
Abstract

LJritish Computer Society

DATAFAIR 73

Real-Time System Design Under an Emulator Embedded in a

High-Level Language

Peter Facey and Brian Gaines

Department of Electrical Engineering Science
University of Essex, Colchester, U.K.

The paper discusses the problems of minicomputer software development and describes
experience in the development of a small real-time computer system under an inter­
active emulator embedded in extended bASIC on the PDP10.

Major problems with minicomputer software development are;

a) Even if the minicomputer is capable of supporting adequate software develop­
ment tools, the configuration for development may not do so (lack cif core,
backup storage etc.).

b) The operation of the system may not be possible except on-site or in conjunction
with specialist peripheral devices.

c) The system development may involve the definition of specialist hardware inter­
faces and peripherals which will not be available during the software develop­
ment phase.

These consideraitons suggest that system development under an emulator is attractive
particularly one on an interactive time-sharing system where the 'hands-on'
advantages of the minicomputer will not be lost.

To emulate at a reasonable speed it is necessary to code an order-code interpreter
for the minicomputer in machine language (~ preferably as a micraprogram), but
to maintain maximum flexibility in emulating peripheral and associated systems a
high-level language is desirable.

This conflict has been resolved in the Essex system by adding a command 'MINIC'
to thelanguage BASYS (Essex Extended BASIC) on the PDP10 which has the same
syntactical structure as other bASIC commands but takes as its argument the name
of an array to be regarded as the core store of a MINIC minicomputer. wben the
instruction is executed it takes the first 20 locations of the array as the
~lI;nC hardware registers and as status information controlling execution and data
traps, time-quantum for execution, etc., and emulates the MINIC CPU. Control
returns back 10 the BASYS program when either a (emulation-level) time quantum
has elapsed, a certain number of instructions has been executed, certain instruct­
ions have been executed or certain data accessed, or an input-output or transfer
to variable microprogram instruction has been executed. Status information is
set up in the array argument to indicate the reason for the return to main program
and the internal status of the MINIC CPU.

This project has demonstrated in an actual real-time system development the advantages
of working under an interactive emulator embedded in a high-level language. The
experiments have also emphasized the importance of other facilities such as a high­
speed contextual editor. Swnmaries of BASYS and a suitable editor are given as
appendices to the paper.

REAL-TIME SYSTEM DESIGN UNDER All EMULATOR EMBEDDED IN A HIGH-LEVEL LANGUAGE

PETER FACEY AND 8RIAN GAINES
Departmenc of Electrical Engineering Science

University of Essex, Colchester, U.K •

.1;1.(1 ROllUCT IOl~

This paper discusses the problems of minicomput­
er software development and describes experience
in che development of systems software for
d minicomputer using an interactive emulator
embedded in an extended BASIC-like language on
a P[)PIO timesharitlg system. The systems devel-

for the target minicomputer include a
interpreter, a floating-point arithmetic

package and a real-time clinical patient-moni­
torin~ system for the minicomputer with drum,
cartr1dge tape, visual display, real-time clock
analog/digital convertor, teletype, fast reader'
and special-purpose keyboards. The objectives
of this paper are to further elucidate some
problems of software development for minicom­
pucers and the relative merits of differing
approaches, and also to demonstrate the pract­
ical utility of the modular BASIC-like language
(BASYS or Essex extended BASIC for system pro­
gramming) which was originally described at
DATAfAIR 1971 (Gaines, Gedye, and Facey 1911).

It is perhaps worth emphasising from the outset
that the objectives of the work and the con­
clusions to be drawn from this paper are far
more related to the ergonomics of software/
system development than to the computer-science
underlying the techniques inVOlved. We have
been concerned to place the system developers
in a position of power to fully and efficiently
utilize their own capacities and have not
hesitated to be lavish with the computer facil­
ities required to support this objective. Tne
original thesis has been that problems of system
development and implementation on computers
generally reflect poor man-machine communication
This applies not only to the implementation of
defined systems but also to the, generally most
difficult and unmanageable, phase of §y~
definition: the capability to rapidly develop
demonstration systems to enhance man-man cOllUYlun­
ications during system definition seems to us to
be one of the most important faciU ties that
should be made available through the use or
computers.

