. AIMS-11

PROGRAMMING
MANUAL

PDP-11 AIMS PROGRAMMING MANUAL Page

PDP-11 AIMS

CONTENTS

10.

1.

12.

Introduction 3

Command Syntax and Line Structure 6
Getting started with AIMS 9

Line and Program Editing commands 12

Numerical Expressions 14
Variables 16

Representation of numbers 16
Accuracy of calculations 16

Data types 17

Arrays 18 _

Numerical overflow 19

Array operators - AMOVE, ACOMP 22
SCAN command 22

Strings 24 '

Character set 24

String expressions 26

Conversion of values to numeric strings 29
Pagination, tabulation and graph plotting 32
Strings in Arrays, PACK and UNPACK commands 34
LET < and > commands 34

String Comparisons 37

String decomposition, the PUT command 39
Examples of PUT command 43

Character filters Ui

QI - Symbol table lookup 45

The INPUT command 47
Conversion of numeric strings to values 49

Transfer of Control 50

GOTO and LOOP commands 50
GOSUB and RETURN commands 51
RUN and STOP commands 52

WAIT, EXIT and BYE commands 53

System Variables 54
System Functions 55

Dynamic compilation, the CODE command 56
The X command 57

13.

14.

15.
16.

17.

18.

19.

20'

PDP-11 AIMS PROGRAMMING MANUAL Page

Input/Qutput Facilities 59

Devices and channels 59

Files, OPEN and CLOSE commands 60

Data Transfer commands 62

Simplified I/0 conventions 62

DELETE and RENAME commands 64

Channel Status information 65

Device Dependent Operations - DDOPR 67

Random Access filing 75

Structured data 76

ALLOC command 76

Direct Access to storage media 77
File Structures and MOUNT command 78

Program Filing and Overlaying 82

Errors 85

Abort keys 87

1/0 Errors 88

Command Summary 93

AIMS executive program, EXEC 98

Some Programming Tips 105

Execution Speed and Memory Occupancy 110
Garbage collection 111

Control of memory usage 112
Memory requirements for I1I/0 operations 114

21, Communication between different users 115
22. Job status information 119
Privileges 120
23. System Administration 121
LOGIN and LOGOUT commands 122
System status vector SS() 124
Passwords & department/user numbers 126
Accounting operations 128
Performance monitoring, WATCH 129
24, Control files and Batch processing 130
25. Line communication facilities 139
SWIFT facilities 149
26. ASCII character codes 162
27. Index 164
AIMS Version 2 April 1973 Manual Issue
AIMS Version 3 September 1974 Manual Issue
AIMS Version 3N August 1975 Manual Issue
AIMS Version 5 March 1977 Manual Issue

o Ew

PDP=-11 AIMS PROGRAMMING MANUAL - Page 3
Introduction -~ section 1

1. INTRODUCTION

AIMS is a system and application programming language with a

syntax based on that of Dartmouth College BASIC.

%%

&

* %

® %

The main extensions are:-

The string handling 1is much improved. String relational
operators allow for anchored or embedded searches, and tests for
string equality, inequality or telephone-directory type
comparisons,

A new PUT command provides keyword-searching, pattern mwatching,
and string decomposition facilities. These allow the writing of
conversational programs which c¢an communicate with untrained
users in an approach to natural language.

AIMS is fully interpretive and is specially designed to allow
close interaction with a terminal. All AIMS commands may be
executed either as part of a stored program or directly at the
keyboard. A running AIMS program may be stopped at any time,
the values of variables may be changed, or the program may be
edited, and then continued. This makes debugging easy.

Wherever a number may appear in BASIC, AIMS will accept a
numer ical expression of any complexity.

Several commands may be put on one line, and any statement may
follow an IF command.

Numer ical expressions may include Boolean, logical, and
relational operators.,

All program data, including strings and arrays, is stored in
AIMS lines. This allows arrays to be declared or re-dimensioned
at runtime, and makes it easy to preset or examine string
variables.

All error conditions may be trapped so that an AIMS program can
always retain control if it wishes. This allows the
construction of supervisor programs that can structure the
interaction between system and user in any desired manner.

Extensive file handling facilities allow AIMS programs to
create, delete, rename, read and write files, either in text or
in binary form. It 1s possible to use an AIMS array as a memory
buffer allowing random access to arbitrarily-formatted data.
Facilities are provided for saving AIMS programs on a
bulk-storage device, either in binary-image form, or as an ASCII
file. A running AIMS program may transfer control to such a
saved file, either in an overlay mode or in an interleaving mode
in which some lines remain unchanged.

AIMS programs may run in a variety of privileged modes, allowing
the construction of applications or system-level programs that
are protected from examination or interference by the user.

PDP-11 AIMS PROGRAMMING MANUAL Page 4
Introduction - section<1

#% All administrative programs for the multi-user system are
written in AIMS, allowing the system manager to determine
completely the appearance of the system to its users, the 1login
and logout procedures, access restrictions, and so on.

#% User memory partitions expand or contract dynamically to meet
changing requirements, giving optimum overall memory
utilisation.

&% User memory partitions are swapped automatically onto disk 1if
the memory requirements exceed the physically available memory.
Swapping is fully overlapped with computation and may be done on
several disks if desired.

INCOMPATIBILITIES WITH DARTMOUTH BASIC

Calculations are performed using variable-precision integer
arithmetic, rather than floating-point.

FOR, NEXT, READ, and DATA statements are not implementedt in
AIMS. However the extended facilities allow these commands to be
emulated with ease.

The END statement is not recognised in AIMS. There is no need
to mark the end of the program.

The matrix operations in extended Dartmouth BASIC are not
implemented.

PDP-11 AIMS PROGRAMMING MANUAL Page 5
Introduction - section 1

DIFFERENT VERSIONS OF THE SYSTEM

Every AIMS system comprises two parts: an operating system and
an interpreter. The operating system deals directly with the
hardware, controls all peripheral devices, and generally provides a
stable environment in which other programs, such as the
interpreter, may be executed. The interpreter implements the AIMS
language as it is described in this manual.

At present there 1is a choice of two different operating
systems: (1) DOS, a system originally developed by DEC but no
longer supported by them, and (2) MONITOR, a system developed and
supported by Arbat. DOS will run on the smaller hardware
configurations, whereas MONITOR is more powerful but requires extra
main memory. Each operating system requires its own version of the
interpreter because the systems differ internally. However, the
two interpreters both implement the same AIMS language so that the
combination of operating system and interpreter is compatible at
the application program level. A DOS-based system may be upgraded
to a MONITOR-based one without changing the application software
(apart from a few details mainly affecting system wutility
programs) . :

The two combinations are:-
Op sys: DOS Interpreter: AIMS version 3
Op sys: MONITOR Interpreter: AIMS version 5

Material in this manual that relates to only one of the cperating
systems is marked with a ‘DOS’° or 'MON’ flag, and similarly
differences between the two interpreters are flagged with a V3’ or
a ‘vs’,

HARDWARE SUPPORTED

MONITOR is capable of running on any PDP-11 central processor
that has the Memory Management facility (both types of KT11 are
supported). The 11/35 and 11/40, which have the more restricted
type of memory management hardware, cannot support as many jobs as
the 11/45 upwards.

All mixtures of core, mos and bipolar memories are supported,
with or without the memory parity options. MONITOR automatically
uses all the memory that is found to be present.

All available DEC asynchronous line interfaces are supported.

MONITOR is continuously maintained and it will normally be
found that the software will support the most cost-effective
combination of hardware that is available at any time. However,
since it is not known what devices may become available in the
future, the above statement should not be taken as a commitment to
- support all possible configurations.

PDP-11 AIMS PROGRAMMING MANUAL Page 6
Program Structure - section 2

| 2. COMMAND SYNTAX AND LINE STRUCTURE |

A stored AIMS program is built up by typing in numbered 1lines
at the keyboard. As each line is typed in, it is checked to see
that the commands are legal and is then coded into a compact form
and stored. Lines may be typed in any order, they are
automatically sorted into order by line number.

If a line is typed with the same number as an existing line,
it will reéplace the old line. An existing line may be deleted by
typing the line number by itself.

If a line does not begin with a 1line number, the 1line is
executed immediately rather than being stored away. For example

>PRINT 5%6 [the > sign is printed by AIMS when
30 [it is ready for a command
>

Several commands may be typed on the same 1line by beginning
each new command with a colon. For example

>LET X=2 :PRINT 57X
25
>

Commands may be abbreviated like

>L X=2:P5°X
25
>

The abbreviation will be properly understood only if it ends with a
character that is not a letter. For example

>P5
5
>

is ok, but
>PX

is interpreted as the unknown command PX, rather than the intended
PRINT X. A space may be used to delimit such abbreviations.

These abbreviations are automatically reconstituted when a
stored program is listed, giving the user the advantages of quick
type-in and nicely formatted listings. For example

>10L J=0

Y20P J J™2:L J=J+1:IF J<5:LOOP

>30P ‘FINISHED”

>RUN
0 0
11
2 4

PDP-11 AIMS PROGRAMMING MANUAL Page T ‘
Program Structure - section 2

3 9
4 16
FINISHED
>LI
10 LET J=0
20 PRINT J J72 :LET J=J+1 :IF J<5 :LOOP
30 PRINT 'FINISHED’ :
>

SIGNIFICANCE OF SPACES AND COMMAS

Spaces in command lines are generally ignored. They may be
inserted to improve legibility, but it should be borne in mind that
extra spaces increase the size of the program and reduce the
execution speed (see section 20).

There are a few contexts in which spaces are significant:-

PRINT XY ‘ [prints the value of the variable XY
PRINT X Y [prints the value of X followed by that of Y
P X [the space delimits the abbreviated PRINT

[command
LET X=6 Y=5 [is legitimate, but it could be written as
LET X=6Y=5 [to save space

There are other contexts in which a comma is necessary to
resolve ambiguity:-

PRINT X -Y [prints the value of X~-Y

PRINT X,-Y [prints the value of X followed by
, [{that of -Y

PRINT A+B (J+X)/5 {is an array reference, whereas

PRINT A+B,(J+X)/5 [is not

PDP-11 AIMS PROGRAMMING MANUAL Page 8
Program Structure - section 2

NOTATION

In the following descriptions we shall wuse square brackets
like [] to enclose comments and names representing elements of the
syntax. For example :

[number] represents any number such as 1, 123, 128 ete.

[ne] represents any numerical expression such
as 142, 123, 1+X¥{(X"2) etec.

[se] represents any string expression (see section 6).
Anything not enclosed in square brackets stands for itself.

Note that it is never necessary to use square-brackets when
typing commands to AIMS (except for department/user numbers as
explained in section 13). The brackets are used in this manual
simply as an aid to clarity.

Most of the examples are shown exactly as they would appear to
a user typing at a terminal. AIMS always prints a > or ¥ sign when
it is waiting for input from the user. Hence it may be assumed
that all lines beginning with > or * are typed by the user, and all
other lines are printed by AIMS.

When we wish to add .a comment on a line that contains an
example, the comment is preceded by a [to separate it clearly from
the example. ’

° denotes the up-arrow key, usually shift N.
denotes the back-arrow key, usually shift Q.
1is usually shift 3. It may be marked as a pound sign.
\ denotes the back-slash key, usually shift L.

The notation ‘control-X’ represents the single character that
is typed by holding down the key marked 'CTRL’ and pressing the key
marked ‘X°.

A vertical line down the left margin indicates new material
that has been inserted into the manual since the last issue.

PDP-11 AIMS PROGRAMMING MANUAL Page g
Getting Started - section 3

[3. GETTING STARTED WITH AIMS

An AIMS system may be used in broadly two ways: programmers
use it to develop programs that provide some desired service, and
people with no computer expertise make use of this service. For
example a team of programmers could use the AIMS language to
implement an order-processing system, and this might then be used
by the sales personnel in a mail order firm. The appearance of the
system to the end-user is determined entirely by the programs with
which he interacts and is thus beyond the scope of this manual. We
are concerned here with the way in which an AIMS programmer uses
the system.

Before any programming can be done the user has to gain access
to the system by ‘logging on’. This 1is done by pressing the
carriage return key which causes the system to ask for your
department/user numbers and password. These will be allocated to
you by the system manager. A typical 1login sequence 1looks 1like
this

[User presses carriage return key
MONITOR V1A AIMS V5B J4-K6
DEPT,USER: 100 110 [User types his numbers
PASSWORD: [User types his password which is not printed

. [The dot indicates executive level.

Note: when you key in your department and user numbers they may be
separated either with a space or with a comma. A space is
preferred because comma does not work in European countries where
it is used as a decimal point (see page 32),

The password is a security measure to prevent unauthorised
people from using the system.

Once a user is logged in he is communicating with the system
executive program which prints a dot when it is waiting for a
command. This executive program provides a range of services which
are useful when developing programs. These are detailed in section
18. For the present it is sufficient to note that there 1is one
executive command, E, which allows the user to write an AIMS
program:

.E [User types E to enter edit mode
>P G5#p [Where he can give AIMS commands.
30

The E command transfers the user from executive-level to AIMS-level
where he is communicating directly with the AIMS language
interpreter. At this level the user can give direct commands (ie.
those which are executed immediately like the PRINT command above},
or he can type in a stored program like this

>100 LET N=0 :PRINT ‘CUBES’
>110 PRINT N N°3 :LET N=N+1 :IF N<4 :LOOP

PDP-11 AIMS PROGRAMMING MANUAL Page 10
Getting Started - section 3

The user may now run the program by giving a RUN command:

>R

CUBES
0 o
T
2 8
3 27

>

The program stops running when there are no more lines to execute.
The wuser may modify the program if he wishes either by changing
existing lines or by inserting new ones:

>120 PRINT ‘DONE” :EXIT

At any time the user may return to executive-level by pressing
the control-0C key or by giving the EXIT command. But it is
important to note that on returning to executive the system forgets
entirely about the program that you were developing. So if you
want to preserve this program for future use it 1is essential to
save it on a disk file. This is done using the SAVE command as
follows:

>SCUBE”:P 0K
OK
>

This saves the program as a disk file called CUBE.BAS as explained
further in section 15. The user may now safely return tc executive
level:

>EXIT

and other activities may be pursued. Later on, the saved CUBE
program may be executed by giving its name like

.E CUBE
CUBES
0 ¢
1 1
2 8
. 7
DONE

The program is recalled from disk and executed.. At the end the
EXIT command in line 120 transfers control back to executive. If
you want to continue developing the program it may be more
convenient to recall the program without executing it. This is
done by using the CALL command rather than ‘the EXECUTE one:

.C CUBE

>LI
100 LET N=0O :PRINT "CUBES~
190 PRINT N N*3 :LET N=N+1 :IF N<4 :LOOP
120 PRINT °‘DONE” :EXIT

> /

PDP-11 AIMS PROGRAMMING MANUAL Page 11 :
Getting Started - section 3

The program may now be modified and tested and SAVEd again as file
CUBE.BAS or with a different name if you want to preserve the old
version as well. :

When you have finished using the system it is essential to
“log off” using the BYE command. This returns the terminal to its
initial state in which it is necessary to press carriage return and
go through the 1log on procedure before the terminal can be used
again. If you go away without logging off there is an opportunity
for an unauthorised person to interfere with your files.

The BYE command may be given either at executive-level or at
AIMS-level:

.B
11:15:34 3-FEB=-77 J4 K6 100110 user name
Run=0:00:10 Connectsz0:01:40 DK disk=216 Bye

The message is printed by the system to identify the user who has
Just logged off. It also gives the time of day, the amount of disk
space being used by that user, and his run and connect times for
the session. Connect time is the elapsed time between log on and
log off, and run time is the amount of central processor time
devoted to your job.

PDP-11 AIMS PROGRAMMING MANUAL , Page .12
Program Editing - section 4

4, EDIT COMMAN

NE EDIT

When typing commands or data to AIMS, certain characters have
gpecial functions:- .

RUBOUT deletes the last character typed, echoes as \
eontrol-Y cancels the whole line, echoes as @ [newline]
control-X switches program-generated printout on and off. May

be used to suppress a section of printout if the
user is not interested in it. Press control-X again
to.restore printing. ‘

control-S Pauses printout. Useful with visual displays to

give you time to read output before it rolls off the
screen,
control-Q Resumes printout after a édntrol—S pause.

If at 1is echoed when you type a key, this indicates that the
computer’s input buffer is full and that the character has been
ignored. Wait for the computer to ecatch up before typing more.

PROGRAM EDITING

LIST List the whole program.

LIST [ne1],[ne2]
List lines [ne1] to [ne2] inclusive. If ,[ne2] 1is
absent it is taken as infinity.

[number] Delete line [number].
CLEAR Delete the whole program.

CLEAR [ne1],[ne2]
Delete lines [ne1] to [ne2] inclusive. If ,[ne2] is
absent it is taken as infinty.

X[ne] Print line [ne].

X[nel[string1]l{string2]

Change the first occurrence of [stringl] to
[string2] in 1line [ne]. The strings should be
enclosed in quotation marks (see section 6). When
the X command is used directly (ie. not in a
program), the modified line is printed. The 1line
number itself may be changed, in which case the line
will be duplicated in its new position. :

PDP-11 AIMS PROGRAMMING MANUAL Page 13
Program Editing - section 4

Warning: the X command should not be used to examine arrays, see
gection 12.

Examples

>LIST

10 LET J=0
~ 20 PRINT J

30 LET J=J+1

4 IF J>10 :GOTO 20
50 PRINT ‘DONE’

60 GOTO 10 :
>20 [deletes line 20
>LIST 10,30

10 LET J=0

30 LET J=J+1 ‘
>XU0 > ¢’ [changes greater-than to less-than
4o IF J<10 :GOTO 20
>X10mpnngn [changes the line number from 10 to 15
15 LET J=0
>CLEAR 50 [clears from line 50 upwards
>LI

10 LET J=0

15 LET J=0

30 LET J=J+1

ho IF J<10 :GOTO 20
>X4o‘T0"’S”’ [changes command word -

40 IF J<10 :GOSUB 20
>

When writing a program it is a good idea to number the 1lines
in steps of 10, 5 or 2, so that there is room to insert corrections
later. A resequencing program RESEQ,.BAS is available for changing
the line numbers if large-scale alterations are needed. o

PDP-11 AIMS PROGRAMMING MANUAL Page 14
Numerical Expressions - section 5.

[5. NUMERICAL EXPRESSIONS |

A numerical expression is something that can be evaluated to
produce a number. Expressions are in normal infix-operator form.
The following operators are allowed:-

PREC OPERATOR MEANING

- Unary minus

a_b: open bit shift of a by b places
left if b>0, right if b<0
Exponentiation

Division

Multiplication

Subtraction

+ Addition

N —

n

U W

Relational operators

Less than
Equal

8
8
8 Greater than

AV | BN

String operators

9 > Alphabetically greater than

9 = Identical

9 < Alphabetically less than

9 - a®b: true if string-a begins with string-b

9 _ a_b: true if string-a contains string-b

10 ‘“or " Quotes enclosing literal string

10 $ Right -associative operator meaning string name
Logical operators

11 & AND

12 \ Exclusive OR

13 ! Inclusive OR

(section 3 explains where ~ _ and \ are found on the keyboard)

The higher precedence (ie. lower numbered) operators are
applied first, and operators with the same precedence are applied
from left to right. Round brackets like () may be used to control
the order of evaluation, the most deeply nested sub-expressions
being evaluated first. '

The operators <, >, and = may be combined in any order with an
effect derived from the inclusive-0OR of the individual conditions.
Thus <= means less-than-or-equal-to, and <> means not-equal-to.

The relational operators yield either -1 or 0 according 'to
whether the relation is true or false respectively.

The logical operators perform their operations on their
arguments regarded as bit patterns.

PDP-11 AIMS PROGRAMMING MANUAL . Page 15
Numerical Expressions -~ section 5

Calculations are done using integer arithmetic and fractional
results are rounded down to the next whole number.

As a side-effect of a division operation, the system variable
QA 1s set to the positive value of the remainder, truncated to 16
bits. QA thus gives the remainder accurately provided the divisor
wasg less than 32,768.

Examples
>P 141
2
>P 3+5/2 QA [the division occurs first
5 1 [QA gives the remainder
>P 372 [three squared is nine
9
>P 3%5/2 [the division occurs first
6
>P (3%5)/2 [the multiplication occurs first
7 .
>P ~7/2 QA [the unary minus is applied first
-3 1 : - [QA is positive remainder
>P 4<6 [4 is less than 6 so the value is -1
-1
>P 4<3 [4 is not less than 3 so the value iz 0
0 ' ‘ :
>P T&5 [111 ANDed with 101 is 101
5
>P 512 [101 ORed with 010 is 111
7
>P T\5 [111 exclusive ORed with 101 is 010
2
>L X=7 Y=4 [sets X to 7 and Y to }
>P X<81¥=6 .
-1 [although Y is not 6, the value is -1 since
[X is less than §
>P XOY
-1 [X does not equal Y so the value is -1
>P 1+(X+Y)/2
6
>P 1_15 [1 shifted left 15 bits. Shifting is
32768 [(equivalent to multiplying by a power of two
>P 65536 _-15 - [2716 shifted right 15 bits
2
>

We shall deal with the string relations later.

We shall use [ne] to denote any numerical expression in
future. There are some commands in which a [ne] may optionally be
omitted. In these cases a context-dependent default value is used,
as noted in the command descriptions. Elsewhere, if a [ne] is
expected but is not present, a default value of zero is used.

PDP-11 AIMS PROGRAMMING MANUAL Page 16
Numer ical Expressions - section 5

ABLE NAME

User-~defined variable names may be upto two alphanumeric
characters long and must begin with a letter. For example A, X,
A1, AA, Z9. :

Warning! All names beginning with the letter Q are reserved
for use by the AIMS system, and such names should not be created by
programmers,

REPRESENTATION OF NUMBERS

AIMS treats all numerical values as signed integers. The
value of each variable is stored internally as a particular number
of 16-bit words holding the value in 2°s complement binary. The
number of words used to hold each value is called the precision or
length of the variable. This length is the same for all varilables
and is normally set at 2 words. The length is important because it
determines the largest number that can be stored in a variable or
used in a calculation (see below).

ACCURACY OF CALCULATIONS

Since numerical expressions are evaluated with finite
precision, some loss of accuracy can arise during a calculation.
For example suppose X is a quantity that requires two words to
represent it. Then the expression X"3 could require six words, and
X"5 ten words, and so on. For reasons of efficiency it is not
worthwhile to cater all the time for these very large numbers that
will seldom arise in practice.

Hence, numerical expressions are evaluated to a fixed
precision of between 1 and 7 words. The precision is determined by
the system function EP() which may be set by the user (see section
11). For example if the command

LET EP()=3
is executed, all numerical expressions will be evaluated to 3-word

precision. Error 20 will occur if a calculation generates a value
that cannot be represented in EP() words.

PDP-11 AIMS PROGRAMMING MANUAL Page 17
Numerical Expressions - section §

The following table shows the size of numbers that can be
handled for each value of EP():-

EP(} Largest Positive Number

32,767

2,147,483,647

140,737,488,355,327

9,223,372,036,854,775,807
604,462,909,807,314,587,353,087
39,614,081,257,132,168,796,771,975, 167
2,596,148,429,267,413,814,265,248,164,610,047

N O sw N =

The largest negative number for each precision is one more than the
entry in the table.

EP() is initially set to 2, allowing fast calculations on
numbers 1less than 2000 million. If the user is likely to generate
numbers larger than this he should set EP() appropriately
beforehand. EP()} may be adjusted at any time by a running AIMS
program,

The setting of EP() also determines the 1length of all
user-defined variables. If EP() is increased, all the variables in
existence at the time are extended to the new length. This
operation does not affect the values of the variables. Similarly,
if EP() is reduced all variables are made ¢to fit into the new
smaller length. This is done by deleting an appropriate number of
words from the internal binary representation of each variable,
starting with the most significant word of the value. This process
will not affect the value of the variable provided it can be
represented within the new smaller length. If the value is too
large for the new length the variable is marked as being undefined,
and this will cause a <?U error the next time that varilable is
referenced.

DATA TYPES
AIMS supports four different types of data:-

1) Simple Variables: with names like J, X1 and QA. Each simple
variable will hold one numeric value. Simple variables are
either

1.1) User-defined: these are defined when the user first sets
them, like LET J=2. Do not use names beginning with Q.

1.2) System-defined: these "system variables’, like QA and GE,
are permanently defined and fixed length, see section 171.

2) Arrays: with names like A(J). An array 1is 1like a tabl.e or
vector of cells. Each cell will hold one numeric value. Arrays
are defined by the user by means of an ARRAY command.

PDP-11 AIMS PROGRAMMING MANUAL Page 18 o
"~ Numerical Expressions -~ section 5

3) String variables: with names like $1. Each string variable will
hold one string comprising any number of characters, see section
6.

4) System functions: with names like EP() and DA(). These are
rather 1like arrays except that they are permanently defined by
the system, see section 11.

ARRAYS
Arrays are declared like
>10 ARRAY B 7

which creates an 8-cell array in line 10. The array name B 1is
treated 1like a. simple varjable. When the RUN command is executed
the array name will be assigned a value equal to the 1line number
(10 in this case).

Arrays are referenced conventionally like for example

>LET B(J)=123 :PRINT B(J)
123
>

where B is the number of the array line, and J is the subscript.

Either B or J may be a numerical expression, so that both the
subscript and array name may be computed if desired.

SLET (B+5)(J)=C(J+2)
>

copies the J+2°th cell of the array C to the J'th cell of the array
in line B+5.

References of the kind just described operate on single-word
values. Multiple-word values may be stored in arrays, provided the
precision is specified explicitly:-

>LET B(3,J)=X
>

stores the triple-length value X in the array B. The value will
occcupy cells J through J+2 of the array.

For single-length values, the array subscript J may run from
zero upto the dimension specified in the array declaration. For
multi-word values, allowance must be made for the additional words
occupied.

Restrictions

Arrays must be stored in lines. An array cannot be declared
by a direct command. There must not be any other commands on the

PDP-11 AIMS PROGRAMMING MANUAL Page 19
Numerical Expressions - section §

same line as an array declaration. The dimension given in an array
declaration must always be a number, it may not be an expression.

The CODE command may be used to set up arrays with computed
dimensions, see section 12.

Array Initialisation

A1l the cells of an array are zeroed when it is created. This
occurs when the ARRAY line is typed in, or CODEd (section 12), or
CALLed from a file (section 15). Once an array has been created,
the cells retain their values unless altered by the user.

Note that the cells are not affected by the RUN command, nor
by execution of the ARRAY line itself. The mere existence of the
ARRAY line is sufficient to create the array, and execution of the
line never has any effect apart from causing a slight delay.

When a program containing an array is DUMPed (see section 15),
the values stored 1in the array are written to the dump file and
will be restored by a subsequent LOAD. In contrast, when a program
i3 SAVEd the array content is not written to the file and the array
will be initialised to zeroc if the.program is later CALLed.

NUMERICAL OVERFLOW

By numerical overflow we mean the attempt to handle a value
that is too big. AIMS will abort_the operation and give a 7?0 error
(section 16). Numerical overflows can occur in two contexts:

1) During the evaluation of a numerical expression, if a number is
generated that cannot be represented within EP()'16 binary bits.
This can be cured by increasing EP().

2) During an assignment, if the value being stored will not fit
into the specified destination. If the destination is a
user-defined variable, this can also be cured by increasing
EP().

The second type of overflow can occur when assigning to system
variables like QG, and to system functions 1like DA()}. These
overflows cannot be cured since all system~defined objects are of
fixed length. The overflow indicates that you are trying to store
a value that is too large.

The second type of overflow can also occur when assigning to
an array. In this case the length of the destination cell in the
array is determined either by default, as in
LET A(J)=X

or explicitly by the programmer, as in

LET A(2,J)=X

PDP-11 AIMS PROGRAMMING MANUAL Page 20
Numerical Expressions - section 5

If you are prepared to take up more space in the array, you can
avold the overflow by increasing the destination length, as for
example by

LET A(3,J)=X

Programmers are sometimes surprised when an overflow occurs
sooner than they expected. This is usually due to the following
effect: consider the operation of storing a value in a 1-word array
cell like

LET A(J)=40000

In this case the value 40000 is being assigned and this has a
binary representation of 1001110001000000. Although this is just
sixteen bits long, an overflow error will in fact occur. This is
because the sixteenth bit of the value is a 1. If such a value
were stored in the 1-word array cell, the sign-bit of the cell
would be set to 1, causing the value to appear negative when later
extracted. Thus the action of storing and retreiving a value from
an array cell would have had the undesired effect of changing its
sign, This is why the overflow error is given.

A similar effect happens with 2-word cells and with all other

lengths. The largest value that can be assigned without giving an
overflow can be obtained from the table given earlier.

Automatic Truncation

There is one situation where the overflow detection can be a
nuisance. This 1is where the values being stored in an array are
not regarded as signed numbers. For example, the programmer may. be
using the array to hold bit patterns representing yes/no answers to
a questionnaire. If one of the patterns happens to have the
sixteenth bit set, this would cause an unwanted overflow error.

Overflows can be suppressed by using the operator =8 in place
of just = in the assignment:

LET A(J)=840000

This operator truncates the value to the length of the destination
and stores it without any overflow checking.

It is important to realise that the use of this operator
simply suppresses the overflow check, it does not prevent the
sign-change that results from the overflow. When the number is
extracted from the array it will still bé changed:

LET A(J)=6840000 :PRINT A(J)
~-25536

The original value may be recovered by masking off the extended

PDP-11 AIMS PROGRAMMING MANUAL Page 21
Numerical Expressions - section 5

sign bits when extracting the value from the array. A suitable
mask is the number

1L -1

vhere L is the length of the array cell in bits. This quantity in
binary 1s just an L-bit mask of all ones. For a single-word cell
the mask is 1_16-1 which is 1111111111111111 in binary.

LET A(J)=€40000 :PRINT A(J)&1_16-1
40000

. When writing a program that dces a lot of bit manipulation of
this kind it is a good idea to set up the mask in a variable at the
beginning, so as to avold having to work it out each time:

100 LET Z=1_16-1

Unpacking bytes from arrays

When a value is read from an array the most significant bit is
taken as the sign-bit and this is extended to EP() if necessary.
Bytes may be unpacked from arrays by dividing A(J) by 256 giving
- the lefthand byte as the quotient and the righthand byte in Q4. If
the lefthand byte exceeds 127 A(J) will be negative and since
division always produces a positive remainder, QA will not give the
righthand byte correctly. The expressions (A(J)&65535)/256 and
(A(J)/256)&255 do not always produce identical values in QA.

Errors caused by array references

Errors are described in section 16. An array reference like
LET A(J)=X can cause five different errors:

20 either A or J (or X) is undefined

?L there is no line numbered A

?T line number A is not an array

2V J is less than zero or greater than the array dimension
20 the value of X is too big to fit in A(J)

Programmers sometimes make references to arrays by mistake:
PRINT X (Y+Z)/3

. is treated as a reference to the array cell X(Y+Z). You need a
comma between the X and the (. Similarly

PRINT #5 (Y+Z)/3

refers to an array in line 5 but the programmer had intended #5 to
specify an I/0 channel (section 13).

PDP=11 AIMS PROGRAMMING MANUAL Page 22
Array Operators - section 5

ARRAY OPERATORS - ACOMP, AMOVE
The command
- ACOMP A(J) B(K) N

compares the contents of array A with that of array B. The command
succeeds 1if array cells A(J) through A(J+N-1) are identical to
cells B(K) through B(K+N-1). If a difference is found the command
fails and A(J+QA) is the first cell to differ.

The command
AMOVE A(J) B(K) N

moves the block of N cells beginning at A(J) to a new position
beginning at B(K). A may be equal to B if it is desired to move
information within one array. When A=B an overlapping block move
will occur 1if K 1is sufficiently close to J. AIMS takes care of
this is an appropriate manner so that overlapping moves 1in either
direction are correctly performed.

There are also two commands, PACK and UNPACK, which convert
between strings and arrays (see page 34).

THE SCAN COMMAND

In commercial applications it is often necessary to file a
large number of fixed-length records containing customer account
numbers, stock lists, and so on. If there is a need to access the
records via some key, such as the account number, it will be
necessary to organise an index of some sort. The way in which this
is done will depend to some extent upon the application and is
beyond the scope of this manual. In most cases the operation of
finding a record via the index will involve scanning through one or
more arrays looking for a match with the wanted key. Because of
the interpretive nature of the AIMS language this array scanning is
rather slow and may seriously 1limit the system performance in
" situations where large indexed files are heavily used.

The SCAN command eliminates this problem by providing a fast
way of scanning an array for a given key. The syntax is: .

SCAN [recsize ne] [keylen ne] A(J) [mode] [key ne] [count ne]

The array A() is assumed to contain a number of records each of
which is [recsize ne] cells long. Each record contains a key which
is [keylen ne] cells long. A(J) specifies a starting position
within the array. [key ne]l] 1is the key to be searched for.
[count ne] if present specifies the maximum number of records to be
scanned.

PDP-11 AIMS PROGRAMMING MANUAL Page 23
SCAN command - section 5

The SCAN command searches the array from the starting position
and compares [key ne] with the key within each record, in a manner
determined by [mode]:

= Scans till a record is found with recordkey=[key ne]
<> Scans till a record is found with recordkey<>[key ne]
<= - Scans till a record is found with recordkey<=[key ne]
>= Scans till a record is found with recordkey>=[key ne]

If the appropriate condition is met before the end of the scan is
reached, the SCAN command succeeds and A(J+QA) points to the found
recordkey. If no suitable record is found the SCAN command fails
and QA is not set.

Two further modes are provided which always scan all
[count ne] records (or to the end of the array if there are fewer
records than the count):

< Finds the largest recordkey<z[key ne]
> Finds the smallest recordkey>=[key ne]

These latter two modes may be used for sorting.

The keys are treated as [keylen nel]-word numbers which are
- compared arithmetically. Hence EP() must be at least [keylen ne]
when the SCAN command is used.

Example

, Suppose our records are 8 words long and the first 2 words of
each record contain the key. If we use a 512-word array we can
read 64 records from the file at a time and scan for the key K
- using a program like

8 ARRAY BF 511

400 READ #6 BF() :GOTO 410

405 PRINT “?READ ERROR’ :STOP

410 SCAN 8 2 BF()=K :GOTO 420

415 GOTO 400

‘420 PRINT ‘FOUND KEY K’ AT RECORD (PT(5)-512+QA)/8

If the keys do not begin at the first word of each record an
offset can be specified in the [array] part of the SCAN command.
For example A

SCAN 8 2 BF(3)=K
tests the key in the fourth and fifth words of each record.

Note that whatever the significance of the keys to the wuser,
they are treated as multi-word numerical values by the SCAN
command. Negative keys may be used and these are ordered in the

usual way (ie. the largest negative number comes first).

[keylen ne] must be less than or equal to EP().

PDP-11 AIMS PROGRAMMING MANUAL Page 2l
String Expressions - section 6

6. STRINGS AND STRING EXPRESSIONS

Strings are normally stored in string variables. For example
the statement

>1$HELLO

will create the string variable $1 containing the string HELLO. We
may now refer to this string in a print command like

>PRINT $1

HELLO
>

CHARACTER SET

‘ There is no restriction on the characters that may be stored
in strings. The full 128-character 1I.S.0. set 1is allowed,
including upper and lower case letters. In particular, the null.

