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Stochastic Computing for Neuromorphic Applications

Editor’s notes:
This keynote article is written by Brian Gaines, the inventor of stochastic 
computing. He shares both a view back on the history of neuromorphic 
computing and a view forward on deep learning as a new information 
processing technology. Gaines observes that computing has been a 
recursive technology: it supports other technologies that in turn support the 
progress of computing itself, leading to a positive exponential feedback 
loop and an exponential growth. He infers that the same holds for deep 
learning with its ability to meta-learn solutions to its own design problems.

—Ilia Polian, University of Stuttgart

 It is significant to reflect, from a historic per-
spective on issues of engineering stochastic neuro-
morphic systems because the design objectives of the 
1960s when the technology was first conceived were 
very similar to those of today, to create technologies 
emulating human intelligence and incorporate them  
in systems emulating human capabilities. It took far 
longer than expected to begin to achieve these objec-
tives, but, after some six decades, there are now prod-
ucts coming into routine use that indicate that our early 
aspirations are achievable, and some of the technologi-
cal innovations and conceptual frameworks of the ear-
lier era that had no practical application at that time 
have become relevant to current research.

Stochastic computing (SC) is one such technology, 
invented in the early 1960s, that sustained a continu-
ing low level of research activity for over four decades 
and then exhibits a major growth of research activ-
ity in the past decade as it became significant to the 
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implementation of neuro-
morphic systems (Figure 
1). The diversity of inno-
vation and applications 
reported in recent publi-
cations on neuromorphic 
systems has become dif-
ficult to encompass con-
ceptually, and integrative 
frameworks are needed 
to manage research strat-
egies, understand the role 

of stochastic neuromorphic systems in mainstream 
information technology (IT), and develop principles 
for the design and test of systems based on the new 
technologies.

This article provides a framework for stochastic 
neuromorphic computing that situates it in the post 
war advances in modeling the brain that generated 
expectations that technology might soon be able to 
emulate and amplify human intelligence and in the 
infrastructure of IT that has evolved over the 80 years 
since the stored program digital computer was first 
invented. The evolution of SC and its current prom-
ises, challenges, and limits are already well-docu-
mented, and will not be detailed here [1]–[3].

Post-war confluence of research in neurology 
and electronics

In the two decades following the second world 
war there was a remarkable confluence of research 
in the biological discipline of neurology and the engi-
neering discipline of electronics. It had two sources: 
advances in electronic instrumentation were crucial 
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to biological studies of information processes in the 
nervous system; and the mathematical models of 
the data collected were tested by simulating them in 
electronic circuits.

One outcome of this interdisciplinary interaction 
was that research results were published in both 
biological and engineering journals. For example, 
in 1959 the first of a major series of papers on the 
mechanisms of visual perception studied through 
microelectrodes capturing the electrical signal from 
single neurons [4] was published in the Journal of 
Physiology. A similar study titled “What the frog’s eye 
tells the frog’s brain” [5] that explicated the neuro-
logical basis of detecting and capturing moving prey 
was published in the Proceedings of the IRE.

Cutting-edge research in the discipline of neuro-
biology was being communicated to the discipline 
of electronics in an era where Wiener had already 
presented cybernetics as a systemic framework appli-
cable to both biological and technological systems, 
and Steele was encouraging the design of techno-
logical systems based on biological analogies in his 
symposia on bionics. Papers on the electronic imple-
mentation of neurological theories to test their con-
formance with empirical data stimulated the design 
of circuits that were targeted on the replication of 
human capabilities such as pattern recognition and 
learning, even if those circuits were no longer behav-
ing in the same way as their biological counterparts. 
Rosenblatt’s [6] perceptron, Crane’s [7] neuristor, 
and other similar innovations had biological origin 
but became targeted on engineering applications.

The neurological and technological research 
studies were also reported at conferences on cyber-
netics, bionics, and artificial intelligence (AI), gener-
ating expectations that technology with capabilities 
equivalent to human intelligence might soon be 
available. There is a remarkable continuity between 
the aspirations, research, and conceptual frame-
works of the 1960s and those of the current era.

Advent of SC
One technology deriving from the interactions 

between neurological and electronics research was 
SC. The inspiration was derived by modeling the fre-
quencies of the asynchronous pulse trains of neurons 
as generated by independent stochastic processes. 
From a bionic perspective, this suggested that an and 
gate might provide a low cost multiplier device for 
analog computations if variables were represented 
by the generating probabilities of pulse trains [8], 
[9]. A research group at the University of Illinois led 
by Ted Poppelbaum investigated potential applica-
tions to image processing, and another at STL, ITT’s 
U.K. research laboratory, led by John Andreae inves-
tigated applications to learning machines.

