
291

A MIXED-CODE APPROACH TO COMMERCIAL MICROCOMPUTER APPLICATIONS

B.R.Gaines, M.A., Ph.D., C.Eng., F.I.E.E.*

Summary

It has become very attractive to develop office automation systems based on
microcomputers. However, currently no single one of the commonly available
languages on such machines is suited to the full range of requirements:
interactive dialogue; accounting; statistics; word-processing; data-base
management: etc. This paper outlines the key requirements, tabulates the
strengths and weaknesses of current languages, and describes a system that
is now in use in a number of commercial applications which allows different
parts of an application to be written in the most suitable language, yet
the whole to be simply and uniformly integrated together.

1. Introduction

The advent of low-cost, but computationally very powerful, microprocessors,
together with stores, discs and terminals that match them in cost,
reliability, and lack of special environmental requirements, has opened up
a new market for commercial computer systems. The personal computer in an
office, serving an individual or local community, can provide the power of
a previous generation of central service machines, but under the direct
control of local staff (ref.I).

This potential is now obvious to many computer users and is beginning to be
tapped by suppliers to provide a wide range of systems ranging from simple
office automation, to full management information systems. However, as
often in the past, the lack of available system software catering for this
class of applications currently places severe limitations on the full
exploitation of the hardware capabilities now available.

This paper outlines some of the software problems and suggests that it is
unlikely in the near future that some "universal commercial language" will
become available to solve them. Instead techniques are proposed to make
best use of currently available languages on microcomputers, paying
particular attention to the systems engineering aspects of "modularity",
"developmental tools", "quality control", etc., in the context of software.

2 Language Requirements

Much of the discussion in this paper is relevant to a wide range of
applications of microprocessors in instrumentations systems, etc. However,
I have in mind specifically the context of systems used interactively by
non-computer-oriented personnel for a wide range of secretarial, clerical
and managerial tasks. From experience of such applications (refs.2 & 3),
the key software requirements are:-

(1) Compactness of system and applications software - this remains of major
significance despite the decreasing cost of semiconductor storage and the
increasing address scope of microprocessors - it will be a key

*Man-Machine Systems Laboratory, Department of Electrical
Engineering, University of Essex, Colchester, U.K.

292

requirement for many years to come that operating systems and language
run-time systems are a few kilobytes, not the lOO's of kilobytes common
on mainframes. The main design constraint that arises out of this
requirement is that systems software needs to be tailored to a
well-defined range of applications and precisely planned to provide the
all the functionality required, but only that actually required.

(2) Interactive software development - the Iow-cost of the hardware makes
software costs dominant, and aids to program development are very
significant to overall system costs - the ability to rapidly develop and
check out programs interactively, probably at the same terminals at which
they will be used) is a major contribution to low system cost.

(3) Self-documenting language - once a system specification has been
determined, a substantial part of the cost of software development is
documentation and the language used should make this simple and
integrated into the program specification itself - users can rarely
afford the cost of separate documentation and the system should be
designed to make it unecessary.

(4) Modularity through an efficient procedure call with parameter passing
and local variables - the ability to apply hardware engineering
techniques based on the development of a range of standard modules that
can be validated independently of one another and used in a diverse range
of applications is vital to software reliability and quality control
(ref.4) - in particular it minimizes software costs by allowing
previously developed, standard modules to form the core of even highly
"customized" systems.

(5) Flexible character-string handling - we have emphasized previously
(refs.2,3 & 5) the importance of being able to program interactive
dialogue with the user ina direct and natural manner that leaves the
programmer free to use, and accept, precisely those formats that the user
expects - the programming language itself must in no way restrict, or
introduce artefacts into, this dialogue.

(6) Flexible and efficient record-structured file access - the "database"
aspect of commercial computing is of major significance and one is more
often accessing the backing store than doing actual numerical computation
- reasonable record structuring facilities are necessary combined with
the capability to make both space-efficient, and time-efficient, use of
the backing store - this is particularly significant if it is a "floppy"
disc.

(7) High-precision integer arithmetic - accounting calculations need to be
exact and any rounding precisely controlled to whatever are the accepted
rules - 13 digit data and 19 digit intermediate results are sometimes
necessary.

