

PDP-11 AIMS PROGRA~ING MANUAL

PDP-11 AIMS

CONTENTS

1. Introduction 3

2. Command Syntax and Line Structure 6

3. Getting started with AIMS 9

4. Line and Program Editing commands 12

5. Numerical Expressions 14
Var iables 16
Representation of numbers 16
Accuracy of calculations 16
Data types 17
Arrays 18
Numerical overflow 19
Array operators - AMOVE, ACOMP 22
SCAN command 22

6. Strings 24
Character set 24
String expressions 26
Conversion of values to numeric strings 29
Pagination, tabulation and graph plotting 32
Strings in Arrays, PACK and UNPACK commands 34
LET < and > commands 34

7. String Comparisons 37

8. String decomposition, the PUT command 39
Examples of PUT command 43
Character filters 44
QI - ,Symbol table lookup 45

9. The INPUT command 47
Conversion of numeric strings to values 49

10. Transfer of Control 50
GOTO and LOOP commands 50
GOSUB and RETURN commands 51
RUN and STOP commands 52
WAIT, EXIT and BYE commands 53

11. System Variables 54
System Functions 55

12. Dynamic compilation, the CODE command 56
The X command 57

Page 1

1

PDP-11 AIMS PROGRAMMING MANUAL Page 2

13. Input/Output Facilities 59
Devices and channels 59
Files, OPEN and CLOSE commands 60
Data Transfer commands 62
Simplified I/O conventions 62
DELETE and RENAME commands 64
Channel Status information 65
Device Dependent Operations - DDOPR 67

14. Random Access filing 75
Structured data 76
ALLOC command 76
Direct Access to storage media 77
File Structures and MOUNT command 78

15. Program Filing and OVerlaying 82

16. Errors 85
Abort keys 87
I/O Errors 88

17. Command Summary 93

18. AIMS executive program, EXEC 98

19. Some Programming Tips 105

20. Execution Speed and Memory Occupancy 110
Garbage collection 111
Control of memory usage 112
Memory requirements for I/O operations 114

21. Communication between different users 115

22. Job status information 119
Privileges 120

23. System Administration 121
LOGIN and LOGOUT commands 122
System status vector SS() 124
Passwords & department/user numbers 126
Accounting operations 128
Performance monitor ing, WATCH 129

24. Control files and Batch processing 130

25. Line communication facilities 139
SWIFT facilities 149

26. ASCII character codes 162

27. Index 164

AIMS Version 2 April 1973 Manual
AIMS Version 3 September 1974 Manual
AIMS Version 3N August 1975 Manual
AIMS Version 5 March 1977 Manual

Issue
Issue
Issue
Issue

3
4
5
6

PDP-ll AIMS PROGRAMMING MANUAL Page 3
Introduction - section 1

1 • INTROOOCTION

AIMS is a system and application programming language with a
syntax based on that of Dartmouth College BASIC.

The main extensions are:-

•• The string handling is much
operators allow for anchored or
str'ing equality, inequality
com par ioons •

improved. String relational
embedded searches, and tests for
or telephone-directory type

•• A new PUT command provides keyword-searching, pattern
and string decomposition facilities. These allow the
conversational programs which can communicate with
users in an approach to natural language •

matching ,
writing of

lID. trained

•• AIMS is fully interpretive and is specially designed to allow
close interaction with a terminal. All AIMS commands may be
executed either as part of a stored program or directly at the
keyboard. A running AIMS program may be stopped at any time,
the values of variables may be changed, or the program may be
edited, and then continued. This makes debugging easy.

•• Wherever a number may appear in BASIC, AIMS will accept a
numerical expression of any complexity.

-- Several commands may be put on one line j and any statemen t may
fo 11 ow an IF command.

•• Numerical expressions may include Boolean, logical, and
relational operators •

•• All program data, including strings and arrays, is stored in
AIMS lines. This allows arrays to be declared or re-dimensioned
at run time , and makes it easy to preset or examine string
var iables.

•• All error conditions may be trapped so that an AIMS program can
always retain control if it wishes. This allows the
construction of supervisor programs that can structure the
interaction between system and user in any desired manner •

•• Extensive file handling facilities allow AIMS programs to
create, delete, rename, read and write files, either in text or
in binary form. It is possible to use an AIMS array as a memory
buffer allowing random access to arbitrarily-formatted data.
Facilities are provided for saving AIMS programs on a
bulk-storage device, either in binary-image form, or as an ASCII
file. A running AIMS program may transfer control to such a
saved file; either in an overlay mode or in an interleaving mode
in which some lines remain unchanged •

•• AIMS programs may run in a variety of privileged modes, allowing
the construction of applications or system-level programs that
are protected from examination or interference by the user.

PDP-11 AIMS PROGRAMMING MANUAL Page 4
Introduction - section 1

ff All administrative programs for the multi-user system are
wr it ten in AIMS, allowing the system manager to detennine
completely the appearance of the system to its users, the login
and logout procedures, access restrictions, and so on .

.. User memory partitions expand or contract dynamically to meet
changing requirements, giving optimum overall memory
utilisation •

• f User memory partitions are swapped automatically onto disk if
the memory requirements exceed the physically available memory.
Swapping is fully overlapped with computation and may be done on
several disks if desired.

INCOMPATIBILITIES WITH DAR'lMOQTH BASIC

Calculations are performed using variable-precision integer
arithmetic, rather than floating-point.

FOR, NEXT, READ, and DATA statements are nc)t implemented in
AIMS~ However the extended facilities allow these commands to be
emulated with ease.

The END statement is not recognised in AIMS. There is no need
to mark the end of the program.

The matrix ope.rations in extended Dartmouth BASIC are not
implemented.

PDP-l1 AIMS PROGRAMMING MANUAL

DIFFERENT VERSIONS OF THE SYSTEM

Page 5
Introduction - section 1

Every AIMS system comprises two parts: an operating system and
an interpreter. The operating system deals directly with the
hardware, controls all peripheral devices, and generally provides a
stable environment in which other programs, such as the
interpreter, may be executed. The interpreter implements the AIMS
language as it is described in this manual.

At present there is a choice of two different operating
systems: (1) DOS, a system originally developed by DEe but no
longer supported by them, and (2) MONITOR, a system developed and
supported by Arbat. DOS will run on the smaller hardwar.e
configurations, whereas MONITOR is more powerful but requires extra
main memory • Each operating system requires its own version of the
interpreter because the systems differ internally. However, the
two interpreters both implement the same AIMS language so that the
combination of operating system and interpreter is compatible at
the application program level. A DOS-based system may be upgraded
to a MONITOR-based one without changing the application software
(apart from a few details mainly affecting system utility
programs) •

The two combinations are:-

Op sys: DOS Interpreter: AIMS version 3

Op sys: MONITOR Interpreter: AIMS version 5

Material in this manual that relates to only one of the operating
systems is marked with a 'DOS' or 'MON' flag, and similarly
differences between the two interpreters are flagged with a 'V3' or
a 'V5'.

