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It is argued that the availability of low-cost integrated circuit 
families has made it simple to achieve the conventional minicomputer 
design objectives (low-cost, fast-response, high reliability, and 
ease of interfacing), and that additional objectives are now both 
possible and necessary. The most attractive lines of development 
appear to be those related to simple, secure and swift software 
engineering, and. the requirements for the hardware support of 
process-structured operating systems and high-level languages are 
analysed. Finally a minicomputer design is outlined which 
combines microprogrammed multi-~ength operations, data descriptors 
and dynamic segmentation, linked to procedure calls, to satisfy 
frost of the detailed objectives established. 
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1. Background 

This paper describes the logic and motivation behind a design 
process which led to a descriptor-organised minicomputer for commer­
cial production, and outlines the instruction set and organisation of 
the computer. The machine is a sister product to a small process­
control orientated 8-bit minicomputer which is widely employed for 
machine-tool control~ and the original design brief was for a machine 
using the same technology (TTL~ 16-bit wide main memory and single­
layer boards) but with increased computing power and range of appli­
cations. However~ it became apparent in the early design stages 
that currently available MSI circuits would never be fully exploited 
in an extension of the conventional minicomputer architecture and a 
break was made with convention - the final design objective (with 
the same cost/technology constraints) was a machine that was both 
orientated to the real-time and reliability requirements of the mini­
computer market and simple and natural to the programmer and compiler 
writer - a language and data-structure orientated machine. This 
paper outlines the basis for this re-appraisal, the hardware develop­
ments which made it possible~ and the implications of some features 
of the machine for future minicomputer applications and for language 
development. 

1.1 The Effective Use of Hardware 

Historically the architecture of the digital computer and its 
range of applications have always seemed to be driven by t.he state of 
electronics technology. In recent years~ however, we have arrived 
at the point where limitations of technology~ size, speed, cost~ 
power-consumption~ ease-of-fabrication~ etc.~ are very much less 
restrictive and very soon may become virtually non-restrictive. 
Certainly the classic von Neumann architecture places few demands up­
on current digital circuit technology and "anyone" can run off a 
minicomputer in a short time. Only a decision to push the techno­
logy to its limits involves major circuit engineering problems, and 
it is not clear that ultra-high-speed is the best long-term answer 
to providing high computing power. 

Thus a basic problem for small computer designers nowadays is the 
effective exploitation of the capabilities of current electronic 
components. There is the danger on the one hand of designing a too­
simple machine where the processor cost is negligible relative to 
power-supplies ~ cabinet and memory ~ whereas on the other hand a 
machine may be over-engineered with a diverse range of complex 
facilities that do not integrate well together and are difficult to 
utilise particularly in compiler-generated code. The distinction 
between the "hardware availability" of powerful features and the 
"software availability" of the same is highlighted in Brooker's 
(1970) paper on the influence of high-level languages on machine 
design. In an appendix to this paper Laski remarks, "unless the 
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logical designer understands all the software implications of the 
registers he is providing, the architecture of the computer that 
results will be such that high-level languages misfit rather than 
fully use the hardware provided". 

These remarks are not intended to propagate a demarcation between 
hardware and software engineering. Both come together logically in 
the concept of deferred design - the practical importance of computers 
is best analysed by contrasting system development based on classical 
manufacturing techniques. Conceptually, the computer enables a 
major component of hardware production to be reduced to the manufac­
ture of a general-purpose, mass-produced machine, so that specialist 
system design may be deferred to a later stage involving, perhaps, 
only "pencil-and-paperll software production and not hardware engineer­
ing. From this point of view the computer designer, the compiler 
writer, and the applications programmer are all part of the same team 
of system designers and there is a clear rationale for their activi­
ties and objectives to be considered together. 

