
Design objectives for a descriptor-organised
minicomputer

Abstract

B.R. Gaines, F.V. Facey,

Department of Electrical Engineering Science,
University of Essex, Colchester, Essex, U.K.

and

F.K. Williamson, J.A. Maine,

i'licro-Computer Systems Ltd,
Boundary Road, Woking, Surrey, U.K.

This paper describes the logic and motivation behind the design
of a descriptor-organised minicomputer for commercial production.

29

It is argued that the availability of low-cost integrated circuit
families has made it simple to achieve the conventional minicomputer
design objectives (low-cost, fast-response, high reliability, and
ease of interfacing), and that additional objectives are now both
possible and necessary. The most attractive lines of development
appear to be those related to simple, secure and swift software
engineering, and. the requirements for the hardware support of
process-structured operating systems and high-level languages are
analysed. Finally a minicomputer design is outlined which
combines microprogrammed multi-~ength operations, data descriptors
and dynamic segmentation, linked to procedure calls, to satisfy
frost of the detailed objectives established.

30 Eurocomp Conference Proceedings 1974

1. Background

This paper describes the logic and motivation behind a design
process which led to a descriptor-organised minicomputer for commer­
cial production, and outlines the instruction set and organisation of
the computer. The machine is a sister product to a small process­
control orientated 8-bit minicomputer which is widely employed for
machine-tool control~ and the original design brief was for a machine
using the same technology (TTL~ 16-bit wide main memory and single­
layer boards) but with increased computing power and range of appli­
cations. However~ it became apparent in the early design stages
that currently available MSI circuits would never be fully exploited
in an extension of the conventional minicomputer architecture and a
break was made with convention - the final design objective (with
the same cost/technology constraints) was a machine that was both
orientated to the real-time and reliability requirements of the mini­
computer market and simple and natural to the programmer and compiler
writer - a language and data-structure orientated machine. This
paper outlines the basis for this re-appraisal, the hardware develop­
ments which made it possible~ and the implications of some features
of the machine for future minicomputer applications and for language
development.

1.1 The Effective Use of Hardware

Historically the architecture of the digital computer and its
range of applications have always seemed to be driven by t.he state of
electronics technology. In recent years~ however, we have arrived
at the point where limitations of technology~ size, speed, cost~
power-consumption~ ease-of-fabrication~ etc.~ are very much less
restrictive and very soon may become virtually non-restrictive.
Certainly the classic von Neumann architecture places few demands up­
on current digital circuit technology and "anyone" can run off a
minicomputer in a short time. Only a decision to push the techno­
logy to its limits involves major circuit engineering problems, and
it is not clear that ultra-high-speed is the best long-term answer
to providing high computing power.

Thus a basic problem for small computer designers nowadays is the
effective exploitation of the capabilities of current electronic
components. There is the danger on the one hand of designing a too­
simple machine where the processor cost is negligible relative to
power-supplies ~ cabinet and memory ~ whereas on the other hand a
machine may be over-engineered with a diverse range of complex
facilities that do not integrate well together and are difficult to
utilise particularly in compiler-generated code. The distinction
between the "hardware availability" of powerful features and the
"software availability" of the same is highlighted in Brooker's
(1970) paper on the influence of high-level languages on machine
design. In an appendix to this paper Laski remarks, "unless the

Oesign objectives for a descriptor-organised minicomputer 31

logical designer understands all the software implications of the
registers he is providing, the architecture of the computer that
results will be such that high-level languages misfit rather than
fully use the hardware provided".

These remarks are not intended to propagate a demarcation between
hardware and software engineering. Both come together logically in
the concept of deferred design - the practical importance of computers
is best analysed by contrasting system development based on classical
manufacturing techniques. Conceptually, the computer enables a
major component of hardware production to be reduced to the manufac­
ture of a general-purpose, mass-produced machine, so that specialist
system design may be deferred to a later stage involving, perhaps,
only "pencil-and-paperll software production and not hardware engineer­
ing. From this point of view the computer designer, the compiler
writer, and the applications programmer are all part of the same team
of system designers and there is a clear rationale for their activi­
ties and objectives to be considered together.

Conflicts of interest arise, not so much through hardware/software
demarcation as through the examination of one part of the system
implementation process in iso~ation from the others. The optimal
overall system performance does not necessarily coincide with the
local optima for each stage of the design, and, as a consequence, the
relative priorities of different design considerations vary according
to the ultimate application. For example, in a once-only system
development software costs dominate and speed or core-occupancy can
be well traded for ease of programming. The opposite consideratio.n
applies to a machine designed for use as a component in a standard
system to be manufactured in quantity.

