
IEEE Computer, Vol. 9 No. 9, Sept. 1976, 6-15

Minicomputers in Security Dealing

B.R. Gaines, P.V. Facey
University of Essex

J. Sams
Laurie, Milbank & Co.

Introduction
There are many business applications which fit far better the terminology and techniques of
industrial control than they do that of conventional data processing. A dealer in any commodity
whose price is continually fluctuating, be it money, stocks, or physical supplies, requires real-
time information about the deals of his colleagues and competitors and the state of the market: he
requires on-stream processing of this continually changing information against an on-line file
system of historic data acquired about the market. His communication needs are best satisfied by
interaction through visual displays even though his data processing requirements are those
generally associated with-small batch-processing EDP machines.
In practice the industrial minicomputer has the right kinds of input-output facilities, real-time
monitors, and interactive peripherals for these situations, and it is easier to make up its
deficiencies in high-precision arithmetic, commercial languages, etc., than it is to make up the
converse deficiencies of small EDP machines designed to be effective for batch processing. The
very lack of some “commercial” operating system and language facilities on a minicomputer can
be advantageous in dedicated systems where low cost and “tailoring” to a particular situation are
prime requirements The meager, but adequate, run-time systems of most minicomputers contrast
favorably with the massive memory occupancy and configuration requirements of typical EDP
systems. Although these differences are historic rather than technical, reflecting different
marketing and customer support requirements, they are still significant today in considering
those business applications in which low-cost and/or rapid interaction are dominant factors.

This paper describes one successful application of a minicomputer in a business environment
where the machine and its terminals have been closely integrated into an existing office and
provide both an improved means of distributing information and also on-line analysis of that
information in a manner not previously possible. The emphasis is on the role of a computer
system in a real financial dealing environment and the technical and operational features of the
project which make it possible. In particular the results obtained back up our previous arguments
[1-5] that the interactive systems programming language BASYS provides a foundation for rapid
development of interactive minicomputer systems tailored in detail to user requirements and that
the problems of systems specification and developmental modification of computer-based
systems are greatly eased if the interactive nature of the system is fully utilized for on-line
development in parallel with actual user experience.
The actual system considered is a display-based inter-active minicomputer system for gilt-edged
security broking installed in the London Stock Exchange in January 1972. The system is located
in the same office as the 12 dealers it serves and is Continually updated with price information

2

over a radio link from the exchange floor. For each security, current yields and deviations from
the general trend are calculated and displayed on television monitors. Graphic terminals enable
dealers to request individual stock-by-stock comparisons, fitted trend lines, and other facilities
for investment analysis. The financial aspects of dealing in British government securities and the
data processing performed by this system have been described elsewhere. [4] Broad
generalizations from our experience in developing and operating a variety of related interactive
minicomputer systems in commercial, clinical, and industrial environments, have also been out-
lined elsewhere, [5] with particular emphasis on the design of man-computer dialogues. This
paper focuses on a number of specific factors that have played important roles in the success of
this particular application and which help to clarify the role of minicomputer-based interactive
systems in commercial applications.

Requirements for a dealing information system
British government securities (gilt-edged stocks or gilts) currently total some £36,000,000,000
nominal value, and form a vital means of funding any residual budget deficit. Gilts are highly
negotiable securities whose main characteristics are security of investment, wide range of
coupon and redemption date, and very high marketability (each price quoted in the “large”
market stands for transactions of at least £500,000. It is possible to deal, on good prices in
normal times, in £5 million to £25 million.) The responsibility of the professional dealer is,
therefore, financially heavy. He must have a full knowledge of the workings of the market and
up-to-date price information, and be able to forecast the actions of other dealers and investors in
the light of expected future events.
The physical dealing situation before a computer was installed was that 12 dealers and ancillary
staff, each with a multi-line key-and-lamp telephone desk set, were in a small office grouped in
clusters specializing in different types of stock. Price information was telephoned in from the
exchange floor and written up on a roller-blind display in a maximally visible position. A list of
prices and yields of all stocks, calculated from the previous nights closing position was
circulated each day. Graphs of some bases for stock comparison, such as redemption-yield as a
function of period to redemption, were drawn by hand. Desk calculators were available for the
recalculation of yields as prices changed during the day. A timesharing service bureau was used
once a day to give stock by stock comparisons based on the last three months’ prices.
A partial justification of the utility of continuous access to a computer system is in the volume of
price change information to be handled and the complex calculations (discounted cash flow)
necessary to reduce this to a uniform basis for comparative assessment. The client relies on the
dealer to have complete and accurate information about the current state of the market and the
quality of this factual data can be improved by on-line computer processing. However, the
system must be considered only as one more aid to dealing, since many of the relevant factors
are also qualitative and psychological, personal judgments based on interpretation of information
in the light of experience and on the evaluation of what judgments others are likely to be making.
A market may move not only on the basis of a rational financial process but also on the
expectation of how that process will affect the actions of others dealing in it.