Conflicts of interest arise, not so much through hardware/software 
demarcation as through the examination of one part of the system 
implementation process in iso~ation from the others. The optimal 
overall system performance does not necessarily coincide with the 
local optima for each stage of the design, and, as a consequence, the 
relative priorities of different design considerations vary according 
to the ultimate application. For example, in a once-only system 
development software costs dominate and speed or core-occupancy can 
be well traded for ease of programming. The opposite consideratio.n 
applies to a machine designed for use as a component in a standard 
system to be manufactured in quantity. 

Minicomputers haVe been associated historically with small 
systems manufactured in quantity and other highly cost-sensitive 
applications, and in the past hardware constraints have been ov.er­
whelming for the minicomputer designer. For example, to keep a 
balance between logic circuit costs and core memory costs some ten 
years ago it was necessary to design simple instruction sets with 
order-codes that were easy to decode. Some five years ago logic 
costs dropped disproportionately to core costs and it made sense to 
increase the range of instructions and complexity of the order-code 
so that programs could be encoded with minimum memory requirements. 
This minimizes the hardware cost of the computer in a system but 
makes software support difficult since automatic code generation for 
such machines is virtually impossible and the only aid possible is a 
good assembler. 

Presently memory costs are decreasing rapidly and, with the 
advent of semiconductor memories, will continue to do so - it makes 
sense to trade increased memory ut.ilisation for better software 
support and go for instruction sets and order-codes that make 

I 
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automatic code generation as simple and effective as possible. This 
corresponds to two commercial influences on the minicomputer designer: 
(a) that minicomputers on a few LSI chips are available for the high­
ly hardware-cost-orientated single-function small systems market; 
(b) that the systems requirements for minicomputers are growing more 
complex and a degree of flexibility and continuous (and thus essenti­
ally one-off) in-service development is expected by most customers. 
Even if a minicomputer is originally justified as a part of a system 
purely on grounds of lower hardware cost than a specially manufactur­
ed item, it is also generally seen as a safety factor allowing future 
system modification and extension. Such an open-ended capability is 
more apparent than real in most systems to date. It requires a 
degree of intrinsic protection and modularity that is not easy to 
achieve, and may be impossible through software alone. A require­
ment for continuous system development also raises the level of 
programming activity and reduces control over it thus increasing the 
relative importance of software support. 

In conclusion there is clearly no absolutely best possible 
machine design without specification of objectives and constraints. 
However, there is a distinction between a machine being optimal under 
given constraints and those constraints themselves being correct. 
In the following section we discuss the appropriate design objectives 
£Or a next-generation minicomputer and in the final section propose a 
machine organisation that satisfies many of them. 

2. Design Objectives 

It would be well at this juncture to review briefly the implicit 
mundane constraints upon the minicomputer designer so that the more 
recent objectives indicated in the previous section and discussed 
later are kept in proper perspective. The major considerations are: 

(i) Low cost - useable configurations for a few thousand pounds not 
tens of thousands. 

(ii) High reliability under fairly unconstrained industrial 
condi t ions. 

(iii) Rapid response to external conditions - high-priority inter­
rupts to be serviced in microseconds - there is a degree of nimble­
ness required which does not figure in EDP applications - maximum 
response time is often more important than throughput. 

(iv) Ease of interfacing - anything may be hooked onto a mini­
computer and both hardware and system software should be orientated 
to ease of interfacing. 

(v) Modularity of configuration - buyers treat the minicomputer 
manufacturers' catalogues as a module supermarket and expect to be 
able to tailor configurations to their applications with the 
minimum of constraints. 
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Given these basic requirements, we have argued that the mini­
computer designer is being influenced both by technological advances 
and by market requirements to pay (relatively) less attention to 
hardware considerations and more to problems of software development. 
These may themselves be split roughly into two areas, one related to 
the technical operation of the system on a maxim ally protected basis 
despite software modification, and the other related to the problems 
of the programmer in generating software. In recent years there 
have been major developments in the science of both operating 
systems and high-level languages and, although these have been 
generally considered in the context of large machines, the experi­
ence gained and concepts generated seem to be immediately applicable 
to minicomputers. 

