
MINSYS

Preliminary Reference Manual

Contents

1. Introduction

1.1 New Features in MINSYS

1.2 The MINSYS Stack

le3 Some Notes for BASYS Programmers

1.4 MINSYS Environment

2. Expressions in MINSYS

3.

2.1 Numerical Expressions

2.2 String Expressions

20 3 Numeric Variables and Functions

2.4 Arrays

2.5 Access to System Information

Synopsis of MINSYS Commands

3.1 Storage

3.2 Editing and Housekeeping

3.3 Assignment

304 Conditionals

3.5 Transfer of Control

3 .. 6 Procedures and Iteration

3.7 String Operations

3.8 Peripheral Transfers

6th May 1974

April 197'+

MINSYS Prelimin~ Documentation

1. INTRODUCTION

MINSYS is a recent member of the line of Essex extended BASICs

(variously known as BASYS. QUAS lC t QUASAC and AI MS) • This family of

languages takes Dartmouth BASIC as a model for syntax but extends and

modifies it to provide a complete range of facilities for system and

major application programming.

The major objectives are:

(a) To allow tasks normally requiring assembly language on a

minicomputer to be carried out in a high-level language even on small

configurations (BASYS interpreters are normally '+k words or less).

(2) To provide interactive program development facilities

enabling very rapid system development (BASYS programs may be freely

stopped, interrogated. edited. and continued).

(3) To support interactive. conversational systems by providing

extensive string-handling and contextual editing within the language.

('+) To support large complex file structures by providing

efficient and direct access to backing stores.

Dartmouth BASIC was taken as a model because it has been so

successful in use by non-programmers. This appears to arise partly from

the line numbering giving natural interactive editing. and from the

syntax where a single, meaningful command establishes the main action to

be taken and the residual syntax for numeric or string expressions is

simple 0 These two features have been retained in MINSYS and some BASIC

command names have been carried over - however, in detail BASIC and

MINSYS are very different.

A BASYS or MINSYS program appears similar to extended BASIC and

consists of a set of numbered lines each containing one or more commands

separated by colons, e.g.

100 INPUT $5 :tNLESS $5 = 'YES' :PRINT $5 '1' :GOTO 200+k

One major feature is that character strings may also be held in the same

numbered "program" lines. This simplifies the run-time system and

enables string constants and dynamic strings to be simply manipulated.

Other conveniences are that on program entry only the minimum unambiguous

command string need be entered (e.go PS instead of PRINT 5) and !!!

commands are available as directly executed or as a stored program.

Debugging is simple since programs may be stopped by a keyboard command,

modified, direct commands executed. and program restarted from where

interrupted.

Other BASYS/MINSYS extensions include:

Improved string-handling modelled on SNOBOL - handles arbitrary-length,

dynamically changing strings with full ASCII 7-bit character set - string

relational operators allow for anchored and embedded searches. and tests

for string equal! ty, inequality or telephone-directory comparisons;

Numerical expressions are accepted wherever a number could occur, and

these may contain logical and relational operators.

of control may be computed;

Hence all transfers

Several commands may follow on one line and any statement may follow a

conditional. Many commands have implied conditionals such that execution

along the line continues only if the command is successfully executed.

1.1 New Features in MINSYS

For those users who have met BASYS in one of its forms the

following notes review the main changes in MINSYS.

of the new features have been:

The main objectives

(a) To improve the management of large system developments - the

one-level name system of BASYS with all names having global scope through

all subroutines, overlays, etc o is a source of problems when large systems

are being developed and even more so when they are being modified after

periods of use. Use of BASYS is intended to minimize documentation

requirements and having to list name usage in different packages to avoid

conflicts is highly repugnant" MINSYS provides a block-structured name­

space in which names may be given scope only during procedure callso It

is intended that these calls be used freely to control the names in use"

(b) To reduce the use of the ooTO command to major transfers of

control only. Currently BASYS often requires the use of ooTO to skip

over parts of a conditional expression. This impedes both editing and

readability. The new commands ELSE and AND are conditionals dependent

on the results of previous conditionals. Their use gets rid of many GOTO's

and makes the conditional structure far clearer.

(c) To improve the syntax and power of the string-handling

facilities. The BASYS PUT command provided new language capabilities

for string-handling. It's syntax, however, goes against the principles of

meaningful simplicity discussed earlier and it compresses many different

facilities in one command. MINSYS provides a more extensive range of

facilities including those of the BASYS PUT, but in a rauge of commands.

In particular any string may be used as source or destination and the source

string, the pointer to it, and the destination string may be freely charged.

Finally, please note that the development of BASYS is an experiment

in providing rapid. simple interactive programming. The new features

of MINSYS are intended as improvements along these lines. Critical

comments and further suggestions are welcome, particularly in the near

future when MINSYS is still under development.

1.2 The MINSYS Stack

MINSYS makes far more explicit use of its run-time stack than do

previous versions of BASYS and an outline of its mechanism will be an

aid to understanding several new facilities. The data-structures of

MINSYS are a linked list of character strings (the program and $-lines -

note not arrays in MINSYS) and a stack of named simple variables and

arrays.

New arrays and variables are put onto the stack as they are

created and the stack is always searched from the latest item. This

ensures that if multiple items with the same name are on the stack then

the one accessed is that most recently created.