However, in all cases it is advantageous to place such judgments in the context of financial facts,
to be able to state that one stock gives a better yield than any other of comparable redemption
period, to be able to state that the yield advantage of one stock over another is standing higher

3

today than it has over the past three months, and so on. Information cannot replace judgment but
it is generally assumed that enhanced information leads to: enhanced judgment. This is the basic
justification for the installation of a computer-based system: that the dealers have, and are known
to have, more complete and up-to-date information presented in such a way that it highlights
factors relevant to decisions on dealing.

Technical specification
As illustrated in Figure 1, the configuration consists of a 20K × 16-bit core PDP11/20; 256K ×
16-bit fixed-head disk; two 145K × 16-bit magnetic tape units; 6 channels of 32-line × 48-
character tv displays; 5 storage-tube graphic displays; two 30-cps teleprinters; and a 600 baud
link to the Reuter’s “Monitor” financial information network. The computer is installed in the
same office as the dealers it serves. Figure 2 shows a typical dealing position with telephone
facilities, a tv monitor and “channel-change” switches, and a graphic display and keyboard (on a
turntable so that it can serve a group of dealers).

Figure 1. System configuration

4

Figure 2. A dealing station

The fixed information (interest rate, redemption date, etc.) on the 60 or so gilts at issue at any
one time is held on the disk. The prices of each stock are the only independent dynamic
variables, and price changes in all stocks are communicated over a radio link from the exchange
floor to an operator at a teleprinter. He keys them in under an interactive data acquisition system
which generates a variety of dialogues according to the type of stock and change made. A range
of yields is calculated along with other functions such as maximum and minimum prices and
yields of each stock over the day. The disk also retains “historic” daily records of the last three
months’ maximum and minimum prices and yields for all stocks. Each month the past month’s
historic records are stored on magnetic tape for long-term analysis.
The amount of raw information the computer holds is substantial, and the amount of processed
information it can generate—for example, by comparing one stock with another—is potentially
very great. Taking full advantage of this material is a difficult problem in its own right. Human
visual perception has an unparalleled capability to scan large quantities of information (presented
meaningfully) and selectively extract that which is of interest. The generation of a book of tables
and graphs of the computer-generated information would be excellent in making it accessible,
but it would have to be updated minute by minute. Computer-driven visual displays can achieve
the same standard of presentation but do not facilitate visual scanning through large amounts of
material.
In practice it was clear that the major items which should direct attention to themselves were
price and yield changes, and it was decided to present these-as a parallel, ever-present display on
tv monitors (Figure 3) with markers indicating recent changes. Technically, the advantage: of the
alphanumeric display system used (Figure 1) is that the semiconductor stores are updated only
once under computer control, and user access to the information puts no further load on the CPU.
Historic stock-by-stock comparisons are less dynamic and could best be presented in book form
generated as an overnight printout. Graphical synopses of these comparisons and overall trend
lines could be presented on the graphic displays (Figure 4) to draw attention to anomalies and
interesting situations. Any single comparison could be requested in detail on a graphic display.
This combination of continuous displays, printed material, and dynamically generated selected
displays has proved very effective, and it is clear from experience that no one technique or
medium could satisfy all the differing requirements.

5

Figure 3. Television monitor yield display

Figure 4. Graphic display of price ratios

6

In summary the dealer has, literally at his fingertips complete up-to-date figures of recent price
changes, the current market prices, the associated yields, and deviations from the fitted curve of
yields, for every stock. He is able to quote to clients in whatever detail is required the exact
situation for every stock. In addition he can request at the graphics terminal a cross-comparison
of two stocks he is discussing with a client and, within a few seconds, be able to quote
comparative figures on the relative merits of the two stocks and their behavior over the past three
months. On a longer term basis the dealer may browse through a wealth of data about stocks for
purposes of investment analysis and to confirm, or refute, his appraisals of stocks based on other
sources of information.

Human factors
The close integration of a computer system into an existing office environment clearly has its
pitfalls and problems [6]:
(1) The office already exists and operates as an organic system. Communications and data
processing methods have evolved over a long period that take no account of a computer. The
current mode of operation is viable and will tend to have a robustness that rejects change,
particularly disruptive change.
(2) There is no possibility of closing down existing procedures and starting afresh. The office
must continue to operate with full effectiveness during the installation and on-site development
of the computer system.
(3) No one person is in a position to explain the current operation of the office in detail. Advance
systems analysis can only be regarded as an approximation to the actual requirements. It is a way
of establishing a reasonable initial integration of the system into the office procedures and
avoiding immediate rejection.

These considerations strongly indicate that the new system should be introduced slowly into the
existing situation and evolved rapidly, on-site, in response to user criticism. There is one image
of major help in visualizing the process—viz., the computer system is itself in the situation of a
new person coming into the office and adjusting to its procedures. The new person will first have
to settle down and adapt to the existing environment, to become accepted and trusted as a
member of the community. Then if he has new functions to perform, they will also have to
evolve within the existing framework as have previous procedures.
This animistic view of a computer system is one which we strongly recommend. Many problems
can be avoided if they are examined within their social context: “If I were asking you to do this,
or giving you information in this form, or responding to your requests in this way, how would
you react?” Would I be prepared to do personally what I am programming the computer to do?”
These have obvious connotations m programming the interactive dialogue with the computer
which we shall consider in a later section. However, regarding the computer as if it were a new
person coming into the office also has technical implications, e.g.:
 (1) Reliability: a level of up-time completely adequate for throughput may be unacceptable in
terms of user reaction. A colleague who was away with frequent illness would tend to be
bypassed in routine matters even when he happened to be present. His services would not be
fully utilized because his colleagues had learned to do without them. Thus even when the
computational load in a system is small, the necessity of it being immediately available when
required demands high reliability.