2.1 Processes, Protection and Peripherals 

The organisation of programs into maximally independent small 
modules with strict limitations on their access to the resources of 
other modules and well-defined inter-module communication is attrac­
tive on many grounds (Hansen 1970, Rossiensky and Tixier 1970, 
Dennis 1973, Homing and Russell 1973). In particular it is a 
major aid to real-time system development and software reliability, 
both of which are of major importance in typical minicomputer 
applications. However, if the protection and communication 
requirements of such "process-structured" systems are implemented 
in software on conventional machines the overhead in execution time 
rules them out in their most important role - most real-time systems 
are also inherently short of time. The provision of additional 
hardware facilities to support process-structuring as a basis for 
effective software engineering has been a major consideration in 
third-generation machines (Dennis 1971). 

A wide variety of hardware resource-control schemes have been 
implemented (well summarized in Watson 1970 and Wilkes 1972), but 
the essential central feature is the integration of memory manage­
ment and procedure calling so that the activation record for a 
procedure is a well-defined and protected entity. If this control 
of storage access is extended to cover access to other system 
resources, "privileged" instructions, priority of CPU utilization, 
and other "capabilities" (Dennis and Van Horn 1966), then possible 
system degradation through the introduction of new (faulty) soft­
ware modules can be strictly limited, monitored and controlled. 

The allocation of dynamic storage to a procedure is naturally 
associated with a stack in block-structured languages. However, 
the protection of private storage, and the control of access to 
shared storage, require that the store be divided into more general 
"segments" (Organick 1972). The allocation of real storage to 
such logical segments can be complex particularly when multiple 
asynchronous processes are being activated and deactivated in an 
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indeterminate fashion (Cleary 1969) or where procedures have more 
equal standing (generalised co-routines) so that control may pass 
between them without necessary loss of activation records (Bobrow 
and Wegbreit 1973). 

These considerations lead to the followin8 desif,n objective: 

(vi) Flexible storage relocation/protection linked to procedure 
calls Tentatively we took the storage protection/allocation 
requirements of a multi-job operating system with shared proce­
dures on the one hand, and the run-time procedure entry/exit 
requirements of FORTRAN IV and ALGOL 60 on the other, as "bench­
marks ll against which to test any proposed scheme. Subject to 
efficient operation in these cases and no increase in the- tasic 
cost, it was to be generalized to be, at least potentially, 
capable of handling wider requirements such as the deferred bind­
ing of MULTICS (Organick 1972). 

This objective covers one aspect of the operating system - its 
relationship to the user. However, its relationship to the 
peripheral hardware of the system is of equal consequence. 
Although it is true to state that peripheral devices can be treated 
as Irprocesses" in their own right and their operation and communi­
cation with other processes can be subsumed under the general 
procedures and disciplines established for any process, in practice 
users expect to be able to hang devices requiring arbitrary 
communications protocols on minicanputers and not be forced to buy 
special interfaces to support them. More generally also the 
processes required by many peripherals are activated very frequent­
ly compared with user initiated activities and may have real-time 
requirements that make it impossible for them to obey normal 
queuing and synchronisation disciplines. These considerations 
lead to the objective of: 

(vii) Decoupling peripheral device requirements from the user 
environment He took it as a basic requirement that the uncontrol­
led user job mix on the system should not be able to affect real­
time peripheral service requirements, and conversely that all 
peripheral transfers should be brought within the disciplines 
established for process operation without special hardware pre­
requisites in peripherals or interfaces. 

