
MICROPROCESSORS AT WORK

INTERPRETIVE KERNELS FOR MICROCOMPUTER SOFTWARE

B.R.Gaines*

The initial main applications area for microcomputers
has been in small, mass~produced systems where they
replace hardw1red, random logic. These present few
problems of 'software' development because the 'pro
grams' required are small and fixed. However, it is
clear that the technology has now reached the state
where the 'microcomputer' is in every sense a 'comp
uter' with all the capabilities of much larger and
more expensive machines. Increasingly many applicat
ions are looking towards its programmability, and
continuing, in-use re-programmability. This is gener
ating requirements for a level of software support
not generally provided with microcomputers. More
importantly it is forcing organizations with long
experience of hardware manufacture to move into the
area of software and systems development, maintenance
and support. This paper is concerned with software
engineering techniques that allow the same discipline
of modularity, documentation, quality control, etc.,
that has previously been imposed on hardware to be
applied to software.

I INTRODUCTION

The role of software in microprocessor-based (l-1proc-based) . systems
is as yet unclear. In the majority of current applications the use
of a I-1proc is justified on the grounds of total engineering cost
compared with other implementations. That is, the 'computer' does
not have to provide additional features of its own in order to be
cost-effective as a replacement for a conventional hardware imple
mentation. In these applications it may be regarded as a collection
of logic elements whose functions are established by a ROM, and the
tools necessary to 'program' that ROM (assembler, debugger) are just
developmental aids that play no part in the final system. The manu
facture of such I-1proc-based systems should be amenable to the deSign,
development, production, marketing, maintenance and customer-support
techniques and disciplines that are already well-established for the
previous generation of 'hardware' systems.

And yet. 'software' problems are already significant in what
appear to be continuationsof previous product lines, e.g. instru-

.ment or display terminals that ·have been re-engineered for lower
cost production around a I-1proc but are otherwise unchanged. In
general, the problems are arising because the use of a 'computer'
is expected both by manufacturer and by customer to provide a new
level of flexibility that was previously impossible. The overall

·Man-Machine Systems Laboratory, Department of Electrical
Engineering, University of Essex, Colchester, u.K.

1

MICROPROCESSORS AT WORK .u. ______ ~ _, • .• W" __ .~ _"", __ ~,_. ~_"'"' ,. , •• ____ , __ • __ ,_"' __ w __

.. system has become programmable so that a product can serve a greater
variety of applications, is readily modified to new requirements, and
this flexibility can even be put in the~ands of the end-user. What
has not yet been adequately discussed, defined and understood is the
cost of this new-found flexibility - a cost which is SUbstantial in
product and customer support rather than in development, and which is
yet inadequately controlled.

In discussing 'software' problems and requirements in more det
ail it is useful to summarize the above discussion in terms of 4 lev
.els of use of microprocessors.
(a) The rocessor re laces hardware elements. Its programming is
equivalent to computer-aided design CAD of these elements. This
affects product development only and the fact that it is itself
'computer-based' is irrelevant to all later aspects of marketing,
application and support. The, advantage of the Ilproc is that it
replaces boards of random logic simplifying production and mainten
ance. There should be no associated disadvantages, particularly if
the design group have already been using CAD packages for logic des
ign, board layout, etc.
(b) Basing a product range on uprocs allows new product development
to be largely an extension of the range through software modificat
ion rather than new hardware production. This probably entails chang
es in production techniques with 'software modules' being treated in
the same way as hardware modules in terms of documentation, testing,
etc., but d'oes not affect marketing or the end-user. The additional
~advantage of the ~proc is that it allows total hardware re-engineer
ing to be avoided in what may be very substantial product changes.
The disadvantage is that production procedures have to be introduced
for installing and checking software modules, but this :lS a reason~
ably straightforward problem that can be treated using the :well
established methodologies for hardware production.
(c) The customization and field upgrading of individual products is

--made1>arl'Of' -thei1." specification and a key factor in their marketing.
Technica.lly this is, in a sense, 'already available'. If new product
ranges involve 'only a change in software' why should not the range
become a continuum with each customer selecting the facilities appro
priate to his application. The advantages are clear on the marketing
side - one of the biggest attractions of computers has always been
that they can cater for individual requirements and that, if these
turn out to have been misconceived, the computer can always be re
programmed for something else! However, the new problems that.now
arise are substantial - documentation and customer support has also
to be customized and instead of having a standard product range one
is now in the 'systems' business. This is a viable proposition and
such businesses can be profitably managed, but they are not simple
extensions of (a) and (b). They have an entirely different cost
structure involving a large element of uncertainty, and the final
product cost is largely in terms of people not hardware.
(d) The ultimate level of exploitation. of the computer-based system
is to put its programming in the hands of the customer, i.e. to
market the product as one which may be tailored to individual requ
irements and where the user himself may perform this tailoring.
Technically this may be regarded as an extension of switches and
dials on the front panel, but the magnitude of the extension can be
such that a major qualitative change takes place. Clearly the level
of support the user requires is substantial - a far more complex

