October 1969

MINIC |

Man-Machine Systems Laboratory

Department of Electrical Engineering
Science, 1

University of Essex,

MINIC I Prototype developed at University of Essex 1968-1969

Sumary

MINIC is a modular, microprogrammed minicomputer based on a set of
functional blocks which may be plugged into standard hiway racking to
form a range of specialised and general-purpose computers, controllers
and data-comunication systems.,

MINIC I consists of a set of MINIC modules which are microprogrammed
to behave as a general-purpose digital computer. This machine is byte-
orientated and the majority of instructions are 8 bits in length and
operate on one or more 8-bit "bytes" of data.

This machine includes eight programmer-visible 8~bit registers used
to hold operands and program and data pointers.

The instruction set of MINIC I enables programs to be executed and
data to be referenced in up to 65,536 words of core store. Operations
available include byte multiplication and division, half-word operations
for decimal arithmetic, and stack manipulation of the operand registers.
A change environmment instruction automatically saves the eight programmer-
visible registers on entering a new program, and may be executed by an
external device on the multi-level priority interrupt system. The 8-bit
input/output transfer instruction enables sixteen device channels to be
directly addressed, two 8-bit data or command words to be sent out, one
8-bit data word to be received, and a skip of up to 255 program steps to
be executed, within a simple instruction cycle.

MINIC T is intended as a base-level machine, general-purpose and
powerful in its own right, but capable of extension through the addition
of further microprogrammed routines for specialised functions., Facilities
are included for additional routines to be activated either through the
program, or through an external device., Thus the machine may be specialised
to act most effectively as a controller, signal processor, data-commmication |
system, or similar system, whilst retaining a standard general-purpose ‘
instruction set. A

This docurent is intended as a general inmtroduction and users' handbook
for a MINIC computer with the MINIC I micrcprogram.

7.

6.3

6.6

6.7

6.8

Rotate Instructions

3.1 Rotate X left (ITR 16, RXL)
3.2 Rotate X right (ITR 17 RXR)
3,3 Rotate double register XY left (ITR 20, RDL}
3.4 Rotate double register XY right (ITR 21, RDR)

Half-word Instructions

6.4.1 Exchange half words of X (ITR 27, EHX)
6.4.2 Unpack X and Y (ITR 31, WNP)

Sign Operations

6.5.1 Zero to sign of X (ITR 24, ZSX)
6.5.2 Unity to sign of X (ITR 25, USX)
6.5.3 Copy sign of X to all of X (ITR 26, ASX)

Push-down Operations

6.6.1 Push~down retaining X (ITR 22, PDX)
6.6.2 Push-down and clear X (ITR 23, CLX)

Logical Operations

6.7.1 Complement X (ITR 30, CMX)
6.7.2 AND Y to Z (ITR 32, AND)
6.7.3 EXCLUSIVE-OR Y to X (ITR 33, EOR)

Arithmetic Operations

8.1 Add X to YZ and circulate up (ITR 34, ADD)

.8.2 Subtract X from Y and circulate up (ITR 35, SUB)
.8.3 Multiply X by Y and add to Z (ITR 36, MUL)
.8,

6.
)
6
6.8,4 Divide ZY by X (ITR 37, DIV)

Compound Instructions

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

Load complement of literal to X (COM 0, LCX)

Double Unpack (COM 1, DUN)

Double AND (COM 2, DAN)

Double EXCLUSIVE-OR (COM 3, DEO)

Double Add (COM 4, DAD)

Double Subtract (COM 5, DSU)

Double Multiply (COM 5, DMU)

Double Divide (COM 7, DDI)

Load literal in E (COM 10, LIE)

Load literal in F (COM 11, LDF)

Load literal in G (COM 12, LDG)

AND X to literal and skip if zero (COM 13, ASX)

Increment in program page and skip if result is zero (COM 13, ISP)
Increment in data page and skip if result is zero (COM 14, ISD)
Extended instruction set (COM 16, EXT)

Change enviromment (COM 17, ENV)

MINIC SPECIFICATION

MINIC I INSTRUCTION SET

1. Introduction

MINIC I is a byte-orientated machine in which an 8-bit "byte" is
both the unit of data and of programming. The majority of instructions in
MINIC I are single-length and occupy one byte, All data operations which
can be specified operate on one or two bytes and produce a one or two byte

result, P

The range of instructions within the exceptionally short 8-bit word-
length of MINIC is made possible by the use of hardware indexing and
indirect addfessing techniques for access to structured data, together
with direct access to a small workspace. Double-length instructions are
also made available for special cases not covered by the standard address

techniques.