2.2 Language Requirements 

It is clearly not the prime objective of a minicomputer designer 
to support languages such as COBOL and PLl, if only for historic 
market reasons. Most minicomputer programming is still at machine 
level and any aids to assembly language programming are of major 
importance. Particularly relevant is the increasingly popular 
transition to "high-levellr systems programming languages which offer 
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faster and more manageable programming than can be achieved in con­
ventional assembly languages but with the same level of detailed 
run-time space/t:ime control. However the exemplary implementations 
of such languages to date have been on large machines with wide 
address scope and a fairly uniform structure (IBH360 - Hirth 1968, 
PDP 10 - ~Iulf, Russell and Habermann 1971) Hhereas most minicomputers 
have a variety of non-interchangeable address mechanisms as the scope 
changes, together with non-uniform structures designed to allow the 
programmer to use a variety of specific techniques, or "tricks", to 
cope with common situations. 

These considerations suggest that the work on "high-level" 
systems programming languages provides a useful guide to machine 
design - possibly a more important one in terms of minicomputer 
applications than those of the classic EDP languages developed in a 
more machine-independent environment. From this point of view the 
main directions of development can be seen to be: 

(a) Improvement of assembler syntax This is desirable in itself but 
also has relevance to the machine designer in that a syntax allowing 
the formation of larger constructs than single-instructions will, if 
tailored to the actual machine, allow expressions which may, or may 
not, appear natural to the programmer - it seems reasonable to aim 
for naturalness. For example, within the constraint that all 
storage allocation must be explicit, only a stack-organized machine 
will allow infix expressions to be accepted without requiring 
specification of temporary storage locations. Conversely, if 
constructs which are natural to the programmer generate a large 
amount of code, or, worse, widely differing code according to circum­
stances, or Horst, are impossible to execute under certain circum-· 
stances, then it seems to indicate a mis-match between machine and 
user. For example, Hirth (1968: section 9) has criticized the lack 
of instructions for treating the 360 arithmetic condition codes as 
normal data items. 

(b) Reduction of housekeeping A major incentive for PL360 was to 
take care of the base register housekeeping; such a requirement 
again reflects on the machine design that makes it necessary. More 
generally relevant is the removal of the housekeeping associated 
with various types of program control structures t loops, conditional 
execution, etc., and with data structure access. These control and 
data structures are implicit in all programs but the maintenance of 
the necessary control variables, pointers, etc. is a chore prone to 
error. The explicit forms adopted in langUages such as BCPL 
(Richards 1969) and BLISS (Wulf, Russell and Habermann 1971) provide 
indication of mechanisms which could be incorporated in the basic 
instruction set. 

Cc) Remedying machine defects It is a common criticism of all 
machines that the hardware designer has made inessential differences 
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in the treatment of various operations, inconsistencies in the treat­
ment of status information, unwanted side-effects on accessing 
certain registers, etc., etc. It is bitter experience that hardware 
"options" in particular require far bigger drivers than originally 
envisaged, 90% of which look after exceptional conditions which 
rarely occur (and hence may seem of lesser importance) but which must 
be properly treated when they do. It is easy to dismiss each 
individual defect of a machine as a design fault having no general 
implications. However, there is the ganeral lesson that such faults 
readily creep in and need positive preventative measures. 

One may well ask if the machine is to become "higher-level" in 
itself why not make the transition completely and support a language 
such as FORTRAN or ALGOL as completely as possible? This is feas­
ible - the B6500 may be thought of as an ALGOL machine and FORTRAN 
machines have been proposed (Bashkow, Sasson and Kronfeld 1967). It 
is particularly attractive when the language supported is not well 
suited to conventional architectures (EULER - Weber 1967, APL -
Hassitt, Lageschulte and Lyon 1973). However if one is competing 
with assembly language then anyone existing language is inadequate. 
No language offers the full variety of data types and constructs 
suitable for the range of current applications - the more powerful 
languages such as SNOBOL, PLl and ALGOL 68 are not widely accepted 
and the established languages such as FORTRAN lack many facilities. 
Additionally all languages have conceptual flaws, on the one hand 
features which are little-used but cause inherent run-time problems, 
and on the other hand features which are inconsistently provided and 
lead to arbitrary restrictions perhaps related to the original 
implementation. In these circumstances one is tempted to invent a 
new language such as that for the SYMBOL machine (Chesley and Smith 
1971) and optimize the language and the machine together - whilst 
technically attractive this is commercially unacceptable. 

