
Octo be r 1969

MINIC I

Man-Machine Systems Laboratory'

Department of Electrical Engineering
Science,

University of Essex.

	

	

MINIC I Prototype developed at University of Essex 1968-1969

t1INIC is a rrodular, microprograrrmed minicomputer based on a set of

functional blocks which may be plugged into standaro hiway racking to

form a range of specialised and general-purpose computers, controllers

and data-camnunication systems.

11INIC I consists of a set of HINIC modules which are microprograrrmed

to behave as a general-purpose digital computer. This machine is byte­

orientated and the majority of instructions are 8 bits in length and

operate on one or more 8-bit "bytes tt of data.

This machine includes eight progra:rraner-visible 8-bit registers used

to hold operands and progt'am and data pointers.

The instruction set of MLNIC I enables programs to be executed and

data to be referenced in up to 65,536 words of core store. Operations

available include byte multiplication and division, half-word operations

for decimal arithmetic, and stack manipulation of the operand registers.

A change environment instruction automatically saves the eight progt'a!IlIIer­

visible registers on entering a new program, and may be executed by an

external device on the multi-level priority interrupt system. The 8-bit

input/output transfer instruction enables sixteen device channels to be

directly addressed, two 8-bit data or command words to be sent out, one

8-bit data word to be received, and a skip of up to 255 program. steps to

be executed, ~"j'i thin a simple instruction cycle.

r1INIC I is intended as a base-level machine, general-purpose and

pa.verful in its ovm right, but capable of extension through the addition

of furt~er microprograrnmed routines for specialised functions. Facilities

are included for additional routines to be activated either through the

program, or throug,'1 an external device. Thus the machine may be specialised

to act most effectively as a controller, signal processor, ctata-ccmnunication

system, or similar system, whilst retaining a standaro general-purpose

instruction set.

This dOCtU'rent 1.8 intended as a general introduction and users' handbook

for a HINIC computer with the MINIC I microprogram.

6.3 Rotate Instructions

6.3.1 Rotate X left (ITR 16 t RXL)
6.3.2 Rotate X right (ITR 17, RXR) .
6.3.3 Rotate double register)Cf left (ITR 20, RDL)
6.3.4 Rotate double register)Cf right (ITR 21, RDR)

6.4 Half-word Instructions

6.4.1 Exchange half words of X (ITR 27, EIDO
6.4.2 Unp3.ck X and Y (ITR 31, UNP)

6.5 Sign Operations

6.5.1 Zero to sign of X (ITR 24, ZSX)
6.5.2 Unity to sign of X (ITR 25, USX)
6.5.3 Copy sign of X to all of X (ITR 26, ASX)

6 .6 Push-down Operations

6.6.1 Push-down n:taining X (ITR 22, PDX)
6.6.2 Push-down and clear X (ITR 23, CLX)

6.7 Logical Operations

6.7.1 Complement X (ITR 30, CMX)
6.7.2 AND Y to Z (ITR 32, AND)
6.7.3 EXCLUSIVE-OR Y to X (ITR 33, EOR)

6.8 Ari thmetic Operations

6.8 .1 Add X to yz and circulate up (ITR 34, ADD)
6.8.2 Subtract X from Y and circulate up (ITR 35, SUB)
6.8.3 Multiply X by Y and add to Z (ITR 36, MUL)
6.8.4 Divide ZY by X (ITR 37, DIV)

7. Compound Instructions .
7.1 Load complernent of literal to X (COM 0, L.oO

7.2 Ibuble Unpack (COM 1, run
7.3 rouble AND (COM 2, nAN)

7.4 rouble EXCLUSIVE-OR (COM 3, DEO)

7.5 Double Add (COM 4, DAD)

7 .6 I:ouble Subtract (COM 5 t Il3U)

7.7 rouble Multiply (COM 5, DMU)

7.8 I:ouble Divide (COM 7, DDI)

7.9 Load literal in E (COM 10, LDE)

7.10 wad 1 i teral in F (COM 11, LDF)