Minicomputers haVe been associated historically with small
systems manufactured in quantity and other highly cost-sensitive
applications, and in the past hardware constraints have been ov.er­
whelming for the minicomputer designer. For example, to keep a
balance between logic circuit costs and core memory costs some ten
years ago it was necessary to design simple instruction sets with
order-codes that were easy to decode. Some five years ago logic
costs dropped disproportionately to core costs and it made sense to
increase the range of instructions and complexity of the order-code
so that programs could be encoded with minimum memory requirements.
This minimizes the hardware cost of the computer in a system but
makes software support difficult since automatic code generation for
such machines is virtually impossible and the only aid possible is a
good assembler.

Presently memory costs are decreasing rapidly and, with the
advent of semiconductor memories, will continue to do so - it makes
sense to trade increased memory ut.ilisation for better software
support and go for instruction sets and order-codes that make

I

32 .Eurocamp Conference Proceedings 1974

automatic code generation as simple and effective as possible. This
corresponds to two commercial influences on the minicomputer designer:
(a) that minicomputers on a few LSI chips are available for the high­
ly hardware-cost-orientated single-function small systems market;
(b) that the systems requirements for minicomputers are growing more
complex and a degree of flexibility and continuous (and thus essenti­
ally one-off) in-service development is expected by most customers.
Even if a minicomputer is originally justified as a part of a system
purely on grounds of lower hardware cost than a specially manufactur­
ed item, it is also generally seen as a safety factor allowing future
system modification and extension. Such an open-ended capability is
more apparent than real in most systems to date. It requires a
degree of intrinsic protection and modularity that is not easy to
achieve, and may be impossible through software alone. A require­
ment for continuous system development also raises the level of
programming activity and reduces control over it thus increasing the
relative importance of software support.

In conclusion there is clearly no absolutely best possible
machine design without specification of objectives and constraints.
However, there is a distinction between a machine being optimal under
given constraints and those constraints themselves being correct.
In the following section we discuss the appropriate design objectives
£Or a next-generation minicomputer and in the final section propose a
machine organisation that satisfies many of them.

2. Design Objectives

It would be well at this juncture to review briefly the implicit
mundane constraints upon the minicomputer designer so that the more
recent objectives indicated in the previous section and discussed
later are kept in proper perspective. The major considerations are:

(i) Low cost - useable configurations for a few thousand pounds not
tens of thousands.

(ii) High reliability under fairly unconstrained industrial
condi t ions.

(iii) Rapid response to external conditions - high-priority inter­
rupts to be serviced in microseconds - there is a degree of nimble­
ness required which does not figure in EDP applications - maximum
response time is often more important than throughput.

(iv) Ease of interfacing - anything may be hooked onto a mini­
computer and both hardware and system software should be orientated
to ease of interfacing.

(v) Modularity of configuration - buyers treat the minicomputer
manufacturers' catalogues as a module supermarket and expect to be
able to tailor configurations to their applications with the
minimum of constraints.

Design objectives for a descriptor-organised minicomputer 33

Given these basic requirements, we have argued that the mini­
computer designer is being influenced both by technological advances
and by market requirements to pay (relatively) less attention to
hardware considerations and more to problems of software development.
These may themselves be split roughly into two areas, one related to
the technical operation of the system on a maxim ally protected basis
despite software modification, and the other related to the problems
of the programmer in generating software. In recent years there
have been major developments in the science of both operating
systems and high-level languages and, although these have been
generally considered in the context of large machines, the experi­
ence gained and concepts generated seem to be immediately applicable
to minicomputers.

2.1 Processes, Protection and Peripherals

The organisation of programs into maximally independent small
modules with strict limitations on their access to the resources of
other modules and well-defined inter-module communication is attrac­
tive on many grounds (Hansen 1970, Rossiensky and Tixier 1970,
Dennis 1973, Homing and Russell 1973). In particular it is a
major aid to real-time system development and software reliability,
both of which are of major importance in typical minicomputer
applications. However, if the protection and communication
requirements of such "process-structured" systems are implemented
in software on conventional machines the overhead in execution time
rules them out in their most important role - most real-time systems
are also inherently short of time. The provision of additional
hardware facilities to support process-structuring as a basis for
effective software engineering has been a major consideration in
third-generation machines (Dennis 1971).

