
INFORMATlON PROCESSING 74 NORTH·HOLLAND PUBUSHINGCOMPANY (914)

A HIGH-LEVEL MINICOMPUTER

F. K. WILLlAMSON*, B. R. GAlNES, J. A. MAINE* and P. V. FACEYt

• Mlcro.Computer Sysfems, Boundary Road.
Working, Surrey, UK

t Man-Machine Systems Laboratory. Departmenr of l:.1ectrical Engineering Science
University of Enex. Colchester, essex, UK

This paper describes the design considerations underlying the development of an advanced minicomputer
(.MINIC-S) noW' in commercial production. Emphasis is placed on programming/compiler and operating
sy:stllm requirements ,on the one hand and engineering feasibility on the other. Hicropl:'ogramming/
trapping enables all ~chines of the range to offer the identical architecture and range of facilities.
Descriptor-based data organisation enables a very wide range of operand types and lengths to be made
available. Relocation/protection and a separate mini~omputer I-O processor enable reaL-time process
structured operating systems to be implemented erficiently.

1. INT mOUCTI 00

The original design brief for the machine described
in this paper was a replacement for an 8-bit mini
computer widely used in machine tool control - the
replacement to have enhanced arithmetic. capabilities
on wider operands together with wider address scope.
The technology was to be conventional and the over
all price range to be in the centre of ,the mini
computer market. It very rapidly became apparent,
however, in the early stages of design that such a
conception of minicomputer architecture had been
overtaken by events. On the one hand micro
computers on a few chips were attaining the power 'Of
conventional minis - on the other hand standard
circuit technology and costs were 1IIuc:h that one
could go way beyond present ~nicomputer architec
tures whilst still maintaining the cost objectives.
Indeed a basic problem for small computer designers
nowadays is the effective exploitation of the
capabilities of current electronic components.
There is the danger on the one hand of designing a
too-simple machine where the processor cost is
negligible relative to power-supplies, cabinet and
memory, Whereas on the other hand il machine may ha
over-engineered with a diverse range of complex
facilities that do not integrate well together and
are difficult to utilise particularly under
compilers.

1.1 Increased hardware content for improved system
performance

There .Ill'!! two main area.s where inCl'eAsed hardware
content may be used to improve system performance
and take advantage of recent developments in
computer science:

(i) Ope~ting systems - the advantages of process
structured operating systems have been extolled as
major aids to real-time system development and soft
ware reliability [1-3J, bot-h of which are of major
importance in typical minicomputer applications.
However, the protection and cOlll1lunicat.ion mechaniS1llS
necessary are not implementable on conventional
machines wit-hout a high time overhead which in turn
limi t's the potential of process-structuring in its
most important applications - most real-time gyste ..
are inhel'!!ntly short of time. Additional hardware,
appropriately organised. call provide a suitable
environment for efficient process-structured
ope~ting systems.

(ii) High-level languages - the advantages of IIhigh
level" systelllS progralllllling languages have also been
el(tolled asa basis for further and more manageable
Jin'ograll!llling than can be achieved in assembly
language but with the same level of detailed run-

time space/time control.

Again, since most minicomp~ter programming is at
machine-leVel, the availability of such hi~-level
replacements is of potentially great importance.
However, the successful implementations of such
languages have been on large maChines with wide
address scope and a fairly uniform structure [4-5].
Host minicomputers have a variety of non-interchange
ab.le address mechaniSllls as the scope changes, and
non-uniform structures designed to allow the
programmer to use a variety of specific techniques,
or "tricks", to cope with common situations. The
"high-Iawl" languages implelllElntable on the current
gene~tion of minicomputers are either partially
interpretive at run-time, or, in fully-compiled form,
require a substantial run-time system to cope with
the addressing, missing operations, missing address
nodes, etc. "Systems-programming languages" wi tl10ut
these defects reduce to syntax changes in a
conventional assembler.

If one analyses this situation further then it leads
inevitably to the conclusion that to support a "high
level systems programming language" Which is truly a
replacement for an assembler one needs a "high-level"
machine.

