
16 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

Editor’s notes:
This keynote article is written by Brian Gaines, the inventor of stochastic
computing. He shares both a view back on the history of neuromorphic
computing and a view forward on deep learning as a new information
processing technology. Gaines observes that computing has been a
recursive technology: it supports other technologies that in turn support the
progress of computing itself, leading to a positive exponential feedback
loop and an exponential growth. He infers that the same holds for deep
learning with its ability to meta-learn solutions to its own design problems.

—Ilia Polian, University of Stuttgart

 It is significant to reflect, from a historic per-
spective on issues of engineering stochastic neuro-
morphic systems because the design objectives of the
1960s when the technology was first conceived were
very similar to those of today, to create technologies
emulating human intelligence and incorporate them
in systems emulating human capabilities. It took far
longer than expected to begin to achieve these objec-
tives, but, after some six decades, there are now prod-
ucts coming into routine use that indicate that our early
aspirations are achievable, and some of the technologi-
cal innovations and conceptual frameworks of the ear-
lier era that had no practical application at that time
have become relevant to current research.

Stochastic computing (SC) is one such technology,
invented in the early 1960s, that sustained a continu-
ing low level of research activity for over four decades
and then exhibits a major growth of research activ-
ity in the past decade as it became significant to the

A Conceptual
Framework for Stochastic
Neuromorphic Computing
Brian R. Gaines
University of Victoria, Victoria, BC, Canada
and University of Calgary, Calgary, AB, Canada

Digital Object Identifier 10.1109/MDAT.2020.3031857
Date of publication: 16 October 2020; date of current version:
6 December 2021.

implementation of neuro-
morphic systems (Figure
1). The diversity of inno-
vation and applications
reported in recent publi-
cations on neuromorphic
systems has become dif-
ficult to encompass con-
ceptually, and integrative
frameworks are needed
to manage research strat-
egies, understand the role

of stochastic neuromorphic systems in mainstream
information technology (IT), and develop principles
for the design and test of systems based on the new
technologies.

This article provides a framework for stochastic
neuromorphic computing that situates it in the post
war advances in modeling the brain that generated
expectations that technology might soon be able to
emulate and amplify human intelligence and in the
infrastructure of IT that has evolved over the 80 years
since the stored program digital computer was first
invented. The evolution of SC and its current prom-
ises, challenges, and limits are already well-docu-
mented, and will not be detailed here [1]–[3].

Post-war confluence of research in neurology
and electronics

In the two decades following the second world
war there was a remarkable confluence of research
in the biological discipline of neurology and the engi-
neering discipline of electronics. It had two sources:
advances in electronic instrumentation were crucial

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

17November/December 2021

to biological studies of information processes in the
nervous system; and the mathematical models of
the data collected were tested by simulating them in
electronic circuits.

One outcome of this interdisciplinary interaction
was that research results were published in both
biological and engineering journals. For example,
in 1959 the first of a major series of papers on the
mechanisms of visual perception studied through
microelectrodes capturing the electrical signal from
single neurons [4] was published in the Journal of
Physiology. A similar study titled “What the frog’s eye
tells the frog’s brain” [5] that explicated the neuro-
logical basis of detecting and capturing moving prey
was published in the Proceedings of the IRE.

Cutting-edge research in the discipline of neuro-
biology was being communicated to the discipline
of electronics in an era where Wiener had already
presented cybernetics as a systemic framework appli-
cable to both biological and technological systems,
and Steele was encouraging the design of techno-
logical systems based on biological analogies in his
symposia on bionics. Papers on the electronic imple-
mentation of neurological theories to test their con-
formance with empirical data stimulated the design
of circuits that were targeted on the replication of
human capabilities such as pattern recognition and
learning, even if those circuits were no longer behav-
ing in the same way as their biological counterparts.
Rosenblatt’s [6] perceptron, Crane’s [7] neuristor,
and other similar innovations had biological origin
but became targeted on engineering applications.

The neurological and technological research
studies were also reported at conferences on cyber-
netics, bionics, and artificial intelligence (AI), gener-
ating expectations that technology with capabilities
equivalent to human intelligence might soon be
available. There is a remarkable continuity between
the aspirations, research, and conceptual frame-
works of the 1960s and those of the current era.

Advent of SC
One technology deriving from the interactions

between neurological and electronics research was
SC. The inspiration was derived by modeling the fre-
quencies of the asynchronous pulse trains of neurons
as generated by independent stochastic processes.
From a bionic perspective, this suggested that an and
gate might provide a low cost multiplier device for
analog computations if variables were represented
by the generating probabilities of pulse trains [8],
[9]. A research group at the University of Illinois led
by Ted Poppelbaum investigated potential applica-
tions to image processing, and another at STL, ITT’s
U.K. research laboratory, led by John Andreae inves-
tigated applications to learning machines.

I worked for a year fabricating and testing mesa
and planar transistors and tunnel diodes in the sem-
iconductor research laboratories of ITT U.K., before
going up to Cambridge in 1960 to study mathematics,
theoretical physics and psychology, whilst working
with John Andreae on learning systems and Richard
Gregory on binocular vision and perceptual-motor
coordination. I conjectured that the neural basis of

Figure 1. SC publication activity (noncumulative totals over five years
intervals of publications including the phrase “stochastic computing”
listed by Google Scholar).

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

18 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

depth perception based on disparity might be spatial
correlation though the multiplication of asynchro-
nous neural pulse trains, and modeled this mathe-
matically and through simulation.

In 1964, I built an analog computer to study the
training of pilots in a flight simulator, and a digital per-
ceptron with discrete weights to emulate their learning
behavior. I found that deterministic rounding of the
perceptron’s steepest descent calculation could lead
to nonconvergent limit cycles even if a solution was
available, but that random rounding did converge [10].