The data-structure addressing techniques are such that any ariﬂ‘metick
or logical operaticn on single byte words can be extended to multiple byte
words up to 256 bytes. Thus the machine may be thought of either as a
single-byte machine with an exceptionally compact instruction set, or a

variable word-length machine with an extremely flexible instruction set.

The power of MINIC I depends on the large number of hardware registers
accessible to the programmer together with its sophisticated micro-programmed
instruction set, The availability of a number of hardware registers is
matched by special instructions for loading the registers and Operatiﬁg on
them, such as the EXCHANGE ENVIRONMENT, instruction for moving between programs.

The following sections describe the pmgrarmaezbaccessible registers of

MINIC I, the instruction set of the machine and its input/output operations. -

Main Operand Register Program Page Pointer Program Word Pointer

PROGRAM COUNTER
G 7
Y
f 7 0 7 f
! 1 i 1 \ [3 i t | { [F i i ¥ [1 ¥] 1 T
Z G F
Auxiliary Operand Registers Data Page Pointer Data Word Pointer
OPERAND REGISTERS 0
lE’ T T 1
Data Word Offset
(From Table Lookup)

INDEX REGISTERS

Figure | Registers in MINIC |

2.5 The Core Store

With its capability of generating 16-bit addresses (as two bytes),
the MINIC T instruction set is able to control a 65,536 word core-store.
Since 4-bit, 8-bit, 12-bit (through "double word" load/store and jump
instructions) and 16-bit (through use of hardware registers) addresses may
be generated, it is convenient to divide the core into:

"blocks™ of 16 words

"pages" of 16 blocks, 256 words

"chapters" of of 16 pages, 256 blocks, 4036 words
The maximum size of core store is then 16 chapters, 256 pages, #096 blocks

65,536 words.

Since the double-length JUMP and JUMP to SUBROUTINE instructions
(Section 5) generate a twelve-bit address which, together with the upper
four bits of Q, gives a 16-bit instruction pointer, it is convenient to
think of these four bits of Q pointing to the current program chapter.
Similarly the double-length load/store instructions concatenate a 12-bit
address with the upper four bits of G which point to the current data

chapter.

The 256-word current program page pointed at by Q, and the 25$-word
current data page pointed at by G, are also natural units of storage in
MINIC I, since operations incrementing or adding to P, F and E do not
propagate carries into Q or G, and hence the program and data pages are
completely "circular". Thus, separate pages are not functionally’ related,

and contiguity of pages in either program or data chapters has no effect.

The zeroth block of the current program space is used as workspace,
and the zeroth block of the current data page is used as a table of indirect
addresses to that page. The block structure of MINIC is the ohly sub-
structure not fixed to power-of-two boundaries since in the JUMP RELA'I‘IVE

and LOAD/STORE INDEXED instructions carries are propagated from the lower

3.1. Instruction Formats and Mnenomics for Assembly Languages

Since each instruction in MINIC I is either a single
8-bit word, or two 8-bit words stored in consecutive locations the basic
representation of a MINIC program is a succession of 8~bit numbers., It is
convenient to represent these in octal notation separated by appropriate
delimiters, and translate these to 8-bit words by an assembly program.
Three alternative delimiters are accepted by the assemblers: carriage return,
newline or semicolon (3). Line feeds and spaces are ignored so that a
legible layout may be obtained. The assemblers convert the octal number to
binary taking the 8 least significant bits of the result as the instruction.
This is the zeroth-level representation of programs for MINIC I.

This basic representation is conveniently extended since, as
shown in Table 1, most instructions split naturally into two 4-bit fields, the
first field denoting the instruction type, and the second field having a variety
of interpretations. To take advantage of this, the assemblers may also accept
a two~component instruction format, consisting of two octal numbers separated by
a colon. The assemblers multiply the first component by 20 (octal) and add
the second, regarding the result as a octal number and converting to binary
as previously described. If no colon is present then the first component is
assumed to be absent, thus preserving compatibility with the zeroth level
representation. Because of the mode of interpretation of this instruction,
the second component can represent a 4-bit, 5-bit or greater length, field,
and hence the RELATIVE JUMP and INTER-REGISTER instructions are conveniently
represented. This is the first-level representation of programs for MINIC I.