2

MICROPROCESSORS AT WORK
~----'-'---"--'----' -

.-- ~ -

- instrument has to be explained to him. The major change in most appl
ications is that the instrument becomes capable of complex, time
dependent procedures. However, there has~lso.been a change in the
customer-supplier relationship that has to be recognized. The end
user now has arealtively simple piece of equipment whose complexity
and problems lie in the way he programs it, whereas previously they
lay in the way that the manufacturer had 'programmed' it. The level
and types of responsibility and support that the user expects of the
supplier have got to change drastically if the cost-structure is to
remain the same. The supplier no longer has 'system responsibility'
for his product. He does not know enough about the way in which it
is being used to foresee and warn of all possible problems, and s.o
.on. Clearly a new relationship can be established, but it is in doing
this that many of the current problems are arising.

I must apologize in what is intended to be a technical paper on
certain aspects of microcomputer software for dwelling so long on the
'sociology' of the use of such deVices. However, the technology, both
hardware and software, is itself simple, and it is its commercial
application and control that is difficult. The use of interpretive
thigh-level languages' to be described in this paper is an important
technique of software engineering that bears on problems at levels
(b), (c) and (d), particularly these last two. If I had claimed at
the outset that one major advantage of the technique was to control
and restrict the flexibility of computer-based systems, it might have
seemed ridiculous - I hope the reasons for doing so are now more
apparent. The other advantage is to ease the programming and docu.men
'tat ion of software, a more readily appreciated virtue but again one
that is closely related to the problems outlined. Key features of the
approach are to:
(i) Impose functional modularity on software - a production technique
well-established for hardware - a module is something that does a
well-defined, and usually comparatively Simple, task and can be
tested thoroughly and used safely according to known rules;

(ii) Allow systems to be built up from modules directly from a spec
ification in a well-defined and readily understood problem-orientated
language.

Minicomputers and microcomputers The techniques described in the
following sections were originally developed for minicomputers. How
ever the current generations of ~procs provide generally better
instruction sets than the previous generation of minis. Notably index
registers and byte-addressing are provided which machines such as the
PDP8 lacked and had to emulate through subroutines. I shall not link
the instructions and addressing structures in the examples to partic
ular machines, but none of them tax the facili tie.s of current ~procs.

One significant difference between minicomputer and ~proc appl
ications is that storage utilization has become less important in
many mini applications because the costs of larger stores have fallen
so dramatically. In general it is still s,ignificant for many ~proc
applications where economies of size do not apply to the store. Hence
compact programs are desirable and I shall illustrate how these may
be achieved. Additionally, backing stores are less o£ten available
on ~proc systems so that program entry is a problem, and again I
shall illustrate how this may be minimized.

The techniques described are all well-proven, having been used in

3

MICROPROCESSORS A~ WORK

",:: . a wide variety of commercial, medical, industrial and scientific
applications (Facey and Gaines (1), Gaines and Facey (2), Gaines
et al (3,4), Green and Guest (5), Moore (6), Rather and Moore (7),
Baltzer et al (8». Although involving high-level languages, they
are not expensive in machine resources (the. initial development of
our system was on a time-shared PDP8 allowing only 4K12-bi t 'words .
per user, and aninterpreter for a BASIC-like language with integer
arithmetic and extensive string-handling was fitted in 2.7K allowing
1.3K per user program overlay which proved ample for a range of
data-processing and record-keeping applications (2), Kennedy and
Facey (9» and do not necessarily. involve substan~ial speed losses
compared ,with. assembly code.

2 VIRTUAL MACHINES AND MOD1~ITY

One of the most useful concepts to have been developed in the comp
uter science literature in recent years is that of a virtual machine
(Gaines (10), Goldberg (11»). Broadly interpreted it recognizes that
a computer with certain software in it has become another computer
with its own characteristics. Anyone who has transferred from a basic
machine to one with an operating system, or betwe~n different operat
ing systems, will be aware of the distinction - the machine changes
in character and power. Anyone who has used a library of standard
subroutines will have noticed that the routines themselves may be
regarded as instructions for.a more powerful machine.