(8) Mathematical functions and libraries - although the primary function of
most small commercial systems is not numeric calculations, there is still
a call on a range of financial computations such as discounted cash flow,
trend-projection etc. - as databases are built-up it becomes increasingly
difficult to keep track of them in detail and statistical summaries and
projections become increasingly important - it should not be necessary to
program these up in detail for each new application and a standard
library of such programs should be available.

(9) Speed when required - the sections of commercial programs that are

293

compute-bound are small but significant - for over 90% of the code it is
most effective to trade speed for ease of use, compactness of code, etc.
- however, sometimes (e.g. in sorting) speed is significant and there
should be means for reversing the trade-offs and speeding up particular
routines.

(10) Ease of access to, and control off, a wide range of peripheral devices
and terminal facilities - the local office co'mputer may nowadays have as
many peripherals attached as a main-frame: multiple visual displays,
printers, typewriters, graph plotters, special purpose terminals, etc. -
device- independence and flexible configuring are important.

(11) Protection against other tasks in a multi-task environment - many
co~mercial systems, even though locally dedicated, run continuously
on-line providing essential services to multiple users - it is costly to
be forced to develop and update such systems only outside the normal
working day, and it may be impossible to test modifications fully except
under normal operation - facilities to restrict the available environment
of new, untrusted modules are essential, and generally to be able to set
up one tasks guaranteed against failures in others.

(12) Instrumentation of software behaviour and performance - the ability to
probe and collect information from a hardware system in order to test and
evaluate it is a standard requirement - similar facilities are necessary
in software not only at the lowest levels (where various instruments now
provide them) but also at the highest levels where only the operating
system and language run-times systems have adequate information on the
structures involved to provide meaningful data.

3 Available languages

Some parts of the preceeding list are controversial, reflecting engineering
pragmatism rather than computer science, whilst other requirements seem so
obvious that no reasonable system software should be offered without them.
Table 1 gives a brief analysis of the main languages (various assemblers,
Fortran and Basic) currently available on microcomputers in terms of the
above requirements. I have included CAP's MicroCobol as an example of the
new family of business-oriented languages becoming available for minis and
micros. I have included another non-standard language, Basys 11 (ref.7),
since this is a major component of the system described in this paper.
Currently some such nonstandard language, or a set of nonstandard
extensions to Basic or Fortran, is necessary to cover some of the main
requirements listed. Other nonstandard languages available on
microprocessors may readily be classified in terms of this table.

One feature of the table that is clearly apparent is that no one la~guage
uniformly satisfies all the requirements. Conceivably some language might
do so - an interpretive version of Algol 68 (ref.8) would come closest to
doing so provided the run-time system could be made to satisfy (1).
However, the very generality of such a language is self-defeating since the
declarations of the data-types and operations required itself becomes
complex, and must be done specifically for each of the very diverse types
of computation involved. In essence, using a very general language one has
to specify strong. contexts for particular sub-programs and, effectively,
define various sub-languages. This is so little different from actually
using different languages that one wonders whether a single, "universal"
language would actually win out against a combination of separate languages
- provided they can be used together effectively.

294

Table 1 Comparison of Microcomputer Languages

Language: Assembler Fortran Basic Basys II Micro-Cobol

General Good macro Full FortranlExtended Nonstandard I Cobol sub-
Remarks assemblers IV commonly versions language - • set on a

commonly available commonly not commonly range of
available available available machines

(1)
Compact Good Run-time Can be Good Good

I system small small
if properly
organized I

(2)

Interact No ! No Yes I Yes i No
(3)

Self- Can be good Poor layout Poor layout Good with Can be good
Document if standards in standard in standard mUltiple if stand-

set & macros versions versions commands/ ards set
used line and

procedure l
\ names t
,

(4)
Modular Can be good Can be Very poor Good due to Can be good

if standards reasonable due to only segment with proper
followed if standards global names structure standards

I followed and lack of and local
proper calls names

(5) ,
String-

I
Needs Poor - Reasonable Excellent - Poor - use

Handling specialist language in some specialist sflecialist
routines unsuitable versions language routines

I

(6)
Record- Needs Needs Language Needs Very good -
Structure specialist specialist generally specialist Cobol file

package sub-program unsuited segment structure
(7)