The previous formats are conveniently extended by allowing
the octal number of a single-compenent instruction, or the first component
of a two-component instruction, to be represented by symbols. Three-
letter mnenomic symbols are used to represent the standard instruction set of
MINIC I. These are translated into octal numbers by the assemblers, and
then the previously described stages of assembly are entered. Because the symbols

The LOAD instruction causes the contents of the memory location
addressed to be copied into register X, the previous contents of X to be
loaded into register Y, and the previous contents ’cv>vf Y to be loaded into
register Z; that is, the stack is "pusheé down" and the previous cbntents
of Z are lost. The contents of the memory location addressed remain

unchanged.

The STORE instruction causes the contents of register X to be loaded
into the memory location addressed. The previous contents of register Y
are loaded into Xj the previous contents of register Z are';'loac}ed in Y3
and the previous contents of register X aré loaded into Z. That is, the
stack "pops up" and the contents of X circulate into Z. This circulation
is not a normal stéck operation, but is convenient in data handling, and -

is used in many inter-register operations.

4,2 Address Computation

There are four modes of address computation determined by the first

two bits of the address designated by the last six bits of the instruction:

4,2,1 Load and Store in Workspace (LIW and STW)

The first 16 words of the 256-word active program page pointed to
by register Q are allocated as "workspace" and may be addressed directly in

the workspace mode by the last four bits of instruction word.

4.,2.2 Load and Store Double (1DD and STD)

In the double~length instruction mode the word following the
instruction in the store is regarded as an 8-bit extension of the address
dencted by the last four bits of the instruction, giving an effective
12-bit address directly addressing any of the 4096 words in a “chapter"
of 16 x 256 word pages; this is the maximum size of core directly
addressable in MINIC I. The P register is incremented by one when a double-

length load/store is executed so that the extension word is skipped over.

be = 10: Indexed: address word j relative to word pointed at
by F in current data page
bc = 11: Table: address word pointed at by word j in block

zero current data page relative to E.

The mnenomic forms of the load and store instructions as given in
Table 1. They consist of the two letters, LD or ST for load and store
respectively, followed by the single letter, W, D, I or T, for workspace,

double, indexed or table respectively.

5, The JUMP Instructions

There are three modes of instruction for changing the sequence of a

program through a "jump":

5,1 Relative Junp (JMR)

In a relative jump the last five bits of the instruction are regarded
as a signed twos-complement number in the range (-16, +15) and are added
to contents of register P. Since P, at that time is pointingv to the next
instruction, this enables a relative jump to be made of wp to 16 steps for-
ward and 15 steps backward. No carry is propagated from P to Q so that
the current program page cannot be changed by a relative jump and is regairded

as circular.,

5.2 Double Jump (JMD)

In a double~length jump the last four bits of the instruction word are
loaded into the lower half of the Q register to select the new active
program page and the word following the instruction is loaded into the P
register to point to the next instruction in that page. Thus a trensfer to any
one of the 4096 words in the current progranﬁ chapter may be made through a
double~length jump.

5.3 Subroutine Jump (JMS)

A subroutine jump is identical in its mode of operation to a double

jump except that a pointer to the return address, in the form of a double

6., Inter-Register Instructions

There are 32 inter-register instructions in MINIC I,
involving no calls in the memory and performing interchange,
arithmetic and logical operations, and so on., The format of the
inter-register instructions is:

01 2 3 4 5 6 7
T 7T

o110 3

Inter-register instruction

From Table 1, it will be seen that the two-camponent
representation of these instructions is either:

o413 or
ITR:j

where j is an octal number in the range O through 37
denoting the instruction. Since each instruction is different and
distinctive in operation, they are also each given an individual 3-letter
menamic which forms a single component (see second example, Section 3.2);
Table 2 gives a complete listing of all inter-register instructions and
menomics. The instruction split naturally into sub-sets of a similar
type, and the exact operation of each instruction within a sub-set
is described in the following sections:

6.1 Skip Instructiocns.

6.2 Register Exchanges and Circulation.
6.3 Rotate Instructions. V
6.4 Half-Word Instructions.

6.5 Sign Operations.

6.6 Push-down Operations.

6.7 Logical Operations.

6.8 Arithmetic Operations.

TR Mnenomic Effect
Octal
33 ECR EXCLUSIVE =0R Y to X
34 ADD Add X to ZY and circulate up
35 SUB Subtract X from ZY and circulate up
36 MUL Multiply X by ¥ and add to Z
37 BIvV Divide ZY by X '

8.1, Skip Instruction

The skip instructions are used to change the sequence
of a program according to the state of operands. They cause P to be
incremented by 1 to skip over the following instruction if a certain
condition is satisfied, otherwise the next sequential instruction is
executed; no carries are propagated from P. Note that the following
instruction should be single-length if it is to be skipped ‘over correctly.
Skips may be combined with increment operations on registers E and F '
for use in loop testing and iteration through data structurés.

6.1.1. Skip if register X contains zero (ITR 0, SZ0O)

P is incremented by 1 if and only if the contents of
X are zero.

6.,1.2, Skip if register X does not contain zero (ITR 1, SNZ)

P is incremented by 1 if and only if the contents of X
are not zero.

6.1.3. Skip if X is positive (ITR 2,SPO)

P is incremented by 1 if and only if the most significant
bit of X, Xo’ is a zero. If X contains a number in twos-complement
notation, this implies that it is positive or zero.

6.2.3. Exchange X and F (ITR 6, EXF)

The contents of X are placed in F and the previous contents of

F are placed in X.

6.2.4. Exchange X and G (TTR 7, EXG)

The contents of X are placed in G and the previous contents
of G are placed in X.

The contents of F are placed in E and the previous contents
of E are placed in F. This instruction is used to enable
two E-type, or two F-type, pointers to be kept in E and F and
interchanged as required. It is used typically in indexing through
two data structures at different rates.

6.2.6. Exchange F and G (ITR 12, EFG)

The contents of T are placed in G and the previous contents of
G are placed in F. This instruction is used to access one of two
data pages, the active one being pointed to by G, the inactive one by F, and
the exchange operation being used to interchange them. It is used
typically in the interchange of data between pages.

8.2.7. Circulate up (ITR 10, cup)

This instruction causes the XYZ stack to pop up and the contents
of X to circulate round into Z. Its effect is that the contents of Z are
placed in Y, the previous contents of Y are placed in X, and the previous

contents of X are placed in Z.

one bit, so that bits of both words are shifted right one prsition, the
least significant bit of X circulates into the most significant |
position of Y, #nd the least significant bit of Y circulates into

the most significant position of X. |

6.4. Half-word Instructions

Two instructions enable the operand registers of MINIC to be
used as two 4-bit registers rather than a single 8-bit register. These
are used mainly in decimal arithmetic, binary/decimal conversion, and
operations on character codes.

6.4.1. Exchange half words of X (ITR 27, EHX)

The first four bits of X are interchanged with the last
four bits of X.

f.4,2, Unpack X and ¥ (ITR 31, UNP)

The last four bits of X are interchanged with the first four
bits of Y. This operation enables a two-digit BCD number in Y to be
split in half, and the two halves to be placed in the lower four bits of
Xand Y respectively. If X initially contains zero, a literal multiply by
10 (decimal) following the unpack converts the BCD number to binary.
If X initially contains 273 (octal) the two-digit BCD number is converted to
two ASCII characters in X and Y. Equally, two ASCII characters may be
packed by the same operation into two-digit BCD, and a binary number
may be converted to the same form by division followed by "unpack".

6.5. Sign Operations

In signed arithmetic, the sign of an operand is normally held in the
most significant bit of its most significant byte. The MINIC I instruction
set contains three operations relating to the most significant bit
of X, enabling it to be set, reset and copied into the whole of X.

6.7.1. Complement X (ITR 30, CMXD

The logical complement nf the operand in X is placed in X, so that
each bit of X that is zero becomes one and vice-versa.

6.7.2, AND ¥ to X (ITR 32, AND)

The logical AND function of the contents of X and Y is formed and
placed in X. Each bit of X becomes a one if and only if the corresponding
bits of X and Y were previously both ones.

6.7.3. EXCLUSIVE-OR Y to X (ITR 33, EOR)

The logical EXCLUSIVE-OR function of the contents of X and Y is
formed and placed in X. Each bit of X becomes a one if and only if the
corresponding bits of X and Y were previously not equal.