Simple variable names are of the form a letter, or a letter

followed by letter or a number. Array names are a letter only - the

following opening bracket serves to indicate an array_ Note that there

is no relation between the array X () and the simple variable X.

The simple variable Q also acts as a stack marker establishing

the current local context which consists essentially of all simple

variables and arrays created since Q. A simple variable or array element

wi thin this local context is said to be local to the program section

executing at the time.

The variable Q is not normally created by an assignment but by

the command: BEGIN - the MINSYS start of block command. Three further

commands may be used to clear the stack back to, and including, the last

Q marker: BACK - the MINSYS procedure return; NEXT - the MINSYS iteration

return; and END - the MINSYS end of block command.

Ordinary simple variables are mainly created by one of two commands:

LET - the normal assignment;

LOCAL - the local assignment which hehaves as LET but only searches the

local environment fOr a previous copy. Thus LOCAL is guaranteed to

assign to a local variable, setting one up if necessary_ LET may assign

to an existing non-local variable - however. note that if it sets up a

new variable it will be local.

Arrays are set up by the ARRAY command which always creates a new

array, and hence a local one.

1.3 Some Notes for BASYS Programmers

MINSYS differs from BASYS in many important aspects. The

following notes are an aide rnernoire to possible confusions in transferring

from BASYS to MINSYS.

First similarities:

(1) Program lines numbered 0 to 32k.

(2) String lines as program lines referred to as $NE.

(3) Simple variables letter. or letter followed by letter or digit.

(4) Numeric expressions and string expressions very similar.

(5) LET.. IF.. UNLESS, GOTO.. RUN, DO, STOP. PRINT. INPUT. LIST. LOOP.. GARB ..

commands very similar.

(6) Input/ output to numbered channels referred to as -#NE.

Now the major differences:

(a) The ARRAY command is executed in MINSYS. Arrays themselves are not

program lines but are set up by the ARRAY command in the stack.

(b) The GOSUB command has become DO a line commencing with BEGIN and

RETURN has become BACK. This emphasizes some changes:

(i) The calling address is held in the simple variable stack as the

variable Q. It can be changed by assigning to Q.

(ii) Arrays and simple variables created by the procedure are

cleared on return.

(iii) Parameters may be passed to the pro<ledure by value or by

reference. These are assigned to local variables through the

BEGIN command. If parameters are not passed to some of these

variables they take the default value zero.

(iv) BACK is conditional if followed by a numeric expression. BACK

NE only causes a return and stack clear if NE is non-zero, e.g.

BACK X = 5 only returns if X = 5.

An example of a procedure call with parameters passes is:

50 [CALLING SEQUENCE

60 LET X = 1 y = 2 Z = 3

70 PRINT @4 X y Z

80 DO 100 X %X y

90 PRINT 'BACK' :.00 70

99 STOP

100 BEGIN QO Ql Q2 Q3 (}ICK UP PARAMETERS

110 PRINT 'BEGIN

120 PRINT Q QO Ql Q2 Q3

130 LET QO= 0 :.00 70 (!.DCAL PARAMETER VALUE

140 LET Ql = 0 :00 70 110CAL PARAMETER REFERENCE

150 LET y = 10 :00 70 WON-LOCAL

160 LOCAL Z = 20 :DO 70 : ~EW LOCAL

170 BACK

RUN

1 2 3

BEGIN

80 1 1 2 0

(note 80 is calling line t 0 is default when none passed)

1 2 3 (no change)

o 2 3 (reference accesses X)

o 10 3 (Y may be accessed directly)

o 10 20 (locally Z is 20)

BACK

o 10 3 (but restored on return)

Array elements may be passed to simple variables:

makes QO a reference to the 3-byte variable commencing at element 7

of array A.

record.

This is a clean and fast way of accessing items in a

(c) The PUT command has been replaced by a new series of commands, capable

of similar effects but generally more powerful and readable:

(i) PUT SE now creates a string $QS (where QS is a system variable)

containing SE. It also zeros the system variable QP which is

a pointer to a character within this string.

(ii) QS/QP define a source string and a position within it and may

be used freely in arithmetic expressions and assignments.

(iii) AS $NE creates a null string $NE and sets the system variable

QD to NE. This is the destination string to which output will

be appended. Again QD may be freely used in arithmetic and

assignments.

(iv) WITH SE appends SE to $QD.

(v) TO, FROM, and SEEK are macro template search commands specifying

a template to be looked for in the source string from the QP'th

character. If the pattern is found then QP is updated to

point to the next character beyond it. Also, if specified, the

characters before, and between parts of, the template may be

appended to the destination string $QD. If the template does

not fit then neither QP or $QD is affected (note the difference

from the BASYS PUT).

For example:

50 PUT $6 = 'AB' > $7 'KJ'

is now:

50 PUT $6 FROM 'AB' : AS $7 TO IKJ'

or, on several lines:

1.4 MINSYS Environment

MINSYS runs under the MINIC device-independent, multi-user

operating system MUC (Multi-User Companion). It fully supports all

operating system facilities - on disc-based systems MINSYS itself is

used for all the operating system utilities, configuring, log in. log out,

directory listings, etc. MUC is documented in "Multi-User Companion

Programmer's Guide" (Micro-Computer Systems January 1974).