7

(2) Response time: reliability may be regarded as the coarsest factor determining response time.
However, even when a system is available its responses must be fast enough to avoid user
irritation. In particular, its response time pattern should match user conception of reasonable
behavior. It is no use being very fast in one activity if another, which the user regards as basic
and simple, is slow;
(3) Rapid-reprogramming: system reprogramming has to be rapidly achievable because users
expect unreasonable behavior to be corrected when reported and alternative procedures to be
demonstrated as discussed. Again, the new colleague who takes too long to respond to criticism
and adapt his ways to those of the office will come to be regarded as a nuisance rather than a
help. The plea so often received nowadays, “Sorry, this will now take six weeks instead of a few
hours—we have a computer,” is just not acceptable if a computer system is to be fully and
rapidly integrated into an existing office.

Minicomputer-based interactive systems
The introduction has emphasized the importance of minicomputers to the development of
effective interactive systems. It is clear that computer systems actually form a continuum from
the smallest microcomputer to the largest machine. However, there has been a distinction in
manufacture and marketing between the EDP machines and the laboratory/industrial
minicomputers. This is a multivariate distinction in which one class of machines tends to be used
for central systems providing a general service with emphasis on data processing, and the other
class tends to be used for local systems dedicated to a specialist service with emphasis on input-
output. Historically, the minicomputer is also associated with lower-cost systems and hence also
with lack of software, particularly operating systems and high-level languages, since these tend
to be expensive both to develop and to run (in terms of configuration requirements).
The unsuitability of batch processing on small EDP machines for the dealing situation has
already been emphasized. Many workers have discussed the relative roles of man and computer
in such decision-making situations and have hypothesized one sort of symbiotic relationship. [7-
12] The computer’s accurate memory and rapid numeric and logical process would couple with
man’s self-organizing, goal-directed strategies, semantic memory, and perceptual abilities to
generate, through partnership, a system more effective than either alone. However, they have
generally tended to think of the interactive computing provided by “computer utilities’’
providing “conversational access’’ [14] to “national information systems” [15] through
“teleprocessing.”[16] However, considerations, such as the “human factors” outlined in the
previous section led us to believe that in many situations local, dedicated minicomputers are a
more appropriate basis for man-computer systems.

There are a number of basic problems in the design, implementation, and application of
interactive systems where the use of a number of minicomputers rather than one central system
can give definite advantages:

 (1) Reliability. A computer system is a complex of electronic and electromechanical modules,
each of which must function for the system to be operational; the smaller the system the longer
the mean time between failures. This factor is important in all systems, but it is vital to
interactive systems where the degree of unreliability that merely causes a decrease in throughput
to a batch-processing service results in an unacceptably low level of availability. Many

8

applications require a continuous 24-hour-per-day service, but even when a delay in access can
be tolerated technically, it can be devastating to the remote interactive user community who are
already isolated from the system and become totally so when it is not available. In particular they
are faced with psychologically disturbing uncertainty in deciding whether to try to access the
system again and face further rejection, or wait even though it may possibly have become
available. It is a natural human reaction to attempt to avoid such a conflict situation, and it can be
avoided by ceasing to use the computer-based system. Since many potential users have no
particular enthusiasm for computers and in fact often feel quite the contrary, any such
demotivating influence is a major problem.
(2) Decentralization. Failures themselves tend to be more catastrophic with computer systems
than with conventional information management by clerks and files because, for the sake of
efficiency and high workload, as much information as possible is centralized in the computer’s
files. Distribution of the workload and files of a large system between a number of independent
modules increases its robustness.
(3) Duplication. The duplication of capability (rather than function) means that a system can
operate at a full workload under normal conditions but shed load in a controlled manner when
failures occur—e.g., files and work can be moved from one machine to another which has less
important functions.
(4) Low overhead of interaction. Input/output is generally an expensive overhead on medium-
size EDP machines with a single processor and large wordsize. The workload of interrupt-
servicing and buffering ties up a powerful processor and expensive high-speed memory.
Interactive data entry, which is of major importance in data management systems, is an
expensive overhead on machines designed for batch number-crunching. Where the workload is
not predominantly high-speed, high-precision arithmetic, but rather data acquisition, then a
minicomputer is far better matched to the job.

(5) Short response time. This follows from (4) but is separated because of its importance in
human terms. A minicomputer with its dense order code (with loss of address scope) in a
timesharing system can maintain a number of small interactive jobs in core at reasonable cost
and operate on a round-robin time-quantum of 100 msec, giving average response times of a
fraction of a second. This makes the system far easier to use both for naive users who are
disturbed by long pauses in response and also for skilled users who are frustrated by them.

