
MICROPROCESSORS AT WORK 

INTERPRETIVE KERNELS FOR MICROCOMPUTER SOFTWARE 

B.R.Gaines* 

The initial main applications area for microcomputers 
has been in small, mass~produced systems where they 
replace hardw1red, random logic. These present few 
problems of 'software' development because the 'pro
grams' required are small and fixed. However, it is 
clear that the technology has now reached the state 
where the 'microcomputer' is in every sense a 'comp
uter' with all the capabilities of much larger and 
more expensive machines. Increasingly many applicat
ions are looking towards its programmability, and 
continuing, in-use re-programmability. This is gener
ating requirements for a level of software support 
not generally provided with microcomputers. More 
importantly it is forcing organizations with long 
experience of hardware manufacture to move into the 
area of software and systems development, maintenance 
and support. This paper is concerned with software 
engineering techniques that allow the same discipline 
of modularity, documentation, quality control, etc., 
that has previously been imposed on hardware to be 
applied to software. 

I INTRODUCTION 

The role of software in microprocessor-based (l-1proc-based) . systems 
is as yet unclear. In the majority of current applications the use 
of a I-1proc is justified on the grounds of total engineering cost 
compared with other implementations. That is, the 'computer' does 
not have to provide additional features of its own in order to be 
cost-effective as a replacement for a conventional hardware imple
mentation. In these applications it may be regarded as a collection 
of logic elements whose functions are established by a ROM, and the 
tools necessary to 'program' that ROM (assembler, debugger) are just 
developmental aids that play no part in the final system. The manu
facture of such I-1proc-based systems should be amenable to the deSign, 
development, production, marketing, maintenance and customer-support 
techniques and disciplines that are already well-established for the 
previous generation of 'hardware' systems. 

And yet. 'software' problems are already significant in what 
appear to be continuationsof previous product lines, e.g. instru-

.ment or display terminals that ·have been re-engineered for lower 
cost production around a I-1proc but are otherwise unchanged. In 
general, the problems are arising because the use of a 'computer' 
is expected both by manufacturer and by customer to provide a new 
level of flexibility that was previously impossible. The overall 
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.. system has become programmable so that a product can serve a greater 
variety of applications, is readily modified to new requirements, and 
this flexibility can even be put in the~ands of the end-user. What 
has not yet been adequately discussed, defined and understood is the 
cost of this new-found flexibility - a cost which is SUbstantial in 
product and customer support rather than in development, and which is 
yet inadequately controlled. 

In discussing 'software' problems and requirements in more det
ail it is useful to summarize the above discussion in terms of 4 lev
.els of use of microprocessors. 
(a) The rocessor re laces hardware elements. Its programming is 
equivalent to computer-aided design CAD of these elements. This 
affects product development only and the fact that it is itself 
'computer-based' is irrelevant to all later aspects of marketing, 
application and support. The, advantage of the Ilproc is that it 
replaces boards of random logic simplifying production and mainten
ance. There should be no associated disadvantages, particularly if 
the design group have already been using CAD packages for logic des
ign, board layout, etc. 
(b) Basing a product range on uprocs allows new product development 
to be largely an extension of the range through software modificat
ion rather than new hardware production. This probably entails chang
es in production techniques with 'software modules' being treated in 
the same way as hardware modules in terms of documentation, testing, 
etc., but d'oes not affect marketing or the end-user. The additional 
~advantage of the ~proc is that it allows total hardware re-engineer
ing to be avoided in what may be very substantial product changes. 
The disadvantage is that production procedures have to be introduced 
for installing and checking software modules, but this :lS a reason~ 
ably straightforward problem that can be treated using the :well
established methodologies for hardware production. 
(c) The customization and field upgrading of individual products is 