Long Need Not suited Not suited Excellent - Very good -
Integers specialist language language

routines feature feature
(8)
Maths Specialist Excellent Not suited Not suited Not suited
Library routines
(9)
Speed Excellent Can be Poor Not suited Poor - can

very 'good - but gives use inter-

I easy access mediate
other langs. language

(10) -
Peripheral Excellent Depends on Depends on Very good Very good
Control OS interface OS interface

- often good - often poor
(11)
Protection No - unless No - unless Good - Good - Not multi-

hardware hardware interpretive interpretive users/tasks
(12)
Instrument No - unless Little Little Good - by Good - by

hardware spy-segment debug aids

295

It is interesting to note the role of the lowest-level language, the
assembler, in Table 1. It shows up as satisfying most require.ments provided
standards are set, and adhered to, and specialist modules are written.
These last points make obvious sense since the assembler makes available
the machine at its most flexible and least structured level - all other
languages may be viewed as restrictions on the assembly language
programmer, forcing him to obey certain conventions and providing him with
additional pre-programmed facilities. If it were not for the problems with
(2). (11) and (12). assembly language (as noted in ref.9) would be a very
good kernel about which to build. All of these problems stem from the fact
that micros currently (and most minis and mainframes !) do not adequately
support their own machine code. An adequate protection scheme (e.g.PP250
capability system ref.lO) integrated with procedure calling (ref.ll) would
put an "Excellent" rating under Assembler in rows (1), (11) and (12) of the
table. Other architectural enhancements based on a wider range of data
types (ref .12) would build into the hardware the "specialist routines" of
rows (5) through (8). It can only be a transient manifestation of the
inadequacies of current machine designs that the assembler (albeit a
"high-level" one) plus some standard procedures does not provide us with
adequate facilities.

Currently, however. we have no universal languages on micros and only a
combination of available languages can achieve adequate ratings under all
the headings of Table 1. The following section describes how 3 languages,
Assembler, Fortran and Basys 11, have been married together to form a
powerful, integrated combination, that has been successfully applied to a
range of commercial systems.

4 A Mixed-Code System

The system to be described is one that makes best use of the appropriate
software on a particular machine by alloWing programs written in different
languages to be freely intermixed. This is certainly not a new approach or
requirement in itself, but what is innovative (for small systems) is the:

(i) Modularity of the system - sub-programs are not bound together until
run-time and may be dynamically loaded and unloaded;

(ii) Integration of the system under an interactive operating system such
that run-time errors in essentially non-interactive languages are reported
interactively as if they occurred in the interpretive part;

(iii) Inherent sharing of modules between tasks even though the language in
which. they were written was not designed to allow such sharing.

There is also a common procedure call for modules in any language so that
the user of a module does not have to know in what language it was written.

The machine used in this work is the DEC lsill which has a good macro
assembler and Fortran compiler. However, virtually none of the development
is specific to this machine and both the Zilog Z80 and IBM Series 1, for
example, can support the same approach. In our previous applications of a
variety of machines to commercial systems (ref.2) the interpretive language
Basys has been used with assembler extensions for speed or special
purposes. Basys (ref.7) is a language similar in syntax to Dartmouth Basic
but with integer arithmetic and extensive string-processing facilities,
developed specifically to satisfy requirements (5) and (7) in Table 1.
Because Basys is' table-driven it has been very simple to add to it new
commands by linking assembler routines through the appropriate tables

296

(ref.13). However, this form of static linkage results in several different
versions of Basys, whereas one would like to validate and maintain a single
version of the interpreter. There have also been problems in writing some
numeric routines in the integer arithmetic of Basys and it became desirable
to link in Fortran programs also. Again. it would have been possible to
extend the language with more data types and operations. but this would
have increased the size and complexity of the interpreter for all
applications.

The solution adopted in Basys 11 has been to set up a run-time environment
for Basys consisting of a number of independent "segments" which may be
dynamically loaded with individual Basys, Assembler or Fortran, programs.
These segments may be used as (multiple-entry) sub-programs by Basys
programs and control transferred to them through a procedure call which
allows parameters to be passed by value or by reference, and is the same
for all segments regardless of the language in which they are written. The
key features of this approach are described in the following sections on
Basys 11 segment management and procedure calls.