7 .11 Load 1 i teral in G (COM 12, l..J)3)

7.12 AND X to literal and skip if zero (COM 13, ASX)

7.13 Increrrent in program page and skip if result is zero (COM 13, ISP)

7.14 Increment in data page and skip if result is zero (COM l~, ISm

7.15 Extended instruction set (COM 16, 00')

7.16 Change envirornnent (COM 17. ENV)

MINIC SPECIFI CATION

MINIC I INSTRUCTION SET

1. Introduction

MINIC I is a byte-orientated machine in which an 8-bit ''byte'' is

both the unit of data and of programming. The majority of instructions in

MINIC I are single-length and occupy one byte. All data operations which

can be specified operate on one or two bytes and produce a one or two byte

result.

The range of instructions within the exoeptionally short 8-bi t word­

length of MINIC is made possible by the use of hardware indexing and

indirect addressing techniques for access to structured data, togejzher

with direct access to a small wotkspace. Double-length instructions are

also made available for special ca~ not cO'Vered by the standard address

techniques.

The data-structure addressing techniques are such that any ari t:hrretic

or logical operation on single byte words can be extended to multiple byte

words up to 256 bytes. Thus the machine may be thought of either as a

single-byte machine with an exceptionally compact instruction set, or a

variable word-length machine with an extrenely flexible instruction set.

The power of MINIC I depends on the large . number of hardware registers

accessible to the programner together with its sophisticated micro-p:rogramred

instruction set. The availability of a number of hardware registers is

matched by special instructions for loading the registers and operating .on

the.m, such as the EXaIANGE ENVIRONMENT, instruction for moving between programs.

The following sections describe the programmer-accessible registers of

MINIC I, the instruction set of the machine and its input/output operations.

o 7 0 7 0 7
, j

x I
I I I I !

I

I , I I :

1 Q
J

P

Main Operand Register Program Page Pointer Program Word Pointer

o 7
PROGRAM COUNTER

, , 11 1
'-----_v _-_,-'

o 7 o 7
I I • I z' I

G

Auxiliary Operand Registers Data Page Pointer Data Word Poi nter

OPERAND REG I STERS o 7 I' I 'E' I I I]

Data Word Offset
(From Table Lookup)

INDEX REG I STERS

Figure 1 Registers in MINIC I

2 .5 The Core Store

Wi th i ts capability of generating 16-bi t addresses (as two bytes),

the MINIC I instruction set is able to control a 65,536 word core-store.

Since 4-bit, 8-bit, 12-bit (through "double word" load/store and jump

instructions) and l6-bit (through use of haro-ware registers) ad~sses may

be generated, it is convenient to divide the core into:

''blocks'' of 16 words

"pages" of 16 blocks, 256 words

"chapters" of of 16 pages, 256 blocks, 4096 words

The rnaximun size of core store is then 16 chapters, 256 pages, 4096 blocks

65,536 words.

Since the double-length JUMP and JUMP to SUBROUTINE instructions

(Section 5) generate a twelve-bit address which, together with the upper

four bits of Q, gives a l6-bit instruction pointer, it is convenient to

think of these four bits of Q pointing to the current program chapter.

Similarly the double-length load/store instructions concatenate a l2-bit

address with the upper four bits of G which point to the c~nt data

chapter.

The 256-word current program page pointed at by Q, and the 256-word

current data page pointed at by G, are also natural units of storage in

MINIC I, since operations incrementing or adding to P, F and E do not

propagate carries into Q or G, .:mu h(#l1ce the program and data pages are

completely "circular". Thus, separate pages are not ftmctionally related,

and contiguity of pages in either program or data chapters has no effect.

The zeroth block of the current program space is used as worl<space,

and the zeroth block of the current data page is used as a table of indirect

addresses to that page. The block structure of MINIC is the only sub­

structure not fixed to power-of-two ootmdari.es since in the JUMP FELATIVE

and WAD/STOFE INDEXED instructions carries are propagated flxm t'1e lower

3.1. Instruction Formats and Mnenomics for Assembly languages

Since each instruction in MINI C I is either a single

8-bit word. or two 8-bit words stored in consecutive locations the basic

representation of a l'ITNIC program is a succession of 8-bi t numbers. It is

convenient to represent these in octal notation separated by appropriate

delimi ters, and tmnslate these to 8-bi t words by an assembly program.