I worked for a year fabricating and testing mesa 
and planar transistors and tunnel diodes in the sem-
iconductor research laboratories of ITT U.K., before 
going up to Cambridge in 1960 to study mathematics, 
theoretical physics and psychology, whilst working 
with John Andreae on learning systems and Richard 
Gregory on binocular vision and perceptual-motor 
coordination. I conjectured that the neural basis of 

Figure 1. SC publication activity (noncumulative totals over five years 
intervals of publications including the phrase “stochastic computing” 
listed by Google Scholar).
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depth perception based on disparity might be spatial 
correlation though the multiplication of asynchro-
nous neural pulse trains, and modeled this mathe-
matically and through simulation.

In 1964, I built an analog computer to study the 
training of pilots in a flight simulator, and a digital per-
ceptron with discrete weights to emulate their learning 
behavior. I found that deterministic rounding of the 
perceptron’s steepest descent calculation could lead 
to nonconvergent limit cycles even if a solution was 
available, but that random rounding did converge [10].

In 1965, I suggested to Andreae that the same tech-
nique could be used to provide learning elements for 
his STeLLA learning machine [11]. In designing the 
proof of feasibility prototype that STL implemented, 
I extended the technique to other computations rel-
evant to machine learning such as Bayesian predic-
tors, Markov modeling, and solutions to Laplace’s 
equation [12], [13], and to a digital implementation 
of analog computing functionality [12].

The convergence issues with the digital percep-
tron without random rounding made it a useful “sub-
ject” for my research on adaptive training techniques 
[14], and I used it to develop a mathematical the-
ory of training, proving that a randomized training 
sequence could also be used to ensure convergence 
[15]. Thus, the requisite variety [16] necessary for 
effective learning could be supplied either inter-
nally or externally by the introduction of uncertainty 
through a random process.

Early recognition of the role of randomness in neu-
ral networks is reflected today in studies of stochastic 
gradient descent (SGD) [17], neural networks with 
random weights [18], randomized algorithms for train-
ing neural networks [19], and in stochastic neuromor-
phic systems such as those presented in this special 
issue. Even if one implements SC primarily to achieve 
lower energy usage, one is also introducing some ele-
ment of nondeterministic behavior which may itself 
be significant to achieving effective learning.

Comparison with technologies related to SC
The SC publication trajectory (Figure 1) shows: 

some growth for 15 years after the initial publications 
as the technology was replicated and enhanced; a 
decline over the next 15 years as no significant inno-
vations ensued; a slow climb over the next 15 years 
as neural network research grew; and a major growth 
in the past decade as neuromorphic systems, such 
as audio and visual prosthetics, and deep learning 

in edge computing devices [20] required chips with 
very large numbers of devices but having low energy 
consumption [21] for their implementation [22].

To understand the pattern of research activity 
exhibited in Figure 1, it is useful to compare it with 
those of other related technologies for neuromor-
phic and analog computing, such as the analog com-
puter, neuristor, and perceptron shown in Figure 2.

The analog computer publication trajectory 
shows: a major growth for 20 years; a major decline 
for 20 years as software running on the central pro-
cessor unit (CPU) of a general-purpose computer 
replaced hardware implementations of analog com-
puters; a plateau at a significant continuing level 
of publications; and growth in the domain-specific 
past 15 years as low cost, low power analog CMOS 
chips became a competitive alternative to software 
in many applications [23], [24] including neural 
networks [25]. The neuristor publication trajectory 
shows: a decline to a low level over 50 years; and 
a major growth in the past decade as memristor 
devices [26] were used to implement neuristors for 
neuromorphic computing systems [27].

The perceptron publication trajectory shows: a sig-
nificant continuing interest for 40 years; and a massive 
rise in the past 30 years as advances in multilayer per-
ceptron implementations, such as backpropagation 
[28], Boltzman machines [29], convolutional kernels 
[30], max pooling [31], SGD [17], and inception [32] 
were replicated and extended, leading to the deep 
learning architectures of today [33],[ 34].

The common feature of all these curves is a long 
period of stationary or declining interest followed 
by renewed attention to the technologies in recent 
years. A rationale for such revivals was given by the 
developers of Google’s tensor processing unit (TPU) 
in noting the pitfall of “Being ignorant of history when 
designing a domain-specific architecture. Ideas that 
did not fly for general-purpose computing may be 
ideal for domain-specific architectures” [35, p. 57].