2. REQUIREMENTS FOR A "ijIGH-LEVEl." MACHINE

It should be clear from the previous discussion that
by a high-level machine we do not mean one that is
specifically designed to hardware interpret an enst
ent high-level language (althoilgh that may be a side
effect and is also of interest). one reason for
this is that from two points of view all existing
languages are inadequate: practically - no language
offers the full nnge of data types and constructs
suitable for the majority of current applications -
a language-specific machine is inherently restricted
and, commercially. the more powerful languages such
as SNOBOL and ALGOL 59 are not widely accepted where
as FORTRAN, whilst ubiquitous, il!l not an adequate
cOll1petitor to assembly language; technically - all
languages have their conceptual flaws. on the one
hand features which are little-used but cause
inherent run-time problems, e.g. dynamic own arrays
in ALGOL 60, and on the other hand, features which
are inconsistently provided and lead to arbitrary
restrictions perhaps related to the original
implementation, e.g. the form of array subscripts in
ASA FORTRAN IV.

2.1 Hain objectives

How.ve!', whilst no one high-level language is
adequate as the basis for machine design, in total
the objectiYft ·of I!I. range of languagea provides a

F. K. Williamson et al .. A high-level minicomputer 45

foundation.
important:

Two sources in particular seem

(a) The extension of widely used existing languages
intended for general use e.g. PLl, ALGOL 68, FORTRAN.
v.

(b) The extension of existing machine facilities
established in "systems-programming languages" e.g.
PL360 and BLISS.

Fl'om these one may extract the following main
object! YeS!

(i) A wide range of operand types - most machines
provide one integer and one floating-point format
with a means of "double-precision" - the provision
of a wider ra.nge of integer and real lengths seems a
common objective to all extensions. We took it as
a basic design objective to provide a full range of
operand types covering all normal applications.

(ii) More explicit data structures - data-structur
ing on most machines is primitive, typically up to
the level of a combination of indirect and indexed
addressing to allow easy access to 2-dimensional
arrays - the data-structures made available by
languages are most often implicit to the program
generated by the compiler and do not exist as run
time attributes of the data, e.g. the structure of
FORTRAN common cannot be determined except by the
way it is used, although in more dynamic languages
"dope vectors" and "thunks" make structure more
explici t - "reference-variables" go even further in
allowing structural information to be passed at run
time - it is particularly in the manipulation of
pointers and packed structures containing mixed data
and pointers that assembly language generally scores
over higher-level languages. We took it as a basic
design Objective to provide explicit data structur
ing through haroware-inteqlreted "reference
variables" and "procedure variables". and generally
to allow programs to be "data-driven" wherever
a.ppropriate.

(iii) Separation of instruction set and order-code -
many of the programming problems of machines,
particularly minicomputers, arise because the order
code seems to have been designed before the
instruction-set and then instructions have been
"fitted in" - problems such as: "paging" (Umi ted
address range); the need to change address modes,
say from direct to indexed, as the scope changes;
side-effects from basic operations where several
functions have been crammed into one operation (e.g.
lIincrement and skip if zero" as the only increment
operation); all these arise from order-code constr
aints on instruction-set availability - whilst it is
clear that the word-size must affect the range of
instructions that can be encoded in one word. it
should not be allowed to place arbitrary limits on
the instruction set.

We took the design criterion to be that the instruc
tion set should be designed first (with "architect
ural" not "order-code" considerations in mind) and
that the "order-code" should be designed thereafter
to minimize program storage requirements in
"typical" applications on the one hand, and to
permit rapid instruction-decoding on the other. It
is even possible to envisage that the order-code of
the machine will change in the light of experience
(and the assembler/loader) without change in the

.instruction set and without users being aware of the
change.

inessential differences in the treatment of various
operations, inconsistencies in the treatment of
condition codes, unwanted side-effects on accessing
certain registers. etc., etc. - it is bitter experi
ence that hardware "options" in particular require
far bigger drivers than originally envisaged. 90\ of
which look after exceptional conditions which rarely
occur (and hence to the engineer are of little
importance) but which must be properly treated when
they do. We took it as a basic design requirement
that every operation be available with every address
mode and with every operand type. and that status
information should be treated as a normal data item.