Three alternative delimiters are accepted by the assemblers: carriage return.

newline or semicolon (;). Line feeds and spaces are ignored so that a

legible layout may be obtained. The assemblers convert the octal number to

binary taking the 8 least significant bits of the result as the instruction.

This is the zeroth-level representation of programs for MINIC I.

This basic representation is conveniently extended since, as

ShCMTl in Table 1 t most instructions split naturally into two 4-bi t fields, the

first field denoting the instruction type, and the second field having a variety

of interpretations. To take advantage of this, the assemblers may also accept

a two-component instruction fonnat, consisting of two octal numbers separated by

a colon. The assemblers multiply the first component by 20 (octal) and add

the second, regarding the result as a octal number and converting to binary

as previously described. If no colon is present then the first component is

assumed to be absent , thus preserving compatibility with the zeroth level

representation. Because of the mode of interpretation of this instruction,

the second component can represent a 4-bit, 5-bit or greater length, field,

and hence the RELATIVE JUMP and INTER-REGISTER instructions are conveniently

represented. This is the first-level representation of programs for MINIC I.

The previous formats are conveniently extended by allCMing

the octal number of a, single-component instruction, or the first canponent

of a two-component instruction, to be represented by symbols. 'Three-

letter mnenomic symbols are used to represent the standard instruction set of

MINIC I. These are translated into octal numbers by the assemblers, and

then the previously described stages of assembly are entered. Because the symbols

The LOAD instruction causes the contents of the memory location

addressed to be copied into register X, the previous contents of X to be

loaded into register Y, and the previous contents of Y to be loaded into

register Z; that is, the stack is "pushed down n and 't1\e previous contents

of Z are lost. The contents of the memory location addressed remain

unchanged.

The STORE instruction causes the contenta of register X to be loaded

into the memory location addressed. The previous contents of register Y

are loaded into X; the previous contents of register Z are loaded in Y;

and the previous contents of register X are loaded into Z. That is, the

stack "pops up" and the contents of X circulate into Z. This circulation

is not a nonnal stack operation, but is convenient in data handling, and

is used in many inter-register operations.

~.2 Address Computation

There are four modes of address ccmputation determined by the first

two bits of the address designated by the last six bits of the instruction:

~ .2.1 lead and Store in Worl<space (LIltJ and S'IW)

The first 16 words of the 256-word active program page pointed to

by register Q are allocated as ''workspace'' and may be addressed directly in

the workspace mode by the last four bits of instruction word.

~ • 2 .2 load and Store J)::)uble (LDD and STD)

In the double-length instruction mode the word following the

instruction in the store is regarded as an 8-bi t extension of the address

(~moted by the last follY' bits of the instruction, giving an effective

12-bi t address directly addressing any of the ~096 words in a tlchapter1f

of 16 x 256 word pages; this is the maximum size of core directly

addressable in t1INIC I. The P register is incremented by one when a double­

length load/store is executed so that the extension word is skipped over.

bc = 10:

be = 11:

Indexed: address word j relative to word pointed at
by F in current data page

Table: address word pointed at by word j in block
zero current data page relative to E.

The mnenomic fonns of the load and store instructions as given in

Table 1. They consist of the two letters, LD or ST for load and store

respectivelYt followed by the single letter.. W, D, I or Tt for workspace,

double t indexed or table respectively.

5. The JUMP Instructions

There are three modes of instruction for changing the sequence of a

program through a "jump":

. 5.1 Relative Jump (,]MR)

In a relative jump the last five bits of the instruction are regaz'lded

as a signed twos-ccrnplement number in the range (-16, +15) and are added

to contents of register P. Since P, at that time is pointing to the next

instruction, this enables a relative jump to be made of'tap to 16 steps fo~

ward and 15 steps backward. No carry is propagated fran P to Q so that

the current program page cannot be changed by a relative junp and is regarded

as circular.