MINICOMPUTER SOFTWARE DEVELOPMENT

The availability of small computers of ever­
increasing power and eVer-decreasing cost has
made it attractive to design systems in which
the minicomputer is just another component,
albeit the most complex and powerful one. It is
probable that already more programming effort is
being devoted to these minicomputer 'components'
than to the larger computer installations. This
will cercainly be so when the costs fall even
further with the exploitation of complex semi­
conductor production techniques.

Whilst the use of minicomputers in this way has
opened up new areas for system implementation on
a scale previously impossible, it has also gene­
rated new problems (or, at least, regenerated

old problems in a new guise). The fabrication of
a system by • programming , rather than by more
conventional and concrece engineering techniques

the system a unique flexibility and capab-
for modification both developmenc

and the field. However, the of imple-
mentation tecfmology requires a concomitant
shift in and development technology: the
development software equivalants to the
drawing office, prototype production, explorat­
ory test-beds, etc. This is all the more impor­
t~~ because many, perhaps the majority, of
m1n1computer buyers are 'first-time' Users with­
out previous experience of computers and without
computer-based support facilities. In time the
ready availability of the machines which is
causing this flood into new territory will also
have the compensatory effect of
potential applications areas - however,
seVeral years at least, the growth of
at ions is likely cO exceed the growth
necessary backup technology.

It is not trivial to note that systems heavily
dependent on computer software development are
those most ripe for the application of 'computer
aided design'. This may be obvious but che fact
that editors, assemblers and compilers are CAD
tools for Software development itself tends to
be overlooked, in that they are seen as an
essential part of the computer system, not as
tools largely independent of the computer which
should be tailored cO the requirements of the
system designer. It is true that most mini­
computer manufacturers supply the design tools
for their computer software in such a form that
some configuratioDll of their own computer can
actually implement them. However, this is
technically irrelevant, and introduces some
practical confusion in that it is highly un­
likely chat the minicomputer configuration
required for the final system is able to support
an adequate software generation system the two
specifications are generally far apa~t.

Cross-assemblers and compilers enabling the
programs fur one machine to be created on
another have been in use for some time. However
!hey represent only one cOIIlparat iVely minor step
1n the design process: the translation from
program specification to machine-acceptable code.
On one side of them are the. text creation systen!3
such as interactive editors. and on the other
side are the code testing systems such as emul­
ators. Both editors and emulators are systems
which cannot be handled well under batch facil­
ities and ~equire a good interactive system to
support them. This, in itself, is a positive
reason for having design software on a mini­
computer: it is easy to provide an interactive
editor on a suitable minicomputer configuration
and the machine can generally be programmed as '
an efficient emulator of itself under a symbolic
debug. However, the editor requires backup
store, preferably drum or disc, and the debug
requires additional mainframe memory.

The logical conclusion is that for mlnlcomputer
software development an interactive system, not
necessarily related to the target system, should
be set up with suitable computer-aided design
tools for minicomputer software development: a
powerful interactive editor, an assembler (pref­
erably a meta-assembler) and an interactive
emulator. This has been our approach to develo­
pments on a number of systems, for example clin­
ical timesharing systems on the POPS and micro-
16, and the effort inVOlved in writing effective
editor/assembler/debug systems has been well
worth the resultant saving in development time.
The software development aids in these cases
were written on the actual target machines
because in all cases the configuration had drum
or disc backup stores and sufficient main mem­
ory.

When faced with a situation. however. in which
we did not possess a suitable target machine
configuration, we went further than this and
set up cross-assemblers and cross-emulators for
the target system (a Micro-computer systems
MINIC) on available open-shop systems (a
Digital Equipment PDP9 and PDPIO). In partic­
ular. the PDPIO MINIC-emulator was written as
an additional module for the BASYS (extended
and modified BASIC) interpretor We had written
for general use on the PDPIO. The advantages
of doing this and the form of implementation
are described in the next section.