(6) Ease of operation and system management. Most minicomputers and associated peripherals
have been designed for industrial use and do not need special environments. The high-speed
electromechanical peripherals on larger systems require the most operator care and attention. If
the load is distributed to a number of typewriter (not teleprinter) terminals or visual displays,
centralized operations can be minimized (basically only file security backup).
(7) System design. The most important feature has been kept to last: the prime cause of problems
in most computer system development is the attempt to take on too much and to do everything in
one major development. There is a crucial limit in system analysis at the point where the system
as a whole is no longer completely comprehensible to one person. One task, one person, is a
recipe for success (where a “task” is the design of a relatively independent part of a system).
Starting with a small project with limited objectives on a small configuration and expanding with
more projects, more configurations lead to rapid, robust progress. Systems tend to freeze with

9

time and successful use, and it is far easier to set up a new system than to increase the
capabilities of an existent one.
These are clearly all potential advantages of the use of small, functionally complete systems.
Any of them can be squandered by poor system design, and it is possible to point to large, well
designed systems that are superior in all respects to far smaller systems of poorer design. There
are also substantial advantages in large, centralized systems all stemming from the economies of
size possible through sharing resources. However, where effective man-computer interaction is
the prime objective, minicomputer-based systems have, potentially, major psychological and
economic advantages.

Software requirements
We have emphasized the lack of software support for minicomputers, a weakness that is
gradually disappearing as manufacturers develop software support for the commercial
minicomputer market. However, it is easy to mimic both the facilities and the defects of classical
EDP systems on minicomputers. Languages such as COBOL and RPG with their conventional
libraries and operating systems are not suited to interactive dialogue processing. However, both
the arithmetic facilities and string-handling of interactive languages such as standard BASIC are
inadequate for many commercial applications.
The essential requirements in minicomputer support software for commercial applications are:
(1) Fast response to terminal interaction for reasons already noted.

(2) Small size for reasons of cost. It is ridiculous to commence with a low-cost minicomputer
configuration adequate to the task and then have to expand it to support a large operating system
and language run-time system. We advocate a minimal operating system for terminal buffering,
round-robin job scheduling, and file access, closely integrated into an interpretive language, with
less than 4K × 16-bit words each for operating system and language. Job partitions in the dealing
system and other BASYS applications are typically under 2K × 16-bitwords.

(3) High-level language for ease of system development and modification. It is probably not
necessary to justify this nowadays. In the dealing system it was essential because:
(a) The system specified was by no means complete, and the application was novel. It was clear
that considerable on-site development and modification of the system would be necessary, and
this would most conveniently take place while the system was in operation. Substantial
reassembly, linking, and loading under these conditions would be difficult and, without hardware
protection, would require the entire system to go down.
(b) The time for the complete development was very short, some 3 to 6 months, and a high-level
language, where a substantial number of the facilities required were already provided, was
attractive.
(c) It was desirable for the application software to be taken over eventually by the users. A
suitable high-level language would make this feasible, whereas assembly language might make it
impossible.
The usual argument against a high-level language is the overhead of its run-time system size and,
perhaps, also its inflexibility in handling special peripherals and special data structures such as

10

strings. However, none of these are essential defects. We were fortunate in developing BASYS
originally on a TSS8 [17] that allowed only 4K × 12-bit words for a complete user partition
including interpreter. The full language interpreter occupied only 2.7K words including full
access to monitor filing facilities, variable-precision integer arithmetic, string-handling, special
peripheral driver (remote film-strip terminal), and interactive debugging and editing. There were
no overlays. The 1.3K × 12-bit partition remaining for user programs and data structures in
BASYS proved adequate to support medical record-keeping systems, psychological testing
systems, advertisement booking systems, etc., each written as a set of comparatively short (100-
line) overlays. This initial size constraint has carried over to later implementations of the
language.

(4) High-precision arithmetic is uncommon in minicomputer systems and yet vital for
commercial applications. Amounts of 100 million dollars or pounds kept to 1 cent or 1 penny
require 10 digit precision. If integer arithmetic is used (which is desirable in accounting packages
to give full control over rounding) then intermediate results in calculations may require greater
precision. We have typically provided 1 through 7 × 16-bit word variable precision integer
arithmetic giving up to 33 digit precision. The dealing system precision is set at 4 ×16-bit words
in most sections giving some 18 digits.
(5) Contextual string-processing in a very general form is essential to the programming of
natural dialogue with users—not natural language dialogue which is beyond current capabilities
and requirements, but free-form communication with syntax and semantics natural to the user
under his current office procedures. For example, in the dealing system it was essential that price
information could be entered either in decimal or fractional form: 66.5 or 66½. A simple
requirement that is problematic on many systems is that a space is a far easier separator to use
than a comma (because of typewriter layout), and yet many languages do not allow the input
field separator to be varied, or to satisfy a variable definition like “a comma or any number of
spaces greater than zero.” BASYS gives complete freedom to the programmer in contextual
string analysis with facilities comparable in extent and power to those of SNOBOL [18].
(6) Interactive programming is not a mandatory requirement, but we have found it a major help
not only in debugging but also in system design. It is possible to sit at one terminal of a system in
normal use and demonstrate alternative dialogue sequences, output formats, etc., as part of a
discussion with a user, and then implement their requirements—all without affecting the system‘s
ongoing operation. This facility also has its dangers, of course, particularly if some users are
remote and find the system literacy changing as they communicate with it! However, properly
controlled, it is one of the most powerful features of an interactive, interpretive system.