5.2 1):)uble JUJl'tD (JMD)

In a double-length jump the last four bits of the instruction word are

loaded into the lCMer half of the Q register to select the new active

program page and the word following the instruction is loaded into the P

register to point to the next instruction in that page. Thus a transfer TO any

one of the 4096 words in the cur.rent program chapter may be made thro~h a

double-length jump.

5.3 Subroutine Jump (JMS)

A subroutine jump is identical in its mode of operation to a double

jump except that a pointer to the return address, in the form of a double

6. Inter-Register Instructions

There are 32 inter-register instructions in MINIe I,

involving no calls in the memory and performing interchange,

ari tlunetic and logical operations, and so on. The format of the

inter-register instructions is:

o I 2 345 6 7

Inter-register instruction

From Table It it will be seen that the two-canponent

representation of these instructions is either:

04:j or

ITR:j

where j is an octal number in the range 0 through 37

denoting the instruction. Since each instruction is different and

distinctive in operation, they are also each given an individual 3-letter

mnenanic which forms a single canponent (see second example, Section 3.2);

Table 2 gives a canplete listing of all inter-register instructions and

mnenanics. The instruction split naturally into sub-sets of a similar

type, and the exact operation of each instruction within a sub-set

is described in the following sections:

6.1 Skip Instructions.

6.2 Register Exchanges and Circulation.

6.3 Rotate Instructions.

6.4 Half-Word Instructions.

6.5 Sign Operations.

6.6 Push-down Operations.

6.7 Logical Operations.

6.8 Arithmetic Operations.

-
ITR Hnenomic Effect

Octal

33 EOR EXCWSI'IE -OR Y to X

34 ADD Md X to ZY and circulate up

35 SUB Subtract X from ZY and circulate up

36 MUL Multiply X by Y and add to Z

37 DIV Divide ZY by X

6.1. Skip Instruction

The skip instructions are used to change the sequence

of a program according to the state of operands. They cause P ~o be

incremented by 1 to skip over the following instruction if a certain

condi tion is satisfied, otherwise the next sequential instruction is

executed; no carries are propagated from P. Note that the follcw.i.ng

instruction should be single-length if it is to be skipped over correctly.

Skips may be combined with increment operations on registers E and F

for use in loop testing and iteration through data structu:r:"es.

6.1.1. Skip if register X contains zero (ITR 0, 8Z0)

P is incremented by 1 if and only if the contents of

X are zero.

6.1.2. Skip if register X does not contain zero CITR 1, SNZ)

P is incremented by 1 if and only if the contents of X

are not zero.

6.1.3. Skip if X is positive (ITR 2,SPO)

P is incremented by 1 if and only if the most significant

bit of X, Xo' is a zero. If X contains a number in twos-ccmplenvmt

notation, this implies that it is positive or zero.

6.2.3. Exchanee X and F (ITR 6, EXF)

The contents of X are placed in F and the previous contents of

F are placed in X.

6.2.4. Exchange X and G (ITR 7, EXG)

The contents of X are placed in G and the previous contents

of G are placed in X.

6.2.5. Exchange F and E (ITR 14, EFE)

The contents of F are placed in E and tP£ previous contents

of E are placed in F. This instruction is used to enable

two E-type, or two r-type, pointers to be kept in E and F and .

interchanged as required. It is used typically in indexing through

two data structures at different rates.

6.2.6. ExChange rand G (ITR 12, EFG)

The contents of r are placed in G and the previous contents of

G are placed in F. This instruction is used to access one of ~

data pages, the active one being pointed to by G, the inactive one by r, and

the exchange operation being used to interchange them. It is used

typically in the interchange of data between pages.