The concepts of modularity (Dennis (12» and virtual machines
are closely related. We attempt to split software into modules each
of which has a clearly defined function and is relatively independent
of other modules. Generally the modules are linked together to form
a system by a series of subroutine calls. These calls may alternat
ively be regarded as instructions for a new computer, the,virtual
machine we have created by developing the modules.

Once one takes .±hi.s :vieli.flDint .certain v-€ry useful related coti'C
epts may.be developed. The differences between a computer deSigner,
a micro-programmer, a programmer, a system deSigner, etc., become
less apparent - we are all both computer and system designers !
In practical terms it means that much of the work and literature on
computer architecture and run-time systems for languages is very
relevant to application programming. There are few designers of IBM
360'8, Burroughs B1700's, etc., but those design studies and text
books based on them are relevant to a far wider audience, e.g.
data-descriptors and tagging (Gaines et al (13), Feustel (14) are
useful in interpreters. Similarly, studies of FORTRAN, ALGOL, SNOBOL,
etc., support software suggests many tec~iques that are useful in
computer-based systems not using the entire construction of these
languages.

, Secondly, the virtual machine construct is naturally hierarch-
ical (10) - we can build another level of virtual machine by linking
together some of the modules that exist at the lowest level into
larger modules at the next level. Each level defines a new machine,
a new product, and each level remains programmable in terms of the
modules available at that level. Fig.l illustrates a 5-level virtual
machine hierarchy in which. the 'development engineer' sees a comput
er and designs subroutines for it, e.g. to control certain peripheral
devices and to make certain calculation facilities available (e.g.
,data smoothing, floating point arithmetic, message communication

4

, 1

,MICROPROCESSORS AT WORK

Final application

- an Instrument

1 T
Customer programs
instrument in terms
of high-level
operations

1 T
Product designer
programs high-level
operations in terms
of standard low-level
modules

1 T
Development engineer
programs modules in
assembly code

J T
The computer - lowest
level - runs modules

protocols, etc.), the 'product des
igner'_configures a system and
wri tes'~routines using the modules
provided by the development engineer
to give the required control, data
logging and data-processing facilit
ies for the system in terms of a

'problem-orientated language', the
customer develops a program in this
language for his ultimate applicat
ion, thus finally defining the top
level 'virtual machine', an instrum
ent to the end-user.

The advantages of this aPfroach
are many-fold, but primarily. A) At
each level the task of the person
responsible for the development is
well-defined and reasonably circum
scribed. He sees the virtual machine
of the level below him and is resp
onsible for constructing that of the
level above him. The final applicat
ions programmer does not have to
worry about details of the instruct
ion set of the ~proc at the lowest
level, nor even of the operation of
the language system at the next. He
sees functions that make sense in
terms of his problem area and in
terms of the type of system he has
purchased.' Equally, in this illustr

Figure 1 A 5-level, virtual
me.ehine hieraTehy

ation, neither does the 'product
designer' have to concern himself
'1rl.-th1;he uetails O'i"'ttre llprtro and
the software support of standard
peripherals. He sees a library of

routines and an operating system flexible enough to support a range
of products, yet with most of the 'technical details' of control,
timing, etc., already taken care of. (B) Because of the high degree
of independence between levelS, changes in technology at one level
need not propagate beyond the level above. For example, if the ~proc
at the lowest level is replaced by a cheaper, faster one, then only
the 'development engineer' need be affected. The product deSigner,
customer and end-user do not need to modify their systems - they
have only become cheaper and faster.

The approach to system design based on defining modules and
then linking them into larger sub-systems, etc., is called a
bottom-up approach - it is clearly appropriate to the development of
a product range. The converse approach of commencing with an applic
ation and analysing it into sub-systems, etc., is called the tOR- '
~ approach and is clearly appropriate to a systems division. Both
types of approach are necessary in practice - the gap between ~procs
and applications is such that a bottom-up approach has a long way to
climb before it is useful, whereas a top-down approach has a long
way to fall before it hits actual hardware. In the climb or fall
there are too many pitfalls, diversions, and ranges of complex poss
ibilities for adequate development disipl.ines to be exerted if the

5

MICROPROCESSORS AT WORK

c~. 'product requirements fall into categories (c) and (d) of section 1.
The virtual machine approach illustrated in Figure 1 may be seen as
a way of splitting the development into well-defined levels in each
of which the bottom-up and top-down approaches meet and can be inte
grated together. In.human terms, in particular, there need generally
be only one person with design responsibility and authority for a
given level. The overall system development has been split into well
~efined, comprehensible, and manageable sub-tasks.