~.1 Segment Manag~ment

The Basys 11 command: Fetch [Size] Segnam.Ext

allocates an area of memory to the segment "Seg" (known by its 3-character
name) and, if appropriate, loads it from the file "Segnam.Ext". The
extension. "Ext U

, determines the type of segment:

Ext. Type Fetch Action

Bay Basys program Size. allocate Et load

Job Basys job Allocate, length "Size .. link into ,
round robin & run Basys program

ReI As semble r or Size. allocate Et load fixing
Fortran prog. relocation

Ter Terminal Size. allocate and load fixing
handler relocation and plug in interrupts

Sys RTll device Size, allocate and load fixing
handler RTll tables and plug in interrupts

Dat Common data Allocate and load initial data

<none} Unspecified Allocate, length "Size"

The Basys program segments ("Bay) are passive, shareable programs whereas
the Basys jobs (.Job) are active programs together with workspace and data
areas running as separate tasks under a clock-driven. round-robin
scheduler.

The RTlI Assembler and Fortran compiler both produce object modules which
may be linked with libraries to give relocatable code in a common format,
and it is strai$htforward to load this (.Rel) and fix up addresses where
necessary.

The handler segments (.Ter & .Sys) allow a system to be flexibly
configured, and dynamically re-configured, for different sets of

297

peripherals.

The data (.Dat) segments allow different jobs to share a common data area,
and the unspecified segment allocation allows system programs to set up
special segments for other purposes.

The Basys 11 command: Free Seg[nam.Ext]

undoes any linking to schedulers and interrupts and releases the area
allocated to the segment, "Seg".

4.2 Procedure Calls

Basys 11 has a similar syntax to Basic in that all program lines have
numbers. However, they may also have symbolic labels consisting of up to 3
characters preceeded by an asterisk (to distinguish them from variable
names). Lines may be referenced by number or label. Thus the following is a
fragment of a Basys 11 program as it would list:

20*In
30

Print 'Test;' :Input X Y
If X>Y :Goto *Cal

40 Print 'First number must be greater'; :Goto *In
100*Cal Let Z=X*A(Y) P=B(Y) :00 /VolTst %Z Y

The Basys command, Do (program line), causes the specified line to be
executed but does not transfer control to it. In Basys 11, this eommand is
extended to be a procedure call with parameter passing. An example is given
in line 100 of the program fragment above where the final command specifies
that the procedure "Tst" in the segment "Vol" is to be executed, passing to
it a reference to the variable Z and the value of the variable Y. "Tst"
itself might have the form:

100*Tst Begin A B
110 Let A=(2+A)*B+VO(A)
190 Back

where the "Begin" indicates that the line to be done heads up a whole
procedure, and the "Back" indicates the procedure end and returns control
to the calling program. In the example given, A and B are set up as local
variables when "Do /VolTst %2 Y" is executed, and become a reference to Z
and the value of Y, respectively. The local variables disappear when the
"Back" command is executed, although, of course, any value assigned to A
has been automatically transferred to Z.

Note that the line numbers associated with "Tst" have no interaction with
those of the calling program because the called routine is in a different

. segment. This, together with the symbolic labels, removes many of the
problems of Basic line numbers whilst still preserving their advantages in
program editing.

The action taken by the Basys II interpreter in executing the "Do /VoITst"
is to look up the segment "Vol", determine it is a Basys program, and
evaluate and set up the parameters, %Z and Y, accordingly. If, however,
"Vol" is found to be an Assembler or Fortran segment (.Rel), the two
parameters are evaluated and set up according to RTII Fortran conventions.
This is totally transparent to the programmer writing the calling routine
and he is not aware of the language in which "Vol" is written. Thus, it is
not only possible to mix languages but also to write procedures in one
language and then transfer them to another later, e.g. to gain speed,

298

without having to make any changes in the programs that call them.

4.3 Interface to Fortran and Assembler

The "Call" command in RT11 Fortran (ref.14) executes a "JSR PC.START" with
R5 pointing to a parameter block of the form:

Number of parameters
Address of first parameter
Address of second parameter

etc.

where "START" is the first address of the sub-program. Control is returned
by an "RTS PC". Thus Fortran sub-program calls are compiled into simple
subroutine calls through the stack with register R5 indicating any
parameters passed.

Basys 11 uses this convention to send to a Fortran program the following
information:

Number of arguments passed
Label of called routine (in Radix50)
First argument location
First argument size in bytes
Second argument location
Second argument size in bytes

etc.