6.2.7. Circulate up (ITR .10, QlP)

This instruction causes the XYZ stack to pop up and the contents

of X to circulate round into Z. Its effect is that the contents of Z are

placed in Y, the previous contents of Y are placed in X, and the previous

contents of X are placed in Z.

one bit, so that bits of both words are shifted right one ~ition, the

least significant bit of X circulates into the most significant

position of Y, -E'nd the least significant bit of Y circulates into

the most significant position of X.

6.4. Half-word Instructions

Two instructions enable the operand registers of MINIC to be

used as two 4-bit registers rather than a single 8-bit register. These

are used mainly in decimal arithmetic, binary/decimal conversion, and

operations on character codes.

6.4.1. Exchange half woros of X (ITR 271 EHiO

The first four bits of X are interchanged with the last

four bits of X.

6.4.2. Unpack X and Y (ITR 31, UNP)

'!he last four bits of X are interchanged with the first four

bi ts of Y. This o:peration enables a two-digi t BCD number in Y to be

spli t in half, and the two halves to be placed in the looer four bits of

X and Y respectively. If X initially contains zero, a literal multiply by

10 (decimal) following the unpack converts the BCD number to binary.

If X initially contains 273 (octal) the two-digit BCD number is converted to

two ASCII characters in X and Y. Equally, two ASCII characters may be

packed by the same operation into two-digit BCD, and a binary numl:er

may be converted to the same form by division followed by nunpack".

6.5. Sign Operations

In signed arithmetic, the sign of an operand is normally held in the

mst significant bit of its most significant byte. The MINIC I instruction

set contains three operations relating to the most significant bit

of X, enabling it to be sett reset and copied into the whole of X.

6.7.1. Cf)TnDlerrent /. (IT'?, 30) CtJf")()

Ihe logical complement f)f the operand in X is placed in X, so that

each bit of X that is zero becomes one and vice-versa.

6.7.2. N~D Y to X (ITR 32, AND)

The logical AND function of the contents of X and Y is formed and

placed in X. Eaclt bit of X becomes a one if and only if the corresponding

bi ts of X and Y were previously both ones.

6.7.3. EXCLUSIVE-OR Y to X (ITR 33, EOR)

The logical EXCLtElVE-OR function of the contents of X and Y is

formed and placed in X. Each bit of X becomes a one if and only if the

corresponding bits of X and Y were previously not equal.

6.8. Arithmetic Operations

The four arithmetic operatior. of addition, subtraction, mul tipli­

cation, and division are available in MINIC LEach involves one double­

length and one single-length operand, and hence uses all thn2e operand

registers. The operands are taken to be unsigned integers, but equivalent

operations on signed numbers may be performed by using 1:'" .. los-canplement or

sign-and-magnitude representations.

6.8.1. Add X to Yl and circulate up (ITR 34, ADD)

The unsigned 8-bit integer in X is added to the unsigned 16-bit

integer whose least significant half is in Y and whose most significant half

is in Z (no carry is propagated out of Z). The result is circulated up so

that the least significant half is in X, the most significant half is in Y,

and Z contains the original contents of X.

6.8.2. Subtract X from Y and circulate up (ITR 35, SUB)

The unsigned 8-bi t integer in X is subtracted from the unsigned

16-bi t integer whose least significant byte is in Y and whose most signi­

ficant byte is in Z (no borrow is propagated out of Z). The result is

circulated up so that the least significant byte is in X, the most signi­

ficant byte is in Y, and Z contains the original contents of X.

'Where j aT'! octal number in the range 0

throuyh 17 denoting the instruction. Ps with

the inter-register instructions, eac.1! comoound

instruction glven a~ individual 3-letter

mneno~ic whic.~ forms a single com?Qnent preceeding

the lit~ral double-wo~d extension.

Seven of the comnound instructions are

literal ~rgument forms of the inter-reRister,

add, subtract, multiply, divide, and,

exclusive-or, unpack, and are equivalent to

"load X with the literal constcmt, pushinp, down

the "9reviou'S contents of X into Y, and the

previous contents of Y into Z", followed by ti',e

inter-re~ister instruction. The other compound

instructions give literal loading of X, E, F

and G, "increment-and-skip" operations to words

in core, rnask and ski 1) operations to test bits of

X, extensions of the instruction set, cmd a

complete change of the 8-register current

environment.