In 1965, I suggested to Andreae that the same tech-
nique could be used to provide learning elements for
his STeLLA learning machine [11]. In designing the
proof of feasibility prototype that STL implemented,
I extended the technique to other computations rel-
evant to machine learning such as Bayesian predic-
tors, Markov modeling, and solutions to Laplace’s
equation [12], [13], and to a digital implementation
of analog computing functionality [12].

The convergence issues with the digital percep-
tron without random rounding made it a useful “sub-
ject” for my research on adaptive training techniques
[14], and I used it to develop a mathematical the-
ory of training, proving that a randomized training
sequence could also be used to ensure convergence
[15]. Thus, the requisite variety [16] necessary for
effective learning could be supplied either inter-
nally or externally by the introduction of uncertainty
through a random process.

Early recognition of the role of randomness in neu-
ral networks is reflected today in studies of stochastic
gradient descent (SGD) [17], neural networks with
random weights [18], randomized algorithms for train-
ing neural networks [19], and in stochastic neuromor-
phic systems such as those presented in this special
issue. Even if one implements SC primarily to achieve
lower energy usage, one is also introducing some ele-
ment of nondeterministic behavior which may itself
be significant to achieving effective learning.

Comparison with technologies related to SC
The SC publication trajectory (Figure 1) shows:

some growth for 15 years after the initial publications
as the technology was replicated and enhanced; a
decline over the next 15 years as no significant inno-
vations ensued; a slow climb over the next 15 years
as neural network research grew; and a major growth
in the past decade as neuromorphic systems, such
as audio and visual prosthetics, and deep learning

in edge computing devices [20] required chips with
very large numbers of devices but having low energy
consumption [21] for their implementation [22].

To understand the pattern of research activity
exhibited in Figure 1, it is useful to compare it with
those of other related technologies for neuromor-
phic and analog computing, such as the analog com-
puter, neuristor, and perceptron shown in Figure 2.

The analog computer publication trajectory
shows: a major growth for 20 years; a major decline
for 20 years as software running on the central pro-
cessor unit (CPU) of a general-purpose computer
replaced hardware implementations of analog com-
puters; a plateau at a significant continuing level
of publications; and growth in the domain-specific
past 15 years as low cost, low power analog CMOS
chips became a competitive alternative to software
in many applications [23], [24] including neural
networks [25]. The neuristor publication trajectory
shows: a decline to a low level over 50 years; and
a major growth in the past decade as memristor
devices [26] were used to implement neuristors for
neuromorphic computing systems [27].

The perceptron publication trajectory shows: a sig-
nificant continuing interest for 40 years; and a massive
rise in the past 30 years as advances in multilayer per-
ceptron implementations, such as backpropagation
[28], Boltzman machines [29], convolutional kernels
[30], max pooling [31], SGD [17], and inception [32]
were replicated and extended, leading to the deep
learning architectures of today [33],[34].

The common feature of all these curves is a long
period of stationary or declining interest followed
by renewed attention to the technologies in recent
years. A rationale for such revivals was given by the
developers of Google’s tensor processing unit (TPU)
in noting the pitfall of “Being ignorant of history when
designing a domain-specific architecture. Ideas that
did not fly for general-purpose computing may be
ideal for domain-specific architectures” [35, p. 57].

The following section discusses how the over-
whelming success of mass market, general purpose,
stored program computers undermined the market
for domain-specific computer hardware, and how
that situation has changed in the past decade ever
since deep learning techniques became widely
applied, recognized as the foundation of major
new industries [36] and, in some major markets,
require computational architectures with low energy
requirements to be effective [37], [38].

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

19November/December 2021

Domain-specific versus
general-purpose computers

The development of the silicon planar process

in 1959 enabled large scale integration of circuits

and systems on a single chip which facilitated the

development of low cost, high speed, reliable gen-

eral-purpose computers. The rapid growth of the

number of transistors on a chip led to a high rate of

performance improvement in computers continuing

for over six decades.

Domain-specific computing hardware, such as an

analog computer or digital differential analyzer, was

replaced by an equivalent software virtual machine

(VM) providing the same functionality on a gener-

al-purpose computer. Innovative domain-specific

architectures addressing limitations of existing gen-

eral-purpose computers quickly became irrelevant

as advances in computer performance, real-time

operating systems, software engineering, and algo-

rithms overcame those limitations.

For example, in AI research microprogramming

and coprocessors were used to provide functionality

supporting declarative programming languages such

as Lisp in the 1970s [39] and Prolog in the 1980s [40].

Some were marketed as domain-specific computers

for AI applications. However, by the end of 1980s

advances in the performance of general-purpose

computers, compiler techniques and AI algorithms

had undermined the competitive advantage of spe-

cialized AI computers.

Figure 2. Research activity in other related technologies from publication
counts.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

20 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

Thus, computer architectures other than the
general-purpose computer had no competitive
advantage as hardware product innovations. The
economic balance between hardware and software
favored the mass produced, general-purpose com-
puter that could provide diverse functionality. Any
short-term performance advantage of domain-spe-
cific hardware was rapidly overcome by the perfor-
mance trajectory of the general-purpose computer.
To remain competitive the domain-specific hard-
ware would have required continual upgrades, a
requirement that could only be sustained for prod-
ucts with a massive market base such as general-pur-
pose computers.