"string (ie. a string containing no .characters) is allowed.
Strings may be of any length, but very long strings are expensive
(see section 20).

Such strings are actually stored as lines, so we can list them
in the same way that we can list a program:

>10 P $142
>2$ THERE
>LIST

"1 $HELLO

2 $ THERE

10 PRINT $1¢2 o
>RUN [Lines 1 & 2 cause no effect when the program
HELLO THERE [is run. The message is printed by line 10.
b

String variables are usually called ‘dollar-lines’.

Another way of storing strings is to type them out literally
inside quotation marks. For example '

>PRINT ‘HELLO’
HELLO
> .

Since these strings are embedded within a program line, they cannot
be changed except by changing the whole program line. Literal
strings are thus best used for constant strings, such as short
messages or strings that we want to search for.

PDP-11 AIMS PROGRAMMING MANUAL Page 25 :
String Expressions - section 6

STRING TERMINATORS

Strings may be read from peripheral devices by means of the
INPUT command. For example

[The * is automatically printed by this form

>INPUT $1 :LIST [of the INPUT command as a cue to the user.

*HO [User types ‘HO’ followed by carriage-return
1 $HO

>

When reading strings in this way the character carriage-return 1is
treated as an end-of-string delimiter which is removed before the
string is stored. Thus $1 above contains just the two letters

HO

SP $181
HOHO
>

Since printed information 1is wusually required on separate
lines, the PRINT command normally appends carriage-return and
linefeed, denoted as [newline], to the end of the string to be
printed. This explains the newline after the second HO above..
This automatic newline may be suppressed by ending the PRINT
command with a dangling comma 1like '

>P $141,
HOHO>

PDP-11 AIMS PROGRAMMING MANUAL Page 26
: String Expressions - section &

STRING EXPRESSIONS

A string expression is anything that can be evaluated to yield
a string. String expressions are built up from one or more of the
fields listed below. The value of the expression 1is formed by
concatenating the values of the constituent fields.

FIELD CORRESPONDING STRING

$[nel The string in dollar-line [ne]

‘[string]l’ [string] which may not contain °

"[string]” [string] which may not contain "

[ne] The value of [ne] converted to a string under
control of the default output format and radix
specifications.

[ne]éW[ne1]8A[ne2]8R[ne3]
The value of [ne] converted to a string using the
specified format and radix (see below).

H Carriage-return and linefeed

Has no value. May be used as a separator to resolve
ambiguity. ‘

%C[ne] The ASCII character formed by taking the value of
[ne] modulo 128.

4R[ne] The 3-character string formed by unpacking [ne] from
the standard DOS radix50 format.

4S[ne1] $[ne2] The [ne1]’th substring of line $[ne2]. See section
8 - symbol table facility.

£X[{nel] Value string depends on [ne] as follows:
0: the name and version of the interpreter
1: the character used to mark off thousands in
numbers
100+V: name of V’th variable (see page 36)

The PRINT command is of the form
PRINT [string expression]

and its effect is to print the value of the string expression
followed by a newline, The above syntax thus defines what may
ocecur in a PRINT statement. However for the beginner it 1is
sometimes helpful to look at it the other way round and to say that
‘anything that can be PRINTed is a valid string expression. In
particular, the PRINT command provides an easy way of verifying .
that a string expression does in fact evaluate to the intended

string. :

PDP-11 AIMS PROGRAMMING MANUAL Page 27
String Expressions - section 6

We shall use [se] to denote any string expression in future.

Examples

Suppose that we have two simple varlables, X and Y, where X
has the value 123 and Y the value 5. Suppose also that we have two
dollar-lines as follows:= ,

1 $COPY
2 $CAT

Here are some of the ways in which this data c¢ould appear as
elements of a string expression:«

STRING EXPRESSION : VALUE OF EXPRESSION

$1 COPY
$1$2 COPYCAT

$1 $2 ; COPYCAT
$17 ‘¢2 COPY CAT

$1 7 $2 | COPY CAT

‘QUOTE IT’ , QUOTE IT

"QUOTE “IT”"® ’ QUOTE ‘IT’

X 123

X+Y ‘ 128

X8ws 123

‘THE “$2° IS'X-1026W3° YEARS OLD’ THE CAT IS 21 YEARS OLD
%C65%C54 A6

XY 123 5

X,Y 123 5

Xys,Y 123 5

XY 123

PDP-11 AIMS PROGRAMMING MANUAL Page 28
String Expressions - section 6

>P 12344
127
> 89 10
8 9 10 [default format is Y4 characters wide

>LET J=5 :PRINT °NO.3-"JéW
NO.3-5
>LIST

1 $coprY

2 $CAT

3 $THE TEMPERATURE

4 ¢ IS ABOUT

5 $BELOW ZERO.
>P $1¢2
COPYCAT
>LET T=13

>P $3$4 TEW3 ° DEGREES’ ;$5
THE TEMPERATURE IS ABOUT 13 DEGREES
BELOW ZERO.
>CLEAR
>L J=0
>P %C65+J, :L J=J+1 :UNLESS J>26:
ABCDEFGHIJKLMNOPQRSTUVWXYZ>P J
27
>

A [se] may evaluate to the null string, or it may itself be
null. For example all the following evaluate to nothing:-

g

‘’ un
’ 19

[nothing at all]

CONVERS

PDP-11 AIMS PROGRAMMING MANUAL Page 29

When numerical values are converted to strings of digits we
need to be able to specify the way in which this is done: how many’

String Expressions - section 6

OF VALUES UMERIC GS

digits are required, whether we want leading zeroes or spaces,

30 on.

This is done using the syntax

[ne1][format specifier]

where [ne1] is the value to be converted, and [format specifier] is

zero or more elements of the form

8[code][ne]

“where €[code] identifies a particular function as follows:

@W[ne]
@A[ne]
€R[ne]
8F[ne]

Note: the alternative syntax @[nel]#[ne] is obsolete and should not

be us

Overall width of the numeric field
Number of digits after the radix point
Radix for conversion

Format status bits specifying type of sign indication

and s0 on.

ed.

The format status bits are as follows:

BITS VALUE
0,1 0O

X

2

3
2 y
3 8
y 16
5 32
6,7

oW
A
éR
er

These defaults mean that numbers are normally printed in decimal
with leading =zeroes suppressed,
~ - sign, QF digits after the decimal point, and occupying a

MEANING

Mark positive values with 1 leading space
No special mark for positive values

Mark positive values with a + sign
Reserved

Fill field with leading zeroes, else spaces

Enclose negative values in round brackets,
else mark with - sign

Insert commas every 3 digits to left of
radix point

Put sign mark at extreme left of field,
else put it just to left of leftmost digit

Reserved.

If part or all of the format specifier is omitted, default
specifications are used as follows:

Default value is taken from the system variable QW
Default value is taken from the system variable QF
Default value is ten

Default value is zero.

negative numbers marked with a
field

PDP-11 AIMS PROGRAMMING MANUAL Page 30 ‘
String Expressions - section 6

which 1is QW characters wide. The system variables QW and QF also
have default values which are set by the RUN command. These are
QW=4 and QF=0, giving a U-character field with no decimal point:

SP 1; 123 123; -1; =125 -123
' 1
12
123
-1
-12
-123

In the above examples the width is 4 by default and so each number
is made to occupy a field of exactly U4 character positions. The
digits of the number are right-justified within this field by the
insertion of between 0 and 2 leading spaces. If the number is-
negative it is marked with a - sign. Positive numbers are marked
with an additional leading space, so that numbers with different
signs still take the same width. Thus a field of width W is really
intended for numbers upto W-1 digits long, the remaining character
position being reserved for the sign indication.

If you misjudge the format specification and try and print a
number that has more than W-1 digits, the value is printed in full
even though it overruns the specified field width:

>P 123; 1234; 12345; -123; -1234; -12345

123 [3-digit number in lY-character field, ok
1234 [4-digit number overruns field, but initial sign
12345 [mark still there. Similarly for 5 or more digits.
-123 [3-digit negative number, ok :
-1234 [4 or more digits overruns.
-12345

The following example shows the use of the @F status bits to
control position and type of sign indication:

>LET QW=6 [Set default width to 6
>P 123 .
123 [Positive number marked with leading space

>P 1236F2

+123 [Positive number marked with + sign
>P 1236F2132
+ 123 [Same, but with sign at extreme left of field
>P -123

-123 [Negative number marked with - sign
>P -1238F32
- 123 [Same, but with sign at extreme left of field

If the number 1is positive, the use of @F1 to suppress the sign mark
makes all W character positions available for digits:

>P 123458F1; 1234566F1
12345 [6-digit number always fits in 6-char field,
123456 [but with sign suppressed so does 6-digit one.

@Fl4 causes the field to be filled out with leading =zeroes rather
than spaces:

PDP-11 AIMS PROGRAMMING MANUAL Page 3t _
String Expressions - section 6

>P 1236FA4 [Positive number with leading zeroes
00123 [Note that sign mark still appears
>P ~12368F4 [So negative numbers in same format
~00123 {still 1line up.
>P 1236F4!1 [But we can suppress the sign mark if desired,
000123 {giving an extra leading zero.
>P ~1238F4t1 [But for a negative number in same format
~-00123 [the sign cannot be suppressed.

8F16 puts a comma every 3 digits to mark the thousands:

>LET QW=14 [Set wider width for these examples
>P 123458F16; 1234567898F16
12,345 [The numbers are still right-justified
123,456,789 [within a W-character field.

@A inserts a radix point a specified number of digits from the
righthand end:

>P 123458482 [QW is still 14 in these examples
123.45 {The number is still right-justified
>P 1234567898A28F 16
1,234,567.89 [We can have commas and radix point
>P -1234567898A28F 1614 «
-01,234,567.89 [And signs and leading zeroes as required.

In commercial applications it is customary to denote a deficit by
enclosing the quantity in round brackets. This can be done with-
8F8 which marks negative numbers in this way: :

>P -123458F8
(12345) [The overall field is still W characters

>P 123458F8 [Positive numbers are shifted left by one
12345 [so that the figures still line up.
>P -123458F8132 ,
(12345) [We can left-justify the opening bracket
>P -123456788A28F 1618
(123,456.78) [Or have commas and radix point as required.

In systems programming it is frequently useful to be able to print
numbers in octal or binary. This is done with @R:

>LET QW=4 [Back to normal width
>P 1278R8

177 [Converting to octal
>P 58R2

101 [Or binary

‘We can use 8W to alter the field width locally, rather than
changing QW:

>P S@W6ER2

101 [Five in binary, width 6
>P 568W6ER28FU
00101 [Same with leading zeroes

>P 1234567896W328F4@R2
0000111010110111100110100010101

PDP-11 AIMS PROGRAMMING MANUAL Page 32
String Expressions - section 6

In the above examples we have used things 1like @F4!t1 for
clarity. 1In practice it would be quicker to combine the individual
bits of @F into one value like @F5.

In most European countries the role of the comma and point in
numbers 1is interchanged. That is to say, a comma is used to
separate the integral and fractional parts of a number, and points
are used to mark off the thousands. AIMS can be configured to suit
this convention, in which case all the above examples should be
read as if the comma and point were interchanged.

A program can find out which convention is being used by means
of %X1 which evaluates to the single character, either comma or
point, that is used to mark off the thousands.

Programmers writing software that is intended to work with:
both conventions should bear in mind that in Europe a comma cannot -
be used to delimit a number. For example, the string 123,456 would
be converted as a single six-digit number in Europe, and as two -
three-digit numbers elsewhere. Department/user numbers may .appear
as [16,17] or [16.17] or [16 17]; use $F9 to skip any of these
easily. People designing command syntaxes and writing user manuals
should also be aware of these points.

PAGINATION, TABULATION & GRAPH PLOTTING

AIMS keeps a continuous record of the position of the
teletype-carriage as it moves in response toc PRINT commands. This
information may be accessed via the system variables QC and QL (see
section 11) as follows:-

QC position of carriage across the page (ie. column number)
QL position of carriage down the page (ie. line number)

For example

>P QL
17
>P QL
19
>P “ABC’, :P QC
ABC 3
>

QL is incremented by AIMS whenever a linefeed is printed. QcC
is incremented for all characters except carriage-return and
linefeed, and is zeroed when carriage-return is printed. Because
the output 1is buffered it is not always possible to determine the
. instantaneous position of the output device. QC and QL are updated
at the end of every PRINT command and thus reflect the position
that is reached after the command has been obeyed. QL is also
sensitive to the 1linefeeds that result from INPUT commands,
allowing overall pagination of an interactive conversation.

The two variables may be assigned by the user, so for example
we may reset the line counter by saying

PDP-11 AIMS PROGRAMMING MANUAL Page 33
String Expressions - section 6

LET QL=0
QL is useful for paginating listings:-

10 $Shopping List

50 LET P=0
100 LET P=P+1 QL=0 :PRINT ‘--";;$10, :TAB 40 :PRINT ‘Page ’P6W;;
120 ...etc
>RUN

Shopping List Page 1

>

Later on in the program we can test whether a new page is needed by
IF QL>71 :DO 100

or we can throw to a new page with

IF QL<71 :PRINT %#C10, :LOOP
DO 100

A TAB command is provided to facilitate tabulation and graph
plotting:-

TAB [ne] [optional se]

TAB prints spaces until column [ne] is reached, counting from zero-
at the left margin. Eg:

>PR 'HI’, :TAB 9 :PR ‘HO’
HI HO
>

If QC is already greater than [ne] the command has no effect. If
the [se] 1is present, the value of [se] will be printed repeatedly
instead of the space:-

>TAB 11 ‘ABC’
ABCABCABCAB> [The last occurrence is truncated if necessary

Although we have described the behaviour of QC and QL with
reference to a teletype, these variables are really associated with
the PRINT and TAB commands. They are thus affected by any PRINT or
TAB command, even if the output is directed to some other device
such as a disk file (see section 13). If several 1/0 channels are
referenced concurently by a PRINT, TAB or INPUT command, the values
of QC and QL will cease to be meaningful. In this case use the LET
command to save and restore QC and QL, keeping a separate copy for
each channel. :

PDP-11 AIMS PROGRAMMING MANUAL ‘Page 34
Strings and Arrays - section 6

PACK and UNPACK commands

These commands are used for moving large numbers of characters
between strings and arrays. The PACK command takes a block of
dollar-lines and packs them into an array. A specified string of
separator characters is inserted into the array to mark the end of
each dollar-line. This enables the dollar-lines to be recovered
exactly by a subsequent UNPACK. The UNPACK command scans an array
for one or more occurrences of a specified separator string, and
stores any intervening characters in successive dollar-lines.

PACK A(J) [se]l,[ne1] [ne2]

A(J) is the array, [se] is the desired separator string, and [nel]
through [ne2] are the dollar-lines to be packed. There is no need
for the dollar-lines to be contiguous; the command simply packs all
lines between [ne1] and [ne2] inclusive. The actual number of
bytes packed is returned in QA. This will be the sum of the
lengths of all the strings, plus the number of strings packed times
the length of the separator string. If the packed data does not
completely fill the array, a final byte containing 128 is stored
beyond the last separator as an end marker. This byte is not
counted in the QA value. It prevents the UNPACK command from
treating the remainder of the array as a valid string.

UNPACK A(J) [sel,[ne1] [ne2]

Unpacks the array into a bloeck of contiguous dollar-lines beginning
at [ne1]. A new dollar-line is started each time the separator
string [se] is found in the array. The separator string 1is
discarded and does not appear in any of the dollar-lines. [ne2] is
optional. If present it specifies a limiting line for the unpack,
so that if the array contains an unexpectedly large number of
separator strings the unpack will not overwrite lines above [ne2].
The number of the highest dollar-line created by the unpack is
returned in QA. 1If the unpack is not terminated prematurey by
[ne2], it will continue until a 128 byte is found or the end of the
array is reached.

The UNPACK command can create a large number of dollar-lines
in one go. This may require a 1lot of space and it is the
programmer 's responsibility to see that QS is adeguate before
executing an UNPACK (see section 20). If your program repeatedly
UNPACKs into the same block of dollar-lines, it is desirable to
CLEAR [ne1],[ne2] before each UNPACK.

The LET command and Strings

An extension of the LET command provides a convenient way of
packing strings and numbers into an array in a sequential mamner:-

LET B(J)<X#2 $10#9 317 Z#3
This command places the 2-word value of X in cells J and J+1 of the

array B, the 9-character string $10 in cells J+2 through J+6, the
number 317 in cell J+7, and the 3-word value of Z 1in cells J+8

PDP-11 AIMS PROGRAMMING MANUAL Page 35
Strings and Arrays - section 6

through J+10.

Similarly, the command
LET B(J)>X#2 $10#9 Y Z#3

unpacks cells J through J+10 of the array B into the 2-word
variable X, the 9-character string $10, the 1-word variable Y, and
the 3-word variable Z.

The list following the < or > may be any sequence of elements
of the form

[name]#[precision]
or
[dollar linel#[number of characters]

For the packing command the [name] may be replaced by an expression
if desired, like

.[nel#[precision]

[precision] is an [ne] specifying the number of words to be
occupied by the numerical value. Error 70 will occur if the value
- cannot be represented within this length.

[number of characters] is an [ne] specifying the number of.
characters to be packed or unpacked. Strings are packed
2-characters per word and an extra character is required at the end
to terminate the packed string. Thus the number of array cells
required by the element :

[dollar linel#[ne]

is ([ne]+2)/2 . When packing a dollar-line into an array, the line
need not contain exactly [ne] characters. If the string contains
less, the array will be padded-out with terminator characters. If
the string contains more, it will be truncated after [ne]
characters. The terminator character has the value 128.

If the [precision] specification is omitted it will be téken
as 1. The [number of characters] specification must always be
present. :

PDP-11 AIMS PROGRAMMING MANUAL Page 36
Strings and Arrays - section 6

Obtaining the names of your variables

For diagnostic purposes it is sometimes useful to obtain a
complete 1list of all the simple variable names that exist within a
program. This may be done with the %X element in a string
expression. 2X100+V evaluates to the name of the V'th simple
variable in the program. If V is too large the element evaluates:
to the null string. For example, the following program prints a.
list of all the variables currently in existance:

900 LET V=0 :
902 PUT %$X100+V>$1 :UNLESS $1="" :PRINT $1 :LET V=V+1 :LOOP

PDP-11 AIMS PROGRAMMING MANUAL Page 37
String Comparisons - section 7

[STRING COMPARISONS

The relational operators listed in section 5 may be used to
compare strings for equality or alphabetical ordering, or to test’
if one string contains another.

These comparisons are of the form

[string1] [operator] [string2]

where [string1] is a dollar-line, and [string2] may be either a
dollar-line or a quoted string. :

EXAMPLE MEANING

[s1]_[s2] true if [s81] contains [s2] anywhere

[s11°[s2] true if [s1] begins with [s2]

[s1]<Is2] true if [s1] alphabetically less than [s2]
[s1]=[s2] true if [s1] the same as [s2]

[s1]D[s2] true if [81] alphabetically greater than [s2]
I[s11¢[s2] true if [s1] not the same as [s52]

The alphabetical ordering is such that A’ is less than 'B’,
‘ABC” is less than “ABD’, and so on. The ordering of punctuation.
characters can be found from the table in section 26.

The <, >, and = operators may be combined to specify
less~than-or-equal, etc.

: The _ and " relations are also true if the two strings are
equal.

These expressions evaluate to -1 if the relation is true, and’
to 0 otherwise.

String comparisons are most often used in the IF command, but
any of the above relations may occur as an element of a numerical
expression. For example:

>1$ABC

>IF $1_"BC” :PRINT ‘GOOD
GOOD
>50$NO
>51$YES
">PRINT $1_
-1

>PRINT $1_"X"15<6
-1

>P $50-($17"AB")
YES

>

*
P

BI

The IF command simply evaluates the expression and continues
along the line if the low-order 16 bits of the value are non-zero.

PDP-11 AIMS PROGRAMMING MANUAL Page 38
String Comparisons - section 7

When performing an embedded match like

IF $1_"ABC’

the system variable QI (see section 11) is set to the number of
times the first character of “ABC’ is found in $1. This is useful
when searching symbol tables. See section 8 for an example.

PDP-11 AIMS PROGRAMMING MANUAL Page 39 ,
PUT command - section 8

(8. THE 'PUT _ COMMAND |

In its simplest form the PUT command is a left-to-right string
assignment of the form

PUT [string expression] > [destination string]
where the > is the assignment operator.

>PUT ‘HELLO’>$1 :LIST
1 $HELLO
>

A slightly more complex example is:
‘PUT “ABC123DEF’ >$1 X >$2

This may be read as ‘PUT the string ABC123DEF into dollar-line-1,
look for a number and assign it to the simple variable X, and put
the rest of the string into dollar-line-2° .

>LIST :PRINT X
1 $ABC
2 $DEF
123

>

Another possibility is

>PUT “ABCDEF” >$1 ‘CD’° ‘ZAM >$2 :LIST
1 $ABZAM
2 $EF

>

This may be read as ‘PUT ABCDEF into dollar-line-1, 1look for CD,
replace it by ZAM, and PUT the rest into dollar-line-2° .

The PUT processor is probably beat understood in terms of a
state diagram. Every PUT command has an easily recognised lefthand
side, which is the [string expression] shown above. The PUT-
processor begins by evaluating this string expression and creating
a copy of the resulting string. We shall refer to this string as
the ’‘source string’. The rest of the PUT command-line specifies
how the source string is to be decomposed, converted, or copied
into other strings, variables, or arrays. :

The diagram on the next page gives an “exploded’ view of the
‘possible PUT commands which may help to clarify the description
below.

Define source string

PUT string expression

PAGE 40

Set mode & destination string Look for something Perform replacement

Look for a number =€
and assign value
to the name

Open destination string

> 8 ne

See Note 1 X Set for Data name

< embedded
match

Quoted String

Temporarily close

X . . e i
destination string Replacement string

expression, may be _—

> < if one already Dollar Line
null
open .
%G ne J/
- Set for %F ne (Char Filter)
anchored . -
match <, >, =, < - >
escape route to State 1
else

else

\

Copy rest of source string to
destination string, if any

A Note 1: also re-opens a
temporarily-closed
destination string.

Close destination string, if any

Continue executing current program line

PDP-11 AIMS PROGRAMMING MANUAL Page 41
PUT command - section 8 .

The righthand-side of the PUT command-line may be indefinitely
long. We may regard the PUT processor as going round a cycle of
three main states until the end of the command.

PUT [se] [search model[destination] [loock for] [replace by]
------- state le=--eewee-=" “_state 2-" “-~-state 3--"

STATE 1: DEFINE SEARCH MODE

In this state we expect one of 4 operators

>$[ne] If line [ne] is a dollar-line, delete it.
Open $[ne] as the current destination string,
and set embedded search mode. A

= Set anchored search mode.

< Set embedded search mode. No destination.

<> Set embedded search mode. Temporarily close the
current destination string, if any. The old
destination string may be re-opened 1later by
using the < operator in state 1.

Goto state 2.

If none of the above alternatives are found, goto state 5.

TA'IE 2: LOOK FOR SGMETHING

In this state we expect to be told what to look for in the
source string. One of the following may occur:-

$[ne] Look for an occurrence of the string in $[ne]

‘[string]”’ Look for [string]

"[stringl" Look for [string]

[name] Look for a number and assign it to [name] and
goto state 2. Number will be scaled according to
decimal point if one present. A number is.
defined as zero or more spaces, an optional minus
sign, followed by at least one digit or a decimal
point.

[name]#[{ne] As above but expect [ne] digits after the point.
Surplus digits discarded. Number scaled by
10°[ne] whether point present or not.

4G[ne] Copy [nel] characters

$F[nel Look for a class of characters (see page Ul)

PDP-11 AIMS PROGRAMMING MANUAL Page 42
PUT command - section 8

The interpreter now searches the source string for the
specified data. If the search mode is anchored, the search will
fail if the data is not immediately found at the current point in
the source string. In this case goto state 4. If the search is
embedded, characters are copied from the source string to the
destination string until the search is satisfied, or the source
string is exhausted. If exhausted goto state 4. If found, skip
over the found data in the source string and goto state 3.

If none of the above alternatives is found, copy the rest of
the source string to the destination string and goto state 5.

STATE 3: PERFORM REPLACEMENT

In this state we expect to find a string to be appended to the
- destination string in place of the data that we have just found in
state 2. Two forms are allowed: ' ‘

[string expression] The expression is evaluated and
appended to the destination string} if
any. ' '

[null] No action

Goto state 1.

STATE 4: SEARCH HAS FAILED

If this was an embedded search, delete any characters copied
to the destination string whilst performing the last search. Close
the destination string if it exists. Proceed to the next line of
the program.

STATE 5: COMMAND SUCCESSFULLY COMPLETED

Close the current destination string if it exists. Continue
executing the current program line.

Note that both states 1 and 2 exit to state 5 if no wvalid
alternative 1is found. There is an important difference however:
the exit from state 2 copies the remainder of the source string to
the destination string, whereas the exit from state 1 does not.
Thus

’

PUT $1>$1 'FRED" “SAM’ :GOTO ...

will replace the first occurrence of FRED by SAM in $1, and will-
delete the rest of $1. But

,

PUT $1>$%1 'FRED" °“SAM”° < :G0TO ...

will do the replacement and retain the whole of $1.

PDP-11 AIMS PROGRAMMING MANUAL Page 43
PUT command -~ section 8

- Examples
>PUT “ABCDE ="AB’>$1 :P $1 [Anchored search for AB
CDE [No replacement, put rest into $1.
>PUT °ABCDE ‘= "BC’>$1 :P $1 [Anchored search for BC
> [Faills since string does not begin

[with B, $1 unchanged.
>PUT ‘ABCDE ‘<’BC’>$1 :P $1 [Embedded search for BC

DE [No replacement, put rest into $1.
>PUT °ABCDE ">$1°BC >$2 :P $1:82 [Copy into $1
A [Embedded search for BC
DE [No replacement, put rest into $2.
>PUT “ABCDE “>$1°XY ">$2 :P $1:$2 [Copy into $1
>P $1 [Embedded search for XY fails
ABCDE [Everything goes into $1, $2 unchanged.
>PUT ‘ABCDE“>$1°BC’ XY’>$2 :P $1;$2 [Copy into $1
AXY [Embedded search for BC, replace with
DE [XY, put rest into $2.
>PUT “123°=X :P X [Anchored search for a number.
123 [Value is assigned to variable X.
>PUT ~ 45°=X :P X [Leading spaces are skipped when
b5 [searching for a number.
>PUT ° -45°=X :P X [A minus sign is accepted
-i5 [as a negative number.
>PUT ‘- 56 =X :P X [But only directly before a digit.
>P X [It failed
-45 [so X is unchanged.
>PUT “AB(CD)EF >$1°(<> ")’< :P $1 [Copy into $1
ABEF [Look for (, turn output off, look
[for), turn output on again.
>PUT ‘ABC123DEF ‘<X="D’'>$1 :P X;$1 [Embedded search for
123 [a number and assign it to X,
EF [insist number is followed by D

[and put the rest into $1.
>PUT ‘ABCDEF “>$1%G3 :P $1 [Copy into $1

ABC [and pass the next 3 characters only.
>PUT “XYZABCD “>$1%G3>$2 :P $2;%1 [Copy into $1

XY? , [take the next 3 characters only

ABCD [and put the rest into $2.

>PUT “AB/CD/EFG >$1 B >$23G1>$3$2>%4 :P $1;$2;:$3:484

A [Copy into $1 until you find a B

/ [Put the next character into $2

CD [Then start copying into %3 until

EFG [you find $2, and put the rest into $4.

PDP-11 AIMS PROGRAMMING MANUAL Page U4
PUT command - section 8

The next example shows the use of the PUT command to implement
a simple interpreter for another language.

>LIST
100 PRINT "COMMAND", :INPUT $1
110 PUT $1 < X PLUS” < Y :PRINT X+Y :GOTO 100
120 PUT $1 < X 'MINUS® < Y :PRINT X-Y :GOTO 100
130 PUT $1 < X 'TIMES” < Y :PRINT X*Y :GOTO 100
140 PRINT "I DON'T UNDERSTAND" :GOTO 100
>RUN
COMMAND ®*WHAT IS 4 PLUS 67
10
COMMAND ®*TYPE 7 MINUS 4
3
COMMAND *123TIMES2
246
COMMAND ®*WHAT IS 8 OVER 2
I DON'T UNDERSTAND :
COMMAND ®HOW MANY TIMES MUST I ASK YQU?
I DON'T UNDERSTAND
COMMAND #

$F CHARACTER FILTER

When using the PUT command to analyze data strings, we often
need to search the source string for a class of characters, rather
than for a specific string. This is done by using a character
filter like

¢F[ne]

in state 2 of the PUT command. The [ne] specifies a class of
characters as follows:

[ne] CLASS OF CHARACTER
1 Separators (ASCII codes between 0 and 40 octal)
2 All digits (0,1,2,3,4,5,6,7,8 and 9)
) A1l letters (A to Z, and a to z)
8 The remaining characters (IE. those not listed above)
16 Convert letters to lower case (else to upper case)

These values may be combined to Specify classes which are the union
of those given above. For example, %Fb6 specifies the class
consisting of all letters and digits,

The action of the filter is to move characters from the source
string to the destination string (if any), provided the characters
belong to the class specified by [ne]. As soon as a character is
met that does not belong to the class specified, the moving action
stops and the next part of the PUT command is executed. The source
string pointer is left pointing at the character that stopped the
filtering action, and this character is thus the first one to be
processed by any subsequent searching or copying operation. Note
that, unlike most state 2 operators, ¢F cannot cause the PUT
command to fail. Execution always continues with the rest of the
command line, even if there are no characters that match the filter
class.

PDP-11 AIMS PROGRAMMING MANUAL page 45
PUT ¢ommand - section 8

>PUT $1=%F1>$1 [Removes leading spaces etec from $1
>PUT “ABC12(?%+DEF ">$13FU4>$2 :P $1;82
‘ABC [Copiles letters into §1
{ 7*+DEF [and puts rest into $2.
>PUT “12-NOV-78 "=D<EF8>$14F4<>4F8=Y :P D ¥;$1
12 78 [Looks for a number and assigns it to D
NOV [skips punctuation, copies letters to $1,
> [skips punctuation, and assigns number to Y.
>PUT "LABEL2: OPR ">$13F6>$29F8<O$F1>43 :P $1;$2;:43
LABELZ2 [Coples letters or digits into $1, then
: [copies punctuation into $2, skips spaces
OPR [and puts the rest into $3.

Note that all letters copled by $F4 are converted to upper
case. This is useful when writing programs to accept user commands
in both wper and lower case. This convention can be reversed by
$F16 which causes all letters to be converted to lower case.

QI - SYMBOL TABLE LOOKUP

When performing an embedded match, like for example
IF $1_%2

AIMS will scan along the string $1 looking for a match with the
first character of the string $2. As a side-effect of this
comparison, the system variable QI is set to the number of such
matches that occur upto the point at which the whole of $2 is found
(if it 1is).

>LI
10 $,BEAR, FOX,ELEPHANT, COW, HORSE,

100 INPUT $1 :PUT °, $1>$2

110 IF $10_$2 :PRINT QI :GOTO 100

120 PRINT “ANIMAL NOT KNOWN® :GOTO 100

>RUN

*FOX

2

*COW
N

*SEAL

ANIMAL NOT KNOWN

*ELEPH

3
.

In the above example the string $10 forms a table of animal names,
each one beginning with a comma. Line 100 reads a name from the
keyboard and places it in $2 with a comma in front of it. The
comparison in line 110 then performs an automatic symbol-table
lookup and QI gives the position of the animal in the table.

This technique is often convenient for decoding command
strings, 1in which case the action taken at line 110 would probably
be something like

PDP-11 AIMS PROGRAMMING MANUAL Page U6
PUT command - section 8

GOTO 200+50%*QI

providing an immediate switch to a specific routine for each
command (section 19).

We may think of the first character in $10 as a delimiter
which divides the string into a number of substrings. After an
embedded search, QI gives the number of the substring that matched.
Notice that partial matching is possible, as in the 'ELEPH’ example
given above. We can prevent this if necessary by putting a comma
at both ends of the test string: the string °,ELEPH, will not be
found, whereas ,ELEPHANT, " will. :

4S - SELECTION OPERATOR

As noted in section 6, the element %S[ne1] $[ne2] may occur in
a string expression,. This operator is complementary to the QI
facility described above. The element evaluates to the [ne1l’th
substring of §$[ne2], without the enclosing delimiter characters.
For example, using $10 as given above:~-

>PRINT %32 $10
FOX :

" >P %S85 $10

HORSE

>

If [nel1] is greater than the number of delimiter characters in the
string, the $4S construction evaluates to the null string.

PDP-11 AIMS PROGRAMMING MANUAL Page U7
INPUT command - section 9

[9. THE "INPUT COMMAND

The INPUT command is a way of reading strings or numbers from
the user’s terminal or other device. The syntax is '

INPUT [echo] [timeout] #[ne1] ?[ne2] [as r.h.s. of the put command]

Note: most of the items are opticnal but if present they must occur
in the order given above.

INPUT is exactly like PUT except that the source string is
obtained from the device on channel [ne1], rather than from a
string expression. When the string has been read AIMS enters the
PUT ' processor at state 1 just as if it had found a > sign. The
command

INPUT [echo] [timeout] #[nel1] ?[ne2] [etc]
is thus equivalent to
PUT [string from channel [ne1]] > [etc]

After an INPUT command control normally resumes along the same
line. Control will fall through to the next line if a device error
or end-of-file condition occurs or if the implied PUT command
fails. The various failure conditions are distinguished by the
value of QE, see section 16.

If #[nel] is omitted, channel 2 is used by default.

The ?[ne2] is optional. If present the string in dollar-line
[ne2] 1is printed as a cue to the user. If absent, * is printed.
This only occurs if the input channel is a terminal. For example

10 $HELLO MATE:
100 INPUT 2?10 $10 :LOOP
>RUN '
HELLO MATE :GOOD AFTERNOON [User types "GOOD AFTERNOON’
GOOD AFTERNOON [which changes cue line

PDP=-11 AIMS PROGRAMMING MANUAL Page U8
INPUT command -~ section 9

- CONTROL OF ECHOING

Characters typed at the keyboard are normally printed back
immediately sc¢ that you c¢an see what you have typed. This
automatic echoing may be suppressed by means of the < operator
placed directly after the INPUT command word:-

>INPUT < $1 :PRINT ; "YOU SAID ‘$1

5 [User types ‘HELLO" which does not echo
YOU SAID HELLO

>

-Note that when echo is suppressed there is no automatic
carriage-return or linefeed at the end of an input line. The
newline after the ® above is caused by the PRINT ; command.

This facility allows a program to obtain confidential
infermation from a user without leaving a printed record. For
example, The login program turns off the echoing when it asks for -
your password.

The carriage-return and linefeed that occurs when the user
terminates his input 1line may be suppressed by means of the =
operator. This allows several questions to be asked on the same
- line. For example

>20 $YOUR NAME?

>21 $AND AGE?

>INPUT = 220 $1 :TAB 20 :INPUT 721 $2
YOUR NAME? FRED AND AGE? 36

> .