--made1>arl'Of' -thei1." specification and a key factor in their marketing. 
Technica.lly this is, in a sense, 'already available'. If new product 
ranges involve 'only a change in software' why should not the range 
become a continuum with each customer selecting the facilities appro
priate to his application. The advantages are clear on the marketing 
side - one of the biggest attractions of computers has always been 
that they can cater for individual requirements and that, if these 
turn out to have been misconceived, the computer can always be re
programmed for something else! However, the new problems that.now 
arise are substantial - documentation and customer support has also 
to be customized and instead of having a standard product range one 
is now in the 'systems' business. This is a viable proposition and 
such businesses can be profitably managed, but they are not simple 
extensions of (a) and (b). They have an entirely different cost 
structure involving a large element of uncertainty, and the final 
product cost is largely in terms of people not hardware. 
(d) The ultimate level of exploitation. of the computer-based system 
is to put its programming in the hands of the customer, i.e. to 
market the product as one which may be tailored to individual requ
irements and where the user himself may perform this tailoring. 
Technically this may be regarded as an extension of switches and 
dials on the front panel, but the magnitude of the extension can be 
such that a major qualitative change takes place. Clearly the level 
of support the user requires is substantial - a far more complex 
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- instrument has to be explained to him. The major change in most appl
ications is that the instrument becomes capable of complex, time
dependent procedures. However, there has~lso.been a change in the 
customer-supplier relationship that has to be recognized. The end
user now has arealtively simple piece of equipment whose complexity 
and problems lie in the way he programs it, whereas previously they 
lay in the way that the manufacturer had 'programmed' it. The level 
and types of responsibility and support that the user expects of the 
supplier have got to change drastically if the cost-structure is to 
remain the same. The supplier no longer has 'system responsibility' 
for his product. He does not know enough about the way in which it 
is being used to foresee and warn of all possible problems, and s.o 
.on. Clearly a new relationship can be established, but it is in doing 
this that many of the current problems are arising. 

I must apologize in what is intended to be a technical paper on 
certain aspects of microcomputer software for dwelling so long on the 
'sociology' of the use of such deVices. However, the technology, both 
hardware and software, is itself simple, and it is its commercial 
application and control that is difficult. The use of interpretive 
thigh-level languages' to be described in this paper is an important 
technique of software engineering that bears on problems at levels 
(b), (c) and (d), particularly these last two. If I had claimed at 
the outset that one major advantage of the technique was to control 
and restrict the flexibility of computer-based systems, it might have 
seemed ridiculous - I hope the reasons for doing so are now more 
apparent. The other advantage is to ease the programming and docu.men
'tat ion of software, a more readily appreciated virtue but again one 
that is closely related to the problems outlined. Key features of the 
approach are to: 
(i) Impose functional modularity on software - a production technique 
well-established for hardware - a module is something that does a 
well-defined, and usually comparatively Simple, task and can be 
tested thoroughly and used safely according to known rules; 

(ii) Allow systems to be built up from modules directly from a spec
ification in a well-defined and readily understood problem-orientated 
language. 

Minicomputers and microcomputers The techniques described in the 
following sections were originally developed for minicomputers. How
ever the current generations of ~procs provide generally better 
instruction sets than the previous generation of minis. Notably index 
registers and byte-addressing are provided which machines such as the 
PDP8 lacked and had to emulate through subroutines. I shall not link 
the instructions and addressing structures in the examples to partic
ular machines, but none of them tax the facili tie.s of current ~procs. 

One significant difference between minicomputer and ~proc appl
ications is that storage utilization has become less important in 
many mini applications because the costs of larger stores have fallen 
so dramatically. In general it is still s,ignificant for many ~proc 
applications where economies of size do not apply to the store. Hence 
compact programs are desirable and I shall illustrate how these may 
be achieved. Additionally, backing stores are less o£ten available 
on ~proc systems so that program entry is a problem, and again I 
shall illustrate how this may be minimized. 

The techniques described are all well-proven, having been used in 
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",:: . a wide variety of commercial, medical, industrial and scientific 
applications (Facey and Gaines (1), Gaines and Facey (2), Gaines 
et al (3,4), Green and Guest (5), Moore (6), Rather and Moore (7), 
Baltzer et al (8». Although involving high-level languages, they 
are not expensive in machine resources (the. initial development of 
our system was on a time-shared PDP8 allowing only 4K12-bi t 'words . 
per user, and aninterpreter for a BASIC-like language with integer 
arithmetic and extensive string-handling was fitted in 2.7K allowing 
1.3K per user program overlay which proved ample for a range of 
data-processing and record-keeping applications (2), Kennedy and 
Facey (9» and do not necessarily. involve substan~ial speed losses 
compared ,with. assembly code. 