For the dealing system a very comprehensive single-job disk operating system was available
with the machine. It had two disadvantages in this application: (a) no extension to multi-job
working, and (b) more elaborate facilities than actually required, leading to higher overheads
than necessary. It was, however, considered highly desirable that system software development
should be minimized and as much manufacturer’s software as possible should be used, in order
to ease maintenance problems by driving the peripherals with manufacturer’s software, and to
enable advantage to be taken of software drivers for new peripherals fitted to the system at future
dates without excessive software re-engineering. Hence, a decision was taken to write drivers for
the special peripherals under the standard DOS and implement a scheduler using the line-
frequency clock to run a simple timesharing system apparently running as a single user to DOS.

11

An interpretive implementation of BASYS with variable-length integer arithmetic (up to 7 × 16-
bit signed operands = 33 decimal digits) was chosen as suitable both for the text handling and the
financial calculations. This was implemented on the PDP 11 to give a single-language
timesharing system with job slots for each graphic terminal and for the typewriter. To maximize
speed no automatic swapping was incorporated and all jobs are locked in core. However, the
core avocations are completely flexible and dynamically adjusted automatically as application
program overlays are caned. Semaphores are used to overcome potential clashes in main memory
requirements. Application program overlay caning is extremely simple in BASYS fall simple
variables and whatever arrays and strings are specified are passed to the called program), and our
previous experience had shown that there were advantages in writing such systems in a modular
fashion as a succession of comparatively small BASYS overlays.
BASYS retains the structure of BASIC in that a program is a sequence of numbered lines
ordered by their (not necessarily consecutive) line numbers, and statements consist of a
meaningful keyword followed by an expression, or sequence of expressions, e.g.:

25 LET Y = 9
40 PRINT ‘Y IS’ Y
150 INPUT U V W
260 PRINT U*V W*100
500 GOTO 150

The meaningful keywords seemed to contribute much to BASIC’s high readability and the need
to insert them itself prevents the vast, opaque syntactic constructions possible in ALGOL and
mandatory in LISP.

The role of the line numbers and their use in transfers of control are more open to controversy.
However, the situation of a programmer at a terminal is that he cannot see all his text at a time
but must access individual lines. Numeric labels corresponding to the order of statements give an
immediate picture of the stored program structure. Using the same line numbers that make for
ease of editing as the “labels” for transfer of control is then a natural construct necessitating the
acquisition of no new concepts. We accepted the use of line numbers in BASIC and have not
regretted it. Indeed in BASYS it is extended to enable dynamically varying character strings and
string constants to be stored and referenced as part of the same structure of numbered “program”
lines.

We wished to minimize the effort of program creation and documentation and maximize the
clarity of the result by having (a) no unnecessary syntax on program entry— the programmer
should be able to enter the minimum string necessary to specify a statement; (b) full clarity in
program listings—the system should recreate missing syntax on output and format it
appropriately. To achieve this we had to drop some BASIC conventions, notably the non-
significance of spaces which were natural separators, readily inserted with the space bar. This
allowed a comma, or one or more spaces, or implicit separation, to be specified as optional
separators. Command keywords could then be defined as a string of letters which matched, or
partially matched, one of the stored commands. Hence any command could be shortened to its
minimal unambiguous initial string. We chose command names so that the first two letters were
sufficient to resolve ambiguity; and a single letter alone, if ambiguous, was interpreted as the
most commonly used command—e.g.,

12

25L Y = 9
500G150

are abbreviated forms of the first and last statements in the example above. When the program is
listed they will appear in the full form of this example.

Figure 5 gives an example of actual program creation at a terminal. If even a partial match is not
possible (first entry of line 120), an immediate error message is generated with an exclamation
mark, !, at the offending point. If a statement is typed in terminated by ESCAPE (rather than
NEWLINE), it is printed out again immediately in full form. Note how L alone becomes LET
but LI is interpreted as LIST. Note also that commas are not necessary as separators in line 100.