- INPUT Timeout

When an INPUT command is executed the program is normally
suspended until a 1line has been typed by the user. If the user
fails to respond or goes away, the program could remain suspended
indefinitely. The programmer may avoid this by using the [timeout]
feature:- :

INPUT [echo]>[ne] ...

" This causes the INPUT command to terminate after [ne] seconds, even
if nothing has been typed by the user. Control resumes on the same
line as the INPUT command, and the destination string contains
whatever the wuser typed upto the moment of timecut. The system
variable QD indicates the type of termination as follows:

QD Termination reason
0 User typed a line ending with carriage-return.
1 User typed a line ending with ESCAPE, ACCEPT or ALTMODE.
2 Timeout.
3 User typed a line ending with linefeed.

PDP-11 AIMS PROGRAMMING MANUAL Page 49
INPUT command - section ¢

INPUTTING SINGLE CHARACTERS

The INPUT command reads a complete 1line of text wupto a
carriage-return or linefeed character. An alternative command,
called ACCEPT, is provided to allow a program to obtain characters
from the keyboard one at 2 time. The syntax is identical to that
for the INPUT command.

>ACCEPT $1 :PRINT #$1
A [User presses key ‘A’
>

The control-Y and RUBOUT editing facilities are not available
in ACCEPT mode; these characters are treated like all others. The
control-C and control-0 abort characters still function. The
carriage-return key appears as carriage-return followed by
linefeed.

CONVERSION OF NUMERIC STRINGS TO VALUES

Although AIMS treats all numbers as being integers, we
described in section 6 a facility for printing values with a
decimal point, as

>LET X=12345 :PRINT X@A2
123.45
>

 Thus it is possible to perform fixed-point real arithmetic provided
all numbers are scaled by the appropriate power of ten (100 in the
" above example).

When numbers are input, AIMS provides the capability elither of
accepting a decimal point anywhere, with appropriate scaling, or of
specifying the number of digits required after the point. See
description of state 2 in section 8. For example

>INPUT X Y#2 :PRINT X Y :LOOP
#123 123.45
123 12345
#123.45 123
12345 12300
B123456 123.456
12345612345
#123.456 123456

123456 12345600
»

PDP-11 AIMS PROGRAMMING MANUAL Page 50
Transfer of Control - section 10

[(10. TRANSFER OF CONTROL |

IMPLICIT TRANSFERS

Control normally proceeds horizontally along the program line
currently being executed. When this 1line is completed control
passes to the line' with the next higher number.

Certain commands exhibit conditional properties, 1like for
example the IF command, which only continues along the line if the
condition is satisfied. 1If the condition is not satisfied control
will ‘fall through’ to the next line.

This convention, whereby successful commands proc eed
horizontally and unsuccessful commands proceed vertically, is
extended in AIMS so that many commands have an implied conditional.
For example:-

100 READ #5 B() :WRITE #6 B() :LOOP [the # specifies an
110 PRINT ‘END OF FILE® :STOP [I/0 channel number

This program copies a file by reading it into the array-buffer B,

-and writing it out again. Control will remain on line 100 until
the end of the file is reached, at which point the READ command
will fail, causing line 110 to be obeyed.

EXPLICIT TRANSFERS

Apart from these conventions, several commands are provided
for explicitly changing the order of program execution.

GOTO [ne] This causes a jump to line [ne] of the program.
Error ?L will result if the line does not exist.

[ne] may be a simple line number, or a more complicated numerical.
expression, enabling computed and assigned goto’s to be performed.

.+. :LOOP This command only makes sense when placed at-the
end of a line. It causes the 1line to be
executed again.

LOOP is quicker than a GOTO because the interpretor already knows
where the current line is.

PDP-11 AIMS PROGRAMMING MANUAL Page 51
Transfer of Control - section 10

SUBROUTINE TRANSFERS

GOSUB (ne] This is used for calling part of a program as a
subroutine. The © current line~number is
remebered on a system stack, and a ‘GOTO [ne]’
is executed. The program thus entered should
eventually return control by means of the RETURN
command . It is meaningless to place commands
beyond a GOSUB on the same line.

RETURN - The line-number previously stacked by the last
' GOSUB command is unstacked 1into the system
variable QA. A ‘GOTO NL(QA) " is then executed.

(Note that NL(J) 1s a system function whose value is the next 1line
above line J of the program.) The RETURN command effectively
transfers control back to the line following the GOSUB command that
entered the subroutine. For example

100 LET J=0

110 GOSUB 500

. 120 PRINT ‘HI” :GOSUB 500
130 PRINT "END’ :STOP .
500 LET J=J+1 :PRINT “HO’ J :RETURN
>RUN

HO 1

HI

HO 2

END

>

As can be seen from the above example, GOSUBs may be nested; that
is to say, a piece of program that has been entered via a GOSUB may
itself do a GOSUB to some other program, and so on. The maximum
depth to which this nesting may be carrled is an AIMS assembly
parameter, It is normally set at sixteen,

'Two variants of the RETURN command are provided to cater for
multiple return-points and for situations where one does not want
to return at all:-

RETURN [ne] As RETURN except that it performs a
‘GOTO NL(QA+[nel)” . This permits a return to a
point several lines beyond the 1line containing
the GOSUB.

RETURN : ... If any command follows a RETURN on the same
line, the GOTO is not executed. The RETURN in
this case simply unstacks the return line-
number,

This allows a jump out of a subroutine without causing an
accumulation of return links on the gosub stack. It is useful, for
example, in cases where a subroutine detects an unusual error
condition.

Note that ‘RETURN :GOSUB NL(QA) implements a coroutine switch.

PDP-11 AIMS PROGRAMMING MANUAL Page 52
Transfer of Control - section 10

A further command is provided principally to save program space and
typing:-

DO [ne] Causes a temporary transfer of control to line
[nel. The effect is to execute line [ne] as if
it occupied the position of the DO command.
When line [ne] is completed, control goes to the
line following the DO command, unless line [ne]
performs a further transfer of control. '

DO commands may be chained to any depth. They always operate as if
the ‘done’ 1line occupied the position of the highest-level DO
command.

100 PRINT "HA” :DO 200
110 PRINT ‘HO” :STOP
200 PRINT ‘HE’ :DO 300
300 PRINT ‘HI’

>RUN

HA

HE

HI

HO

TRANSFERS BETWEEN RUN & EDIT MODES

AIMS is initially in edit mode. This mode allows programs to
be entered and direct commands to be executed. When a program is
established the RUN command may be used to start execution:-

RUN [nel Makes all user-created simple variables
undefined. Sets system variables to their
default values., Scans the program for ARRAY
declarations and performs the necessary

assignments. Starts the program at the next
line greater than or equal to [ne].

STOP Stops program execution and switches back to
edit mode. The system variable QA is set to the
number of the line containing the STOP command.
All variables, arrays, lines and files remain as
they were at the time of the STOP.

Since all commands may be used in both run and edit modes, we also
have:-

GOTO [ne] As a direct command. Starts the program at line
[ne] without performing the initialisation
associated with the RUN command. Useful for
restarting a program.

RUN [ne] As a stored command. Used for its initialising
effects., (eg. deletes unwanted variable names,
sets up array names, resets system variables to
a standard state.)

PDP-11 AIMS PROGRAMMING MANUAL Page 53
Transfer of Control - section 10

THE ‘WAIT ' COMMAND

WAIT [ne] This command suspends the user for [ne] tenths
of a second. Control resumes along the line
after this interval. Note that the interval is
only resolved to the nearest tenth of a second,
so that a WAIT N command may actually delay
the user for any time between (N-1) and (N+1)
tenths of a second. See also section 21.

TRANSFERS TO AIMS EXECUTIVE PROGRAMS

EXIT Runs the privileged AIMS executive program, see
section 23. '

BYE Runs the privileged AIMS program ‘LOGOUT’ which
logs the user off. See section 23.

PDP-11 AIMS PROGRAMMING MANUAL - Page 54
System Variables and Functions - section 11

[11. SYSTEM VARIABLES AND FUNCTIONS |

A number of simple variables and functions are permanently

defined. The functions allow the user to call certain machine-code
routines that are conveniently accessed in a functional way. The
system variables are just like any other variable in that they may
be referenced and assigned by the user, but they are also modified
by AIMS, often as a side-effect of a command.

SYSTEM VARIABLES

QA

QC

QD

QE

QF

QG

QI

QL

QQ

Q3

QW

Contains miscellaneous auxiliary information. See -
individual command descriptions.

Column counter. See .section 6.

Indicates reason for termination of INPUT command. See
section 9.)

When an .error occurs the error number is placed in QE. See
section 16.

Global output format. Default is 0. See section 5.

Garbage-collection threshold. Preset to 350. See section
20.

Set w as a side-effect of string comparisons. When
searching for string2 in stringil, QI counts the number of
times the first character of string2 has been found in
string1. See section 8. »

Line counter. See section 6.

When an error occurs QQ is examined. If QQ is zero, a-
standard error message 1is printed. If QQ is non-zero, a
‘GOSUB QQ° is executed and QQ is set to =zero. A user
program may thus trap errors by setting QQ to the line
number of an error-handling routine. Default is zero. See
section 16.

Amount of free space in characters available within the
user’s existing memory area. See section 20.

Global output width. Default is 4.

All system variables are reset to their default values by the RUN
command.

PDP-11 AIMS PROGRAMMING MANUAL Page 55
System Variables and Functions - section 11

- SYSTEM FUNCIIONS

DA() The day of the month (1 to 31)

DA(1) The month (1=Jan, 12zDec)

DA(2) The year - 1900

DA(3) Day of the week (0=Mon, 6=Sun)

DA(L) Day number within year (1st Jan=1, 31st Dec=365 or 366)
DA(5) 416%(year-1970) + 32%month + day

DA(6) 416%(year-1965) + 32*month + day

DR(n) Accesses DR11C hardware registers if présent (n=0 to 16)

" EP() Controls the precision with which numerical expressidns
are evaluated, 3See section 5.

FC() MONITOR: total available real memory in Dbytes. Equals
total real memory minus the size of all resident monitor
program and data structures.

D0S: Total amount of free space in characters available
for program expansion. Indicates the amount by which the
user s memory area could be expanded by the CORE command.

GV(J) The J’'th global communication variable. See section 21.
JS() User’s job status vector. See section 22,
LE(J) Value is number of characters 1in dollar-line J, or

dimension of array in line J.

NL{J) Value is the number of the next line above line J, or zero
: if no higher line. ~

PK(L) Privileged function enabling examination {both) and
modification (DOS only) of real memory locations.
MONITOR: argument [is byte-address of word in kernel
virtual address space (L must be even). DQS: argument L
is absolute word-address of location to be accessed (Ie.
PDP-11 byte-address over 2).

PT (J) I/0 channel pointers. See section 14,

QX(e,n) I/0 channel status information. See sectionV13.

Ss() System status vector. See section 23.
TA(N) Bit tally. Value is the number of bits that are 1 in N.
TI() The time of day in tenths of a second past midnight. Use
LET H=TI()/10 H=H/3600 M=QA/60 S5=QA
to get time of day in hours, minutes and seconds. Note

that dividing by 36000 does not work because QA is only"
valid if remainder is less than 32768.

PDP-11 AIMS PROGRAMMING MANUAL - Page 56
System Variables and Functions - section 11

(12, THE CODE~ COMMAND]

CODE [string expression]

The string expression 1is evaluated, and is then treated.'.
exactly as if it had been typed in as a command to AIMS.

S>LIST
10 LET J=30
20 CODE J"PRINT °‘HO "
40 LIST
>RUN
HO
10 LET J=30
20 CODE J"PRINT ‘HO“"
30 PRINT ‘HO’
40 LIST
>

This command allows running programs to modify themselves.
This 1is useful for coding arrays with computed dimensions, and for
implementing programs that compile into AIMS.

It should be understood that the CODE command does treat the
string exactly as if it had been typed as a command. So that

CODE J [Deletes line J of the program
CODE ‘LET X=6" [Assigns 6 to X
10 CODE “10LET X=6~ [Overwrites itself

It is not possible to put other commands on the same line
beyond the CODE command. Control always goes to the next line when
the CODE is completed (unless the coded command involves a direct
transfer of control, such as a GOTO).

CODING ARRAYS

Arrays may be dimensioned at run-time by coding the array
line. For example

100 CODE L “ARRAY “ $1 D

will create an array of dimension D in line L of the program, the
array name being taken from the string variable $1. Note that the
action of declaring an array, either by a direct command or by
coding it, does not define the array name. The array name is a
simple variable that is assigned a value equal to the array line
number by the RUN command. Therefore, when using CODE to create
arrays at run-time, the array name must be assigned explicitly like

,

100 LET AB=L :CODE L “ARRAY AB "D

PDP-11 AIMS PROGRAMMING MANUAL Page 57
CODE command - section .12

Note that the text following the command CODE above 1is a
string expression which will be evaluated as described in section
6. If QF or QW is non-zero the CODE command may fail due to the
appearance of commas or decimal points in the values of L and D.
It is safer to zero the conversion format explicitly like

100 LET AB=zL :CODE LOWEA “ARRAY AB * D@WEA

In order to save space, programmers sometimes wuse one array
for several different purposes and alter its size appropriately
using CODE commands. Thus the statement

100 CODE “10 AR A ‘DEWBA

might be executed at a time when there is already an array in line
10 with perhaps a size different from D. This technique is
perfectly legitimate, but it should be borne in mind that when the
CODE command is executed, space is needed for both the o0ld and new
versions of the array A. Thus the attempt to save space may
actually cause a temporary need for twice the space. This may be
avoided by deleting the old array before coding the new one 1like
this:

100 CLEAR A,A
110 CODE ‘10 AR A ‘DEWEA

THE "X’ COMMAND

The line editing command
X [ne] [ete]
is actually equivalent to

PUT [listing of line [ne]] > $[temp] [ete]
CODE $[temp]
[if it was a direct X command, list the changed line]

where $[temp] is a temporary string variable invisible to the usér.

Although the X command is mainly useful when typing in a
program, it can be used within an AIMS program. When used in this
latter way, the line is not printed. For example, the following,
program performs an editing function over a specified range of
lines:- '

2 PRINT "CHANGE’, :INPUT $1
3 CODE 6 ‘X F’ $1
4 PRINT “RANGE’, :INPUT F T
5 IF F>T :STOP
[Line 6 created by line 3
7 LET F=NL(F) :GOTO 5

It is sometimes useful to place ‘a 4isting of a particular
program line into a string variable, where it may be manipulated
with the PUT command. Note that an X command like

PDP-11 AIMS PROGRAMMING MANUAL Page 58
CODE command - section 12

X [nel “"71%

. Wwill put a listing of line [ne] into $1. After manipulation, a
CODE $1 will restore the line.

Wami

Note that since the X command involves a CODE, it creates a
completely new instance of the edited line. Consequently if the X
command is used to edit an ARRAY line, any data in the cells of the
array will be lost. Also, space is temporarily required for two
copies of the array, as explained above.

PDP-11 AIMS PROGRAMMING MANUAL page 59
Input/Qutput - section 13

[13. INPUT/OUTPUT FACILITIES |

Data transfer is performed via 1logical 1I/0 channels. Upto
eight channels may be used by each job at the same time. They are
numbered from 1 to 8. Note that use of an 1/0 channel ties up.
scarce monitor resources; programmers should minimimise the number

" of channels that are used concurrently.

CHANNEL/DEVICE ASSQOCIATION

Before a channel is wused it 1is necessary to connect the
channel to a specific peripheral device. This is done by the

* command

INIT #[channel] [device name]

which initialises the channel and attaches the specified physical
device to it. This command will fail with a code in QE if the
device is not available.

The device name should be specified as a string expressibn
evaluating to one of the following:-

DOS MON DEVICE
DP u RPcu RPO3 moving-head disk
RPEcu RPO4 moving-head disk
RPFcu RP0O5 moving-head disk
RPGcu RPO6H moving-head disk
DK u RKcu RKO5 moving-head disk
RKGcu RKOb6 moving-head disk
RSDcu RS03 fixed-head disk
RSEcu RSO4 fixed-head disk
RXcu . RX11 floppy disk
DF u RFcu RF11 fixed-head disk
PR u PRcu paper tape reader
PP u PPcu paper tape punch
TAcu TA11 cassette tape
DT u TCcu TC11/TU56 DECtape
LPu LPcu line printer
™ u MTcu T™A11/TU10 magnetic tape
TUcu TU16 magnetic tape
TRHeu TRO7-F magnetic tape
KB u KBn terminal input :
PT u PTn terminal output '
PC u PCn pseudo-console (for slaved jobs, see section 24)
SD SD system disk (for executive use only) ,
UD standard user disk (application program default)

MON: ¢ is a letter distinguishing different controllers of the same
type, c¢=A for first controller, c¢=B for second, and so on. u is'a
digit from 0 to 7 specifying the unit number. DOS: u is the device
unit number and at least one space is required between the device
name and the unit number.

PDP=-11 AIMS PROGRAMMING MANUAL Page 60
Input/Qutput - section 13

The presence of a device 1in the above table does not
necessarily mean that the device is currently supported by DOS or
MONITOR.

When all I/0 has been completed, the association between
channel and device may be terminated by means of the command

RELEASE #[channel]

The RELEASE command is necessary to free buffer space. In the case
of non-shareable devices like paper tape readers, the command also
frees the device for use by someone else. It 1is essential to
RELEASE channels as soon as they are no longer needed.

Once the channel has been initialised, any 1/0 command can be
made to reference that device by specifying the appropriate channel
number in the command. For example, if we said

INIT #5 ‘PP’
which attaches channel 5 to the paper tape punch, then the command
PRINT #5 ‘YOUR NAME IS ° $2

would punch that string. This example is oversimplified because
for file-oriented devices 1like disks and DECtape we also need to
specify the file to which I/0 is directed. This is done by means
of the ‘OPEN’ command.

CHANNEL/FILE ASSOCIATION - OPEN & CLOSE COMMANDS

The OPEN command associates a named file and data mode with a
specified channel. All channels must be OPENed before I/0 can be
performed.

OPEN #[channel] [mode] [filename] [[dept user]]

where
[mode] specifies the type of file access required as:

0 Sequential reading of a text file (DOS openi).

1 Create a text file for sequential writing (DGS openo) An
error will occur if the file already exists.
Qbsolete, do not use.
Obsolete, do not use.
Open existing contiguous file for random access.
Open channel for physical I/0 (use with great care).
D0S: Similar to mode Y4, see Fast Access Directory.

[W) V- UL V]

[dept user] specifies the department and user numbers in square:
brackets. If absent the current user is assumed.

This command searches the device directory for the specified file
and connects the file to the channel. The command may fail with a
code in QE due to file not found or protection violations.

If the device is not file structured the [filename] and
[dept user] specifications are ignored and may be omitted.

PDP-11 AIMS PROGRAMMING MANUAL Page 61

If an OPEN command is given to a channel - that has not been
initialised, the channel 1is automatically initialised to the
default disk for user files, as given by UD (MON) or SS(8) (D0S).

File names must conaist of Lletters or diglts. A nama I
composed of two parts: (1) a name upto 6 characters long, and (2)
an extension upto 3 characters long. A pericd is used to separate
the two parts, Both parts are significant, so that all the
following are different valid filenames:-

JACK.BAS JACK.DMP DIRECT.BAS DIRECT.DAT JACK TEST34

The file extension is normally used to indicate the general type of
the file, and is chosen from a small set of standard mnemonics:-

EXTE NSION TYPE OF FILE

.BAS Linked text file containing a saved AIMS program
.CTL Text control file for BATCH or OBEY processing
+DAT Fixed-length contiguous data file »
.DMP Fixed-length contiguous file containing one or more
dumped AIMS program overlays
.V3 As .DMP but for AIMS version 3 executive
programs only
.LNK Linked text file
»LOG Log file written by BATCH processor
.SYS Contiguous file for use by executive programs
.TMP Temporary file

The element [filename] in an AIMS command should be specified
as a string expression which evaluates to the desired name.

Examples
>LI
1 $JACK.LNK
-2 $JACK :
>OPEN #5 0 $1 :OPEN #6 1 $2°.TMP’° :PRINT 'OK
0K [JACK.LNK opened & JACK.TMP created
>OPEN #7 1 ‘JACK.LNK® :PRINT ‘OK ’
>PRINT QE/256 [command failed because
2 [file already exists
> .

Decimal department/user numbers may be specified in square
brackets like

OPEN #5 0 ‘JACK.LNK[16 17]°
or
OPEN #5 0 °“JACK.LNK[‘DN UN

if DN and UN are variables with the appropriate values.

PDP-11 AIMS PROGRAMMING MANUAL Page 62 o
Input/Output - section 13

, When the user has finished reading or writing a file he should
close it by means of the command

CLOSE #[channel]

In the case of an output file this command causes the device
directory to be updated to include the new file. 1In the case of an
input file the CLOSE may be necessary to permit other users to
access the file. The CLOSE command also frees buffer space. The
RELEASE command performs a CLOSE automatically if necessary.

DATA TRANSFER COMMANDS

When a channel has been initialised and opened, data may be
transferred using any of the following commands:-

INPUT #[channel] Reads a string
PRINT #[channel] Writes a string
TAB #[channel] Tabulation command
" READ #[channel] Random access binary
WRITE #[channel] transfers

Data may be filed in two forms:-

1) Text files. These are DOS-compatible linked files 1in even
parity ASCII mode. They may be used to store strings, but may
only be accessed sequentially.

2) Random-access binary files. These are DOS-compatible contiguous
files of fixed length. Data is transferred in a random-access-
mode between a point on the file and an AIMS array. The LET
command may then be used to unpack the data into variables or
strings. See section 14,

SIMPLIFIED I/0 CONVENTIONS

The above rather complicated scheme provides the user with the
full power of the DOS I/0 monitor. However, a set of default
conventions is provided to cater for the normal requirements of the
majority of users.

When a user logs onto the system, channels 1 and 2 are
initialised for output and input to the user’s terminal. In
addition, each I/0 command references a default channel if none 1is
specified. Thus we have

CHANNEL DEVICE DEFAULT CHANNEL FOR

1 PT AIMS error message output
the LIST, PRINT and TAB commands
2 KB input of commands to AIMS
the INPUT command
"3 def CALL and SAVE program filing commands

DELETE, RENAME and ALLOC commands

PDP-11 AIMS PROGRAMMING MANUAL ‘ Page 63
Input/Qutput - section 13

y def LOAD and DUMP program filing commands
5 def OPEN, CLOSE, MTAPE, READ and WRITE commands
where ‘def’ represents the default disk for user filing. Channels

3 to 8 may be initialised explicitly by the user if desired. If
not, they will be initialised automatically to the default user
filing disk by the OPEN command.

SIMPLE USE OF FILES

For those who are unfamiliar with the DOS monitor, the basic
technique for sequentially accessing a text file is illustrated
below:-

TO READ AN EXISTING FILE TO WRITE A NEW FILE

define filename:
OPEN #5 0 ‘ABC’ OPEN #6 1 ‘ABC’

transfer data:
INPUT #5 $1 :... PRINT #6 $1

close the file:
CLOSE #5 CLOSE #6

When writing a new file, the CLOSE at the end causes the device
directory to be updated. The new file cannot be read until a CLOSE
has been done. '

A TEXT EDITING EXAMPLE

The following program shows the use of AIMS to perform a
simple editing function. It copies a text file and replaces all
occurrences of the word “BASIC” with the word “AIMS®, creating a
new file called "TMPFIL”.

10 $FILENAME#®
100 INPUT 2?10 $1 :OPEN #5 0 $1 :GOTO 120
110 PRINT ‘FILE “$1° NOT FOUND’ :GOTO 100
120 OPEN #6 1 ‘TMPFIL® :GOTO 140
130 PRINT “CANNOT CREATE OUTPUT FILE® :STOP
140 INPUT #5 $1 :GOTO 160
150 CLOSE #5 :CLQSE #6 :PRINT ‘OK° :GOTO 100
160 PUT $1>$1 ‘BASIC “AIMS "< :LOOP
170 PRINT #6 $1 :GOTO 140
>RUN
FILENAME *GUNKO
FILE GUNKO NOT FOUND
FILENAME*MANUAL
0K
FILENAME#®

Note the use of the < in line 160 to make sure that the whole of $1
is copied.

PDP-11 AIMS PROGRAMMING MANUAL Page 64
Input/Output - section 13

DIRECTORY MANIPULATION COMMANDS

DELETE #[channel] [filename]

Deletes the specified file from the directory of the device
INITed on [channel]. Default channel is 3, default device is the
user filing disk. Command will fail with a code in QE if the file
does not exist or is protected against deletion. See section 16
for error codes. MON: a file cannot be deleted if it is open on
any other channel of this or any other job.

RENAME #[channel] [new filename se],[0ld filename se]

Renames the file as specified. Defaults as for DELETE. A
decimal file protection code may be included in the [new filename]
specification if it is desired to alter the file protection:

RENAME “TEMP.SRC<237> ", ‘TEST.SRC’

Gives the new file a protection of 355 octal.

DEFAULT AND SYSTEM DISKS

As mentioned above, if you attempt to OPEN a channel that is
not currently initialised, the system initialises it by default.
The device thus obtained is the one that is recommended for normal
use by all application programs. This depends on the available
~hardware and will therefore vary between installations. The
default device 1is chosen automatically at system initialisation
time and will normally be the largest disk in the configuration.

MON: The special devicename UD is automatically translated by
MONITOR into the name of the current default device. Channels can
be connected to the default device explicitly if required by
INITing ‘UD”.

DOS: The default devicename is stored in radix50 in SS(8).
Channels may be connected to the default device explicitly by means
of the command

INIT #{channel] %RSS(8)" 0’

Obviously, the default dévice can also be obtained without
doing an INIT, by making sure that the channel is RELEASEd before
OPENing it.

The name SD translates to the name of the system device. This
is the device used by the executive programs and for swapping. SD
is not necessarily the same as the default device.

PDP~11 AIMS PROGRAMMING MANUAL Page 65
Input/Qutput - section 13

CHANNEL STATUS INFORMATION - QX(C,N)

The system function QX(c,n) gives 1information about the
current state of 1/0 channel number c:

QX(c,0) DOS .STAT status (0 if channel not INITed)

QX(e,1) Device blocksize in words (set by INIT)

QX(c,2) Length of file in blocks (modes U4 to 6 only)
QX(e,3) Block number where file begins (modes U4 to 6 only)

MON only:

QX(ec,4) State of slave job if channel connected to a PC:
0: No slave job and line o/p buffer empty
9: Slave job in TI wait and line o/p buffer empty
10: Slave output is available in buffer
any other value indicates slave job busy
QX(e,5) Device status/error information applicable when last
operation on this channel finished (see below)
QX(ec,6) Slave job number if channel connected to a PC
QX{(e,7) Number of the PC to which channel ¢ is connected
QX(c,8) Latest known position of device.
(eg: disk cylinder number, magtape record count)

The QX function returns 2-word values and therefore needs
EP()>1.

Functions 4, 6 and 7 are only meaningful when the channel is
connected to a pseudo-console. The use of these functions is
described in section 24.

PDP-11 AIMS PROGRAMMING MANUAL Page 66
Input/Qutput - section 13

Channel Status Word (MON only)

The function QX{c¢,5) delivers a positive value indicating the
latest known state of the device connected to channel c, This
function may be examined to get further information if a command
fails due to a device problem. It is especially useful after a
READ or WRITE command that fails due to a device problem. The
value is bit-coded as follows:= -

Dec Octal Name Meaning

Status
1 000001 NXU Nonexistant unit
2 000002 UNS Unit unsafe (hardware fault)
4 000004 OFL Unit offline
8 000010 WLK Unit write-locked
16 000020 MOV Unit in motion (eg: heads, tape moving)
32 000040 TMK Magnetic Tape-Mark sensed

Errors
256 000400 PSU Position unknown (eg: disk seek incomplete, bad
magtape)
512 001000 HDE Disk: wrong header found after seek
BOT Magtape: at Beginning-of-Tape
1024 002000 WLE Attempted write when write-locked
2048 004000 NXA Nonexistant device address
EOT Magtape: physical End-of-Tape sensed
4096 010000 EOM End of medium reached
Magtape: long record read
8192 020000 DAT Data invalid (checksum, parity, CRC)
16384 040000 MIS Data missed due to timing constraints (eg:
UNIBUS latency problem)
32768 100000 NXM Nonexistant memory addressed

PDP-11 AIMS PROGRAMMING MANUAL Page 67
» DDOPR command - section 13

DEVICE-DEPENDENT OPERATIONS (MON only)

Most 1/0 activity is done using the INIT, OPEN, READ, WRITE,
CLOSE and RELEASE commands which are implemented for all devices in
a uniform manner. The programmer need not concern himself with the
detaiied characteristics of the device which 1is being wused.
However there are some devices that have special characteristics or
facilities that cannot be subsumed under the standard scheme. The
DDOPR command provides program control of these device-dependent
features. By its very nature the DDOPR command performs a
different set of functions for each type of device, so programs
using the command must be aware of the device that is being used.

DDOPR #[channel] [command se]>$[reply ne]

The command performs the operation specified by [command se] on the
device connected to [channel]. Reply information may be returned
in $[reply nel. The >$[reply nel may be omitted if no reply string
is wanted. [command se] is generally a single word identifying the
operation required. The command fails if this operation is not
applicable to the device. Otherwise the command always succeeds
and its effect may be found from the reply string and by
examination of the channel status word QX(c,5) when the operation
is completed.

Successful execution of the DDOPR command does not imply that
the operation thus initiated has been successfully completed; it
merely indicates that the operation is applicable to the device.

Some DDOPR functions suspend job execution until the operation has .

been completed, whilst others merely initiate device activity and
continue job execution without delay. This depends upon the
operation and the device type, and reference should be made to the
description of the DDOPR functions for each device.

Note that the channel status word QX(ec,5) 1is set by the
monitor when control returns to the user after an AIMS command.
For those DDOPR functions that cause no delay, the channel status
after the command gives the state of the device when the operaticn
was initiated; this will almost certainly differ from the device
state when the operation has been completed.

The DDOPR command “?° is applicable to all devices for which
DDOPR 1is implemented and it returns in the reply string a list of
the DDOPR command words for the device, separated by commas. For
example, we can get a list of the DDOPR commands for the TMA11/TU1Q
magnetic tape transport as follows:

>INIT #5 'TMAO: " :DDOPR #5 “?°>$1 :PRINT $1
SPACE,WMARK, UNLOAD ,REWIND,PARITY ,DENSITY
>

Some command take arguments, For example the recording
density of a TMA11 transport may be set to 556 BPI with the command

DDOPR #c ‘DENSITY=556"

)

The “?° facility may alsc be used to obtain a 1list of the
acceptable command arguments. For example

PDP-11 AIMS PROGRAMMING MANUAL Page 68
DDOPR command - section 13

>DDOPR #5 ‘DENSITY=7">$1 :PRINT $1
200,556,800, D800
>

.This is a list of the valid density settings for the particular
type of tape transport connected to channel 5.

DDOPR commands may be issued at any time. The moniter will

wait for the device controller and/or drive to become free if .

necessary. Jobs that become suspended on DDOPR functions are
shufflable and swappable.

PDP-11 AIMS PROGRAMMING MANUAL Page 69
Magnetic tape - section 13

MAGNETIC TAPE - GENERAL INFORMATION

The two ends of a magnetic tape are marked with a short strip
of reflective material that 1is stuck onto the back of the tape.
The tape transport detects these markers photoelectrically and sets
status bits which can be read by the program. The marker at the
front of the tape is called the Beginning-of-Tape or BOT marker.
It defines the LOAD POINT, which is the earliest point on the tape
where data may be stored., The REWIND operation always returns a
tape to its load point. The marker at the far end of the tape is
called the End-of-Tape or EQT marker. Information cannot be
written beyond this point. The BOT and EOT status is available to
the program in the Channel Status word QX{(e¢,5) under MON, and via
the MTAPE command under DQOS.

The area between the BOT and EQOT markers is available for data
storage. Depending on the type of transport, there are either 7 or
9 channels across the width of the tape where a bit may be stored.
These channels taken together constitute a FRAME capable of storing
one parity bit and 6 {for 7 channel) or 8 (for 9 channel) data
bits., A number of frames are written contiguously along the tape
to form a RECORD.

Two recording techniques are used: NRZI and Phase-Encoding.
Both techniques use a vertical parity bit (VRC) associated with
each frame as already described. A dual-gap recording head enables
the hardware to perform a read-after-write check on each frame as
it is written. With the NRZI technique a longitudinal parity bit
is calculated for each channel over the whole record, and these
bits are then written as an extra frame at the end called the LFPC.
For 9 channel NRZI tapes a cyclic redundancy check byte (CRC) is
computed over the whole record and stored immediately before the
LPC. The LPC and CRC are generated and checked automatically by
" hardware, The Phase-Encoded technique is more reliable and it 1is
used only with 9 channel tapes and at the higher recording
densities (1600 BPI upwards). There is no LPC or CRC, but the
hardware 1is capable of detecting a drop-out on any channel. If a
frame is read and one of the channels is found to have dropped out,
the hardware automatically reconstructs the missing data bit by
making use of the VRC parity. If more than one chamnel drops out
an error 1is signalled.

With 9 channel tape there are 8 data bits in each frame so0 one
PDP-11 byte occupies one frame on the tape. If you write an array
A() to tape, A(0)&255 goes into the first frame, A(0)_-8 into the
second, A(1)&255 into the third, and so on.

With 7 channel tape there are only 6 data bits per frame and
two different. formats are available: Industry Compatible format,
and Dump format. In Industry Compatible format each 8«bit PDP-11
byte occupies one frame on the tape, and the two most significant
bits of each byte are not used (ie. ignored on write, set to zero
on read). Thus an array is written as A{0)&63, (A(0Q)_-8)&63,
A(1)&63 and so on. In Dump format each PDP-11 byte occupies two
frames on the tape. The low order 4 bits go in the first frame and
the high order 4 bits in the second frame. The remaining two data
channels 1in each frame are not used. For practical purposes the 7
channel industry compatible format is only useful for processing

PDP-11 AIMS PROGRAMMING MANUAL Page 70
Magnetic tape -~ section 13

tapes to suit other machines (eg: IBM).

The area of tape between the BOT and EOT markers can contain
zero or more¢ RECORDS, each record being separated from the next by
an inter-record GAP. Gaps are created automatically when records
are written. They exist mainly to allow time for the transport to
start and stop inbetween records.

There are two kinds of record that can be written on the tape:
(1) Data Records, containing information supplied by the user when
the record is written, and (2) TAPE-MARKs. A Tape-Mark is a
special short record containing no data. Tape-Marks can only be
written by giving a special write-tape-mark command to the
hardware. Tape-Marks are useful because they are detected
automatically by the hardware causing a status bit to be set. They
may be used to mark important points on the tape such as
end-of-file (EQF) or the last data record on the tape. The latter
point is called the Logical End-of-Tape (LEOT) and is not to be
confused with the physical EOT marker. Any space between LEOT and
EQT 1is spare tape that has not yet been used. An LEOT may be

overwritten with additional records if desired. Eventually the
tape will become full and this will be shown by the presence of the
EQT status bit following a write operation. It is possible to

write a record that extends upto the physical EOT marker, but
records should not be written when at or beyond the EOT marker,
otherwise you may run off the end of the tape.