A MINIC EMULATOR UNDER BASYS

To write an instruction-set emulator for one
machine upon another is generally simple. How­
ever, to turn such an emulator into an effective
design tool presents problems. Generally an
emulator of the computer alone is inadequate for
all but pure software development. What is
required is a complete configuration emulator
including peripherals such as discs. analog/
digital convertors, printers and displays, and
the timing problems associated with real-time
control of physical devices. At the design
stage moreover many of these peripheral systems
may not be available, their characteristics may
be unknown, or it may be part of the design to
actually develop them. If the emulator is
written as a machine-code program it is compar­
atively simple to run the target computer main­
frame diagnostics on it to check its operation.
However, if the ill-defined peripherals are also
emulated with machine-language programs the
process of system development involves joint
writing and debugging of machine code programs
on both the design machine and the target mach­
ine - a situation fraught with error.

This problem could be largely overcome by writing
the emulators in a suitable high-leVel language,
However, in emulating the target computer speed
is of great importance in order to provide proc­
essing power on a comparable time scale (general­
ly about 10-20 times slower). Since the computer
will remain constant whilst peripherals change
with configuration, it seems reasonable to com­
bine the advantages of both approaches by em­
bedding a machine-code computer emulator in the
high level language with suitable facilities for
calling and controlling it.

It 50 happened th'lt the extended BASIC we 11ad
developed for 'natural-language' interactive
text-handling also featured ease of machine-code
linkage through its table-driven command struct­
ure and standard subroutine calls. The language
was being successfully used for clinical appli­
cations and textual analysis and such additional
commands as special-terminal drivers and a
speech-sYntneziser controller had already been
added to it as linked machine-code segments. The
emulator embedded in a high-level language pre­
sented a further opportunity to test bASYS since
the text-handling and variable-radix arithmetic
of the language should be able to support effec­
tive assemblers and symbolic debugs; the file­
handling and input-output control (available
down to virtually direct machine-level) should
be well suited to peripheral emulation; and the
ease of integrating further machine-code mod­
ules should make it possible to embed a fast
emulator fer MINIC itself in a convenient form.

A synopsis of BASYS is given in Appendix 1 - one
further command was added to call the MINIC
emulator -
MINIC (array name)
where locations 0 through 20 of the array con­
tained status information and the remaining
locations were regarded as a MINIC core store.
The status information inCluded the state of
MINIC registers, the number of MINIC instruct­
ions to be emulated, etc. On executing this
command the MINIC emulator was called and the
specified numbers of instructions emulated with
appropriate changes to the array 'core and
registers' and status information. As usual
command then passed to the next instruction in
the program line unless the emulation could not
be completed because MINIC input/output or
extended microprograrn instructions had been
encountered - in these cases control was trans­
ferred to the following line with appropriate
status information set up to indicate the cause
of interruption.

It was convenient to pack 4 MINIC a-bit words
into one 36-bit word on the PDPIO and use the
residual bits to tag each MINIC word and cause
interruption when it was accessed by the emu­
lator; hence break-points were simply realized
under the emulator. Running under interrupts
was simulated simply by setting the number of
instructions to be executed, and real-time
interrupts from the PDPIO timesharing tele­
printer were generated through a buffer flag
test. MINIC peripherals were simulated by BASYS
program segments entered after interruption of
the 'MINIC' command which adjusted the array
'core and registers' to emUlate the appropriate
peripheral transfers.