2.2 Auxiliary objectives

The Objectives of the previous section have been
programmer/language derived. There are also a
number of objectives which stem fram real-time
operating system and commercial/manufacturing
requirements.

(v) Deco le real-time re uirements fram user
p~rams - the requirement to serv ce an lllterrupt
wthin a specified maxiJDum time can be problematic
if the instruction-set of the machine includes
operations which can take a long time. e.g. long
floating-point arithmetic, and which are arbitrarily
available to all llSers at all times - it becomes
essential to allow instructions to be interrupted
within their execution.

We .took a basic design requirement to be that real
time system programs could be run in a separate
environment having priority over the normal, uncon
trolled user environment - the systems programs
handling real-time interaction could be written
under constraints guaranteeing a maximum response
time whilst the user programs were free to utilise
the full range of facilities of the machine.

(vi) Flexible relocationtyrotection - many schemes
(well-summarized in \6-7) have been put forward for
memory management and no one seems to have a clear
advantage over all others. We were concerned to
adopt a basic scheme that gave high-speed hardware
relocation/protection that could be optimally
utilised for speed in specialised dedicated systems
but which could also be used to support general
purpose operating systems of the HULTICS r 8] type
without excessive overheads.

(vii) Microprogramming - microprogramming may itself
be seen as a means rather than an end - it is
probably the only technique by which one of our
basic objectives might be realised: the availab
ility of a range of machines with variable cost/
speed trade-off but with identical architecture and
facilities. However. our past experience with
MINIC I, a small microprogrammed machine, had also
demonstrated the capabilities of microprogramming to
provide high-speed specialist Bcili ties and speed
up key operations with no hardware change save the
addition of microprogram memory. This capability
is an important machine feature in its awn right and
we wished to retain it in MIMIC-S.

(viii) Extensibility through trapping - one object
ive in any machine design is lifetime - there is no
sustainable argument for freedom from obsolescence
of any CUlTent design - computer science and user
requiremen ts are both in a state of flux and we do
not have firm foundations for tomorrow's needs. In
these circuastances it is probably a better strategy
to aim for a "clean" simple basic design giving
facilities which appear to be universally required
and leave a large-part of the order-c;ode unallocated.
Undefined codes can then cause traps which can be
software-interpreted initially with later moves into
microprogram and then hardware if required. This
requires a well-defined trapping system that can
partially execute instructions; trap if an unlcnown

46 Computer Design I

addrass-mode, operand-type or operation is speci
fied, pass information 'to a software routi~ in an
appropriate format (pointers.· operands, etc); and
continue instruction execution when the routine
exits having interpreted the undefined part of the
code. A trapping system of this type was an
inherent part of the design specification for
MIMIC-S.

(ix) Custaner-ilD1!1!I of the machine - from all that
has been said be\Ore most readers with experience
of computer manufacture will see the abyss of
customer education yawning before the proposed
machine. As noted previously the original require
ment was a marketing one and the technical object
ives arise logically out of commercial and produc
tion considerations - the facilities provided are
not e!<pensivl!I in hardware and are a llAIcessary
foundation for current software techniques.
Hawever, there is one criterion fund_ental to any
design - a user should never incur penalties for .
complex facilities when he only needs simple
facilities. This is all too often forgotten and
the question as to how the machine appears t.o a
non-time sharing, lS-bit only, etc., user hu been
a constant benchmark. Similarly we have not sought
to i!llpose constraints upon the user - e.g. stack
operations are important but 80 is the capability
to use the machine in the single-accumulator mode to
which most minicomputer users are accustomed - both
ggdas should be a~ailable.