HARDWARE SUPPORTED

MONITOR is capable of running on any PDP-11 central processor
that has the Memory Management facility (both types of KT11 are
supported). The 11/35 and 11/40, which have the more restricted
type of memory management hardware, cannot support as many jobs as
the 11/45 upwards.

All mixtures of core, moS and bipolar memories are supported,
with or without the memory parity options. MONITOR automatically
uses all the memory that is found to be present.

All available DEe asynchronous line interfaces are supported.

MONITOR is continuously maintained and it will normally be
found that the software will support the most cost-effective
combination of hardware that is available at any time. However,
since it is not known what devices may become available in the
future, the above statement should not be taken as a commitment to
support all possible configurations.

PDP-11 AIMS PROGRAMMING MANUAL Page 6
Program Structure - section 2

2. COMMAND SYNTAX AND LINE STRUCTURE I

A stored AIMS program is built up by typing in numbered lines
at the keyboard. As each line is typed in, it is checked to see
that the commands are legal and is then coded into a compact form
and stored. Lines may be typed in any order, they are
automatically sorted into order by line number.

If a line is typed with the same number as an existing line,
it will replace the old line. An existing line may be deleted by
typing the line number by itself.

If a line does not begin with a line number,
executed immediately rather than being stored away.

>PRINT 51 6
30

>

[the> sign is printed by AIMS when
[it is ready for a command

the line is
For example

Several commands may be typed on the same line by beginning
each new command with a colon. For example

>LET X=2 :PRINT 5A X
25

>

Commands may be abbreviated like

>L X=2:PS"'X
25

>

The abbreviation will be properly understood only if it ends with a
character that is not a letter. For example

>PS
5

>

is ok, but

>PX

is interpreted as the unknown command PX, rather than the intended
PRINT X. A space may be used to delimit such abbrev iations.

These abbreviations are automatically reconstituted when a
stored program is listed, giving the user the advantages of quick
type-in and nicely formatted listings. For example

> 1 OL J=O
>20P J J"'2:L J=J+1;IF J<5:LOOP
>30P 'FINISHED'
>RUN

o 0
1 1
2 4

PDP-ll AIMS PROGRAr+1ING MANUAL Page 1

3 9
4 16

FINISHED
>LI

10 LET J=O

Program Structure - section 2

20 PRINT J JA2 :LET J=J+1 :IF J<5 :LOOP
30 PRINT 'FINISHED'

>

SIGNIFICANCE OF SPACES AND COMMAS

Spaces in command lines are generally ignored. They may be
inserted to improve legibility, but it should be borne in mind that
extra spaces increase the size of the program and reduce the
execution speed (see section 20).

There are a few contexts in which spaces are significant:-

PRINT XY

PRINT X y

p X

LET x=6 Y=5

LET X=6Y=5

[prints the value of the variable XY

[prints the value of X followed by that of Y

[the space delimits the abbreviated PRINT
[command

[is legitimate, but it could be written as,

[to save space

There are other contexts in which a comma is necessary to
resolve ambiguity:-

PRINT X -Y [prints the value of X-Y

PRINT X,-Y [prints the value of X followed by
[that of -Y

PRINT A+B (J+X)/5 [is an array reference, whereas

PRINT A+B,(J+X)/5 [is not

PDP-l1 AIMS PROGRAMMING MANUAL Page 8
Program Structure - section 2

NOTATION

In the following descriptions we shall use square brackets
like [] to enclose comments and names representing elements of the
syn tax. For example

[number] represen ts any number such as 1, 123, 128 ete .

[ne]

[se]

represents any numerical expression such
as 1+2, 123, 1+X*(X"2) etc.

represen ts any string express ion (see section 6).

Anything not enclosed in square brackets stands for itself.

Note that it is never necessary to use square-brackets when
typing commands to AIMS (except for department/user numbers as
explained in section 13). The brackets are used in this manual
simply as an aid to clarity.

Most of the examples are shown exactly as they would appear to
a user typing at a terminal. AIMS always prints a) or * sign when
it is waiting for input from the user. Hence it may be assumed
that all lines beginning with> or * are typed by the user, and all
other lines are printed by AIMS.

When we wish to add a comment on a line that contains an
example, the comment is preceded by a [to separate it clearly from
the example.

denotes the up-arrow key, usually shift N.

denotes the back-arrow key, usually shift o.

is usually shift 3. It may be marked as a pound sign.

\ denotes the back-slash key, usually shift L.

The notation 'control-X' represents the single character that
is typed by holding down the key marked 'CTRL' and pressing the key
marked 'X'.

A vertical line down the left margin indicates new material
that has been inserted into the manual since the last issue.

PDP-11 AIMS PROGRAMMING MANUAL Page 9
Getting Started - section 3

3. GETTING STARTED WITH AIMS

An AIMS system may be used in broadly two ways: programmers
use it to develop programs that provide some desired service, and
people with no computer expertise make use of this service. For
example a team of programmers could use the AIMS language to
implement an order-processing system, and this might then be used
by the sales personnel in a mail order firm. The appearance of the
system to the end-user is determined entirely by the programs with
which he interacts and is thus beyond the scope of this manual. We
are concerned here with the way in which an AIMS programmer uses
the system.

Before any programming can be done the user has to gain access
to the system by 'logging on' . This is done by pressing the
carriage return key which causes the system to ask for your
departmen t/user numbers and password. These will be allocated to
you by the system manager. A typical login sequence looks like
this

[User presses carriage return key
MONITOR V1A AIMS V5B J4-K6
DEPT t USER: 100 110 [User types his numbers
PASSWORD: [User types his password which is not pr inted

[The dot indicates executive level.

Note: when you key in your department and user numbers they may be
separated either with a space or with a comma. A space is
preferred because comma does not work in European countries where
it is used as a decimal po in t (see page 32).

The password is a security measure to prevent unauthorised
people from using the system.

Once a user is logged in he is communicating with the system
executive program which prints a dot when it is waiting for a
command. Thi'sexecutive program provides a range of services which
are useful when developing programs. These are detailed in section
18. For the present it is sufficient to note that there is one
executive command, E, which allows the user to write an AIMS
program:

.E
>p 5*6

30

[User types E to enter edit mode
[Where he can give AIMS commands.