20 EXPRESSIONS IN MINSYS

2.1 Numerical expressions

A numerical expression (ne) is something that can be evaluated

to produce a number. The fOllowing operators are allowed:

PRECEDENCE OPERATOR MEANING Arithmetic Operators

1 0 Ten to the power (alphabetic 0)

1 + a + b: open bit shift of a by b places left if

b > 0, right if b < 0

1 t Exponentiation

2 Unary minus

3 /

3 *

Division

Multiplication

~ Subtraction

~ + Addition

Relational operators

5

5

5

< Less than

= Equal

)

) and combinations of these

> Greater than)

String operators

6 > Alphabetically greater than)

6 = Identical) and combinations of these

6 < Alphabetically less than)

6 t a t b: true if string-a begins with string-b

6 + a + b: true if string-a contains string-b

7 'orl! Quotes enclosing literal string

7 $ Right-associative operator meaning string-name

Logical operators

8 & AND

8 / Exclusive OR

9 ! Inclusive OR

2.2 String Expressions

A string expressions (se) is anything that can be evaluated to

yield a string. String expressions are built up from one or more of the

fields listed below. The value of the expression is formed by concaten­

ating the values of the constituent fields.

FIELD

$(ne)

t (string) 1

n(string)"

(ne)

;

%S{nel) (ne2)

%C(ne)

%P(ne)

%R{ne)

@(ne)

CORRESPONDING STRING

The string in dollar-line (ne)

(string) which may not contain f

(string) which may not contain 11

The value of (ne) converted to a string under

control of the current output format and radix

specificat ion.

Carriage-return and line-feed

Has no value. May be used as a separator to

resolve ambiguity.

The (nel)'th substring of line $(ne2).

The ASCII character fomed by taking the value

of (ne) modulo 128.

The program line (ne) - null if there is not one.

Change output radix to {ne)&15. Right pack field

with spaces normally, zeros if 32 added.

Initial value of radix corresponds to value of +10.

If (ne)/lOO = D, remainder W, then width of number

fomats is Wcharacters with D after decimal point.

Initial value of this parameter is picked up from

system variable QF.

2.3 Numeric Variables and Functions

A simple variable in MINSYS is a letter (other than Q or 0) or a

letter followed by a letter or digit. The letter ° is used as a unary

operator equivalent to lOt, i.eo O~ = 10,000. Names commencing with Q

are mainly used for system variables and functions. Q alone is a simple

variable but is used by MINSYS to hold return addresses and indicate the

start points of local environments in the stack. QO through Q9 are

ordinary simple variables - it is recommended that they be used as user

system variables.

Some of QA through Q2 are functions taking an argument whereas

others are system variables. Assignment is possible to the system

variables but not to the functions. The following table indicates the

role of the Q variables.

System Variables and Functions

QA Var: Modulus of remainder after division - valid only within

same command as division.

QB Var: Break character after 10.

QC

QD Var: Destination string for WITH, TO etc.

QE Var: Error code.

QF Var: Output format default"

QG Var: Garbage collection threshold

QH ne runc: ne = ° how much space left.

QI Var: String IF counter.

QJ

QK

QL ne Func: Length of $-line ne.

QM

~ ne Func: Next line after ne.

QO

QP Var: Pointer to source string.

QQ Var: 00 QQ executed after an error.

QR ne Func: Random number if ne = 0 It otherwise ne and reset random

generator from ne.

QS Var: Source string.

QT ne Func: Tally of number of bits that are 1 in ne.

QU

QV ne Function: System variable pointer:

ne = 0 pointer to system JSB

ne = 1 pointer to current job JSB

ne = 256*J + 1 pointer to JSB of job J.

ne = 256*J + l6*C + 2 pointer to CSB of job J

QW Var: Where we are - line number of current line.

QX ne Func: X-position of Itcarriagefl on channel ne.

QY ne Func: Y-position of "carriage" on channel ne.

QZ

channel C.

2.4 ARRAYS

A MINSYS array consists of a block of bytes in the stack referenced
~O

by a name consisting of a single letter other than Qj{note: the restriction

to 2~arrays is no hardship since array names are distinct from simple

variable names). Arrays are created dynamically by an array declaration

which sets up an array on the stack (regardless of whether one with the

same name already exists - as usual only the most recently created array

with a given name can be accessed)o Arrays are destroyed by operations

which remove environments from the stack. Hence arrays may be created

within local environments and destroyed when the local activity is terminated.

Arrays in MINSYS are used both as vectors or matrices of multi-byte

numbers, and also as record buffers for data transfers. To cater

effectively for all modes of use three types of array are provided:

(1) l-dimensional array of multi-byte elements e.g. A(I) is the 1'th

3-byte element of the array A of 3-byte elements (24-bit integers).

(2) 2-dimensional array of multi-byte elements eog. X(I,J) is the (1,J)'th

5-byte element of the array X of 5-byte elements (4o-bit integers).

(3) l-dimensional array of variable-length elements e.g. E(I,J) is a

J-~te element commencing at byte I of the array E (note: this is the

classical BASYS array type - it is that needed for record structures).