3. THE DESIGN OF MIHIC-S

In section 2 we have tried to express clearly the
logical foundations for our design objectives.
However. thaN is another side to the story which.
in retrospect, one tends to OIIIit but may be more
important in practice. These design objectives did
not arise as a whole and the original objective
were more mundane - the final objectives are a
technical translation of basic marketing/production
requiNments., However, in practice many of the
features of the machine arose as logical extensions
of quite simple basic requirements and are justified
as much by pragmatic arguments as by the preceding
rationalisations. In the ensuing discussion we
shall present such arguments also since t~ey
indicate that engineering/economic considaNtions
aN equally strong in forcing machine design alOft,
the lines pu t forward.

3.1 Operands and operations

The first lIIinicOlllputera hael as their operands the
basic "'lioNs" of' the lIIemory, i.e. generally l2-bit
or lS-bit operands. Primitive ''half-word'' opera
tions aided character-handling. and a "link" or
"carry" status bit aieled multi-length arithmetic.
In recent machines a range of operations on both
16-bit and B-bit operands has became common
together with hardware "options" and concomitant
instruction sets for floating-point operands,
generally in a 32-bi t format. Alternati vely. some
machines have had a single operand size which is
set by a status word to be 8/16/2~/32 bits.

There are four . basic criticisms one may make of
many of these sCh_as:,

(1) The different types of operand are not treated
consistently, e.g. in the PDPll only a limited
range of operations are made available for 8-bit
operands, and integer arithmetic is in a a-address
instruction format whilst floating-point arithmetic
is in a l-adciress instruction format. This makes
it difficult for the compiler writer ~o treat the
different operands as interchangeable data types.
The assemblrlanguage programer finds that
identical calc\llations have to be prog'l'8lllllad in
qui te different ways for different types of operand.

(ii) The status information from comparisons, eITors.
etc. is rarely treated consistently for all types of
operand.

(iii) Virtually no matter what operand lengths are
made available in tbe ranges above there will be
programa that require sO!IIetbing longer, e.g.
financial calculations often require very long
integer arithmetic, or interaediete results in
machine-tool calculations may exceed 32-bits. As
soon as the basic hardware-recognised lengths are
exceeded the software problems of multi-length
operations return - a 32-bit divide does not readily
extend to ~O-bit divide at software level (on the
other hand it may well do so at hardware level for
certain organisations of the arithmetic unit) - a
signed 16-bit multiplication does not readily extend
to a signed 32-bit multiplication.

(iv) Where the additional operands and operations are
made available through hardware "options" it is rare
for the software utilities of a system without options
to emulate them exactly, if at all. The addition of
the option generally radically changes the machine
architecture and requires extensive re-programming.
It is not possible to trade speed and cost over a
range of configurations without re-programming.

3.2 Descriptors

These considerations lead us to propose that HINIC-S
should have a far wider range of operand types and
lengths than had any previous machines and that these
should be intrinsically available on all machines in
the range. This did not in itself present major
engineering problems - in particular. for the middle
range, micro-programmed machines, 8/16/24/32 arith
metic ~ould be implemented by iteration of basic 8-
bit operations and the only change required for
greater lengths was extension of the accumulator
scratch-pad registers and the iteration counters.
There was no point in extending the operand length
beyond useful bounds and we took ~-bit operands as
a reasonable working limit. The actual maximum was
2et at 128 bits to go well beyond this for floating
point working and to allow doUble-length inte~iate
integer results to be handled as simple operands
rather than in "upper" and "lower" par't2.

The incremental unit in which operands could vary was
difficult to determine - we were finally debating 1-
bit or B-bit units (bytes) and decided upon 8-bits.
Either can be made self~consistent, e.g. the type/
length of an operand may be encoded in one 8-bit unit
in an 8-bit organisation. The advantage of l-bit
variability is that it places no constraints on data
packing - one disadvantage is the requirement for no
data-unit boundaries in the main memory. This has
been implemented in the 81700 (9) and may become
generally feasible with low-overhead, low-cost in
future memory technologies. The extra 3-bits
required for bit-addressing rather than byte
addressing are probably less important since a bit
organised machine could readily have, for example.
19-bit rather than 16-bit pointers.

For the i~diate future we concluded that the
advantages of a bit-organised machine did not out
weigh the practical problems of its design and
implementation, and the marketing problems of such a
radical innovation. Howe~er, bit-organisation is
one probable facet of the shape of things to come
and we have attempted to structure MINIC-S in such a
way that program for the byte-organised machine could
be directly transferred to a future bit-organised
machine.