However, whilst no one high-level language is adequate as the 
basis for machine design, in total the objectives of a range of 
languages provides a foundation. Two sources in particular seem 
important: 

(a) The extension of existing languages intended for general use, 
notably: ALGOL 60 in the light of Wichmann's (1973) analysis; 
FORTRAN in the light of the ANSC X3J3 proposals (FORI'REV 1973); and 
ALGOL 68 (Lindsey and van del' Meulen 1971) in the light of Lindsey's 
(l971), and othe.r implementation comments (Peck 1971). 

(b) The extension of existing machine facilities established in 
"systems-progranming languages" e.g. PL360, BLISS and SCPL. 

From these considerations one may extract the following main 
objectives: 
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(viii) Consistency and uniformity of treatment of all facilities -
We took it as a basic design requirement that every operation be 
available with every address mode and with every operand type~ 
and that status information should be treated as a normal data 
item. 

(ix) A wide range of operand types - most machines provide one 
integer and one floating-point format with a means of "double­
precision" - the provision of a wider range of integer and real 
lengths seems a common objective to all extensions. We took it 
as a basic design objective to provide a full range of operand 
types covering all normal applications. 

(x) More explicit data structures - data-structuring on most 
machines is primitive~ typically up to the level of a combination 
of indirect and indexed addressing to allow easy access to f­
dimensional arrays - the data-structures made available by langu­
ages are most often implicit to the program generated by the 
compiler and do not exist as run-time attributes of the data~ e.g. 
the structure of FORTRAN CO~mON cannot be determined except by the 
way it is used t although in more dynamic languages "dope vectors" 
and "thunks" make structure more explicit - "reference-variables" 
go even further in allowing structural information to be passed 
at run-time - it is particularly in the manipUlation of pointers 
and packed structures containing mixed data and pointers that 
assembly language generally scores over higher-level languages. 
We took it as a basic design objective to provide explicit data 
structuring through hardware-interpreted "reference variables" and 
"dope vectors" t and generally to allow programs to be "data-driven" 
wherever appropriate. 

(xi) Separation of instruction set and order-code - many of the 
programming problems of machines ~ particularly minicomputers ~ 
arise because the order-code seems to have been designed before 
the instruction-set and then instructions have been "fitted in" -
problems such as: "paging" (limited address range); the need to 
change address modest say from direct to indexed t as the scope 
changes; side-effects from basic operations where several func­
tions have been crammed into one operation (e.g. increment and 
skip if zero as the only increment operation); all these arise 
from order-code constraints on instruction-set availability -
whilst it is clear that the word-size must affect the range of 
instructions that can be encoded in one word t it should not be 
allowed to place arbitrary limits on the instruction set. We 
took the design criterion to be that the instruction set should be 
designed first (with "architectural" not "order-code" consider­
ations in mind) and that the "order-code" should be designed 
thereafter to minimize program storage requirements in "typical" 
applications on the one hand t and to permit rapid instruction­
decoding on the other. It is even possible to envisage that the 

11, 
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order-code of the machine will change in the light of experience 
(and the assembler or, preferably, ~oader) without change in the 
instruction set and without users being aware of the chanEe. 

2.3 Extensibility and Microprogramming 

One objective in any machine design is lifetime - there is no sus­
tainable argument for freedom from obsolescence of any current design 
since computer science and user requirements are both in a state of 
flux and we do not have firm foundations for tomorrow's needs. In 
these circumstances it is probably a better strategy to aim for a 
"Clean" simple basic design giving facilities which appear to be 
universally required and leave a large-part of the order-code un-
allocated. Undefined codes can then cause which can be soft-
ware-interpreted initially with later moVes into microprogram and then 
hardware if required. This requires a well-defined trapping system 
that can partially execute instructions; trap if an unknown address­
mode, operand-type or operation is specified; pass information to a 
software routine in an appropriate format (pointers, operands, etc); 
and continue instruction execution when the routine exits having 
interpreted the undefined part of the code. This capability is a 
substantial answer also to Brooker's (1970) suspicion that high-level 
language machines may be "a prison for the thoughts of a language 
designer or compiler writer". 