3 DESIGN AND IMPLEMENTATION OF VIRTUAL, r~CHINES

This paper is primarily concerned with the principles and implement
ation of virtual machines.and I shall not consider the design in det
ail. However, there are certain aspects of the design that relate
closely to ~he implementation, and these are primarily of a 'linguis
tic'nature. Whereas the actual functional modules that make up the
machine are clearly dependent on the type and range of applications
enviaged, the way in which their control, interconnection, etc., is
specified is a more general human factors problem. It is possible to
regard each module as a separate entity with its control specified in
some specific way. However, with a wide variety of modules this impo
ses a memory burden on the user, or programmer, who has to remember
not only what a module does but how its use is.specified. If, fQr
example, WIM and WAM are the names of two data-acquisition modules,
each requiring a source and desination plus two numerical parameters,
then specifying them respectivelybYI

LDA PARAMl lone param in acc
LDX PARAM2 lone param in index reg
JMS WIM Icall WIM subroutine
SOURCE Isource routine call address
DEST /destination routine call address

WAM(SOURCE,DEST,PARAMl-expression,PA]UU~2-expression)

is confusing to say the least ! Such an example is exagerated but
users of even well-established languages such as FORTRAN and BASIC
will have noticed anomalies that make programming more difficult.
Such anomalies tend to be far more prevalent in specialist software
packages.

Thus, consistency and uniformity is the way in which modules
are specified and controlled is highly desirable - if the specificat
ion of a parameter can be an arithmetic expression in one case then
this should be possible in all cases, etc. Such considerations are
important at all levels of virtual machine and I have discussed them
for computer design (13) and man-computer dialogue design (2) else
where. There is one further design consideration worth emphasizing
here because it highlights one of the defects of assembly code progr
amming, and that is the way in which the structure and facilities of
a virtual machin.e should. @ide the programmer in its use.

We tend to think of the negative aspects of constraints such as
those imposed at each level of the virtual machine hierarchy of Fig
ure 1 - the customer is prevented £rom corrupting the so£tware, slow
ing down other users, misusing certain peripherals, etc. However,
much of the freedom lost is not only unnecessary but also positively
misleading because it is the freedom to do one thing in a thousand

. different ways. This is particularly so at assembly code level where

6

MICROPROCESSORS AT WORK

even simple routines may be coded in innumerable ways. Such flexibil
ity may seem attractive in catering for all possible styles and requ
irements. However, it calls for high information-content decision
making and high information-content documentation at every stage,
both sources of problems and costs. The best virtual machine is one
in which for each task that is natural to it there is one, and only
one, way of programming it and that way is obvious - the structure
of the machine should so guide the programmer that a statement of
the task implies how it should be programmed.

The virtual machine concept in itself gives little information
as to its implementation. It is technically simple to write a soft
ware package as a set of modules, sub-programs or subroutines, that
are linked together by GOTO's or procedure CALL's. This is good prac
tice at all levels and every machine has its calling mechanisms to
enable this to be done. There is wide variety in the method by which
parameters are passed to the sub-program and results returned but,
even at assembly code level, information flow between sub-programs
can be standardized so that modules may be interfaced freely provided
certain conventions are obeyed. The basic assembly language rarely
provides a rich enough syntax in itself to make the information flow
lin~istically natural. However, the use of a macro-generator (Brown
(15») before the assembler can overcome this, replacing:

LDAX
LDB Y with BINGO(X,Y) or even FROM X BINGO TO Y .
. JMS BINGO

Thus, the virtues of clarity, modularity, etc., are not to be claimed
by anyone language or technique alone. However, certain approaches
do make them easier. "to attain and easier to impo se.

The system that actually causes the instructions to a virtual
machine to be executed is called its interpreter. This itself will
generally be progra~ed in the instructions of a lower level machine,
down to the actual conputer instructions being interpreted by a
micro-program. The kernel of an interpreter is the general logic
associated with fetching and decoding instructions, passing paramet
ers, etc., as opposed to executing specific operations. In the foll
owing sections I shall describe some simple and compact interpreter
kernels that have been used successfully in commercial applications
and are well-suited to ~procs. The particular systems also have the
advantages of overcoming Borne of the addressing limitations of ~procs
and of being interactively programmable, in that programs may be
entered at a terminal, executed, interupted, modified, and execution
continued. Such interactive capability is particularly desirable at

. the higher, end-user, levels.