The range of types of operands was easier to
determine - unsigned integer, signed integer. float
ing point l real) weN obvious - complex as a basic
operand was desirable - reference variables

F. K. Williamson et al., A high-level minicomputer 47

(pointers) and procedure calls, automatically
decoded to fetch operands were also desirable. We
were particularly concerned to leave the range of
types open for future expansion - 16 types together
with 16 lengths could be encoded in an a-bit
descriptor and seemed to give ample scope for
expansion.

The major problem which arises when a range of
operands is made available is how they are to be
specified by the programmer. Two schemes have been
adopted in previous minicomputers:

(a) Specify the operand type in the instruction -
when there are few types this is attractive because
it minimizes the amount of code generated - it does
not allow type-independent functions to be written
or types to vary dynamically at run-time - however,
its main disadvantage is that there are few bits to
spare in the typically 16-bit instruction-formats of
minicomputers and using some for the type still
further restricts address scope and is generally not
possible consistently for all operations and address
modes.

(b) Specify the operand type is a status word - this
is advantageous if the machine is to be operated in
major sections of code as 8-bit, 16-bit or floati~g
pcint, etc. - changes of type require housekeeping
operations and mixed-mode operations may require
more housekeeping code than actual program - to
avoid these problems status-word manipulation has to
be fully-integrated into the instruction set,
particularly in subroutine/procedure calls.

There are two other possibilities which have been
suggested previously only for much larger machines
[10-11) :

(c) Specify the operand type in a pointer to it -
this is particularly attractive for structured
systems of operands, such as arrays, where a pointer
to the base ,of the array may additionally contain 3.

descriptor of the type of operands in it and bounds
on its dimensions (such a pointer complex has itself
been termed a "descriptor" for the array).

(d) Specify the operand type as part of the operand
e.g. as the first byte of a multi-byte item - this
is clearly attractive fOr the implementation of a
language, like EULER (12) or ALGOL 68 (united modes)
l131. which allow type to be dynamic at run time -
it is also the optimum solution, however. in
situations where mixed-mode expressions are common
and it becomes cheaper to specify the operand type
once with the operand rather than on each occasion
it is used. Since a major extension of standard
languages seems to be in the direction of more data
types and lengths the use of descriptors with
operands is likely to become of increasing interest.

In MINIC-S we took the logical step of allowing all
four means of specifying the type of an operand,
with the rule that the last specification found
during the instruction decode took precedence so
that, for example, the default status word could be
over-ruled by access through a pointer containing a
descriptor. Coercion of operands to a common type
is automatic for the straightforward cases of mixed
lengths, mixed integer/floating-point, etc.,
reference variables (pointers) which are followed
to access the operand location, and function
variables which cause code to be executed to access
the operand location (trapping within an instruc
tion and continuing its execution is a feature of
the machine); other type clashes are resolved by
traps to either monitor code fOr error messages or
user-code for programmer-defined coercion.

3.3 Data controllers

One pcssible use of extra hardware content is to

increase the number of index registers available.
However. this leads to problems in its own right: a
large environment that has to be retained and
restored under process changes. a limited set of
registers that have to be appropriately allocated
without conflict. For MINIC-S we have adopted the
view that semiconductor main memories have a short
enough cycle time compared with the speed of approp
riate CPU logic families for indirect addressing to
be used as a basis of all address modification.
Any 16-bi t word in meJOOry may be used as an "index
register" and the instruction can specify that an
offset (of bytes or of operands, in the accumulator.
the instruction. or both) is added or subtracted.
that the modified or unmodified value points to the
operand. and that the modified value of the
"register" replaces the previous value. The wide
range of possible address modes is encoded into a
variety of instruction formats so that, fOr example,
pre-increment by one operand length, and other common
forms of modification are available as single-length
(16-bi t) instructions. Similarly, a short-foJ'lll
address field enables the first 256 index locations
to be utilised by single-length instructions.
However. every logically possible address mode is
available with every possible operation in double
length format - the instruction-set ana order-code
are fully decoupled as discussed earlier.