A wide variety of hardware resource-control schemes have been
implemented (well summarized in Watson 1970 and Wilkes 1972), but
the essential central feature is the integration of memory manage­
ment and procedure calling so that the activation record for a
procedure is a well-defined and protected entity. If this control
of storage access is extended to cover access to other system
resources, "privileged" instructions, priority of CPU utilization,
and other "capabilities" (Dennis and Van Horn 1966), then possible
system degradation through the introduction of new (faulty) soft­
ware modules can be strictly limited, monitored and controlled.

The allocation of dynamic storage to a procedure is naturally
associated with a stack in block-structured languages. However,
the protection of private storage, and the control of access to
shared storage, require that the store be divided into more general
"segments" (Organick 1972). The allocation of real storage to
such logical segments can be complex particularly when multiple
asynchronous processes are being activated and deactivated in an

34 Eurocomp Conference Proceedings 1974

indeterminate fashion (Cleary 1969) or where procedures have more
equal standing (generalised co-routines) so that control may pass
between them without necessary loss of activation records (Bobrow
and Wegbreit 1973).

These considerations lead to the followin8 desif,n objective:

(vi) Flexible storage relocation/protection linked to procedure
calls Tentatively we took the storage protection/allocation
requirements of a multi-job operating system with shared proce­
dures on the one hand, and the run-time procedure entry/exit
requirements of FORTRAN IV and ALGOL 60 on the other, as "bench­
marks ll against which to test any proposed scheme. Subject to
efficient operation in these cases and no increase in the- tasic
cost, it was to be generalized to be, at least potentially,
capable of handling wider requirements such as the deferred bind­
ing of MULTICS (Organick 1972).

This objective covers one aspect of the operating system - its
relationship to the user. However, its relationship to the
peripheral hardware of the system is of equal consequence.
Although it is true to state that peripheral devices can be treated
as Irprocesses" in their own right and their operation and communi­
cation with other processes can be subsumed under the general
procedures and disciplines established for any process, in practice
users expect to be able to hang devices requiring arbitrary
communications protocols on minicanputers and not be forced to buy
special interfaces to support them. More generally also the
processes required by many peripherals are activated very frequent­
ly compared with user initiated activities and may have real-time
requirements that make it impossible for them to obey normal
queuing and synchronisation disciplines. These considerations
lead to the objective of:

(vii) Decoupling peripheral device requirements from the user
environment He took it as a basic requirement that the uncontrol­
led user job mix on the system should not be able to affect real­
time peripheral service requirements, and conversely that all
peripheral transfers should be brought within the disciplines
established for process operation without special hardware pre­
requisites in peripherals or interfaces.

2.2 Language Requirements

It is clearly not the prime objective of a minicomputer designer
to support languages such as COBOL and PLl, if only for historic
market reasons. Most minicomputer programming is still at machine
level and any aids to assembly language programming are of major
importance. Particularly relevant is the increasingly popular
transition to "high-levellr systems programming languages which offer

Design objectives tor a descriptor-organised minicomputer 35

faster and more manageable programming than can be achieved in con­
ventional assembly languages but with the same level of detailed
run-time space/t:ime control. However the exemplary implementations
of such languages to date have been on large machines with wide
address scope and a fairly uniform structure (IBH360 - Hirth 1968,
PDP 10 - ~Iulf, Russell and Habermann 1971) Hhereas most minicomputers
have a variety of non-interchangeable address mechanisms as the scope
changes, together with non-uniform structures designed to allow the
programmer to use a variety of specific techniques, or "tricks", to
cope with common situations.

These considerations suggest that the work on "high-level"
systems programming languages provides a useful guide to machine
design - possibly a more important one in terms of minicomputer
applications than those of the classic EDP languages developed in a
more machine-independent environment. From this point of view the
main directions of development can be seen to be:

(a) Improvement of assembler syntax This is desirable in itself but
also has relevance to the machine designer in that a syntax allowing
the formation of larger constructs than single-instructions will, if
tailored to the actual machine, allow expressions which may, or may
not, appear natural to the programmer - it seems reasonable to aim
for naturalness. For example, within the constraint that all
storage allocation must be explicit, only a stack-organized machine
will allow infix expressions to be accepted without requiring
specification of temporary storage locations. Conversely, if
constructs which are natural to the programmer generate a large
amount of code, or, worse, widely differing code according to circum­
stances, or Horst, are impossible to execute under certain circum-·
stances, then it seems to indicate a mis-match between machine and
user. For example, Hirth (1968: section 9) has criticized the lack
of instructions for treating the 360 arithmetic condition codes as
normal data items.