5.8, Arithmetic Operations

The four arithmetic operation of addition, subtraction, multipli-
cation, and division are available in MINIC I. TEach involves cne double-
length and one single-length operand, and hence uses all three operand
registers. The operands are taken to be unsigned integers, but equivalent
operations on signed numbers may be performed by using twos-complement or
sign-and-magnitude representations.

6.8.1. Add X to YZ and circulate up (ITR 34, ADD)

The unsigned 8-bit integer in X is added to the unsigned 16-bit
integer whose least significant half is in Y and whose most significant half
is in Z (no carry is propagated out of Z). The result is circulated up so
that the least significant half is in X, the most significant half is in Y,
and Z contains the criginal contents of X.

6.8.2. Subtract X from ¥ and circulate up (ITR 35, SUR)

The unsigned 8-bit integer in X is subtracted from the unsigned
16-bit integer whose least significant byte is in Y and whose most signi-
ficant byte is in Z (no borrow is propagated‘out of Z2). The result is
circulated up so that the least significant byte is in X, the most sighi-
ficant byte is in Y, and Z contains the original contents of X.

Where j is an octal number in the range 0O

through 17 denoting the instruction. As with

the inter-register instructions, each compound
instruction is given an individual 3-letter
mnenomic which forms a single component preceeding

the litersl double-word extension.

Seven of the compound instructions are
literal argument forms of the inter-register,
add, subtract, multiply, divicde, and,
exclusive-or, unpack, and are eqguivalent to
"load X with the literal constant, pushing down
the wrevious contents of X into Y, and the
previous contents of Y into Z", followed by the
inter-register instruction. The other compound
instructions give literal loading of X, E, T '
and G, "increment-and-skip" overations to words
in core, mask and skip operations to test bits of
¥, extensions cf the instruction set, and a
complete change of the 8-register current

environment.

Table 3 lists the sixteen compound
instructions, their octal formats, and
mnenorics. The following sections describe the
operation of the instructions in detail,
except for the exchange environment instructions
which are described separately in

Section 9.

7.1. Load complement of literal to X (COM O, LCX)

The 8-bit literal byte of the compound instruction is
complemented and loaded into the X register. The previous
contents of X are placed in Y, and the previous contents of Y
are placed in Z; the previous contents of 7 are lost. This
instruction is intended to be used as a literal load of X, and the
complementation is purely fortuitous, a convenience in the micro-

program.

7.2. Touble unpack (COM 1, DUN)

The 8-bit byte of the compound instruction is locaded into the
X register, pushing down the previous contents of X into Y, and
those of Y into Z. The lower half of the contents of X is then
exchanged with the upper half of the contents of Y. This instruction
is used for binary/decimal operations and character manipulation as
described in Section 6.4.2, for example, the double length
instruction:

DUN
273

expands a two-digit BCD number in ¥ to two corresponding
ASCII characters in X and Y.

7,3. Double AND (COM 2, DAN)

The 8-bit literal byte of the compound instruction is
loaded into the X register, pushing down the contents of X into Y,
and those of Y into 2. The logical AND function is taken between
the contents of X and Y, and the result is placed in X.

7.4, Double EXCLUSIVE-CR (COM 3, TEO)

The 8-bit literal byte of the compound instruction is loaded
into the X register, pushing down the previous content of X into Y, and
those of Y into Z. The logical EXCLUSIVE-OR function is taken between
the contents of X and Y, and the result is placed in X.

7.11. load literal in G (COM 12, LDG)

The 8-bit literal byte of the compound instruction is loaded

intc register G.

7.12. AND X to literal and skip if zero (COM 13, ASX)

The logical AND function of the contents of the X register
and the 8-bit literal byte of the compound instruction is formed. The
contents of register P are incremented by 1 if the result is zero. Note
that no registers except P are affected by this operation. The instruction
is used to test whether bits of the word in X are set.

7.13. Increment in program page and skip if result is zero (COM 13, ISP)

The 8-bit literal byte is taken as a pointer to a word
in the current program page, pointed at by Q. The contents of this
memory location are incremented by 1, and the contents of P are also
incremented by 1 if the result is zero.

