
251

BASYS - A LANGUAGE FOR PROGRAMMING INTERACTION

B.R.Gaines and P.V.Facey

Summary - Over the past 10 years we have had extensive experience
in the development and application of low-cost, interactive,
minicomputer-based systems designed for close collaboration
between people and computers. In papers elsewhere we have
described and analysed these systems and the human factors
involved. In particular we have suggested strategies for progr­
amming the interaction between the naive user and the computer.
This paper concentrates on the software technology underlying
these systems and analyses in some detail the types of string­
handling facilities in particular that are needed to program
interactive dialogue Simply, flexibly and effectively. An outline
is given of how these facilities are incorporated in the language
BASYS that has been used in our applications.

1. Introduction
BASYS is a high-level language with extensive string handling
facilities, whose syntax is similar. to Dartmouth BASIC, and which
has been implemented as a compact interpreter on a wide range of
minicomputers. Over the past ten years BASYS-based minicomputer
systems have been used for many different applications, including
industrial and clinical instrumentation, psychological testing,
hospital administration, and a variety of commercial systems for
security and foreign exchange dealin~. Previous reports have
detailed the applications (Refs. 1-5) and analysed the problems
of programming interactive dialogue for naive users (Refs. 6-7).
This paper is concerned with the language itself, design consid­
erations, facilities and implementation. It is not intended to
promote BASYS as a 'standard language' ~ince it has never been
such and varies from implementation to implementation), but
rather to encourage the use of simple, interpretive 'kernel'
languages as a key component of interactive systems, and to pass
on our own experience to other designers of such systems.

2. Design Objectives
The key objectives established for the design of BASYS were:
(l) A 'high-level' language, simple to use and as readable as
possible - because we envisaged programs undergoing rapid field
development and modification, and needing to be as 'self-docum­
enting' as possible - the syntax of Dartmouth BASIC was chosen
as a model because experience had shown it to be simple to
comprehend and very readable;
(2) Interactively modifiable - because the design of man-computer
dialogues is an exercise in bringing man and machine into a close
working relationship and we needed to be able to modify dialogue
sequences rapidly in the light of user comment, and whilst the
the user was sti~~ present - the interpretive imp~ementation has
made this relatively easy to achieve;

The authors are with the Man-Machine Systems Laboratory,
Department of Electrical Engineering Science, University of Essex

252

(3) ReadilY extensible - because BASYS was intended as a 'kernel
language' for a variety of specialist applications requiring
special features as an integral part of the language - extens­
ions incorporated in practice have included: command processors
for remote microfilm terminals, speech synthesizers and mass
spectrometers; and various data structure manipulation commands
for speed and ease of understanding,
(4) Supporting natural interactive dialogue - because ease and
flexibility in programming interaction with users was essential
to all the applications envisaged, and we were determined to
avoid the imposition of syntactic or semantic constraints on the
form of the dialogue - in practice the 'pattern-matohing' string
processing operations of BASYS have now been widely used by both
university and commercial programmers to generate a great
variety of dialogue sequences that appear simple and natural to
non-computer-oriented users;
(5) Allowing close and direct communication with the operating
system - because many of the applications were 'database'
orientated and efficient use of filing facilities was essential,
and because on many minicomputer systems the operating system
itself was so primitive that it was necessary to substantially
extend it and the best way to do this was in BASYS itself - all
implementations have the command structure of the operating
system under which they run incorporated as an integral part of
the language itself,
(6) Giving high-precision integer arithmetic - partly because
many of the initial applications were financial where exact
arithmetic is required, but also because even in, for example,
medical database systems we found that the normal floating­
point plus I-word integer arithmetic normally available in
minicomputer interpretive systems was inadequate - most
implementations of BASYS offer variable-precision integer
arithmetic up to some 19 digits;
(7) Compact implementation - we put this last not in importance
but because it is still essential despite the other key require­
ments ! - for many of our applications the use of a high-level
language has to be balanced against the extra storage required
in what is intended to be a low-cost minicomputer, or micro­
processor, system - in practice BASYS implementations seem to
come out at about 4K machine words including all tables, editing
phase, and workspace used by the language itself - user program
partitions vary from application to application but are typic­
ally between 2K and 4K bytes.