The E command transfers the user from executive-level to AIMS-level
where he is communicating directly with the AIMS language
interpreter. At this level the user can give direct commands (ie.
those which are executed immediately like the PRINT command above),
or he can type in a stored program like this

>100 LET N=O : PRINT 'CUBES'
>110 PRINT N NA 3 :LET N=N+1 :IF N<4 :LOOP

PDP-11 AIMS PROGRAMMING MANUAL Page 10
Getting Started - section 3

The user may now run the program by giving a RUN command:

>R
CUBES

0 0
1 1
2 8
3 27

>

The program stops running when there are no more lines to execute.
The user may modify the program if he wiShes either by changing
existing lines or by inserting new ones:

>120 PRINT 'DONE' :EXIT

At any time the user may return to executive-level by pressing
the control-O key or by giving the EXIT command. But it is
important to note that on returning to executive the system forgets
entirely about the program that you were developing. So if you
want to preserve this program for future use it is essential to
save it on a disk file. This is done using the SAVE command as
follows:

>S'CUBE':P'OK
OK
>

This saves the program as a disk file called CUBE.BAS as explained
further in section 15. The user may now safely return to executive
level:

>EXIT

and other activities may be pursued. Later on, the saved CUBE
program may be executed by giving its name like

. E CUBE
CUBES

o
1

o
1

2 8
3 27

DONE

The program is recalled from disk and executed., At the end the
EXIT command in line 120 transfers control back to executive. If
you want to continue developing the program it may be more
convenient to recall the program without executing it. This is
done by using the CALL command rather than the EXECUTE one:

• C CUBE
>LI

>

100 LET N=O :PRINT 'CUBES'
110 PRINT N N"'3 :LET N=N+1 :IF N<4 :LOOP
120 PRINT 'DONE' : EXIT

PDP-11 AIMS PROGRA!tUNG MANUAL Page 11
Getting Started - section 3

The progr8111 lIay now be modified and tested and SAVEd again as file
CUBE.BAS or with a different name if you want to preserve the old
version as well.

When you have fini8hed using the system it is essential to
·108 off· using the BYE command. This returns the terminal to its
initial state in which it is necessary to press carriage return and
go through the 108 on procedure before the terminal can be used
again. If you go away without logging off there is an opportunity
for an unauthorised person to interfere with your files.

The BYE command may be given either at executive-level or at
AIMS-level:

.B
11:15:34 3-FEB-71 J4 K6 100110 user name
Run=0:OO:10 Conneot=0:01:40 OK disk:216 Bye

The message is printed by the system to identify the user who has
just logged off. It also gives the time of day, the amount of disk
space being used by that user, and his run and conneot times· for
the session. Connect time is the elapsed time between log on· and
log off, and run time is the amount of central· processor time
devoted to your job.

PDP-11 AIMS PROGRA~ING MANUAL Page 12
Progr~, ~iting - section 4

4. EDITING COMMANDS

LINE EDITING

When typing commands or data to AIMS, certain characters have
special functions:-

RUBOUT

control-Y

control-X

control-S

control-Q

deletes the last character typed, echoes as \

cancels the whole line, echoes as @ [newlineJ

switches program-generated printout on and off. 'Hay
be used to suppress a section of printout if the
user is not interested in it. Press control-X, again
to, restore pr inting .

Pauses pr intollt. Useful with visual displays to
give you time to read output before it r,olls off the
screen.

Resumes printout after a cootrol-S pause.

If a is echoed when you type a key, this indicates that the
computer's input buffer is full and that the character has been
ignored. Wait for the computer to catch up before typing more.

PROGRAM EDITING

LIST List the whole program.

UST [ne 1], [ne2J

[number]

CLEAR

List lines [nel J to [ne2J inclusive. If ,[ne21 is
absent it is taken as infinity.

Delete line [number].

Delete the whole program.

CLEAR [ne1J,[ne2]

X[neJ

Delete lines [nel] to [ne2] inclusive. If ,[ne2] is
absent it is taken as infinty.

Print line [ne].

X[ne][stringl][string2J
Change the first occurrence of [stringl] to
[string2] in line [ne]. The strings should be
enclosed in quotation marks (see section 6). 'When
the X command is used directly (ie. not in a
program), the modified line is pr inted. The line
number itself may be changed, in which case the line
will be duplicated in its new position.

PDP-ll AIMS PROGRAMMING MANUAL Page 13
Program Editing - section 4

Warning: the X oommand should not be used to examine arrays, see
seotion 12.

Examples

>LIST
10 LET J=O
20 PRINT J
30 LET J=J+l
40 IF J>10 :GOTO 20
50 PRINT 'DONE'
60 GOTO 10

>20
>LIST 10,30

10 LET J=O

[deletes line 20

[ohanges greater-than to less-than
:GOTO 20

30 LET J=J+l
>X4O'>"<'

40 IF J<10
>Xl0"0""5" [ohanges the line number from 10 to 15

15 LET J=O
>CLEAR 50 [olears from line 50 upwards
>LI

10 LET J=O
15 LET J=O
30 LET J=J+l
40 IF J<10 :GOTO 20

>X40'TO"S' [ohanges oommand
40 IF J<10 :GOSUB 20

>

word

When writing a program it is a good idea to number the lines
in steps of 10, 5 or 2, so that there is room to insert oorreotions
later. A resequencing program RESEQ.BAS is available for changing
the line numbers if large-scale alterations are needed.

PDP-11 AIMS PROGRAMMING MANUAL Page 14
Numerical Expressions - section 5

5. NUMERICAL EXPRESSIONS

A numerical expression is something that can be evaluated to
produce a number. Expressions are in normal infix-operator form.
The following operators are allowed:-

~ OPERATOR

1
2

3
4
5
6
7

I
•
+

MEANING

Unary minus
a_b: open bit shift of a by b places
left if b>O, right if b<O
Ex po nen tia ti on
Division
Multiplication
Subtraction
Addition

Relational operators

8
8
8

String

9
9
9
9
9

1O
10

Logical

, ,
12
13

<
=
>

operators

>
=
<

or "
$

operators

&
\

Less than
Equal
Greater than

Alphabetically greater than
Identical
Alphabetically less than
aAb: true if string-a begins with string-b
a_b: true if string-a contains string-b
Quotes enclosing literal string
Right-associative operator meaning string-name

AND
Exclusive OR
Inclusive OR

(section 3 explains where A and \ are found on the keyboard)

The higher precedence (ie. lower numbered) operators are
applied first, and operators with the same precedence are applied
from left to right. Round brackets like () may be used to control
the order of evaluation, the most deeply nested sub-expressions
being evaluated first.