Ta~le 3 the sixteen compound

instructions, their octal formats, and

mnencrrlCS. The foll~ring sections describe the

operation of the instructions in detail,

except for the exchan~e environment instructions

which are described separately in

Section 9.

7 .1. Load complement of li teral to X (cOt'! 0, LCX)

The 8-bi t literal byte of the compound instruction is

complemented and loaded into the X register. The previous

contents of X are placed in Y, and the previous contents of Y

are placed in Z; the previous contents of Z are lost. This

instruction is intended to be used as a literal load of X, and the

complementation is purely fortuitous, a convenience in the mic:ro­

prograro .•

7 .2 • Double UIiE§lck: (CaM 1, DUN)

The 8-bi t byte of the compound instruction is loaded into the

X register, pushing down the previous contents of X into Y, and

those of Y into Z. The 10Her half of the contents of X is then

exchanged ItJi t"l1 t"l1e upper half of the contents of Y. This instruction

is used for binary/decimal operations and character manipulation as

described in Section 6.4.2, for example, the double length

instruction:

DUN

273

expands a two-digit BCD number in X to ~NO corresponding

ASCII c..~racters in X and Y.

7.3. Double AND (CaM 2 t Dl\N)

The 8-bit literal byte of t~e compound instruction is

loaded into the X register, pushing down the contents of X into Y,

and those of Y into Z. The logical l\ND function is taken between

the contents of X and Y, and the result is placed in X.

7.4. Ibuble EXCLUSIVE-OR (CaM 3, 1:£0)

The 8-bi t literal byte of the compound instruction is loaded

into the X register, pushing down the previous content of X into Y t a71d

those of Y into Z. The logical EXCLUSIVE-OR function is taken between

the contents of X and Y, and the result is placed in X.

7.11. Load literal in G (COM 12, LDG)

The 8-bi t literal byte of the compound instruction is loaded

into register G.

7.12. A~D X to literal and skiD if zero (COM 13, ASX)

The logical ,AND function of the contents of the X register

and the 8-bi t literal byte of the compound instruction is formed.. The

contents of register P are incremented by 1 if the result is zero. Note

that no registers e.cept P are affected by this operation. The instruction

is used to test whether bits of the t ord in X are set.

7.13. Increment in Dram-am page and skip if result is zero <COM 13, ISP)

The 8-bi t literal byte is taken as a pointer to a word

in the current program page, pointed at by Q. The contents of this

rremory location are increrrented by 1, and the contents of P are also

increrrented by 1 if the result is zero.

7.14. Increment in data page and skip if result is zero (COM 14, ISD)

The 8-bi t literal byte is taken as a pointer to a word in

the current data page, pointed at by G. The contents of this Iremory

location are increrrented by 1, and the contents of P are also increrrented by

1 if the result is zero.

7.15 Extended instruction set (COM 16, EXT)

This instruction perfonns no operation in the l28-step micro­

program basic version of MINIC I. It is used to control extensions

of the microprogram, for exa.m:ple, to drive a disc, synchronous line,

or other high-speed peripheral. It rray be used to implement families

of special-p\.lI"1X>Se instructions, and rray itself be extended to triple,

or greater, length. This facility enables extensions of MINIC I to

be downwards ccmpatible with MINIC I and to use the full MINIC I pro­

gram and subroutine library. Section 9 contains a specification of

the operation of this instruction

8. Input/Output Instructions

The input-output system of t-rrNIC I is hiway structured ,,,rith separate

8-bit input and output data hiways and three control lines. The channel

address is carried on the output hiway, and in a single-length input-output

instruction 16 D'1annels may be addressed. On execution of an lOT ir.struction t

data may be output fron the X and Y registers, data may be input to the X

register, and any number of instructions may be conditionally skipped. The

same input-output hiways are also used for the interrupt system, the key and

lamp console, and for operation of fast peripherals, such as discs, under

rnicro-progra."n control. The input-output hiways are buffered extensions of

internal hiways and operate synchronously at the main clock rate of the c0m­

puter (nominally ?l1Hz).