2 VIRTUAL MACHINES AND MOD1~ITY 

One of the most useful concepts to have been developed in the comp
uter science literature in recent years is that of a virtual machine 
(Gaines (10), Goldberg (11»). Broadly interpreted it recognizes that 
a computer with certain software in it has become another computer 
with its own characteristics. Anyone who has transferred from a basic 
machine to one with an operating system, or betwe~n different operat
ing systems, will be aware of the distinction - the machine changes 
in character and power. Anyone who has used a library of standard 
subroutines will have noticed that the routines themselves may be 
regarded as instructions for.a more powerful machine. 

The concepts of modularity (Dennis (12» and virtual machines 
are closely related. We attempt to split software into modules each 
of which has a clearly defined function and is relatively independent 
of other modules. Generally the modules are linked together to form 
a system by a series of subroutine calls. These calls may alternat
ively be regarded as instructions for a new computer, the,virtual 
machine we have created by developing the modules. 

Once one takes .±hi.s :vieli.flDint .certain v-€ry useful related coti'C
epts may.be developed. The differences between a computer deSigner, 
a micro-programmer, a programmer, a system deSigner, etc., become 
less apparent - we are all both computer and system designers ! 
In practical terms it means that much of the work and literature on 
computer architecture and run-time systems for languages is very 
relevant to application programming. There are few designers of IBM 
360'8, Burroughs B1700's, etc., but those design studies and text
books based on them are relevant to a far wider audience, e.g. 
data-descriptors and tagging (Gaines et al (13), Feustel (14) are 
useful in interpreters. Similarly, studies of FORTRAN, ALGOL, SNOBOL, 
etc., support software suggests many tec~iques that are useful in 
computer-based systems not using the entire construction of these 
languages. 

, Secondly, the virtual machine construct is naturally hierarch-
ical (10) - we can build another level of virtual machine by linking 
together some of the modules that exist at the lowest level into 
larger modules at the next level. Each level defines a new machine, 
a new product, and each level remains programmable in terms of the 
modules available at that level. Fig.l illustrates a 5-level virtual 
machine hierarchy in which. the 'development engineer' sees a comput
er and designs subroutines for it, e.g. to control certain peripheral 
devices and to make certain calculation facilities available (e.g. 
,data smoothing, floating point arithmetic, message communication 
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Final application 

- an Instrument 

1 T 
Customer programs 
instrument in terms 
of high-level 
operations 

1 T 
Product designer 
programs high-level 
operations in terms 
of standard low-level 
modules 

1 T 
Development engineer 
programs modules in 
assembly code 

J T 
The computer - lowest 
level - runs modules 

protocols, etc.), the 'product des
igner'_configures a system and 
wri tes'~routines using the modules 
provided by the development engineer 
to give the required control, data
logging and data-processing facilit
ies for the system in terms of a 

'problem-orientated language', the 
customer develops a program in this 
language for his ultimate applicat
ion, thus finally defining the top
level 'virtual machine', an instrum
ent to the end-user. 

The advantages of this aPfroach 
are many-fold, but primarily. A) At 
each level the task of the person 
responsible for the development is 
well-defined and reasonably circum
scribed. He sees the virtual machine 
of the level below him and is resp
onsible for constructing that of the 
level above him. The final applicat
ions programmer does not have to 
worry about details of the instruct
ion set of the ~proc at the lowest 
level, nor even of the operation of 
the language system at the next. He 
sees functions that make sense in 
terms of his problem area and in 
terms of the type of system he has 
purchased.' Equally, in this illustr

Figure 1 A 5-level, virtual 
me.ehine hieraTehy 

ation, neither does the 'product 
designer' have to concern himself 
'1rl.-th1;he uetails O'i"'ttre llprtro and 
the software support of standard 
peripherals. He sees a library of 

routines and an operating system flexible enough to support a range 
of products, yet with most of the 'technical details' of control, 
timing, etc., already taken care of. (B) Because of the high degree 
of independence between levelS, changes in technology at one level 
need not propagate beyond the level above. For example, if the ~proc 
at the lowest level is replaced by a cheaper, faster one, then only 
the 'development engineer' need be affected. The product deSigner, 
customer and end-user do not need to modify their systems - they 
have only become cheaper and faster. 