(xii) Extensibility through trapping was taken as a basic design 
objective. 

Microprogramming may itself be seen as a means rather than an end 
- it is probably the only technique by which one of our basic object­
ives might be realised: the availability of a range of machines with 
variable cost/speed trade-off but with identical architecture and 
facilities. However, our past experience with MINIC I, a small 
microprogrammed machine had also demonstrated the capabilities of 
microprogramming to provide high-speed specialist facilities and speedw 

up key operations with no hardware change save the addition of micro­
program memory. This capability is an important machine feature in 
its own right and we wished to retain it in MINIC-S. 

(xiii) QYnamic microprogrammins was taken as a fundamental 
requirement. 

2.4 Overall Imase of Hachine 

From all that has been said before most readers with experience of 
computer manufacture will see the abyss of customer education yawning 
before the proposed machine. As noted previously the original 
requirement was a marketing one and the technical objectives arise 
logically out of commercial and production considerations - the 
facilities provided are not expensive in hardware and are a necessary 
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foundation for current software techniques. However, there is one 
criterion fundamental to any design - a user sh9uld never incur penal­
ties for complex facilities when he only needs simple facilities. 
This is all too often forgotten and the question as to how the machine 
appears to a non-multi-processing, 16-bit data only, etc., user has 
been a constant benchmark. Similarly we have not sought to impose 
conceptual constraints upon the user - e.g. stack-operations are 
important but so is the capability to use the machine in the single­
accumulator mode to which most minicomputer users are accustomed -
both modes should be available. Thus a final overall objective is: 

(xiv) No penalty when the more advanced facilities are not used. 
This applies both technically to space/time overheads, and commer­
cially to an unnecessarily complex image of the machine. 

3. The Design of MINIC S, A Descriptor-Organized Minicomputer 

In the previous sections we have tried to express clearly our 
design objectives and their logical foundations. Much of the discus­
sion has been retrospective in the sense that hardware considerations 
make certain facilities simple and economic to implement and many of 
the features of the machine arose as logical extensions of quite 
simple basic requirements and are justified as much by pragmatic argu­
ments as by. the preceding rationalisations. In the ensuing discuss­
ion we shall present such arguments also since they indicate that 
engineering/economic considerations are equally strong in forcing 
machine design along the lines put forward. 

3.1 Overall Organisation 

Figure 1 shows the overall structure of MINIC S. It will be 
noted that we have achieved objectives (iii), (iv) and (vii) by the 
simple device of including a MINIC M (the most recent version of our 
first 8-bit minicomputer MINIC I) as an 1-0 processor. This was 
originally a hardware proposal in that it was cheaper to use a MINIC 
M CPU as an interface card rather than produce a new one that integ­
rated into the complex HINIC S segmentation and variable-length oper­
and scheme. However it has a number of ancillary advantages that 
have proved equally compelling: 

(a) Ho new peripheral controllers The complete range of MINIC H 
peripherals are now also MIMIC S peripherals. 

(b) Device-independent 1-0 software exists MINIC M has a device­
independent, buffered, multi-job, data-transferring and scheduling 
package. The device handlers are table-driven and can cope with a 
wide variety of peripheral devices, character codes, ~ontrol codes, 
etc. This can be transferred virtually completely to MINIC S. 

(c) Maintenance and fault diagnosis The diagnosis of a machine as 
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complex as MINIC S is difficult. MINIC M is simply checked out and 
may then be used as diagnostic exerciser of the MINIC S hardware. 
The software already exists as a t4INIC S emulator for MINIC M. which was 
developed in order to enable 11INIC S systems software to be generated 
in advance of hardware manufacture. The routine availability of a 
minicomputer as a tool to the service engineer is very attractive. 