4 STRUCTURE OF A BASYS INTERPRETER

BASYS (1,2) is a BASIC-like language (Schur (16) that is in wide use
for applications ranging from instrumentation and data-logging to
financial dealing and medical record keeping. A BASYSprogram consists
of a sequence of lines ordered by their, not necessarily consecutive,
line numbers. A line consists of one or more statements separated by
colons, and a statement consists of a meaningful key-word followed by
an expression, or sequence of expreSSions, e.g.:

25 LET P=15

7

MICROPROCESSORS AT WORK - .

37 PRINT tp IS t P
50 DRIVE P+7 15 K :[SET UP MOTOR
52 IF K=O :LET Y=P!2 :GOTO 100
54 PRINT 'PROBLEM ON MOTOR 15' :GOTO 2000+10*K

100 LOG P+5 4 u, : GOTO 137 ;[GET DATA FROM' A-D 4
and so on. The data types in BASYS include variable-length integers,
arraya, variable-length character strings, and reference variables.
The normal range of arithmetic operations, and an exceptionally
powerful range of string-processing operations, are included in the
general structure but, in addition, provision is made for the ready
addition of special processors such as DRIVE and LOG above.

BASYS itself is extremely interactive and easy to use and the
programs are particularly clear because of the expressive key-words
and two-dimensional form of the language. The evaluation of arith-.
metic expressions is slow compared with machine code, but this does
not matter because fast machine code modules are readily added as new
processors when required. These new modules are activated by a key
word and parameter list like the existent processors, and hence inte
grate simply and naturally with the existing language. In its imple
mentation BASYS is essentially a string interpreter and all the
important routines may be viewed as processors that transform strings.

Link to next line·

Line number

1st proc 2-word
code header

rest followe
of by n-by

string
string

2nd proc
code

rest

etc.

terminator
code

Another line
-(possibly garbage)-

etc.

etc.

Figure 2 Program line
structure in BASYS

Figure 2 shows the structure of program
lines in BASYS. They are stored as a
linked list commencing with the lowest
line number, and the first word in the
2-word header is a link to the next line
in the list. The next header word is the
line number itself. There follows a var
iable length string conSisting of single-

d byte codes for each processor name fol1-
te owed by the actual parameter strings. A

teTlIdnation code indicates the end of
the string and there follows the header
of another line (not necessarily the
next one in line number sequence).

Figure 3 shows the overall storage
structure for BASIS program and data.
Both are dynamic structures whose size
varies at run-time (character strings
are stored as 'program lines') and
share a single freespace area.

The interpreter consists of the follow~
ing parts:
(1) Routines for storing, inserting,
deleting and garbage-collecting strings,
and maintaining the program statements
in the correct ordert
(2) A main control loop which determines
which statement is to be processed,

. picks up the processor codes, and trans
fers control to the corresponding proc
essor;

8

MICROPROCESSORS AT WORK

Linked list of
program lines

..... --Pointer to first program line

to line being executed

rl----~~--~~----~-------Pointer to string freespace

Freespace area
for both data
structures

Stack for simple
variables, arrays,
parameters, etc.

(3) Processors corresponding to
(4) A set of general procedures
essors and which do most of the
~argument strings.

NXTLIN
\If

Advance PCURR to next line
in the linked list and set
up PCHP from PCURR

'.

CONLIN
~
,

Get next character from
current program line (PCHP)

J,
Is it a terminator

...... ...
Yes

J,No
No Is it a proc code ")

"Yes
Syntax , error

Despatch to processor
through table (COMJMP)

Figure 4 Main control loop

Figure 3 Storage allocation to
program and data in BASYS .

each command-word/processor-code,
which are called by the command proc
work of evaluating and interpreting

Figure 4 shows the flow of the main
control loop. PCURR is a pOinter to
the current line being executed and
it is set·up at NXTLIN to. point to
the next line. PCHP is a pointer to
the next character in the current

.. prDgram l·ine and. et CONLIN it is
expected to pOint to a processor'
code. In an 8-bit byte machine
these codes will typically have the
top bit set to distinguish them
from ASCII 7-bit characters. When
a processor code in found it is
used to transfer control to the
appropriate processor through a
table of processor entry pOints,
COMJMP shown in Figure 5.

Most command processors themselves
involve little code since they use
general routines for expression
eValuation. For example the command
LET X~5 contains the command word
'LET' which becomes a single-char
acter processor code followed by
the string 'X=5'. \ihen the inter
preter finds the code it transfers
to the LET processor which first
calls a general ASSIGN routine that
sets up a pointer to X, then a gen
eral arithmetic EVALUATE routine
that returns the value 5, then

9

COMTYP

COMJMP

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII

LET
GOTO
PRINT
IF
RUN
STOP
LIST
DRIVE
LOG

'MICROPROCESSORS AT WORK

, LET' <TERM>
, GOTO' <TEID1>
'PRINT' <TERM>
'IF' <TERM>
'RUN' <TERM>
, STOP t <TERM>
, LI ST f <TERM>
, DRIVE' <TERM>
'LOG' <TEID-t>

<TEru.t>

a general data transfer routine
that moves the value 5 to the locat
indicated by the pOinter to X.

