
COHPUTER TECHNOLOGY AND ITS UTILIZATION 

TODAY AND TOMORROW 

B.R. Gaines 

Department of Electrical Engineering Science 
University of Essex 

1. Introduction 

2. Historic Perspective 

3. The Inter-relationship of Machine! Problem and System Designer 

3.1 The Designer-Problem Relationship 

3.2 The Machine-Problem Relationship 

3.3 The i1achine-Designer Relationship 

3.4 Computer-aided Design of Software 

4. Surr~ary and Conclusions 

l~ational Cngineering Laboratory Conference 

"Small Computer Applications in Industry" 

Glasgow 27-29 Harch 1973 



COt1P!JTER TECHNOLOGY AND ITS UTILIZATION: 

TODA Y AND TOMORROW 

B.R. Gaines'" 

1. Introduction 

The pace of advance in computer technology is so rapid that a major 
problem for industry is to maintain a comparable rate of advance in 
COUlputer applications. If reliability and power continue to increase, 
and price, size and power consumption continue to fall, there is a strong 
incentive to sit on the fence and wait for a stable technology. However, 
will it come? - when? - and what will it be? In the meantime what 
strategies can be adopted to take advantages of minicomputer technology 
without suffering from the inherent obsolescence generated by rapid change. 

It would be absurd to pretend that there are definite answers to 
these questions. However, an assessment of probabilities is possible 
through an analysis of the case histories of current technologies and of 
projected future machines. This paper presents a number of salient 
factors relating to computer technology and its applications. It is not 
a guide to machine selection but does attempt to raise those questions 
that should be asked in evaluating compute,rs and proposed computer 
applications. In particular, the three-part relationship between system 
designer, problem and machine is examined in some detail to give the hard
ware developments an overall applications perspective. 

2. Historic Perspective 

A brief review of the historic development of computers shows the 
effects of two major factors: (a) technical improvement; (b) application 
development, that is 'hardware technology' and 'software technology' 
respectively. The first is readily understood as progress in components 
leading to increasing reliability and decreasing cost (although the 
discontinuities in potential applications as these variables go through 
critical values should not be underestimated). The factor of 'applic
ation development t, however, is one which is less readily comprehended 
because, even though 'knowhow' plays a role in all industries, it has a 
unique dominance in computer applications resulting from extreme versa
tility and lack of problem-orientation of the computer itself. A technol
ogy which is in itself so universally applicable gives no clearly defined 
indication of the way in which it should be used to solve a particular 
problem or implement a particular system. 

Two examples will serve to illustrate the importance of applications 
knowhow: 

(1) Everyone has been taken by surprise by Winograd's results on natural 

{CDepartn.ent of Electrical Engineer ing Sc ience, Uni versi ty of Essex. 



lallguar,e convel'sa tiona 1 in t t::hict iOJ I W bich d(~I:!(jrlstrjcJ to till.' po tc'lltLll 
for Cl virtually man-ta-man relationship with the computer, !jiven <.1 

real 'tOpic to discuss and suitable software technology with which to 
encode algorithms supporting discussion. HCY.-Iever, no new hard\>lare 
is involved and these progra~s could have been run over a decade ago. 

(2) Even more remarkable in demonstrating that the 'limitations' of 
computer may often be overco~e dra~tically by means other than 
hardware development is the story of the Cooley-Tukey 'Fast Fourier 
Transformation'. Here we have a situation where midicomputers 
were in use for routine spectral analysis of transducer records when 
suddenly, and literally 'at the strok~ of a pen'! their throughput 
"las multiplied by 1,000 or more. The consequences of the availab
ility of low-cost, high-speed spectral analy~is are still not fully 
worked through and are affecting the basic measurement technology 
of many industries. However, the lessons of the Fast Fourier 
Transform (or rather the Slow Fourier Transform accepted and used 
for so many years) are important in demonstrating that in our analysis 
of the hardware technology we must not forget the importance of the 
designer-computer relationship - limitations of computer size or 
speed may be inherent in the accepted 'solution' rather than the 
original problem and the computer user should be encouraged to make 
the imaginative lateral leap which brines the impossible within 
grasp without any breakthrough in hardware technolOgy. 

Having emphasized the importance of software technology and applic
ations knowhow, one may note the progress in the hardware itself. The 
1940's were periods of experimental develqpment of temperamental machines 
whose brief periods of meaningingful activity were garnered for military 
use. In the 1950's the available up-time although expensive and inter
mittent was sufficient to feed into scientific research and some brave 
(or foolhardy) commercial projects. In the early 1960's machine were still 
in use with meantimes between failures (MTBFs) of 30 minutes or so, but by 
the late 60's silicon semiconductors had taken the MTBFs of the computer 
itself to some 1000's of hours. 