The following section discusses how the over-
whelming success of mass market, general purpose, 
stored program computers undermined the market 
for domain-specific computer hardware, and how 
that situation has changed in the past decade ever 
since deep learning techniques became widely 
applied, recognized as the foundation of major 
new industries [36] and, in some major markets, 
require computational architectures with low energy 
requirements to be effective [37], [38].
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Domain-specific versus 
general-purpose computers

The development of the silicon planar process 

in 1959 enabled large scale integration of circuits 

and systems on a single chip which facilitated the 

development of low cost, high speed, reliable gen-

eral-purpose computers. The rapid growth of the 

number of transistors on a chip led to a high rate of 

performance improvement in computers continuing 

for over six decades.

Domain-specific computing hardware, such as an 

analog computer or digital differential analyzer, was 

replaced by an equivalent software virtual machine 

(VM) providing the same functionality on a gener-

al-purpose computer. Innovative domain-specific 

architectures addressing limitations of existing gen-

eral-purpose computers quickly became irrelevant 

as advances in computer performance, real-time 

operating systems, software engineering, and algo-

rithms overcame those limitations.

For example, in AI research microprogramming 

and coprocessors were used to provide functionality 

supporting declarative programming languages such 

as Lisp in the 1970s [39] and Prolog in the 1980s [40]. 

Some were marketed as domain-specific computers 

for AI applications. However, by the end of 1980s 

advances in the performance of general-purpose 

computers, compiler techniques and AI algorithms 

had undermined the competitive advantage of spe-

cialized AI computers.

Figure 2. Research activity in other related technologies from publication 
counts.
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Thus, computer architectures other than the 
general-purpose computer had no competitive 
advantage as hardware product innovations. The 
economic balance between hardware and software 
favored the mass produced, general-purpose com-
puter that could provide diverse functionality. Any 
short-term performance advantage of domain-spe-
cific hardware was rapidly overcome by the perfor-
mance trajectory of the general-purpose computer. 
To remain competitive the domain-specific hard-
ware would have required continual upgrades, a 
requirement that could only be sustained for prod-
ucts with a massive market base such as general-pur-
pose computers.

By the late 1980s ever-increasing number of 
devices on a chip enabled some coprocessors, such 
as the Intel 8087 floating point unit (FPU), to be 
included as part of the processor chip, and the usage 
of coprocessors declined. A significant exception 
to the migration from hardware to virual machines 
was the computation required for graphic displays 
which gradually migrated to graphics coprocessors 
in the late 1990s, a reverse transition where the exist-
ing graphics VM became implemented in hardware. 
The functionality required was readily integrated 
and evolved to become the multipurpose graphics 
processor unit (GPU) of today [41], a powerful mul-
tiprocessing coprocessor used not only for graphics 
but also for other number crunching functionality 
suited to parallel processing such as the matrix com-
putations of deep learning.

Reconfigurable heterogeneous architectures 
and new devices

The 1990s saw the advent of the field-programma-
ble gate array (FPGA) that enabled system designers 
to dynamically specify the interconnections on a 
reconfigurable chip providing a wide range of mod-
ules, digital and analog, such as gates and memory. 
Architecturally, FPGAs subsume concepts of micro-
programming and coprocessors and blur the distinc-
tion between domain-specific and general-purpose 
computers. Their associated design automation 
tools enable system architectures to be specified 
in high-level languages, emulated, tested, and 
debugged, evaluated for performance and energy 
consumption, downloaded to chips and specified 
for manufacture.

FPGAs have made possible the rapid prototyping 
of new designs of a wide range of new architectures 

and potential products, including the implementa-
tion of SC systems. They facilitate the economic pro-
duction of new products, even in small batches, and 
the trial implementation of new application-specific 
integrated circuits (ASICs).

In the past decade the inclusion of one or more 
general-purpose computer processors on FPGA 
chips has made it possible to build heterogeneous 
architectures on a single chip that provide the equiv-
alent of domain-specific coprocessors, dynamic 
microprogramming, and other capabilities in appli-
cation-specific systems.

This is the current technological infrastructure 
of IT for neuromorphic computing research and 
development: multiple core CPU chips provide what 
used to be the supercomputing capabilities of yes-
terday; GPU chips provide fast processing of matrix 
operations as well as a role model of what may be 
achieved with a specialized coprocessor; and FPGA 
chips provide a design testbed for new architectures 
and short-run production of application-specific sys-
tems, including coprocessors.