3 Creating, editing and debugging BASYS programs
BASYS retains the syntactic structure of BASIC in that a program
is a sequence of numbered lines ordered by their, not necessar­
ily consecutive, line numbers, and statements consist of a
meaningful key-word specifying a command processor followed by
an expression, or sequence of expressions, that serve as param­
eters to it, e.g.:

15 LET P=180
46 PRI1~ 'The value of Pis' P

137 INPUT X Y Z
240 PRINT (X+Y)/Z Z*y P+(X-Y)/6
402 GOTO 15

253

The meaningful key-words seem to contribute much to BASIC's
high readability, and the need to insert them itself prevents
the vast, opaque syntactic constructions possible in ALGOL and
mandatory in LISP.

The role of the line numbers and their use in transfers of
control is more open to controversy, and we have debated it on
many occasions over the years, particularly in relation to more
meaningful labels. However, in the context of interactive progr­
amming where the programmer at a terminal cannot see all the

. text at a time, the use of numeric labels having the topology
of the ordinary number system is itself an advantage. The
programmer has an immediate 'picture' available to him of the
layout of his program - going on to use the same line numbers
as 'labels' for the transfer of control is then a minimal,
natural construct, requiring the acquisition of no new concepts.
We accepted the use of line numbers in BASIC when designing
BASYS and have not regretted it. Indeed in BASYS it is extended
to enable both string constants and dyna~ically-varying string
data to be stored and referenced as part of a structure of
numbered 'program'

In our class of applications creat~ng a program at a terminal,
or entering one sketched out off-line, or modifying one in use,
are important activities to be performed simply and ergonomic­
ally. We wished to minimize the effort of program creation and
documentation and maximize the clarity of the result. This led
to the sub-objectives: (a) No unnecessary syntax on program
entry - the programmer should be able to use the minimum string
necessary to specify a statement; (b) Full clarity in program
listings - the system should re-create the missing syntax on
output and format ~t appropriately.

To achieve this we had to drop some BASIC conventions, notably
the non-significance of spaces which are natural separators
readily inserted with the space bar. This allowed a comma, or
one or more spaces, or implicit separation, to be specified as
optional separators. Command key-words could then be specified
as a string of letters which matched, or partially matched, one
of the standard commands. Hence any command could be shortened
to its minimum unambiguous initial string. We chose conmand
names so that the first two letters alone were always sufficient
to resolve ambiguity, and a single letter, if ambiguous, was
interpreted as the most frequently used of the possible comm­
ands, e.g. I

15L P=180
46P'The value of P is'P
1371 X Y z
240P(X+Y)/Z z*y P+(X-Y)!6
402G15

shows how the previous program might be entered - on listing it
would be expanded to its full form.

The following example shows a sequence of actual program creat­
ion and debugging at a terminal. The '>' (go-ahead) is printed
to indicate that BASYS is in edit mode ready to accept terminal
program input. The ,[, is a 'no-operation' cownand allowing the
free entry of comments. When line 110 is entered a syntax error
is immediately indicated because the initial command cannot be
decoded. The programmer re-enters it correctly and terminates

>l(Created as a demo 24/10/76
>25P'DEMO
>BOI X Y
>lOOP X X*X
>llOLX=X+l:UN X>Z:GIOO
Syntax error
>llOL X=X+l,UN X>Z:G100

