 

') 

I 