The current IT infrastructure is based on silicon 
chip technology, but there is ongoing research on 
new information technologies based on alternative 
materials and techniques, some of which require 
less energy and offer capabilities relevant to SC such 
as intrinsic probabilistic behavior [42].

Deep learning as a new information 
processing technology

In the past decade the accumulation of 50 years 
of research on neuromorphic computing technolo-
gies has led to superhuman achievements in tasks 
previously seen as requiring human capabilities, 
such as championship-level go and chess, language 
translation, speech recognition, medical diagno-
sis, security trading, discovery of new materials, 
driving vehicles, and diverse other domains [36], 
[37]. Neuromorphic architectures supporting deep 
learning have become widely recognized as a new 
information processing technology that may have as 
revolutionary an impact on society as that of the gen-
eral-purpose computer [36].

Deep learning systems have anywhere from 
three to several hundred layers, each layer having 
a different structure and communicating with the 
next layer in varying ways. They can be envisioned 
as self-tuning adaptive digital filters transforming a 
complex input signal to a simpler output signal, 
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with the layers extracting features similar to those of 
dictionary learning [43] in signal processing. They 
are not just black boxes as it is possible to visualize 
what features each layer is extracting [44], provide 
explanations of the output [45], [46], and analyze 
the learned computation to “squeeze” it to a smaller 
size without reducing accuracy [47]. In this regard, 
neuromorphic systems have valuable capabilities 
beyond those of the human brain.

There was no single breakthrough in the percep-
tron architecture, but rather a continuing sequence 
of incremental improvements commencing in the 
mid-1980s that continues today and shows no signs of 
tailing off. Schmidhuber’s [33] monumental review 
of the evolution of deep learning details each new 
technique and its impact up to 2015, and Ferlitsch’s 
[48] 2021 book on deep learning design patterns 
extends this to the state of the art today. Together 
they provide a daunting account of the complexity 
of the underlying technology that creates a steep 
learning curve for newcomers to the field.

Role of data sets in the design of deep 
learning systems

It is customary to focus on the improvements in 
the technology, but it is also important to consider the 
role of the challenge data sets that enabled variations 
in the technology to be evaluated. Such data sets have 
long been an essential factor in knowledge acquisition 
research [49], and it was the success a decade ago of 
deep learning techniques in modeling the massive data 
set of ImageNet [50] that led to the widespread recogni-
tion of a powerful new technology.

This also highlights that a high-quality, comprehen-
sive data set is an essential component of the design and 
test of a deep learning system for a particular applica-
tion—to a large extent the network designs itself from 
one subset of the data and tests itself on another part. 
The human design team specifies the hyperparame-
ters of the architecture for learning, but the learning 
algorithms develop the parameters of the inferential, 
problem-solving system. Increasingly also, the design 
hyperparameters are themselves being adjusted through 
machine learning [51], [52].

Hardware support of deep learning systems
Deep learning algorithms are numerical computa-

tions that may be programmed for a general-purpose 
computer but have a preponderance of vector oper-
ations such that domain-specific support can greatly 

improve performance through parallel processing. 
CPU instruction sets have been extended to support 
the multiply and accumulate computations of deep 
learning, for example, the AVX-512 advanced vector 
instructions of Intel’s Knights Landing CPU. GPU’s 
already support similar computations for image pro-
cessing and were found to provide 50× speedups in 
the modeling of large data sets such as ImageNet 
[33], [53].

The need for domain-specific processors was 
recognized early on, and several ASICs supporting 
neural network computations were commercially 
available by the early 1990s [54]. These included 
neural semiconductor’s NU32 based on SC with 
32 neurons and 1,024 synapses on a chip [55], 
and Hitachi’s wafer-level integration module with 
1,152 neurons and 73,700 synapses. In 2017, the bib-
liography of a comprehensive survey of neuromor-
phic computing hardware lists 2,682 publications 
[56]. It includes many based on SC or otherwise 
using random processes, and also several based on 
a variety of novel materials rather than silicon.

Google initially used GPUs to provide deep learn-
ing training and inference services in its datacenters 
but later developed its TPU using an ASIC coproces-
sor to increase speed and reduce energy consump-
tion [35]. GPU manufacturers have also extended 
the instruction sets to offer better support for deep 
learning, and there are studies comparing the per-
formance of current CPUs, GPUs, and TPUs on deep 
learning benchmarks [57].