254

110 LET X=X+l :UNLESS X>Z :GOTO 100
>LI

1 [Created as a demo 24/10/76
25 PRINT DEMO
80 INPUT X Y

100 PRINT X X*X
110 LET X=X+l :UNLESS X>Z aGOTO 100

>RUN
DEMO
:4 7

4 16
Variable undefined at 110

110 LET X=X+l :UNLESS X>Z ! :GOTO 100
>XllO/Z/Y

110 LET X=X+l :UNLESS X>Y :GOTO 100
>G100

5 25
6 36
7 49

>P X Y
7 7

>
it with an ' }~SCAPE' rather than I CARRIAGE-RETURN I causing an
immediate listing of the entered line. He then asks for the
program to be listed (note that 'L' alone becomes LET, but 'LI'
becomes LIST) and then run. An error in the running program
generates an informative message together with a listing of the
offending line with a '!' showing where execution ceased (the
variable 'Z' being undefined). The programmer edits line 110,
changing Z to Y. and co~tinues the program (with all variables
unchanged). When it terminates and exits to the edit phase he
is able to check the state of the variables, and could go on to
enter more program and continue execution if he wished.
Note that there is no distinction in BASYS between 'stored' and
'directly-executed' commands - any can be either, and indeed
commands such as LIST are often implemented as BASYS procedure
calls on some 'hidden' BASYS programs that perform the required
operation. The so-called • edit-phase , is actually generated by
all programs being linked to a final line of the form:

INPUT <string> :CODE <string> :LOOP
where <string> is a string-variable and CODE is a command that
encodes its argument as a program statement, directly executing
it if it has no line number. Thus the interpreter does not
distinguish between 'edit-phase' and 'run-phase' and all comm­
ands and accesses to data structures are freely available in
either.
Line 110 of the program above also makes apparent another
feature of BASYS, that a number of commands may follow one
another, separated by colons, on the same line. This is both
convenient in grouping material together for readability, and

255

gives a powerful extension to the form of conditionals in BASIC.
BASYS is a 2-dimensional language in which execution continues
along a line until a conditional fails or the line ter~inates,
and then passes to the next line. For example,

100 PRINT X X*X :LET X=X+l :UNLESS X>Y :LOOP
(where LOOP transfers control back to the beginning of the same
line) is equivalent to lines 100 plus 110 of the previous progr­
am.
Conditional tests are regarded as decisions to continue execut­
ion of the current line or go on to the next. Advantage is taken
of this to generate implied conditionals in other commands
particularly input-output statements which may fail for good
reasons (end-of-file), and the pattern-matching string operat­
ions described later which may fail through lack of match. For
example:
100 OPEN 'FILE' :GOTO 120
110 PRINT 'Cannot find FILE' ,STOP
120

or better.
100 OPEN 'FILE
110 ELSE :PRINT 'Cannot find FILE' :STOP
120

each use the implied conditional in the file OPEN command to
test its success. The second form shows how the use of implied
conditionals together with the ELSE construction in BASYS
(ELSE continues execution if the previous conditional failed)
allows readable, GOTO-less programming using a few simple and
natural constructs.
These examples and their rationale illustrate th~ 'flavour' of
BASYS, its simplicity and the close integration of facilities
for program creation, editing, debugging and listing. Hopefully
they also indicate the high readability of BASYS, even greater
than that of BASIC because of the 2-dimensional structure that
encourages logical command groupings. The appendix gives a
synopsis of the language - it will be seen that other obvious
generalizations have been made: numerical expressions can occur
wherever a number might; variable names are not restricted to a
letter or a letter/digit, and so on. In general, these extens­
ions in making the language simpler and more uniform for the
programmer have also simplified implementation and led to a
more compact interpreter.
4 String processing in BASYS
Our early experience in programming interactive dialogues had
convinced us of the need for facilities to process character
strings which went well beyond those of any commonly available
language except SNOBOL. We were not aiming for 'natural lang­
uage' with all its ambiguity and complexity but rather 'natural
dialogue' for users already in a semi-formal situation, e.g. the
acceptance of precisely those forms in which a clerk would have
previously written information of a file-card - an acceptance
unhindered by imposed syntactic constraints (e.g. commas being
separators or certain characters have special meaning) and
obvious in the very form of the language statements used to
decode the input. Our initial aims were strongly influenced by
the template-matching, contextual analysis, facilities necessary