Thus a Fortran sub-program for the segment "Vol" above might begin:

SUBROUTINE FORSUB (NPAR.SWITCH.PARl.PARIL.PAR2,PAR2L)
INTEGER NPAR,SWITCH,PARl.PARIL.PAR2.PAR2L

where NPAR is the number of parameters passed, SWITCH is the 'line label'
in radix50 and may be tested to determine an entry point, PARI is the first
parameter passed by reference and PARIL is its length. etc. The length
specifications allow arrays of variable length to be passed to the Fortran
program. This is particularly useful since Basys 11 allows for dynamic
variation in array size whereas Fortran IV does not except in arrays passed
as parameters. Note that, since Fortran expects all parameters to be passed
by reference, the Basys 11 "Do" command processor passes a reference to
temporary workspace for parameters passed by value (e.g. Y in the example
of the previous section).

Assembler segments are treated by Basys 11 exactly as if they were Fortran
sub-programs and hence have to start at their first location and accept a
parameter block in RT 11 Fort ran format. Nei ther requi rement is at all
restrictive.

Run-time errors in' RT 11 Fortran result in traps and Basys 11 picks these up
as if they were run-time errors in a Basys program. It decodes the Fortran
error information to indicate the source line number in the original
Fortran program where the error occurred. Thus one might obtain:

)List
125

> Run
Let X=12 :Do /ForSub %X

Fortran 340 Error 15 at 125
>

299

where the error message indicates that at line 340 of the Fortran program
source error type 25 (Fortran manual: log of negative number) occurred and
the Basys program calling line was 125. Thus, the diagnostics given are
very detailed and, since the fault is most likely to be in the data
transferred (the Fortran programs tend to be small and easily debugged), it
is convenient that the system returns to Basys 11 program level where the
data actually transmitted may be examined.

The scheduling of Basys 11 programs is based on examination of the system
clock after execution of each line the program. Thus a program may be
de-scheduled whilst traversing a Basys 11 program segment but this does not
matter since such segments contain no dynamic data and are intrinsically
shareable (all dynamic data is back in the calling (.Job) segment). Entry
to a Fortran or Assembler segment is treated as if it were execution of a
single line of Basys program so that no de-scheduling can take place until
exit. Thus programs in such segments must be designed to take a reasonably
short time (less than 0.2 seconds say) to maintain system responsiveness in
a multi-user environment. This turns out to be a reasonable constraint
since such segments are generally being used for their speed anyway - long
calculations can be made to return regularly if necessary.

The Fortran and Assembler segments are also shareable provided they do not
leave any data in local workspace in the segment. The calling program can
always pass to them some of its own workspace to avoid the need for this.
In effect, the Basys 11 operating system provides 'transaction processing'
for Fortran and Assembler programs and 'time sharing' for Basys 11
programs. Coupled with the interrupt-driven segments that operate
independently within this framework, these various modes of operation lead
to highly effective and powerful real-time systems on a very small machine.

It is possible to assemble and compile programs at the same time as Basys
11 is running, so that Fortran and Assembler segments can be developed and
modified on an operational system. Lack of memory protection hardware on
the lsi11 makes this of dubious value currently, but it will certainly
become useful as full memory management is introduced for micros.

Note that only Fortran sub-programs are used, not main programs, so that no
input/output system is loaded for Fortran and all peripheral transfers are
handled through Basys 11 (which provides very direct access to RTl1
facilities).

4.4 General Remarks

There are a number of small enhancements to the system described that have
proved useful in practice.

The Basys 11 c"mmand: System Lab Parameters
is the same as: Do /SysLab Parameters
and calls a system library segment which contains standard routines for
date entry and output, overlay calling, dialogue processing (enforcing the
rules of ref.5), etc.

The Basys 11 command: Our Lab Parameters
is the same as; Do /XXXLab Parameters
where XXX is the generic name for the program suite in use, set up when it
was started.

)0

In a typical application to a stock exchange Gilt Dealing Records system
there are 4 program segments in use in addition to overlays in the job
segment:

Name Language Function

~s Basys 11 I System library

llir Basys 11 Application library handling
database access, record structures
etc., for whole program suite.