(d) Special-pUrpose real-time software There are both programs and 
special microprograms for MINIC M in critical activities such as 
machine-tool servo loops. These low-level high-speed routines can 
continue to be utilised as part of the 1-0 environment. 

The overall effect is that the MINIC S operating system can rely 
on all peripheral transfers taking place in a uniform, disciplined 
manner, and need take no account of differences in devices, communi­
cations, protocols, etc. The two processors communicate through the 
~mory with a single interrupt line to direct attention. MINIC M is 
able to monitor the activitities (in terms of procedure currently 
executin~in MINIC S and hence act as an intelligent priority interr­
upt system. MINIC M has elementary protection that allows a program 
to be trapped on attempting to execute privileged instructions or to 
access memory above a "fence". Hence secure software development on 
rUNIC M is possible whilst the whole configuration is in use, although 
users will only need to regard this machine as a computer when inter­
facing new peripheral devices. 
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Looking now at the MINIC S processor, it consists of three separ­
ate units: 

(a) Segmentation through an address mapping unit consisting of a 20-
bit adder and 16 x 32-bit base registers giving access to 16 segments 
of up to 6SK bytes, variable in units of 16 bytes and with individual 
read/write/execute pre-trap/post-trap control. 

microprogrammed 
unit with its own 

(c) Data operations unit giving arithmetic and logic operations on 
operands varying in length from 8 to 128 bits in units of 8 bits. 
This unit contains 4 x 128 bit accumulators and performs integer, 
real and complex variable-length arithmetic under microprogram 
control. 'It is asynchronous with unit (b) so that fetch and execu­
tion can be overlapped. 

3.2 Instruction Set -Operands and Descriptors 

MINIC S is organized as a single-accumulator machine with one­
address operations between accumulator and memory and zero-address 
operations between accumulator and top-of-stack. The majority of 
code commonly required for expression-evaluation does not require 
stack operations, and generating mixed zero- and one-address instru­
ctions presents no compilation problems. The accumulator length 
was chosen to be longer than any likely to be required so that all 
problems of multi-length arithmetic could be avoided. 64-bit 
integers and the equivalent 16-digit reals seemed adequate .and 128 
bits were allowed for d~uble-length integer results. and packing two 
reals as one complex. 

Bit-variable operand lengths were considered ~ut rejected 
because of the housekeeping involved. Byte-variation in units of 
8 bits was selected as including all normally used lengths. An 8-
bit status byte can indicate the 16 possible lengths together with 
16 possible data types which again seemed adequate. 

Hardware considerations and market requirements make multi­
length operands attractive. Then comes the question of how the 
housekeeping associated with the type/length status information is 
handled. Four possibilities have been allowed:. 

(a) Default status in the process~ status word - this alloWs for 
zero overhead on the user of only one type/length (in line with 
objective (xiv». 

(b) Status in instruction - allowed for the odd case of one differ­
ent operand type known at compile time. 

I 
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(c) Status as tag (Feustel 1973) - necessary for the stack and allow­
ed for generality in passing and using parameters of unknown type. 

(d) Status in indirect address. - as a "descriptor" (Iliffe 1968). 
This allows the efficient tagging of operands in arrays and is used 
for type-passing in calls by reference. 

Having introduced a system of descriptors it has been natural to 
expand it to encompass other facilities. Automatic type/length co­
ercion (both de-referencing and widening) is simple if the rule 
adopted is that result has greatest length and most complex type 
(COMPLEX> REAL > INTEGER> LOGICAL, with REFERENCE types always de­
referenced and FUNCTION-CALL types always evaluated). Keeping data 
on a stacK' always tagged enables traps to be placed on it to ensure 
that the number of arguments passed to a routine is correct (types 
do not matter if automatic coercion is used). 