In the 70's we are seeing an increasing scale of monolithic inte
gration reduce the size, pOHer consumption and cost of ~chines. By the 
end of the decade it is safe to predict that the equivalent of the £2000 
naked mini of today will be a set of chips costing less than £100, drawing 
its power £ram a small cell. Most importantly these chips will make 
available sensible 'computers' with minimal memory at costs of less than 
£20. However, the availability of low-cost active logic~ as opposed to 
passive memory, is also beginning to have its affect on machine power~ and 
the £2,000 for the present-day 8K-byte mini with minimal arithmetic capab
ility will then buy a machine with some lOOK-bytes of memory and process
ing power exceeding the larger present-day maxi-computers, such as the 
IBM 360 and PDP 10 • 

With this reduction in the cost/size/power-consumption/processing
limitations, etc., of the computer itself the pressure of technical devel
opment will be applied increasingly to computer peripherals and the later 
70's and early 80's will be seen retrospectively as the time of transition 
to total system developuent. Computers will be integrated into other 
systems and the CPU/peripheral distinction will vanish. Electro-mechanical 
peripherals, particularly bulk storage, will be replaced by all solid-state 
electronic or electromagnetic systems wherever motive force is not inher
ently required. By the late ao's the technical problems of man-computer 

2 



communication will have been solved by conventional means such as speech 
communication, to be replaced in the 90's by direct sensory prostheses. 

To go further takes us into science fiction regions -that will only 
serve to weaken the argument. HOHever, we have gone far enough to 
indicate that there is no end in sight to the development of computer 
technology. He who waits for the bandwagon to stop rolling Hill only see 
it disappearing over ever more distant horizons. The important lesson 
of history is to jump on at the right time - for any application there are 
critical values of performance parameters below which a system c~nnot 
function) but above which further improvements~ for that application) 
make little difference. This applies to all parameters) including cost, 
size, reliability, and processing power .. Real-time applications requir
ing on-demomd access to the computer could not succeed whilst HTBrs were 
below 100 hours but improvements above 1000 hours have a diminishing 
effect. Many instrumentation applications did not make sense until a 
reasonable size processor could be purchased for a few thousand pounds; 
but further decreases in possible processor cost would create an imbalance 
in relation to the cost of the associated peripheral systems (whose costs 
are not decreasing at such a fast rate) and the most competetive product 
will be one that uses processors of increased capability rather than 
decreased cost. Similarly commercial office applications have constraints 
not only of reliability and cost but also of size/power-consumption since 
special environments are difficult to accommodate, but once a certain 
level of environmental tolerance is reached further stages are progressive
ly less useful. 

Timing is of the essence when dealing with a rapidly developing 
technology and the vital question is generally not whether to utilize 
computers but when? The question of timing is not only a-predictive one 
but also a normative one - the first user at a technically feasible time 
forces others to become users. In the computer field he also introduces 
a maj or planning problem of gearing a continuing development into a tech
nology unique for its rapidity of change. In the following section we 
consider some aspects of this problem. 

3. The Inter-relationship of Machine, Problem and System Designer 

The dia~am of Figure 1 presets the basic paradigm for a computer 
applications situation. Note-that it expresses a three-part relationship 
between computer~ problem and designer. Many problems, both of computer 
design and application, arise from neglect of one component in this 
relationship. A machine is Dot necessarily the best for an application 
even if it has an excellent architecture suited to the relevant Droblem 
class - to actually apply it to that problem class the system de~igner 
needs to be able to understand it (at one level optimality often leads to 
complexity, whilst at another machines such as hybrid analog and DDA are 
not widely understood) and he also needs adequate developmental tools, the 
availability of which may be more relevant than any other considerations. 

Similarly the concept of 'system analysis' as a relationship only 
between the systems designer and the problem independent of computer 
technology is a dangerous one if pursued too far - most human activities 
are self-optimizing and goal-directed and the current operation of a non
computer-based system will have evolved to make best use of the available 
technology. The system analyst must attempt to evaluate ends not means, 
and needs to take great care to avoid stating a partial problem within 
too limited a frame of reference. 

3 



Hatched to 
problem class? 

1(--------------.----->1 
Analogy relationship 

Comprehensible 
to Designer? 