2.4.1 A~ay Declarations

Arrays are created by the ARRAY command:

ARRAY NAME NEl NE2 NE3

where the NAME is a letter naming the array; NEl is the length of the

array in bytes; NE2 is the element size in bytes (default value 1);

NE3 is the multiplier for two-dimensional arrays.

When the ARRAY command is executed a block of bytes of length

NEl + 6 is allocated at the top of stack. the name and parameters NEl

(Length L). NE2 (Element size E) t and NE3 (Multiplier, M) are placed in

its header block and the remaining elements are zeroed. NEl and NE2

are evaluated modulo 256 and no hounds check is made of them. In practice

the element-size can he between 1 and the cu~ent precision (maximum 8

bytes). The multiplier can be between 0 and 255 with zero being a coded

value signifying a l-dimensional array.

2.4.2 Array Access

An element within an a~ay block of length L is specified by a

pointer. p. in the range 0 to L-l. and a size, S. in the range 1 to 8.

There are two fonns of access to any array - single-subscript and double-

subscript. The subscript calculation perfonned in the double-subscript

case depends whether the array multiplier. M. is zero (indicating a 1-

dimensional a~ay) or not. The following table shows the calculation

for an array declared as ARRAY ALE M:

Access Multiplier Pointer Size Remarks
M P S

A(I) I*E E I-dimensional, fixed-
size elements

A(I,J) non-zero (I*M + J)*E E 2-dimensional. fixed-
size elements

AU,J) zero I J I-dimensional, variable-
size elements

2.4.3 The "Store-Array" Q

The array Q is a system array consisting of the core store of

the computero It may be regarded as an ordinary array of length 65k

with element size 1 and multiplier O. Hence Q(I) is the I'th byte of

the core. Q(I,J) is J bytes of the core commencing at the I'th byte.

Beware that these are treated as 2-s complement numbers and the "sign-

bit" extended. Mask out the top bits if necessary. Assignment to the

array Q is a privileged operation.

2.4.4 Array Notes

(a) Apart from the convenience of using A(ItJ) instead of

A«I*M + J)*E it E) to access a 2-dimensional arraYt the advantage of the

automatic subscript calculation is speed in that, with E and J each

restricted to l-byte, the multiplications are much faster as part of the

specific subscript calculation.

(b) The only bounds checking is on the final element specified -

subscript J can legally exceed M. This means that a 2-dimensional array

may also be accessed as a l-dimensional array. In particular A(I) and

A(O,I) are the same element o

(c) When the multiplier is zero the array may be accessed either as a

set of fixed-length items or as a set of variable-length items. In

particular if the element size is set to 1 (the default declaration ARRAY

A NE1) A(I) accesses a l-byte element starting at I and A(I,J) accesses

a J-byte element starting at I. Note that in the two-subscript accesses

with the multiplier zero the first subscript is ~ multiplied by the

element-length. This allows access on arbitrary byte boundaries.

(d) The declaration of a l-dimensional array of NE-byte elements is:

ARRAY N*E E.

(e) The declaration of a 2-dimensional array of N*M E-byte elements is:

ARRAY N*M*E M E.

(f) The restriction of the multiplier to the range 1 to 255 limits one

dimension of a two-dimensional array to this range. However, by using

either the matrix or its transpose this will never be a practical

limitation.

(g) Setting up reference variables to the elements of arrays is the

most rapid way of gaining access to them since the array hookup and

subscript calculation need be done only once when the reference is set up.

This is particularly useful in the case of record structures having a

number of fields of varying length in the same array.

2.5 Access to System Information

Most system information is accessed in MINSYS through the use

of expressions involving the array Q and system variable function QV.

Some of the expressions are cumbersome. but it is intended that they be

used only once by the user to set up a global reference variable giving

fast, simple access to those system variables that are relevant to his

applicat ion. The initialisation routines for any program suite will

set up these references.

The following list gives the main system variables. For a

complete guide see the "Multi-User Companion Programmers Guidett
•

2.5.1 Job Number

1 + QV1/32 is the current job number in the range 1 to 7.

20 5.2 Console Number

Q(QV2) is the current job console number (device on channel 0).

20 5.3 Time of DaX

Q(QVO + 19) Year -1900

Q(QVO + 18) Month -1 (0-11)

Q(QVO + 17) Day-of-month -1 (0-30)

Q(QVO + 16) Hours since midnight (0-23)

Q(QVO + 15) Minutes (0-59)

Q(QVO + 14) Seconds (0-59)

Note that this time information is arranged in ascending order in memory

so that a multi-byte "timet! can be extracted for records and for

comparisons if required. eog.

Q(QVO + 17.3) is a "date".

2.504 Other Time Information

Q{QVO + 20) Day of week (0-6, Monday-Sunday)

Q(QVO + 21,3)

Q(QVO + 24,2)

20 5.6 System Times

Q(QVO + 26,2)

Q(QVO + 28,4)

Time since midnight in sec/lOO

Day-within-year -1

System uptime in minutes

System nulltime in seC/lOO (CPU time not

used by users)

Q(QVl + 28,3) CPU time for this job in sec/lOO

Q(QV(256*J + 1) + 28,4) CPU time for job J in sec/lOO

Login time for this job in minutes

Q(QV(256*J + 1) + 26,2} Login time for job J in minutes

20507 Channel Status

3. SYNOPSIS OF MINSYS COMMANDS

3.1 Storage (null effect on execution)

$ (characters)

sets up a character string in the program line to be used

as a string variable.