The operators <, >, and = may be combined in any order with an
effect derived from the inclusive-OR of the individual conditions.
Thus <= means less-than-or-equal-to, and <> means not-equal-to ..

The relational operators yield either -1 or 0 according to
whether the relation is true or false respectively.

The logical operators perform their operations on their
arguments regarded as bit patterns.

PDP-l1 AIMS PROGRAMMING MANUAL Page 15
Numerical Expressions - section 5

Calculations are done using integer arithmetic and fractional
results are rounded down to the next whole number.

As a side-effect of a division operation, the system variable
QA is set to the positive value of the remainder, truncated to 16
bits. QA thus gives the remainder accurately provided the divisor
was less than 32,168.

Examples

>P 1+1
2

>P 3+5/2 QA
5 1

)P J"2
9

}P 3'5/2
6

)P 0'5)/2
7

>p -7/2 QA
- 3 1
>P 4<6
- 1
>P 4<3

o
>P 7&5

5
)P 5!2

7
}P 7\5

2
)L X=7 Y=4
>P X<8! Y=6
- 1

>P X<>Y
- 1
>P 1+(X+Y)/2

6
>P 1_15

32768
>P 65536_-15 .

2
>

[the division occurs first
[QA gives the remainder
[three squared is nine

[the division occurs first

[the multiplication occurs first

[the unary minus is applied first
[QA is positive remainder
[4 is less than 6 so the value is -1

[4 is not less than 3 so the value is 0

[111 ANDed with 101 is 101

[101 ORed with 010 is 111

[111 exclusive ORed with 101 is 010

[sets X to 7 and Y to 4

[although Y is not 6, the value is -1 since
[X is less than 8

[X does not equal Y so the value is -1

[1 shifted left 15 bits. Shifting is
[equivalent to multiplying by a power of two
[2

A

16 shifted right 15 bits

We Shall deal with the string relations later.

We shall use [ne] to denote any numerical expression in
future. There are some commands in which a [ne] may optionally be
omitted. In these cases a context-dependent default value is used,
as noted in the command descriptions. Elsewhere, if a [ne] is
expected but is not present, a default value of zero is used.

PDP-11 AIMS PROGRAMMING MANUAL Page 16
Numerical Expressions - section 5

VARIABLE NAMES

User-defined variable names may be upto
characters long and must begin with a letter.
Al, AA, Z9.

two alphanumeric
For example A. X,

WarningJ All names beginning with the letter Q are reserved
for use by the AIMS system, and such names should not be created by
programmers.

REPRESENTATION OF NUMBERS

AIMS treats all numerical values as signed integers. The
value of each variable is stored internally as a particular number
of 16-bit words holding the value in 2's complement binary. The
number of words used to hold each value is called the precision or
length of the variable. This length is the same for all variables
and is normally set at 2 words. The length is important because it
determines the largest number that can be stored in a variable or
used in a calculation (see below).

ACCURACY OF CALCULATIONS

Since numerical expressions are evaluated with finite
precision, some loss of accuracy can arise during a calculation~
For example suppose X is a quantity that requires two words· to
represent it. Then the expression XA 3 could require six words, and
XA 5 ten words, and so on. For reasons of efficiency it is not
worthwhile to cater all the time for these very large numbers that
will seldom arise in practice.

Hence, numerical expressions are evaluated to a fixed
precision of between 1 and 1 words. The precision is determined by
the system function EP() which may be set by the user (see section
11). For example if the command

LET EP()=3

is executed, all numerical expressions will be evaluated to 3-word
precision. Error?O will occur if a calculation generates a value
that cannot be represented in EP() words.

PDP-11 AIMS PROGRAMMING MANUAL Page 17
Numerical Expressions - section 5

The following table Shows the size of numbers that can be
handled for each value of EP():-

Efil Largest Positive Number

1 32,767
2 2,147,483,647
3 140 ,737,488,355,327
4 9,223,372,036,854,775,807
5 604,462,909,807,314,587,353,087
6 39,614,081,257,132,168,796,771,975,167
7 2,596,148,429,267,413,814,265,248,164,610,047

The largest negative number for each precision is one more than the
entry in the table.

EP() is initially set to 2, allowing fast calculations on
numbers less than 2000 million. If the user is likely to generate
numbers larger than this he Should set EP() appropriately
beforehand. EP() may be adjusted at any time by a running AIMS
program .

The setting of EP() also determines the length of all
user-defined variables. If EP() is increased, all the variable~ in
existence at the time are extended to the new length. This
operation does not affect the values of the variables. Similarly,
if EP() is reduced all variables are made to fit into the new
smaller length. This is done by deleting an appropriate number of
words from the internal binary representation of each variable,
starting with the most significant word of the value. This process
will not affect the value of the variable provided it can be
represented within the new smaller length. If the value is too
large for the new length the variable is marked as being undefined,
and this will cause a 1U error the next time that variable is
referenced •

DATA TYPES

AIMS supports four different types of data:-

1) Simple Variables: with names like J, Xl and QA. Each simple
variable will hold one numeric value. Simple variables are
either

1.1) User-defined: these are defined when the user first sets
them, like LET J:2. Do not use names beginning with Q.

1.2) Systan-defined: these 'system variables', like QA and QE,
are permanen tly defined and fixed length, see section 11.

2) Arrays: with names like A(J). An array Is like a table or
vector of cells. Each cell will hold one numeric value. Arrays
are defined by the user by means of an ARRAY command.

PDP-ll AIMS PROGRA~ING MANUAL Page 18
Numerical Expressions - section 5

3) String variables: with names like $1. Each string variable will
hold one string comprising any number of characters, see section
6.

4) System functions: with names like EP() and DA () • These are
rather like arrays except that they are permanently defined by
the system, see section 11.

ARRAYS

Arrays are declared like

>10 ARRAY B 7

which creates an 8-cell array in line 10. The array name B is
treated like a simple variable • When the RUN command is executed
the array name will be assigned a value equal to the line number
(1'0 in this case) •

Arrays are referenced conventionally like for example

>LET B(J)=123 :PRINT B(J)
123

>

where B is the number of the array line, and J is the subscript.

Either B or J may be a numerical expression, so that both the
subscript and array name may be computed if desired.

>LET (8+5)(J)=C(J+2)
>

copies the J+2 'th cell of the array C to the J'th cell of the array
in line 8+5.

References of the kind just described operate on single-word
values. Multiple-word values may be stored in arrays, provided the
precision is specified explicitly:-

>LET B(3,J)=X
>

stores the triple-length value X in the array B.
occupy cells J through J+2 of the array.