The IF processor applied to the
same string would call the EVALUATE
routine immediately to yield a value
TRUE if X=5 and FALSE otherwise. It
then exits to CONLIN to continue
execution of, the program line if
the result is TRUE, but goes strai
ght to NXTLIN if the result is
FALSE, thus executing the conditio
nal as required. This use of the
two entry points in the main control
loop to give conditional execution
of the remainder of the line is
used in many processors, e.g. an
input/output process will return to
CONLIN only if it is successful so
tha t one can write -

DRIVE X' 7 Y : PRINT 'DRIVE OK'
Figure 5 Command string table and
processor despatch table inBASYS and the PRINT will only occur if

the drive operates properly •

• Incorporating a new processor in BASYS is extremely simple since
command names and entry addresses are held in two open-ended tables
as shown in Figure 5. The special command DRIVE, for example, has
been inserted by putting its name as a character string 'in the table
COMTYF, and its entry point as an address at the correspond~ng posit
ion in the table COMJMP. When the editing phase of the interpreter
encounters the string 'DRIVE' it encodes it as a single character
pr.o.cSSl3.ar ~Dde.lfuen the .main control loop of the interpreter ,encoun
ters this code it transfers control to the entry point, DRIVE. The
processor takes 3 parameters, two values and one address, and might
look likes

DRIVE JMS EVAL
TAX
JMS EVAL
STA,X IOTAB
STA TEMP
JMS ASSIGN
LDA TEr-1P
STA,X
JPZ CONLIN
JMP NXTLIN

/evaluate arith. expression - result in acc
!put result in index register X
/evaluate arith. expression - result in acc
/send acc to address in X in 10 table
/status information is returned in acc
/get pointer in X to variable
/get status back

'land store in location indicated by X
/continue program line if transfer was OK
/go to next line if transfer not OK

The preceeding discussion and examples illustrate the structure
of the BASYS interpreter and the way in which it can be used to link
machine code routines together under program control in a fairly high
level and readily comprehensible language. The kernel of this inter
preter consists fundamentally of the control loop shown in Figure 4
but I wouJ.d include as part of it the general arithmetic assignment
and evaluation routines that are common to virtually all applications.
Once this kernel has been written and thoroughly debugged it can be
used a fOlL~dation for a wide variety of special systems into which

, new facilities are 'plugged' in the simple way shown. The kernel

10

MICROPROCESSORS ATWORK

typically consists only of some 2K machine instructions and hence is
readily transferred from machine to machine. Utility routines for
listing and storing programs, etc., are actually written in BASYS as
'hidden' procedures. This trick of writing as much as possible of the
non-real-time part of the interpreter in i ts"elf is widely used and
saves much programming effort.

, In the next section I will discuss a variation of the technique
used in BASYS which enables the interpreter itself to run substant
ially faster at some cost .in flexbility and size of code.

5 THREADED CODE TECHNIQUES

One of the simplest and most effective techniques for linking rout
ines together and overcoming the program and addressing limitations
of small computers is that of threaded code, originally described by
Bell (17) as implementation of the run-time environment for PDPll
FORTRAN. A further development of it was used by" Dewar (18) to support
a fast, machine-independent SNOBOL compiler, and an extension of the
type of technique forms the basis of FORTH (6,7), a very successful,
fast,·interactive language used·in small astronomical computing
systems.

The concept behind threaded code is extremely simple - it is to
use a table of routine addresses to cause the actual hardware ·proc
essor to 'thread' its way through the routines in the specified sequ
ence. The left hand side of the code below shows a conventional sequ
ence of subroutine calls and an example of a normal subroutine and
return. The right hand side shows the same sequence effected by
jumping to the address pointed at by the index register X, i.e. effect
ively load the program counter (PC) with the word pointed at by X
and then increment X.
START JMS ROUTA

JMS ROUTB
JMS ROUTA
JMS ROUTC

ROUTA

RETURN

START ROUTA
ROUTB
ROUTA
ROUTC

INTER LDX [START
J1.fi> ,X+

ROUTA

.
JMP,X+

/get address
/jump to it
with post-inc

The 'subroutines' themselves differ only.in that they do not have a
normal RETURN, but exit by transferring control to the next address
pointed at by the (updated) X. Thus X itself may be regarded as a
pseudo program counter (PCC) and the routine entry addresses as
instruction codes for a virtual machine.