Whenever the tape 1is stationary the read/write heads are
resting in an inter-record gap. A write command creates one new
record on the tape with the record length being determined by the
transfer bytecount. The hardware requires that records be at least
16 and not more than 4000 frames. Successive records may be
written with different lengths if desired, but this is not
recommended because it requires a more complicated program to read
the tape.

Each read command reads one whole record. If the transfer
bytecount 1is larger than the record on the tape, this will be
indicated by the fact that PT() is incremented by 1less than the
transfer bytecount. If the record on the tape is longer than the
transfer byteccunt, the whole record is still read but only the
requested number of bytes are given to the wuser and the
End-of-Medium bit (octal 10000) will be set in the channel status
word (MON only).

Spacing operations are provided which enable the tape to be
positioned without data transfer. The forward space oceration is
given a record count and it moves the tape forwards over that
number of data records. If a Tape-Mark is encountered it is spaced
over and the operation is then terminated. Thus you can skip to
the next Tape-Mark by giving a space command with a large record
count. A forward space operation is also terminated if the EOT
marker is met. A backwards spacing operation is also available and
it works identically except that it is terminated by the BOT marker
rather than the EOT one. Note that when a Tape-Mark terminates a
space operation, the Tape-Mark has always been spaced over.
Consequently the tape stops in a different position if a forward
space is terminated by a Tape-Mark than if a backwards space had
been terminated by the same mark.

PDP-11 AIMS PROGRAMMING MANUAL Page 71
Magnetic tape - section 13

MON: For spacing and error recovery purposes the monitor keeps
track of the current tape position by means of a counter. This
counter is set to zero when the tape is at BOT, and is incremented
by one for every data record or Tape-Mark that is passed over in
the forwards direction. Similarly the counter is decremented by
one for every record or Tape-Mark that is passed over in the
backwards direction. At any moment the counter thus indicates the
absolute tape position in terms of records from the BOT. This
position count is available to the programmer via QX(c,8).

Due to mechanical imperfections the tape doés not necessarily
come to rest with the heads exactly in the middle of the
inter-record gaps. This means that head position differs according
to the direction from which a gap was entered. One consequence of
this is that if a tape is initially at BOT and is spaced forwards
and then Dbackwards by one record, the final position may not be
near enough to the marker to raise the BOT signal. This does not
matter, 1in that the heads are positioned correctly for reading the -
first record, but it does mean that an apparently balanced sequence
of spacing operations may not reproduce the original status.

Under certain unlikely error conditions the hardware may 1lose
track of where the tape is and QX(c¢,8) will become invalid. This
is indicated by the Position Unknown error bit (octal 400) in the
channel status word (MON only). If the program is aware of the
required position count it may be able to recover by rewinding the
tape and doing further space operations.

Data transfer operations always advance the tape position by
one record. Space operations however may be terminated prematurely
by errors, Tape-Marks, or BOT/EOT markers. A program intending to
skip over a particular number of records should compute the .
required position in terms of QX(c,8) and verify that it has
arrived there when the spacing operation completes {MON only). The
monitor software has a built-in error recovery procedure that will
retry a failed space operation several times before giving up, so
if a space operation fails due to an error it is probably
irrecoverable. Programs that are aware of the detailed
organisation of a particular tape may be able to recover further by
searching for a record that contains some known information.

PDP-11 AIMS PROGRAMMING MANUAL Page 72
Magnetic tape - section 13

DOS-compatible Files on magnetic tape

Files written on magnetic tape by the D0OS operating system
have the following format:-

1) A 7-word file header record.
2) One or more 256-word records containing file data.
3) An end-of-file indication. This is just one Tape-Mark.

The file header contains the file name in format:

File name in radixhQ

ditto

File extension in radixs0
Department/user numbers

File protection code in low-order byte
Creation date in DOS format

spare

(oA G) I —S VI S R o

512 bytes of file data are stored in each 256-word tape
record. This differs from linked disk files where the first word
of each block is a pointer to the next block.

Any number of files may be written on the tape. There 1is no
explicit directory structure since each file header contains the
department/user number of that file. Obviously file retrieval will
be quicker 1if files with the same department/user number are kept
together on the tape.

Two contiguous Tape-Marks are used to indicate the logical end
of tape. This LEOT indicator is written beyond the end of the last
file. Like all files the last file ends with an EOF indicator
(whiech is one Tape-Mark). Hence if there are any files on a tape
" there are always three contiguous Tape-Marks at the LEQT. If an
additional file is written at a later time, its header record is
written over the last two Tape-Marks.

PDP-11 AIMS PROGRAMMING MANUAL Page 73
Magnetic tape - section 13-

TMA11/TU10 Tape Transport

These are available in two types: 7 channel and 9 channel.
The 9 channel type 1s preferred unless compatability with other
machines is required. The recording method is NRZI. With the 7
channel transports there are three program selectable recording
densities and two data formats (industry compatible and Dump). The
g channel transports always operate at 800 BPI.

The following DDOPR functions are provided (MON.only):

SPACE=n Skips forwards over n records
SPACE==n Skips backwards over n records

WMARK Writes a Tape-Mark
UNLOAD Rewinds and makes unit inaccessable until readied by
operator

REWIND Fast winds tape to BOT
PARITY=EVEN
PARITY=0DD

: Sets parity (default is odd)

DENSITY=d Sets recording density and format as specified by d. For
9 channel d must be 800. For 7 channel d may be 200,
556, 800 or DB00. DBOO specifies Dump format which is
only available at 800 BPI.

The SPACE and WMARK commands suspend the job until completion. -
During these operations both the transport and the controller are
busy. The UNLOAP and REWIND commands resume immediately leaving
the transport busy (ie. rewinding) but the controller free. A
function may be initiated on another unit if desired whilst the
rewind proceeds. The PARITY and DENSITY commands resume
immediately without affecting controller or transport (they simply
store information in the monitor).

PDP-11 AIMS PROGRAMMING MANUAL Page 74
MTAPE command - section 13

MTAPE command (DOS only)

This command provides for control of magnetic tape drives.
The syntax is:

MTAPE #[channel] [function ne] [argument ne]
where [function ne] specifies the function to be performed:

1+ UNLOAD. The tape is rewound and switched offline.

3: REWIND. ‘

4; FORWARD SPACE., Skips forward over [argument ne] records.
Stops on EOF or EOT with remainder count in QA.

5: BACK SPACE. Skips backwards over [argument nel records.
Stops on EOF or BOT with remainder count in QA.

6: SETS DENSITY & PARITY from [argument ne] which should be

Density®256+Parity
0=200 BPI O=o0dd
1=556 BPI 1=even
2=800 BPI

3=800 BPI dump mode (default).

T7: READ UNIT STATUS to QE. This is bit-coded:
QE&T Last command was:
0=Unload
1=zRead
2=Write
3=Write ECF
=Rewind
5zForward space
6zBack space

128 Tape has just moved over an EOF mark
256 Tape at BOT
512 Tape at EOT

1024 Write locked

2048 Even parity {(else odd)

4096 7-track (else 9-track)
8192%density (as above)

32768 Error caused by last command

The tape unit status is also returned in QE by all other
functions of the MTAPE command.

If the spacing functions terminate because an EOF mark is met,
the EOF mark is spaced over and counted and then QA is set to the
difference between [argument ne] and the number of records or marks
actually spaced over.

The MTAPE command actually executes a DCS .SPEC EMT with the
function code taken from [function ne] and SPCBLK+4 set from
[argument ne]. On completion QE is set from SPCBLK+2 and QA is set
from SPCBLK+6. For further information see the DOS Device Driver
Package manual. The MTAPE command can also be used to control any
other device that implements the ,SPEC EMT.

PDP-11 AIMS PROGRAMMING MANUAL Page T5
Random Access Filing - section 14

14. RANDOM ACCESS FILING

The READ and WRITE commands allow data t¢ be transferred
between an AIMS array and any region of a contiguous file. These
commands are not applicable to linked files.

. Associated with each I/0 channel is a pointer denoted by PT(N)
where N 1is the channel number. The value of this pointer is a
number which designates a particular word of the associated file.
A value of zero indicates the first word of the file, and so on.
The channel pointer is automatically set to zero when a channel is
opened. These pointers are 2-word quantities that cannot be
referenced when EP()=1. ’

READ #[channel] A(J) [VS: optional bytecount ne]
WRITE

When a READ or WRITE command is executed, the file address for
the transfer 1is taken from the current value of the channel
" pointer. After the transfer, the pointer is gutomatically
incremented by the number of words transferred. The pointer may be
referenced in an AIMS program just like an ordinary variable, In
particular, the LET command may be used to change the value of the
pointer at any time. This mechanism provides a completely general.
random access capability. :

Before using the READ or WRITE commands the data file must be
opened using mode 4 or 6. For example, the following program reads
words 253 through 268 of the file called ‘ACCTS.DAT into the array
B:- ’

10 ARRAY B 15
100 OPEN #5 4 “ACCTS.DAT :GOTO 120
110 PRINT °CANNOT OPEN FILE® :STOP
120 LET PT(5)=253 :READ #5 B() :GOTO 140
130 PRINT ‘ERROR READING FILE’ :STOP
140 PRINT °‘THE POINTER IS NOW'PT(5)
>RUN
THE POINTER IS NOW 269
>

Line 120 initialises the channel pointer and executes a READ
command. AIMS reads words from the file, starting with the 254 th

word, and places them in successive cells of the array B. This
continues until the end of the array is reached. The number of
words read is thus determined by the array dimension. After the

transfer the channel pointer is wpdated to point to the word
following the last one read.

The array name may be subscripted, giving the capability of
reading into part of an array like

120 LET PT(5)=253 :READ #5 B(9) :GOTO 140

PDP-11 AIMS PROGRAMMING MANUAL Page 76
Random Access Filing - section 14

In this case 7 words will be read into cells 9 through 15 of the
array. ¥3: note that the transfer always continues to the end of
the array. VEK: Transfers may be terminated before the end of the
array by specifying a non-zero [bytecount ne].

ERRORS WITH READ AND WRITE COMMANDS

The READ and WRITE commands will fail if an attempt is made to
transfer over the end of a file. In this case the transfer is
aborted as soon as the attempted overrun 1s detected, and the
amount of data actually transferred can be obtained from the
channel pointer value., Do not assume that the transfer has been
done upto the end of the file; in most cases no data is
transferred. :

The READ command can also fail due to device errors such as
parity or seek failures. DOS: QE contains the DOS .TRAN error
status reply. MON: The channel status word QX(c¢,5) gives a precise
description of the error. Take note: the information contained in
the channel status word is useful both for distinguishing different
types of failure and for diagnosing hardware errors. Programs
should print QX(c,5)8RB and programmers should pay attention to it.

STRUCTURED DATA

The READ and WRITE commands transfer words directly between a.
file and an array without regard to the format of the data within
the array. The LET and PACK commands may be used to fill the array
with numbers, bit-patterns, or strings of characters, forming a
logical record in any desired format. For example, some of the
numbers in the array may be pointers to other records, allowing the
construction of hierarchical data structures.

CREATING CONTI®IOUS FILES ~ ALLOC COMMAND

DOS supports two types of files: linked files and contiguous
files, Linked files are used mainly for storing text, and they
consist of a number of blocks scattered anywhere on the storage
medium. The blocks for a particular file are chained together in a
linked list, enabling the whole file to be accessed sequentially
once the address of the first block is known. Since the only way
to locate a particular block of a linked file is to trace the chain
from the first block, 1linked files cannot be used for random
access. Linked flles are created using mode 1 of the OPEN command.
This enters the specified filename into the directory and also .
stores the address of the first data block of the file. Additional
data blocks are 1linked on as required whilst the file is being
written, When the file is CLOSEd additional information is stored
in the directory entry, such as the length of the file and the
address of the last block.

In contrast, each contiguous file occupies a single region on
the storage medium. A contiguous file is thus described completely

PDP-11 AIMS PROGRAMMING MANUAL Page 77 _
Random Access Filing - section 14

by the device address where it begins and its length. Contiguous
files are created by means of the ALLOC command:

ALLCOC [ne] #[channel] [filename]

This command searches the directory for the specified file and
fails if the file already exists. Otherwise it searches the
storage medium for a free area of at least [nel]*64 words. The
command fails .if no suitable region can be found. If all is well -
[ne]*64 words of the found region are allocated to the new file,
which is entered into the directory together with the size and
-starting device address.

Once a contiguous file has been created by an ALLOC command,
the associated region on the storage medium may be used for random
access filing. To do this it 1s necessary to open the file in mode

4 or 6. The OPEN command 1in these modes simply searches the
directory for the file and remembers the starting device -address
and file length. Random access transfers may then be done using

the READ and WRITE commands without incurring any directory
overheads. :

A major problem with contiguous files 1is the difficulty of
finding a suitable contiguous region on the =storage medium,
Although the total free space on the medium may be guite large, it
often happens that there is still no region big enough for the file
that one is trying to allocate. This happens because of the linked
files, which may be scattered all over the medium causing the free
regions to be split up into lots of small areas. The solution to
this problem is to allocate all required contiguous files when the
.storage medium is relatively empty. If it is not known in advance
exactly what files will be required, a single large contiguous file
may be allocated to reserve a suitable area. This file may later
be deleted and re-allocated to one or more contiguous files as
required.

INPUT/CUTPUT TO PHYSICAL DEVICE ADDRESSES

For certain applications, such as listing disk directories, it
is necessary to gain direct access to the storage medium without
the constraints of a file structure. This may be dcne by INITing
the device on a particular channel, and then OPENing the channel in
mode 5. The READ and WRITE commands may then be used as described
under ‘Random Access Filing® above. 1In this case the channel
pointer specifies a physical word-address on the device rather than
a relative address within a file.

This direct access method should be used with extreme care
since it allows corruption of the device file structure. The mode
5 open 1is only available to EXEC-privileged programs. See secticen
22.

As an example, the following privileged program uses mode 5 to
read the MFD blocks on device DKO and print a 1list of all
department/user numbers:-

PDP-11 AIMS PROGRAMMING MANUAL Page 78
Random Access Filing - section 14

>LIST
8 ARRAY A 255

100 INIT #5 ‘DK’ :OPEN #5 5 :GOTO 120

110 PRINT “?CANNOT OPEN DISK IN MODE 5° :STOFP

120 LET PT(5)=256 :GOSUB 800 :REM READ MFD BLOCK 1

130 IF A()=0 :PRINT “END OF MFD’ :STOQP

140 LET J=1 PT(5)=256%A() :GOSUB 800 :REM READ NEXT MFD BLOCK

150 PRINT (A(J)65535)/256°, QA, :TAB 10 :PRINT A(J+1)

160 LET J=J+4 :IF J<256 :GOTO 150

170 GOTO 130

800 LET P=PT(5) :READ #5 A(): RETURN

810 PRINT ‘?ERROR ‘QE° READING DISK BLOCK “P/256 :STOP

>RUN ;
1, 1 2

16, 16 990
16, 17 1000
END OF MFD

>

File Structures and the MOUNT command (MON only)

The MONITOR system of file directories is written not on =
physical device but on a logical entity called a STORAGE STRUCTURE.
This is a virtual device providing a vector of bytes numbered from
zero upto some maximum depending on the capacity of the medium,
The device is randomly accessible and word addressable. Each
storage structure is mapped onto one or more physical device units
by the MONITOR software:

a FILE STRUCTURE is a system of directories, bitmaps, etc.
which is written on a

STORAGE STRUCTURE, a virtual device which is mapped by the
monitor onto

oneg or more physical device units.

Each file structure has its own name which can be upto six
alphanuneric characters long. This name need not bear any
resemblance to the names of the devices on which the structure is
stored. A file structure residing on a particular diskpack might
be mounted one day on unit RPAQ and the next day on unit RPA2. It
could have the same f'ile structure name on each occasion.

Physical unit names are listed on page 59.

In practice nearly all jobs are concerned with accessing files
rather than physical devices, so most INITs will be specifying file
structure names rather than physical unit names. For example the
command INIT #5 ‘DATA: will connect channel 5 to the file
structure called DATA, and the program need not know which physical
unit the volume is mounted on.

The MOUNT command provides a way of telling the system that a
file structure is present on a particular physical unit,

PDP-11 AIMS PROGRAMMING MANUAL Page 79
Random Access Filing - section 14

MOUNT #[channel] [functicon ne] [se]
The functions are:
0 MOUNTs a file structure and defines its name

1 DISMOUNTs a file structure, making it inaccessible

Function 0 - MOUNT

Function 0 causes the monitor to take note of the file
structure already existing on a particular volume, [se] specifies
the physical unit name where the volume is mounted, and also the
logical name by which the associated file structure is to be known.
[se] should evaluate to a string of the general form

[physical unit name]:[structure name]

For example MOUNT O ‘RPA1:FRED” makes files on RP11 disk drive
number 1 accessible via the file structure named FRED. After this-
operation any job in the system may execute an INIT “FRED: " command
to access the file structure (subject to user capabilities).

The execution of a MOUNT command causes the monitor to read

relevant directory information from the volume. The command will
fail if the volume does not have a recognised directory.

Function 1 - DISMOUNT

Function 1 is used to withdraw a file structure from use.
[se] should evaluate to a string of the form

[file structure name]:

The command will fail if the file structure 1is currently being
referenced by any Jjob in the system. If the structure is not in
use the file structure name is deleted from the monitor’s table of
structure names, and all monitor information about the file
structure (eg: bitmaps) is removed from memory.

After a DISMOUNT the file structure can nc longer be accessed
by name, and any job attempting to INIT it will get a device not
found error. The corresponding physical devices can still be
accessed in mode 5 (subject to user capabilities).

Note that the DISMOUNT command only operates on resident
monitor data structures, it does not affect the state of the files
cn the storage media.

Warning! when exchanging diskpacks it 1s essential to
DISMOUNT the o0ld pack before removing it and bringing up the new
one. Failure to do so may result in the new pack being overwritten
with information pertaining to the old one.

The AIMS executive program provides MOUNT and DISMOQUNT
commands for convenience. The STRUCTURES and RESQURCES commands

PDP-11 AIMS PROGRAMMING MANUAL Page 80
Random Access Filing - section 14

both give a list of the currently existing structures.

FAST ACCESS DIRECTORY - MODE 6 QPEN (DOS only)

The DOS file handling operations are rather inefficient and
involve several disk transfers to find a given file. This can
cause unwarranted delays when several data files have to be opened
one after another. Programmers may avoid this to some extent by
dedicating I/0 channels to the most often used files. These
channels may then be opened once at the beginning of the program
and will give fast access to the data files thereafter. But this
technique cannot be used if there are more than two or three such’
files since there are only 8 channels and 1, 2 and 4 are usually in
use for terminal I/0 and program overlaying.

The mode 6 OPEN, which is an AIMS option, eliminates this
problem for contiguous files. This option provides an in-memory
directory which stores the particulars of the most often referenced
files. The OPEN command in mode 4 or 6 searches this directory
before searching the device. If the file is in the fast access
directory the OPEN is instantaneous and does not involve any device
transfers. If the file is not found in the fast access directory
the device is searched in the normal way.

The fast access directory can only hold a small number of
files. This number is a configuration parameter which is normally
set to 32. The files can come from any mixture of disks. The
directory is initially empty when the system is started. The
programmers control which files get entered into the directory as
follows: only those files that are OPENed in mode 6 are entered
into the directory. Once a2 file is in the directory both modes 4
and 6 benefit from the faster access.

Files are entered into the directory in a circular fashion, so
that if the directory capacity is exceeded the oldest entry will be
overwritten.

Warning! there is no automatic way of deleting entries from
the fast access directory when a diskpack is dismounted. If you
change a diskpack without clearing the fast access directory the
system may continue to access the old files on the new diskpack,
causing catastrophic corruption of the file structure,

In order to get the full benefit from the fast access
directory, it 1is essential to avoid channel INITs, since the INIT
operation itself involves DOS overlaying activity. It is necessary
for a channel to be INITed before it can be OPENed, but this need
‘only be done once at the beginning of the program, or only when
switching to another device. Since the RELEASE operation
disconnects the channel from the device, RELEASEs should also be
avoided. Thus the correct procedure is ‘

At beginning of program:

INIT channel to required device, or ensure channel
is released if you want the default device.

PDP-11 AIMS PROGRAMMING MANUAL page 81 ‘
Random Access Filing - section 14

To open the next file:

OPEN #[{channel] 6 [filename]
Since the OPEN command performs a CLOSE implicitly, it 1is not
necessary to CLOSE the channel before going on to QOPEN the next
mode 6 file, o

You can examine the mode 6 directory by giving the EXEC
command

.DIR M6:
Note that mode & is really a fast way of opening contiguous

files in mode Y4, The fast access directory does not work for any
other mode of opening and does not apply to linked files,

PDP-11 AIMS PROGRAMMING MANUAL Page 82 »
Program Filing - section 15

| 15, FACILITIES FOR FILING AIMS PROGRAMS |

CALL AND SAVE

The SAVE and CALL commands allow programs to be saved as text
files 1in a format that is compatible with other DOS programs such
as the Editor and PIP.

SAVE #[ne1] [filenamel,[ne2],[ne3]

Creates the specified file on the device assigned to <channel
[ne1], deleting any previous file with that name. Writes program
lines [ne2] to [ne3] inclusive to the file in the same format as
that produced by the LIST command. Closes the file.

If ,[ne2],[ne3] are absent, the whole program is saved,

If #[ne1)] is absent, channel 3 will be used.

CALL [ne1] #[ne?2] [filename]

Opens the specified file on channel [ne2]. This file must be
in ASCII format. Reads the file line by line and CODEs each line.
This adds the CALLed program to the program already in memory (if
any) 1in an interleaving mode. Existing lines are unchanged unless
they have the same number as lines of the called program.

When the end of the file is reached, control goes to the line
following the CALL command if [ne1] is absent. Otherwise a RUN
[ne1] is performed, except that system and user-defined simple
variables are not changed. Array names are defined as with an
ordinary RUN.

Since SAVE operates by translating the binary-image of the
program into a text file, the values of variables and the contents
of arrays are not written to the file and will not be restored when
the file is later CALLed.

LIBRARY DTRECTORY

Directory [16 17] 1is designated as a library area where
commonly used programs may be kept. The CALL command will search
this area if the specified file is not found in your own directory.

PDP-11 AIMS PROGRAMMING MANUAL Page 83
» ’ Program Filing - section 15

LOAD AND DUMP

The LOAD and DUMP commands transfer a binary-image of a
program between the user memory area and a specified region of a
contiguous file. The transfer begins at the point specified by the
channel pointer, and ends when the whole program has been
transferred. The channel pointer is updated to point by the amount
transferred. (channel pointers are explained under ‘Random Access
Filing in section 14)

DUMP #[channel]
: LOED [ne1] #{channel] [ne2] [ne3]

All the arguments are optional. If #[channel] is omitted, channel
4 is assumed. If [nel1] is present and non-zero, it specifies the -
program line number at which execution is to begin. If [ne2] [ne3]
are absent, the LOADed program will completely overwrite the
program that executes the LOAD command. If [ne2] [ne3] are
present, they specify a range of lines of the existing program that
are to be preserved. The range consists of 1lines [ne2] through
[ne3]-1 inclusive. These 1lines will be inserted into the LOADed
program, overwriting any LOADed lines with the same numbers. This
enables selected string or numerical data to be passed from one
program overlay to another. ‘

Any number of program overlays may be stacked one above
another in one file. It is the user’s responsibility to remember
the position of each overlay in the file, and to set the channel
~ pointer appropriately before executing a LOAD or DUMP command. If
the pointer is set incorrectly, causing garbage to be read into
 memory, AIMS will reload EXEC. Note that the pointer values are
assumed to be of the form [file block number]*[blocksize] and if
the pointer is not a multiple of [blocksize] it will be rounded
down to the nearest multiple. [blocksize] is 64 for the RF11
fixed-head disk, and is 256 for most other devices. DOS: After a
LOAD or DUMP the pointer is incremented by the number of words
transferred rounded up to the next multiple of [blocksize].

Initially the user must create a contiguous file of a suitable
length by means of the ALLOC command. Before the first LOAD or.
DUMP operation the user must open the file by means of the OPEN
command in mode 4 or 6. Subsequent LOADs and DUMPs are then.
performed directly between the user memory area and the device with
zero directory overhead.

The following example shows how to create a file containing
three program overlays. The three programs are assumed to be
available as ‘saved’ files PROG1, PROG2 and PROG3. The RK11 disk -
is assumed so that [blocksize] is 256.

>ALLOC 48 #4 °PROG.DMP” :P ‘0K

0K [allocate a 3072-word contiguous file
>OPEN #4 4 °‘PROG.DMP’ :P’OK

0K [open it in mode U4

>CLEAR

>CALL °PROG1 [call in the first part of the program

>DUMP #4 :P PT(4) l[dump it

PDP-11 AIMS PROGRAMMING MANUAL Page 84
Program Filing - section 15

1024 ‘ [clearly it is under 1024 words long
" >CLEAR

>CALL °PROG2 [call in the next part

>DUMP #4 :P PT(4) [dump it, starting at word 1024 of the
1536 [file. This one is only 512 words long

>CLEAR

>CALL “PROG3 [call in the last part

>L PT(4)=PT(Y4)+512 :DUMP #4 :P PT(4) -
3072 [last part is 1024 words long

>L PT(U4)=0:LOA1T #4 [load and run the first part

In this example we incremented PT(4) after the second DUMP to
reserve a 512-word area on the file in case PROG? is expanded in
‘the future. We were also careful to print PT(4) after every DUMP
command so that we know where each overlay begins.

When modifying an existing overlay of a dumped file it 1is
useful to know the exact size of the overlay before dumping, so as.
to avoid overwriting the following overlay. Whilst the system
function UC() gives the overall size of the program in memory, the
size of the dumped overlay may be significantly smaller.
Unfortunately it 1is not easy to calculate the exact size in
advance. It is approximately (UC()-QS)/2 words, but this estimate
cannot be relied upon. There are three ways of getting round this
problem: (1) reserve extra space for each overlay so that an
increase in size does not affect the next one, (2) dump the overlay
into an auxiliary scratch file and print PT(4) to find out the
exact size, (3) be prepared to re-dump all the overlays. This may
be done effortlessly by using an OBEY file as described in section
2h,

Unless disk space is limited it 1is probably easiest to
allocate a fixed amount, say 1024 or 2048 words, for each overlay.
"The N'th overlay may then be accessed in a standard way. Since
contiguous files are of fixed length, it is also wise to ALLOCate
space for one or two more overlays than are planned. Otherwise it
Wwill be necessary to delete the file, re-ALLOCate it, and re-DUMP
all the overlays when you run out of space,.

It is recommended that LOAD and DUMP be used for normal filing
and overlaying of frequently-used programs, and that CALL and SAVE
are used to keep permanent back-up copies of all programs.
Save-files have the 1long term advantage that they are compatible
with future versions of AIMS, whereas dump-files may become
unuseable due to changes to the internal AIMS coding. If this
occurs, a dump file can be converted to the new coding by 1loading
and saving it under the old AIMS, and calling and dumping it under
the new AIMS.

PDP-11 AIMS PROGRAMMING MANUAL Page 85
Errors - section 16

" 16. ERRORS |

Error conditions fall into two classes:-

1)} ERRORS: These are caused by incorrect use of the language or
by 1logiecal mistakes in your program. For example a
badly specified command or a reference to a variable
that has not yet been set. In these cases the program
will almost certainly need correcting and so AIMS
normally stops and prints an error message.

2) FAILURES: These occur when a correctly written program
encounters an unexpected event. A typical example is
an attempt to open a file that does not exist. This
is not necessarily an error, it may have been caused
by a user typing the wrong name. In these cases the
command will fail causing execution to “fall through’
to the next line of the program (see page 50). If a
command can fail for several reasons these are
distinguished by.a code number that is set into the
system variable QE.

As explained in section 11, an AIMS program may trap all
errors by setting the system variable QQ to the line number of an
error handling routine., If an error occurs this routine will be
entered via a “GOSUB QQ° with an error code in QE.

If QQ is zero, a standard error message is printed and the
program stops. This message is of the form

? [error letter]
{the line that caused the error]

A question mark is inserted in the line to mark the point at which
the error was detected.

CODE LETTER MEANING

No space left.

Command word not recognised

Error in syntax

Value is outside allowed range

Reference to undefined variable

Reference to non-existant line

Referenced line is the wrong type

GOSUB overflow or RETURN underflow

Bad function or array reference

Error in I/0 operation

Loss of accuracy in calculation

Use of control-C abort key

No more memory available for this job

Command not implemented

Inadequate capabilities. Attempt to perform a
privileged operation which the appropriate bits of
JS(0) do not allow

15 F No more space left on storage medium.

WwWoao~NNovnN Ewh =20

TN OOH QLKMo ITOm

PDP-11 AIMS PROGRAMMING MANUAL Page 86
Errors - section 16

Note that QQ only traps the errors tabulated above. It is not
possible to trap failures using QQ.

"QA when execution Stops

I1f execution stops due to an error, the system variable QA 1is
set to the number of the line containing the error.

If the program stops due to a STOP command, QA is set to the
number of the line containing the STOP command. '

If the program stops due to the user typing "C, QA is set to
the number of the line that was about to be executed. In this case
execution may be resumed at the correct point by giving the command
GOTO QA (assuming the user has not changed QA since the stop).

A program that stopped due to an error or a STOP command is
best resumed by the command GOTO NL(QA) which will continue
- executlon at the line following the error or STOP command. A
GOTO QA would merely re-execute the offending line, possibly -
executing part of the line a second time, and certainly causing
another error or stop.

The DO command adds a complication to all the cases described
above: if a program stops during execution of one or more DO
commands, QA is always set to the number of the line containing the

"highest-level DO command. If the stop is due to an error or C,
the relevant program line is normally printed, and this will be the
line indicated in the preceeding paragraphs. With DO commands this
line will probably differ from that indicated by the value of QA.
If DO commands are chained several levels deep, a "C c¢an interrupt
execution at any level, and the only indication of the interruption
point is the program line printed. Execution of such chains cannot
be correctly resumed, except by restarting at the line containing
the highest-level DO command. :

Examples

SLIST
5 $HI
10 ARRAY 4 5
100 PRINT "TIME IS “T"O°CLOCK"
>RUN
2U
100 PRINT "TIME IS ’T?“0°CLOCK"
>P QA QE
100 4
> [the variable T is undefined
>PRINT A(6)+2
2V
0 PRINT A(6)7+2 [subseript 6 is larger than array dimension
>PRINT $A
2T
0 PRINT $A? [line A is not a dollar-line
»PRINT 5(2)
?T

PDP-11 AIMS PROGRAMMING MANUAL Page 87
: Errors - section 16

Q PRINT 5(2)7? [line 5 is not an array
>PRINT $6 %5
7L

0 PRINT $6? %5 [line 6 does not exist

Note that the letter following the ? indicates the type of
error as given in the table above., It is important to remember
this letter if you are going to ask someone else to explain an
error. The offending program line is printed and sometimes a 7 1is
inserted to mark the error point. 1In this case the error is always
to the left of the mark. It has been found in practice that
programmers often assume that an error is of a certain type without
looking at the error letter actually printed. This procedure is
- suboptimal. See also the discussion of array errors on page 21.

ABORT KEYS

control-C

This is the normal way to stop a running program. AIMS will
return to edit mode and will print the program line it was
about tc execute. Also causes error 11 as noted above. If
error traps are enabled this effectively causes an interrupt
to line QQ of the AIMS program.

If you type control-C when the program is waiting for
terminal input it 1is not effective until you press
carriage-return to terminate the input-wait.

control-0
Aborts a running AIMS program and returns to the AIMS
executive. Equivalent to execution of an EXIT command in
the program.

PDP-11 AIMS PROGRAMMING MANUAL Page 88
Errors - section 16

FAILURE ERROR CODES RETURNED BY MONITOR (MON only)

When a command fails the monitor returns an error code in the
system variable QI. This code is in two parts: QI = 250%KR + EC.
EC identifies a general class of errors, and ER identifies each
type of error uniquely. Programmers will f{ind debugging much
easier if they print QI/256 and QA and take note of their values.
It has been found in practice that programmers often assume that a
failure is of a particular type when in fact it is of another type..
Failure to observe QI assists this process.

If you think that the monitor returns a misleading code in QI
under certain circumstances this should be reported to Arbat.

Under DOS an error code is returned in QE rather than QI. To
maintain compatability AIMS V5 translates the MONITOR error code
into DOS form and stores it in QE. Hence programs originally
written toc run under DOS should run ok under MONITCR. WNew programs
written for AIMS VS should use QI rather than QE because the QI
codes are more specific and reliable,

The possible EC and ER codes are tabulated below. Note that
all failures are uniquely ldentified by the ER value, and the EC
value may be regarded as a classification of the ER values. There
are however some failure conditions that are not specifically
covered by an ER code, and these only return an EC code (leaving ER
zero). All codes are even numbers, and EC is never zero.

NAME QI/256 REM FAILURE CONDITION

EC.PGM 2 Error in program

ER.MIO 16 2 Illegal MIQ code

ER.BOB 17 2 Parameter block address out of bounds

ER. AOB 18 2 Particular argument address out of bounds
EC.VAL 4 Illegal value

ER. COM 24 4 Invalid command code
ER.CHA 25 4 Invalid I/0 channel number

EC.IFN 6 Inappropriate function

ER.CNO 32 f Channel not open

ER.,IMD 33 6 Channel open in wrong mode

ER.IDF 34 6 Illegal function for this unit or structure
ER. IFF 35) Illegal function for this file

EC.RDY 8 Device not ready

ER.DWN Lo 8§ Device down

ER.OFL U1 8 Device offline

FR. GON 42 8 Device withdrawn

ER.WLK 43 8 Device write-locked

EC.END 10 End of data (including end of wmedium, end of

file)

EC.TRA

ER.DAT
ER.BMR
ER. BMW
EC.SPA
ER.FUL
ER.QEX
ER. ALC
EC.5YN

" ER.DEL
ER.LEN

EC.PTH
ER.DNF
ER.DPFR
ER.DAS
ER.UNF
ER.ARU
ER.APR
" EC.FIL
ER.FNF
ER.FPR
ER.FLK
EC.FEX
EC.CAP
EC.NIM

In

PDP-11 AIMS PROGRAMMING MANUAL Page 389

£l
€5
66

T2

80
81
82
83
8l
85

88
88
80

the

12

12
12
12
14
14
14
14

16

20
20
240
20
22
24

26

Errors - section 16
Error during data transfer, see Channel Status
word QX(¢,5) for further details
User data, or UFD transfer
File system bitmap read
File system bitmap write
Hot encugh space on device
Storage medium full
User’s quota exhausted
Insufficient contigucus space available

Syntax error in file or device specification

Illegal delimiter character
Name or path too long

Cannot access path

Device or structure not found
Device or structure protected
Device assigned to somecne else
No such device or structure
File area not found ‘
File area protected

Canot access file

File not found

File protected

Someone else has exclusive access to file
File already exists

Inadequate capabilities

Facility not implemented in this system

' case of the EC.RDY and EC.TRA errors,. further
information about the state of the device can be obtained from the
Channel Status word QX{(e¢,5}.

PDP-11 AIMS PROGRAMMING MANUAL Page G0 ;
Errors - section 16

ERRORS FROM INPUT/QUTPUT COMMANDS (mainly DOS)

These events are all failures, except those marked with a ?
which are errors as described above.