The value will

For single-length values, the array subscript J may run from
zero upto the dimension specified in the array declaration. For
multi-word values, allowance must be made for the additional words
occupied.

Restr ictions

Arrays must be stored in lines. An array cannot be declared
by a direct command. There must not be any other commands on the

PDP-11 AIMS PROGRA~ING MANUAL Page 19
Numer ical Expressions - section 5

same line as an array declaration. The dimension given in an array
declaration must always be a number, it may not be an expression.

The CODE command may be used to set up arrays with computed
d'imensions, see section 12.

Array Initialisa1(ion

All the cells of an alTay are zeroed when it is created. This
occur s when the ARRAY line is typed in, or CODEd (section 12), or
CALLed from a fUe (section 15). Once an array has been created,
the cells retain their values unless altered by the user.

Note that the cells are not affected by the RUN command, nor
by ex.ecution of the ARRAY line itself. The mere existence of the
ARRAY line is sufficient to create the array, and execution of the
l1ne never has any effect apart from causing a slight delay.

When a program containing an array is DUMPed (see section 15),
the values stored in the array are wr itten to the dump file and
will be restored by a subsequent LOAD. In contrast, when a program
is SAVEd the array content is not written to the file and the array
will be initialised to zero if the. program is later CALLed.

NUMERICAL OVERFLOW

By numerical overflow we mean the attempt to handle a value
that is too big. AIMS will abort the operation and give a ?O error
(section 16). Numerical overflows can occur 1n two contexts:

1) During the evaluation of a numerical expression, if a number is
generated that cannot be represented within EP().'6 binary bits.
This can be cured by increasing EP().

2) During an assignment, if the value being
into the specified destination. If
user-defined variable, this can also be
EP() •

stored will not fit
the destination is a

cured by increasing

The second type of overflow can occur when aSSigning to system
variables like QG, and to system functions like DA(). These
overflows cannot be cured since all system-defined objects are of
fixed length. The overflow indicates that you are trying to store
a value that is too large.

The second type of overflow can also occur when assigning to
an array. In this case the length of the destination cell in the
array is determined either by default, as in

LET A(J)=X

or explicitly by the programmer, as in

LET A (2, J) = X

PDP-ll AIMS PROGRAMMING MANUAL Page 20
Numerical Expressions - section 5

If you are prepared to take up more space in the array, you can
avoid the overflow by increasing the destination length, as for
example by

LET A (3 , J) = X

Programmers are sometimes
sooner than they expected.
effect: consider the operation
cell like

surpr ised when an overflow occurs
This is usually due to the following
of storing a value in a 1-word array

LET A(J)=40000

In this case the value 40000 is being assigned and this has a
binary representation of 1001110001000000. Although this is just
sixteen bits long, an overflow error will in fact occur. This is
because the sixteenth bit of the value is a 1. If such a value
were stored in the 1-word array cell, the sign-bit of the cell
would be set to 1, causing the value to appear negative when later
extracted. Thus the action of storing and retreiving a value from
an array cell would have had the undesired effect of changing its
sign. This is why the overflow error is given.

A similar effect happens with 2-word cells and with all other
lengths. The largest value that can be assigned without giving an
overflow can be obtained from the table given earlier.

Automatic Truncation

There is one situation where the overflow detection can be a
nuisance. This is where the values being stored in an array are
not regarded as Signed numbers. For example, the programmer may be
using the array to hold bit patterns representing yes/no answers to
a questionnaire. If one of the patterns happens to have the
sixteenth bit set, this would cause an unwanted overflow error.

Overflows can be suppressed by using the operator =@ in place
of just = in the assignment:

LET A(J)=@40000

This operator truncates the value to the length of the destination
and stores it without any overflow checking.

It is important to realise that the use of
simply suppresses the overflow check, it does
sign-change that results from the overflow. When
extracted from the array it will still be changed:

LET A(J)=@40000 :PRINT A(J)
-25536

this operator
not pr even t the
the number is

The original value may be recovered by masking off the extended

PDP-11 AIMS PROGRAMMING MANUAL Page 21
Numerical Expressions - section 5

sign bits when extracting the value from the array.
mask is the number

A suitable

where L is the length of the array cell in bits. This quantity in
binary is just an L-bit mask of all ones. For a single-word cell
the mask is 1_16-1 which is 1111111111111111 in binary.

LET A(J)=@40000 :PRINT A(J)&1_16-1
40000

When writing a program that does a lot of bit manipulation of
this kind it is a good idea to set up the mask in a variable at the
beginning, so as to avoid having to work it out each time:

Unpacking bytes from arrays

When a value is read from an array the mos.t significant bit is
taken as the sign-bit and this is extended to EP() if necessary.
Bytes may be unpacked from arrays by dividing A(J) by 256 giving
the lefthand byte as the quotient and the righthand byte in QA. If
the lefthand byte exceeds 127 A(J) will be negative and since
division always produces a positive remainder, QA viII not give the
righthand byte correctly. The expressions (A(J)&65535)/256 and
(A(J)/256)&255 do not always produce identical values in QA.

Errors caused by array references

Errors are described in section 16. An array reference like
LET A(J)=X can cause five different errors:

?U either A or J (or X) is undefined
?L there is no line numbered A
?T line number A is not an array
?V J is less than zero or greater than the array dimension
?O the value of X is too big to fit in A(J)

Programmers sometimes make references to arrays by mistake:

PRINT X (Y+Z)/3

is treated as a reference to the array cell X(Y+Z).
comma between the X and the (. Similarly

PRINT '5 (Y+Z)/3

You need a

refers to an array in line 5 but the programmer had intended #5 to
specify an 1/0 channel (section 13).

I

PDP-ll AIMS PROGRAMMING MANUAL Page 22
Array Operators - section 5

ARRAY OPERATORS - ACOMP, AMOVE

The command

ACOMP A(J) B(K) N

compares the contents of array A with that of array B.
succeeds if array cells A(J) through A(J+N-l) are
cells B(K) through B(K+N-l). If a difference is found
fails and A(J+QA) is the first cell to differ.

The command

AMOVE A(J) B(K) N

The command
identical to
the command

moves the block of N cells beginning at A(J) to a new position
beginning at B(K). A may be equal to B if it is desired to move
information within one array. When A=B an overlapping block move
will occur if K is sufficiently close to J. AIMS takes care of
this is an appropriate manner so that overlapping moves in either
direction are correctly performed.

There are also two commands, PACK and UNPACK, which convert
between strings and arrays (see page 34).