One important advantage of the technique is that the addresses
in the subroutine calls on the left can occupy only part of the
instruction whereas those in the control table on the right are full
words (a similar consideration applies to the despatch table of
BASYS in Fig.S). Either the subroutine call have to be double-length
(as in PDPll) or they have a substantially shorter address scope than
does a full word (probably expanded by transferring indirectly via a
,table, e.g. in page zero, that corresponds to our despatch table).
The control table of threaded code is thus more compact in giving

II

MICROPROCESSORS AT WORK

full access to the store. In many machines execution through a POO in
this way is not significantly slower than the overhead of the sub-
routine calls (on the PDPll it is faster !). .

If the subroutines require
also be imbedded in the control

LOAD
ARGl
STORE
ARG2

/address of routine
/address of argument
/another routine
land argument

arguments then their addresses can
table. For example:

LOAD LDY,X+ /get address arg
•••••••••••• and increment X
etc. JMP,X+ /exit

The routine LOAD picks up the address of its argument and advances
the POO past it ready for the next transfer. The technique described
in (17) avoids the double word required for a sequence like LOAD ARGI.
The PDPII FORTRAN compiler actually generates a routine LARGl that
loads ARGl to the operand stack. There is thus a load and a store
routine for every operand, but since an operand will generally be
used many times this uses less code than haVing-multiple word entries
in the control table.

Dewar (18) goes one step further and uses 'indirect threaded
code' in which the table entries themselves point to the address of
a routine, i.e. there is double indirection. The advantage i.s that
the actual argument can be associated with the addresses of routines
to load and store it. For example, a simple variable will have two
pOinters with it, one to a routine to load its value to the stack,
and the other to a routine to set up its value from the stack. These
routines will be common to all simple variables of a given type and
themselves pick up their parameter from the calling address. The
header block of an array would contain pOinters to routines that use
the number on the top of the stack to generate an offset into the
array and then load or store to it. The technique has the-advantage
of even greater compactness of code and it allows a clean separation
betwee~ program and data structures. The. major-advantage claimed by
Dewar is that since the compiler itself generates only addresses of
routines and data structures it can be completely machine independent.
A related advantage is the way in which the selector/updater routines
for data are associated with the data itself. This clearly allows
operations such as input/output transfers to look like variable man
ipulation, and it allows for complex data structures of varying types
including 'data-driven interupts' (19,20,21) and the advanced progr
amming techniques of languages such as PLANNER (22), FOP2 (23) and
ELl (24).

The difference between the implementation of BASYS previously
described and that by threaded code is that the I-byte processor
codes become processor addresses and the parameter evaluations have
also to be compiled into threaded code sequences. This makes dynamiC
program change more difficult (but still possible) since pOinters to
data structures have to be updated whereas their symbolic names did
not. The advantage gained in using threaded code is one of speed
because the interpreter is calling routines and acceSSing data far
more directly in terms of actual addresses rather than codes and
symbolic names.

In FORTH the linguistic structure for programming is made virt
ually the same as that of the threaded code so that the programmer
himself has to 'compile! the algebraic form of a statement into its

12

MICROPROCESSORS AT WORK

execution form, i.e. to say:
X LOAD Y LOAD + Z STORE rather than Z = X + Y

However, since the natural programming technique in FORTH is .hierar
chical with complex operations composed of Simpler ones, themselves
composed of simpler ones, etc., the effort of this compilation is not
necessarily tedious. Indeed, since it corresponds to the actual sequ
ence in which operations are carried out, it may even be more natural
to someone who is hardware-orientated ! It is quite feasible, however,
to provide autonatic translation from the command on the right above
to that on the left, and in GLUE (5) this is done to give a more con
ventional syntax than in FORTH.

In both FORTH and GLUE the translation from text to code is done
by routines written in the language itself, and is incremental so that
programs are compiled line by line and do not have to be available as
a who.le. In FORTH, because of the close relationship between the lang
uage and the code, the translation is reversible so that compiled
sequences of code may be listed in their source form. Multiple indir
ection in the code is exploited in both languages so that a routine
will consist of pOinters to routines that themselves consist of poin
ters to routines, etc. This makes the building of virtual machine
hierarchies in these languages both natural and efficient - the adv
antages of languages in which this can be done within a single cons
istent framework have been amply demonstrated by the complex systems
that have been built, level by level, in LISP and POP2.