CONTEXT EVENT MEANING

#lne) 7V Channel number [ne] less than 1 or greater than 8

INIT 7Y ' Not enough memory left for channel control-block

INIT fail No such device (QE irrelevant)

QOPEN 4 Not enough memory for data-buffer

OPEN fail Error code in QE (see below)

INPUT 7?1 Channel not INITed, or not QPEN, or device not
capable of input

INPUT fail Error code in QE (see below)

PRINT 71 Channel not INITed, or not OPEN, or device not
capable of output

LOAD 7Y Not enough memory to load program, or hot enough

for use by DOS
LOAD . Attempt to load garbage
LOAD fail Error code in QE (see below)

CONTEXT QE/256 MEANING (DOS)

OPEN in mode 0 (=openi)
2 File nonexistant, or being modified by someocne
else, or nonexistant directory

3 More than 62 OPENs without corresponding CLOSE
6 File protected
T Device not capable of input
OPEN in mode 1 (=openo)
2 File already exists
7 Device not capable of output, or directory is
protected against file creation ,
11 No user file directory for given [dept user]
13 Illegal file name
OPEN in mode 4 or 6
13 Illegal file name

for other error conditions, QE is bit coded as follows
bit 6 0 file is not contiguous
bit 7 0 file does not exist

PDP-11 AIMS PROGRAMMING MANUAL Page 91
Errors - section 16

CONTEXT QE/2%6 MEANING (DO3)

ALLOC
2 File already exists
T Directory protected against file creation
10 Directory full
11 No file directory for glven [dept user] number
13 Illegal file name
DELETE
2 File does not exist anyway
) File protected
12 File in use
13 Illegal file name
RENAME
2 0ld name does not exist
2 New name already exists
6 File protected
14 File in use
15 Illegal file name
INPUT A
bit coded as follows:-
64 End of file, or end of medium
32 Device parity error
4 Character parity error
2 Checksum error
1 Invalid line terminator, or not enough space to
read in complete line
PRINT

?F Device full.
Apart from ?F, the PRINT command always succeeds.
READ and WRITE
Bit coded as follows:~
32768 Hardware error such as parity or seek failure
16384 End of medium (see note below)

The end-of-medium bit is only set for sequential media 1like
paper tape. If you are using mode 5 to access bulk-storage devices
like disks and DECtape, an attempt to access beyond the end of the
medium will cause a fatal DOS error. When using mode Y4 or 6 to
access a contiguous file, AIMS will safely trap any attempt to
access beyond the end of the file, but the end-of-medium bit is not
"set. So programmers should test the harware error bit first and
assume an end-of-file condition if the bit is not set.

Care should be exercised when testing QE for error codes.
Codes that appear in QE/256 should be tested as such, since the low

order bits of QE may contain random junk. Bit-coded conditions
should be tested using the logical & operator rather than testing
for equality, since QE may contain other random bits. Note also

that if bit 32768 is set, QE will appear to be negative. If you
intend tc print QE it is advisable to mask it with a sixteen bit
mask like 1_16-=1.

PDP-11 AIMS PROGRAMMING MANUAL Page 92
Errors - section 16

TRAPPING ERRORS WITH QQ

In a production environment is is often desirable to prevent
program errors from being communicated to the end-users of the
system. This may be done by setting QQ non-zero, Should an error
occur, AIMS will GOSUB QG without printing any message. The
. program at line QQ may then take corrective action. '

The programmer should exercise exteme care when using this
error trapping facility since it can give rise to subtle problems
that are not easily diagnosed.

The following example shows an error trap handler that stops
the current activity if the user types control-C, and exits to' a
special error recovery overlay if any other error occurs:-

100 LET QQ=900

900 RETURN :IF QE=11 :PRINT °STOPPED" :LET QG=900 :GOTO 500
910 PRINT °‘FATAL ERROR ‘QE’ AT LINE °QA
920 LET PT(4)=4096 :LOAD 1

It is possible to resume execution after an error trap by
using the stacked return line number inconjunction with the GOTO or
RETURN commands, or using the NL() function to skip a trap-causing
program line. Note however that programs containing DO commands
cannot always be correctly resumed because the stack does not
contain sufficient information.

PDP-11 AIMS PROGRAMMING MANUAL Page 93 :
Command Summary ~ section 17

[17. COMMAND SUMMARY |

ACCEPT ?[ne] [assignment list]

Reads a single character from a terminal keyboard.
ACOMP A(J) B(K) N

Coﬁpares the block of N cells in the two arrays.
ALLOC [ne] #[channel] [filename]

Creates a contiguous file of length 64*[nel] words on the device
assigned to [channel], with name [filename].

AMOVE A(J) B(K) N
Moves the block of N cells from A(J) to B(K).

BYE [ne]
Logs job [ne] off the system, Default job is self.

[{number1] ARRAY [name] [number2]
Sets up an array in line [number1] of the program. [name] is a
1 or 2-character variable name which is automatically assigned
the value [number1] by the RUN command. [number2] specifies the
highest legal array subscript. The array will have [number2]+1
cells numbered from 0 through [number2].

CALL [start] #[channel] [filename]

Calls the specified program file and performs a °RUN [start]”,
except that previously existing simple variables remain defined

CLEAR [neti],[ne2]

Cléars program lines [nei1] through [ne2].
CLOSE #[channel]

Closes the specified channel. Default is U,
CODE [se] |

Obeys the string [se] as if it had been typed as an AIMS
comnand, :

CORE [ne]
Ad justs the user’s memory allocation so that the free space as

given by @S is at least [ne] characters. Command will fail if
insufficient memory available.

PDP-11 AIMS PROGRAMMING MANUAL Page 94
: Command Summary - section 17
DDOPR #[channel] [command sel>$[reply nel
Performs device-dependent operations.
DELETE #[channel] [filename]
| Deletes a file from the device assigned tc channel.
DIAL [dialler ne] [phone number se]
Initiates a bhone call,
DO [ne]
Executes program line [ne]. The 1line is executed as if it
occupied the position of the DO command. Control returns to the
line following the DO command. .
DUMP #[channel]
Dumps the whole program in binary-image form.
EXIT
Returns control to the AIMS executive program EXEC.
GARB |
Performs a garbage coilection.
GOTO [ne]
Transfers control to line [ne] of the progran.

GOSUE [ne]

Stacks the number of the current line and transfers control to
line [ne].

INPUT [echo] [timeout] #[channel] ?[ne] [assignment list]
If ?[ne] is present, prints line $[ne] as a cue to the user. If
?[ne] 1is absent, prints ®# as a cue, Reads a line of text from
the specified channel, default 2., Decomposes the string as for
the PUT command. h
IF [ne] ...

Continues execution of the current line if the value of the low
order 16 bits of [nel is non-zero. :

INIT #[channel] [devicename]
Initialises the channel and attaches the specified device.
LET [namei]=[ne1] [name2]=[ne2] ...

Assigns the value of [neil1] to the variable [name1], and so on.

PDP-11 AIMS PROGRAMMING MANUAL Page 95
Command Summary - section 17
LINE [line ne] [funection ne] [argument]

Command for controlling communication 1lines and terminal
interfaces.,

LIST [ne1],[ne2]
Lists lines [ne1] through [ne2] of the program on channel 1.

LOAD [start] #[channell [from] [to]
Overlays the AIMS program area with the binary-image stored in
the file open on [channel], Starts the program at line [start].
Lines [from] through [to]-1 passed as arguments.

... :LOGP
Executes the current program line again. Only makes sense as
the last command on a line. Quicker than a GOTO. May be put in
by terminating the program line with colon.

MOUNT [function nel [se]

Mounts/dismounts detachable storage media, and associates
logical file-structure name with physical device. :

MTAPE #[channel] [function ne] [argument ne]
D0S: Device-dependent control command for use with magnetic
tape. Returns tape unit status in QE and residue count in QA
(if applicable).

OPEN #[channel] [mode] [filename]
Opens the specified file.

PACK A(J) [separator sel,[neil] [ne2]

Packs dollar-lines [ne1] through [ne2] into array, using
[separator se] to mark the end of each string in the array.

PRINT #[channel] [se]
Writes the string [se][newline] onto [channell, default is 1.
PRINT #[channel] [se],
As above, but does not append [newline].
PUT [se] [search mode] [destipation] [look for] [replacement]
Decomposes the string [se] as specified.
READ #[channel] [array name]([subscript])} [V5: opt bytecount]

Fills the array in line [array name] with binary data read from
the file open on [channel],

PDP-11 AIMS PROGRAMMING MANUAL Page 36
Command Summary - section 17
RELEASE #[channel]
Performs a CLOSE if channel open. Then releases the device.
REM [comment]
[comment] is igﬁored. Control goes directly to next line.
RENAME #[channel] [newname],[oldname]

Renames a file. [cldname] and [newname] are separate string
expressions, separated by a comma.

RETURN [ne]
Unstacks the line number previously stacked by the 1last GOSUB
command and assigns it to the system variable QA. Transfers
control to the next line greater than or equal to QA+[ne]. If
[ne] is absent a value of 1 is used. ’

RETURN :

Unstacks the return line number into QA and continues executing
the current line.

RUN [ne]
Deletes all simple variables, sets all system variables to their
default values, and performs ARRAY name assignments. Then
starts the prcgram at line NL([nel~1).
SAVE #[channel] [filename],[ne1],[ne2]
Saves program lines [ne1] through [ne2] as specified text file.
SCAN [recsize ne] [keylen ne] [array] [mocde] [key ne] [count]
Scans the array for the specified key and sets QA.

SETNAM [se]

Sets the job’s program name to the first six characters of [se].
This name is used by the SYSTAT printout. o

- STOP

Stops execution of the AIMS program and sets QA to the number of
the stop line. o

SWIFT [line ne] [function nel] [arg]

Special command for communication with S.W.I.F.T message
switching network.

TAB #[channel] [ne] [se]

Prints the {[se] repeatedly until column [ne] 1is reached.
Default channel is 1. Default [se] is one space.

PDP-11 AIMS PROGRAMMING MANUAL Page 97
~Command Summary - section 17
UNLESS [nel ...

Continues execution of the current program line if the value of
[ne] is zero.

"UNPACK A(J) [separator se],[nel] [ne2]

Unpacks array into block of strings in lines [nel] through
[ne2], wusing [separator se] to detect end of each string in the
array.

VGARB

Deletes all user-defined variables that are not referenced in
the current program.

WAIT [ne] [wake mask ne]

Pl

Suspends execution for [ne] tenths of
specified event happens.

a second or until

WAKE [se]
Wakes all jobs named [se] if they are wake-enabled.
WRITE #[channel] [array name]([subscript]) [V5: opt bytecount]

Writes the content of the array in line [ne] in binary to the
file open on [channel].

X [number] [look for] [replace by]

Changes [look for] to [replace by] in 1line [number] of the
program and prints line [ne].

PDP-11 AIMS PROGRAMMING MANUAL Page 08
Executive - section 18

[18. AIMS EXECUTIVE PROGRAM ~ EXEC |

EXEC is a privileged AIMS program that is run when you have
logged onto the system or whenever you give the EXIT command. The
main purpose of EXEC is to provide an environment in which the user
may quickly and easily develop his own AIMS programs. There are
EXEC commands for loading, running, calling, copying, deleting and
renaming files, for listing device directories, and for examining
the state of the system.

Most EXEC commands may be abbreviated to a single letter. In
the command descriptions the element [filename] denotes a file
name, with optional device name, unit number, file extension, and
department/user numbers. The full syntax of a [filename] is

‘[dev][unit]:[name].[ext][[dept user]]
For example:
FRED FRED.BAS DT2:FRED FRED[16 16] DK1:FRED.BAS[L4C u2]

Some commands allow a class of files to be specified rather than
Jjust one. This is done by means of a [filespec]. The syntax of a
[filespec] is identical to that of a [filename] except that the
character ¥ may be substituted for either the [name] or the [ext]
fields. For example: :

FRED.* denotes all files whose name is FRED, with any
extension.

® _BAS denotes all files whose extension is BAS, with
any name.

Most of the commands that take a [filename] as an argument
- will also accept a list of [filename] fields separated by commas.,

It is sometimes necessary to qualify a command by specifying
some optional feature. This is done by means of z “switch’, which
is defined to be of the form /X where X is the name of the switch.

Whenever EXEC is waiting for a command it prints

You can get a help message for any command by typing the command
word followed by a question mark. For example

.REN ?

will give help on the RENAME command. The following commands are
allowed:-

PDP-11 AIMS PROGRAMMING MANUAL Page 99
Executive - section 18

CALLING PROGRAMS

RUN [filename] Loads and runs a dumped AIMS program. The default
file extension is DMP. This command is used for
running most production programs. The library
area [16 17] is searched if the program is not
found on your own area, Eg:

.R ED
EDITOR V1dJ
FILE:

EXECUTE [filename]
* Calls and runs a saved AIMS program. Default file

extension is BAS. The 1library area [16 17] is

searched if the the program is not found on your

owWn area, ‘
EXECUTE E command without a filename enters AIMS edit mode

allowing program development. Eg:

.E v

>

LOAD [filename] As RUN except it does not start program execution.
This is used to bring a dumped program into menmory
so that it can be modified.

CALL [filename] As EXECUTE except it does not start program
execution. This is used to bring a saved program
into memory so that it can be modified.

All of the above commands may be abbreviated to a- single letter,
Any command may be prefixed with the letter Z to give the program
- executive privileges if these are allowed. (Ie: ZR, ZE, ZL AND Z()

If the executive does not recognise a command word, it treats
the word as a filename and attempts to RUN the corresponding .DMP
file. This permits user-defined extensions to the eaxecutive
command repertoire. For example, since ED is not a valid full or
abbreviated executive command, the command

.ED

is equivalent to .RUN £D and will cause the file ED.DMP to be
loaded and executed.

PDP-11

FILE CONTROL

AIMS PROGRAMMING MANUAL Page 100 .
. Executive - section 18 -

COPY [destination]=[source]

Switches:
/U0

Examples

Copies a file from one place to another.
[source] and [destination] are [filename]
specifications.

Update. 1IE. if [destination] file already
exlsts delete it before copying. Without the
update switch, an existing contiguous file may be
copied into, provided it is large enough. /U
forces re-~-ALLOCation of the file.

Sets QG to n. Useful when copying files
containing very long strings.

.COPY TEST.BAS=ABC.BAS
.CO DK1:TEST.BAS=ABC.BAS

.CO TEST.

BAS=ABC.BAS/U [delete TEST.BAS if necessary

.CO DK1:ACCTS.SAV=DKO:ACCTS.DAT
.CO DK1:=MEMQ.TXT [destination name same as source

.CO PP:=MEMO.TXT[16 17]

.CO FRED.
DEL [filespec]
Switch:
/P
DIR [filespec]
Switches:
/F
/S
/0

FREE [dev]:
MAP [dev]:

RELEASE

REN [newname]-=

TYPE [filename

Switches:
/Lin

/Win
/T:in

DAT=SAM.DAT/U "[reallocate FRED.DAT
Deletes the specified files.
Print names of deleted files.

Lists the specified subset of the user’s
file directory.

list in abbreviated (Fast) format
list in expanded (Slcw) format
list UFD entry in oectal

Gives the number of free blooks‘left on
device [dev].

Prints a map for device [dev] showing which
physical blocks are occupied by files.

Releases I/0 channels 5 to 8. Useful
for closing files left open by last
program. :

[dev]:[oldname]
Renames the specified file. [newname] may
include an octal <protection> field.

] Lists any text file in a paginated format.
Useful for getting neat listings of saved
AIMS programs,

Length of page in lines. Default 69.

The number of lines of text appearing will be 7
less than this since the heading takes 7 lines.
Margin. Defines width of paper. Default 72.
Sets tab width to n characters.

PDP-11 AIMS PROGRAMMING MANUAL

/G:in

VIEW [filename]

Page 101

Sets QG to n. Useful for typing files
containing very long strings.

For viewing a file on a visual display. Pauses at
the bottom of each screen; press space to get next

KILL Jn
KILL Kn
METER
Options:
T
|
C

weighted with
AIMS command utilisation (in some systems)

screen. Will also search for strings, Type
VIEW ? for 1list of switches.

ADMINISTRATIVE

BYE Logs the user off the system.

CPUTIME Prints the user’s runtime

DAYT IME Prints the daté and time of day.

HELP Prints a list of all EXEC commands.

JOB Gives a summary of the state of each job.

JOB n Gives summary for job number n only.

JOB . Gives summary for your job only.

Options: any or all of JLAMSIRC to select subset and order

of printout. J ? for further information.
Forcibly logs out job number n.

Forcibly logs out the job controlled by
console number n.

Prints accurate system load statistics.

Totals since system started
Mean in last 1-second period, exponentially

10-second time constant

MOUNT unitname:structurename

MON: Makes structure accessible.

DISMOUNT structurename

RES OQURCES

SCHEDULE

SCHEDULE N
SCHEDULE R

SEGMENTS

options:

MON: Makes structure inaccessible.
Lists the resources available on the
system., Devices, memory size, etc.

Prints current access restrictions
from SS(1).

Sets normal access

Restricts access to departments<17

Gives position, size and state of all
memory segments.

S Name, origin and state in 3ID order
M MAP OF PHYSICAL MEMORY

PDP-11 AIMS PROGRAMMING MANUAL Page 102

Executive ~ section 18

SET Allows on-line alteration of varinus
system parameters, Options are:
SET ECHO # - turnsa echoing on and off
SET ICASE * ~ controls lower-to-upper case input conversion
SET OCASE * - controls lower-to-upper case output conversion
SET PARITY ¥% - turns even-parity printout on and off
SET PAUSE * - turns "S$/°Q pause mode on and off
SET IMAGE * - turns line image mode on and off
SET SPEED -~ selects baud rate
SET FILL - sets number of filler characters
SET MEMMAX - sets system-wide per-job memory limit
* denotes ON or OFF as appropriate,
- SYSTAT Gives a summary of the state of the system,
Options:
C Memory utilisation
E Error statistics
S Swapping statistics
T Run and up times
X Extra information

Default: all except X

TELL [destination] [message]

Sends a one-line message to the specified
place. [destination] may be Jn for job
‘number n, or Kn for console number n.

UFDS [dev]: Lists the master file directory giving

the number of files and amount of space
being used by each [dept user] number.

UNLOCK [filespec]

VFIDIR

WHO

Unlocks the specified files. Files are “locked” when-
they are in the process of being created. If the system
is stopped due to a crash or operator intervention whilst
a file 1is 1locked, the file will remain locked when the
system is next started. This is a nuisance because
locked files cannot be deleted or renamed. The UNLOCK
command is provided to cure this problem. The DIRECTORY
listing command will show if a file is locked.

Warning! Files must be unlocked as soon as the system is
restarted. If other files are created when a locked file
exists, and the locked file is then unlocked, the device
directory will be corrupted. To minimise the risk of
this happening, the SYSINI program scans the system disk
for locked files and unlocks them everytime the system 1is
started. But the problem may still arise on other disks
in a multi-disk configuration. Because of the danger of
unlocking files at the wrong time, the UNLOCK command 1is
only available to privileged users. .

MON: Lists the volatile file directory which
contains data about files currently or
recently in use.

Shows who 1is currently using the system.
Short form of JOBS.

PDP-11 AIMS PROGRAMMING MANUAL Page 103

Executive - section 18

EXAMPLE SESSION SHOWING SOME EXEC COMMANDS

MONITOR v1a AIMS vih j7-kO
dept,user:16 17
password:

.help

commands are:-

D) run,load,execute,call,priv,bye,help
1) directory,unlock

2) copy

3) listlp

4) delete,ttyin

5) rename,type,view

6) tell,forece,kill ,broadcast,cputime,dayt ime
7) set,release,fcore,resources,schedule
8) free,map,ufds

9) obey

10) jobs,who

11) systat

12) segments

13) structures

14) vfidir

15) queue,submit

16) user

17) meter

.day
11 hrs 6 mins 20.6 secs on thursday 3=-feb-77

.8Y¥s
monitor via, AIMS vih

uptime 0:29:04, null time 0:16:32
= 43,.1% run + 0.0% iowait + 56.9% idle.
mean uptime 14:31:31 in 1011 sessions.

total memory 64k(2048p)

monitor: 394p program + 71p fixed data + 313p buffers (6752=67%
free)

available memory 40640(1270p),
memmax=20000(625p) vfimin=1536

28448(889p) occupied (70% full)

swapping statistics:
total swap space 2384p, 238U4p free

0 jobs swapped now, total segments swapped 0. rate limit 320p/sec.

.jobs

"jb lin -area- --segment sizes in w--- status -runtime- irun -age--
1 k12 040056 interp=6528 editor=4352 ti 1 O4:23 .108 29
2 p0 016016 interp=6528 watch = 800 sl 1z 01 .006 30
3 p2 016016 interp=6528 batch =2720 sl 1z 01 .000 30
»H kKl 060060 interp=6528 idle =2400 ti 1 03 .000 30
S p4 016016 interp=6528 lucifa=4608 to 2z 05:23 .122 15
6 k14 050057 interp=6528 view =2144 ti 1z 48 .026 08
7 k0O 016017 interp=6528 jobs =2336 ri 1z ou .032 03

PDP-11 AIMS PROGRAMMING MANUAL Page 104
Executive ~ section 18

.dir/f

dk0-016017~

diatyp.doc pec.dmp dsklst.bas gorefs.bas odt.bas
dkcopy.bas dskrat.bas maclst.bas 1io.bas pe .bas
feomp.bas . ed.dmp bchess.bin im.bas im.dmp
nikers.bin 1imsys.bin reseq.bas draws.bin cref.bas
s.mac rantty.bas numer8.bas dskluk.bas qtest.bas
tsubs.bas dskrat.doc ee.dmp watch.doc fscan.bas
milk.mac

213 blocks in 31 files.
.dir /s[16 16]%.dmp

directory listing for dk0-016016 on 3-feb-T77, block size=256
logout dmp e <233 9-apr-76 @4753
login dmp 19¢ <237> 29-0ct-76 €4491
" exec dmp 107c <233> g-apr-T6 €3937
batch dmp 14 277> 14-aug-76 64377
diatyp dmp 50c <233» 2T-oct-T6 83453
total of 194 blocks in 5 files,. ‘

bye
11:15:34 3-feb-77 j6 kO 015017 AIMS library
run=0:00:05 connect=0:00:30 dk disk=216 bye

PDP-11 AIMS PROGRAMMING MANUAL Page 105
Tips - section 19

L19. SOME PROGRAMMING TIPS |

This section contains a mixture of general advice and specific
programming “tricks’ which have been found useful.

Program Development

When programs are being developed one often gets several
diferent versions of a program stored in different places under the
same filename. So it is a good idea to make the program identify
its version for the benefit of the user. It is also useful for the
programmer if each program contains a REMark line indicating the
date when it was last changed. Even with these precautions the
maintenance of a large and changing suite of programs 1is still a
major activity. It is helpful to keep a log book which records all
modifications.

It is a good idea to establish a standard format for most
programs. Efficiency considerations suggest that strings and
arrays should be stored in low-numbered lines, see section 20. It
is often confusing to have dollar-lines scattered throughout a
program, especially if these are data strings that do not need to
be saved with the program. Since every line is numbered it is

often difficult to see where subroutines begin and end. A REMark
line 1is helpful before each routine. It is easier to modify a
program if it conforms to a standard line numbering scheme. For

small programs it 1is convenient to use multiples of ten such as
100, 110, 120 etc. Modifications can then be inserted at 105, 115
and sc on. For larger programs an interval of two is better,
giving 100, 102, 104, 106 initially and modifications on odd lines.
When the modifications have been checked out the program can be
resequenced using RESEQ.BAS and a fresh listing obtained. :

Program layout is to some extent a matter of taste, but the
following scheme has been found satisfactory:

0 - G§: Working dollar-lines, initially empty’
8 - 18: Arrays
19 REM program version and date last modified
20 - B0: Fixed dollar-lines, and space for small tables of data
strings.
80 - §9: Normally empty, useful for extra initialisation code
when testing a program.
100 up: Start of real progran.
1000-1999: Reserved for library routines.
2000 on: For large dollar-line tables.

PDP-11 AIMS PROGRAMMING MANUAL - Page 106 A
Tips - section 19

Decoding User Commands

The first serious AIMS program that you write will most
probably be one that reads a string from the terminal, recognises a
set of ‘command words®, and goes to a specific routine for each
valid command. Suppose the commands are BUY, SELL, NEWSTOCK, and
DELETE. The commands should be chosen s0 that they are easily
remembered by the user and suggest to him the function that the
command performs. Experienced users will become irritated if they
have to type long commands so we should choose command words that
can be abbreviated to one or two letters without ambiguity, and the
decoding program should be written to accept such abbreviations.

We might be tempted to start like this:

20 $COMMAND:

100 INPUT 220 $1

110 IF $17°B° :GOTO 200 :REM BUY

120 IF $1°°S° :GOTO 300 :REM SELL

130 IF $1°°N" :GOTO 400 :REM NEWSTOCK
140 IF $1°°D° :GOTO 500 :RFM DELETE
150 PRINT "?° :GOTO 100

This simple scheme has several disadvantages. Although it
recognises abbreviated commands, it does not check the command word

properly: it would accept BONGO as a command and interpret it as

BUY. The program would not recognise a valid command if it had a
. few spaces in front of it. The decoding routine does not remove
the command word from $1, so if there is any other information
following the command this will have to be split off by each
comm:and routine. The program is also rather 1large and will
increase by one line for each new command. Finally, the program
offe:rs no help to the user if he does not know what commands are
available. It is good practice when implementing a complicated
program to provide the user with a standard command which he can
alvays give to elicit help from the program.

An improved version is given below. It begins by removing
leading separator character’s from the users input, and then strips
of'f the next sequence of letters which is taken to be the command
word. This leaves $1 containing any arguments that followed .the
command. The program has a list of all valid commands in $21 and
it uses the QI facility of section 8 to validate the received
command. :

19 REM V1 1-AUG=-T76
20 $COMMAND:
21 $,BUY,SELL ,NEWSTOCK, DELETE,
22 $B-UY STOCK, S-ELL STOCK, N=-EWSTOCK, D-ELETE STOCK
100 INPUT 220 § :IF $ "?° :PRINT $22 :LOOP
102 PUT $=3F1>$%F4=3F1>$1
104 PUT *,"$>$2 :IF $21_%$2 :GOTO 100%(QI+1)
106 PRINT "? “$; "TYPE ? FOR HELP" :GOTO 100

In this example the program goes to line 200, 300, U400 ete.
depending on the position of the recognised command word in $21 as
given by QI. In more complicated applications it may be necessary
to call a different overlay for each command. This could be done

PDP-11 AIMS PROGRAMMING MANUAL Page 107
Tips -~ sectlion 19

by replacing line 104 with:
104 PUT 7,7$>%$2 :IF $21_32 :LET PT(4)=1024%QL :LOAD 1 #4% 0,2

This loads the appropriate overlay and passes to it §1 which
contains the argument string.

Unpackineg Strings as Integers

For very intricate string manipulations it is sometimes useful
to Dbe able to access a string one character at a time. Although
this can be done by using %G1 it is more efficient to place the
string into an array and then use the arithmetic operations to
access particular bytes.

To get the string into the array we use the packing facility
of the LET commmand as described in section 14.

8 ARRAY A 60
100 LET A()<$1#120

If $1 contains the string ABCDE these characters will be packed
into the array like

B{2): 256%128+ E
A(1): 256%*D 4+ C
t A(0): 256%B + A

The characters are packed two-per-word and the end of the string is
marked with 128. All the characters are stored as integers in the
range 1 to 127 according to the ASCII code shown in section .26,

The following subroutine may be used to obtain the J"th
character of the string:

700 IF J&1 :LET C=A{J/2)_-8&255 :RETURN
702 LET C=A(J/2)&255 :RETURN

See alseo the discussion of byte unpacking on page 21.

Printing the Date and Time of Day

The date and time of day are often needed in headings. & nice ,
format is

13:25 HRS WEDNESDAY 13~JUN-T78
and this is returned in %0 by the routine

800 LET T=TI()/10

802 PUT T/36006W28F17: "QA/608W28F5" HRS “15DA(3)+1$806 DAY™
DA() -"2SDA(1)$808"-"DA(2)EW>$

804 RETURN

806 %,MON,TUES,WEDNES, THURS,FRI,SATUR,SUN

808 $,JAN,FEB,MAR, APR,MAY,JUN,JUL,AUG,SEP,0OCT,NOV, DEC

PDP-11 AIMS PROGRAMMING MANUAL Page 109)
Tips - section 19

This generator requires EP()>1. Line 800 takes about 5
milliseconds to execute. If you are using KX and not RN, the line
may be reduced to

800 LET RX=(RA*RX+RC)&RM
giving faster execution. If you need to call the generator fromA
several points in the program use DO &00" since this is faster
than making line 800 into a subroutine and using a GOSUB.

The random numbers returned by this routine are considerably

more random than those obtained by playing with TI() or JS(4) or
any other system data.)

Sguare Roots

Square roots may be calculated by'an iterative technique:

800 LET T=N*100 I=1 X=T/2 :UNLESS X :PRINT "N LESS THAN 2" :STOP
802 LET Y=(X+T/X)/2 :UNLESS X=Y :LET X=Y I=I+1 :LOCP
804 RETURN

The routine should be called with the number in N. It returns ten
times the square root in X and also in Y. The factor of ten arises
because the routine actually finds the square root of 100*N due to
the #100 in line 800. Greater accuracy may be achieved by changing
line 800 tc multiply N by a larger even power of two.

The variable I c¢ounts the number of iterations actually

performed. I is not part of the algorithm and references to I may
be omitted if speed is important.)

Inputting Octal Numbers

This can be done by inputting the number as if it were 1in
decimal and then using string manipulation to strip off the digits
one by one. The following routine removes the first number from

~

the string in $1 and returns its octal value in the variable C:

- 800 LET C=0 T=0 :PUT $1=T>$1
802 PUT T@W>$2 :IF $2_"8"1%$2_"9" :PRINT "ILLEGAL NUMBER" :STOP
804 PUT $2>$%G1>$2 :LET N()<$#1 :LET C=8%C+(N()&127)-48 :L0OOP
806 RETURN
808 ARRAY N 0

The routine uses the array N to convert each digit to its
corresponding ASCII code.

PDP-11 AIMS PROGRAMMING MANUAL Page 110
Speed and Size - section 20

[20, EXECUTION SPEED AND MEMORY OCCUPANCY |

Since AIMS is interpretive, every character in a program line
is scanned whenever that line 1s executed. When a line is coded it
1s compacted as far as possible by

1) Storing the line number as a 16-bit binary word

2} Removing the colon and all spaces before and after each
command word

3) Storing each command word, whether abbreviated or typed in
full, as a single special character.

4) Converting all numerical constants (eg: 123) to binary.

5) Converting all variable and function references to 2-byte
internal forms.

Ml program lines are chained together in a forwards-linked
list with the lowest line number at the head. Normal progression
through a program involves stepping to the next line on this 1list.
Any out-of-sequence reference to a line, such as a GOTO, GOSUB, DO,
ARRAY or string reference, involves a search from the head of the
list till the required line is found. Consequently lower numbered
lines are found quicker.

When programming for speed:-

-a) Use low line numbers for frequently used dollar-lines and
arrays.

b) Avoid unnecessary spaces in program lines.

c¢) Avoid multiple references to the same array element when this
could be assigned to a simple variable.

d) Do not work out the same expression several times when it could
be done once and assigned to a variable.

e) Try and get small loops onto one line and use the LOCOP command.
This is quicker than a GOTC.

f) Use multiple commands on one line, rather than many commands on
separate lines.

g) Avoid manipulating strings where an equivalent effect could be
obtained by c¢perating on numbers in arrays.

h) Do not use the PUT command where the IF command would deo.

i) Use the smallest possible value of EP().

1f the string expression on the lefthand side of a PUT command
is anything other than a single dollar-line, a temporary copy of
the value-string will be made whenever the command 1is executed.
Thus the command

PUT "17%1>%1

needs enough space for three copies of $1. PUT commands using long
strings thus take a lot of time and space.

Every program line requires about 2+(N+1)/2 words of memory,
where N 1is the number of characters in the line, counting command
words as one character, and ignoring the 1line number. (This
estimate is approximate due to the operations descibed at (4) and
(5) above) Thus it takes less memory to put several commands on one
line rather than giving them each a line to themselves.

PDP-11 AIMS PROGRAMMING MANUAL Page 111
Speed and Size - section 20

- Execution times

As a rough guide it may be estimated that AIMS arithmetic runs
about 500 times slower than the best machine code. AIMS string
handling and I/0 operations take about the same time as they would
if coded in machine code.

v Taking the mean execution time for a mixture of typical
arithmetic operations 1like LET X=X+1, LET X=Y*Z, LET X=Y/Z, the
following operation-~times are obtained:

AIMS version 2 on 11/20 cpu: 3.18 milliseconds
AIMS version 3 on 11/20 cpu: 1.95
AIMS version 2 on 11/45 cpu: 1.71
AIMS version 3 on 11/45 cpu: 1.08

GARBAGE COLLECTION

Whenever a line is altered it is recreated and the old line
remains in memory as garbage. A garbage collection routine is
provided which scans the whole program area, removes the unwanted
lines, and creates a compact line~structure. This process can be
invoked explicitly by the "GARB” command, but it is not normally
necessary to do so. Whenever the interpretor advances to a new
program line it checks the amount of free space that is available
(as given by QS). If it is below a threshold given by the value of
the system variable QG, then a garbage collection is performed. QG
is initially set to 350 characters, which is sufficient for the PUT
command operating on a string of normal length.

If AIMS runs out of space in the middle of a program line, it
abandons execution of that 1line, does a garbage.collection, and
gives error S. The error is fatal in the sense that execution is
‘abandoned at an indeterminate point in the line, and the result may
be different if the 1line 1is re-executed from the beginning,
Therefore, if you need to manipulate 1long strings of length N
characters, the garbage threshold QG should be set to at least
IM(44+N), Alternatively, QS can be checked explicitly at an
appropriate point in the program and a GARB command executed if it
is toc low.

Garbage collection is a very slow process which should be
avcided 1if possible., Running with a large value of QG will cause
frequent collections and slow the program down.

The VGARB command is used to delete unwanted user-defined
simple variables. This deletes all user-defined variables that are
not mentioned in the current program and recovers the space used.
This command is wuseful for deleting unwanted variables that have
collected during passage through a sequence of overlays. It has
the advantage over RUN that it does not make all variables
undefined.

PDP-11 AIMS PROGRAMMING MANUAL Page 112
Speed and Size - section 20

CONTROL OF MEMORY USAGE

In a multi-user environment there is a central pool of free
space and each user is allocated memory as he requires it. The
allocation is performed in pages of 32 words (MON) or blocks of 128
words (DOS). At any given moment each user owns a particular
number of blocks, as given by the system function UC(). This space
is occupied as follows:-

a) About 150 words are used as workspace by the interpreter,

b) About 20 words for the system variables.

c¢) P+1 words for each P-word precision simple variable defined by
the user.

d) About 2+(N+1)/2 words for each N-character program line

e) D+6 words for each array of dimension D

f) Some free space private to the job as given by QS.