THE SCAN COMMAND

In commercial applications it is often necessary to file a
large number of fixed-length records containing custom~r account
numbers, stock lists, and so on. If there is a need to access the
records via some key, such as the account number, it will be
necessary to organise an index of some sort. The way in which this
is done will depend to some extent upon the application and is
beyond the scope of this manual. In most cases the operation of
finding a record via the index will involve scanning through one or
more arrays looking for a match with the wanted key. Because of
the interpretive nature of the AIMS language this array scanning is
rather slow and may seriously limit the system performance in
situations where large indexed files are heavily used.

The SCAN command eliminates this problem by providing a fast
way of scanning an array for a given key. The syntax is:

SCAN [recsize ne] [keylen ne] A(J) [mode] [key ne] [count ne]

The array A() is assumed to contain a number of records each of
which is [recsize ne] cells long. Each record contains a key which
is [keylen ne] cells long. A(J) specifies a starting position
within tile array. [key ne] is the key to be searched for.
[count ne] if present specifies the maximum number of records to be
scanned.

PDP-11 AIMS PROGRAMMING MANUAL Page 23
SCAN command - section 5

The SCAN command searches the array from the starting position
and compares [key ne] with the key within each record, in a manner
determined by [mode]:

= Scans till a record is found with recordkey=[key ne]
<> Scans till a record is found with recordkey<>[key ne]
<= Scans till a record is found with recordkey<=[key ne]
>= Scans till a record is found with recordkey>=[key ne]

If the appropriate condition is met before the end of the scan is
reached, the SCAN command succeeds and A(J+QA) points to the found
recordkey. If no suitable record is found the SCAN command fails
and QA is not set.

Two further modes are provided which always scan all
[count ne] records (or to the end of the array if there are fewer
records than the count):

< Finds the largest recordkey<=[key ne]
> Finds the smallest recordkey>=[key ne]

These latter two modes may be used for sorting.

The keys are treated as [keylen ne]-word numbers which are
compared arithmetically. Hence EP() must be at least [keylen ne]
when the SCAN command is used.

Example

Suppose our records are 8 words long and the first 2 words of
each record contain the key. If we use a 512-word array we can
read 64 records from the file at a time and scan for the key K
using a program like

8 ARRAY BF 511

400 READ #6 BF() :GOTO 410
405 PRINT '?READ ERROR' :STOP
410 SCAN 8 2 BF()=K :GOTO 420
415 GOTO 400
420 PRINT 'FOUND KEy'K' AT RECORD'(PT(5)-512+QA)/8

If the keys do not begin at the first word of each record an
offset can be specified in the [array] part of the SCAN command.
For example

SCAN 8 2 BF(3)=K

tests the key in the fourth and fifth words of each record.

Note that whatever the significance of the keys to the user,
they are treated as multi-word numerical values by the SCAN
command. Negative keys may be used and these are ordered in the
usual way (ie. the largest negative number comes first).

[keylen ne] must be less than or equal to EP().

PDP-ll AIMS PROGRAMMING MANUAL Page 24
String Expressions - section 6

6. STRINGS AND STRING EXPRESSIONS

Strings are normally stored in string variables. For example
the statement

> l$HELLO

will create the string variable $1 containing the string HELLO. We
may now refer to this string in a print command like

>PRINT $1
HELLO
>

CHARACTER SET

There is no restriction on the characters that may be stored
in strings. The full 128-character I.S.O. set is allowed,
including upper and lower case letters. In particular, the null
string (ie. a string containing no . characters) is allowed.
Strings may be of any length, but very long strings are expensive
(see section 20).

Such strings are actually stored as lines, so we can list them
in the same way that we can list a program:

> lOP $1 $2
)2$ THERE
>LIST

1 $HELLO
2 $ THERE

10 PRINT $1 $2
>RUN [Lines 1 & 2 cause no effect when the program

[is run. The message is printed by line 10. HELLO THERE
>

String variables are usually called 'dollar-lines'.

Another way of storing strings is to type them out literally
inside Quotation marks. For example

)PRINT 'HELLO'
HELLO
>

Since these
be changed
strings are
messages or

strings are embedded within a program line, they cannot
except by changing the whole program line. Literal

thus best used for constant strings, such as short
strings that we want to search for.

PDP-11 AIMS PROGRAMMING MANUAL Page 25
String Expressions - section 6

STRIN G TERMINA TORS

Strings may be read from peripheral devices by means of the
INPUT command. For example

>INPUT $1 :LIST
-HO

1 $HO
>

[The - is automatically printed by this form
[of the INPUT command as a cue to the user.
[User types 'HO' followed by carriage-return

When reading strings in this way the character carr iage-return is
treated as an end-of-string delimiter which is removed before the
string is stored. Thus $1 above contains just the two letters
HO

>P $1$1
HOHO
>

Since pr inted -information is usually required on separate
lines, the PRINT command normally appends carr iage-return and
l1nefeed, denoted as [newline], to the end of the string to be
printed. This explains the newl1ne after the second HO above.
Th1s automatic newl1ne may be suppressed by ending the PRINT
command with a dangling comma like

>P $1$1,
HOHO>

PDP-11 AIMS PROGRAMMING MANUAL Page 26
String Expressions - section 6

STRING EXPRESSIONS

A string expression is anything that can be evaluated to yield
a string. String expressions are built up rrom one or more of the
fields listed below. The value of the expression is formed by
concatenating the values of the constituent rields.

FIELD

$[ne]

'[string] ,

"[string]"

[ne]

CORR&SPONDING STRING

The string in dOllar-line [ne]

[string] which may not contain

[string] which may not contain"

The value of [ne] converted to a string under
control of the default output format and radix
specifications.

[ne]@W[ne1]@A[ne2]@R[ne3]

%C[ne]

JR[ne]

The value of [ne] converted to a string using the
specified format and radix (see below).

Carriage-return and linefeed

Has no value. May be used as a sepa.rator to resolve
ambiguity.

The ASCII character formed by taking the value of
[ne] modulo 128.

The 3-character string formed by unpacking [ne] from
the standard DOS radix50 format.

%S[ne1] $[ne2] The [nel]'th substring of line $[ne2]. See section
8 - symbol table facility.

%X[ne] Value string depends on [ne] as fOllows:
0: the name and version of the interpreter
1: the character used to mark off thousands in
numbers
100+V: name of V'th variable (see page 36)

The PRINT command is of the form

PRINT [str ing expression]

and its effect is to print the
followed by a newline. The
occur in a PRINT statement.
sometimes helpful to look at it
anything that can be PRINTed is
particular, the PRINT command
that a string expression does in
string •

value of the string expression
above syntax thus defines what may

However for the beginner it is
the other way round and to say that

a valid string expression. In
provides an easy way of verifying
fact evaluate to the intended

PDP-11 AIMS PROGRAMMING MANUAL Page 27
String Expressions - section 6

We Shall use [se] to denote any string expression in future.