By the late 1980s ever-increasing number of
devices on a chip enabled some coprocessors, such
as the Intel 8087 floating point unit (FPU), to be
included as part of the processor chip, and the usage
of coprocessors declined. A significant exception
to the migration from hardware to virual machines
was the computation required for graphic displays
which gradually migrated to graphics coprocessors
in the late 1990s, a reverse transition where the exist-
ing graphics VM became implemented in hardware.
The functionality required was readily integrated
and evolved to become the multipurpose graphics
processor unit (GPU) of today [41], a powerful mul-
tiprocessing coprocessor used not only for graphics
but also for other number crunching functionality
suited to parallel processing such as the matrix com-
putations of deep learning.

Reconfigurable heterogeneous architectures
and new devices

The 1990s saw the advent of the field-programma-
ble gate array (FPGA) that enabled system designers
to dynamically specify the interconnections on a
reconfigurable chip providing a wide range of mod-
ules, digital and analog, such as gates and memory.
Architecturally, FPGAs subsume concepts of micro-
programming and coprocessors and blur the distinc-
tion between domain-specific and general-purpose
computers. Their associated design automation
tools enable system architectures to be specified
in high-level languages, emulated, tested, and
debugged, evaluated for performance and energy
consumption, downloaded to chips and specified
for manufacture.

FPGAs have made possible the rapid prototyping
of new designs of a wide range of new architectures

and potential products, including the implementa-
tion of SC systems. They facilitate the economic pro-
duction of new products, even in small batches, and
the trial implementation of new application-specific
integrated circuits (ASICs).

In the past decade the inclusion of one or more
general-purpose computer processors on FPGA
chips has made it possible to build heterogeneous
architectures on a single chip that provide the equiv-
alent of domain-specific coprocessors, dynamic
microprogramming, and other capabilities in appli-
cation-specific systems.

This is the current technological infrastructure
of IT for neuromorphic computing research and
development: multiple core CPU chips provide what
used to be the supercomputing capabilities of yes-
terday; GPU chips provide fast processing of matrix
operations as well as a role model of what may be
achieved with a specialized coprocessor; and FPGA
chips provide a design testbed for new architectures
and short-run production of application-specific sys-
tems, including coprocessors.

The current IT infrastructure is based on silicon
chip technology, but there is ongoing research on
new information technologies based on alternative
materials and techniques, some of which require
less energy and offer capabilities relevant to SC such
as intrinsic probabilistic behavior [42].

Deep learning as a new information
processing technology

In the past decade the accumulation of 50 years
of research on neuromorphic computing technolo-
gies has led to superhuman achievements in tasks
previously seen as requiring human capabilities,
such as championship-level go and chess, language
translation, speech recognition, medical diagno-
sis, security trading, discovery of new materials,
driving vehicles, and diverse other domains [36],
[37]. Neuromorphic architectures supporting deep
learning have become widely recognized as a new
information processing technology that may have as
revolutionary an impact on society as that of the gen-
eral-purpose computer [36].

Deep learning systems have anywhere from
three to several hundred layers, each layer having
a different structure and communicating with the
next layer in varying ways. They can be envisioned
as self-tuning adaptive digital filters transforming a
complex input signal to a simpler output signal,

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

21November/December 2021

with the layers extracting features similar to those of
dictionary learning [43] in signal processing. They
are not just black boxes as it is possible to visualize
what features each layer is extracting [44], provide
explanations of the output [45], [46], and analyze
the learned computation to “squeeze” it to a smaller
size without reducing accuracy [47]. In this regard,
neuromorphic systems have valuable capabilities
beyond those of the human brain.

There was no single breakthrough in the percep-
tron architecture, but rather a continuing sequence
of incremental improvements commencing in the
mid-1980s that continues today and shows no signs of
tailing off. Schmidhuber’s [33] monumental review
of the evolution of deep learning details each new
technique and its impact up to 2015, and Ferlitsch’s
[48] 2021 book on deep learning design patterns
extends this to the state of the art today. Together
they provide a daunting account of the complexity
of the underlying technology that creates a steep
learning curve for newcomers to the field.

Role of data sets in the design of deep
learning systems

It is customary to focus on the improvements in
the technology, but it is also important to consider the
role of the challenge data sets that enabled variations
in the technology to be evaluated. Such data sets have
long been an essential factor in knowledge acquisition
research [49], and it was the success a decade ago of
deep learning techniques in modeling the massive data
set of ImageNet [50] that led to the widespread recogni-
tion of a powerful new technology.

This also highlights that a high-quality, comprehen-
sive data set is an essential component of the design and
test of a deep learning system for a particular applica-
tion—to a large extent the network designs itself from
one subset of the data and tests itself on another part.
The human design team specifies the hyperparame-
ters of the architecture for learning, but the learning
algorithms develop the parameters of the inferential,
problem-solving system. Increasingly also, the design
hyperparameters are themselves being adjusted through
machine learning [51], [52].

Hardware support of deep learning systems
Deep learning algorithms are numerical computa-

tions that may be programmed for a general-purpose
computer but have a preponderance of vector oper-
ations such that domain-specific support can greatly

improve performance through parallel processing.
CPU instruction sets have been extended to support
the multiply and accumulate computations of deep
learning, for example, the AVX-512 advanced vector
instructions of Intel’s Knights Landing CPU. GPU’s
already support similar computations for image pro-
cessing and were found to provide 50× speedups in
the modeling of large data sets such as ImageNet
[33], [53].

The need for domain-specific processors was
recognized early on, and several ASICs supporting
neural network computations were commercially
available by the early 1990s [54]. These included
neural semiconductor’s NU32 based on SC with
32 neurons and 1,024 synapses on a chip [55],
and Hitachi’s wafer-level integration module with
1,152 neurons and 73,700 synapses. In 2017, the bib-
liography of a comprehensive survey of neuromor-
phic computing hardware lists 2,682 publications
[56]. It includes many based on SC or otherwise
using random processes, and also several based on
a variety of novel materials rather than silicon.