Energy usage in learning
Modeling large data sets using deep learning tech-

niques currently requires super-computer configura-
tions having several hundred GPU’s [58] or several 
thousand CPU’s [53], consuming some 100 kW of 
energy and running domain-specific distributed pro-
cessing software [59]. The Cerebras CS-1 neural net 
computer uses a wafer-scale integration chip with 
1.2 trillion transistors, 400,000 processor cores and 
18 gigabytes of SRAM, and consumes 20 kW.

The high power consumption of such implemen-
tations of deep learning algorithms are often con-
trasted with the 20 W of the human brain. However, 
when one considers that the end-to-end modeling 
of large image data sets involves the learning of the 
complete visual perception system, much of which 
is innate in humans, then the power requirements 
are roughly similar.
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For example, a computer with an NVIDIA M40 
GPU coprocessor consuming some 500 W and tak-
ing 14 days to model ImageNet [53] uses the same 
energy as a person taking one year to acquire not 
only the specialized classification system but also 
general object perception capabilities.

A more realistic comparison would be between 
the palaeontologist, Shubin, taking several weeks to 
learn to perceive fossils in the Arizona desert [60, 
pp. 63–64], and a neural network trained on a sim-
ilar fossil image data set through transfer learning 
[61], [62] of the final layer of a network that had 
been pretrained on image classification (see [62]).

Thus, in some significant domains, powerful 
computer systems are substantially faster at learn-
ing than people. The total energy consumed does 
not appear to be greater, and is being substantially 
reduced as processors are optimized for deep learn-
ing applications.

Energy usage in inference
One advantage of computer learning over human 

learning is that the learned structure may be readily 
replicated and widely applied to make inferences 
for particular cases. The computational require-
ments for inferences are very much lower than for 
end-to-end leaning, particularly if postprocessing is 
applied to squeeze the net to the smallest size that 
maintains accuracy [47], [48].

Even for a squeezed net, the energy require-
ments of a conventional computer may still be 
excessive for some applications such as edge com-
puting [63] where functionality is migrated from a 
server to a local peripheral, for example, speech 
recognition controlling home devices or automatic 
language translation in a cell-phone. The design of 
domain-specific, low-energy processor architectures 
and technologies for inference from neural networks 
is now a major research area [64], [65].

Google addresses such applications with the 
Edge TPU version of its TPU, a low-cost ASIC con-
suming only 2 W that is designed for inference with 
squeezed networks and can also support lightweight 
transfer training. Together with supporting software, 
such as TensorFlow-Lite, TF-Slim, and MobileNet 
[66], it provides cost, energy, performance, and soft-
ware support targets for any competing technologies.

SC has become one of the major options for 
low-energy neural net inference accelerators as 
detailed in recent books [1], surveys [2], [22], [67], 

and doctoral theses [68]–[70]. There is a large liter-
ature on techniques and issues, such as SC Bayes-
ian networks [71], optimizing neural networks for 
SC [72], high-speed inference with SC [73], scaling 
SC  to large data sets [74]. It has also been shown 
that SC architectures and those based on low preci-
sion integer weights and random rounding [75] are 
equivalent [76].

Some implementations are based on novel mate-
rials such as memristors [70], spintronics [1], GeSe 
ovonic threshold switching [70], nanophotonics 
[77], and quantum-flux parametrons [70]. The topic 
mentioned last is of particular interest because the 
technology offers orders of magnitude improve-
ments in clock speeds and energy usage relative to 
CMOS, intrinsic random number generation, and is 
also being heavily researched as the basis of a new 
generation of supercomputers [78].

Incremental continuous learning
The massive divide between the time, cost, and 

energy requirements of the end-to-end processing of 
very large data sets and the more economical infer-
encing from them once learned is reminiscent of 
that between mainframe batch processing and mini-
computer interaction in the 1960s. Batch processing 
delays are not supportive of research and innovation, 
or of applications that require adaption to changing 
circumstances such as autonomous agents.

There is significant research on continuous life-
long learning with artificial neural networks [79]. 
Techniques, such as transfer training or those being 
developed for incremental deep learning [80], [81], 
may also enable low-energy processors initially 
designed for inference to be extended to include 
continuous learning capabilities.

This usually supplements, rather than replaces, 
large scale learning at a server. For example, in appli-
cations such as autonomous vehicles the collection 
of data from local experience is used to improve the 
base model distributed to all peripheral units. Local 
units may also be developing additional capabilities 
specific to their situations. The combination may be 
regarded as a technological emulation of the inter-
play of individual and collective distributed learning 
in human societies.