Examples

Suppose that we have two simple variables, X and Y, where X
has the value 123 and Y the value 5. Suppose also that we have two
dollar-lines as follows:-

1 $COPY
2 $CAT

Here are some of the ways in which this data could appear as
elements of a string expression:-

STRING EXPRESSION

$1

$1$2

$1

. $1' '$2

$1

$2

'QUOTE IT'

X

X@W5

$2

'THE '$2' IS'X-102@W3' YEARS OLD'

%C65%C54

X Y

X,Y

X,,, Y

X;Y

VALUE OF EXPRESSION

COPY

COPYCAT

COPYCAT

COpy CAT

COpy CAT

QUOTE IT

QUOTE 'IT'

123

128

123

THE CAT IS 21 YEARS OLD

A6

123

123

123

123
5

5

5

5

PDP-11 AIMS PROGRAMMING MANUAL Page 28

>P 123+4
127
>P 8 9 10

String Expressions - section 6

8 9 10 [default format is 4 characters wide
>LET J=5 :PRINT 'NO.3-'J@W
NO.3-5
>LIST

1 $COPY
2 $CAT
3 $THE TEMPERATURE
4 $ IS ABOUT
5 $BELOW ZERO.

>P $1$2
COPYCAT
>LET T=13
>P $3$4 T@W3 ' DEGREES' ;$5
THE TEMPERATURE IS ABOUT 13 DEGREES
BELOW ZERO.
>CLEAR
>L J=O
>P %C65+J, :L J=J+1 :UNLESS J>26:
ABCDEFGHIJKLMNOPQRSTUVWXYZ>P J

27
>

A [se] may evaluate to the null string, or it may itself be
null. For example all the following evaluate to nothing:-

nn , , , ,
[nothing at all]

I

PDP-11 AIMS PROGRAMMING MANUAL Page 29
String Expressions - section 6

CONVERSION OF VALUES TQ NUMERIC STRINGS

When numerical values are converted to strings of digits we
need to be able to specify the way in which this is done: how many
digits are required, whether we want leading zeroes or spaces, and
so on. This is done using the syntax

[ne1][format specifier]

where [ne1] is the value to be converted, and [format specifier] is
zero or more elements of the form

@[code][ne]

where @[code] identifies a particular function as follows:

@W[ne]
@A[ne]
@R[ne]
@F[ne]

Overall width of the numeric field
Number of digits after the radix point
Radix for conversion
Format status bits specifying type of sign
and so on.

indication

Note: the alternative syntax @[ne]#[ne] is obsolete and should not
be used.

The format status bits are as follows:

BITS VALUE
0,1 0

2

3

4

5

6,7

1
2
3

4

8

16

MEANING
Mark positive values with 1 leading space
No special mark for positive values
Mark positive values with a + sign
Reserved

Fill field with leading zeroes, else spaces

Enclose negative values in round brackets,
else mark with - sign

Insert commas every 3 digits to left of
radix point

Put sign mark at extreme left of field,
else put it just to left of leftmost digit

Reserved.

If part or all of the format specifier is omitted, default
specifications are used as follows:

@W Default value is taken from the system variable QW
@A Default value is taken from the system variable QF
@R Default value is ten
@F Default value is zero.

These defaults mean that numbers are normally printed in decimal
with leading zeroes suppressed, negative numbers marked with a
- sign, QF digits after the decimal point, and occupying a field

PDP-11 AIMS PROGRAMMING MANUAL Page 30
String Expressions - section 6

which is QW characters wide. The system variables QW and QF also
have default values which are set by the RUN command. These are
QW=4 and QF=O, giving a 4-character field with no decimal point:

>P 1; 12; 123; -1; -12; -123
1

12
123
-1

-12
-123

In the above examples the width is 4 by default and so each number
is made to occupy a field of exactly 4 character positions. The
digits of the number are right-justified within this field by the
insertion of between 0 and 2 leading spaces. If the number is
negative it is marked with a - sign. Positive numbers are marked
with an additional leading space, so that numbers with different
signs still take the same width. Thus a field of width W is really
intended for numbers upto W-1 digits long, the remaining character
position being reserved for the sign indication.

If you misjudge the format specification and try and print a
number that has more than W-1 digits, the value is printed in full
even though it overruns the specified field width:

)P 123;
123
1234
12345

1234; 12345; -123; -1234; -12345

-123
-1234
-12345

[3-digit number in 4-character field, ok
[4-digit number overruns field, but initial sign
[mark still there. Similarly for 5 or more digits.
[3-digit negative number, ok
[4 or more digits overruns.

The following example shows the use of the@F status bits to
control position and type of sign indication:

)LET QW=6 [Set default width to 6
)P 123

123 [Positive number marked with leading space
)P 123@F2

+123 [Positive number marked with + sign
)P 123@F2!32
+ 123 [Same, but with sign at extreme left of field
)P -123

-123 [Negative number marked with - sign
)P -123@F32

123 [Same, but with sign at extreme left of field

If the number is positive, the use of @F1 to suppress the sign mark
makes all W character positions available for digits:

)P 12345@F1; 123456@F1
12345 [5-digit number always fits in 6-char field,

123456 [but with sign suppressed so does 6-digit one.

@F4 causes the field to be filled out with leading zeroes rather
than spac es :

PDP-11 AIMS PROGRAMMING MANUAL Page 31

)P 123@F4
00123

)P -123@F4
-00123
>P 123@F4! 1
000123
)P -123@F4!1
-00123

String Expressions - section 6

[Positive number with leading zeroes
[Note that sign mark still appears
[So negative numbers in same format
[still line up.
[But we can suppress the sign mark if desired,
[giving an extra leading zero.
[But for a negative number in same format
[the sign cannot be suppressed.

@F16 puts a comma every 3 digits to mark the thousands:

)LET QW=14 [Set wider width for these examples
)P 12345@F16; 123456789@F16

12,345 [The numbers are still right-justified
123,456,789 [within a W-character field.

@A inserts a radix point a specified number of digits from the
r ighthand end:

)P 12345@A2 [QW is still 14 in these examples
123.45 [The number is still right-justified

>P 123456789@A2@F16
1,234,567.89 [We can have commas and radix point

)P -123456789@A2@F16!4
-01,234,567.89 [And signs and leading zeroes as required.