EXPERIENCE WITH THE EMULATOR SYSTEM

An assembler for the normal MINIC assembly
language was written in BASYS in about two man­
days. A symbolic debug and environment fur the
MINIC emulator was written in BASYS in about
three man-days. This system was then used to
generate two packages previously written for
MINIC, a floating-point arithmetic package and
a BASYS interpreter. At the same time, well
before a hardware configuration was available,

work commenced on writing a clinical monitoring
system for a real-time MINIC with a variety of
peripherals. These were not formal experiments
and could not be so since the 'control' develop­
ments differed in detail and had not been ade­
quately monitored. The results, however, indic­
ate clearly the tremendous potential of an
effective interactive system to aid software
development - the software packa~es were devel­
oped in about one tenth of the time and took up
about sixty percent of the space of comparable
previous developments. For the real-time
system the back of the software development was
broken well before the hardware was ready and
the transfer to the real system was fairly
painless.

This is an ongoing experiment and the results
of this first phase do little more than indic­
ate the value of further research on the opti­
mization of the software development environ­
ment. However, the following conclusions are so
far worthy of note -

(a) A major benefit accrues SOlely from the use
of a powerful high-speed interactive text edi­
tor. In particular the block move capability
made it easy to re-arrange programs for ease of
reading and to annotate them sensibly.

(b) The majority of program bugs may be detected
through a combination of assembler diagnostics
and the examination of well laid out and form­
atted listings. In particular the lack of hard­
ware for the real-time system diverted effort
into examination of the program texts and elimi­
nated most faults even before tests on the emu­
lator.

(c) Ease and speed of operation are of para­
mount importance. The magtape-based editor on
the PDP9 was substantially less satisfactory
than the disc-based PDPIO and this is strongly
reflected in the program quality of the parts of
the system produced on the PDP9 editor/emulator
system.

(d) An emulator embedded in a high-level lang­
uage does combine speed with ease of peripheral
simulation and debugging support in a powerful
combinat ion.

In SOme respects we are only re-discovering well
known (if not well-kept) programming adages.
However, as Sime, Green and Guest (1973) have
suggested it seems eminently sensible to invest­
igate the psychological/technical foundations
for the production of good software, and to use
the knowledge gained to design more effective
program 'design and development aids.

REFERENCES

Facey, P.V. ED - A Contextual Editor, Depart­
ment of Electrical Engineering Science,
University of Essex.

facey, P.V. BASYS User's Manual, Department of
Electrical Engineering Science, University of
Essex.

Gaines, a.R., Gedye,J.L., Facey,P.V. A Versa­
tile Hulti-User Interactive Language System for
a Minicomputer, B.C.S. Datafair 71, Nottingham.

Sime,M.E., Green,T.R.G., Guest, D.J. Psycho­
logical Evaluation of Two Conditional Construct­
ions Used in Computer Languages, Int. J. Man­
Machine Studies ~(l) January 1973.

APPENDIX 1 SUMMARY OF BASYS

BASYS is a systems and interactive applications
programming language with a syntax based on
Dartmouth COllege BASIC. It is an ongoing
development and versions of the language have
been used on various configurations of the PDP8,
PDP9, PDPIO, PDPll, PDPIS, MINIC, MODULAR ONE,
and MICRO 16.

The main extensions are -

(1) Irnoroved string-handling modelled on SNOBOL
- handles arbitrary-length, dynamically changing
strings with full ASCII 7-bit character set -
string relational operators allow for anchored
and embedded searches, and tests for string
equality, inequality or telephone-directory
comparisons.

(2) A new 'PUT' command provides keyword-search­
ing. pattern-matching, and string-decomposition
facilities. These give simple and natural
syntax-analysis capabilities and allow convers­
ational programs to be written which can commun­
icate with untrained users in an approach to
natural language.

(3) A new 'CODE' command enables a running
BASYS program to modify itself, dynamically
generating arrays or new code.

(4) All error conditions may be trappe~ by a
BASYS program enabling supervisory programs to
be constructed that give the user access to the
language but retain control.

(5) Numerical expressions are accepted wherever
a number could occur, and these may contain
logical and relational operators. Hence all
transfers of control may be computed.

(6) Several commands may fOllow on one line and
any statement may follow a conditional. Many
commands have implied conditionals such that
execution along the line continues only if the
command is successfully executed.