[(characters)

sets up a character string for comments (the square bracket

replaces tREMt in BASYS).

3.2 Edit~and housekeeping

LIST (nel) (ne2) (ne3)

gives formatted listing on channel ne3 (default TTY) of program

lines nel through ne2.

ZERO (nel) (ne2)

deletes program lines nel through ne2.

CODE (se)

reacts to the string se as if it had been typed in during the key­

board edit phase - enables program to compile additional lines at

run-time.

GARB

collects garbage to maximize free space - normally done automatically

When free space goes below limit specified in QG.

3.3 Assignment

LET (namel) = (nel) (name2) = (ne2) etco

assigns the value nel to the numerical variable namel t etc.

If the "= (nel)" is omitted then namel is given the value zero t

etc.

LOCAL enamel) = (nel) (name2) = (ne2) etc.

assigns the value nel to the local variable namel etc.

If the "= (nel)" is omitted then namel is given the value zel'O.

etc.

ARRAY (letter) (nel) (ne2) (ne3)

sets up the array. letter. of length nel bytes. with elements

of size ne2. multiplier ne2 (for two-dimensional access). and

zel'OS its elements.

3.3 Assi?;nment

LET (assignmentl) (assignment2) etc

.... ,here an flssignment is either by v?l!Je:

(namel) = (nel)

which gives the simple vflri?hle, or array element, naMel, the
value nel.

Or the assi~nMent of a reference:

(n ar:1e 1) % (n arne 2)

where the simple variable, namel
set up as a new local variable
variable, or array element, name2.

(not an arr2Y element), is
referrin~ to the simole

Or a combination of these two:

(namel) % (name2) = (nel)

which gives the value nel to name2 and makes namel a reference
to name2.

Finally, there is the default assi~nment:

(namel)

\-J h i c has si?; n s the v a 1 I! e z e rot 0 n Cl m e 1.

LOCAL (assi?;nmentl) (assi~nment2) etc

is similar in its effect to LET but
local environment when setting up
assignment. Hence any new simple
110cal to the current REGP' block
block), and beCOMe non-existent on exit

ARRAY (letter) (nel) (ne2) (ne3)

only searches the current
a simple variClhle for

variables created will be
(orocenure or iteration
fro.., it.

sets up the
of size ne2
access); the
taken to be
array.

array, letter, of length neI bytes, with elements
bytes, and multipl ier ne3 (for two-dimensional
array elements are zeroed. If ne2 is zero it is
one. If ne3 is zero it signifies a I-diMensional

1

3.4 Conditionals

IF (ne)

continues execution of the line if the value ne is non-zero.

UNLESS (ne)

continues execution of the line if the value ne is zero.

Many other commands have implied conditionals and continue

execution of the line only if they have been performed satisfactorily.

ELSE

continues execution of the line if the previous conditional (except

ELSE/AND) did not.

continues execution of the line if the previous conditional (except

ELSE/AND) did so.

3.5 Transfer of Control

DO (ne)

executes program line ne - control returns to line following 00

commands. However, if line ne canmences with a BEGIN command

then this acts as procedure call passing control to block

commencing with begin (see next section).

GOTO (ne)

transfers control to line ne of program.

LOOP

transfers control back to the beginning of the current line (a

terminal colon is taken as :LOOP).

RUN (ne)

deletes simple variables and arrays, gives system variables default

values and transfers control to next line with number greater than

or equal to (ne).

STOP

stops execution and returns to keyboard edit mode.

EXIT

stops execution and CALLs standard system program.

BYE

stops execution and logs user off system.

3.6 Procedures and Iteration

BEGIN (namel) = (nel) (name2) = (ne2) etc.

puts the local variable Q, the environment marker. on the stack

and sets it equal to QW, the current line number. If then

assigns the expression nel to the local variable namel. etc ••

unless parameters have been passed to them by a DO statement.

If the "= (nel)" field is omitted namel is given the value zero

unless a parameter is passed to it, etc.

00 (nel) (parl) (par2) etco

unless line nel commences with a BEGIN command this executes line

nelo However. if a BEGIN block is entered by a DO the environ­

ment marker Q is set to the line number of the calling line and

the fields parl, par2, etc. are assigned to namel. name2, etco

in the BEGIN command is preference to any assignment in that

command (which therefore act as default values if no parameters

are passed - the default default-parameter when there is no

assignment is zero).

Parl, par2, etc. are either numeric expressions or are a percent

sign, %, followed by a simple variable or array element. The %

sign indicates a reference to the element passed.

BACK (ne)

if ne is omitted or ne is non-zero (e.go conditional expression

true) this causes the local environment back to and including the

m~ker Q to be cleared and control to be passed to the line at

Q + 1 (or next greater if there is none). Otherwise the command

has no effect. BACK is intended as a procedure return.

NEXT (ne)

if (ne) is omitted or ne is non-zero this causes control to be

passed to the line at Q + 1 (or next greater if there is none).

Otherwise it causes the environment to be cleared back to and

including the variable Q.

block controller.