Google initially used GPUs to provide deep learn-
ing training and inference services in its datacenters
but later developed its TPU using an ASIC coproces-
sor to increase speed and reduce energy consump-
tion [35]. GPU manufacturers have also extended
the instruction sets to offer better support for deep
learning, and there are studies comparing the per-
formance of current CPUs, GPUs, and TPUs on deep
learning benchmarks [57].

Energy usage in learning
Modeling large data sets using deep learning tech-

niques currently requires super-computer configura-
tions having several hundred GPU’s [58] or several
thousand CPU’s [53], consuming some 100 kW of
energy and running domain-specific distributed pro-
cessing software [59]. The Cerebras CS-1 neural net
computer uses a wafer-scale integration chip with
1.2 trillion transistors, 400,000 processor cores and
18 gigabytes of SRAM, and consumes 20 kW.

The high power consumption of such implemen-
tations of deep learning algorithms are often con-
trasted with the 20 W of the human brain. However,
when one considers that the end-to-end modeling
of large image data sets involves the learning of the
complete visual perception system, much of which
is innate in humans, then the power requirements
are roughly similar.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

22 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

For example, a computer with an NVIDIA M40
GPU coprocessor consuming some 500 W and tak-
ing 14 days to model ImageNet [53] uses the same
energy as a person taking one year to acquire not
only the specialized classification system but also
general object perception capabilities.

A more realistic comparison would be between
the palaeontologist, Shubin, taking several weeks to
learn to perceive fossils in the Arizona desert [60,
pp. 63–64], and a neural network trained on a sim-
ilar fossil image data set through transfer learning
[61], [62] of the final layer of a network that had
been pretrained on image classification (see [62]).

Thus, in some significant domains, powerful
computer systems are substantially faster at learn-
ing than people. The total energy consumed does
not appear to be greater, and is being substantially
reduced as processors are optimized for deep learn-
ing applications.

Energy usage in inference
One advantage of computer learning over human

learning is that the learned structure may be readily
replicated and widely applied to make inferences
for particular cases. The computational require-
ments for inferences are very much lower than for
end-to-end leaning, particularly if postprocessing is
applied to squeeze the net to the smallest size that
maintains accuracy [47], [48].

Even for a squeezed net, the energy require-
ments of a conventional computer may still be
excessive for some applications such as edge com-
puting [63] where functionality is migrated from a
server to a local peripheral, for example, speech
recognition controlling home devices or automatic
language translation in a cell-phone. The design of
domain-specific, low-energy processor architectures
and technologies for inference from neural networks
is now a major research area [64], [65].

Google addresses such applications with the
Edge TPU version of its TPU, a low-cost ASIC con-
suming only 2 W that is designed for inference with
squeezed networks and can also support lightweight
transfer training. Together with supporting software,
such as TensorFlow-Lite, TF-Slim, and MobileNet
[66], it provides cost, energy, performance, and soft-
ware support targets for any competing technologies.

SC has become one of the major options for
low-energy neural net inference accelerators as
detailed in recent books [1], surveys [2], [22], [67],

and doctoral theses [68]–[70]. There is a large liter-
ature on techniques and issues, such as SC Bayes-
ian networks [71], optimizing neural networks for
SC [72], high-speed inference with SC [73], scaling
SC to large data sets [74]. It has also been shown
that SC architectures and those based on low preci-
sion integer weights and random rounding [75] are
equivalent [76].

Some implementations are based on novel mate-
rials such as memristors [70], spintronics [1], GeSe
ovonic threshold switching [70], nanophotonics
[77], and quantum-flux parametrons [70]. The topic
mentioned last is of particular interest because the
technology offers orders of magnitude improve-
ments in clock speeds and energy usage relative to
CMOS, intrinsic random number generation, and is
also being heavily researched as the basis of a new
generation of supercomputers [78].

Incremental continuous learning
The massive divide between the time, cost, and

energy requirements of the end-to-end processing of
very large data sets and the more economical infer-
encing from them once learned is reminiscent of
that between mainframe batch processing and mini-
computer interaction in the 1960s. Batch processing
delays are not supportive of research and innovation,
or of applications that require adaption to changing
circumstances such as autonomous agents.

There is significant research on continuous life-
long learning with artificial neural networks [79].
Techniques, such as transfer training or those being
developed for incremental deep learning [80], [81],
may also enable low-energy processors initially
designed for inference to be extended to include
continuous learning capabilities.

This usually supplements, rather than replaces,
large scale learning at a server. For example, in appli-
cations such as autonomous vehicles the collection
of data from local experience is used to improve the
base model distributed to all peripheral units. Local
units may also be developing additional capabilities
specific to their situations. The combination may be
regarded as a technological emulation of the inter-
play of individual and collective distributed learning
in human societies.

Theoretical foundations of deep learning
We have become accustomed to engineering

disciplines having secure theoretical foundations

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

23November/December 2021

that are themselves sources of innovation, such as
Hertz’s investigation of the potential inherent in
Maxwell’s equations of propagating electromagnetic
waves in free space which led to the development
of wireless transmission systems. Historically, how-
ever, commercial applications of many major tech-
nologies have been developed pragmatically prior
to such foundations, and the theories explaining
their success have followed later, in part as ration-
alizations of what has been achieved. For example,
the steam engine had significant commercial appli-
cations in pumps and locomotives well before Car-
not and Clausius developed their phenomenological
theories of heat and Boltzmann reduced them to sta-
tistical mechanics—which, incidentally, can also be
used to model deep learning processes [82].

Multilayer perceptrons are the latest example of
such pragmatically evolving technologies, originat-
ing in bionic emulation of neurological systems and
gradually accreting empirical improvements until
they achieved unexpected success in significant
applications [83], [84]. Developing theoretical foun-
dations to explain that success and facilitate further
improvements is now a major research area in its
own right.