7.14. Increment in data page and skip if result is zero (COM 14, ISD)

The 8-bit literal byte is taken as a pointer to a word in
the current data page, pointed at by G. The contents of this memory
locaticon are incremented by 1, and the contents of P are also incremented by
1 if the result is zero.

7.15 Extended instruction set (COM 16, EXT)

This instruction performs no operation in the 128-step micro-
program basic version of MINIC I. It is used to control extensions
of the microprogram, for example, to drive a dise, synchronous line,
or other high-speed peripheral. It may be used to implement families
of special-purpose instructions, and may itself be extended to triple,
or greater, length. This facility enables extensions of MINIC I to
be downwards compatible with MINIC I and to use the full MINIC I pro-
gram and subroutine library. Section 9 contains a specification of
the operation of this instruction

8. Input/Output Instructions

The input-output system of MINIC I is hiway structured with separate
8-bit input and ocutput data hiways and three control lines. The chamnel
address is carried on the output hiway, and in a single-length input-output
instruction 16 channels may be addressed. 0Nn execution of an IOT instruction,
data may be output from the X and Y registers, data may be input to the X
register, and any number of instructions may be conditionally skipped. The
same input-output hiways are also used for the interrupt system, the key and
lamp console, and for operation of fast peripherals, such as discs, under
micro-program control. The input-output hiways are buffered extensions of
internal hiways and operate synchronously at the main clock rate of the com-
puter (nominally 2Hz). |

8.1 Input and output hiways and control lines

The 8-bit input hiway, IN, of MINIC I consists of 8 lines which are
normally high corresponding to zero data, and may be pulled low by external
devices to signify one data, In an IOT instruction data coming in on this
hiway may be read into register X, added to the program word pointer P to
cause a skip, or used under interrupt control as the environment pointer to
an EXCHANGE ENVIRONMENT compound instruction. The 8-bit output hiway, OUT, -
of MINIC I consists of 16 lines driven by internal bus drivers, 8 in the
normal sense that high corresponds to one data, and low corresponds to zero
data, and 8 in the inverse sensej the availability of both senses of output
is particularly useful in device address decoding. In an IOT instruction
data on the OUT bus may be a device channel address, or the contents of
registers X or Y.

The three control lines in MINIC are MICRORUPT input, HESITATE input,
and I0 output. The MICRORUPT line is used to interrupt the instruction
sequence of the main program, and is a single-wire hiway which is normally
high. When the MICRORUPT is pulled low the current instruction is completed
and, instead of fetching the next, the micro-program enters a sequence in
which it addresses the interrupt system on OUT, inputs a word on IN, and exe-
cutes an EXCHANGE ENVIRONMENT instruction using this word as the environment
pointer. Input/output instructions cannot be interrupted in this way. The
HESITATE line is another single-wire hiway used to freeze the microprogram
for synchronization purposes when working with fast peripherals. The I0 line

8.3 Device Control Logic

Figure 3 is a block diagram of the device control logic for a device
which receives data or comands, causes a skip, and interchanges data, all
in one IOT instruction cycle. Often only cone or two of these operations
will be performed, and only part of the device control logic will be required.

The "Device Address Detection Gates" effectively form a S-way AND gate
whose output is ON only when the IO line is ON and a prescribed 8-bit address
is present on the OUT hiway. The output from this gate drives a 3-bit shift-
register whose delayed outputs provide strobing levels corresponding to:

(1) Data available from X - the R’E;ADYl line is activated to gate
data or commands on the OUT bus into a device register.

(2) Increment program counter - a set of bus gates, the "skip

generate gates", corresponding to the increment required, are
driven to pull down the IN hiway according to the increment
required, It is possible for a single device to have several
sets of "skip generate gates" driven by different SKIP lines,
according to conditions in the device.

(3) Data input to X - The READY,) line is activated to gate data
on the OUT bus into a device register and data from the
device is gated onto the IN hiway through a set of bus gates.

8.4 Format of Input/Output Instructions

The format of the input/output instructions is:

0 1 2 3 4 5 6 7
¥ i ¥t

011 (1 i

Input/Output Instructions
where j is the channel number of the external device.