The approach to system design based on defining modules and 
then linking them into larger sub-systems, etc., is called a 
bottom-up approach - it is clearly appropriate to the development of 
a product range. The converse approach of commencing with an applic
ation and analysing it into sub-systems, etc., is called the tOR- ' 
~ approach and is clearly appropriate to a systems division. Both 
types of approach are necessary in practice - the gap between ~procs 
and applications is such that a bottom-up approach has a long way to 
climb before it is useful, whereas a top-down approach has a long 
way to fall before it hits actual hardware. In the climb or fall 
there are too many pitfalls, diversions, and ranges of complex poss
ibilities for adequate development disipl.ines to be exerted if the 
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c~. 'product requirements fall into categories (c) and (d) of section 1. 
The virtual machine approach illustrated in Figure 1 may be seen as 
a way of splitting the development into well-defined levels in each 
of which the bottom-up and top-down approaches meet and can be inte
grated together. In.human terms, in particular, there need generally 
be only one person with design responsibility and authority for a 
given level. The overall system development has been split into well
~efined, comprehensible, and manageable sub-tasks. 

3 DESIGN AND IMPLEMENTATION OF VIRTUAL, r~CHINES 

This paper is primarily concerned with the principles and implement
ation of virtual machines.and I shall not consider the design in det
ail. However, there are certain aspects of the design that relate 
closely to ~he implementation, and these are primarily of a 'linguis
tic'nature. Whereas the actual functional modules that make up the 
machine are clearly dependent on the type and range of applications 
enviaged, the way in which their control, interconnection, etc., is 
specified is a more general human factors problem. It is possible to 
regard each module as a separate entity with its control specified in 
some specific way. However, with a wide variety of modules this impo
ses a memory burden on the user, or programmer, who has to remember 
not only what a module does but how its use is.specified. If, fQr 
example, WIM and WAM are the names of two data-acquisition modules, 
each requiring a source and desination plus two numerical parameters, 
then specifying them respectivelybYI 

LDA PARAMl lone param in acc 
LDX PARAM2 lone param in index reg 
JMS WIM Icall WIM subroutine 
SOURCE Isource routine call address 
DEST /destination routine call address 

WAM(SOURCE,DEST,PARAMl-expression,PA]UU~2-expression) 

is confusing to say the least ! Such an example is exagerated but 
users of even well-established languages such as FORTRAN and BASIC 
will have noticed anomalies that make programming more difficult. 
Such anomalies tend to be far more prevalent in specialist software 
packages. 

Thus, consistency and uniformity is the way in which modules 
are specified and controlled is highly desirable - if the specificat
ion of a parameter can be an arithmetic expression in one case then 
this should be possible in all cases, etc. Such considerations are 
important at all levels of virtual machine and I have discussed them 
for computer design (13) and man-computer dialogue design (2) else
where. There is one further design consideration worth emphasizing 
here because it highlights one of the defects of assembly code progr
amming, and that is the way in which the structure and facilities of 
a virtual machin.e should. @ide the programmer in its use. 

We tend to think of the negative aspects of constraints such as 
those imposed at each level of the virtual machine hierarchy of Fig
ure 1 - the customer is prevented £rom corrupting the so£tware, slow
ing down other users, misusing certain peripherals, etc. However, 
much of the freedom lost is not only unnecessary but also positively 
misleading because it is the freedom to do one thing in a thousand 

. different ways. This is particularly so at assembly code level where 
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even simple routines may be coded in innumerable ways. Such flexibil
ity may seem attractive in catering for all possible styles and requ
irements. However, it calls for high information-content decision 
making and high information-content documentation at every stage, 
both sources of problems and costs. The best virtual machine is one 
in which for each task that is natural to it there is one, and only 
one, way of programming it and that way is obvious - the structure 
of the machine should so guide the programmer that a statement of 
the task implies how it should be programmed. 