NEXT is intended as an iterative

END

clears the environment back to and including the variable Q

(equivalent to NEXT 0). END is intended as an end-of-block

terminator fbr non-procedure, non-iterative, blocks.

3.7 String Operations

PUT (se)

sets up a source string $QS containing se and sets QP to zero.

AS $(ne) (se)

assigns ne to QD and sets up a destination string $QD containing

se.

WITH (se)

appends se to $QD.

FROM (template)

examines $QS from the QP'th character for the template - fails if

string does not start with template - otherwise advances QP to

point after part of string matching template.

SEEK (template)

runs through $QS from the QP'th character looking for template -

fails if not found - otherwise advances QP to point after part of

string matching template.

TO (template)

runs through $QS from the QP'th character looking for template -

fails if not found - otherwise advances QP to point after string

matching template and appends characters skipped over to $QD.

All three commands continue execution of the line if they succeed

but transfer to the following line if they fail (AND and ELSE may be used

to further test their success or failure). If they fail they have no

effect on QP or $QS.

A template consists of a succession of fields indicating matches

or changes to the command parameters. A template matches only if all

the successive fields match. The possible fields are:

% G (ne)

% F (ne)

(variable)

$ (ne)

"(string)"

or t (string) I

Get ne characters.

Set numeric input format - if ne is expressed as

100*D + R. input radix is R and number of decimal

places is D. Default initial setting is 10.

Any variable to which assignment is possible -

matches a numeric field which is:

(:ipacesJ 8-. '-, nuli) ~pace0 &igit~ ~ecimal poin!!

~igit~ - assigns any number found to the specified

variable using the current format.

Match the string in $ne.

Match the literal string.

3.8 Peripheral Transfers

All MINSYS peripheral transfers are mediated by the MINIC

operating system, Multi-User Companion (HUC - see HUC Guide). Input-output

takes place through numbered channels to each of which may be allocated a

physical device or a disc file. The channels are numbered from 0 to N

(normally 7). Channel 0 is reserved for the program control and editing

device, or job console. Channel 1 is used by default for various purposes

and is intended as a temporary device channel. The other channels are

freely available. MUC is designed such that an input-output console need

be allocated to only one channel.

3.8 0 1 Device Allocation

ALLOCATE ~ (nel) (ne2) (ne3)

assigns to channel nel (default is channel 1) the device whose number is ne20

The final field ne3 is an optional code which may be used to change line

characteristics, flush buffers, or release devices.

Note that a keyboard device allocated to a channel also

automatically makes its printer available as an ech%utput device on the

same channel. Hence the keyboard only of a teleprinter or typewriter need

be allocated to a channelo

3.8.2 Device Numbers

o - No device - 10 causes error return

1 - No device - 10 causes monitor return

2 - No device - 10 causes normal return (this is a throw-away channel)

64 - Paper tape reader

80 - Paper tape punch

96 - Keyboard

112 - Caroussel projector and lamps

32 - Console teleprinter keyboard

48 - Console teleprinter printer

33 - IBM typewriter keyboard

49 - IBM typewriter printer

34 - Modem keyboard

50 - Modem printer

30 8.3 Allocate codes

The interpretation of the final field, ne3, in the allocate

instruction is:

Value

o (or miss ing)

16

16 + J

256

512 + L

768 + L

102~*J + 768 + L

Meaning

Just perform allocation

Release device from this job

Release device from job J

Flush buffer of device

Set line characteristics of

device to L

Set line characteristics of

device to L and flush its buffer

as above but for job J

The line characteristics are a number in the range 0-255 made up

of sub-fields:

Sub-field

128

61+

32

Meaning

ECHO characters input on associated

printer - otherwise no echo.

ASCII - skip nulls, line-feeds and

200 octal, recognize rubout and

flush characters - otherwise image

mode in which all characters are input

CR-ECHO: Input devices - echo CR as

CRLr - otherwise do not echo CR at

all; Output devices - translate 200

octal into CRLr

Sub-field

16

8

4

2

1

Meaning

RESTART - recognize restart

characters from keyboard.

CONTROL-ECHO - echo characters

below 40 octal as + the

character + 100

AVAILABLE to other jobs

7-BIT - set top bit of characters

zero in block transfers

PARITY - generate even parity on

output - check parity on input

3.8.4 Transfers

PRINT ~(nel) (sel)

causes the string expression sel to be output to channel nel - default is

channel 0 ..

INPUT ::W (nel) ? (ne2) $ (ne3)

causes the string in $ ne2 to be output on channel nel (default string is

a colour, default channel is 0) and then a string to be input up to a

delimi ter (character between 1 and 40 octal except T N3, and special system

charac ters) • The value of the delimiter, or break character, is placed

in the system variable QB. The string input is put into $ ne3 or, if

this field is absent, then it is put into $ QS and QP is set to zero (ioe.

either input to any $-line or input sets up string as if a PUT statement

had been used).

WRITE * (nel) (letter)

block transfers the bytes in the array named letter out on channel nel

(default is channel 2).

READ 1Ar(nel) (letter)

inputs a block of bytes from channel nel (default is channel 3) into the

array named letter.

For both READ and WRITE commands the size of the block transferred

is that of the array.