(b) Reduction of housekeeping A major incentive for PL360 was to
take care of the base register housekeeping; such a requirement
again reflects on the machine design that makes it necessary. More
generally relevant is the removal of the housekeeping associated
with various types of program control structures t loops, conditional
execution, etc., and with data structure access. These control and
data structures are implicit in all programs but the maintenance of
the necessary control variables, pointers, etc. is a chore prone to
error. The explicit forms adopted in langUages such as BCPL
(Richards 1969) and BLISS (Wulf, Russell and Habermann 1971) provide
indication of mechanisms which could be incorporated in the basic
instruction set.

Cc) Remedying machine defects It is a common criticism of all
machines that the hardware designer has made inessential differences

36 Eurocomp Conference Proceedings 1974

in the treatment of various operations, inconsistencies in the treat­
ment of status information, unwanted side-effects on accessing
certain registers, etc., etc. It is bitter experience that hardware
"options" in particular require far bigger drivers than originally
envisaged, 90% of which look after exceptional conditions which
rarely occur (and hence may seem of lesser importance) but which must
be properly treated when they do. It is easy to dismiss each
individual defect of a machine as a design fault having no general
implications. However, there is the ganeral lesson that such faults
readily creep in and need positive preventative measures.

One may well ask if the machine is to become "higher-level" in
itself why not make the transition completely and support a language
such as FORTRAN or ALGOL as completely as possible? This is feas­
ible - the B6500 may be thought of as an ALGOL machine and FORTRAN
machines have been proposed (Bashkow, Sasson and Kronfeld 1967). It
is particularly attractive when the language supported is not well
suited to conventional architectures (EULER - Weber 1967, APL -
Hassitt, Lageschulte and Lyon 1973). However if one is competing
with assembly language then anyone existing language is inadequate.
No language offers the full variety of data types and constructs
suitable for the range of current applications - the more powerful
languages such as SNOBOL, PLl and ALGOL 68 are not widely accepted
and the established languages such as FORTRAN lack many facilities.
Additionally all languages have conceptual flaws, on the one hand
features which are little-used but cause inherent run-time problems,
and on the other hand features which are inconsistently provided and
lead to arbitrary restrictions perhaps related to the original
implementation. In these circumstances one is tempted to invent a
new language such as that for the SYMBOL machine (Chesley and Smith
1971) and optimize the language and the machine together - whilst
technically attractive this is commercially unacceptable.

However, whilst no one high-level language is adequate as the
basis for machine design, in total the objectives of a range of
languages provides a foundation. Two sources in particular seem
important:

(a) The extension of existing languages intended for general use,
notably: ALGOL 60 in the light of Wichmann's (1973) analysis;
FORTRAN in the light of the ANSC X3J3 proposals (FORI'REV 1973); and
ALGOL 68 (Lindsey and van del' Meulen 1971) in the light of Lindsey's
(l971), and othe.r implementation comments (Peck 1971).

(b) The extension of existing machine facilities established in
"systems-progranming languages" e.g. PL360, BLISS and SCPL.

From these considerations one may extract the following main
objectives:

Design objectives fo~ a descriptor-organised minicomputer 37

(viii) Consistency and uniformity of treatment of all facilities -
We took it as a basic design requirement that every operation be
available with every address mode and with every operand type~
and that status information should be treated as a normal data
item.

(ix) A wide range of operand types - most machines provide one
integer and one floating-point format with a means of "double­
precision" - the provision of a wider range of integer and real
lengths seems a common objective to all extensions. We took it
as a basic design objective to provide a full range of operand
types covering all normal applications.

(x) More explicit data structures - data-structuring on most
machines is primitive~ typically up to the level of a combination
of indirect and indexed addressing to allow easy access to f­
dimensional arrays - the data-structures made available by langu­
ages are most often implicit to the program generated by the
compiler and do not exist as run-time attributes of the data~ e.g.
the structure of FORTRAN CO~mON cannot be determined except by the
way it is used t although in more dynamic languages "dope vectors"
and "thunks" make structure more explicit - "reference-variables"
go even further in allowing structural information to be passed
at run-time - it is particularly in the manipUlation of pointers
and packed structures containing mixed data and pointers that
assembly language generally scores over higher-level languages.
We took it as a basic design objective to provide explicit data
structuring through hardware-interpreted "reference variables" and
"dope vectors" t and generally to allow programs to be "data-driven"
wherever appropriate.