For example, one problem for gradient descent
algorithms is being trapped by local minima but it
is widely reported that this is not occurring, and a
recent study has provided proof of convergence in
polynomial time to a global minimum for the data set
under assumptions applicable to most currently suc-
cessful algorithms [85]—there is already a wealth of
citing studies confirming and extending this result.

Another problem where theoretical foundations
for deep learning are needed is that of avoiding over-
fitting models to data and losing generality and pre-
dictive power. For example, the empirical success of
the dropout heuristic [86] needs mathematical foun-
dations, as do the heuristic methods used to achieve
tractability [87] of Bayesian neural networks [88].

There are also studies of deep learning that
address its relationship to the architecture of the
brain, for example, investigating alternatives to
backpropagation algorithms that might achieve the
same effect in a more brain-like way [89]. There is
a parallel large-scale research activity also termed
neuromorphic computing [90], [91] that is targeted
on modeling the neurology of the brain rather than
its bionic emulation. Such studies may suggest

foundations and techniques for artificial neural net-
works even if this is not their primary objective.

We have come a long way in these six decades
since Rosenblatt first proposed the perceptron,
particularly in the last decade when research on
algorithms for multilayer perceptrons finally broke
through to achieve superhuman performance in
many significant domains of human achievement.
This has triggered a massive research endeavor—the
search term “deep learning” retrieves 1,500 articles
a month from Google scholar that report further
improvements, theoretical foundations and applica-
tions in a very wide range of disciplines including
major commercial utilization.

Deep learning is a major new engineering technol-
ogy that can be used to design systems that emulate
human high-level skills. A major part of the design pro-
cess is automated knowledge acquisition from expe-
rience that has been generated through simulation,
interaction with the world, or already captured in large
data sets. We have, at last, learned to design significant
learning machines.

This is only the beginning. We have much to do to
improve the technology, provide secure mathematical
foundations, learn to test systems that are massively
parametrized and potentially discontinuous such that
their behavior in some situations may not be indica-
tive of that in similar situations, reduce technology
and energy costs of large-scale learning, and make the
opaque black boxes more transparent so that they are
explicable in their behavior. All these tasks are being
addressed in ongoing research programs that are
reported in the massive literature.

Computer technology became the economic driver
of our society in major part because it is a highly recur-
sive technology that supports those technologies that
support it through computer-aided design and man-
ufacturing [92]. This creates positive feedback loops
leading to exponential growth in capabilities.

Deep learning is also a recursive technology that
can be applied to meta-learn solutions to its own design
issues [93], such as automating the “art” [94, p. 287]
of specifying SGD parameters [51] and other hyperpa-
rameters [52], selecting the best features to represent
the raw data rather than using supplied human con-
structs [95], and generating its own experience rather
than relying on skilled human examples [96]. It also
supports the design and functionality of technologies

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

24 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

that support it such as electronic devices, computers
and compilers.

We are already seeing exponential growth in the
technology and its applications resulting from the
positive feedback loops thus created. The socio-eco-
nomic impact is difficult to predict and quantify but
has become widely recognized and debated. What is
presented in this special issue is SC’s contribution to
reducing the cost and energy requirements of the new
technology to facilitate its widespread application.� 

Acknowledgments
I am grateful to the editors for perceptive com-

ments that have greatly improved this article. My
publications and early SC material are available at:
http://cpsc.ucalgary.ca/~gaines/reports.

 References
	 [1]	 W. J. Gross and V. C. Gaudet, Eds., Stochastic

Computing: Techniques and Applications. Cham,

Switzerland: Springer, 2019.

	 [2]	 A. Alaghi, W. Qian, and J. P. Hayes, “The promise

and challenge of stochastic computing,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 37,

no. 8, pp. 1515–1531, Aug. 2018.

	 [3]	 F. Neugebauer, I. Polian, and J. P. Hayes, “On the

limits of stochastic computing,” in Proc. IEEE Int. Conf.

Rebooting Comput. (ICRC), Nov. 2019, pp. 1–8.

	 [4]	 D. H. Hubel and T. N. Wiesel, “Receptive fields of

single Neurones in the cat’s striate cortex,” J. Physiol.,

vol. 148, no. 3, pp. 574–591, Oct. 1959.

	 [5]	 J. Y. Lettvin et al., “What the frog’s eye tells the frog’s

brain,” Proc. IRE, vol. 47, no. 11, pp. 1940–1951, 1959.

	 [6]	 F. Rosenblatt, “The perceptron: A probabilistic model

for information storage and organization in the brain,”

Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.

	 [7]	 H. D. Crane, “The neuristor,” IEEE Trans. Electron.

Comput., vol. EC-9, no. 3, pp. 370–371, Sep. 1960.

	 [8]	 B. R. Gaines, “Stochastic computer thrives on noise,”

Electronics, vol. 40, no. 14, pp. 72–79, Jul. 1967.

	 [9]	 S. T. Ribeiro, “Random-pulse machines,” IEEE Trans.

Electron. Comput., vol. EC-16, no. 3, pp. 261–276,

Jun. 1967.

	[10]	 B. R. Gaines, “Techniques of identification with the

stochastic computer,” in Proc. IFAC Symp. Problems

Identificat. Autom. Control Syst., 1967, pp. 1–10.

	[11]	 B. R. Gaines and J. H. Andreae, “A learning machine in

the context of the general control problem,” in Proc. 3rd

Congr. Int. Fed. Autom. Control, 1966, pp. 342–348.

	[12]	 B. R. Gaines, “Stochastic computing,” in Proc. Spring

Joint Comput. Conf., vol. 30, 1967, pp. 149–156.