~f Fortran Yield calculations

~s Assembler Sort routines for database output

The assembly language sort routines in Gds exemplify the value of the
approach since the source is only some 30 lines long and readily checked
out, yet it gives speed precisely where it is most needed. The Fortran
program for Gdf is also short and readily developed and maintained - it is
a standard library module for a range of such financial systems.

Because of the various library segments the actual Basys 11 program
overlays performing various tasks tend to be very short, generally a page
or less in length, and just contain the code necessary to call the library
routines to execute the desired functions.

One other value of the segment structure is that it provides a very
convenient mechanism for program instrumentation and measurement. Various
forms of 'spy' segment have been written that allow one segment to monitor
the operations and data structures of another. These are useful not only as
debugging aids, but also in real-time, multi-task environments, to monitor
the overall system operation and integrity.

5 Summary and Conclusions

Basys 11 has now been in use for some 18 months in a variety of real-time
commercial systems and the approach described here has proved its value.
The extreme modularity of the segmented program structure has allowed very
rapid program development with far less debugging required. This has been
achieved without increase in the size of the Basys interpreter which is
still only 10 Kbytes with full dynamic segment management and the enhanced
procedure call. It is suggested that the techniques outlined here would be
of value in a variety of microprocessor-based systems, not only for
commercial purposes, but also for industrial and clinical instrumentation,
etc. They allow full advantage to be taken of the best software available
on a given machine by embedding it in an overall, coherent framework that
gives maximum opportunity for direct interaction with the system both in
development and use. Our experience suggests that the costs of doing this
are small and the benefits very great indeed.

6 Acknowledgements

I have been helped in the development of Basys 11 by the critical comments
of Bruce Anderson, Peter Facey, Dick Pope, John Zuckerman, and many Basys
users. I am grateful to Dick WaIler of CAP for information on their
Micro-Cobol.

301

7 REFERENCES

1: B.R.Gaines, Minicomputers in business applications in the next decade,
in Infotech State of the Art Report on "Minis Versus Mainframes", 1978.

2: B.R.Gaines & P.V.Facey, Some experience in interactive system
development and application, Proceedings I.E.E.E. 63(6), June 1975,
894-911.

3: B.R.Gaines, P.V.Facey & J.B.S.Sams, Minicomputers in security dealing,
Computer ~(9), Sept. 1976, 6-15.

4: B.R.Gaines, Hardware engineering and software engineering, Euromicro
1(2), Apr. 1977, 16-21.

5: B.R.Gaines, Programming interactive dialogue, in Pragmatic Programming
and Sensible Software, Feb. 1978, Online Conferences, Uxbridge,
Middlesex, UK, 303-320.

6: CAP, MicroCobol Language and User Manuals, March 1978, CAP Microsoft
Ltd., London, UK.

7: B.R.Gaines & P.V.Facey, BASYS - a language for programming interaction,
in ProceeediQ.gs of Conference on "Computer Systems and Technolo~", IERE
Conference Proceedings 36, March 1977, University of Sussex, Brighton,
UK, 251-262.

8: C.H.Lindsey & S.G.van der Meulen, Informal Introduction to Algol 68,
1977 (2nd ed.), North-Holland, Amsterdam, Holland.

9: B.R.Gaines & P.V.Facey, Real-time system design under an emulator
embedded in a high-level language, Proceedings of British ComE~~er
Society DATAFAIR 73, Apr. 1973, Nottingham, 285-291.

10: D.M.England, Architectural features of System 250, in Infotech State of
the Art Report on "Operating Sy_stems", 1972.

11: B.R.Gaines, M.Haynes & D.Hill, Integration of protection and procedures
in a high-level minicomputer, in 1974 Computer Systems and Technology
Co~Jeren~e, Oct. 1974, I.E.E., London, UK.

12: B.R.Gaines, P.V.Facey, F.K.Williamson & J.A.Maine, Design objectives
for a descri~tor-organized minicomputer, EURQCOMP 74, May 1974, Online
Ltd., London,UK, 29-45.

13: B.R.Gaines, Interpretive kernels for microcomputer software, in
Proceedin,gs S.E.R. T. Sy'!!!'posium on "M1crocOlqputers at Work,'·, Sept. 1976,
University of Sussex, Brighton, UK, 56-69.

14: RTll/RSTS/E Fortran IV Userrs Guide, DEC-I1-LRRUA-A-D, 1975, Digital
Equipment Corporation, Maynard, Mass., USA.