(xi) Separation of instruction set and order-code - many of the
programming problems of machines ~ particularly minicomputers ~
arise because the order-code seems to have been designed before
the instruction-set and then instructions have been "fitted in" -
problems such as: "paging" (limited address range); the need to
change address modest say from direct to indexed t as the scope
changes; side-effects from basic operations where several func­
tions have been crammed into one operation (e.g. increment and
skip if zero as the only increment operation); all these arise
from order-code constraints on instruction-set availability -
whilst it is clear that the word-size must affect the range of
instructions that can be encoded in one word t it should not be
allowed to place arbitrary limits on the instruction set. We
took the design criterion to be that the instruction set should be
designed first (with "architectural" not "order-code" consider­
ations in mind) and that the "order-code" should be designed
thereafter to minimize program storage requirements in "typical"
applications on the one hand t and to permit rapid instruction­
decoding on the other. It is even possible to envisage that the

11,

~

38 Eurocomp Conference Proceedings 1974

order-code of the machine will change in the light of experience
(and the assembler or, preferably, ~oader) without change in the
instruction set and without users being aware of the chanEe.

2.3 Extensibility and Microprogramming

One objective in any machine design is lifetime - there is no sus­
tainable argument for freedom from obsolescence of any current design
since computer science and user requirements are both in a state of
flux and we do not have firm foundations for tomorrow's needs. In
these circumstances it is probably a better strategy to aim for a
"Clean" simple basic design giving facilities which appear to be
universally required and leave a large-part of the order-code un-
allocated. Undefined codes can then cause which can be soft-
ware-interpreted initially with later moVes into microprogram and then
hardware if required. This requires a well-defined trapping system
that can partially execute instructions; trap if an unknown address­
mode, operand-type or operation is specified; pass information to a
software routine in an appropriate format (pointers, operands, etc);
and continue instruction execution when the routine exits having
interpreted the undefined part of the code. This capability is a
substantial answer also to Brooker's (1970) suspicion that high-level
language machines may be "a prison for the thoughts of a language
designer or compiler writer".

(xii) Extensibility through trapping was taken as a basic design
objective.

Microprogramming may itself be seen as a means rather than an end
- it is probably the only technique by which one of our basic object­
ives might be realised: the availability of a range of machines with
variable cost/speed trade-off but with identical architecture and
facilities. However, our past experience with MINIC I, a small
microprogrammed machine had also demonstrated the capabilities of
microprogramming to provide high-speed specialist facilities and speedw

up key operations with no hardware change save the addition of micro­
program memory. This capability is an important machine feature in
its own right and we wished to retain it in MINIC-S.

(xiii) QYnamic microprogrammins was taken as a fundamental
requirement.

2.4 Overall Imase of Hachine

From all that has been said before most readers with experience of
computer manufacture will see the abyss of customer education yawning
before the proposed machine. As noted previously the original
requirement was a marketing one and the technical objectives arise
logically out of commercial and production considerations - the
facilities provided are not expensive in hardware and are a necessary

I

Design objectives for a descriptor-organised minicomputer 39

foundation for current software techniques. However, there is one
criterion fundamental to any design - a user sh9uld never incur penal­
ties for complex facilities when he only needs simple facilities.
This is all too often forgotten and the question as to how the machine
appears to a non-multi-processing, 16-bit data only, etc., user has
been a constant benchmark. Similarly we have not sought to impose
conceptual constraints upon the user - e.g. stack-operations are
important but so is the capability to use the machine in the single­
accumulator mode to which most minicomputer users are accustomed -
both modes should be available. Thus a final overall objective is:

(xiv) No penalty when the more advanced facilities are not used.
This applies both technically to space/time overheads, and commer­
cially to an unnecessarily complex image of the machine.

3. The Design of MINIC S, A Descriptor-Organized Minicomputer

In the previous sections we have tried to express clearly our
design objectives and their logical foundations. Much of the discus­
sion has been retrospective in the sense that hardware considerations
make certain facilities simple and economic to implement and many of
the features of the machine arose as logical extensions of quite
simple basic requirements and are justified as much by pragmatic argu­
ments as by. the preceding rationalisations. In the ensuing discuss­
ion we shall present such arguments also since they indicate that
engineering/economic considerations are equally strong in forcing
machine design along the lines put forward.