8.1 Input and output hit.vays and control lines

The 8-bit input hiway, IN, of MINIC I consists of 8 lines which are

normally high corresponding to zero data, and may be pulled lcw by external

devices to signify one data. In an lOT instruction data coming in on this

hiway may be read into register X, added to the program wOrd pointer P to

cause a skip t or used under interrupt control as the environment pointer to

an EXa-LANGE ENVIRONMENT compound instruction. The 8-bi t output hiway, our,
of MINIC I consists of 16 lines driven by internal bus drivers, 8 in the

normal sense that high corresponds to one data, and lcw corresponds to zero

data, and 8 in the inverse sense; the availability of both senses of output

is particularly useful in device address decoding. In an Iar instruction

data on the our bus may be a device channel address, or the contents of

registers X or Y.

The three control lines in MINIC are MICRORUPI' input, HESITATE input,

and 10 output. The MICRORUPr line is used to interrupt the instruction

sequence of the main program, and is a single-wire hiway which is normally

high. v,]hen the MICRORUPI' is pulled low the current instruction is completed

and, instead of fetching the next, the micro-program enters a sequence in

which it addresses the interrupt system on our, inputs a word on IN, and exe­

cutes an EXrnANGE ENVIRONMENT instruction using this word as the environrrent

pointer. Input/output instructions cannot be interrupted in this way. The

HESITATE line is another single-wire hiway used to freeze the microprogram

for synchronization purposes when working with fast peripherals. The 10 line

8 • 3 ~vice Control Logic

Figure 3 is a block diagram of the device control logic for a device

which receives data or COJ!lIlaI'lds, causes a skip, and interchanges data, all

in one lOT instruction cycle. Often only one or two of these operations

will be perfonred. and only part of the device control logic will be required.

The "~vice Address ~tection Gates" effectively fonn a 9-way AND gate

whose output is ON only when the 10 line is ON and a prescribed 8-bit address

is present on the OUT hiway. The output from this gate drives a 3-bi t shift­

register whose delayed outputs provide strobing levels corresponding to:

(1) rata available from X - the READY 1 line is activated to gate

data or canmands on the OUT bus into a device register.

(2) Increment program counter - a set of bus gates, the "skip

generate gates", corresponding to t'I-J.e incre:irent required, are

driven to pull dCMl1. the IN hiway according to the increment

required. It is possible for a single device to have several

sets of "skip generate gates" driven by different SKIP lines,

according to conditions in the device.

(3) rata input to X - The READY2 line is activated to gate data

on th e OUT bus into a device register and data frcm the

device is gated onto the IN hiway through a set of bus gates.

8.4 Format of Input/Qutput Instructions

'Ihe format of the input/output instructions is:

o 1 2 3 4 567

Input/Output Instructions

where j is the channel number of the external device.

'Ihe whole instruction is actually transmitted as the channel address

so that out of the 256 device channels, those from 160 (octal) through 177

(octal) may be addressed by an lOT instruction. 'Ihe other channels are

accessible only t hrough the microprogram, for example in interrupt and

halt operations, although the number of directly accessible channels may

be increased by appropriate use of the EXTend canpound instruction (Section

7.16). Normally these other input/output channels will be used with special

peripheral control microprograms ,such as disc interfaces, direct m=rnory

access channels, and so on.

9. O1ange Environment 2 Idle and Lxtended Instructions

The double-lengt,. <Y.t.ANGE ENVIRONMENT instruction described in Section

7 .16 is the software form of the response to an external interrupt in

MINIC I. v,1J'1en the MI CRORUPI' input hiway is pulled la-1 by sane device on the

input-output hiway s execution of the current instruction is completed and

the word on t.~e IN hiway is taken to be the dou1)le-word extension of a··

Q{ANGE ENVIRONMENT instruction. Execution of this instruction enables the

computer to enter IDLE or PAUSE states, to change to a netv program environ­

ment, or to enter a proced\.tt'e in the microprogram extension, all under the

control of the external device. The folla.ring sections describe in detail

t.'1e effect of interrupts, the ttchange environment" operation; the action of

the computer when it "pauses" or "idles", and the extension of t'11e micro­

program.