256

to implement an ELIZA-type of program. Experience in the design
and implementation of contextual editors also led to many feat­
ures of the current system.
Our interpretive implementation of BASYS automatically gave us
fncilities for manipulating the character strings forming progr­
am lines, and it was natural to store string data in the same
way. Any 'proGram' line beginning with a I,' 'command' is a
string variable initially containing whatever characters follow
the $. Such variables are referenced as $ <line number> where
<line nwnber> is a numeric expression evaluating to a line
number, e.g.:
>lO$Hi there
>PRINT $10
Hi there
>LET K=7 :PRINT $K+3
Hi there
>LIST

10 $Hi there
>INFUT $10
:The end
>LIST

10 $The end
>
Apart from its sim~licity of implementation, this mechanism for
string variables: la) enables string variables and constants to
be listed as part of the program, (b) enables string variables
and constants to be placed in those parts of the program where
they are used; (c) makes string arrays naturally available and,
in particular, efficiently implements sparse string arrays.

String expressions containing string constants, variables and
literals, and numeric variables converted to strings have a
natural syntax given in the appendix, e.g. continuing from above
>PRINT fWhat is' K I times' K+l $10
v/hat is 7 times 8The end
>
Contextual string analysis is based on the concepts of a source
string being analysed, a destination string to which output may
be appended, and various commands for matching patterns against
the source string and routing results to the destination string.
The system variable QS contains the line number of the source
string, QD that of the destination string, and QP contains a
pointer to a character within $QS. The system variables are
automatically set up by the string processing commands and need
not be manipulated by the programmer. However access to them is
useful in very complex string processing applications.
The command PUT <string expression> sets up a source string by
assigning the value of the string expression to $QS and setting
QP to zero (the command INPUT serves the same purpose but gets
the string from the terminal). The command AS <string variable>
sets up the string variable as a destination string, initially
null, and assigns its line number to QD. The command WITH
<string expression> is used to append the value of the string
expression to $QD, typically to replace a pattern matched in
the source string.

TO, FROM and SEEK are pattern search commands specifying a

257

pattern, or template, to be looked for in the source string $QS
starting from the QP'th character. If the pattern is found then
QP is updated to point beyond it, any appending to .QD is carr­
ied out, and execution proceeds to the next command in the curr­
ent line. Otherwise, if the pattern is not found neither QP nor
$QD are changed and execution drops through to the next line.
FROM specifies an anchored search (for an initial pattern), and
SEEK an unanchored search (for an imbedded template). TO speci­
fies an unanchored search in which characters from the source
string prior to the pattern matched are appended to the desti­
nation string. The forms of pattern template allowed are specif­
ied in the appendix and include s~ring variables, literal
strings, numeric strings (automatically converted and assigned
to numeric variables), and a specified number of characters. The
commands and templates are powerful enough to cover most requir­
ements, but simple enough to enable the string analysis to be
expressed comprehensibly, e.g.,
>1 $ABCDEF
>PUT $1 :AS $2 :FROM 'AB' :TO 'EP'
>PRINT $2
CD
>
The following example accepts the date in one of two formats:
>10 PRINT 'Date', ,INPUT
>20 SEEK D I /' II1 I I' Y
>30 ELSE :SEEK D 1/' r~ :LBT Y=77
>40 ELSE :PRINT 'Date as 6/7/75, or 3/9, current year' :GOTO 10
>50 PRINT D M Y :GOTO 10
>RUN
Date:5/7

5 7 77
Datea2/l2/45

2 12 45
Datea4-5-77
Date as 6/7/75, or 3/9, current year
Date:
And the following implements a simple calculator language:
>10 PRINT 'Calc', :INPUT :SEEK 'ADD' X Y :PRINT X+Y :LOOP
>20 SEEK 'SUB' X Y :PRINT Y-X :GOTO 10
>30 SEEK 'MUL' X Y :PRINT X*Y :GOTO 10
>40 PRINT 'That is a bit beyond me old boy' :GOTO 10
>RUN
Calc:ADD 3 5