3.1 Overall Organisation

Figure 1 shows the overall structure of MINIC S. It will be
noted that we have achieved objectives (iii), (iv) and (vii) by the
simple device of including a MINIC M (the most recent version of our
first 8-bit minicomputer MINIC I) as an 1-0 processor. This was
originally a hardware proposal in that it was cheaper to use a MINIC
M CPU as an interface card rather than produce a new one that integ­
rated into the complex HINIC S segmentation and variable-length oper­
and scheme. However it has a number of ancillary advantages that
have proved equally compelling:

(a) Ho new peripheral controllers The complete range of MINIC H
peripherals are now also MIMIC S peripherals.

(b) Device-independent 1-0 software exists MINIC M has a device­
independent, buffered, multi-job, data-transferring and scheduling
package. The device handlers are table-driven and can cope with a
wide variety of peripheral devices, character codes, ~ontrol codes,
etc. This can be transferred virtually completely to MINIC S.

(c) Maintenance and fault diagnosis The diagnosis of a machine as

40 Eurocomp Conference Proceedings 1974

:rvIINIC-M Input/
Output Processor

Microprograro

Memory
""-I protection
~ 'fence'

Processor

~ \

IvIINIC H
1-0 highway

...

~
~

I

,

Shared
MEMORY

Main Memory

Up to 111 x
8-bit bytes

~
Direct

IvIDUC-S Language
Processor

~ Segmentation Unit
M l6 x 32-bit basel

bound/access regs.

Fetch/Decode/Addr-
~ ess Computation

Vli cro pro grammed

Data Operations
Arithmetic/Logic

IVlemory access I:Iicroprogrammed
Ports I

Inter-processor interupt ,

Figure / MINIC S
complex as MINIC S is difficult. MINIC M is simply checked out and
may then be used as diagnostic exerciser of the MINIC S hardware.
The software already exists as a t4INIC S emulator for MINIC M. which was
developed in order to enable 11INIC S systems software to be generated
in advance of hardware manufacture. The routine availability of a
minicomputer as a tool to the service engineer is very attractive.

(d) Special-pUrpose real-time software There are both programs and
special microprograms for MINIC M in critical activities such as
machine-tool servo loops. These low-level high-speed routines can
continue to be utilised as part of the 1-0 environment.

The overall effect is that the MINIC S operating system can rely
on all peripheral transfers taking place in a uniform, disciplined
manner, and need take no account of differences in devices, communi­
cations, protocols, etc. The two processors communicate through the
~mory with a single interrupt line to direct attention. MINIC M is
able to monitor the activitities (in terms of procedure currently
executin~in MINIC S and hence act as an intelligent priority interr­
upt system. MINIC M has elementary protection that allows a program
to be trapped on attempting to execute privileged instructions or to
access memory above a "fence". Hence secure software development on
rUNIC M is possible whilst the whole configuration is in use, although
users will only need to regard this machine as a computer when inter­
facing new peripheral devices.

Design objectives for a descriptor-organised minicomputer 41

Looking now at the MINIC S processor, it consists of three separ­
ate units:

(a) Segmentation through an address mapping unit consisting of a 20-
bit adder and 16 x 32-bit base registers giving access to 16 segments
of up to 6SK bytes, variable in units of 16 bytes and with individual
read/write/execute pre-trap/post-trap control.

microprogrammed
unit with its own

(c) Data operations unit giving arithmetic and logic operations on
operands varying in length from 8 to 128 bits in units of 8 bits.
This unit contains 4 x 128 bit accumulators and performs integer,
real and complex variable-length arithmetic under microprogram
control. 'It is asynchronous with unit (b) so that fetch and execu­
tion can be overlapped.

3.2 Instruction Set -Operands and Descriptors

MINIC S is organized as a single-accumulator machine with one­
address operations between accumulator and memory and zero-address
operations between accumulator and top-of-stack. The majority of
code commonly required for expression-evaluation does not require
stack operations, and generating mixed zero- and one-address instru­
ctions presents no compilation problems. The accumulator length
was chosen to be longer than any likely to be required so that all
problems of multi-length arithmetic could be avoided. 64-bit
integers and the equivalent 16-digit reals seemed adequate .and 128
bits were allowed for d~uble-length integer results. and packing two
reals as one complex.

Bit-variable operand lengths were considered ~ut rejected
because of the housekeeping involved. Byte-variation in units of
8 bits was selected as including all normally used lengths. An 8-
bit status byte can indicate the 16 possible lengths together with
16 possible data types which again seemed adequate.