The channel specification may be omitted normally when the standard

default channe13 are used. Additional input/output and supervisory

commands will exist for most systems since it has been the policy to

interface most operating system facilities directly to BASYS (with

suitable pratec. tion where necessary).

105 PRINT t FILE ERROR' STOP

llO

may be replaced by

100 INPUT $

105 ELSE : PRINT t FILE ERROR' STOP

llO

where the flow of control is easier to see and the program less

liable to errors in editing.

50 pur $6

52 FROM 'AB 1

54 AS $7

56 TO IKJ'

or, avoiding copying $6:

50 LETQS=6 QP = 0 : AS $7

52 FROM' AB' TO t KJ'

or as several other variants - the new command structure is

more flexible and allows both simple and complex decoding to

be written simply and naturally.

(d) System functions having arguments are treated as unary operators not

requiring parentheses, e.g. QT is the tally function, QT(X) is the

number of bits which are 1 in X - it may be written QTX.

(e) The format and radix specifications in string expressions apply to

the remaining expression not to the previous item, e.g. @6X ~ X@6.

(f) The comment "COMMAND" is left square bracket, [, .!!£! REM.

(g) The CLEAR command is called ZERO (this is only to maintain rule that

any command may be uniquely specified by first two letters).

(h) IF and UNLESS set a flag if they succeed (and continue execution) and

unset it if they fail (and go on to next line). This flag may be

tested by ELSE which succeeds if, and only if, the last IF/UNLESS

failed, and AND which succeeds if, and only if, the last IF/UNLESS

also succeeded. All other conditionals, such as the macro tests,

TO, FROM, SEER, and input/output commands, INPUT/PRINT, READ/WRITE,

set the flag if they succeed and unset it if they fail.

AND may be freely used to avoid trailing ooTO t s

e.g.

100 INPUT $ GOTO 110

ELSE and

DF8:MUBUL1.r48,44]

MINSYS USER BULLETIN 1
======================

(1) DISTRIBUTION LIST

PETER FACEY
JOHN GEDYE
TIM KENNEDY
LADISLAV KOHnUT
MALCOLM LEE
PETER WILLIAMS
KEITH WILLIAMSON

(2) STATUS OF MINSYS

12:28 HRS TUESDAY 9-JUL-?4 PAGE 1

4'TH JULY 1974

THE FIRST ISSUE OF MINSYS IS VERSION 1C WHICH RUNS UNDER MULTI­
USER COMPANION (MUC) USING THE FULLY BUFFERED ID FACILITIES. THIS IS A
~NGLE-USER VERSION OF MINSYS AND IS NOW SUBSTANTIALLY CO~PLETE BUT BY

NO MEANS FULLY TESTED.

INITIAL USERS WILL BE GUINEA PIGS - PLEASE KEEP TTY OUTPUT WHEN
BUGS OCCUR. MAKE NOTE IN LOG-BOOK AND COMPLAIN TO ME.

THIS BULLETIN WILL BE USED TO DOCUMENT UPDATES. KNOWN BUGS, AND
BUGS REMOVED,

MUC ITSELF IS ALSO AT PRELIMINARY ISSUE STAGE BUT BOTH PACKAGES ARE
NOW WORKING TO A LEVEL WHERE SERIOUS USE IS POSSIBLE.

(3) LOADING MINSYS

(A) FIRST LOAD THE APPROPRIATE MUC TAPE:-

UCH-MUC.BOT V1C FOR THE UCH SYSTEM

BP-MUC.BOT V1C FOR THE BP SYSTEM

(THE TAPES ARE IN TOP DRAW OF CABINET BY UCH SYSTEM)

~ESE HAVE TO BE BOOTSTRAPPED IN - PRESS 'IDLE' - KEY-IN BOOTSTRAP -
PRESS 'CLEAR-ALL' - PRESS 'RUN" WITH MUC TAPE IN FAST READER.

TAPE WILL LOAD AND PUT OUT MONITOR DOT ON TTY,

(8) NOW LOAD THE CURRENT MINSYS TAPE:-

MINSYS V1C,SBN

BY PLACING IN FAST READER AND TYPING 'L' TO MUC,

TAPE WILL LOAD AND PUT OUT MONITOR DOT ON TTY.

(C) NOW TYPE 'R' TO MUC TO START UP MINSYS.

MINSYS WILL RESPOND WITH GO-AHEAD (>) ON TTY.

YOU ARE NOW IN MINSYS EDIT MODE AND CAN PROCEED WITH MINSYS PROGRAMS.

DF8:MUBUL1. [48.44] 12:23 HRS TUESDAY 9-JUL-74 PAGE 2

(4) NORMAL STATE OF UCH SYSTEM

FOR CONVENIENCE. WE SHOULD TRY TO MAKE THE NORMAL STATE OF THE UCH
SYSTEM THAT THE LATEST VERSION OF MINSYS IS LOADED AND RUNNING. THIS

WILL 8E INOICATEO IN LOGBOOK AS 'MINSYS V1C UP'.

PLEASE ALWAYS FILL IN LOGBOOK AND NOTE ANY CRASHES.

(6) SPECIAL CHARACTERS

THE TTY IS CURRENTLY THE ONLY PROGRAMMING TERMINAL. IT IS OPEN
ON CHANNEL ZERO AND ITS CHARACTERISTICS ARE SET UP SO THAT:-

CONTROL-C CAUSES RETURN TO MONITOR (FROM WHICH 'R' RUNS MINSYS OR
'C' CONTINUES MINSYS PROGRAM INTERUPTED).