8
Calc:SUBTRACT 9 FROM 20

11
Calc:Please could you MULtiply 4 by 3

12
Calc:What is 8 DIVided by 4
That is a bit beyond me old boy
Calc:
String conversion filters are available, for example, to convert
all characters to lower or upper case, and could have been used
in this example.
These examples demonstrate the operation of the pattern-matching
&tring analysis facilities in BASYS in simple situations. The

258

combined use of all the facilities together with computations
with, and assignments to, QS, QD and QP, allows very complex
string analysis to be c~rried out. What should be apparent,
however, is the naturalness of this command family for use in
the commonly required string analysis needed to support inter­
active data entry and dialogue. Our objective was not only to
provide powerful string-processing facilities, but also to
retain the readability, and the transparency of function, which
are such important features of BASIC.
5 Procedures and the stack in BASYS
In early implementationo of BASYS space for all numeric varia­
bles was allocated from a single level store. Once created
variables names were static and retained their values between
subroutine calls, program overlaying, and so on. Such a simple
allocation scheme is adequate for small programs up to about
200 lines, but places an increasingly onerous memory load on
the programmer as they become larger. For the suites of 30 or
more 200 line programs that typified our commercial and medical
systems, we found that the use of the same variable name for
different purposes in different places was a frequent source of
errors. We found ourselves generating elaborate cross-reference
packages and losing many of the advantages of rapid development
otherwise available with BASYS.

The obvious extension was to provide a simple block structure
restricting the scope of names, and this has been done in
recent implementations by assigning storage for simple variables
and arrays from a system stack. The simple variable Q acts as a
stack marker containing the line number of the command that has
caused entry to a new block, and the command LOCAL is a form of
LET which creates a new variable on the stack if there is not
one above the topmost stack marker; variables above the current
top stack marker are themselves called local to the current
block. The command BEGIN X Y Z places a marker Q on the stack
whose value is the current line number and sets up local
variables X, Y and Z. The commands END, NEXT and BACK, are
conditionals which can move the stack pointer below the topmost
ma~ker, i.e. remove local variables, and transfer execution to
the line number following the value in Q. Between them they
give the three possible combinations of these two operations
and allow block structures, iterative loops, and procedure
returns to be implemented.

The BASIC GOSUB command has been dropped as a means of implem­
enting procedure calls. Instead, the command DO <line number>
in BASYS causes execution of the specified line but does not
pass control to it unless it is a BEGIN. When the line executed
is a BEGIN then a marker Q with the calling line number is
placed on the stack and control is paased to the executed block.
The looal. variahles declared in the BEGIN statement pick up any
parameters listed after the line number in the DO statement, and
may otherwise be assigned default values. Parameters may be
passed by value or by reference, e.g.

DO 90 A K+3 45 %G
executed when A=5 K=4 G=-7 and line go is
go BEGIN A B 0=1 D=-50 E=IOO F=E

leads to the setting up of local variables with the following
values. A=5 (passed), B=7 (passed), C=45 (passed, default