Hardware considerations and market requirements make multi­
length operands attractive. Then comes the question of how the
housekeeping associated with the type/length status information is
handled. Four possibilities have been allowed:.

(a) Default status in the process~ status word - this alloWs for
zero overhead on the user of only one type/length (in line with
objective (xiv».

(b) Status in instruction - allowed for the odd case of one differ­
ent operand type known at compile time.

I

42 Eurocomp Conference Proceedings 1974

(c) Status as tag (Feustel 1973) - necessary for the stack and allow­
ed for generality in passing and using parameters of unknown type.

(d) Status in indirect address. - as a "descriptor" (Iliffe 1968).
This allows the efficient tagging of operands in arrays and is used
for type-passing in calls by reference.

Having introduced a system of descriptors it has been natural to
expand it to encompass other facilities. Automatic type/length co­
ercion (both de-referencing and widening) is simple if the rule
adopted is that result has greatest length and most complex type
(COMPLEX> REAL > INTEGER> LOGICAL, with REFERENCE types always de­
referenced and FUNCTION-CALL types always evaluated). Keeping data
on a stacK' always tagged enables traps to be placed on it to ensure
that the number of arguments passed to a routine is correct (types
do not matter if automatic coercion is used).

3.3 Instruction Set - Load Segments, Addressing and Procedures

The order-code of MINIC S is such that the basic l-address
instruction family allows: 64 operations on 16 types of 16 lengths
with 32 address modes into 16 segments of 65K bytes. Adding up the
bits makes it clear that some structuring is necessary if the major­
ity of instructions generated are not to encode into many bits. In
practice the objective has been for the majority of instructions to
encode into 16 bits with 32-bit and 48-bit forms for exceptional
cases.

This compression is achieved by using two of the base registers
to establish local segments on entry to a procedure. One is a
dynamic area within a "stack" segment .and the ,other a static area
wi thin a "heap" segment. The dynamic local segment is a conven­
tional "stack frame ll

- the static local segment was incorporated
originally for FORTRAN locals (those regarded as SAVEd (FORTREV
1973» and gives an "own" area to a procedure. As well as allowing
short-code addressing of static and dynamic locals, the mapping of
these regions through segment registers allows for protected inter­
process communication in that the surrounding segment can be write­
disabled whilst the local regions are write enabled only to the
procedure owning them.

The two local segments are set up automatically by microprogram
on procedure calls and, for ALGOL, the appropriate display is also
transferred to the base of the dynamic local segment - the ALGOL run­
time environment is virtually identical to that of Gries (1971:
Ch.8). Short-code addressing is also available to a global segment.
This structure gives efficient access to FORTRAN COMMON, locals and
parameters. Cambi~ed with the descriptor system it copes effect­
ively with call by name, reference and value.

Design objectives for a descriptor-organised minicomputer 43

In hardware terms it was apparent that with semiconductor main
memory the inclusion of special index registers gave little speed
advantage, and the software opportunity was taken to do away with
index register housekeeping by using a variety of indirect address
computations. Any 16-bit operand in memory can be used as an indir­
ect address with specification of pre- or ~ost-modification and re­
placement by the modified value (modifier in instruction or on top­
of-stack). In short-codes (15-bit instructions) this gives access
to 512 "index locations" (three "displays" in the local and global
segments). The indirect format is such that 48K bytes are access­
ible by a single-word. Multiple-word "indirect addresses" (called
data controllers) contain segment and type/length information and
allow a variety of structure specifications, e.g. dope vectors, which
are decoded by microprogram when they are referenced.

3.4 Operati'ng System and Segmentation

The architecture and facilities of MINIC S are such that it is
able to support a wide variety of operating systems, e.g. with
process-structuring and deferred segment-binding if required. Our
initial operating system i& aimed at small real-time applications and
treats the machine in a simple manner. Exec holds tables of up to
53 shared and 192 unshared logical code segments and mediates all
inte~-segment procedure calls through these. Inter-segment refer­
ences are bound at load time in these tables. No provision is made
for similar access to data segments since scattered references are
prevalent and hardware paging is not incorporated.

Each program sees an environment of several segments, including
his own code, exec code, global and local data segments and exec
tables. He has potential access through all 16 segment registers
but some will be disabled to him for certain modes. Different jobs
may share data segments (all code segments are intrinsically shareable).