System 
development 
soft\'lare 

System 
analysis 

Full problem 
defini tion 

Figure 1. The Three-Part Relationship in Computer 
Applications 

3.1 The Designer-Problem Relationshi£ 

Taking the links between each pair of elements in Figure lone by 
one: that between the system designer and the problem appears the least 
relevant to the theme of this paper since the computer is not in the patn. 
However the designer/problem relationship is clearly of major importance -
it is a truism that a vaguely stated, time-variant 'problem' is not 
suitable for computer solution. Such a problem is probably not suitable 
for any form of 'solution', but a human organization can at least cope 
with it and contain it (and probably enjoy it!). 

It is generally emphasized that it is necessary to have a full and 
definitive statement of a problem in order to compose algorithms (essent
ially mechanical problem-solving processes guaranteed to succeed within a 
given frame of reference) for its solution which can be implemented on a 
computer. It is less widely realized that the 'language I in which Cl 

problem is framed can profoundly affect the ease with which the algoritt~s 
can be generated and irnplemented and may also determine the suitability 
of a given machine organization for use in connection vtith the problem. 
The link between problem and machine for purposes of implementation passes 
through the system designer - there is one linguistic transformation for 
the problem to be defined by him and a further linguistic transformation 
for the solution to be programmed by him (l-lhere I him' encompasses a mul ti
tude of hierarchical structures!). It is quite possible (and indeed 
quite expected, the more complex 'him' becomes) for the machine-problem 
relationship to be simple and healthy, but for the problem/system 
desir,ner transformation to be such a weird imposition that the programmer/ 
machine re-transformation is dominated by factors unrelated to the original 



problem - the final result being a complex and abstruse linguistic 
exercise crushed under own documentation. 

Even though from a hardware technology viewpoint He would concentr(}te 
on the relationship between machine and problem and its suitability to the 
problem area, in practical applications the route through the designer may 
totally dominate the feasibility and success of a project. 

Other papers in this symposium will comment on this aspect of appli
cations definition and programming - we will only note that in relation to 
machine architecture it makes the path in Figure 1 between machine and 
designer of at least equal importance to th<1t between machine and problem. 
Mucb Hark on machine architecture is open to the critic that it pays 
too little attention to the problems and viewpoint of the system designer! 
programmer, and much systems software is primarily concerned with hiding 
or transforming aspects of the machine which are a source of difficulty 
to the programmer. 

3.2 The Hachine-Problem Relationshi2 

The link between mac hine and problem is that about which we generally 
think when considering the teclmical suitability of machines to problem, 
or application areas. At the simplest level, since we know that a small 
Turing machine is a universal computer, the question of suitability one 
only of storage capacity and speed - how much memory do we need (the 
Turing machine tape length) and how much computation must we do in unit 
time (the Turing machine symbol processinK rate). 

In practice the factors of storage space and speed loom large in all 
computer selection processes, and most other aspects of computer archictec
ture relevant to the machine-problem link stem from them. The encoding of 
an instruction set into an order-code is an information-theoretic problem 
of bit-utilization (from our current point-of-view). The more frequently
used instructions ,should be encoded into fevler bits than the less frequently 
used instructions. The problem of speed is slightly more complex - since 
the computer operates serially, and assuming that each serial operation 
takes about the same time, the less computer operations required to effect 
each operation in the application the faster the computation will proceed. 
The limit is when each operation in the application corresponds to one 
operation in the computer. There is then an identity between the computer 
instruction-set and the terminology in which the application is described -
we say the computer provides an 'analogue' of the problem. 

There are several points of interest arising from the preceeding 
paragraph: 

(1) Optimized information-theoretic encodings may become very complex 
and generate a fairly involved encoding process (typically decisions 
as to whether to use a short address mode, a long address mode or an 
index register mode) which is a load upon the program writer or 
compiler, or worse still upon the loader or run-time system - e.g. 
the whereabouts of other program segments may not be known until load 
time and the whereabouts of data may vary at run-time. 

In theory a compile-time problem is acceptable because it does not 
effect the system operation. In practice, since the provision of 
compilers is a major bottleneck in computer development and applic
ation, any problems in writing them are serious. In any event the 

5 



sensihle compiler vlrite .. will turn the problem into one at run·-time 
by not using any of the clever, economical and fast, but not urdver" 
Si.llly applical)le, iustruction types. 

(2) The 'analogue I computer as described is clearly excellent in provid
ing not only speed but also a one-to-one correspondence between the 
application-description and the computer program. The electronic 
analogue computer has exactly this property in relation to linear 
differential equation simUlation. It is this property of problem
analogy which the special-purpose high-level language (such as APT 
for machine tool work) attempts to provide - a 'virtual machine' is 
defined Hhose instructions are analogies of the operations required 
in a class of applications, and the compiler transforms a real
machine into this virtual machine. 