The virtual machine concept in itself gives little information 
as to its implementation. It is technically simple to write a soft
ware package as a set of modules, sub-programs or subroutines, that 
are linked together by GOTO's or procedure CALL's. This is good prac
tice at all levels and every machine has its calling mechanisms to 
enable this to be done. There is wide variety in the method by which 
parameters are passed to the sub-program and results returned but, 
even at assembly code level, information flow between sub-programs 
can be standardized so that modules may be interfaced freely provided 
certain conventions are obeyed. The basic assembly language rarely 
provides a rich enough syntax in itself to make the information flow 
lin~istically natural. However, the use of a macro-generator (Brown 
(15») before the assembler can overcome this, replacing: 

LDAX 
LDB Y with BINGO(X,Y) or even FROM X BINGO TO Y . 
. JMS BINGO 

Thus, the virtues of clarity, modularity, etc., are not to be claimed 
by anyone language or technique alone. However, certain approaches 
do make them easier. "to attain and easier to impo se. 

The system that actually causes the instructions to a virtual 
machine to be executed is called its interpreter. This itself will 
generally be progra~ed in the instructions of a lower level machine, 
down to the actual conputer instructions being interpreted by a 
micro-program. The kernel of an interpreter is the general logic 
associated with fetching and decoding instructions, passing paramet
ers, etc., as opposed to executing specific operations. In the foll
owing sections I shall describe some simple and compact interpreter 
kernels that have been used successfully in commercial applications 
and are well-suited to ~procs. The particular systems also have the 
advantages of overcoming Borne of the addressing limitations of ~procs 
and of being interactively programmable, in that programs may be 
entered at a terminal, executed, interupted, modified, and execution 
continued. Such interactive capability is particularly desirable at 

. the higher, end-user, levels. 

4 STRUCTURE OF A BASYS INTERPRETER 

BASYS (1,2) is a BASIC-like language (Schur (16) that is in wide use 
for applications ranging from instrumentation and data-logging to 
financial dealing and medical record keeping. A BASYSprogram consists 
of a sequence of lines ordered by their, not necessarily consecutive, 
line numbers. A line consists of one or more statements separated by 
colons, and a statement consists of a meaningful key-word followed by 
an expression, or sequence of expreSSions, e.g.: 

25 LET P=15 
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37 PRINT tp IS t P 
50 DRIVE P+7 15 K :[SET UP MOTOR 
52 IF K=O :LET Y=P!2 :GOTO 100 
54 PRINT 'PROBLEM ON MOTOR 15' :GOTO 2000+10*K 

100 LOG P+5 4 u, : GOTO 137 ;[GET DATA FROM' A-D 4 
and so on. The data types in BASYS include variable-length integers, 
arraya, variable-length character strings, and reference variables. 
The normal range of arithmetic operations, and an exceptionally 
powerful range of string-processing operations, are included in the 
general structure but, in addition, provision is made for the ready 
addition of special processors such as DRIVE and LOG above. 

BASYS itself is extremely interactive and easy to use and the 
programs are particularly clear because of the expressive key-words 
and two-dimensional form of the language. The evaluation of arith-. 
metic expressions is slow compared with machine code, but this does 
not matter because fast machine code modules are readily added as new 
processors when required. These new modules are activated by a key
word and parameter list like the existent processors, and hence inte
grate simply and naturally with the existing language. In its imple
mentation BASYS is essentially a string interpreter and all the 
important routines may be viewed as processors that transform strings. 

Link to next line· 

Line number 

1st proc 2-word 
code header 

rest followe 
of by n-by 

string 
string 

2nd proc 
code 

rest 

etc. 

terminator 
code 

Another line 
-(possibly garbage)-

etc. 

etc. 

Figure 2 Program line 
structure in BASYS 

Figure 2 shows the structure of program 
lines in BASYS. They are stored as a 
linked list commencing with the lowest 
line number, and the first word in the 
2-word header is a link to the next line 
in the list. The next header word is the 
line number itself. There follows a var
iable length string conSisting of single-

d byte codes for each processor name fol1-
te owed by the actual parameter strings. A 

teTlIdnation code indicates the end of 
the string and there follows the header 
of another line (not necessarily the 
next one in line number sequence). 

Figure 3 shows the overall storage 
structure for BASIS program and data. 
Both are dynamic structures whose size 
varies at run-time (character strings 
are stored as 'program lines') and 
share a single freespace area. 