	[13]	 B. R. Gaines, “Stochastic computing systems,” in

Advances in Information Systems Science, J. Tou,

Ed., vol. 2, New York, NY, USA: Plenum Press, 1969,

pp. 37–172.

	[14]	 B. R. Gaines, “Training the human adaptive controller,”

Proc. Inst. Electr. Eng., vol. 115, no. 8, pp. 1183–1189,

1968.

	[15]	 B. R. Gaines, “Training, stability and control,”

Instructional Sci., vol. 3, no. 2, pp. 151–176, Jul. 1974.

	[16]	 R. W. Ashby, “Requisite variety and its implications for

the control of complex systems,” Cybernetica, vol. 1,

no. 2, pp. 83–99, 1958.

	[17]	 L. Bottou, “Large-scale machine learning with

stochastic gradient descent,” in Proc. 19th Int. Conf.

Comput. Statist. (COMPSTAT), 2010, pp. 177–186.

	[18]	 W. Cao et al., “A review on neural networks with

random weights,” Neurocomputing, vol. 275,

pp. 278–287, Jan. 2018.

	[19]	 L. Zhang and P. N. Suganthan, “A survey of

randomized algorithms for training neural networks,”

Inf. Sci., vols. 364–365, pp. 146–155, Oct. 2016.

	[20]	 X. Wang et al., “Convergence of edge computing

and deep learning: A comprehensive survey,” IEEE

Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904,

2nd Quart., 2020.

	[21]	 E. García-Martín et al., “Estimation of energy

consumption in machine learning,” J. Parallel Distrib.

Comput., vol. 134, pp. 75–88, Dec. 2019.

	[22]	 Y. Liu et al., “A survey of stochastic computing neural

networks for machine learning applications,” IEEE

Trans. Neural Netw. Learn. Syst., pp. 1–16, 2020.

	[23]	 B. Razavi, Design of Analog CMOS Integrated

Circuits, 2nd ed. New York, NY, USA: McGraw-Hill,

2017.

	[24]	 Y. Tsividis, “Not your father’s analog computer,” IEEE

Spectr., vol. 55, no. 2, pp. 38–43, Feb. 2018.

	[25]	 T. P. Xiao et al., “Analog architectures for neural

network acceleration based on non-volatile memory,”

Appl. Phys. Rev., vol. 7, no. 3, Sep. 2020,

Art. no. 031301.

	[26]	 R. Kozma, R. E. Pino, and G. E. Pazienza, Eds.,

Advances in Neuromorphic Memristor Science

and Applications. Dordrecht, The Netherlands:

Springer, 2017.

	[27]	 J. del Valle et al., “A caloritronics-based Mott neuristor,”

Sci. Rep., vol. 10, no. 1, p. 4292, Dec. 2020.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

25November/December 2021

	[28]	 D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

“Learning representations by back-propagating errors,”

Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

	[29]	 D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A

learning algorithm for Boltzmann machines,” Cognit.

Sci., vol. 9, no. 1, pp. 147–169, 1985.

	[30]	 K. Fukushima, “Neocognitron: A hierarchical neural

network capable of visual pattern recognition,” Neural

Netw., vol. 1, no. 2, pp. 119–130, Jan. 1988.

	[31]	 J. Weng, N. Ahuja, and T. S. Huang, “Learning

recognition and segmentation using the Cresceptron,”

Int. J. Comput. Vis., vol. 25, no. 2, pp. 109–143, 1997.

	[32]	 C. Szegedy et al., “Going deeper with convolutions,”

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2015, pp. 1–9.

	[33]	 J. Schmidhuber, “Deep learning in neural networks: An

overview,” Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

	[34]	 W. Liu et al., “A survey of deep neural network

architectures and their applications,” Neurocomputing,

vol. 234, pp. 11–26, Apr. 2017.

	[35]	 N. P. Jouppi et al., “A domain-specific architecture for

deep neural networks,” Commun. ACM, vol. 61, no. 9,

pp. 50–59, Aug. 2018.

	[36]	 T. J. Sejnowski, The Deep Learning Revolution.

Cambridge, MA, USA: MIT Press, 2018.

	[37]	 S. Sengupta et al., “A review of deep learning with

special emphasis on architectures, applications

and recent trends,” Knowl.-Based Syst., vol. 194,

Apr. 2020, Art. no. 105596.

	[38]	 M. Kang, S. Gonugondla, and N. R. Shanbhag, Deep

In-Memory Architectures for Machine Learning. Cham,

Switzerland: Springer, 2020.

	[39]	 Pleszkun and Thazhuthaveetil, “The architecture of

lisp machines,” Computer, vol. 20, no. 3, pp. 35–44,

Mar. 1987.

	[40]	 P. Van Roy, “1983–1993: The wonder years of

sequential prolog implementation,” J. Log. Program.,

vols. 19–20, pp. 385–441, May 1994.

	[41]	 T. M. Aamodt, W. W. L. Fung, and T. G. Rogers,

General-Purpose Graphics Processor Architectures.

San Rafael, CA, USA: Morgan & Claypool, 2018.

	[42]	 P. Ienne, T. Cornu, and G. Kuhn, “Special-purpose

digital hardware for neural networks: An architectural

survey,” J. VLSI Signal Process. Syst. Signal, Image

Video Technol., vol. 13, no. 1, pp. 5–25, Aug. 1996.

	[43]	 I. Tos̆ić and P. Frossard, “Dictionary learning,” IEEE

Signal Process. Mag., vol. 28, no. 2, pp. 27–38,

Mar. 2011.

	[44]	 W. Samek et al., “Evaluating the visualization of what a

deep neural network has learned,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 28, no. 11, pp. 2660–2673,

Nov. 2017.