(3) Both space and time efficiency assume knowledge of the class of 
problems that a machine will have to solve. This is, with current 
techniques) a concept which is very difficult to define and utilize 
in any meaningful way. It is this, more than any other factor, 
which has ~iven the general-purpose digital computer its market 
impact in even highly specialised areas such as process control. \'le 
do not need extreme generality and it brings with a host of problems 
- a specialized instrument designed for a specific application 
virtually oefines the way in which it to be used, and its capab-
ilities and limitations are intrinsic and non-variable. A ~igital 
computer is at the opposite extreme, giving no indication of how it 
is to be used and with capabi~ities and limitations dependent on 
how we use it. However, the special-purpose instrument is dying 
a natural death under the influence of mass-production and mass
marketing requirements (even the venerable oscilloscope has so many 
programming switches\and dials now that some form of 'translater' 
could help in setting it up!), and the special-purpose computer 
seems never able to get off the ground. 

The type of machine architecture 'lhich comes closest to g~ v~ng the 
best of all worlds (or at least an effective compromise) is the multi
level programmable machine, in which a high-speed, general purpose 
!kernel' 'microprogrammed' to interpret the instruction set of a 
(virtual or real - according to whether you are looking down or up!) 
machine which may have many special-purpose, problem-orientated facilities. 
Such micro-programmability gives an added feeling of security in that not 
only can the machine do anything that may crop up, but it can also be 
fine-tuned to do them fast enough; 

3.3 The Hachine-Designer Relationship 

The third link in Figure I is that between the machine and the system
designer/programmer. Ylithout too much melodrama we may note that the 
designer has to impose his will on the computer, and that he is essentially 
f:loulding an amorphous object Hi th feT

"; characteristics into a highly 
tool. Unfortunately the computer is unintelligcnt in that it does not have 
tIle capability of self-organiz.ation to achieve specified goals. The 
designer not only has to impose his will. but he also has to know both it 
ilnd the machine sufficiently well to impress upon the machine every detail 
of his requirer:ients under all possible conditions. In this section we 
are primarily concerned with the designer's kn~11edge of the machine and 
witn the mecl~nisms by which he ensures that it does as be wishes. 

6 



Ther'e i:..; Cl cu:r':iou~ dnrJmaly if! lIlacllinc ti(~::.;ltfl in that rIt thr~ t:%lI'CldC! 

'rr,ini' end of tht:.: range, the pro8rams which call be ted onto th,.: 
are so small that the programmer canHot possibly have much to remember' amI 
it is both fair a.nd necessary to make the machine structuz':.;l complex and 
give him scope for , bit-by-bit,program optimization to conserve 
space and squeeze as much as possible out of his 'mini'. As the machine 
grows larger. however, the programs ~ow and the programmer has less 
memory available (in head) for complex order-codes and clever prograr.)-
ming tricks, and less available to utilize ci ther of them for 
optimization. Thus as the machine becomes bigger it should also become 
simpler. 

The paradox is less apparent if we consider that simplicity for the 
programmer is often brought at the cost of complexity of hardware. vie 
give him floath"'1g-point numbers as unitary data types, simplifying 
programming at the cost of an additional ar i thmetic unit. Thus our 
progress from the simple Turing machine to the multi-data type, segmented, 
wonder wOI'k-horse of today is characterized by increased hardware complex-
ity leading, hopefully, to increased ease of programming - prav we do 
not pass some of the complexity onto the programmer. 

A simple calculation serv.es to illustrate the extreme approaches. 
Wonder machine X is advertized as having 4096 fantastic instructions, each 
one higluy problem-orientated and optimized to have just those effects 
most often wanted - each instruction has a distinctive name, and, a week's 
course on each will leave the programmer knowing at least the name and. 
possibly, what the instruction does. Machine Y has the same number of 
instructions but they may be decomposed into: 

16 operations with 8 address modes on 4 data types and 
8 data lengths. 

The programmer Y has 16+8+4 things to learn - 28 facts to remember, 
not 4096. 

Such 'co-ordinate system' instruction sets have been used in part in 
most machines because they arise naturally in encoding an instruction into 
bit-fields. However, they are rarely carried to the logical extreme, and 
one finds that certain operations can only be used with certain data 
types and certain address modes, or that the machine is two-address for 
integer arithmetic but one-address for floating-point arithmetic. This 
makes even the most elementary operations, such as moves, fraught with 
complications since the address modes may vary with data-type and for 
some modes there may not even be a 'move' instruct ion!' Not only is it 
desirable that there should be uniformity and homogenity in dealing with 
all operations, modes and data types, but also that this should be extend
ible to other operations and data types if the configuration is expanded. 
Here an adequate 'extra-code' or emulat6r-trap system is necessary, esta
blished as an integral part of the basic machine order-code (so that the 
programmer sees the same class of instructions for both new and old data 
types) . 