(7) Extensive file-handling facilities allow
BASYS programs to create, delete, rename, read
and write files, either in ASCII or in binary
form. A single LET command allows a list of
numeric and string variables to be packed or
unpacked to or from an array, and arrays them­
selves may be written into arbitrary locations
in random access files - hence complex record
structures are readily set up.

(8) Simple overlaying is possible through com­
mands which load and run a filed BASYS program
passing to it the current simple variables and
selected strings and arrays.

(9) A variety of priviledged modes allows the
construction of system level programs protected
£rem examination or interference by the user.
Such system level programs are automatically
called when the user logs in or out, or presses
certain control keys - hence the system may be
trailored in detail to the exact requirements
of each class of user.

Expressions in BASYS

A BASYS program consists of a set of numbered lines each containing one or more commands separated by
colons, e.g.

100 INPUT $5 :UNLESS $5='YES' :PRINT $5'1' :GOTO 200+K

A numerical expression (ne) is something that can be evaluated to produce a number. The following
operators are allowed:-

OPERATOR

1
2

3 ,.
1\ I
5 11

6
7 +

MEANING

Unary minus
a .. b: open bit shift of a by b places left if

b>O. right if b<O
Exponent i.a tion
Division
Multiplication
Subtraction
Addition

Relational operators

a
8
B

String

9
9
9
9
9

10
10

Logical

11
12
13

" =
>

operators

>
::
<:

'"
'orH

$

operators

&

I

Less than
E,ual
Greater than

Alphabetically greater than
Identical
Alphabetically less than
atb: true if string-a begins with string-b
a+b: true if string-a contains string-b
Quotes enclosing literal string
Right-associative operator meaning string-name

AND
Exclusive OR
Inclusive OR

A string expression (se) is any'thing that can be evaluated to yield a string. String expressions are
built up from one or more of the fields listed below. The value of the expression is formed by con­
catenating the values of~e constituent fields.

FIELD

$(ne)

! (string) I

"(string)"

(ne)

%S(nel) $(ne2)

%C{ne)

(nel) @(ne2)

(nel) #(ne3)

(nel) @{ne2)#{ne3}

CORRESPONDING STRING

The string in dollar-line (ne)

(string) which may not contain '

(string) which may not contain ff

The value of (ne) converted to a string
under control of the current output format
and radix specification.

Carriage-return and linefeed

Has no value. May be used as a separator
to resolve ambiguity.

The (nel)'th substring of line $(ne2).

The ASCII character formed by taking the
value of (ne) module 128.

The value of (nel) converted to a string in
format (ne2).

The value of (nel) converted to a stI'ing
using radix (ne3).

Both. as above.

Storage (null effect on execution)

hRRAY (name) (number)

nets up an array in the program line with
([,urnUer) the highest subscript. The value
of the line number is assigned to the sim­
ple var laule ("ame) when the RUN command is
executed enabling array elements to be
referenced symbolically with the usual ,lyn­
tax..

$ (cp.aracters)

sets up a cn"racter string in the prog:t',;m
line to be used as a string variable.

REM (characters)

sets up a character string for comments.

LET (named) = (neJ) (name2) = (ne2) etc.

assigns the value nel to the numerical
variable namel, etc.

LET (array name) ~ (list of variables)

packs Or unpacks the listed variables into
or from the array - the list may consist
of variable-precision numbers and variable

strings in conjunction with READ
WRITE commands, this enables random­

access mixed record structures to be set up
on the back ing store.

pur (se) (search r.'lode) (destination) (look for)
(replace with)

generates the string se and decomposes it
as specified - t,~ last four fields may be
iterated many times and execution of the
command only continues as long as the
search string (look for) is found - hence
there is an implied conditional in the
command and action may be taken if the
decomposition rule cannot be applied.

IF (ne)

continues execution of the line if the
value ne is non-zero.

UNLESS (ne)

continues execution of the line if the
value ne is zero.