	[45]	 W. Samek, Ed., Explainable AI: Interpreting, Explaining

and Visualizing Deep Learning. Cham, Switzerland:

Springer, 2019.

	[46]	 G. Vilone and L. Longo, “Explainable artificial

intelligence: A systematic review,” 2020,

arXiv:2006.00093. [Online]. Available: http://arxiv.org/

abs/2006.00093

	[47]	 F. N. Iandola et al., “SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5MB

model size,” 2016, arXiv:1602.07360. [Online].

Available: http://arxiv.org/abs/1602.07360

	[48]	 A. Ferlitsch, Deep Learning Design Patterns. Shelter

Island, NY, USA: Manning Early Access Program

(MEAP), 2021.

	[49]	 J. Quiñonero-Candela et al., “Machine learning

challenges. Evaluating predictive uncertainty,

visual object classification, and recognising tectual

entailment,” in Proc. MLCW, 2005.

	[50]	 O. Russakovsky et al., “ImageNet large scale visual

recognition challenge,” Int. J. Comput. Vis., vol. 115,

no. 3, pp. 211–252, Dec. 2015.

	[51]	 D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” 2014, arXiv:1412.6980. [Online].

Available: http://arxiv.org/abs/1412.6980

	[52]	 J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing

millions of hyperparameters by implicit differentiation,”

in Proc. 23rd Int. Conf. Artif. Intell. Statist., 2020,

pp. 1540–1552.

	[53]	 Y. You et al., “ImageNet training in minutes,” in Proc.

47th Int. Conf. Parallel Process., Aug. 2018, Art. no. 1.

	[54]	 M. A. Holler, “VLSI implementations of learning and

memory systems: A review,” in Proc. 3rd Int. Conf.

Neural Inf. Process. Syst., 1990, pp. 993–1000.

	[55]	 Max Stanford Tomlinson, D. J. Walker, and M. A.

Sivilotti, “A digital neural network architecture for VLSI,”

in Proc. IJCNN Int. Joint Conf. Neural Netw., vol. 2,

1990, pp. 545–550.

	[56]	 C. D. Schuman et al., “A survey of neuromorphic

computing and neural networks in hardware,” 2017,

arXiv:1705.06963. [Online]. Available: http://arxiv.org/

abs/1705.06963

	[57]	 Y. Wang et al., “Benchmarking the performance and

energy efficiency of AI accelerators for AI training,”

2019, arXiv:1909.06842. [Online]. Available: http://arxiv.

org/abs/1909.06842

	[58]	 L. Song et al., “Large-scale training system for

100-million classification at alibaba,” in Proc. 26th ACM

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

26 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

SIGKDD Int. Conf. Knowl. Discovery Data Mining,

Aug. 2020, pp. 2909–2930.

	[59]	 K. S. Chahal et al., “A Hitchhiker’s guide on distributed

training of deep neural networks,” J. Parallel Distrib.

Comput., vol. 137, pp. 65–76, Mar. 2020.

	[60]	 N. Shubin, Your Inner Fish: A Journey Into the

3.5-Billion-Year History of the Human Body. New York,

NY, USA: Vintage Books, 2009.

	[61]	 C. Tan et al., “A survey on deep transfer learning,” in

Artificial Neural Networks and Machine Learning–-

ICANN, V. Ku° rková, Ed. Cham, Switzerland: Springer,

2018, pp. 270–279.

	[62]	 S. Taghavi Namin et al., “Deep phenotyping: Deep

learning for temporal phenotype/genotype classification,”

Plant Methods, vol. 14, no. 1, pp. 1–14, Dec. 2018.

	[63]	 V. Sze et al., “Efficient processing of deep neural

networks: A tutorial and survey,” Proc. IEEE, vol. 105,

no. 12, pp. 2295–2329, Dec. 2017.

	[64]	 A. Basu et al., “Low-power, adaptive neuromorphic

systems: Recent progress and future directions,”

IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1,

pp. 6–27, Mar. 2018.

	[65]	 F. Conti, M. Rusci, and L. Benini, “The memory

challenge in ultra-low power deep learning,” in NANO-

CHIPS 2030: On-Chip AI for Efficient Data-Driven

World, B. Murmann and B. Hoefflinger, Eds. Cham,

Switzerland: Springer, 2020, pp. 323–349.

	[66]	 A. G. Howard et al., “MobileNets: Efficient

convolutional neural networks for mobile vision

applications,” 2017, arXiv:1704.04861. [Online].

Available: http://arxiv.org/abs/1704.04861

	[67]	 T. J. Hamilton et al., “Stochastic electronics: A neuro-

inspired design paradigm for integrated circuits,”

Proc. IEEE, vol. 102, no. 5, pp. 843–859, May 2014.

	[68]	 Y. Liu, “Design and evaluation of stochastic computing

neural networks for machine learning applications,”

Ph.D. dissertation, Dept. Electr. Comput. Eng., Univ.

Alberta, Edmonton, Canada, 2019.

	[69]	 A. Ardakani, “Complexity reduction of deep neural

networks for efficient hardware implementations,”

Ph.D. dissertation, Dept. Electr. Comput. Eng., McGill

Univ., Montréal, QC, Canada, 2020.

	[70]	 R. Cai, “Emerging opportunities in machine learning

hardware acceleration: From advanced neural

networks implementation to ultra-efficient deep

learning framework using next generation technology,”

Ph.D. dissertation, Dept. Electr. Comput. Eng.,

Northeastern Univ., Boston, MA, USA, 2020.

	[71]	 C. S. Thakur et al., “Bayesian estimation and inference

using stochastic electronics,” Frontiers Neurosci.,

vol. 10, pp. 1–15, Mar. 2016.