The advantage of a co-ordinate system approach to instruction-set 
design is that a large number of different instructions are generated as 
the product of much smaller sets of operations, etc. Some of the possib
ilities may not be particularly useful or meaningful, but the wastage can 
be made negligible. The advantages to the programmer and compiler writer 
are a coupling of power with simplicity that makes for a very close 
programmer-machine relationship. There are associated advantages in the 
possibilities for true 'high-level' 'assembly' languages for the machine. 

7 



The problem of program development itself is not the theme of this 
paper and will be discussed elset-.'here. However, the delineation b.:;1:ween 
rardware and software design in computer systems is becoming increasingly 
blurred and it is legitimate at this point to look briefly at software 
development for its similarities to the hardware development problem. 

3.4 computer-aided Design of Software. 

The fabrication of a system by 'programming I rather than by more 
conventional and concrete engineering techniques gives the a unique 
flexibility and capability for modification both during development and in 
the field. However~ the shift of implemetltc!tion technology requires a con
comitant shift in design and development technOlOgy: the development of 
software equivelants to the drawing office, prototype production, explor
atory 'test-beds, etc. Thi~ is all the more important because many, perhaps 
the majority, of minicomputer buyers are 'first-time' users without 
previous expepience of computers and without computer-based support facil
ities. In time the ready availability of the machines which causing 
this flood into new territory will also have the compensatory effect of 
saturating most potential applications areas - however~ for several years 
at least~ the growth of applications is likely to exceed the growth of the 
necessary back up technology. 

It is not trivial to note that systems heavily dependent on. computer 
software development are those most ripe for the application of 'computer 
aided design'. This may be obvious but the fact that editors, assemblers 
and compilers are CAD tools for software development itself tends to be 
overlooked, in that they are seen as an essential part of the computer 
system, not as tools largely independent of the computer which should be 
tailored to the requirements of the system designer. It is true that most 
mini-computer manufacturers supply the design tools for their computer 
software in such a form that some configurations of their own computer can 
actually implement them. However, this is technically irrelevant, and 
introduces some practical confusion in that is is highly unlikely that the 
minicomputer configuration required for the final system is able to support 
an adequate software generation system - the TIro specifications are 
generally far apart. 

Cross-assemblers and compilers enabling the programs for one machine 
to be created on another have been in use for some time. However they 
represent only one comparatively minor step in the design process: the 
translation from program specification to machine-acceptable code. On one 
side of them are the text creation systems such as interactive editors, 
and on the other side are the code testing systems such as emulators. 
Both editors and emulators are systems which cannot be handled well under 
batch facilities and require a good interactive system to support them. 
This t in itself~ is a positive reason for havin8 design software on a mIni
computer: it is easy to provide an interactive editor on a suitable miai 
computer configuration, and the machine can generally be programmed as an 
efficient emulator of itself under Cl symbolic debug. However~ the editor 
requires backup store, preferably drum or disc, and the debug requires 
additional mainfrarrememory. 

The logical conclusion is that for minicomputer software development 
an interactive system, not necessarily related to the target system~ 
should be set up with suitable computer-aided design tools for minicomputer 
software development: a powerful interactive editor, an assembler (pref-

a 



erably a meta -assembler) and an interactive emulator. 

A major difficulty in implementing this conclusion arises through the 
costs involved in the developmental system. Although program devel-
opment resources can amplify the efforts of the programmer by a factot' of 
five or more, the capital cost has in the past generally been too high for 
many potential users. However, with the advent of low-cost backup memories 
such as flexible discs, and low-cost high-speed displays, this situation 
should change over the next few years. 

4. Summary. and Conclusions 

There is clearly fnr more to be discussed and this paper has raised 
questions rather than resolved them. However, the technical details of 
individual computer designs are irrelevant to most applications until a 
full account is taken of the associated factors outlined in this paper. 
For the future we can look forward to increasing computing power at 
decreasing cost, size, and power-consumption. We can also expect increas
ing attention to be paid (both in machine development and marke~ing) to 
the programmer/machine link, by extending the simplicity and power of 
instruction sets and by providing adequate software development resources. 

Gradually the system will build up inertia both through the existence 
of successful applications packages and through the availability of good 
development software and trained staff ror certain machines. This "lill 
make it difficult to market new machines which are incompatible with 
previous software, and manufacturers will be rorced to exploit new tech
nology and machine architectures through configurations "lhich il.re able to 
appear both as previous generation machines and as the new machines - that 
is through variable microprogram machines. 

9 