4. Conclusions

We have attempted in this paper to illustrate the direction of
current trends in minicomputer architecture in the light of our own
experience in the design of MINIC S. It is probable that the archi­
tecture of MINIC S goes far beyond what many readers will regard as
expected minicomputer facilities. However, there is great force in
the argument that the logical extension of current practice through
the incorporation of greater hardware content leads to such enhanced
facilities. The real design problem is to keep the new facilities
under control, to make them programmer/language orientated - not a
diverse repertoire of special tricks but instead an integrated
structure of operand types, operations, data structures and accessing
mechanisms. If for nothing else we should take advantage of low­
cost hardware to free ourselves from the burden of programming
around hardware.

if. ,.

44 Eurocomp Conference Proceedings 1974

5. References

Bashkow, T.R., Sasson, A., Kronfeld, A.(1967) A System Design for a
FORTRAN Machine, IEEE Trans. EC-16 485.

Bob row , D.G., Wegbreit, B. (1973) AModel and Stack Implementation of
~ultiple Environments, CACM 6(10) 591.

Brooker, R.A. (1970) Influence-of High-level Languages on Machine
Design, Proc. lEE 117 1219.

Chesley, G.D., Smith:'W.R. (1971) The Hardware-implemented High-level
Machine Language for SYMBOL, AFIPS 38 SJCC 563.

Cleary, J.G. (1969) Process Handling on Burroughs B6500, Proc. 4th
Australian Comp. Conf.

Denning, P.J. (1971) Third Generation Computer Systems, ACM Camp.
Surveys 3(4) 175.

Dennis, J.S., Van Horn, E.C. (1966) Programming Semantics for Multi­
programmed Computations, CACM 9(3) 143.

Dennis, J.B. (1971) Third Generation Computer Systems, ACM Comp.
Surveys 3(4) 175.

Dennis, J.B. (1973) Modularity in Advanced Course on Software Engin­
eering (ed. Bauer, F.L.) Springer Lecture Notes in Econ. & Math.
Syst. 81 128."

Feustel,E.A. (1973) On the Advantages of a Tagged Architecture,
IEEE Trans. C-22(7) 644.

FORTREV (1973) Working Document of ANSC X3J3 (73-06-09) Bell Labs,
Holmdel, N.J., USA.

Gries, D. (1971) Compiler Construction for Digital Computers Wiley.
Hansen, P.B. (1970) The Nucleus of a Multiprogramming System, CACM
·13(4) 238.

Hassitt, A., Lageschulte, J.W., Lyon, L.E. (1973) Implementation of
a High Level Language Machine, CACM 16(4) 199.

Homing, J.J., Randell, B. (1973) Process Structuring, ACM Comp.
Surveys 5(1) 5.

Iliffe, J.K. (1968) Basic Machine Principles, Macdonald.
Lindsey, C.H. (1971) Making the Hardware Fit the Language, in Peck

(1971).
Lindsey, C.H., van der Meulen, S.G. (1971) Informal Introduction to

ALGOL 68, North-Holland.
Organick, E.I. (1972) The MULTICS System, M.I.T. Press.
Peck, J.E.L. (ed.) (1971) Algol 68 Implementation, North-Holland.
Richards, M. (1969) The BCPL Reference Manual, Computer Lab.,

Cambr idge , U. K.
Rossiensky, J.P., Tixier, V. (1970) A Kernel Approach to System

Programming: SAM, in Software Engineering, Tou, J. (ed.),
Academic Press 205.

Watson, R.W. (1970) Timesharing System Design Concepts, McGraw Hill.
Weber, H. (1967) A Microprogrammed Implementation of EULER on IBM

360/30, CACH 9(9) 549.
Wi~hmann, B.A. (1973) ALGOL 60 Compilation and Assessment, Academic

Press.
Wilkes, M.V.C1972) Time-Sharing Computer Systems: Second Edition

Macdonald.

Design objectives for a descriptor-organised minicomputer 45

Wirth, N. (1968) PL360. A Programming Language for the 360 Computers,
JACM 15(1) 37.

l'lulf, W-:s., Russell, D.B., Habermann, A.N. (1970) BLISS: A Language
for Systems Programming, CACM 14(12) 780.

6. Acknowledgements

'de would like to acknowledge the comments, criticisms and contri­
butions of colleagues at Micro-Computer Systems, particularly David
Hill, Hike Eaines and Malcolm Herd. and also of Peter l1adams,
Department of Electrical Engineering, Essex University. It is also
appropriate to make a general acknOWledgement to the Department of
Computer Science, Uni versi ty of 1'1anchester, for their all-pervading
influence on computer concepts and developments in Britain.