9.1 Interrupts

The MICRORUPI' line may be pulled to ground at any time but no action is

taken by the computer until execution of the current instruction is canpleted,

or t if the instruction is an lOT, until execution of t~e folla.ring instru­

ction is completed. At the completion of the current instruction cycle, the

10 line comes on and the interrupt system device address (157) is put out on

the OUT hiway. This signifies that the computer is ready to service the

interrupt and is used to read-in the new environment specification, reset

interrupt masks, and so on. At the end of the folla.ring clock interval the

'word on the IN hiway is read into the computer and a CH.t\N(,.,E ENVIRONMENT

instruction is executed taking the word read in as the double-length extension

of this instruction.

The interrupt system itself consists of flip-flops set by external

devices to call for an interrupt, and associated flip-flops set up by the

prograrrmer through lOT instructions to enable or disable particular inter­

rupt c.~annels. The interrupt system hardware itself has priority logic

built-in to prevent tw'o channels putting in environment information at the

same time. However. this effectively only allocates priority within an

instruction cycle, and the main control over priority of interrupts is

through the programmer-set enable/disable mask.

9.3 Microprogram Extension

vmen a change environment to 377 (binary change environment extension

woro 11 11 11 11) is executed or caused by an external inte:t".E."llpt.if an

extension to ~e 128-word microprogram of the basic MINIe Iis ~sent.

then control is transferred to the first won! (location 200 (octal» of

the microprogram extension. If t"1ere is no extension to the mict'OpIogram

then the effect of this instruction is the same as that of change environ­

ment to zero (Le. canputer enters PAUSE or IDLE states).

Similarly when the EXT instruction of Section 7.15 is. executed. if a

microprogram extension is present control is transferred to its second

woro (location 201 (octal». Otherwise the effect of the instruction is

. that no operation takes place.

Either of these instructions rray be used. to enter procedures in the

miCl'OplOgram extension, and, in particula:r the change environment to 377

instruction may be used by a peripheral device, such as disc ,orautOl'lCm)us­

transfer channel, to call peripheral control programs associated with the

device.

(b) ~ keys to set up an 8-bit word to be deposited in

memory or in one of the 8 programmer-visible registers.

(c) .Ei a mi ne key to display in tl-te memory data register the

contents of the core location addressed by the memory

address keys.

(d) ~posit key to store the setting of the data keys in the

core location add ressed by the memory address keys.

(e) ~key to store the setting of the data keys into a

selected p rogra'Tl!Iler-visible register •

(f) ~ k ey to initiate execution of a stored program.

(g) Idle/pause key to stop execution of a stored program and

disp lay the contents of the hara-lare registers.

(h) ~!:.! key to reset all internal hardware registers tq zero.

(i) IO reset key to initialise all input/output devices.

(j) B.eg ister select swi tch to select \.Jhich of the registers,

X, Y, Z, r.. F, G, P, Q, is dis played on the register

dis play, and set into by depression of the set key.

(k) Mode select S"'Jitch to select the single-instruction, id le,

pause, or pause- and-set, m:xies of the computer. In the s.ingle­

inst ruction mode, the computer is in the idle state and

dep I' ession of t he run key causes one instruction to be

exe cuted, and tl-ten the ccrnputer re-enters the idle state·

(si nc e inp utI output instructions cannot be interrupted, the

computer will not stop irrmediately after an lOT instruction

an d hence m ore than one instruction may be executed if an

lOT is involved). In the idle mode execution of a change to

environment zero instruction or depression of tl-te idle/pause

key causes the canputer to enter the idle state in which. the

contents of registers are displayed and data may be set into