The interpreter consists of the follow~ 
ing parts: 
(1) Routines for storing, inserting, 
deleting and garbage-collecting strings, 
and maintaining the program statements 
in the correct ordert 
(2) A main control loop which determines 
which statement is to be processed, 

. picks up the processor codes, and trans
fers control to the corresponding proc
essor; 
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Linked list of 
program lines 

..... --Pointer to first program line 

to line being executed 

rl----~~--~~----~-------Pointer to string freespace 

Freespace area 
for both data 
structures 

Stack for simple 
variables, arrays, 
parameters, etc. 

(3) Processors corresponding to 
(4) A set of general procedures 
essors and which do most of the 
~argument strings. 

NXTLIN 
\If 

Advance PCURR to next line 
in the linked list and set 
up PCHP from PCURR 

'. 

CONLIN 
~ 
, 

Get next character from 
current program line (PCHP) 

J, 
Is it a terminator 

...... ... 
Yes 

J,No 
No Is it a proc code ") 

"Yes 
Syntax , error 

Despatch to processor 
through table (COMJMP) 

Figure 4 Main control loop 

Figure 3 Storage allocation to 
program and data in BASYS . 

each command-word/processor-code, 
which are called by the command proc
work of evaluating and interpreting 

Figure 4 shows the flow of the main 
control loop. PCURR is a pOinter to 
the current line being executed and 
it is set·up at NXTLIN to. point to 
the next line. PCHP is a pointer to 
the next character in the current 

.. prDgram l·ine and. et CONLIN it is 
expected to pOint to a processor' 
code. In an 8-bit byte machine 
these codes will typically have the 
top bit set to distinguish them 
from ASCII 7-bit characters. When 
a processor code in found it is 
used to transfer control to the 
appropriate processor through a 
table of processor entry pOints, 
COMJMP shown in Figure 5. 

Most command processors themselves 
involve little code since they use 
general routines for expression 
eValuation. For example the command 
LET X~5 contains the command word 
'LET' which becomes a single-char
acter processor code followed by 
the string 'X=5'. \ihen the inter
preter finds the code it transfers 
to the LET processor which first 
calls a general ASSIGN routine that 
sets up a pointer to X, then a gen
eral arithmetic EVALUATE routine 
that returns the value 5, then 
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COMJMP 

ASCII 
ASCII 
ASCII 
ASCII 
ASCII 
ASCII 
ASCII 
ASCII 
ASCII 
ASCII 

LET 
GOTO 
PRINT 
IF 
RUN 
STOP 
LIST 
DRIVE 
LOG 

'MICROPROCESSORS AT WORK 

, LET' <TERM> 
, GOTO' <TEID1> 
'PRINT' <TERM> 
'IF' <TERM> 
'RUN' <TERM> 
, STOP t <TERM> 
, LI ST f <TERM> 
, DRIVE' <TERM> 
'LOG' <TEID-t> 

<TEru.t> 

a general data transfer routine 
that moves the value 5 to the locat
indicated by the pOinter to X. 

The IF processor applied to the 
same string would call the EVALUATE 
routine immediately to yield a value 
TRUE if X=5 and FALSE otherwise. It 
then exits to CONLIN to continue 
execution of, the program line if 
the result is TRUE, but goes strai
ght to NXTLIN if the result is 
FALSE, thus executing the conditio
nal as required. This use of the 
two entry points in the main control 
loop to give conditional execution 
of the remainder of the line is 
used in many processors, e.g. an 
input/output process will return to 
CONLIN only if it is successful so 
tha t one can write -

DRIVE X' 7 Y : PRINT 'DRIVE OK' 
Figure 5 Command string table and 
processor despatch table inBASYS and the PRINT will only occur if 

the drive operates properly • 

• Incorporating a new processor in BASYS is extremely simple since 
command names and entry addresses are held in two open-ended tables 
as shown in Figure 5. The special command DRIVE, for example, has 
been inserted by putting its name as a character string 'in the table 
COMTYF, and its entry point as an address at the correspond~ng posit
ion in the table COMJMP. When the editing phase of the interpreter 
encounters the string 'DRIVE' it encodes it as a single character 
pr.o.cSSl3.ar ~Dde.lfuen the .main control loop of the interpreter ,encoun
ters this code it transfers control to the entry point, DRIVE. The 
processor takes 3 parameters, two values and one address, and might 
look likes 