Figure 5. Interactive entry of a BASYS program in brief form and full generation on listing
Line 150 of Figure 5 appears like the normal conditional of BASIC. However, it is more general
in that any sequence of commands may be placed on one line, separated by colons, to form a
single statement—e.g.,

100 PRINT X X*X X*X*X: LET X=X+ 1: IF X< 10: LOOP

is completely equivalent to lines 100 through 150 of Figure 5. BASYS is a two-dimensional
language in which execution continues along each line, then transfers to the next. Conditional
tests are regarded as decisions to continue execution of the current line or to go straight to the
next line. Advantage is taken of this feature to generate implied conditionals in many other
statements, particularly the input-output statements which may fail for good reason (end-of-file),
and the pattern-matching string operations described later—e.g., the sequence

100 OPEN ‘FRED’: GOTO 120
110 PRINT ‘CANNOT FIND FRED’: STOP
120

or better,
100 OPEN ‘FRED’
110 ELSE: PRINT ‘CANNOT FIND FRED’: STOP

each use the implied conditional in the file OPEN command to test its success.

13

Since BASYS is executed interpretively it is simple to provide for all commands to be directly
executed at any time. When programs are halted by use of a control key, or stop with an error
message, the data structures are available and may be examined and changed and then execution
continued. Figure 6 illustrates a sequence of interaction in which the program is changed after an
error and execution continued (the X command is a line editing facility). This example also
illustrates the use of a bracket as a (non-executable) “command” to indicate a comment and the
availability of UNLESS as an alternative to IF.

Figure 6. Interactive debugging and editing of a BASYS program

String processing in BASYS. Our interpretive implementation of BASYS automatically gave us
facilities for manipulating the character strings forming program lines, and it was natural to store
string data in the same way. Any “program” line beginning with a $ sign is a string variable
initially containing whatever follows the $ sign. Such variables are referenced as $<line
number>, where “line number” is a number, or numeric expression evaluating to a line number—
e.g.,

>100 $HI THERE
>PRINT $100
HI THERE
>LET X=99
>P$X+1
HI THERE
>

Apart from its implementation advantage, this mechanism for string variables (a) enables string
constants to be listed as part of the program, (b) enables string constants to be placed in that part

14

of the program where they are used, and (c) makes string arrays naturally available and, in
particular, efficiently implements sparse string arrays.
String expressions containing string constants, variables and literals, and numeric variables
converted to strings have a natural syntax—e.g.,

>PRINT $100 ‘WHAT IS’ X ‘TIMES’ X
HI THERE WHAT IS 99 TIMES 99

Contextual string analysis is based on the concepts of a sow string being analyzed, a destination
string to which output may be appended, and various pattern-matching commands. System
variables contain the line numbers of the source and destination strings and a pointer to a
character within the source string. These system variables are automatically set up by the string
processing commands but are accessible to the programmer for the more complex string
processing.
The command PUT <string expression> sets up a source string by assigning the value of the
expression to it and setting the character pointer to zero. The command AS <string variable>
sets-up the string variable as a destination string initially null. The command WITH < string
expression > is used to append the value of the expression to the destination string, typically to
replace a pattern matched in the source string.
TO, FROM, and SEEK are template search commands specifying a template to be looked for in
the source string, starting from the character pointer. If the pattern is found, then the pointer is
updated to the next character beyond it. If the template does not fit and the match fails, then
neither the pointer nor destination string is affected. FROM specifies an anchored search (for an
initial template) and SEEK an unanchored search (for an imbedded template). TO specifies an
unanchored search in which characters in the source string prior to those matching the template
are appended to the destination string. The forms of template include string variables, numeric
strings(automatically converted and assigned to a numeric variable), and a specified number of
characters. The commands and templates are powerful enough to cover most requirements, but
enable the string analysis to be expressed simply and meaningfully—e.g.,

>1 $ABCDEFGH
>PUT $1: AS $2: FROM ‘CD’ :TO ‘G’
>PRINT $2
EF

Figure 7 gives some more detailed examples, showing how a date format is matched and the
numeric fields extracted, and how a simple sentence can be split up and reconstructed as a reply.
Figure 8 is a simple “calculator” program with its own syntax that illustrates the use of the string
processing to analyze a formal “language.”

15

Figure 7 Demonstration of the string-processing commands in BASYS

Figure 8 A simple calculator language implemented using BASYS pattern matching

These examples demonstrate the operation of the pattern matching string analysis facilities in
BASYS in simple situations. The naturalness of this command family should be apparent for use
in the commonly required string analysis needed to support interactive data entry and
conversational dialogues. Our objective was not only to supply string-processing facilities but
also to retain the readability, and the transparency of function, which is such an important feature
of BASIC.

16

BASYS has other extensions designed to improve the programming environment and increase
modularity: names can be multiple characters, parameters can be passed to subroutines either by
value or by reference; variables and arrays in subroutines may be declared local, and so on. It is
interesting to note that the majority of these “additional” features required remarkably little extra
code. Often they actually reduced the code because simplicity and generality for the programmer
seem to correspond to similar features in the implementation.
The implementation of BASYS is straightforward using a “bottom-up” approach. First one
writes a family of low level routines to create a virtual machine with character-handling and the
required form of arithmetic. Then one writes a set of intermediate routines that manipulate the
BASYS data structures. Finally one writes the top-level routines that evaluate string and
arithmetic expressions. The time taken to do this is about two man-weeks on a machine with a
well-integrated, disk-based machine code development system. As we have emphasized
previously [2] it is the quality of these developmental resources which has the prime effect on the
software development time for well-defined system programs. We have found it worthwhile to
write a good assembler and linking loader for a minicomputer before attempting any other
software development if its facilities are primitive. We have found it equally vital to base the
development on the best interactive text editor available rather than any other resource. An
emulator of one machine on a more powerful, better supported, disk-based configuration is
useful, but a good editor is vital.