Many other commands have implied condition­
als and continue execution of the line only
if they have been performed satisfactorily.

GOTO (ne)

transfers control to line ne of program.

GOSUB (ne)

stacks the current line Bunber and trans­
fers control.

RETURN (ne)

unstacks the line number stacked by last
GOSUB and assigns value to system vari­
able QA - transfers control to next line
with number greater than or equal to QA +
(ne) if (ne) is absent a value of 1 is
used - if a command follows the GOSUB only
the unstacking is performed and the trans­
fer of control is not made. Hence variable
returns and non-return transfers may be
made from gosubs.

RUN (ne)

STOP

EXIT

BYE

deletes simple va~'iables, clearS
stacks, giVeS system variables
values and transf,~rs control to next line
with numbex> greater than or equal to (ne).

stops execution and returns to keyboard
edit mode.

StopS execution and CALLs standard system
pregram.

stops execution and logs user off system.

Editing and Housekeeping

LIST (nel) (ne2)

gives formatted listing on channel 1
(default TrY) of program lines nel through
ne2.

CLEAR (mill) (ne2)

deletes program lines nel through ne2.

CODE (se)
reacts to the string se as if it had been
typed in during the keyboard edit phase
enables program to compile additional lines
at run-time, for example, dynamic arrays.

X (number) (look for) (replace by)

changes (h,ok for) to (replace by) in
prognamline (number) and prints changed
line - primarily for swift editing.

CORE (ne)

adjusts user's Care allocation until free
DO (ne) space is at least ne chal'acterS.

executes program line ne - control n.turns
to line following DO commands.

GARB

collects garbage to maxlm14e free space
normally done automatically when free space
goes below limit.

Peripheral 7ransfers

BASYS input/output is largely device
ent through numbered ! channels!. To
programmer effort standard device
are set up when a user logs in, but
he cbaflEed ad lib.

lti rT# (c tJar.llel) (devic ename)

initializes the channel and attaches the
named device.

RELEIISE tI (channel)

closes the channel and releases the
device.

CREATE # (cha=ell (mode) (filename}

creates a new file for use in a certain
node and opens On a channel.

OPEN # (channel) (mode) (filename)

opens an existent file for transfers in
given mode on a channel.

DELETE # (channel) (filename)

deletes a file from the device assigoed
to a channel.

RENAME # (channel) (newname),(oldname)

renames a file - newname and oldname are
string expressions.

PRINT J (channel) (se)

writes the string se anto the prescribed
channel - default is channel 1 (usually
TTY).

INPUT # (channel) ?(ne) (PUT command decomposw
i tion syntax)

if ?(ne) is present, PRINTS line $(ne) as
a cue, otherwise PRINTS asterisk as cue w
reads a line of text from device and
decomposes it as for PUT command. Note
that command defaults to simple list of
numeric variables or character string
input.

TAil # (channel) (ne) (se)

print the string se repeatedly until the
column ne is reached - used to tabulate
and produce charts on TTY.

WRITE i (channel) (array name)

write contents of array in line ne as
binary block on channel - used for
record structures in random access files.

READ I (channel) (array name)

reads block of binary data from channel
into array.

SAVE I- (channel) (filename) (nel) (ne2)

saves program lines nel througn ne2 of
current program as a text file.

CALL (start 190 (channel) (filename)

calls the specified program file and
starts program at prescribed line - values
of variables previously defined are re­
tained.

DUMP,II! (channel}

dumps the current program in core-imaw)
form.

LOAD (start)#(channel) (nel) (ne2)

loads a core image created by DUMP and
start at prescribed line - values of
variables retained - lines nel through ne2
of old program also retained allowing
arrays and strings to be passed. This
command gives rapid overlaying.

The channel specification may be omitted normally
when the standard default channels are used.
Additional input/output and supervisory commands
will exist for most systems since it has been
the policy to interface most operating system
facilities directly to BASYS (with suitable
protection where necessary).