	[72]	 J. Oh et al., “Retraining and regularization to optimize

neural networks for stochastic computing,” in Proc.

IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul.

2020, pp. 246–251.

	[73]	 W. Romaszkan et al., “ACOUSTIC: Accelerating

convolutional neural networks through or-unipolar

skipped stochastic computing,” in Proc. Design, Autom.

Test Eur. Conf. Exhibit. (DATE), Mar. 2020, pp. 768–773.

	[74]	 Z. Li et al., “HEIF: Highly efficient stochastic

computing-based inference framework for deep neural

networks,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 38, no. 8, pp. 1543–1556, Aug. 2019.

	[75]	 H. Qin et al., “Binary neural networks: A survey,”

Pattern Recognit., vol. 105, Sep. 2020, Art. no. 107281.

	[76]	 Y. Wang et al., “Universal approximation property and

equivalence of stochastic computing-based neural

networks and binary neural networks,” in Proc. 33rd

AAAI Conf. Artif. Intell. (AAAI), 2019, pp. 5369–5376.

	[77]	 H. El-Derhalli, S. Le Beux, and S. Tahar, “Design space

exploration of stochastic computing architectures

implemented using integrated optics,” IEEE Trans.

Emerg. Topics Comput., early access, Jan. 27, 2020,

doi: 10.1109/TETC.2020.2969435.

	[78]	 A. Chen et al., “A survey on architecture advances enabled

by emerging beyond-CMOS technologies,” IEEE Design

Test. Comput., vol. 36, no. 3, pp. 46–68, Jun. 2019.

	[79]	 G. I. Parisi et al., “Continual lifelong learning with

neural networks: A review,” Neural Netw., vol. 113,

pp. 54–71, May 2019.

	[80]	 F. M. Castro et al., “End-to-end incremental learning,”

in Proc. 15th Eur. Conf. Comput. Vis. (ECCV), 2018,

pp. 241–247.

	[81]	 M. Farajtabar et al., “Orthogonal gradient descent for

continual learning,” in Proc. 23rd Int. Conf. Artif. Intell.

Statist., 2020, pp. 3762–3773.

	[82]	 Y. Bahri et al., “Statistical mechanics of deep learning,”

Annu. Rev. Condens. Matter Phys., vol. 11, no. 1,

pp. 501–528, 2020.

	[83]	 A. Plebe and G. Grasso, “The unbearable shallow

understanding of deep learning,” Minds Mach., vol. 29,

no. 4, pp. 515–553, Dec. 2019.

	[84]	 T. J. Sejnowski, “The unreasonable effectiveness of

deep learning in artificial intelligence,” Proc. Nat. Acad.

Sci., Jan. 2020, Art. no. 201907373.

	[85]	 Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory

for deep learning via over-parameterization,” in Proc.

36th Int. Conf. Mach. Learn., 2019, pp. 242–252.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

27November/December 2021

	[86]	 N. Srivastava et al., “Dropout: A simple way to prevent

neural networks from overfitting,” J. Mach. Learn. Res.,

vol. 15, no. 56, pp. 1929–1958, 2014.

	[87]	 C. Blundell et al., “Weight uncertainty in neural

networks,” 2015, arXiv:1505.05424. [Online]. Available:

http://arxiv.org/abs/1505.05424

	[88]	 L. Valentin Jospin et al., “Hands-on Bayesian neural

networks—A tutorial for deep learning users,” 2020,

arXiv:2007.06823. [Online]. Available: http://arxiv.org/

abs/2007.06823

	[89]	 T. P. Lillicrap et al., “Backpropagation and the brain,”

Nature Rev. Neurosci., vol. 21, no. 6, pp. 335–346, 	

2020.

	[90]	 X. Fan and H. Markram, “A brief history of simulation

neuroscience,” Frontiers Neuroinf., vol. 13, p. 32, May

2019.

	[91]	 U. Rueckert, “Update on brain-inspired systems,” in

NANO-CHIPS 2030: On-Chip AI for Efficient Data-

Driven World, B. Murmann and B. Hoefflinger, Eds.

Cham, Switzerland: Springer, 2020, pp. 387–403.

	[92]	 B. R. Gaines, “The learning curves underlying

convergence,” Technological Forecasting Social

Change, vol. 57, nos. 1–2, pp. 7–34, Jan. 1998.

	[93]	 T. Hospedales et al., “Meta-learning in neural

networks: A survey,” 2020, arXiv:2004.05439. [Online].

Available: http://arxiv.org/abs/2004.05439

	[94]	 I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning. Cambridge, MA, USA: MIT Press, 2016.

	[95]	 M. Bojarski et al., “End to end learning for self-driving

cars,” 2016, arXiv:1604.07316. [Online]. Available:

https://arxiv.org/abs/1604.07316

	[96]	 D. Silver et al., “Mastering the game of go without

human knowledge,” Nature, vol. 550, no. 7676,

pp. 354–359, Oct. 2017.

Brian R. Gaines retired in 1999 and is now an
Emeritus Professor. He is also an Adjunct Professor
with the Department of Computer Science, University
of Victoria, Victoria, BC, Canada. His current research
interests are in the foundations of logic, the role of
knowledge and scholarship in human civilization,
technological forecasting, system theory, human–
computer interaction, artificial intelligence, and
computer architectures.

 Direct questions and comments about this
article to Brian R. Gaines, Department of Computer
Science, University of Victoria, Victoria, BC, Canada
and University of Calgary, Calgary, AB, Canada;
gaines@uvic.ca, gaines@ucalgary.ca.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 07,2021 at 21:44:30 UTC from IEEE Xplore. Restrictions apply.