DRIVE JMS EVAL 
TAX 
JMS EVAL 
STA,X IOTAB 
STA TEMP 
JMS ASSIGN 
LDA TEr-1P 
STA,X 
JPZ CONLIN 
JMP NXTLIN 

/evaluate arith. expression - result in acc 
!put result in index register X 
/evaluate arith. expression - result in acc 
/send acc to address in X in 10 table 
/status information is returned in acc 
/get pointer in X to variable 
/get status back 

'land store in location indicated by X 
/continue program line if transfer was OK 
/go to next line if transfer not OK 

The preceeding discussion and examples illustrate the structure 
of the BASYS interpreter and the way in which it can be used to link 
machine code routines together under program control in a fairly high
level and readily comprehensible language. The kernel of this inter
preter consists fundamentally of the control loop shown in Figure 4 
but I wouJ.d include as part of it the general arithmetic assignment 
and evaluation routines that are common to virtually all applications. 
Once this kernel has been written and thoroughly debugged it can be 
used a fOlL~dation for a wide variety of special systems into which 

, new facilities are 'plugged' in the simple way shown. The kernel 
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typically consists only of some 2K machine instructions and hence is 
readily transferred from machine to machine. Utility routines for 
listing and storing programs, etc., are actually written in BASYS as 
'hidden' procedures. This trick of writing as much as possible of the 
non-real-time part of the interpreter in i ts"elf is widely used and 
saves much programming effort. 

, In the next section I will discuss a variation of the technique 
used in BASYS which enables the interpreter itself to run substant
ially faster at some cost .in flexbility and size of code. 

5 THREADED CODE TECHNIQUES 

One of the simplest and most effective techniques for linking rout
ines together and overcoming the program and addressing limitations 
of small computers is that of threaded code, originally described by 
Bell (17) as implementation of the run-time environment for PDPll 
FORTRAN. A further development of it was used by" Dewar (18) to support 
a fast, machine-independent SNOBOL compiler, and an extension of the 
type of technique forms the basis of FORTH (6,7), a very successful, 
fast,·interactive language used·in small astronomical computing 
systems. 

The concept behind threaded code is extremely simple - it is to 
use a table of routine addresses to cause the actual hardware ·proc
essor to 'thread' its way through the routines in the specified sequ
ence. The left hand side of the code below shows a conventional sequ
ence of subroutine calls and an example of a normal subroutine and 
return. The right hand side shows the same sequence effected by 
jumping to the address pointed at by the index register X, i.e. effect
ively load the program counter (PC) with the word pointed at by X 
and then increment X. 
START JMS ROUTA 

JMS ROUTB 
JMS ROUTA 
JMS ROUTC . . . . . . . . . 

ROUTA 

RETURN 

START ROUTA 
ROUTB 
ROUTA 
ROUTC . . . . . 

INTER LDX [START 
J1.fi> ,X+ 

ROUTA 

. . . . . . . . . 
JMP,X+ 

/get address 
/jump to it 
with post-inc 

The 'subroutines' themselves differ only.in that they do not have a 
normal RETURN, but exit by transferring control to the next address 
pointed at by the (updated) X. Thus X itself may be regarded as a 
pseudo program counter (PCC) and the routine entry addresses as 
instruction codes for a virtual machine. 

One important advantage of the technique is that the addresses 
in the subroutine calls on the left can occupy only part of the 
instruction whereas those in the control table on the right are full 
words (a similar consideration applies to the despatch table of 
BASYS in Fig.S). Either the subroutine call have to be double-length 
(as in PDPll) or they have a substantially shorter address scope than 
does a full word (probably expanded by transferring indirectly via a 
,table, e.g. in page zero, that corresponds to our despatch table). 
The control table of threaded code is thus more compact in giving 
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full access to the store. In many machines execution through a POO in 
this way is not significantly slower than the overhead of the sub-
routine calls (on the PDPll it is faster !). . 