Conclusions
We have attempted to give an appraisal of the role of minicomputers in real time commercial
applications based on our experience with a system for security dealers. Hardware, software, and
human factors all play an important part in system requirements and success. It is not possible in
the- space of this paper to demonstrate how they come together in detail, particularly in the
programming of interactive dialogue. A fairly detailed exposition of some of the techniques we
have developed to give maximum support to both untrained and skilled users of the system
appears elsewhere [5].
A good example of the way in which the string-handling facilities of BASYS can be used to
adapt the computer system to the user is the “shorts language” developed for input and display of
prices of the short stocks. These prices are communicated in a dealer’s jargon which has various
short forms for common situations and, on analysis, turns out to be consistent, unambiguous, and
less prone to errors in verbal transmission than number strings. Briefly: only the buying and
selling fractions are communicated (the number of whole pounds—the “big figure” is Obvious
with short stocks)- sixteenths are referred to by the numerator only—5 is 5/16; “under” means
less 1/32, “close under” means less 1/64—these were written, e.g., U3 (=5/32t, CU3 (=11/64;
similarly for “over” and “close over”;:”either side” means a price range from −1/32 to +1/32
about a center price. This was written, e.g., −7−(=13/32 to 15/32); “close to close” meant +1/64,
e.g., 1/2 CC (=31/64 to 33/64). The “language” is used for both price input and display, and there
has been highly favorable reaction to it by dealers; it is a “natural” language.
A good example of the modularity and extensibility of BASYS is the link to the Reuter’s
Monitor computer system shown in Figure 1. It was not m the original design and was added
some two years after the main system had been in full operation. Price and yield changes of gilt-
edged stocks are automatically transmitted to Reuters as they are entered in the dealing system.

17

The communications module is written as an independent BASYS program that waits on a
semaphore for a price change and then automatically transmits it in the required protocol using
the string-handling facilities. The same BASYS program also responds asynchronously to
operator keyboard requests to send other information to Reuters.

One crucial feature of any information management system is the quality of its data. Here the
compactness of the dealing system is a distinct advantage. As prices are typed in they are
immediately displayed; any errors are noticed and shouted to the operator. On a system with a
very much larger data base there would be serious problems of accuracy that would be very
difficult to overcome. Our experience has been that, in dealing, all “rules” are eventually broken.
Prices do change in amounts and patterns that had been stated to be “impossible,” so that
building “intelligence” into data entry routines can be dangerous.
Over the past five years BASYS has been implemented on a wide range of machines (PDP 8,
PDP 9, PDP 10, PDP 11, Prime 100, and MINIC I) and used in diverse applications including
hospital administration and foreign exchange dealing in a number of European financial centers
(where dual PDP 11 configurations have typically replaced very much larger EDP machines).
Current developments include both expansion to very much larger configurations (64K words
upwards) that are really no longer “minicomputers,” and compression to the microprocessor plus
floppy disk configurations now becoming available. Technically the configuration of a
microprocessor within a VDU with floppy disk backing store and 16K × 8-bit byte RAM for
BASYS and user program partitions is very attractive for many interactive EDP tasks. We are
currently developing the communication protocols for networking such configurations to give a
highly robust, cost-effective, and expandable system.

The main defect of BASYS in current implementations is its relative slowness (compared with
Fortran, say) due to the interpretive execution. The 10:1 speed drop has proved surprisingly
insignificant in many applications. Even in a university environment, when the language has
been used for modeling and simulation, signal processing, pattern recognition, and so on, the
benefits of the language facilities seem to outweigh the loss of speed. However, particularly with
current MOS microprocessors, speed can be a significant limitation and in the most recent
implementation (for an LSI 11 under RT 11) we are experimenting with BASYS/Fortran
compatibility. BASYS there has the same data types as PDP 11 Fortran (16-bit integer, 32-bit
real, 64-bit double) and can call Fortran subprograms. Thus for any particular application a
library of Fortran subprograms can be installed as routines called by new BASYS commands or
functions. This gives specialized, high-speed features while retaining all the advantages of an
overall interpreter. Only application experience can validate this approach but its modularity,
flexibility, and interactive features make it prima facie a very attractive software architecture for
small commercial systems.
The system described in this paper has been in full-time operation since January 1973 and has
come to be accepted as part of the normal facilities of dealing. It demonstrates that a display-
based, on-line minicomputer can be a very effective tool in a commercial environment and that
the developmental effort required is reasonable in magnitude. Technically the project is a further
illustration of the power of a high-level interpretive language on a minicomputer in providing a
flexible, rapidly-adjusted system that can be closely matched to the terminology and
requirements of its users.