To further increase the power of the addressing
system, multiple-length "index registers" are
allowed (we use the term data controller for these
more. general accessing mechanisms). A normal
indirect address is 15-bits and the top bit being
set to 1 indicates a 15-bit data controller - this
is made up of: 3-bit function code. 8-bit operand
descriptor. and 4-bit segment number (see next
section) - followed by one or more 16-bit words
which may be addresses or bounds according to the
function code. Apart from extending the address
scope. the provision of multiple-length data
controllers as generalized indirect-address and
indexing mechanisms with s~ undefined function
codes leaves the machine architecture open-ended in
the variety of hardware/trap-interpreted data
structures possible. The basic range of address
modes and data controller functions makes the
handling of most common structures. staCks, queues,
rings etc., simple and automatic.

3.4 Input-output. protection and segmentation

Figure 1 shows the overall organisation of MINIC-S.
Requirement (v) of section 2.2 has been achieved by
using a KINIC-M processor to provide an independent
1-0 environment. The MINIC-S processor communicates
with it only through the memory and an interrupt
line. This has a number of ancillary advantages:
all peripherals connect only to MINIC-M which
already has the appropriate interfaces and software
drivers. HINIC-S does not have to provide very
short-delay interrupt-handling which simplifies its
design (e.g. mUlti-precision real arithmetic does
not have to be interruptable within an instruction);
MINIC-H may be used as an exerciser and fault
diagnoser for MINIC-S. the HlNIC-S processor
becomes an optional upgrade to a HIHIC-H configur
ation, providing segmentation and high-level
language facilities; real-time software for MIHIC
M. for example machine tool servos, can be used as
part of the 1-0 package of a MIHIC-S configuration.

MINIC-M has a simple memory protection "fence"
restricting the accesses of non-privileged programs.
An independent and far more elaborate scheme is
provided for the HINIC-S processor to allow a ring
structure based on logical segments (141. 16 active
-segment registers provide a bounds/limit and status
specification giving an active environment of up to
16 segments per process. each up to 64k bytes in
length (in units of 16 8-bit bytes). The status
specification allows each segment to be placed in

48 Computer Design I

one of B rings with three types of
access right. A logical segmenta
tion system allows for up to 128
shared program segments, together
with up to a further 128 unshared
logical segments per job. Logical
segment boundaries, and hence also
rings, may only be crossed by
procedure calls. These are micro
prograDllled for normal transfers and
trap to executive code only if the
required segment is non-resident.

MINIC-M INPUTI
OUTPUT PROCESSOR

SHARED
MEMORY

MINIC-S LANGUAGE
PROCESSOR

The procedure call mechanism
supports both the ring-structured
protection system and normal langu
age requirements in a co-ordinated
form. Each process has two local
segments, a stack frame (dynamic
local) and an own frame (static
local) which are automatically re
located on a procedure call. These
are actually full segments which are
dynamically mapped within the other

NlCROPROGRA1!4

MEMORV
PROTECTION

FENCE

PROCESSOR

MINIC-M
I/O HIGHWAY

-
.... N MEMORY

~
UP TO 1M •• ~ BIT

BYTES

r-

DIRECT
MEMORY ACCESS
PORTS

INTER· PROCESSOR
INTERlIPT

SEGMENTATION UNIT
16 X 32 BIT BASE /
BOUND/ACCESS REGS.

FETCH/DECODE ADDRESS
COMPUTATION

MICROPROGRAMMED

DATA OPERATIONS
ARITHMETIC/LOGIC
MICROPROGRAMMED

segments of a process. Since they
are protected independently of the

Figure 1 MINI0-S Organisation

surrounding segment, it is possible,
for example. for a call on a procedure in an outer
ring to pass read-access to the whole of a segment
but write-access to only part of it. In particular
this overeanes the problems associated with outward
calls and inward returns since the return informa
tion is not modifiable by a procedure called by an
outward call. The two forms of local segment have
natural interpretations in most languages as holding
local variables whose scope does (own frame) or does
not (stack frame) extend outside the procedure i t
self, and this enables the associated protection
mechanisms to be utilised naturally within the
language. Kernel or supervisory programs may be
written in FOiURAN, ALGOL, or any other language
which makes the procedure call available and gives
access to t~e local segroents.