If the subroutines require 
also be imbedded in the control 

LOAD 
ARGl 
STORE 
ARG2 

/address of routine 
/address of argument 
/another routine 
land argument 

arguments then their addresses can 
table. For example: 

LOAD LDY,X+ /get address arg 
•••••••••••• and increment X 
etc. JMP,X+ /exit 

The routine LOAD picks up the address of its argument and advances 
the POO past it ready for the next transfer. The technique described 
in (17) avoids the double word required for a sequence like LOAD ARGI. 
The PDPII FORTRAN compiler actually generates a routine LARGl that 
loads ARGl to the operand stack. There is thus a load and a store 
routine for every operand, but since an operand will generally be 
used many times this uses less code than haVing-multiple word entries 
in the control table. 

Dewar (18) goes one step further and uses 'indirect threaded 
code' in which the table entries themselves point to the address of 
a routine, i.e. there is double indirection. The advantage i.s that 
the actual argument can be associated with the addresses of routines 
to load and store it. For example, a simple variable will have two 
pOinters with it, one to a routine to load its value to the stack, 
and the other to a routine to set up its value from the stack. These 
routines will be common to all simple variables of a given type and 
themselves pick up their parameter from the calling address. The 
header block of an array would contain pOinters to routines that use 
the number on the top of the stack to generate an offset into the 
array and then load or store to it. The technique has the-advantage 
of even greater compactness of code and it allows a clean separation 
betwee~ program and data structures. The. major-advantage claimed by 
Dewar is that since the compiler itself generates only addresses of 
routines and data structures it can be completely machine independent. 
A related advantage is the way in which the selector/updater routines 
for data are associated with the data itself. This clearly allows 
operations such as input/output transfers to look like variable man
ipulation, and it allows for complex data structures of varying types 
including 'data-driven interupts' (19,20,21) and the advanced progr
amming techniques of languages such as PLANNER (22), FOP2 (23) and 
ELl (24). 

The difference between the implementation of BASYS previously 
described and that by threaded code is that the I-byte processor 
codes become processor addresses and the parameter evaluations have 
also to be compiled into threaded code sequences. This makes dynamiC 
program change more difficult (but still possible) since pOinters to 
data structures have to be updated whereas their symbolic names did 
not. The advantage gained in using threaded code is one of speed 
because the interpreter is calling routines and acceSSing data far 
more directly in terms of actual addresses rather than codes and 
symbolic names. 

In FORTH the linguistic structure for programming is made virt
ually the same as that of the threaded code so that the programmer 
himself has to 'compile! the algebraic form of a statement into its 
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execution form, i.e. to say: 
X LOAD Y LOAD + Z STORE rather than Z = X + Y 

However, since the natural programming technique in FORTH is .hierar
chical with complex operations composed of Simpler ones, themselves 
composed of simpler ones, etc., the effort of this compilation is not 
necessarily tedious. Indeed, since it corresponds to the actual sequ
ence in which operations are carried out, it may even be more natural 
to someone who is hardware-orientated ! It is quite feasible, however, 
to provide autonatic translation from the command on the right above 
to that on the left, and in GLUE (5) this is done to give a more con
ventional syntax than in FORTH. 

In both FORTH and GLUE the translation from text to code is done 
by routines written in the language itself, and is incremental so that 
programs are compiled line by line and do not have to be available as 
a who.le. In FORTH, because of the close relationship between the lang
uage and the code, the translation is reversible so that compiled 
sequences of code may be listed in their source form. Multiple indir
ection in the code is exploited in both languages so that a routine 
will consist of pOinters to routines that themselves consist of poin
ters to routines, etc. This makes the building of virtual machine 
hierarchies in these languages both natural and efficient - the adv
antages of languages in which this can be done within a single cons
istent framework have been amply demonstrated by the complex systems 
that have been built, level by level, in LISP and POP2. 

6 CONCLUSIONS 

The two main points made in this paper are that 
(1) In the commercial exploitation of microcomputers software engin
eering has to be· ·managed as rigorously as hardware engineering has 
been in the past; 
(2) That certain software engineering techniques are part·icularly 
amenable to management an,d control in ways which naturally reflect 
the product structure and customer-supplier relationship. 

Additionally certain technical concepts have been outlined and ref
erences given by which these techniques may actually be. applied to 
microprocessors. 
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