18

References
1. BASYS User Manual, Dept. Electrical Engineering Science, University of Essex, Colchester,

England, 1974.
2. P. V. Facey and B. R. Gaines, “Real-Time System Design under an Emulator Embedded in a

High-Level Language,” Proc. Brit. Comput. Soc., DATAFAIR 73, pp.285-291, April 1973.
3. T. C. S. Kennedy and P. V. Facey, “Experience with a Minicomputer-Based Hospital

Administration System,” Int. Journal Man-Machine Studies, Vol. 5, pp. 237-266, April 1973.

4. B. R. Gaines, P. V. Facey, and J. Sams, “An On-Line Fixed Interest Investment Analysis and
Dealing System,” in Proc. Eur. Compuhng Congress (EUROCOMP 74), pp.155-169, May
1974.

5. B. R. Gaines and P. V. Facey, “Some Experience in Interactive System Development and
Application,” Proc. IEEE, Vol. 63, pp. 894-911, June 1975.

6. K. London, The People Side of Systems, McGraw-Hill, London, 1976.

7. J. C. R. Licklider, “Man-Computer Symbiosis,” IRE-THFE, Vol. HFE-1 pp. 4-11, March
1960.

8. L. Press, “Towards Balanced Man-Machine Systems,” Int Journal Man-Machine Studies,
Vol. 3, pp. 61-73, January 1971.

9. A. M. Hormann, “A Man-Machine Synergistic Approach to Planning and Creative Problem-
Solving,” Int. Journal Man-Machine Studies, Vol. 3, pp. 167-184 (Pt. I), pp. 241-267 (Pt. II),
1971.

10. H. T. Smith and R. G. Crabtree, “Interactive Planning: a Study of Computer Aiding in the
Execution of a Simulated Scheduling Task,” Int. Journal Man-Machine Studies, Vol. 7, pp.
213-231, March 1975.

11. W. Edwards, L. D. Phillips, W. L. Hays, and B. G. Goodman, “Probabilistic Information
Processing Systems: Design and Evaluation,” IEEE-TSSC, Vol. SSC-4, pp. 248265,
September 1968.

12. D. J. Hall, G. H. Ball, D. E. Wolf, and J. W. Eusebio, PROMENADE An Improved
Interactive Graphics Man-Machine System for Pattern Recognition, Final Rep. SRI Project
6737, Stanford Research Institute, 1968.

13. D. F. Parkhill, The Challenge of the Computer Utility, Addison-Wesley, Massachusetts,
1966.

14. W. D. Orr (ed.), Conversational Computers, J. Wiley, New York, 1968.
15. M. Rubinoff (ed.), Towards a National Information System, Spartan, Washington, 1965.
16. H. Lui and D. Holmes, “Teleprocessing Systems Software for a Large Corporation

Information System,” AFIPS Conf. Proc., SJCC, Vol. 36, pp. 697-709, 1970.
17. A. van de Goor, C. G. Bell, and D. A. Whitcraft, “Design and Implementation of TSS/8: a

PDP8 Based TimeSharing System,” IEEE-TC, Vol. C-18, pp. 1038-1043, November 1969.

18. R. E. Griswold, The Macro Implementation of SNOBOL 4, Freeman, San Francisco, 1972.

19

Contributors
Brian R. Gaines is chairman of the Electrical Engineering Science Department at the University

of Essex, Essex, England, where he first became a faculty member in
1967. He is also the editor of the International Journal of Man-Machine
Studies and an associate editor of the IFAC journal, Automatica. His
prime research interests are the interplay of computer languages, operating
systems and architecture, algebraic system theory, and human factors in
systems engineering. He has directed research contracts with the Ministry
of Technology, the Department of Health and Social Security, and the
National Research and Development Council and has been a consultant to
several industrial firms, including ITT, Plessey, and Brown Boveri Kent.
Gaines has authored approximately 50 papers on topics including

stochastic computing, computer design, interactive computing, human operator studies, machine
learning, and adaptive control. He studied mathematics and psychology at Trinity College,
Cambridge, England, where he obtained the BA, MA, and Ph.D. He is a-member of the IEEE,
the ACM, the British Psychological Society, and the Experimental Psychology Society.

Peter V. Facey is the senior research officer in the Electrical Engineering Science Department of
the University of Essex, Essex, England, where he has worked since
graduating with a degree in physics from Brasenose College, Oxford,
England, in 1968. His prime research interests are concerned with the
structure of computationally efficient and humanly effective
software/hardware systems. He has been responsible for a number of
research contracts on computer systems development with the Ministry of
Defense, the Department of Health and Social Security, and the National
Research and Development Council; and has been a consultant to a
number of companies concerned with software and system development.
Facey is a member of the ACM.

Jonathan B. S. Sams is an associate of Laurie, Milbank, and Company and a member of the
London Stock Exchange. His special field is investment analysis of the
British gilt-edged securities market. He worked on the English Electric
DEUCE system in 1960-1961 and qualified as Fellow of the Institute of
Actuaries in 1973. Sams received the BA degree and the MA degree in
mathematics at Cambridge University in 1965 and 1969, respectively.