The whole instruction is actually transmitted as the channel address
so that out of the 256 device channels, those from 160 (octal) through 177
(octal) may be addressed by an IOT instruction. The other chamnels are
accessible only through the microprogram, for example in interrupt and
halt operations, although the number of directly accessible chamnels may
be increased by appropriate use of the EXTend compound instruction (Section
7.16). Normally these other input/output chamnels will be used with special
peripheral control microprograms,such as disc interfaces, direct memory

access channels, and so on,

3. Change Enviromment, Idle and Extended Instructions

The double-length CHANGE ENVIRONMENT instruction described in Section
7.16 is the software form of the response to an external intémpt in
MINIC I. When the MICRORUPT input hiway is pulled low by some device on the
input~ocutput hiway, execution of the current instruction is completed and
the word on the IN hiway is taken to be the double-word extension of a-
CHIANGE ENVIRONMENT instruction. Execution of this instruction enables the
computer to enter IDLE or PAUSE states, to change to a new program environ-
ment, or to enter a procedure in the microprogram extension, all under the
control of the external device. The following sections describe in detail
the effect of interrupts, the "change enviromment" operation, the action of
the computer when it "pauses" or "idles", and the extension of the micro-
program. |

9,1 Interrupts

The MICRORUPT line may be pulled to ground at any time but no action is
taken by the computer until execution of the current instruction is completed,
or, if the instruction is an IOT, until execution of the following instru-
ction is completed. At the completion of the current instruction cycle, the
I0 line comes on and the interrupt system device address (157) is put out on
the OUT hiway. This signifies that the computer is ready to service the
interrupt and is used to read-in the new environment specification, reset
interrupt masks, and so on. At the end of the following clock interval the
word on the IN hiway is read into the computer and a CHANGE ENVIRONMENT
instruction is executed taking the word read in as the double-length extension
of this instruction.

The interrupt system itself consists of flip-flops set by external
devices to call for an interrupt, and associated flip-flops set up by the
programmer through IOT instructions to enable or disable particular inter-
rupt channels. The interrupt system hardware itself has priority logié
built-in to prevent two chamnels putting in environment information at the
same time. However, this effectively only allocates priority within an
instruction cycle, and the main control over priority of interrupts is
through the programmer-set enable/disable mask.

9.3 Microprogram Extension

When a change enviromment to 377 (binary change enviroment_ extension
word 11 11 11 11) is executed or caused by an external interrupt, if an
extension to the 128-word microprogram of the basic MINIC I is present,
then control is transferred to the first word. (locatio.nv200" (octal)) of
the microprogram extension. If there is no extension to ‘the microprogram
then the effect of this instruction is the same as that of change environ-
ment to zero (i.e. computer enters PAUSE or IDLE states).

Similarly when the EXT instruction of Section 7.15 is. exemrt:ed, ifa B
microprogram extension is present control is transferred to its second
word (location 201 (octal)). Otherwise the effect of the instruction is
" that no operation takes place. - | | "

Either of these instructions may be uéed to enter prooedures in the
microprogram extension, and, in particular the change envirorment to 377
instruction may be used by a peripheral device, such as d:.sc, or autmanous-
transfer channel, to call peripheral control Dmgrams assoclated with the
device. '

()

(e)

(d)

(e)

)

(1)

()

(k)

Data keys to set up an 8-bit word to be deposited in

memory or in one of the 8 programmer-visible registers.
;E__X;a mi ne key to display in the memory data register the
contents of the core location addressed by the memory

address keys.

Deposit key to store the setting of the data keys in the
core location add ressed by the memory address keys.

Set key to store the setting of the data keys into a
selected programer-visible register .

RFun key to initiate execution of a stored program.

Idle/pause key to stop execution of a stored program and
display the contents of the hardware registers.

Reset key to reset all internal hardware registers to zero.
10 reset key to initialise all input/output devices.

Reg ister select switch to select which of the registers,
X, ¥, Z, E, F, G, P, Q, is dis played on the register

dis play, and set into by depression of the set key.

Mode select switch to select the single-instruction, id le,
pause, or pause=-and-set, modes of the computer. In the single-
inst ruction mode, the computer is in the idle state and
depression of the run key causes one instruction to be

exe cuted, and then the computer re-enters the idle state’
(since input/output instructions cannot be interrupted, the
computer will not stop immediately after an IOT instruction
and hence more than one instruction may be executed if an
I0T is involved). In the idle mode execution of a change to
enviromment zero instruction or depression of the idle/pause
key causes the computer to enter the idle state in which the
contents of registers are displayed and data may be set into