CONTROL-R RESTARTS MINSYS (NORMAL WAY OF GETTING OUT OF MINSYS
PROGRAM LOOPS).

CONTRoL-F TURNS OFF OUTPUT WHEN ON. OR ON WHEN OFF.

RUBOUT ERAZES LAST CHARACTER INPUT,

THERE IS NO ERAZE LINE FACILITY YET,

(6) SAVING AND LOADING MINSYS PROGRAMS

THE INTERIM FACILITIES FOR SAVING AND LOAOING MINSYS PROGRAMS ARE AS
FOLLOWS:

THE COMMAND 'TAPE' ALLOCATES THE FAST READER TO CHANNEL 4 AND THE FAST
PUNCH TO CHANNEL 5. INITIALIZING BOTH DEVICES FOR ASCII TRANSFERS &
CLEARING THEIR BUFFERS, IT MUST ALWAYS BE GIVEN BEFORE ANY USE OF PUNCH

OR READER IS ATTEMPTED. MUC INITIALIZES THESE DEVICES IN IMAGE MODE
AND STRANGE RESULTS WILL ENSUE CURRENTLY IF THE COMMAND 'TAPE' IS NOT
USED !

THE COMMAND 'LIST #5' ('LI#5') WILL PUNCH OUT THE MINSYS PROGRAM
CURRENTLY IN CORE WITH APPROPRIATE LEADER AND TRAILER.
(LIST #5 28 725 WILL PUNCH OUT LINES 28 THROUGH 725).

THE COMMAND" 'CALL #4' ('CAii4') WILL LOAD A MINSYS PROGRAM FROM A TAPE
CREATED RY A LIST #5 COMMAND.

(7) FACILITIES AVAILABLE

THE MINSYS 'PRELIMARY REFERENCE MANUAL' DATED 6TH MAY 1974 IS
SURSTANTIALLY CORRECT AND COMPLETE EXCEPT FOR A DESCRIPTION OF ID

FACILITIES WHICH WILL ISSUED SHORTLY. THE FOLLOWING NOTES LIST
UNIMPLEMENTEo FACILITIES AND KNOWN PROBLEMS:

(7.1) ARITHMETIC EXPRESSIONS

THREE OPERATORS ARE NOT IMPLEMENTED IN V1C AND ACT AS NULL OPERAT­
IONS:

THE SHIFT OPERATOR

o THE POWER OF 18 OPERATOR

DF8:MURUL1.[48,44] 12:27 HRS TUESDAY 9-JUL-74 PAGE 3

THE EXPONENIATION OPERATOR

IT IS NOT INTENDED TO IMPLEMENT THIS LAST OPERATION SINCE IT IS OF
LIMITED UTILITY IN FIXED-POINT ARITHMETIC. 0 GIVES POWERS OF 18
AND GIVES POWERS OF 2.

ALL OTHER ASPECTS OF ARITHMETIC EXPRESSIONS ARE IMPLEMENTED.
INCLUDING 2-D ARRAYS. REFERENCE VARIABLES, PARAMETER-PASSING, ETC.

(7.2) STRING EXPRESSIONS

%S. THE 'SYMBOL TABLE' LOOKUP. IS NOT IMPLEMENTED IN V1C.
OTHERWISE AS IN MANUAL.

(7.3) TAB COMMAND, QX & QY

THE TAB COMMAND & CARRIAGE POSITION POINTERS. QX & QY, ARE NOT
IMPLEMENTED IN V1C-

(7.4) OPERAND LENGTH

THE ARITHMETIC OPERAND LENGTH IS SET AT 5 BYTES, 48 BITS. IN V1C.
V1D WILL HAVE FACILITIES TO VARY THIS.

(7.4) FILE COMMANDS

THE COMMAND OPEN IS NOT YET FULLY IMPLEMENTED - IT OPERATES ONLY
WITH NON-FILE DEVICES (GIVING LEADER ON PUNCH).

FACILITIES TO DELETE AND RENAME FILES ARE ALSO NOT YET IMPLEMENTED.

(S) KNOWN BUGS

(S.1) THE PROGRAM COOING ROUTINE DOES NOT REMOVE SPACES BEFORE THE
COLON PRECEEDING A COMMAND. WHEN PROGRAMS ARE DUMPED AND RESTORED FROM

PAPER TAPE AN EXTRA SPACE GETS INSERTED. CAUSES NO ERRORS BUT UGLY
LISTINGS.

(S.2) %G IN 'TO' COMMAND NOT WORKING.

(8.3) UNDER SOME CONDITIONS ILLEGAL DATA STRUCTURES CAN CAUSE
GARBAGE COLLECTOR TO HANG UP. RELOAD MINSYS & RESTART. THIS IS
ONLY MAJOR PROBLEM ~ I HOPE TO PIN IT DOWN SHORTLY.

(8.4) 'REGIN' WITH NO PARAMETERS CAUSES AN ERROR. GIVE IT A DUMMY
PARAMETER IF YOU ARE PASSING NONE (EG BEGIN X).