This integration of segmentation, protection, and
procedure calls into a single framework supported by
hardware and microprogram enables an effective
modular supervisory and program development system
to be established on a minicomputer intended for
real-time applications programmed in high-level
languages. The desirability of maximally protected
program development in mUlti-user real-time systems
is obvious. The merits of structured programming
in high-level languages may nowadays be taken as
equally apparent. However, providing the approp
riate support facilities on a minicomputer, and
without unacceptable overheads, is a d1.fficult
problem which we feel the architecture of MINIC-S
goes a long way towards solving.

l4. CONCLUSIONS

We have attempted in this paper to illustrate the
direction of current trends in minicomputer archi
tecture in the light of our own experience in the
design of MINIC-S. It is probable that the
architecture of MINIC-S goes far beyond what many
readers will regard as expected minicomputer
facilities. However, there is great force in the
argument that the logical extension of current
practice through the incorporation of greater hard
ware content leads to such enhanced facilities.
The real design problem is to keep the new facili
ties under control, to make them programmer/language
orientated - not a diverse repertoire of special
tricks but instead an integrated structure of
operand types, operations, data structures and
accessing mechanisms. If for nothing else,'~e
should take advantage of low-cost hardware to free
ourselves from the burden of programming around
hardware.

The final question may De - "What is a miniccmputer?"
- is there not some sense in which minicomputers are
by-passing supposedly "larger" machines? One
answer is to go by price and memory-width - we have
described a few-thousand pound, lS-bit machine.
Mont profoundly, the computer industry, as ever, is
in a state of flux and it is already apparent that
manufacturers must seek their identity more in soft
ware, marketing and application support than in hard
ware characteristics. The machine we have described
fairly reflects the current position in the continuum
of minicomputer development.

RF;FEREN CE S

[1] P. B. Hansen, The nucleus of a mu! tiprogramming
system, C.A.C.M., vol. 13, 1970, 238.

[2J J.P. Rossiensky and V. Tixier, A kernel approach
to system programming: SAM, in Software Engineer
.!!!.a, J. Tou (ed.), New York: Academic Press,
1970, 205.

[3J J.J. Homing and B. Randell, Process structuring.
A.C.M. Computing Surveys, vol. 5, 1973, 5.

[i;] N. Wirtb. PL 360, A prograll1l1ling language for the
360 computers, J.A.C.M., vol. 15, 1969, 37.

(5] W.S. Wulf, D.B. Russell and A.N. Habermann,
BLISS: a language for systems programming,
C.A.C.M., vol. 14, 1971, 780.

[6] M. V. Wilkes, Time-sharing computer systems:
second edition, London: Macdonald, 1972.

[~ R.W. Watson, Timesharing system design concepts,
New York: McGraw Hill, 1970.

[~ E.I. Organick, The multics system, Mass. M.I.T.
Press, 1972.

[91 Burrou s B1700 Reference Manual, Detroit:
Burroughs Corporat on. 1972.

~Q) J .G. Cleary, Process handling on Burroughs B6500,
Proc. 4th Australian computer conference,
Adelaide: Griffin Press, 1969, 231. I!u J. K. Ilitfe, Basi c machine principles, London:
Macdonald, 1968.

fi.~ N. Wirth and H. Weber, EULER: a generalization
of ALGOL and its formal definition, C.A.C.M.
vol. 9, 1966, 13(Pt. I) and 89(Pt. 11).

~ij C.H. Lindsey and S.G. van der Meulen, Informal
introduction to Algol 68, Amsterdam; North
Holland, 1971.

[l~ M. D. Shroeder and J. If. Sal tzer, A hardware
architecture for implementing protection rings,
C.A.C.M. vol. 15, 1972. 157.