6 CONCLUSIONS

The two main points made in this paper are that
(1) In the commercial exploitation of microcomputers software engin
eering has to be· ·managed as rigorously as hardware engineering has
been in the past;
(2) That certain software engineering techniques are part·icularly
amenable to management an,d control in ways which naturally reflect
the product structure and customer-supplier relationship.

Additionally certain technical concepts have been outlined and ref
erences given by which these techniques may actually be. applied to
microprocessors.

7 ACKNOWLEDGEMENTS

I would like to thank Peter Facey of this laboratory for many stim
ulating discussions of the topics in this paper. In addition I have
benefited greatly from similar discussions with many colleagues in
industry. In particular I have Lindsey Shaw of Instron to thank for
drawing my attention to FORTH.

8 REFERENCES

1. Facey, P.V., and Gaines, B.R. (1973) Real-time system design under
an emulator imbedded in a high-level language, Proc. BCS DATAFAIR
73, Nottingham, April, 285-291.

2. Gaines, B.R., and Facey, P.V. (1975) Some experience in interactive
system development and application, Proc. IEEE, 2l, 894-911.

13

/

MICROPROCESSORS AT WORK

3. Gaines, B.R., Facey, P.V., and Sams, J. (1974) An on-line fixed
interest investment analysis and dealing system, Proc. Bur.
Computing Congress (EUROCOMP 74), 155-169. .

4. Gaines, B.R., Facey, P.V., and Sams, J. (1976) Minicomputers in
security dealing, Computer, 2, Sept., to appear •

. 5. Green, T.R.G., and Guest, D.J. (1974) An easily-implemented lang
uage for computer control of complex experiments, Int. J. Man
Machine Studies, £, 335-359.

6. Moore, C.H. (1974) ,FORTH: a new way to program a mini-computer,
Astron. Astrophys. Suppl., 15, 497-511.

7. Rather, B.D., and Moo're, C.H. (1976) FORTH high-level programming
technique on microprocessors, Proc. ELECTRO '76, Boston, ~ss.,
23-4, 1-8.

8. Baltzer, P.K., Weisbecker, J.A., and Winder, R.O. (1976) Inter
, pretive programming of small micro-processor-based systems,
Proc. ELECTRO '76, Boston, Mass., ~, 1-4.

9. Kennedy, T.C.S., and Facey, P.V. (1973) Experience with a mini
computer-based hospital administration system, Int. J. r1an
Machine Studies, 2, 237-266.

10. Gaines, B.R. (1975) Analogy categories, virtual machines and
, ,structured programming, in Muhlbacher, J •. (ed.) GI-2 Jahres

tagung, Lecture Notes in Computer Science, }1, Springer-Verlag,
Berlin, 691-699. .

11. Goldberg, R.P. (1974) Survey of virtual machine research, Computer,
1, 34-45.

12. Dennis, J.B. (1973) Modularity, in Bauer, F.L. (ed.) Advanced
Course on Software Engineering, Lecture Notes in Economics' and
Mathematical Systems, 81, Springer-Verlag, Berlin, 128-182.

13. Gaines, B .R., Facey, P. V ., ''lilliamson, F .K., and Maine, J .A.
(1974) Design objectives for a descriptor-organised minicomputer,
Froc. Eur.Computing Congress (EUROCOlvtP 74), 29-45.

14. Feuatel; E.A. (1973) On the advantages of a tagged architecture,
IEEE Trans. Computers, ~, 644-656.

15,. Brown, P.J. (1974) Macro Processors, John Wiley, London.
16. Schur, L.D. (1973) Time-Shared Comuuter Languages, Addison-Wesley,

Reading, Mass.
17 .• Bell, J .R. (1973) Threaded code, Comm.ACIIl, 1§., 370-372.
18. Dewar, R.B.K. (1975) Indirect threaded code, Comm.A~1, 18, 330-331.
19. Morgan, H.L. (1970) An interupt-based organisation for management

information systems, Comm.ACM, 12, 734-739.
20. Zelkowitz, M. (1971) Interupt driven programming, Comm.ACM, 14,

417-418.
21. Kohout, L.J., and Gaines, B.R. (1976) Protection as a general

systems problem, Int. J. General Systems, 2, 3-23.
22. Hewitt, C. (11971) Procedural imbedding of knowledge in PLANNER,

Int. Joint Conf. on Artificial Intelligence, London, Sept.
23. Burstall, R.M., Collins, J.S., and Popp1estone, R.J. (1971)

Programming in POP-2, Edinburgh University Press.
24. Wegbreit, B. (1974) The treatment of data types in ELl, Comm.ACM,

17, 251-264. . ' .

14

I
i
I

I
I

-1