En is a line-by-line string-oriented editor
suitable fOr implementation on any computer
having a block addressable storage device. At
any moment during an editing session one line of
the user's file is accessible for editing. We
may think of a symbolic pointer, the current
line pointer, which designates a particular line
of the file. Editing consists of moving the
pointer to the required line, and then making a
change. The pointer may be moved freely up and
down the file, and any amount of text may be
deleted or inserted at any point. The necessary
file handling and buffering are done automatic­
ally by ED in a way that is transparent to the
\.lseI'.

IN filename Opens an existing file for
editing.

OUT filename Creates a new file. If used
inconjunction with IN, defines
the name of the edited file.

LIST filename Opens an existing file for
examination only.

CLOSE

EXIT

Finishes editing and restarts
the editor.

Finishes editing and returns to
the monitor.

It is important that the file being edited
shoUld be adequately backed up, both to protect
the user from his own mistakes, and as a safe-
guard system failures and telephone dis-

In addition to preserving the
initial state of the user's file, ID also keeps
a second, up-to-date backup copy:

SAVE

i:!ACK

Saves the current state of the edited
file.

Cancels all editing done since the last
SAVE command.

Some commands take nUlDe!'ic arguments. If these
are omitted a default value of 1 is used.
Commands tnat search for strings or move the
current line pointer normally cause the pointer
to step towards the bottom of the file. If the
command is prefixed with the letter U, the move­
ment will occur in the upwards direction towards
the top of the file.

Commands for Printin$.

P n

PF string

pi, string

PB

PRINT n lines.

PRINT-FIND. Print down to
line beginning with the
string.

PRINT-LOCATE. Print down to
line containing the string.

PR!NT down to the BOTTOM of
the file.

Commands for Positioning the Pointer

T

B

Nn

Un

F string

L string

~!ove pointer to the TOP of
the file.

Move pointer to the BOTTOM
of the file.

NEXT. Move pointer down by n
lines.

Hove pointer UP byn lines.

FIND the next line beginning
wHh the string.

LOCATE tbe next line contain­
ing the string.

Co_ands for Editing the Current Line

R string REPLACE the current line with
the string.

A string APPEND the string to the end
of the current line.

I string INSERT the string below the
current line.

UI string Insert the string above the
current line.

qC/stringl/string2 CHANGE the q'th occurrence of
string 1 to string 2 in the

current line.

X/stringl/string2 Change all occurrences of
stringl to string2 in the
curr>ent line.

Commands that combine Searching and Editing
functions

LC/stringl/string2 LOCATE next line containing
stringl and CHANGE it to
stl:'ing2.

LD string LOCATE next line containing
the string and DELETE the

DF string

DL string

line.

Delete d~~n to the next line
beginning with string.

Delete down to the next
line containing the string.

qM/stringl/string2 MACRO. Change all occurr­
enCeS of stringl to string2
in the ne1l!t q 1 ines •

Commands for

Vn

On

OF string

at string

Y filename

text

En ter In input
mode is typ-
ed is the file
upto the next ESCAPE chara­
cter.

Move pointer up by n lines,
then enter input mode.

OVERLAY. Delete n lines,
then enter input mode.

Delete down to next line
beginning with the string,
then enter input mode.

Delete down to next line
containing the string, then
enter input mode.

YANK. Insert whole of
specified file below current
line, and advance pointeI'
to bottom of inserted text.

Multi-file Capabilities

ED can support two output streams
enabling text to be diverted from the main
to an auxiliary file. The user may switch the
output from one stream to another at time,
allowing the input file to be any
desired way.

PUT filename

OM

GET filename

IN

Switch output to auxiliary
stream.

Switch output to main
stream.

two input streams, enabling
to be built up from parts of

Switch to auxiliary input
stream.

Switch to main input
stream.

The GET and PUT streams may be used in combin­
ation to perform complex block-move operations.
This is especially useful when rearranging
machine-code programs for computers with limited
addressing capabilities.