We have already mentioned that a garbage collection is performed
automatically if QS falls below QG. After such a collection QS is
checked again, and if it is still below QG+100, an attempt is made
to obtain more memory from the monitor. Thus the user’s area is
expanded automatically as necessary, and a working free space
margin of at least QG c¢haracters is maintained. This process will
proceed until all the available memory has been allocated to users.
If a user”s memory requirements continue to expand beyond this
‘point he will be operating with QS<QG causing repeated garbage
collections. In this extreme case the collection rate can be
reduced by setting QG to a smaller value, but this will run the
risk of a no=-space-left error condition.

When an EXIT or LOAD command is executed, the users memory
area 1is automatically reduced to an optimum size such that QS is
about QG+100. Thus the system reclaims memory that is no longer
needed by a user,.

A special command is provided to allow explicit control of the
user s memory area:-

CORE [ne]
This command adjusts the user’s memory area such that QS is at
least [ne] and not more than [ne]+256. The command will fail if
there is insufficient memory. The command always succeeds if [ne]
specifies a reduction in the user’s area.

This command is useful in two cases:-
a) CORE QG returns surplus free space to the common pool.
b) CORE [ne] allows a user to grab space for future use.
Note: memory ad justment is an expensive operation that holds up
other Jjobs on the system since it involves shuffling user memory
areas. It is possible to minimise job memory areas by including

lines like

GARB :CORE

PDP-11 AIMS PROGRAMMING MANUAL Page 113
Speed and Size - section 20

in programs, but this should only be done after a careful. analysis
of the likely effects. A line of the above sort might cause two
. memory shuffles and these have to be welghed against the reduction
in swapping that the smaller job size will give. Memory shuffles
~also hold up input/output operations. Note that the CLEAR command
performs a GARB impliecitly, so if you do a GARB after a CLEAR this
‘will waste a lot of time. '

It is neither necessary nor. desirable to give CORE, CLEAR, or-
GARB commands before or after a LOAD.

DOS: the system function FC() gives the amount of memory left
in the common pool. A negative value of FC() indicates that the
pool is empty and that the system 1is running belcow its safety
margin., This situation arises when FC()=0 and a number of users
then perform operations that cause DOS to claim storage.

ERRORS DUE TO LACK OF MEMORY SPACE

Some AIMS commands may cause an error due to lack of memory
space. There are two different errors that can happen: 75 and 77Y.

The ?S error means that the command cannot be performed for
lack of free space within the user area (ie. QS is too small). It
may still be possible to perform the command successfully by
securing a larger value of QS. You may be able to achieve this
Wwithout increasing the size of your user area, by doing a garbage

collection. This can be done either with an explicit GARB command © .

or by setting QG to a suitably large value. (Remember that the
automatic garbage collection tries to keep QS>QG.) An explicit GARB
is not recommended because the value of QS immediately afterwards
"depends upon the amount of garbage that happened to be around.
This is usually indeterminate and there is thus no guarantee that
the GARB will always release sufficient space. A suitably large
value of QS may also be obtained by increasing the total size of
the user area with a CORE command, thereby increasing both UC() and
QS. Note that however large the area is made, garbage will still®
accumulate until QS gets near QG. So the command may succeed at
first and then fail later when sufficient garbage has accumulated.
You must either place the CORE command immediately before the
command that needs the space, or you must set QG appropriately. If
QG is not set appropriately, a GARB is desirable before the CORE.

The ?Y error means that the command cannot be completed for
lack of memory in the entire system. It arises in three ways only:
(1) attempt to CODE an array with insufficient QS and no scope for
UC() expansion, (2) attempt to convert a number to a string of
digits with the width setting (@W) too big, and (3) Dos:
insufficient monitor buffer space when performing file operations.
Errors (2) and (3) cannot be removed by changing QS or QG or by .
doing GARBs or COREs.

PDP-11 AIMS PROGRAMMING MANUAL Page 114
Speed and Size -~ section 20

MEMORY REQUIREMENTS FOR FILE OPERATI%NS

Every channel that is INITed requires 16 (MON) or 32 (DOS)
words. This is reclaimed only when the channel is RELEASEd. DOS:
Whenever a file is OPENed there is a transient requirement for at
least 768 words. Once the file is open this requirement falls to
zero if open in modes 4 through 6, or to the device buffer size if
open in modes 0 or 1.

Device Buffer size
DF 64 words
DP 512

others 256 -

This buffer space is reclaimed when the channel is CLOSEd.
DOS: DELETE and RENAME have transient requirements for 768
words. INITing a non-disk device requires 256 words for the device

driver., This is not reclaimed until the channel is RELEASE4.

The READ and WRITE commands have transient requirements for
data buffers if the transfer runs across device block boundaries.

PDP-11 AIMS PROGRAMMING MANUAL Page 115
Inter-job Communication - section 21

L 21. COMMUNICATION BETWEEN DIFFERENT USERS

GLOBAL VARIABLES

There is a standard system function, GV(N), which accesses an
array of global variables. These variables may be read by all
users, and may be set by certain privileged users (see JS()
function). There are at least 8 variables numbered from 0 to 7, of
which 0 to 3 are reserved for wuse by AIM3S executive programs.
Multi-word references like GV(3,N) may be used as with arrays, see
page 18.

These variables are useful for inter-job communication, since
a value may be set into GV() by one job and later read by another
job, GV() may also be used as a shared array to save space. For
example 1if a number of jobs all require access to a large database
via an index, it may be efficient to keep the top 1level of the
index in GV(). This would require perhaps a 100 or 200 word glchal
vector, which can be arranged when the AIMS system is configured.

LOCKS

Where a number of jobs require access to some shared facility,
such as a common database, it is often necessary to control the
accesses so that only one job is able to modify the data at a time.
Otherwise unexpected results may be obtained when several jobs
simultaneously update the same part of the database.

A global variable may be used to effect the necessary control
if each job contains an appropriate sequence of commands. Suppose
we set GV(n)=0 when the shared facility is idle, and we set it to 1
Whenever a Jjob 1is accessing the facility. Each job should then
contain a procedure like:

1) Wait till GV(n)=0.

2) Set GV(n)=1.

3) Access the facility as required.
4) Set GV(n)=0.

This procedure ensures that only one job has access to the facility
at a time, provided steps (1) and (2) are carried out as a single
operation that cannot be interrupted by the execution of any other
job. Steps (1) and (2) may be done as follows:

100 LET T=GV(N) GV(N)=1 :IF T=1 :WAIT 10 :LOOP

Because the examination and setting of GV(n) is done using a single
AIMS command (the LET command above), the two operations cannot be
interrupted. Control will remain on line 100 until some other job
sets GV(n) to zero. GV{(n) is then set back to 1 and control goes
to the line following 100.

Rather than setting GV(n) to 1, it may be more informative to
set it to the number of the job that is currently using the ’

PDP-11 AIMS PROGRAMMING MANUAL " Page 116
Inter-job Communication - section 21
facility. This may be done as follows:
100 LET GV(N)=GV(N)-J®*(GV(N)=0Q) :UNLES5 GV(N)=J :WAIT 10 :LOOP

In this case control will remain on line 100 until someone sets

GV(N) to zero. Control then resumes on the next line with GV(N)
set to the job number J. J may be obtained from JS(3), see section
22. Notice the use of a conditional expression (GV(N)=0) to test

and set the lock in one command.

SIMULTANEQUS FILE UPDATES

Where several jobs are updating the same file it is essential
to use a lock to control the accesses as described above. A
further complication is caused by the use of the READ and WRITE
commands. As noted in section 14, these commands allow any number
of words to be transferred between any point in the file and an
array. In fact, however, most real devices like disks and DECtape
can only transfer data in blocks of 256 words. In addition, the
transfers must begin at a device address that is a multiple of the
block size. AIMS handles this problem automatically. If you give
a READ or WRITE command with an array size that is not a multiple
of the device block size, or with a device address (ie. PT()
value) that is not such a multiple, AIMS will buffer the transfer.
It does this by setting up a temporary memory buffer, reading a
complete device block into the buffer, extracting (for a READ) or
modifying (for a WRITE) the data in the buffer, and then writing
the complete block back to the device (for a WRITE).

This means that a single READ command 1in your program may
actually involve two separate reads from the device, and a single
WRITE command may actually involve two reads and three writes to
the device. These multiple transfers may be interleaved with
computation or I/0 done by other jobs.

These considerations should be borne in mind when designing
the system of 1locks that controls access to a database. For
example, in some cases it may be sufficient to have a 1lock that
simply prevents the simultaneous update of the same record, so that
one job can update record A whilst another job is wupdating record
B. But if the two records happen to be stored in the same block on -
the device, the multiple reads and writes of the whole block may
cause problems.

SENDING MESSAGES BETWEEN TERMINALS

A terminal is regarded as an input device and an output
device. The input side of each terminal is identified by a console
number, C, which is always even. The corresponding output device
is identified by the number C+1, which is thus always odd. For '

PDP-11 AIMS PROGRAMMING MANUAL Page 117
Inter~job Communication - section 21

example, the first two terminals aré denoted as

KB O input side of console ¢
PT 1 output side of console 0
KB 2 input side of console 2
PT 3 output side of console 2

Users may send messages t¢ one another by means of the PRINT
command:-

>INIT #5 “PT 7° :PRINT #5 "HELLO TERMINAL 6° :PRINT “OK
OK
>

Sends the message "HELLO TERMINAL 6° to console 6.

Only privileged jobs may INIT terminals belonging to other
users.

Short messages may be sent from one terminal to ancther
by means of the EXEC TELL command, see section 18. This
command is implemented in terms of INIT and PRINT commands
as described above.

Extended WAIT command

There is an optional extension to the WAIT command which
enables certain events to be detected at the earliest possible
moment. The syntax is:

WAIT [time ne] [wake mask ne]

where [wake mask ne] is a bit mask specifying a set of events which
are to wake the job. IE. +the WAIT will be prematurely terminated
if one of these events occurs.)

Controlling console activity

WAKE command from other job

reserved

Completion of autodialling sequence

Slave job (on connected PC) requires service

oW EN -

1

Note that if [wake mask ne] is omitted, it will evaluate to =zero
and the WAIT command will function as usual.

Take note:

Events are remembered from one execution of a WAIT command to
the next. b WAIT command will cause no delay if the wake mask
matches an event which has occurred since the 1last WAIT command.
Note that this happens even if the program has processed the event
'in the meantime.

Unwanted events that have been remembered may be cleared by
executing a WAIT command with a zero wait time and an appropriate
mask, Use a wait time of -1 if you want to wait indefinitely for
an event.

PDP-11 AIMS. PROGRAMMING MANUAL Page 118 ‘ ,
Inter-job Communication - section 21

When developing a program that uses the wake mask, remember
that every carriage-return that you type will count as controlling
console activity. '

WAKE ccommand

This command allows one job to wake another sleeping job. The
syntax is:

WAKE [se]

. The first six characters of [se] are assumed to be the name of a
program, The WAKE command scans all jobs on the system and wakes
those which are executing a program of that name. QA is set to the
number of jobs that are woken,

The program name that is used in this context is that printed
by the EXEC JOBS command. It is settable by the SETNAM command:

SETNAM [se]

Sets the program name of your job t the first 6 characters of

[se]. :

Normally two jobs wishing to communicate using the WAKE
command will agree on unique program names which they will publish
using the SETNAM command. N ‘

Whilst job A 1s sleeping, job B may create a data file or
alter a GV() value, and then WAKE job A. This-avoids the need for
Job A to repeatedly look for events which may not have happened.

Note that the WAKE command simply sets a status bit associated
with the named job(s). If such a job is WAITing with a [wake mask]
containing 2, the setting of this bit terminates the waiting
condition. If the job is not waiting the bit is still set but it
has no immediate effect. When the job next executes a WAIT with
mask 2 it will cause no delay because the bit is already set.

FDP-11 AIMS PROGRAMMING MANUAL Page 119
Job Status - section 22

22, JOB STATUS INFORMATION

Associated with every job is a job status vector, accessed by
the system function JS(N) as follows:- :

J3(0) Right byte: Job privileges

JS(1) DOS department/user numbers for this job

Js(2) Argument set by LOGIN command (ignored by AIMS)

J3(3) Right byte: Number of console controlling this job
Left byte: 2¥Job number

JS(2,4) Cumulative runtime for this job (1/50“ths sec)

Js(6) User’s connect time in tens of seconds

%% entries above JS(6) are liable to change as the system %¥#
k%% {5 developed. Although some executive programs refer to *&%
#%* these entries, ordinary programmers should not do so. Eux
A1l these may be read by the user, but only JS(0) may be set.

There are several levels of privilege at which an AIMS job may
run. JS(0) is a status word whose bits indicate different

privileges:-

BIT DEC MEANING

0-1 Intrinsic job priority (00=zhighest, 11=zlowest)

2 Reserved for future expansion

3 8 1 if job is logged in

Y 16 0 if job allowed to set GV(n)

5 32 1 if STOP command and control-C are allowed

6 64 1 if control-0 abort character is to be recognised
7 128 0 if program is an AIMS-executive (EXEC)
8-15 Reserved for system use

This status word is initially set to zero before a user logs
onto the system. The user may set any bit of JS{0) by means of the
LET command. For example

100 LET J3(0)=16

will set bit 4, However, the user cannot clear any bits of JS(0).
This convention allows the user to reduce his privileges, but
prevents him from increasing them, Mon: an unprivileged user can
reduce his priority within the limits specified in JS(2).

Whenever the AIMS executive program EXEC is recalled, either
as a result of an EXIT command, or of the control-0 key, bits 0,1
and 4=7 of JS(0) are cleared, giving the program executive
privileges.

PDP~11 AIMS PROGRAMMING MANUAL Page 120
Job 3Status -~ section 22

EXEC PRIVILEGES

a) Unrestricted access to disk directory [16,16], which is used
for system administration and accounting.

b) Capability of writing into the system status vector SS(N).
c) Allnwed to set the right byte of JS(0) unconditionally.

d) Allowed to communicape with terminals owned by other‘users.
‘e) Allowed to execute the LOGIN and LOGOUT commands.

f) Allowed to examine and deposit (D0S) in real memory
by means of the PK() function.

g) Allowed to bypass the file structure on directory devices
and thus gain direct access to the storage medium.

h) Allowed to INIT any pseudo-console.

INTRINSIC JOB PRIOQRITY

Each job competes for central processor time with a priority
that depends on the job’s behaviour. For example, jobs coming out
"of keyboard wait-states are more likely to be run than jobs that |
are compute-bound. Apart from this dynamically changing Job
priority, every job has an “intrinsic priority” which is determined
by bits 0 and 1 of JS(D). These are set by the user or by EXEC to
define four broad classes of job:=-

0 Top-priority job pre-empts all others of lower priority.
1 Normal interactive job. (control-0 and EXIT force
this priority)
2 For low-priority interactive jobs, or fast through-put batch.
3 Lowest priority for background jobs. Will not run unless all
higher-priority jobs are blocked.

ATMS executive programs run at priority 0 to ensure fast:
© response. EXEC reduces its priority to 1 as soon as it runs.
Users may further reduce their priority for background processing.
Privileged users may raise their priority to 0 for fast overall
response at the expense of others.

" Note: be careful when changing these bits of JS(0) tc preserve the
"remaining bits which determine your privileges. The priority bits
should be set using the inclusive-OR operator (!) and cleared using
the AND (&) or exclusive-OR (\) operators.

PDP-11 AIMS PROGRAMMING MANUAL Page 121
System Administration - section 23

[23, SYSTEM ADMINISTRATION |

Some of the facilities described in sections 23 and 24 are not
an integral part of the AIMS language and are subject to change.
They are provided by programs written in the AIMS language, and
these programs are normally tailored to meet the needs of each
installation.

The AIMS system essentially provides the capability of running
a number of AIMS programs at the same time. Each such program is

associated with and controlled by a particular console. The AIMS
system itself is not concerned with the identity or legality of the
user, or with the demands he makes upon system rescurces, User

identification, access restriction, and accounting are functions
performed by privileged programs written in AIMS. These are
referred to as AIMS executive programs, and they may be modified by
the system administrator to implement any desired resource
management policy.

There are three executive programs that are essential to the
operation of the system:-

LOGIN This is run automatically when a user connects to the
system. It performs the screening functions associated
with “logging in”. -

EXEC Provides the AIMS 'monitor” as seen by the user once he is
logged in. Control goes to EXEC when the control-0 key is
pressed, or if the EXIT command is executed.

LOGOUT This is run when the BYE command is given, It performs

v the function of ‘loggzing off” a user. This may involve
updating an accounting file and perhaps ensuring that the
user is not occupying more than his allotted disk space.

These programs are privileged (see section 22) and cannot be.
interfered with by the user. '

When LOGIN is run the only clue to the user’s identity is his
console number, which gives the position of his terminal. Some
terminals may be situated in highly secure areas, in which case no
further screening need be done. In most cases however the user
should be asked to identify himself by giving a secret password.
LOGIN can validate this by looking it up in a file of permitted
users, This file may also contain information about the resources
and privileges allowed to the user., LOGIN may then set the job
status word JS(0) appropriately before passing control to the user.

Once a wuser has been admitted to the system by LOGIN, -

subsequent system behaviour may be made dependent on the user’s
identity. For example, a particular applications program may be.
run automatically for a elass of users.

PDP-11 AIMS PROGRAMMING MANUAL Page 122
- System Administration - section 23

LOGIN AND LOGOUT COMMANDS

These commands are only avallable to EXEC-privileged programs.
LOGIN [ne1] [ne2]

Sets JS(1) to the value of [ne2] which must be a valid DCS3
-department/user number. Also notifies DOS that the job is now
running under department/user number [ne?]. Sets J3(2) to the
value of [nel1]. JS(2) is ignored by AIMS and may thus be used for
any purpose. The present executive programs use JS(2) to hold a
unique 1internal user code that is set by LOGIN and referenced by
LOGOUT. Control resumes on the same program line.

LOGOUT

Kills the job and returns its memory to the common pool. 4il
I/0 channels must be released by the program before executing a
logout command. Control never returns.

BYE [ne]

Forces job number [ne] to execute the system LOGOUT program.

PDP-11 AIMS PROGRAMMING MANUAL Page 123 ,
System Administration - section 23

SYSCOM command (MON only)

The SYSCCOM command enables a user program to exchange
information with the monitor in the form of strings. It permits
the reading and setting of certain monitor data items without
requiring knowlege of the internal monitor organisation.

SYSCOM [command sel>$[reply ne]
[command se] specifies the function required, and the monitor
returns a reply string in ${reply ne] if present. The following

functions are implemented:

? - Returns a list of all SYSCOM functions

DEVTRA Returns the system device translation table
STRUCTURES Returns a list of all structures currently MOUNTed

UNITS Returns a list of all device units that exist

Other functions may be implemented from time to time.

PDP-11 AIMS PROGRAMMING MANUAL - Page 124
System Administration - section 23

SYSTEM STATUS VECTOR

A 50-word system status vector accessed by the function SS(N)
is provided. It can be read by all users but can only be written
by executive programs. These status words are used to control the
way in which the system is used:- o

SS(0) Maximum amount of memory that a job may use (words/32)
S5(1) Access control word (see below)

55(2) Interval (in 1/50 “ths sec) between scheduling decisions
S$(2,3) System null time in 1/50 ‘ths sec (2-word quantity)
SS{2,5) System lost time in 1/50 ‘ths sec (2-word quantity)

SS(7) Address of mode 6 fast access directory, if any
35(8) Name of default user filing disk in radix50
53(9) System feature switch, see below

SS(10) 256%Version + Mark number of system
35(11) Name of system disk in radix50

*%% Entries above SS(11) are liable to change as the system **%
. #%% i35 developed. Although some system programs refer to #&#
k%% these entries, ordinary programmers should not do so. ###

35(12) Address of job table (for use by PX() function)
SS(13) Nunmber of job slots in job table
SS(14) Address of console table
$s(15) Number of highest console + 2
35(16) Number of highest pseudo-console +2
SS(17) Number of terminal designated as “system console’
S5(20) Number of priority queues in cpu scheduler.
SS(20+n) For n=1 to SS(20). Time quantum in 1/50 "ths sec for
jobs in run priority queue N.
SS(28) Total allocated swapping space in 1K-word blocks
S3(29) Amount of free swapping space in 1K-word blocks -
3S(30) dmount of occupied swapping space in 128-word blocks
SS(32) Total number of swap transfers done, both in and out
55(33) Instantaneous number of jobs swapped out
SS(34) Number of hardware errors during swap transfers
SS(35) Number of jobs aborted due to irrecoverable swapping
hardware errors
S5(38) Number of software checksum errors on swap-in
SS(39+n) For n=1 to SS(20). Resident protect time for
jobs in run priority queue n.
SS(46) Number of fair-schedules done
SS(47) Seconds wntil fair scheduling acts

Note:‘ss() words not mentioned above are reserved and may actually
be in wuse for internal purposes. Words above SS{(20) depend on
options that may not be present in your configuration.

SS(0)} influences the behaviour of the AIMS monitor when
servicing requests for more memory. SS(1) is used by the login
program, LOGIN. Depending on the value of SS(1), access to the
system may be restricted to local users, or further logins may be
prevented entirely. This allows the system to offer a variety of
reduced services whilst it is doing resource-critical background
processing.

PDP-11 AIMS PROGRAMMING MANUAL Page 125
' System Administration - section 23

SYSTEM FEATURE SWITCH

55(9) is a bit mask indicating the presence of various
optional features which may be included in an AIMS system when it
“is configured. Each bit is set to 1 to indicate presence of the
feature:

8 Swapping system

16 Multi-level priority scheduler

32 Crash dump

64 Pseudo-consoles

128 reserved

256 Extended performance metering

512 DO0S: Mode 6 fast access directory
1024 Fair-scheduling
2048 WAKE command
4096 System supports segments

FORMAT OF ACCESS CONTROL WORD S3{1)

SS(1) may be set by the system manager to limit access to
various classes of users. It is bit-coded as follows:-

BIT MEANING WHEN SET TO 1

System is being initialised, no logins allowed.

. System is initialised. (I.E. DA() and TI() are set etc.)
Restrict all logins to people with department numbers < 17.
Allow logins from local terminals, ‘

Allow logins from remote (I.E. modem) terminals,
Do not ask for password if job is belng logged-in
by a pseudo-console (I.E. if job is slaved).

64 Allow logins from pseudo-consoles.

128 Do not ask for password if user is logging-in with a

department number greater than 16. This effectively removes

password security from non-system departments.

NN BN

) —

When the system is started, bit 1 is zero. This causes the
LOGIN program to run the system initialisation program SYSINI which
converses with the operator and initialises the system. SYSINI

then sets bits 1 and 2 and returns control to LOGIN. The remaining
bits of SS(1) are set by SYSINI as specified by the cperator. They
may also be set by other privileged programs at any time. The
default value for SS(1) is 132 octal, which is 641161812, Ss(1)
may be examined and changed by means of the executive SCHEDULE
command.

PDP-11 AIMS PROGRAMMING MANUAL Page 126 -
System Administration - section 23

PASSWORDS

The DS file structure provides for partitioned directories .

accessed via the job s department/user number. It does not provide
password security or accounting. These facilities are implemented
by the AIMS login and 1logout programs using a file “USERS.SYS’
which contains the department/user number and password of every
user known to the system.

DEPARTMENT/USER_NUMBERS

Each new user should be allocated a department and a user
number which must be entered into the master file directories of
every device that the user is permitted to access, This 1is done
using the /EN switeh in PIP or the USER.DMP utility.

Two disk areas are treated specially by AIMS;-~

[16 16] System administration area. This area can be accessed
freely by AIMS executive programs, and cannot be accessed
at all by any other program. It is used to hold files of
passwords and accounting information,

{16 17] AIMS library. EXEC searches this area by default if a
: requested program cannot be found in the user’s own file
directory.

Note that all references to department/user numbers are 1in
decimal, whereas DOS uses octal numbers.

LOGIN PROGRAM - LOGIN

When a user connects to the system a new job 1is created and
the AIMS 1login program, LOGIN, is run. At this stage the job is
running under the AIMS system account [16 16]. This does not imply
any loss of security since LOGIN 1is privileged and cannot be
stopped by the user. :

LOGIN begins by examining the state of the system using the
FC(), Ss5(), and PK() functions. If LOGIN decides that the user
should not be allowed to use the system, it may print a message to
this effect and kill the job by executing the LOGOUT command.
Alternatively, if the system can accept another job, LOGIN will ask
the wuser for his department/user number and password, and validate
these by reference to the file “USERS.SYS®. If all is well, LOGIN
will 1log the user in by executing the LOGIN command, which also
changes the department/user number to the appropriate value., LOGIN
now examines words 21 to 25 of the user’s record in USERS.SYS to
see if they contain a filename and department/user specification.
If so, LOGIN opens the specified .DMP program on channel 4, and
LOADs and runs the first overlay of it. If not, LOGIN transfers
control to EXEC via the EXIT command.

FDP-11 AIMS PROGRAMMING MANUAL Page 127
System Administration - section 23

FORMAT OF USERS.SYS FILE

The file begins with an 8-word header as follows:-

0: file creation date

1: number of entries

2: base address of first user record

3: number of words per user record

4; base address for storing system-wide memo string
5 to T spare

This is followed by a table of 1-word entries giving the valid
“department/user numbers. Unoccupied entries contain zero. The
relative position of an entry in this table is used as an internal
code identifying the user.

Following the department/user table there is. a table of
fixed-length records, one record for each user. Each record
contains password and accounting information for the. user. This
table begins at the file address (ie. PT() value) given in Word2
of the header, and the size of the records is given in Word3 of the
header. The PT() value of the record for user number U is thus
given by WordZ2 + U%Word3, where U is the internal code derived from
the department/user table.

This scheme allows the size of the tables or records to be
altered without affecting existing administrative programs. The
internal code number, U, is ccmputed by LOGIN and entered intc the
left half of JS(2) by the LOGIN command. Once a user is logged in -
his record may thus be accessed directly by reference to J3(2). 1In
particular, the logout program wuses JS(2) to update zccounting
information in the user’s record.

Each user record is currently 322 words 1long and has the .
following format:-

Upto 7-character password

: Bit-mask indicating user’s privileges

Cumulative connect time in seconds

Cumulative run time in 1/50ths of a second

: Date when user last logged off

10: Time when user last logged off in tenths of a second
12: Upto 15-character name of user

20: Number of times user has logged in

21: Upto &-character name of program for auto-start.
25: Department/user number of auto-start program,
26: Logout quota on default disk (-1=infinity)

28: Default file protection

29 to 31 spare

O -3 & O

Words 21 to 25 are used by the LOGIN program to cause a
user-specified program to be run automatically whenever someone
logs in under a particular [p,p] number. The specified file is
assumed to be in DUMP format with a file extension of ,DMP. If no
program is specified (detected by word 25 being zero), LOGIN will
run the EXEC program.

PDP-11 AIMS PROGRAMMING MANUAL page 128
System Administration - section 23

The privilege bit-mask is identical in format to JS(0). This
8-bit mask is stored in the right-half of JS(2) by the login
program. EXEC inclusive-OR’s the mask into JS(0) whenever it
relinquishes control to the user.

Wordld of the header indicates the address of the system memo
string area. The program SYSMEM.BAS allows a short string to be
stored in this area. The login program prints this string if the
user has not logged in since the message was stored. This is a
simple way of notifying all users,

ACCOUNTING OPERATIONS

Use of the system is monitored chiefly by the login and logout .
programs,

The login progam sets words 9 to 11 of the user’s record to
the date and time of login, and increments word 20. '

During the running of a job the runtime is accumulated by AIMS
in JS(4) and JS(5), and the connect time in JS(6).

The logout program updates the user’s record by:

'a) Adding the runtime from JS(U-5) to words 7-8.
b) Adding the connect time from JS(6) to words 5-6.
c¢) Resetting words 9-11 to the current time and date.

LOGOUT PROGRAM - LQGOUT

The logout omrogram, LOGOUT, is called in response to the .BYE
command. Apart’ from the accounting operations noted above it
performs the following functions:

a) Releases all I/0 channels ‘
b) Kills the job by executing the LOGOUT command

If desired the logout program may perform other functions,
suwch as writing a transaction file, or deleting temporary files
from the user’s disk area.

PDP-11 AIMS PROGRAMMING MANUAL Page 129
System Administration - section 23

PERFORMANCE MONITORING — WATCH OPTION

There is a system data file called LASTUP.SYS which is used to
store performance data relating to the current running of the AIMS
system. This file is initialised by SYSINI when the system 1is
-started up. SYSINI uses this file to store the date and time when
the system was started, thus enabling the SYSTAT program to compute
the system wuptime. There is a standard executive program called
WATCH which 18 logged-in on a pseudo-console by SYSINI, and which
normally runs until the system is taken down. WATCH wakes itself
up every ten minutes and stores system performance data in
LASTUP.SYS. ~

WATCH 1is also wused to perform long-term time-dependent
functions on Dbehalf of other executive programs. For example,
WATCH wakes up at midriight and updates the DA() and TI()} functions.
WATCH may also be instructed to start the BATCH controller at a
‘specified time of day, thus providing a completely automatic batch
processing facility (see section 24). Customers may make their own
additions to WATCH to implement other time-dependent functions as
required.

MON: WATCH is also used to log hardware errors and to deal
with user/operator communication if a device goes down. For
example, if the lineprinter runs out of paper WATCH will print the
' message '

[Problem with device LPAQ]

on the user’s terminal and the operating console.

PDP-11 AIMS PROGRAMMING MANUAL Page 130
Batch Processing -~ section 24

[2%, CONTROL FILES AND BATCH PROCESSING

A job is normally contrclled by a user typlng commands at a
console, but there are some situations in which this interactive
mode of working is inconvenient:-

a) Since each job requires one console, the job capacity of a
system is limited to the number of consoles in the installation.
For small installations this may be unduly restrictive, causing.
reduced utilisation of the other hardware components.

b) If the commands that are needed to run a job are known.
completely in advance, it would be more convenient to place them
in a file, and get the system to execute this file as 1if the
commands had been typed at a console, This is especially useful.
if the command sequence is at all lengthy or complex. A typical
example of this is the command sequence required to CALL and
DUMP a large number of program overlays into a dump-format file.

c) Some jobs may perform a large amount of input/output or
computation, causing them to take several hours to complete, It
is obviously tedious for an operator to remain present for the
duration of the job, simply in order to type in the occasional
command.,

d) Routine maintenance procedures, such as file updates, disk

dumps, and so on are best done by some automatic.procedure so as
to minimise operational errors.

To cater for these situations, AIMS provides a facility which
allows one job to send commands to another job., The job which
sends the commands is called the master job, and the other one is
called the slave job. The slave job receives the commands exactly.

‘as if they had been typed by someone at 2 console, and in fact the
slave Jjob need not know whether it is being controlled by a person
or by a master job.

This facility is implemented in AIMS by means of a special
device called a “pseudo-console’, which is emulated by the AIMS
system software. A master job may INIT a pseudo-console, and may
then send messages to it by means of the PRINT command. To the
slave job the pseudo-console looks like an ordinary console, and it
receives the commands on channel 2 in the normal way. Similarly,
if the slave job generates any printout, it 1is sent to the
pseudo-console via channel 1 as usual. The master job may read the
slave job“s printout by INPUTting strings from the pseudo-console.
- Thus the master job is able to "type” commands to the slaved job,
and to “read” the printout from the slaved job, just like a person
sitting at a real console.

The pseudo-console facility is provided in a fairly crude
form, and the mechanics of its use require a fair knowledge of the
internal structure of AIMS. These details are described later. We
now describe the two standard executive programs that are provided
to cater for normal user requirements.

PDP-11 AIMS PROGRAMMING MANUAL Page 131
Batch Processing - section 20

OBEY command

OBEY is one of the commands available under EXEC. The syntax’
is '

OBEY [filename]
where the file is assumed to have an extension of .CTL.

Thnis command causes the specified file to be executed by a
slave job. The printout from the slave job-is displayed on the
console where the OBEY command was typed. When you give an OBEY
command, your current job becomes a master job. The master job
finds a free pseudo-conscle, logs it in, reads your control file,
sends the commands one at a time to the slave job, reads the slave
printout, and prints it on your console, When the end of the
control file 1is readhed, the slave job is logged out, the master
Jjob releases the pseudo-console, and you are returned to EXEC.

The OBEY command thus requires two job slots and the use of
your cansole, so it does not save any resources. It is mainly
useful for saving time and typing when it is required to execute .a
fixed sequence of commands online, For example, you can keep a
library of standard control files that build program overlays, list
all the programs in a particular suite, or copy them from disk to’
magnhetic tape or vice versa. The OBEY command has the additional
advantage that it provides a printout in a standard format, with
the date and time of day, showing exactly what has been done. This
is invaluable for. the routine maintenance of complex application .
suites, since the printouts may be filed away and referenced 1later
if some problem occurs,

Unlike most EXEC facilities, the OBEY command cannot be
aborted with control-0, since this would leave the slave job still
running. OBEY may be aborted by typing carriage-return which
causes EXEC to logout the slave job,

BATCH processing

The batch processing option allows complete jobs to be run
automatically without the use of a real console. A user may create
a control file containing any sequence of EXEC, AIMS or user-level
commands . He may then use the executive SUBMIT command to enter
his control file into a queue of jobs waiting to be run. Later on
this queue will be read by a standard executive program called
.BATCH. BATCH reads each queue entry in turn and executes the
control files using a pseudo-console and slave job. The printout
from the slave job is returned to the user’s disk area as a log
file which is written by BATCH.

The master job controller, called BATCH, is itself normally
run on a pseudo-console, so that the whole process does not require
the use of any real consoles. When compared with interactive use,
the batch process has the disadvantage of requiring an extra job
slot for the BATCH controller. However, since BATCH can run two
slave jobs concurrently, this overhead is not too severe. With

PDP-11 AIMS PROGRAMMING MANUAL Page 132
Batch Processing - section 24

large AIMS installations it is normal to leave the BATCH controller
running all the time on a detached pseudo-console., The controller
wakes up when necessary and scans the queue for newly submitted
jobs. For smaller installations where memory space is at a premium
it is more usual to run the BATCH controller only during off-peak
hours such as overnight.

The batch processing option provides some extra EXEC commands
as follows:-

.QUEUE LIST

Iists the batch queue showing what jobs are waiting for
batch processing.

.SUBMIT [filename]
Enters the specified control file into the batch queue.

A number of switches may be used with the SUBMIT command
to specify options:

$AFTER:hrs:mins Do not run. until after the specified time.
Default is run as soon as possible.

2RUN:hrs:mins Abort job if runtime exceeds this limit.
Default is 10 minutes.

Example
SUBMIT FRED%A:20:30 %R:5:0

Submits the file called FRED.CTL, with a runtime 1limit of five
hours, not to be run before 8:30 in the evening.

.QUEUE KILL

Deletes from the queue the last entry that you made. Used
to cancel an. erroneous SUBMIT command.

+QUEUE KILL #n
Deletes your entry number n from the gueue.

.KILL Pn

Aborts the job running on pseudo-console number n. Used to
kill a job that has already been started by BATCH.