3.3 Instruction Set - Load Segments, Addressing and Procedures 

The order-code of MINIC S is such that the basic l-address 
instruction family allows: 64 operations on 16 types of 16 lengths 
with 32 address modes into 16 segments of 65K bytes. Adding up the 
bits makes it clear that some structuring is necessary if the major­
ity of instructions generated are not to encode into many bits. In 
practice the objective has been for the majority of instructions to 
encode into 16 bits with 32-bit and 48-bit forms for exceptional 
cases. 

This compression is achieved by using two of the base registers 
to establish local segments on entry to a procedure. One is a 
dynamic area within a "stack" segment .and the ,other a static area 
wi thin a "heap" segment. The dynamic local segment is a conven­
tional "stack frame ll 

- the static local segment was incorporated 
originally for FORTRAN locals (those regarded as SAVEd (FORTREV 
1973» and gives an "own" area to a procedure. As well as allowing 
short-code addressing of static and dynamic locals, the mapping of 
these regions through segment registers allows for protected inter­
process communication in that the surrounding segment can be write­
disabled whilst the local regions are write enabled only to the 
procedure owning them. 

The two local segments are set up automatically by microprogram 
on procedure calls and, for ALGOL, the appropriate display is also 
transferred to the base of the dynamic local segment - the ALGOL run­
time environment is virtually identical to that of Gries (1971: 
Ch.8). Short-code addressing is also available to a global segment. 
This structure gives efficient access to FORTRAN COMMON, locals and 
parameters. Cambi~ed with the descriptor system it copes effect­
ively with call by name, reference and value. 



Design objectives for a descriptor-organised minicomputer 43 

In hardware terms it was apparent that with semiconductor main 
memory the inclusion of special index registers gave little speed 
advantage, and the software opportunity was taken to do away with 
index register housekeeping by using a variety of indirect address 
computations. Any 16-bit operand in memory can be used as an indir­
ect address with specification of pre- or ~ost-modification and re­
placement by the modified value (modifier in instruction or on top­
of-stack). In short-codes (15-bit instructions) this gives access 
to 512 "index locations" (three "displays" in the local and global 
segments). The indirect format is such that 48K bytes are access­
ible by a single-word. Multiple-word "indirect addresses" (called 
data controllers) contain segment and type/length information and 
allow a variety of structure specifications, e.g. dope vectors, which 
are decoded by microprogram when they are referenced. 

3.4 Operati'ng System and Segmentation 

The architecture and facilities of MINIC S are such that it is 
able to support a wide variety of operating systems, e.g. with 
process-structuring and deferred segment-binding if required. Our 
initial operating system i& aimed at small real-time applications and 
treats the machine in a simple manner. Exec holds tables of up to 
53 shared and 192 unshared logical code segments and mediates all 
inte~-segment procedure calls through these. Inter-segment refer­
ences are bound at load time in these tables. No provision is made 
for similar access to data segments since scattered references are 
prevalent and hardware paging is not incorporated. 

Each program sees an environment of several segments, including 
his own code, exec code, global and local data segments and exec 
tables. He has potential access through all 16 segment registers 
but some will be disabled to him for certain modes. Different jobs 
may share data segments (all code segments are intrinsically shareable). 

4. Conclusions 

We have attempted in this paper to illustrate the direction of 
current trends in minicomputer architecture in the light of our own 
experience in the design of MINIC S. It is probable that the archi­
tecture of MINIC S goes far beyond what many readers will regard as 
expected minicomputer facilities. However, there is great force in 
the argument that the logical extension of current practice through 
the incorporation of greater hardware content leads to such enhanced 
facilities. The real design problem is to keep the new facilities 
under control, to make them programmer/language orientated - not a 
diverse repertoire of special tricks but instead an integrated 
structure of operand types, operations, data structures and accessing 
mechanisms. If for nothing else we should take advantage of low­
cost hardware to free ourselves from the burden of programming 
around hardware. 

if. ,. 
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