259

ignored), D=-7 (~assed as reference to G in outer block, default
ignored), E=lOO {default picked up), F=lOO (default ~icked up -
note that E is already available as local variable !J. Note
that A in the local block is quite separate from the A outside
it which has become inaccessible, whereas D is a reference to G
and hence gives direct access to it - in fact G in the outer
block is available both as G and as D within the inner block.
Thus the assignment A=O D=2 is effective in the inner block
and, on return, A=5 as before, whereas G=2 because of the
assignment to D. Return is effected by the command BACK whicll
deletes the local variables and stack marker Q, returning to
the line whose number is next greater to Q. Note the availabil­
ity of Q within the procedure enables return switches to be
implemented.
A BEGIN command need not mark the beginning of a procedure but
can just initiate a block with local variables terminated by an
END. The ARRAY canmand in BASYS replaces the BASIC DIM and is
executed at run time so that local arrays can be created on the
stack and the space later returned. Reference variables are
allowed not only in parameter passing but may also be created
by assignment. This is very useful in setting up symbolic
references to record elements of variable lengths stored in
arrays, particularly since BASYS uses arrays for transferring
arbitrary length, arbitrary structure, records to and from disc.
The facilities for variable name management, parameter passing
and dynamic arrays in BASYS are again very simple and the data
structures involved are readily conprehended. They are adequate
however to remove problems of name conflict without undermining
the simple mechanism of user program overlay communication in
BASYS whereby the names and values of simple variables and
arrays are retained between overlays. We have considered more
elaborate schemes but concluded that to go further would give
only minor advantage whilst reducing the simplicity of concept­
ion and use which is a feature of BASIC-like languages.
6 Conclusions
We hope that this brief paper gives eno~h of a feeling for
BASYS and its rationale to be of value to other interactive
language designers and users. Further information on applicat­
ions will be found in Refs.1-5 and on implementation in Ref.8.
7 References
1 B.R.Gaines and P.V.Facey, Some experience in interactive

system development and application, Proc.lEEE 22, 894t 1975.
2 B.R.Gaines, P.V.Facey and J.Sams, Minicomputers in security

dealing, Computer~, 6, 1976.
3 B.R.Gaines, P.V.Facey and J.Sams, An on-line fixed interest

investment analysis and dealing system, Proc.EUROCOMP 74,
155, 1974.

4 P.V.Face7 and B.R.Gaines, Real-time system design under an
emulator embedded in a high-level language, Proc. BCS
DATAFAIR 73, 285, 1973.

5 T.C.S.Kennedy and P.V.Facey, Experience with a minicomputer­
based hospital administration system, Int. J. Man-Machine
Studies, 2, 237, 1973.

6 B.R.Guines and P.V.Facey, Programming interactive dialogues,

260

Proc. Con!. Oomputing and People, Leicester Polytechnic,
1976.

7 T.C.S.Kennedy, The design of interactive procedures for man­
machine communication, Int. J. Man-Machine Studies £, 309,
1974.

8 B.R.Gaines, Interpretive kernels for microcomputer software,
Proc.Symp. Microprocessors at Work, University of Sussex,
56, 1976.

9 Appendix - Synopsis of BASYS
Arithmetic
Precedence

1
1
2
3
3
4
4

5
5
5
6
6
6
6
6
7
7

8
9

operators in BASY3
Op Meaning
+- Shift
t Exponentiation

Unary minus
/ Divisior,
* I'-1ultiplica "Cion

Subtractior.
+ Addition

<
>
=
<
>
=
~

t
'or It

S

&

Less than
More than
Equal

) Arithmetic relations -
~ any combination of these

Alphabetically less than) String comparisons -
Alphabetically less than) any combination of
Egual) these
a~b true if string-a contains string-b
afb true if string-a begins with string-b
quotes enclosing literal string
right-associative operator meaning string name

AND
OR

String expression fields in BASYS
A string expression <se> is anything that can be evaluated to
yield a string in the srune way that an arithmetic expression
<ae> is anything that can be evaluated to give a number. An
<se> is built up by concatenating the strings in its constituent
fields. The main fields are:

$<ne> String in dollar-line <he>
'string' The quoted string
Wstring" The quoted string
<he> The value of <he> converted to a numeric string
; Carriage-return and line-feed
, Null string - comma is used as field separator
%S<ne><ne'> Substring<ne>of dollar-line<ne~
~O<he> The ASCII character whose value is <he>
%P<he> The program line <he>
%R<he> Ohange output radix to <he>
~<he> Change output format to <he>

Storage oommands - no effect on execution
$<characters> sets up character string for use in program
[<characters> sets up character string for comments

Editing and housekeeping
LIST <ne> <ne '> gives formatted listing of lines <ne> to <ne '>

261

ZERO <:he> <ne '> deletes program lines <ne> to <:he '>
CODE <se> analyses <se> as program input
GARB forces garbage collection - usually automatic

Assignment
LET <~ssignmenti> <assignmenti> etc, where an assignment is

by value, <name> = <ne> , or by reference, <:hame> %<:hame '> ,
or both, <name> <;,,<name ,> = <ne>.