PDP-11 AIMS PROGRAMMING MANUALF ‘ Page 133
Batch Processing - section 24

Control files

Both the OBEY command and the batech processing option expect a
control file in the following format:-

dep usr [First line is department/user numbers only

ceaees [body of control file
B [Last line must be a BYE command-

The contrpl file should have an extension of ,CTL. The first 1ine
of the file must contain the department/user number under which the
job is to bhe run. The password need not normally be given
(although this 1is an option controlled by 3S{(1)). The following
lines may contain anything, provided this makes sense to whatever
program 1is being run. Normally the second line of the file should
contain some EXEC command, since control goes to EXEC after login.
The last line of the file should be a BYE command.

Note that the control and log files are to be found under the
department/user number of the Jjob that did the SUBMIT command.
This number need not be the same as the number under which the
bateh job runs. '

Control-0 and control-C may be included in a control file by
using the syntax "0 and “C.

It is sometimes useful to be able to send commands directly to
the batch controller during the running of a slave job. This is
done by means of a line in the control file that begins with a
percent sign. By convention any control line beginning with % is
interpreted as a command to BATCH and is not sent to the slave job.
The following BATCH commands are implemented:-

$NOT IME Suppresses the time-of-day, which is normally printed
by BATCH at the left margin of all lines in the log
file, In this mode the log file contains only what
would appear on a real console.

4T IME Restores the time-of-day printout.
ENOLOG - Suppresses all log file cutput.
2L0G Restores log file output.

%PRIORITY:n Sets the intrinsic job priority of the slave job to n
(where n is between 1 and 3). Default is 1. ‘

These batch commands may be placed anywhere 1in the control
file after the first line. The %PRIORITY command is only effective
if it i1s read by the batch controller at a time when the slave job
is executing a user program, so it should normally be placed after
. a RUN or EXECUTE command.

PDP~-11 AIMS PROGRAMMING MANUAL Page 134
BEatch Processing - section 24

Log files

BATCH creates a log file under the department/user number of
the job that submitted the request, The file has the same name as
the control file, and an extension of .LOG. Any previous file with
this name will be deleted by BATCH. :

EXAMPLE USE OF OBEY COMMAND

- This example shows a control file for copying a set of
programs from DECtape onte disk. The control file contains the
following text:-

16 16

CO =DT:NEX.BAS/U

CO =DT:DIRECT.BAS/U
CO =DT:COPY.BAS/U
CO =DT:PIP.BAS/U

CO =DT:SYSTAT.BAS/U
CO =DT:JOBS.BAS/U
CO =DT:MAP.BAS/U

CO =DT:0BEY.BAS/U
CC =DT:SET.BAS/U

CO =DT:QUEUE.BAS/U
B

When this file is obeyed we get the following printout at the
terminal ;1=

.OBEY GETNEX

15:10:54 PC 6 INITIALISED AS JOB 4
15:10:54 AIMS Vvz2C

15:10: 54 Jh-Pb

15:10:55 DEPT,USER: 16 16

15:11:03

15:11:03 .CO =DT:NEX.BAS/U
15:11:35

15:11:35% .CO =DT:DIRECT.BAS/U
15:12:30

15:12:34 .CO =DT:COPY .BAS/U
15:13:37

15:13:38 .CO =DT:PIP.BAS/U
15: 14: 01

15: 14:03 .CO =DT:SYSTAT.BAS/U
1511428

15: 14: 28 .CO =DT:JOBS.BAS/U
15:15: 04

15:15:05 .CC =DT:MAP.BAS/U
15:15: 26

15:15: 26 .CO =DT:0BEY.BAS/U
15: 16: 04 '

15:16:09 .CO =DT:SET.BAS/U
15216330)

15:16: 31 .C0 =DT:QUEUE. BAS/U
15:17:05

15:17:05 .B

PDP-11 AIMS PROGRAMMING MANUAL Page 135
Batch Processing - section 24

15:17:08 RUN TIME 1 MINS 35.9 SECS
15:17:08. CONNECT TIME 6 MINS 10.0 SECS
15:17:08 BYE

Batch and Obey examples

AIMS V2C
J1-K2
DEPT,USER: 16 16
PASSWORD:

. .DIR *.CTL
DF 0:[16,16]
23-MAR 1 FRED.CTL
TOTAL OF 1 BLOCKS IN 1 FILES.

.COPY PT3:=FRED.CTL [This is a very simple control file
16 17 .

DA

J

B

.OBEY FRED [Which we now OBEY

14:53:15 PC 6 INITIALISED AS JOB 7

14:53:15 AIMS V2C

14:53:16 J7-Pb

14:53:16 DEPT,USER: 16 17

14:53:24

14:53:25 . DA
14:53:26 14 HRS 53 MINS 25.7 SECS ON THURSDAY 29-MAR-73
14:53:33

14:53:33 .d

14:53:35 JOB LINE AREA PROGRAM SIZE ST P RUNTIME CONNECT TIME
14:53:46 1 K2 16,16 OBEY 1,152 SL 1 05 01:20
14:53:47 2 PO 16,16 WATCH 512 SL 1 05 T1:25:40
14:54:00 3 P2 16,16 BATCH 2,048 SL 1 2:15:03 71:25:20
14:54:02 4 K4 16,16 LOGIN 1,152 TI 0 00 21:30.
14:54:12 5 KO 40,41 EXEC 768 TI 1 01:06 37:40.
14:54:13 6 P4 u0o,41 TMP1 3,328 R4 1 18:59 20:50
14:54:24 7 P6 16,17 JOBS 1,408 R3 1 02 01:00
14:54: 24

14:54:33 .B

14:54:36 RUN TIME 3.0 SECS

14:54:36 CONNECT TIME 1 MINS 20.0 SECS
14:548:37 BYE

Looking at the JOBS printout above, you can see the
master job running the OBEY program, and the slave job
number 7 running on pseudo-console 6.

You can also see the batch controller, which is
sleeping (job 3), and the job that it is currently running (job 6).

.QUEUE LIST
FROM 14:32 HRS 29-MAR-T73, FREE=500
[30, 411 #1 SUBMIT TRIAL %RUN:4:0 (IN PROGRESS)

PDP-11 AIMS PROGRAMMING MANUAL Page 136
Batch Processing - section 24

.SUBMIT FRED [Example of queueing a batch request
#1 FRED QUEUED

QL

FROM 14:322 HRS 29~MAR-T73, FREE=z492

[4o, 1] # SUBMIT TRIAL %RUN:4:0 (IN PROGRESS)
[16, 16] #1 SUBMIT FRED $RUN:0:10

QK [Delete submitted request from queue
FRED KILLED
LWHO
J1=WHO=K2 J2~-WATCH~PO J3~-BATCH-P2 JU-LOGIN-KU4 J5-EXEC-KO J6-TMP1-P4
LKILL J4 [Kill a job directly
JOB U-LOGIN-[16,16] KILLED, K4 DETACHED.
W)
J1-WHO-K2 J2-WATCH-PQ J3~-BATCH-P2 J5-EXEC~-KO JH~TMP1-PY
M [Wonder if batch job has finished
J1-WHO~K2 J2-WATCH-PO J3-BATCH-P2 J5-EXEC-P2 J6-LOGOUT-PY
W [Yes, it is just logging out now
J1-WHO~K2 J2-WATCH-PO J3-BATCH-PZ2 J5-EXEC~PZ
QL [It should have gone from gueue
QUEUE EMPTY ‘
+CO PT3:=TRIAL.CTL{40,41
40,11 [This was his control file
E TMP1)
~CONTRO
S “DUMP
BYE

[Examine his log file
.CO PT3:=TRIAL.LOG[40,41
14:33:13 29-MAR-T73 AIMS VZ2C BATCH V1D
14:33:14 PC 4 INITIALISED AS JOB 6
14:33:17 AIMS v2C
14:33:17 J6=PY
14:33:18 DEPT,USER: 40, l1
14:33:19
14:33:19 .E TMP1
14:33: 21 FILE:CONTRO
15:25:01 >3 DUMP
15:25:08 >BYE
15:25:10 RUN TIME H#5 MINS 37.3 SECS
15:25:10 CONNECT TIME 52 MINS 0.0 SECS
15:25: 10 BYE

.B [How we log out
RUN TIME 24,3 SECS

CONNECT TIME 10 MINS 20.0 3ECS
BYE

PDP-11 AIMS PROGRAMMING MANUAL Page 137
Batch Processing - section 24

Driving pseudo-consoles - Master jobs

A master job connects itself to a pseudo-console by INITing it
on a particular I/0 channel. A privileged job may INIT any
pseudo~console, even if it is already in use by another master job.
An unprivileged job can only INIT a pseudo-console if it is either

a) Not attached to a slave job, or

b) Attached to a slave job that is logged in under the same
department/user number as the master job, provided the
slave job is not potentially privileged.

These restrictions are designed to prevent unprivileged users from
interfering with privileged system jobs. :

Normally a master job will want to create a new slave job and
will therefore need to find a pseudo-console that is free., MON:
The special devicename PCX is translated by the monitor into the
name of the lowest-numbered free PC. The command INIT #c “PCX:’
will connect channel ¢ to a free PC and the number of the PC thus
obtained my be found from QX(c,7), see page 65. DOS: There is no
. convenient way of finding a free PC. The method involves peeking
at the KTAB system table, see the utility program PCDEMO.BAS.

Once the channel is INITed, the master job may PRINT and INPUT.
messages in the normal way. PC’s are special in that input and
output may be done on the same channel number.

The INPUT command will extract characters from the slave job’s
console output buffer until a line terminator is found or the
buffer becomes empty. The string thus obtained is given to the
master job. Note that this string may not be a complete line (the.
slave job may be compute-bound at the time), and also that the
INPUT command never suspends the master job. Hence the master job
should contain a routine that repeatedly INPUTs from the PC until a
null string is returned. The routine can assemble the slave job's
output into proper lines by scanning it for [cr/1f]. It is also
necessary for this routine to detect when the slave job is waiting
for console input, since this often happens when half a 1line has
been printed (eg. the slave job’s input prompt string). The
routine must also notice if the slave job logs itself out, so that
the master does not wait indefinitely for output that will never be
generated. On the other hand the routine should be sure to collect
the printout from the LOGOUT program, which may appear after the
job has logged out. :

For these reasons the master routine that obtains output from
‘the slave job 1is somewhat complex. A suitable routine is given
below: -

800 REM GET LINE FROM SLAVE JOB
805 PUT $7>$1$646>$7 :RETURN 4
810 INPUT #5 $:UNLESS $="" :PUT 7>$7 :GOTO 805

MON:
815 if qx(5,4)=9 :put $7>$1 :put >$7 :return 2
820 if gx(5,4) :return 3

PDP-11 AIMS PROGRAMMING MANUAL Page 138
Bateh Processing - section 24
825 return 1
DOS:
815 unless pk(jt+j-1) :unless pk(kp+10) :return 1
820 if (pk(jd+14)&255)=238 :put $7>$1 :put >$7 :return 2
825 return 3

where

#5 is PC channel

36 contains [er/1f]

$7 is buffer used for building up a full line
$1 is full line returned by routine

DOS only:

JT is address of job table

J is the number of the slave job

JD is address of slave job’s JOBDAT block
KP is address of PC's entry in KTAB

The routine has four returns:

Job has logged out, there is no more prinout.

Job is waiting for input, $1 is remainder of printout.
Job is busy, no full 1line available yet,

Full line of printout in $1

W Ny —

The master job sends characters to the slave job by PRINTing
them to the PC channel. These characters are sent through CONSER
Just as if they originated from a real console. The master job
should normally end each 1line with %C13, rather than [er/1f],
because CONSER will add a linefeed. The lines may or may not be
echoed depending on whether or not the slave job has suppressed
echoing. The master job should not send characters to the slave
Jjob wunless the slave job 1is waiting for input, otherwise the
correspondence between input and output will be upset, This
correspondence 1is maintained automatically provided the master
input routine is always called after each PRINT to the PC.

Since the PC-driving procedure 1is ‘rather complex and 1is
affected by internal changes to AIMS, it is strongly recommended
that programmers should use the standard subroutine given above.

PDP-11 AIMS PROGRAMMING MANUAL Page 139
Line Communication Facilities - section 25

.25, LINE COMMUNICATION FACILITIES

The standard AIMS system will support any mixture of
asynchronous line interfaces operating at speeds upto 9600 Baud for
output and 2400 Baud for input. (eg. KL, DL, DC, LC, DJ, DH, DZ).
Line characteristics such as speed, parity, echoing, filling, and
the interpretation of control characters, may be varied under
program control to suit the needs of each individuzl terminal.
These facilities are primarily intended for interactive terminals
such as Teletypes, DECwriters, and visual displays, which
communicate with people. Extra facilities are needed if a line is
to be used for other purposes, such as computer-to-computer
communication or the control of special-purpose teletype-compatible
devices. A number of options are available as follows:-

1) Synchronous Line QOption

Provides support for synchronous interfaces operating at
speeds uwpto 2400 Baud (eg DP11, DUT1).

2) Image Mode Option

Allows any 1line to be treated as an 8-bit wide
input/output device with no character interpretation. This
permits the control of special-purpose devices like filmstrip
projectors ‘and cassette recorders, where all eight bits may be
used for data transmission.

3) S8pecialised Communication Protocols
Special facilities are available for connecting an AIMS
system to some well known message switching networks, such as
S.W.I.F.T. and C.H.I.P.S. Other facilities can be provided

on reguest.

These options are described in more detail below.

PDP-11 AIMS PROGRAMMING MANUAL Page 140
Line Communication Facilities - section 2%

Line Modes
Each communication line is capable of operating in two modes:-
1) Normal Mode

Most lines operate in this mode, Data is assumed to be
ASCII, parity is stripped on input and may be generated on
output. Characters 1like carriage-return, null, rubout,
control-Y, control-C, and control-0 are treated specially.

Terminals operating in normal mode may be either attached
a detached, Typing carriage-return on a detached terminal
creates a new job and causes the LOGIN program to be run. The.
terminal 1is then =said to be attached to that job, and the
characters control-0 and control-C affect job execution. The
terminal becomes detached when the usér logs out.

2) Image Input Mode

Received bytes are assumed to be eight bits wide and no
special formatting or interpretation takes place. It is
normal to use image mode when a terminal is detached. If an
attached terminal is placed in image mode, the terminal loses
control of the job until normal mode is restored. The PRINT,
INPUT and ACCEPT commands may be used to communicate with an
image mode line, but the LINE command is recommended.

PDP-11 AIMS PROGRAMMING MANUAL Page 141
Line Communication Facilities - section 25

The LINE command

The LINE command provides a means of changing line
characteristics, and of sending and receiving data in 8-bit bytes
or packets. The command controls a line directly without the use
of an I/0 channel. The syntax is

"LINE [line number ne] [function ne] [optional argument]
where

[line number ne] is console line number (not channel number)
[function ne] specifies the function to be performed
[argument] depends on function.

The function codes are:

0 Input of 1 byte to QA. If the line is in image
mode, the full eight bits will be obtained,

1 Image-mode output of low-order 8 bits of [argument ne]

2 Read line characteristics into QA, set line
characteristics from [argument ne].

3 Set modem status from [argument ne], read latest modem
status into QA. :

4 Set line speed (Baud rates).

5 Reserved.,

These facilities are elaborated below.

Function O - Input one byte
To input one byte:

100 LINE L 0 : [Here with byte in QA]
110 [Here if input buffer empty]

The line number L must be even. If there are any characters in the
input buffer, the LINE command succeeds and the next received byte
is returned in the system variable QA. If the 1line 1is 1in image
input mode QA will have a value between O and 255 (decimal)
corresponding exactly to the received data byte. If the line is in
normal mode QA will be between 0 and 127 (decimal) and certain
characters like Null, “C, "0 etc. are not seen due to special
interpretation. If no characters are available control goes to the
next line of the program. Thus the command never suspends the job.

If you want to wait until a character is available, use the
following subroutine:

700 LINE L :LET C=QA :RETURN
705 WAIT 30 1 :GOTO 700

This routine returns with a character in C. If there are no
characters the routine waits for three seconds and tries again.
Any characters that arrive during the wait will be buffered in the
normal way and all such characters will be delivered by the

PDP-11 AIMS PROGRAMMING MANUAL Page 142
Line Communication Facilities - section 25

subroutine at the end of the wait period.

If you need to respond as soon as a character is received, the
possible three second delay may not be acceptable. In this case
you could use

T05 WAIT 1 1 :GOTO 700

which will respond within 100 milliseconds. The WAIT 1 should not
be used unnecessarily since it places heavy demands on system
resources. If you need to respond quickly to every character typed
it is best to place the 1line in image input mode and use a
WAIT 30 1.

Function 1 - TImage Qutput

For image output the line number L must be odd. The 8-bit
argument 1is output to the line exactly as supplied with no parity
generation, filling or CRC computationa. The LINE c¢ommand always
succeeds, but if the 1line output buffer is full the job may be
suspended for a while,

The following program sends an ascending ‘binary count’
pattern to a specified line:

20 $LINE NUMBER:

100 INPUT ?20 L :LET L=L!1 :GOTO 120
110 PRINT “7° :GOTO 100

120 LET B=0

130 LINE L 1 B :LET B=B+1 :LOOP

Function 1 - Force

A privileged job may also use function 1 with an even 1line
number L. In this case the character is processed by the system
exactly as if it had been typed at the keyboard of the terminal
connected to 1line L. This facility is wuseful in tutorial
situations where an instructor can show someone what to type even
if he is at a remote terminal. It is also useful occasionally if a
terminal becomes faulty in the middle of an important job.

The executive FORCE command allows you to type on other
keyboards in this way.

PDP-11 AIMS PROGRAMMING MANUAL Page 143
Line Communication Facilities - section 25

Function 2 - Line Characteristics

Function 2 of the LINE command allows the line characteristies
word to be read and set under program control. If [argument] is
-1, the command simply reads the line characteristics into QA. If
[argument] is positive, certain bits of the characteristics word
are set as specified, and the o0ld characteristics are returned in
QA.

The command
LINE L 2, -1 :LET C=QA

will read the characteristics of line L and store them in the
variable C. Note the comma which avoids 2 -1 evaluating to 1.

The line characteristic word C is a bit mask in format:
Input side (L even):

1 Suppress echo of carriage-return linefeed only.
2 Suppress echo until completion of next INPUT or
ACCEPT command. (still echoes LF & CR)
4 1Image mode input.
8 Simplex line, inhibit all echo.
16 Convert lower-case input to upper-case.
32 Convert input from CCITT telex code to ASCII
128 Every character is treated as a break-character,

256 Line is attached to a job.
€/512&15 Interface type code (see below)

Qutput side (L odd):

4 Convert lower-case output to upper-case.

8 Line output is paused by control-S.

16 Pause mode is enabled.

32 Convert output from ASCII to CCITT telex code.
64 Suppress program printinig (like control-X).
128 Generate even parity on output.
512+ same as for input side.

Interface type codes:

KL11

LC11 (parallel DECwriter)

DC11 (programmable speed, modem control)
DL11 {including DL11-E)

Pseudo-console

DP11 (synchronous)

DH11 multiplexer

DJ11 multiplexer

DZ11 multiplexer

oM EFEWNN O

Bit values greater than 128 are read-only and cannot be
changed by the LINE command.

PDP-11 AIMS PROGRAMMING MANUAL Page 144
Line Communication Facilitles - section 25
The command
LINE L 2, -1 :LINE L 2 QA!B
may be used to set a particular bit B. The command
LINE L 2, -1 :LINE L 2 QA&-B-1

may be used to clear a particular bit BE. The bit assignments are
sueh that

LINE L 2

establishes the normal default conditions.

PDP-11 AIMS PROGRAMMING MANUAL Page 145
Line Communication Facilities -~ secticn 25

Function 3 - Modem Status

Control of modems is an AIMS option. When the option is
present AIMS takes full advantage of the facilities provided by
interfaces such as the DL11-E, DM11-BB and DC11, and will answer
the phone, deal with carrier fail, etc. in an appropriate manner.
Function 3 of the LINE command enables the user to read the state
of a modem, and also to control its operation if desired.

The modem state is represented as a device-independent bit
pattern as follows:

hardware state:

*
]

Modem is connected to line (ie. DATA rather than TELE)
Modem is sending out a carrier (ie. REQ-TO-SEND is on),
Modem is ready for sending

Modem is receiving a carrier (ie. CAR DET on).

The received carrier has changed state (ie. come up

or gone down).

32 The phone is ringing (this pulses in step with the bell)

NO =N -

1

Software control bits:

®# 64 Do not answer phone when it rings.
* 128 Do not drop the line, even if carrier fails,

The bits marked * may be changed by means of function 3. The other
bits are determined by the state of the modem and are read-only.

The software control bits allow calls to be ignored on
particular lines, and also enable a line to be held regardless of
what is going on at the other end. This is useful in experimental
or error-prone conditions.

When using function 3 of the LINE command, the line number
must be even. If [argument ne] is -1, the command just reads the
current modem status into QA. If [argument ne] is positive, the
command sets the modem status as specified, and then reads the
latest status intoc QA. The status returned in QA may differ from
[argument ne] if you attempt to set an impossible condition.

PDP-11 AIMS PROGRAMMING MANUAL Page 146
Line Communication Facilities - section 25

Function 4 - Speed Setting

Some line interfaces, such as the DC11, DH11, and DZ11 allow
program variation of the Baud rate., This is done by writing the
appropriate speed code into the interface hardware register, using
function 4 of the LINE command:

LINE [line ne] 4 [speed ne]

sets the speed of line number [line nel as specified by [speed ne].
[speed ne] must evaluate to one of the permitted speed codes for
the line interface. The DC11 has four possible speeds coded from 0
te 3. The actual speeds obtained depend on the particular type of
DC11. For the DH11 and DZ11 the speed code specifies a definite
speed as follows:

Code DZ11 DH11 (Baud)

0 50 N/A
1 75 50
2 110 75
3 134%.5 110
4 150 134.5
5 300 150
6 600 200
7 1200 300
8 1800 600
9 2000 1200

10 2400 1800
11 3600 2400
72 480Cc u8o0C
13 T200 9600
14 G600 External speed A
15 N/A External speed B

_For example the command LINE 6 4 9 would set the receive speed of

DJ line KB6& to 1200 Baud. Normally the keyboard and printer will
be operated at the same speed, and a second LINE command is needed
to change the printer speed like LINE T U4 9 to set PTT.

Speed changing may be done more easily by means of the
executive

+SET SPEED b

command, which sets the speed of both keyboard and printer to b
Baud,

PDP-11 AIMS PROGRAMMING MANUAL Page 147
AUTOMATIC DIALLING
AIMS supports the DN11 automatic dial unit which enables the

system to initiate a telephone or Telex call under program control,

Initiating a Call

[

The command
DIAL [DN11 number ne] [phone number se]
stores the current DN11 status in QA, checks if the DN11 1is free,
and if so begins dialling the number specified by the string
expression. Execution continues along the same line as the DIAL

command .

If the DN11 is busy or is without power the DIAL command fails
-and simply returns the current DN11 status in QA.

Reading DN11 Status

The status of a DN11 may be read at any time by means of the
command

DIAL [DN11 number ne]

which returns the current DN1! status in QA and continues execution
along the line,

The value returned in QA is the contents of the DN11 hardware
status register which has bits set as follows:-

Octal Decimal Meaning
1 1 Call request. PDP-11 is attempting to initiate
a call. .
40 32 Call established, A number has been dialled and

the called party has answered.

010000 4096 Data line occupied. The line is already in use,
you must wait until the present call terminates.

040000 16384 Abandon call. The dial attempt was
unsuccessful, try again.

100000 32768 Modem power off.

Checking for Call Establishment

When you execute a command like
DIAL 2 “012833801°

this merely initiates the dialling sequence; it does not wait for
the connection to be made. It is the programmer’s responsibility

PDP-11 AIMS PROGRAMMING MANUAL Page 148 .
Line Communication Facilities - section 25

to check later that the call has been correctly established. This
may be done by reading the DN11 status with a second DIAL command
and checking to see if the CALL ESTABLISHED bit is set.

A program can use the WAIT/WAKE mechanism to suspend execution

-until a dialling sequence is completed by doing a WAIT command with
a [wake mask ne] which includes 8.

Example program

To make a call on DN11 number 2.

90 LET Z=1_16-1

100 DIAL 2 “012833801° :WAIT 200 8 :GOTO 110

102 PRINT “?CANNOT START DIALLING, DN11 STATUS=" QA&Z :STOP
110 DIAL 2 :IF Qa&32 :PRINT ‘0K’ :GOTO ...

112 PRINT °“?CANNOT ESTABLISH CALL, DN11 STATUS=" QA%Z :STOP

In this example we use a 20 second timeout so that the program
recovers even if for some reason the DN11 fails to complete the
dialling sequence. '

PDP-11 AIMS PROGRAMMING MANUAL Page 149
SWIFT CBT - section 25

[AIMS facilities for communication with SWIFT |

The facilities described in this subsection are necessarily
dependent wpon decisions taken by S.W.I.F.T. and these cannot be
determined or predicted by Arbat.

Communication with the SWIFT concentrator is by means of a.
DU11 interface to a synchronous modem. The line communications
protocol 1is similar to but different from the IBM binary
synchronous contention protocol. Messages are transmitted over the
line in blocks of upto 384 bytes which are CRC checked. The line:
traffic consists of a sequence of data blocks interspersed with
control sequences which are used for block acknowledgement and line
turnaround. :

A special AIMS command, SWIFT, is provided for driving the
DU11 1line. This enables an AIMS system to support the SWIFT
communications protocol in a two level manner:

~ 1) AIMS contains a machine-code program for transmitting and
receiving data blocks and control sequences. This program
also converts between the internal ISQ character code and the
EBCDIC code that is used on the line, and it computes the CRC
check bytes for each data block,

This program does not however concern itself with the details
of the communications protocol. It merely transmits sequences
or blocks as directed by the second level, and notifies the
second level whenever a sequence or block is received.

2) There is a special AIMS job, called the SWIFT protocol job,
which receives the information from 1level 1 and takes the
appropriate action to implement the SWIFT communications
protocol, This Jjob 1is responsible for making line bids, -
sending blocks, checking CRCs, acknowledging blocks, erreor
recovery and so on, Message blocking and deblocking is
performed by level 1 under instructions from level 2.

AIMS contains a BLOCK BUFFER capable of transmitting or

. receiving one data block. It also contains a MESSAGE BUFFER
capable of holding one maximal 1length message {upto 2000

characters).

Message Reception

When a data block is received it is stored in the block buffer
and the protocol job is notified. If the block is acceptable the
protocol job will instruct level 1 to append the block to the
message buffer, and another block can then be received. Eventually
a complete message is assembled 1in the message buffer and the
protocol Jjob then notifies the SWIFT message handling job that a
message has arrived. The message handling job can read the message
into an array by means of a SWIFT command.

PDP-11 AIMS PROGRAMMING MANUAL Page 150
SWIFT CBT - section 25

Message Transmission

When a message is ready for transmission the SWIFT message
handling job places it in the message buffer by executing a SWIFT
command. This command also notifies the protocol job that a
message 1s awaiting transmission.

The protocol job then obtains control of the line by
transmitting an appropriate set of control sequences and prepares
to send the message. It instructs level 1 to begin deblocking the
message by moving the first 384 bytes of it from the message buffer
to the block buffer and appending the appropriate CRC bytes. The
message 1s also converted from ISO to EBCDIC at this stage. When.
the bloeck has been transmitted the protoceol job will wait for an
acknowledgement and will send the block again if necessary. If the
block is accepted the protocol job will instruct level 1 to move
the next 384 bytes of the message into the block buffer and so on.

Eventually the whole message is successfully transmitted and -
the protocol job will then notify the SWIFT mes3age handling job
that the message has been sent. At the same time the message
buffer 1is marked as being free so that another message can be
loaded into it if desired.

Message Handling Job

This job is responsible for transferring messages between disk
and the AIMS message buffer, the actual transmission or reception
of the messages being performed by the SWIFT protocol job.

Three SWIFT commands are provided for use by the message
handling job:-

SWIFT [Swift line#] 0 [command sel>$[ne]

Function 0 exchanges a string with the SWIFT protocol job and
enables the message handling job to communicate directly with the
protocol job. [command se] 1is a string expression which
constitutes a command to the protocol job. This string is sent to
the protocol job and it returns an appropriate reply string. The
reply string is stored in the dollar-line specified by [ne]. The
SWIFTO command language is described later,

SWIFT [Swift line#] 2 A(J)

Function 2 reads a SWIFT message from the message buffer into
the array A(). The message always begins with SOH and ends with
ETX followed by a byte containing 128 (except that the 128 byte 1is .
omitted if the message happens to completely fill the array). QA
gives the length of the message in bytes, from the SOH to the ETX
inclusive.

SWIFT [Swift line#] 3 A(J)

Function 3 copies a SWIFT message from the array A() to the
message buffer. The message at A(J) must begin with SCH and end

PDP-11 AIMS PROGRAMMING MANUAL Page 151
: i SWIFT CBT - section 25

with ETX. Anything following én etx is ignored. The command will
~fail if the message buffer 1is in use for the transmission of an
earlier message or the reception of a message.

The message handling job causes a message to be transmitted by
executing a SWIFT 3 command and then going to sleep until woken by
the protocol job. The message handling job then executes a SWIFT 0O
command to find out if the message has been transmitted ok.
Transmission may fail due to the concentrator or line going down or
due to a race condition in which a message is received from the
concentrator after execution of the SWIFT 3 command but before the
protocol job has time to transmit the message. The message-
handling job must therefore be prepared to repeat the whole message
transmission procedure, either by holding the message in an array
throughout or by retrieving it again from disk.

When the message handling job has been notified that a message
has been successfully transmitted it may do one of two things: (a)
it may initiate the transmission of another message, or (b) it may
inform the protocol job that there are no further messages to be
transmitted at the moment. The message handling job has 1.5
seconds in which to do this. During this interval the protocol job
will keep control of the line, If another SWIFT 3 command is
executed within this interval the protocol job will immediately -
begin transmission of the new message. If the protocol job is
notified (via SWIFT 0) that there are no further transmissions, or
if the interval expires without notification, the protocol job will
give up 1line control. This is not an error condition, it simply
means that any subsequent message transmission will involve a 1line
bid. - The message handling job should however make an effort to do
(a) or (b) as soon-as possible after it has been woken.

When the message handling job is idle it should be sleeping
with the WAKE enable bit set. If a message is received from the
concentrator .the protocol job will WAKE the message handling job.
As for message transmission, the message handling job should
execute a SWIFT 0 command to find out the reason for its being
woken . On finding that the reason is the arrival of a message the
message handling job should read the message by executing a SWIFT 2
command . This command frees the message buffer and wakes the
protocol job, and it 1is possible that the protocol job will
immediately begin receiving another message. Consequently the
SWIFT 2 command can only be executed once per received message and
it is the responsibility of the message handling job to correctly
‘store the message on disk.

When the protocol job has received the final block of a
message from the concentrator, there will in general be some delay
before the message handling job reads the message with a SWIFT 2
-command, During this delay the protocol job will hold off the
concentrator by means of WACKs for upto 30 seconds. If the message
handling job fails to read the message within this time the
concentrator will mark the CBT as being down. Therefore the
message handling job should take care to react smartly to received
messages. ‘

PDP-11 AIMS PROGRAMMING MANUAL . Page 152
SWIFT CBT - section 25
SWIFT command Errors
The SWIFT command may fail for several reasons:-

QE Func¢ Reason

0 All Invalid Swift line number

1 ALl No protocol job

2 2 No message available
3 Message buffer in use

3 2 Array too small for message (QA=-message length in bytes)
3 Message too long. for message buffer

3 SOH or ETX absent from message in array

SWIFT commands used by Protocol Job

Apart from the - three SWIFT command functions described
earlier, all SWIFT functions are reserved for use by the protocol
job only. If any other Jjob executes any of these functions
confusion will ensue.

~ All SWIFT commands begin with a [Swift line ne] followed by
" the function code number. '

SWIFT [Swift line#] 1, [nel

Exchanges DU11 modem status word. The contéents of the DU
receiver status register is stored in QA and the register is set to
the value of [ne] if this is positive, For meaning of this
register see DU11 manual.

SWIFT [Swift line#] 4

Reads the next byte from the level 1 received event queue into
QA. The command fails with QE=2 if the event queue is empty. The
possible received events are described later.

SWIFT [Swift line#] 5 [control sequence nel] [argument se]

Instructs level 1 to transmit the control sequence specified
by [control sequence ne]l. The possible control sequence numbers
are described later., [argument se] is a character string which is
converted to EBCDIC and output immediately before the bytes that
constitute the control seguence proper. This 1is used for
outputting the SWIFT CBT identification or 1line address when
transmitting ENQs or ACKOs on dial-up lines.

SWIFT [Swift line#] 6

Instructs level 1 to append the current contents of the block
buffer to the message buffer, If the block begins with SOH the
message buffer is automatically cleared before the append.
Otherwise the initial STX is removed and the block is appended to’
any partial message already present in the message buffer. The
byte that terminated the block (either ETB or ETX) is returned in
QA sc that the program can tell whether the message is now

PDP-11 AIMS PROGRAMMING MANUAL Page 153
SWIFT CBT - section 25

complete. The command will fail with QE=3 if the message buffer 1is
too full to hold the block.

SWIFT [Swift line#] 7

Instructs level 1 to copy the next block of bytes from the
message buffer to the block buffer. The bytes are converted from
ISO to EBCDIC, STX is prefixed if the first byte is not SOH, and
ETB 1is added if the last byte is not ETX. The CRC is calculated
-and appended. After this operation the block buffer contains a
properly formatted data block ready for transmission. The command
will fail with QE=2 if the end of the message has been reached, in
which case the block buffer contains nothing in particular.

SWIFT [Swift line#] 8

Computes the CRC value for the block currently in the block
buffer and returns it in QA. If the block buffer contains a valid
block with its correct CRC, QA will be zero. Used for validating
the CRC of a received block before appending it to the message
buffer.

SWIFT [Swift line#] 9

Resets level 1 so that .the next function 7 command will
operate on the first block of the message in the message buffer.

SWIFT [Swift line#] 10, [ne]

Exchanges message buffer status. The current message buffer
status 1is stored in QA, and the status is then set to [ne] if this
is positive. The possible message buffer status codes are:

0 FREE Message buffer free

1 MSQP Message being transmitted from buffer or waiting to be
transmitted

2 MSAV A received message is available in the buffer

3 MSIP A message is being received into the huffer.

The SWIFT funetion 3 is only allowed when the status is 0, and
function 2 1is only allowed when the status is 3. Function 3 sets
the status to 1 and function 2 sets it to zero. The message buffer
status allows the protocol job to work out what the message
. handling job is doing.

SWIFT [Swift line#] 11 [mode ne]

Initialises level 1 completely. Sets w DU11 interrupt
vectors, initialises DU11 hardware registers, resets all software
variables to standard state, abandons any pending transmissions,
clears the received event queue. [mode ne] specifies the mode of
operation as O0O=Leased, +1=Pstn, =1zIgnore. The Ignore mode
disables the DU11 completely.