Theoretical foundations of deep learning
We have become accustomed to engineering 

disciplines having secure theoretical foundations 
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that are themselves sources of innovation, such as 
Hertz’s investigation of the potential inherent in 
Maxwell’s equations of propagating electromagnetic 
waves in free space which led to the development 
of wireless transmission systems. Historically, how-
ever, commercial applications of many major tech-
nologies have been developed pragmatically prior 
to such foundations, and the theories explaining 
their success have followed later, in part as ration-
alizations of what has been achieved. For example, 
the steam engine had significant commercial appli-
cations in pumps and locomotives well before Car-
not and Clausius developed their phenomenological 
theories of heat and Boltzmann reduced them to sta-
tistical mechanics—which, incidentally, can also be 
used to model deep learning processes [82].

Multilayer perceptrons are the latest example of 
such pragmatically evolving technologies, originat-
ing in bionic emulation of neurological systems and 
gradually accreting empirical improvements until 
they achieved unexpected success in significant 
applications [83], [84]. Developing theoretical foun-
dations to explain that success and facilitate further 
improvements is now a major research area in its 
own right.

For example, one problem for gradient descent 
algorithms is being trapped by local minima but it 
is widely reported that this is not occurring, and a 
recent study has provided proof of convergence in 
polynomial time to a global minimum for the data set 
under assumptions applicable to most currently suc-
cessful algorithms [85]—there is already a wealth of 
citing studies confirming and extending this result.

Another problem where theoretical foundations 
for deep learning are needed is that of avoiding over-
fitting models to data and losing generality and pre-
dictive power. For example, the empirical success of 
the dropout heuristic [86] needs mathematical foun-
dations, as do the heuristic methods used to achieve 
tractability [87] of Bayesian neural networks [88].

There are also studies of deep learning that 
address its relationship to the architecture of the 
brain, for example, investigating alternatives to 
backpropagation algorithms that might achieve the 
same effect in a more brain-like way [89]. There is 
a parallel large-scale research activity also termed 
neuromorphic computing [90], [91] that is targeted 
on modeling the neurology of the brain rather than 
its bionic emulation. Such studies may suggest 

foundations and techniques for artificial neural net-
works even if this is not their primary objective.

We have come a long way in these six decades 
since Rosenblatt first proposed the perceptron, 
particularly in the last decade when research on 
algorithms for multilayer perceptrons finally broke 
through to achieve superhuman performance in 
many significant domains of human achievement. 
This has triggered a massive research endeavor—the 
search term “deep learning” retrieves 1,500 articles 
a month from Google scholar that report further 
improvements, theoretical foundations and applica-
tions in a very wide range of disciplines including 
major commercial utilization.

Deep learning is a major new engineering technol-
ogy that can be used to design systems that emulate 
human high-level skills. A major part of the design pro-
cess is automated knowledge acquisition from expe-
rience that has been generated through simulation, 
interaction with the world, or already captured in large 
data sets. We have, at last, learned to design significant 
learning machines.

This is only the beginning. We have much to do to 
improve the technology, provide secure mathematical 
foundations, learn to test systems that are massively 
parametrized and potentially discontinuous such that 
their behavior in some situations may not be indica-
tive of that in similar situations, reduce technology 
and energy costs of large-scale learning, and make the 
opaque black boxes more transparent so that they are 
explicable in their behavior. All these tasks are being 
addressed in ongoing research programs that are 
reported in the massive literature.

Computer technology became the economic driver 
of our society in major part because it is a highly recur-
sive technology that supports those technologies that 
support it through computer-aided design and man-
ufacturing [92]. This creates positive feedback loops 
leading to exponential growth in capabilities.

Deep learning is also a recursive technology that 
can be applied to meta-learn solutions to its own design 
issues [93], such as automating the “art” [94, p. 287] 
of specifying SGD parameters [51] and other hyperpa-
rameters [52], selecting the best features to represent 
the raw data rather than using supplied human con-
structs [95], and generating its own experience rather 
than relying on skilled human examples [96]. It also 
supports the design and functionality of technologies 
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that support it such as electronic devices, computers 
and compilers.

We are already seeing exponential growth in the 
technology and its applications resulting from the 
positive feedback loops thus created. The socio-eco-
nomic impact is difficult to predict and quantify but 
has become widely recognized and debated. What is 
presented in this special issue is SC’s contribution to 
reducing the cost and energy requirements of the new 
technology to facilitate its widespread application.� 
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