LOCAL <assignmentl> <assignment2> etc., is similar to LET but
only searches the local environment when setting up a new
simple variable.

ARRAY <letter> <hel> <ne2> <ne3> sets up the array, <letter>,
of size <nel> bytes, with elements <ne2> bytes long, and
with a multiplier if 2-diaensional of <ne3> - <ne3> absent
or zero signifies a I-dimensional •

Conditionals
IF <ne> continues execution of current line if <ne> non-zero
UNLESS <ne> continues execution of current line if <ne> zero
ELSE continues execution of line if previous conditional

(except AND/ELSE) did not
AND continues execution of line if previous conditional (except

AND/ELSE) did so

Transfer of Control.
DO <ne> executes program line <ne> - control returns to line

following DO unless line executed commences with BEGIN (see
next section)

GOTO <ne> transfers control to line <ne>
LOOP tranfers control to the beginning of the current line
RUN <ne> deletes simple variables and arrays, resets system

parameters, and transfers control to line with next greater
or equal number to <ne>

STOP
EXIT

stops execution and returns to keyboard edit phase
stops execution and CALLs standard system program

BYE stops execution and logs user off system
Procedures and Iteration

BEGIN <:hamel> = <nel> <name2> = <ne2> etc
puts local variable Q on stack and sets it equal to current
line number - sets up local variables, <name l> , <name 2> ,
etc, and assigns them values, <nel>, <he 2>, etc, unless
parameters hav~ been passed from a DO statement

DO <ne> <paraml> <param2> etc
just executes line <ne> unless this commences with BEGIN
when it sets Q on stack'with value its line number and passes
parameters by value or by reference to the local variables
specified in the BEGIN

BACK <ne> if <ne> is omitted or non-zero, causes local

262

environment to be deleted and control to be passed to line at
Q+I or next greater - otherwise has no effect - this is the
procedure return

NEXT <ne> if <ne> is omitted or non-zero this causes control
to be passed to the statement at line Q+l or next greater -
otherwise deletes local environment and continues execution
- this is iterative loop control

END clears the local environment and continues execution -
this is termination of BEGIN block

String operations
PUT <se> sets up source string $QS containing <se> - sets

QP=O
AS $<ne> <se> sets up destination string S<:ne> and puts <se>

in it - sets QD=<he>
WITH <se> appends <se> to $QD

FROM <pattern> examines $QS from the QF'th character for the
pattern - fails i:f pattern not found immed1.ately - otherwise
advances QP to point beyond pattern

SEh1[<pattern> runs through $QS from QP'th character looking
for pattern - fails if not found - otherwise advances QP to
point beyond pattern

TO <pattern> same as SEEK but also if pattern is found it
appends characters skipped over in $QS to $QD
A pattern consists of a succession of fields indicating

matches or changes to the command parameters - it matches if
and only if all its field match in sequence. The main fields
are:

$<.ne>

'string' or .
• 1 string"

match string in $<ne>

match quoted string

<variable> any variable to which a numeric assignment is
possible matches a field which is -

~<ne>

%F<ne>

[spaces] [+,-,null] [spaces] [digits]
[decimal point] [digits]

and any number thus matched is converted and
assigned to the variable
matches <ne> characters
changes format specification for numeric
input

Peripheral transfers
As previously noted these are de~endent on the operating system
used but generally includes -
CALL and SAVE programs and overlays
ALLOCATE and RELEASE channels
OPEN, CREATE, RENAME, CLOSE and DELETE files
INPUT and PRINT character strings
READ and WRITE data blocks