SWIFT [Swift line#] 12 $[ne]
DOS only: Reads the next SWIFTO command string from the

message handling job into $[ne] and sets QA to the job number of
the message handling job. Command will fail if no job is currently

PDP-11 AIMS PROGRAMMING MANUAL Page 154
SWIFT CBT - section 25

. executing a SWIFT O function.
SWIFT [Swift line#] 13 [job# nel] [reply se]

DOS only: Returns the string [reply se] to the specified job
which is presumed to be suspended executing a SWIFT 0 function.
Command will fail with QE=1 1if the specifled job does not exist or
is not awaiting a reply. '

SWIFT [Swift line#] 14 A(J)

Used for testing the system without wusing a real DU
interface,. Enters the DU11 interrupt handler in a way which makes
it think a DU1? receive interrupt has occurred. Instead of
examining the real DU11 hardware registers, the interrupt handler
is instructed to examine the four words located at A(J) through
A(J+3). An AIMS program can set these up beforehand to simulate
any desired DU11 condition. Function 14 thus allows an AIMS test
program to pump bytes into the system as if they came down the line
from a SWIFT concentrator. DO0OS: A(J) 1s not specified in the
command. The simulated registers are always located at GV(10-13).

SWIFT [Swift line#] 15 A(J)

As function 15 except it simulates a DU11 transmit interrupt.
This allows an AIMS test program to suck bytes from the system as
if they were going down the line to a SWIFT concentrator. DOS:
"A{J) 1is not specified in the command. The simulated registers are
always located at GV{(10-13).

SWIFT [Swift line#] 16 A(J)
Copies the contents of the BLOCK BUFFER into the array. Used

for diagnostic purposes to investigate CRC errors on received data .
blocks., .

Received Event Queue

When a control sequence or a block is received by the DU11 it
is recognised, converted to an internal EVENT CODE number, and
placed on a RECEIVED EVENT QUEUE. This is the queue that is read
by function B of the SWIFT command. The format of an event in the
queue is:

Event code, Low time, High time, Optional args, 0

High time#*256 + Low time gives the time of day when the event
occurred in tenths of a second past midnight modulo 10000.

Some event codes are followed by one or more argument bytes.
For example on a dial-up line the first ENQ is received in the form
ID ENQ where ID is a five character name identifying the
concentrator., The ID characters are treated as an argument of the
basic ENQ control sequence, and level 1 therefore places an ENQ
event code on the received event queue, followed by the five ID
characters, All events on the queue are terminated by a single
zero byte.

PDP;11 AIMS PROGRAMMING MANUAL , Page 155 k .
SWIFT CBT - section 2%

The procedure for reading the next event from the queue is to
read the first byte (via function 4) and treat this as the event
code, read and store the two time bytes, then read subsequent bytes
until a zero byte 1s read. These bytes then constitute the

~argument if any.

Code Meaning

A block has been received beginning with SOH
A block has been received beginning with STX
DEOT received
EQT received
ENQ received
RVI received
TTD received
NAK received
WACK received
10 ACKO receilved
11 ACK1 recelved
12 Unrecognisable control sequence received
13 DU11 receiver error (receive overrun or framing error)
14 The modem status has changed
15 The last byte of a data block has just been transmitted

WO W R =

When it is indicated that a block has been received, it may be
assumed that the block is stored in the block buffer, However, the
block buffer is not protected from overwriting, and if another
block 1is received before the event gueue is serviced the first
block will be lost.

Control 3equence Codes

Level 1 can be instructed to output control sequences or
blocks by means of function 5 of the SWIFT command. The control
sequence codes are identical to the event codes given above, except
that code 2 and codes above 11 do not apply. Thus to send a ACKO
you execute SWIFT function 5 with a sequence code of 10. The
[argument se] of function 5 is normally null but may be used, for
example, if you wish to send an ENQ prefixed by the five-character
CBT identifier. '

Control code 1 is used to instruct 1level 1 to output the
-contents of the block buffer. This must have been previously set
up by means of SWIFT function 7. Code 1 1is used to output the
block whether it begins with SOH or STX. ‘

SWIFTO Command Languége

The message handling job communicates with the protdcol job by
means of function 0 of the SWIFT command, which passes a string to
the protocol job and returns another string in reply.

PDP-11 AIMS PROGRAMMING MANUAL Page 156 ,
' 'SWIFT CBT - section 25

The possible command strings that can be sent to the protocol
Job are as follows:

INIT Initialises everything without regard to current state.
RESET Sets protocol job into the normal idle state.
IGNORE Sets protocol job into the TERIGN state.
CBTID string
Informs the protocol job that the specified string
(should be 5 characters) is to be used as the CBT
identifier.
CONID string
Informs the protocol job that the specified string is to
be used as the concentrator identifier.
STATUS Returns current state (see below).
~ PSN ‘Sets PSN (ie. dial-up) mode.
LEASED Sets leased-line mode (opposite of PSN).
TRACE dev n:file.ext=options
Causes the protocol job to begin outputting a line trace
to the specified device and file (normally a 2400 Baud
vdu). Options is one or more letters selecting subsets
of the trace as: '
E trace errors
R trace all received events
T trace all transmitted control sequences
M trace interactions between protocol and message
‘ ‘ , handling jobs
TRACE CL Closes trace file.
LOG string
Outputs the string to the trace channel. Used for
inserting comments into the trace. ;
* TXEND No more messages to transmit at this time.

" Protocol Job Status

The status returned by the SWIFTO status command is of the
form: :

S=xxxxxX Bzyyyy T=2zzzz2

where
xxxxxx gives the overall state of the CBT as
idle
SLAVE Concentrator is master, CBT expecting to receive a
- block.
STORE Waiting for message handling job to read a received
message. ;

BIDRPY Waiting for reply to a CBT line bid

NXTOPM Waiting for message handling job to provide the next
output message or indicate that there are no more.

BLKRPY Waiting for concentrator to reply to a block sent by
CBT. ;

TERCON Terminated by concentrator (DEOT received)

TERCBT Terminated by CBT due to timeout or countout.
Probably the concentrator is down.

TERIGN Terminated due to SWIFTO IGNORE command,

PDP-11 AIMS PROGRAMMING MANUAL Page 157
' SWIFT CBT -~ section 25

yyyy gives the state of the message buffer (see SWIFT function
10).

z2z2zZ shows what has happened to the most recent request for
message transmission:

BUSY message being transmitted

SENT message has been transmitted ck

FAIL message not sent

if T=FAIL status is returned when attempting to send a message, the
attempt should be repeated unless s=terxxx; the transmission
failure could have been caused by a received message overwriting
the message buffer. Note that the normal state is T=SENT and this
-state is set by the INIT and RESET commands. The message handling
Job 1is expected to know whether or not it has requested message
transmission (via SWIFT 3), and no significance should be attached
to t=sent at other times.

Summary of SWIFT command functions

EXS Exchange strings with protocol job

MOD Exchange modem status

REA Read message into array

WRI Write message from array

EVR Read next byte from received event gueue

EVW Initiate transmission of specified control sequence
IPB Append block to message buffer

OPB Fill block buffer from message buffer

CRC Return CRC of block now in block buffer

A FOP Set to output first block via next OFB. function

10 STA Exchange message buffer status

11 INI 1Initialise level 1

12 IPR DOS only: Read next SWIFTO command string

13 REP DOS only: Send SWIFTO reply string to specified job
14 IFR Simulate DU11 receive interrupt .
15 OFR Simulate DU11 transmit interrupt

16 RRB Read raw received block

WA W = O

Only functions 0, 2 and 3 may be used by the message handling job.

deal Testing using a Concentrator Simulator

an AIMS system for SWIFT can be tested without making a
connection to a real SWIFT concentrator (this is an option selected
at system generation time using F.NODU). This is done by means of
functions 14 and 15 of the SWIFT command which enable an AIMS
program to simulate the DU11 line interface. The real SWIFT 1line
runs at 2400 baud or about 300 bytes per second and it is quite
feasible to simulate operaticon at this speed, with the exception of
the CRC checking which is very slow when written as an AIMS
progran.

The test facilities currently available are as follows:-

PDP-11 AIMS PROGRAMMING MANUAL ~ Page 158
SWIFT CBT - section 25

SWIFT0.BAS The standard SWIFT protocol job. Warning! MON and
DOS versions of this program are diferent. Also a
special version is needed in the U.K. to accommodate
incompatabilities between G.P,.0. and CCITT standards.

SWIFTM.BAS - A simple message handling job for running the SWIFT
- Qualification tests. ‘ -

‘QUACON.BAS A job which simulates the SWIFT concentrator and
- administers the Qualification tests.

QUACON is only used for local testing when it 1is desired to
“simulate the SWIFT concentrator. To do the real SWIFT
Qualification Tests QUACON is replaced by another program called
QUADRY.

Before doing any local testing it is essential to execute a.
SWIFT L 14 command to inform the system that you are going to use a
simulated DU11 rather than a real one. Failure to do this will
cause a system crash when the protocol job attempts to initialise
the line (if there is no real DU11 in the configuration),.

The protocol job should be started on a pseudo-console by the
command sequence:~-

.ZE SWIFTO .
up '

THE JOB SHOULD IMMEDIATELY GO TO SLEEP.

THE QUALIFICATION MESSAGE HANDLING JOB SHOULD BE STARTED ON
ANOTHER PSEUDO-CONSOLE AS:- '

.ZE SWIFTM .
LOG DEVICE:PT nn:

" The job should immediately go to sleep.

Finally the concentrator simulator should be started on a fast
visual display:-

.ZE QUACON

EI.TXT READ

SINGLE-BLOCK MESSAGES CREATED
MULTI-BLOCK MESSAGE CREATED
TEST:

Two commands are now available:-

/xxxxxx Sends xxxxxx to the protocol job as a SWIFTO command and
prints reply. Allows direct interaction with protocol
Job if necessary. '

nn Starts qualification test number nn, the test numbers
being those in the qualification specification 0PS.10.

. For local test purposes it is recommended that the logging
device for both the SWIFTO and SWIFTM jobs be the same fast visual
display as is used to control QUACON. This ensures that all

PDP-11 AIMS PROGRAMMING MANUAL Page 159
‘ SWIFT CBT - section 25

logging output appears in an easily discernable order. If the
visual display is slower than 2400 baud it may be necessary to use
several. On no account should trace output ever be sent directly
to a lineprinter. There is a parameter DF in SWIFT(Q.BAS which is a
scale factor determining the length of all protocol job timeouts.
For local test purposes this may be increased if necessary to
accommodate delays due to QUACON or slow logging devices.

Explanation of QUACON

Both QUACON and SWIFTM contain a block of dollar-lines that
specify the 'action required for each qualification test. In the
.case of SWIFTM this merely specifies that certain messages are to
be sent to the concentrator in the appropriate order. No details
are given of messages to be received from the concentrator since
SWIFTM is always ready to receive, For QUACON the test
- specification is more complicated: it includes the exact sequence
of line contrcl signals that are to be sent to the CBT, and the
sequence expected to be received from the CBT. QUACON checks the
replies it actually receives and stops if there is any discrepancy.

The specification of a particular test is a sequence of items
" in a dollar-line. The possible items are:-

nn Send the control sequence in $nn

R=nn Expect a reply:control sequence matching $nn

T=xx Send the message blocck in array xx.

Wtt Wait for tt tenths of a second.

RBf1l Expect to receive a message block of the form specified by f1,
where f specifies the first byte of the block and L the last.
F and L are single digits coded as: 0=ETB, 1=S0H, 2=STX,
3=ETX. So RB13 means read a bhlock beginning with SOH and
ending with ETX. : :

REPnn (...) Repeat the sequence of items enclosed in () nn times.

An example of a test specification is:
3000 $01 35 R=U40 T=S1 R=41 34

This is test number 01. It may be read as: Send an ENQ ($35), read
an ACKO reply ($40), send a single-block message (array S1), read
an ACK1 reply ($41), and send an EOT ($34).

(Note: in fact the test specifications contain other items such as
SEND2000, RM, WWS, and TXEND. These are obsolete and are ignored
by QUACON)

Dollar-lines 33 through 42 define the possible line control
sequences (eg: NAK, TTD, etc) in an octal representation of EBCDIC.
arrays EI and 1E are used to convert between ISO and EBCDIC.
Arrays S1, 32 and S3 contain three numbered single-block messages.
‘Arrays M1, M2 and M3 contain the three blocks of a single
multi-block message.

Before running any tests it is necessary to set the TRACE
control parameters for the protocol job, otherwise it will not
generate any logging output. The QUACON command

pPDP-11 AIMS PROGRAMMING MANUAL Page 160
SWIFT CBT - section 25

TEST:/T PT N:=TRME

sends a TRACE command to the protocol job and enables Transmit,
Receive, Message, and Error traces.

QUACON communicates with the message handler via GV(5-7).
When you glve the command

TEST: 34

to start test number 34, QUACON LETs the string 34 into GV(5) to
tell SWIFTM that test 3% is about to begin (strings are used .
because some tests have names like AA). The message handling Jjob
may be reset at any time by setting GV(5)=~1, waking SWIFTM, and
waiting till GV(5)=0. SWIFTM is then ready to receive the next
test number.,

SWIFTM itself only communicates with the protocol Jjob via
functions 0, 2 and 3 of the SWIFT command. SWIFTM contains the
four messages that the qualification procedure requires the CBT to
send. The only output from SWIFTM is the logging output.

SWIFT Qualification Tests

Both SWIFTO and SWIFTM may be used without modification for
doing the qualification tests with a real SWIFT concentrator. The
set up procedure is the same, except that no SWIFT 14 or 15
commands should be given. If any local testing has been done the
system should be restarted to restore the use of the real DU
interface, '

For doing the tests with a real SWIFT concentrator you use
QUADRV.BAS rather than QUACON, since the concentrator simulator is
not required. QUADRV merely informs SWIFTM (via GV(5)) which test
. 1is to be done next.

Note that for the qualification tests all these programs run
at priority 0 and no other jobs should be on the system,

Special action should be taken if AIMS fails any SWIFT test.
The test should be tried at least three times; the SWIFT
concentrator test program sometimes gets into peculiar states and
it can happen that a test will succeed on the second go. The line
trace should be examined whilst the test 1s going on to see whether
the problem appears to be a CBT or a concentrator fault., If the
behaviour shown on the line trace appears to conform to the SWIFT
specifications 1laid down in the OPS.10 document, reference should
be made to the latest available information about the state of the
concentrator test program. Some versions of this program will fail
certain tests although there is in fact no error in the CBT. The
concentrator operator should have a list of these faulty tests.
Finally, if the concentrator operator will not accept that the
failure 1is a SWIFT problem, the test should be run again with the
line trace output to a disk file. This will give a permanent copy
of the trace for further investigation.

PDP-11 AIMS PROGRAMMING MANUAL ' Page 161
SWIFT CBT - section 25

Explanation of Line Trace

The trace contains one line of text for each control sequence
that is transmitted or received. The general format is:

time state dir event

- where

time is the time of day in tenths of a second past midnight,
modulo 10000.

state 1is the overall state of the CBT (see below).

event identifies the control sequence or block that was sent or
received.

dir is R if the event was received by the CBT, and T if it
was transmitted by the CBT.

An exmple should make this clearf

1807 IDLE T ENQ
1808 BIDRPY R AKO

This shows an initially idle CBT making a line bid. It transmits
an ENQ at time 1807, and receives an ACKO at time 1808. When it
receives the ACKQ the CBT state is BIDRPY, which means Awaiting
Reply to a Bid. The interval between the two events may be found
by subtracting the two daytimes: 1808-1807=1, indicating an
~interval of 0.1 seconds, . ‘

The event codes are mainly self explanatory, such as ENQ, RVI,
DEOT and WACK, ACKO appears as AKO and ACK1 as AK1. A received
block will be traced as R SOH if it begins with SOH, or R STX if it
.begins with STX. An unrecognisable sequence is logged as R JUNK.

Blocks transmitted by the CBT are always traced as T SOH.
This 1is so even if the block begins with STX, The T SOH is
generated when the CBT begins to transmit the block. When the last
byte of the block has been transmitted an R BTX event is logged.
For example

1809 BLKRPY T SCH
1811 BLKRPY R BTX
1812 BLKRPY R AK1

Here the CBT begins transmitting a block at time 1809. It finishes
block transmission 0.2 seconds later at time 1811. An ACK1 is then
received from the concentrator.

CBT timeouts give rise to R TIM events in the trace. For
example, 1if the CBT were to send a block to the concentrator and
receive no reply, the trace would appear as follows:

7229 BLKRPY T SOH [begin transmitting block
7242 BLKRPY R BTX [finish transmitting block
7273 BLKRPY R TIM [timeout occurs T273-7242= 3.1 secs later

7273 BLKRPY T ENQ
7275 BLKRPY R AKO

PDP-11 AIMS PROGRAMMING MANUAL Page 162
: ‘ ASCII code - section 26

26. THE ASCII CHARACTER CODE

CHARACTER ¢C OCTAL CHARACTER $C OCTAL
Null 0 0 e 64 100

1 1 A 65 101

2 2 B 66 102

control-C 3 3 C 67 103
I y D 68 104

5 5 E 69 105

6 6 F 70 106

7 7 G 1 107

8 10 H 72 110

Tab 9 11 I 73 111
Linefeed 10 12 J T4 12
‘ 11 13 K 75 113
Formfeed 12 14 L 76 114
Return 13 15 M 7T 115

14 16 N 78 116

eontrol-0 15 17 o 79 17
16 20 P 80 120

control-Q 17 21 Q 81 121
18 22 R 8z 122

control-S 19 23 S 83 123
20 24 T 84 124

21 25 U 85 125

22 26 v 86 126

23 27 W 87 127

control-X 24 30 X 88 130
control-Y 25 31 Y 89 131
26 32 Z 90 132

Escape 27 33 [91 133

28 34 \ 92 134

29 35] 93 135

30 36 “ 94 136

31 37 - 95 137

Space 32 4o a6 140

! 33 41 a 97 141

" 34 42 b 98 142

35 43 c 99 143

$ 36 by d 100 144

% 37 45 e 101 145

& 38 46 f 102 146

© 39 W7 g 103 147

(40 50 h 104 150

) 41 51 i 105 151

* 2 52 J 106 152

+ 43 53 k 107 153

’ 4y 54 1 108 154

- 5 55 m 109 155

. 46 56 n 110 156

/47 57 o 111 157

0 48 60 p 112 160

1 4g 61 q 113 161

2 50 62 r 114 162

3 51 63 s 115 163

h 52 64 t 116 164

5 53 &5 u 117 165

PDP-11 AIMS PROGRAMMING MANUAL Page 163
: - ASCII code - section 26

54 66

6 v 118 166
7 55 67 w 119 167
8 56 70 x 120 170
9 57 71 y 121 171
: 58 T2 z 122 172
; 59 73 { 123 173
< 60 T4 too124 174
= 61 75 } 125 175
> 62 76 =~ 126 176
? 63 7 Rubout 127 177

PDP-11 AIMS PROGRAMMING MANUAL

! operator
! when echoed . ., . . ., .

as channel specifier . .
$1lines « v v . e e .

" 4AFTER switeh . + ¢ ¢« « + &
¢C operator . .-. e e e
"4F character filter .« v .

4G operator e e s
ENOTIME batch command .
ZPRIORITY batch command . .
F4R operator . . .+ ¢ s . & .
fRUN switeh . . ¢« « ¢« + « &
2S operator . « ¢ o o 0 o
2TIME bateh command
EX operator . .« « « ¢+ 4+ . e

& operator

y in printed numbers . . .
y 1n string expression . .

[CUe L] L] . L] L] L] L] L] . . L]
.SPEC mT . * o . e 0 . o e

; in string expression ., .
< and > operators with LET

= < > operators in INPUT .
=8 operator . . . + + ¢ .

[CEEET-1
? operator in INPUT

8 when echoed
@A format specifier
@F format specifier
@R radix specifier
6W format specifier

Abbreviated commands . . .
Abort keys .+ « « ¢ o+ o
ACCEPT command ., « + & o+ &
Accounting, by system . . .
Accuracy of calculations .
ACOMP command . + « &« & « &
Administration, of system .
ALLOC command . . + « + « &
Alphabetic comparisons . .
AMOVE command . + + +» « &

Anchored string search ., .
ARRAYS & v 4 o & o o & s

14

12
60
24, 39

132

26, 161
uy

41

133

133

26

132

26, 46
133

26, 32, 36

14

29
26

98
T4

26
34

48
20

85
43

12
29
29
29
29

6
87
49

128

16
22
121
76
37
22

.

18

Page 164
Index

PDP-11 AIMS PROGRAMMING MANUAL

Arrays, as 1/0 buffer

Arrays, dynamic encoding .

Arrays, unpacking into strings

ASCIT code , « v « o o o &«
Assignment to strings . . .

BATCH commands .+ » « « o

Batch processing . . « .+
BATCH pl"‘Ogl"am * L] » . » L] L]

Bit shift operator

Bit tally « & « & & & o &
Boolean operators«
‘BOT, magtape . « « & .
Broadecasting to terminals .
BYE command . + « + « & .
BYE EXEC command o

CALL command . + + « & .+ &

- CALL file command o

Channel pointers . . « + »
Channel status information

Channel status word
Chammels, I/70 . . + + « &
Character set . . + « + + »
Characters, ASCII value of

CLEAR command . + « + + + &
CLOSE command . +» « s « o »
CODE command . « . . e
Comma, at end of PRINT . e
Comma, in string expression
Command failure
Command SUMMAPIY o « o« o o «
Command syntax . « . .+ « »
Commas in printed numbers .
Commas, significance of . .
Common data, between jobs .,

*

L]

Commun ication between terminals

Communnication between users
Comparing strings . . « +» »
_Concatenating strings . . .
Connect time, of job . . .
Consolenames . + + + o &
Contiguous file creation .
Control files . . . + + + &
Control-C key . » .+ « &«
Control-0 kKey + « + «
Control-Q key + « o « &
Control-S key . + « « .
Control=X Key . « &« 2 « ¢ &
Control-Y key .+ +» + « &«

. & e e
L

Conversion, numbers to strings
Conversion, strings to numbers

Cooperating jobs . « . + .
CORE command . + « + « + =
CPUTIME command « + + « + «
Cue strings, with INPUT . .

DA{) functions ., . . , .
Dartmouth BASIC . . « + + &

- » - -

115
116
115
37
26
119
117
76
133

87
12
12
12
12
29
41,
115
112
101
47

122

76, 161

49

Page 165
‘Index

PDP-11 AIMS PROGRAMMING MANUAL

Data filing . » « + « &
Data modes . . « + «
Data transfer commands

Data types .« « « + « &
Date .
DAYTIME command . « . .
Decimal point, input .
Decimal point, output .
Decoding user commands

Default disk . + » .
Default file extensions
Default I/0 channels ,
. Default value of system
DELETE file command . .
Deleting a line
Deleting program lines

Department/user numbers
Device error status . .
Device names . + + + .
DIAL command . . « «
Direct commands

variables

Directory manipulation commands .

Disk areas .+ « « + o «
Dismounting removable
DO command . . .+ .+ « o

Dollar l1lines . «. s o »

DOS magnetic tapes . .
DR{) system function .
DUMP command . « + « &

Dynamic compilation . .

Echoing, control of , .
Edit mode . « & + & + .
Editing a program . . .
Embedded string search

« * = * 2
- - . L] L]
. . L » * .
¢ s = x @
e » = .

* L * L »

» . L 4 L -
« = @ » @

- - . * L

Environmental information . .« .

EOF, DOUS magtapes ., . .
EQT, magtape .« + « « =«
EP() function . » + .« .
Error codes . « « o« o &
Error status of devices
Error trapping
" Error trapping, example
EPrors « o« o« o o o » o
Errors with arrays . .
Evaluation precision .
EXEC privileges . +
EXEC program

-

EXECUTE file command .

Execution speed
Executive programs . .
EXIT command . . . « .
Expressions, numerical
Expressions, string . .
Extension, of filename

Failure codes in QE . .
Failure codes in QI . .
Failure, of a command .

L [

59
62
62
17
55
101
ug
29
106
64
60
62
54
64
6
12
126
66
59
147
6
64
126

storage media 78

51
24
72
55
83
56

48
52
12

37, 41, 45

55

120
98, 121
99
110
119, 121
53
14
26
60

90
88
50

Page 166
Index

PDP-11 AIMS PROGRAMMING MANUAL Pagé 167
Index

Failures . . . ¢ . v v ¢« v « ... 85
CFALSE v v v v v v v e e e e e o 10
Fast access directory 80
FC() function . ¢ . « . ¢« ¢ +. « . 55
Feature bits ¢ ¢ ¢ . + 125
File protection, changing it . . 64
File structures T8
Filenames . . ¢« + ¢ « « « + + + « B0
Filters in PUT command Ui
FORCE command . . . « + « « « . . 142
Format, of decimal point in output 29
Format, of numbers for input . . 49
Format, of numbers for output . . 29
Freememory . . ¢« ¢ ¢ ¢ ¢« « « « » 55
Functions, system defined 55

GARB command « + ¢ « « « 94, 111
Garbage collection 111
GOSUB command . . ¢« + ¢+ ¢« ¢« « « « 51
GOTO command . ¢« ¢« v v + v ¢« » « 50
Graph plotting « . « 33
GV() function . « v ¢+ ¢ ¢« ¢« « « +« 55, 115

HELP command . ¢ ¢« + v ¢ « + « « 101

I/Ochannels . . . ¢+ ¢ v v« ¢ 59
I/0 error codes under DOS 90

I/0 error codes under MONITOR . . 88

I/0 memory requirements 114
I/0 random aceess . .+ « + « « « + 715

I/0 simplified ¢ ¢ ¢« . 62

IF command, numeric 14, 94
IF command, strings 37, G4
.Image input mode 140
Immediate execution 6
Implicit transfer of control . . 50
INITcommand . . « « ¢« « « + . « 59
INPUT command . « . « « « « « + . 25, 47-48
INPUT command, timeout 48
Input/Cutput . . . ¢ ¢ ¢ ¢ v ¢4 59
Inputting one character U9

JOB command . . ¢ . . ¢ ¢ « + .« « 101, 103
Job priority ¢ ¢ v o« ¢ 1192120
Job status information 119

JS() function ¢ ¢ ¢ ¢ . . 55, 119
JS(2),use of . ¢ . v ¢ 00w 122
JS(U=6), use of . . . v ¢ ¢ v . . 128

Keyword searching 39
KILL ecommand . . ¢« ¢ ¢ ¢ ¢« ¢« ¢« « 132
KILL job command ¢« ¢ « « 101

LE{) funetion ¢ ¢« ¢« . « . 55
Length of strings 24, 55

. LEOT, DOS magtapes . . ¢ . « ¢ « T2

LEQT, magtape . . ¢« + ¢ ¢« ¢ v « . TO
LET < >operators . . ¢ ¢« « « « « 34
LET command . . . + ¢« « ¢« + « « o 14

PDP-11 AIMS PROGRAMMING MANUAL

LET command, array packing . .
Library directory
Library disk area
Line characteristies
LINE command ¢ « ¢ «
Line deletion . . ¢« ¢ ¢+ ¢ + v v &
Line editing . . ¢ . ¢ ¢« ¢« o
Line modes . . ¢ v ¢ ¢ ¢ ¢ ¢ o o
Linked files ., . . ¢ ¢ ¢ ¢ ¢« « &
LIST command . + v v «+ v & « &« »
Literal strings . . .« « « « « .
LOAD command . . ¢ ¢« ¢« « ¢« ¢ o
LOAD file command . + + ¢ « « +
Local editing . ¢ v ¢ ¢ v « « v
Locks ¢ ¢ v v v v v v v e e e
Log files ¢ v v v v v v v v & o &
Logging out . . ¢« . ¢ ¢ v v v v
. Logical operators ¢ .+ v .
LOGIN command . . ¢ ¢« ¢ v ¢« « « &
LOGIN program . . « « « + « « &« &
LOGOUT command . « « o« « o + « &
LOGOUT program . ¢« ¢ ¢« « « « & &
LOOP command . . ¢ ¢ ¢ +v ¢ + + o
Lost time . . ¢ « ¢ ¢ ¢ v ¢ ¢ v

"Magnetic tapes for DOS
Magtape control under DOS
Master jobs . + ¢« v v v ¢« v v v &
MEMMAX memory limit ¢ . .
Memory limits . . . ¢ ¢« ¢ v ¢ o
Memory occupancy . ¢ .+ v « ¢ & o
METER command . . v ¢« ¢« « ¢ + « &
Mode 5 OPEN .« v « v ¢ « v ¢ « o
Mode 6 fast access directory . .
Modem control . . . ¢ ¢ ¢ . o .
Modes, of access to system . . .
Modes, of data transfer
Modes, of OPENing files
Monitor commands ¢ .
MOUNT command « « ¢« v ¢ v « & + &
MTAPE command . . ¢« ¢« ¢« ¢ « « +
Multi-user considerations

Names, of files . . ¢« ¢« ¢ ¢ « ¢
Names, of variables
Newline, at end of PRINT
S NL() function . ¢+ ¢ ¢ ¢ ¢ ¢« v o
Null time . . ¢ v v v ¢ ¢ ¢ + o
Numbers, input conversion
Numbers, internal representation
Numbers, output conversion . . .
Numerical expressions
Numerical operators

OBEY command . . . ¢ ¢ ¢ ¢« « v &
Octal input . ¢ « ¢ v ¢ ¢ v v o
OPEN command . . ¢ ¢ v v ¢« ¢ « &
QOperators, Boolean « .« .
Operators, logical

. b

. 34, 76
. 82
126

141, 143
141

6

12

140

76

12

14, 24

99

12

115

134

53

14

122

121, 126
122

121, 128
50, 94
124

72

74

130, 136
102, 124
124
101, 110,
101

77

80

141, 145
125

62

60

98

78, 95
T4, 95
111

61

16, 36
25

55

124

4g

16

29

14

14

131
109
60
14
14

112

Page 168
Index

PDP-11 AIMS PROGRAMMING MANUAL Page 169
Index

Operators, numerical 14
Operators, relational 14, 37
Qutput conversion, of numbers . .29
Qutput format, of numbers 29
Qverflow, numerical 19
Overlaying programs » » . 83

PACK command . « « + « + « « « «» 38, 95
" Packing strings into arrays . . . 34, 76
Pagination ¢+ . v+ . 32
Passwords + v v v » « 2 v o« v s o 126
Pause mode .« .+ ¢« ¢ + o« +» o+« o 12, 143
Peeking at memory « « 55
Physical I/0 . . ¢ ¢ v v v v v 17

PK{) function + ¢« « + ¢« + + 55
Precision of calculations 16
PRINT command . + + « » o « +» +« +» 26
PRINT command, problems with . . 7
Printing numbers « + + 29
Priority, of job + + . 119-120
Privileged programs 119
"Privileges, of EXEC 120
Program editing . . « . + « . . + 12
Program filing 82
Program name . « + « + « « » « » 119
Prompt strings, with INPUT . . . 47
Pseudo-consoles . + .« . « « « « « 59, 125, 130, 1386
PT() function . . ¢« « ¢« ¢« ¢« « «. . 55, 75
PUT command . + « . « ¢ « v + « « 39

QA system variable 5lU

QC system variable 32, 54
QD system variable 48, 54
QE system variable 54, 85
QF system variable 29, 54
QG system variable 54, 112
QI failure codes . . « +. 88

QI system variable 37, 45, 54, 88
QL system variable 32, 54
QQ system variable 54, 85
QS system variable 54, 112
QUEUE command . v « v v « + « « « 132
Quoted strings . . . + . « .« .« 14, 24
QW system variable 29, 54
QX() system function 55, 65

Radix for printing numbers ., . . 29
Random access filing « . 75
READ command . + + + » + » « « » B2, 75
Relational operators 14, 37
Relations, between strings . . . 37

RELEASE command . . « « « « « + .« 59
REM command . . + ¢« « ¢ « « +» +» » 96
RENAME file command 6l
Replacement, in PUT H2

Repregentation of numbers 16
RESOURCES c¢ommand . + + + « « « « 101
RETURN command +. + + + . 51
RUBOUT Key v v ¢ v + v v v & +» » 12

PDP-11 AIMS PROGRAMMING MANUAL Pagé 170

RUN command . + ¢« + + .+
RUN file command
Run mode .,
Run time, of job

SAVE command . . ¢ ¢ ¢ .
SCAN command . . . « «
SCHEDULE command
Search modes, in PUT . .
Search templates, in PUT
Security, of system . . .
"SEGMENTS command
SET command + + ¢« « « « o
SETNAM command
Shared resources
Shifting bit patterns . .
Simple variables
Simplified I/G
~Slave jobs . . . v . 4
Space errors . .« « . s o
Spaces in commands ., . .
Speed setting
Square roots
SS() function . . . « .+ «
S5(1), use of
Starting a program . . .
Starting, automatic after
STOP command . .+ + « « &
Stopping a program . . .
String comparisons . . .
String decomposition . .
String expressions . . .
String terminators . . .
String variables
Strings« . . a s
Strings, length of AN

.

[

Index

52
99
52
119

82
22
101
b1
41
126
101
101
118
115
14
16
62
130
113
7
146
109
55, 12U
125
52, 98-99

LOAD/CALL 82-83

L O

Strings, packing into arrays . .

Strings, gquoted
Structured data filing .
SUBMIT command . . . + .
Subrgutine transfers . .
Subscripted variables . .
Substrings « . .
Summary of all commands .
Suppressing printout . .
SWIFT command . . + + «
Symbol table lockup . . .
Synchronous lines
SYSCOM command . . + . .
SYSINI program . « « .
SYSTAT command
System access, control of
System accounting
System administration . .
System disk
System funetions . . .

System status information
System variables

52
52, 87
37
39
26
25, 48
24
24, 39
2y
34, 76
2l
76
132
51
18
46
92
12
96, 149
45
139
123
125

. 102-103

124-125
128

121

64

55

102, 124
54

PDP-11 AIMS PROGRAMMING MANUAL

TA() function, bit tally . .
TAB command . « « & « + » o o
Tape-Marks, magtape
Teletype names, (see Console)
Telex conversions
TELL command « .
Terminator, of strings .
TI(} function
Time of day . « ¢« « + & »
Time quanta . . . ¢ « + «
Timeout, with INPUT command .
Timing events+ + +
Tips to programmers
TMA11/TU10 magnetic tape . .
Transfer of control
TRUE L3 - -~ - » (2 » [LY > » *

r ¢ r r x

r *® r & »

Truncating strings-

Trunication of numbers
TU10 magnetic tape

UC() funetion . v « +» ¢« « «
UFDS command PN
UNLESS command, {see IF) -
UNPACK command . . . +. « «
Unpacking strings from arrays
Update clashes
USERS.SYS file . .+ ¢« + v + &

Variablenames « «
Versions of the system . .
VFIDIR command . . « . .«
VGARB command . + . « « v «
VIEW command . + « + + «
Volatile file directory . .

WAIT command . , . + « + + &
WAKE command . . « « ¢ + + .
WHO command + v « ¢« « « v » &
Width, of printed numbers . .
WRITE command + « + ¢« + v « o

Xecommand « v v v o v v 4 s

operator . . .+« ¢ v v v s o

\
Y\ when echoed « .

string operator

string operator

r ¢ e ¢ 2 ¥ 5 e € v

e ¢ ¢ * ¢ ¥ ®

» ¢ o ® r r e ¢

55

70
17
143
102
25
55
55
124
48
53, 55
105
73
50
14
g
20
73

55

102

97

34, 97

34, 76, 107
116

127

16, 36

102
97, 111
101
102

53, 117
118

102

29

62, 75

12, 57

14
12

37
37

Page 171
Index