In commercial applications it is customary to denote a deficit by
enclosing the quan tity in round bracke ts. This c an be done with
@F8 which marks negative numbers in this way:

>P -12345@F8
(12345)

)P 12345@F8
12345

)P -12345@F8!32

[The overall field is still W characters
[Positive numbers are shifted left by one
[so that the figures still line up.

(12345) [We
)P -12345678@A2@F16!8

can left-justi fy the opening bracket

(123,456.78) [Or have commas and radix point as required.

In systems programming it is frequently useful to be able to print
numbers in octal or binary. This is done with @R:

>LET QW=4
)P 127@R8

177
)P 5@R2

101

[Back to normal width

[Converting to octal

[Or binary

We can use @W to alter the field width locally, rather than
changing QW:

>P 5@W6@R2
101 [Five in binary, width 6

)P 5@W6@R2@F4
00101 [Same with leading zeroes

)P 123456789@W32@F4@R2
0000111010110111100110100010101

PDP-11 AIMS PROGRAMMING MANUAL Page 32
String Expressions - section 6

In the above examples we have used things like @F4!1 for
clarity. In practice it would be quicker to combine the individual
bits of @F into one value like @F5.

In most European countries the role of the comma and point in
numbers is interchanged. That is to say, a comma is used to
separate the integral and fractional parts of a number, and points
are used to mark off the thousands. AIMS can be configured to suit
this convention, in which case all the above examples should be
read as if the comma and point were interchanged.

A program can find out which oonvention is being used by means
of %X1 which evaluates to the single character, either comma or
point, that is used to mark off the thousands.

Programmers writing software that is intended to work with
both conventions should bear in mind that in Europe a comma cannot
be used to delimit a number. For example, the string 123,456 would
be converted as a single six-digit number in Europe, and as two
three-digit numbers elsewhere. Department/user numbers may .appear
as [16,17] or [16.17] or [16 17]; use SF9 to skip any of thes~
easily. People designing command syntaxes and writing user manuals
should also be aware of these points.

PAGINATION, TABULATION & GRAPH PLOTTING

AIMS keeps a continuous record of the position of the
teletype-carriage as it moves in response to PRINT commands. This
information may be accessed via the system variables QC and QL (see
section 11) as follows:-

QC position of carriage across the page (ie. column number)
QL position of carr iage down the page (le. line number)

For example

)P QL
17

)P QL
19

>P , ABC', : P QC
ABC 3
>

QL is incremented by AIMS whenever a linefeed is printed. QC
is incremented for all characters except carriage-return and
line feed , and is zeroed when carriage-return is printed. Because
the output is buffered it is not always possible to determine the
instantaneous position of the output device. QC and QL are updated
at the end of every PRINT command and thus reflect the position
that is reached after the command has been obeyed. QL is also
sensitive to the linefeeds that result trom INPUT commands,
allOwing overall pagination of an interactive conversation.

The two variables may be assigned by the user, so for example
we may reset the line counter by saying

PDP-11 AIMS PROGRAMMING MANUAL Page 33
String Expressions - section 6

LET QL=O

QL is useful for paginating listings:-

10 $Shopping List
50 LET P=O

100 LET P=P+1 QL=O :PRINT '--';;$10, :TAB 40 :PRINT 'Page 'P@Wj;
120 ••• etc
>RUN

Shopp ing Li at Page 1

>

Later on in the program we can test whether a new page is needed by

IF QL>71 :00 100

or we can throw to a new page with

IF QL<71 :PRINT %C10, :LOOP
DO 100

A TAB command is provided to facilitate tabulation and graph
plotting :-

TAB [ne] [optional se]

TAB prints spaces until column [ne] is reached, counting from zero
at the left margin. Eg:

>PR 'HI', :TAB 9 :PR 'HO'
HI HO
>

If QC is already greater than [ne] the command has no effect. If
the [se] is present, the value of [se] will be printed repeatedly
inst ead of th e spac e:-

>T AB 11 ' ABC '
ABCABCABCAB> [The last occurrence is truncated if necessary

Although we have described the behaviour of QC and QL with
reference to a teletype, these variables are really associated with
the PRINT and TAB commands. They are thus affected by any PRINT or
TAB command, even if the output is directed to some other device
such as a disk file (see section 13). If several 1/0 channels are
referenced ooncurently by a PRINT, TAB or INPUT command, the values
of QC and QL will cease to be meaningful. In this case use the LET
command to save and restore QC and QL, keeping a separate copy for
each channel.

PDP-11 AIMS PROGRAMMING MANUAL Page 34
Strings and Arrays - section 6

PACK and UNPACK commands

These commands are used for moving large numbers of characters
between strings and arrays. The PACK command takes a block of
dollar-lines and packs them into an array. A specified string of
separator characters is inserted into the array to mark the end of
each dollar-line. This enables the dollar-lines to be recovered
exactly by a subsequent UNPACK. The UNPACK command scans an array
for one or more occurrences of a specified separator string, and
stores any intervening characters in successive dollar-lines.

PACK A(J) [se] ,[ne1] [ne2]

A(J) is the array, [se] is the desired separator string, and [ne 1]
through [ne2] are the dollar-lines ,to be packed. There is no need
for the dollar-lines to be contiguous; the command simply packs all
lines between [ne1] and [ne2J inclusive. The actual number of
bytes packed is returned in QA. This will be the sum of the
lengths of all the strings, plus the number of strings packed times
the length of the separator string. If the packed data does not
completely fill the array, a final byte containing 128 is stored
beyond the last separator as an end marker. This byte is not
counted in the QA value. It pr even ts the UNPACK command from
treating the remainder of the array as a valid string.

UNPACK A(J) [se] ,[ne1] [ne2]

Unpacks the array into a block of contiguous dollar-lines beginning
at [ne1]. A new dollar-line is started each time the separator
string [se] is found in the array. The separator string is
discarded and does not appear in any of the dollar-line,s. [ne2] is
optional. If present it specifies a limiting line for the unpack,
so that if the array contains an unexpectedly large number of
separator strings the unpack will not overwrite lines above [ne2J.
The number of the highest dollar-line created by the unpack is
returned in QA. If the unpack is not terminated prematurey by
[ne2], it will continue until a 128 byte is found or the end of the
array is reached.

The UNPACK command can create a large number of dollar-lines
in one go. This may require a lot of space and it is the
programmer's responsibility to see that QS is adequate before
executing an UNPACK (see section 20). If your program repeatedly
UNPACKs into the same block of dollar-lines, it is desirable to
CLEAR [ne1],[ne2] before each UNPACK.

The LET command and Strings

An extension of the LET command provides a convenient way of
packing strings and numbers into an array in a sequential manner:-

LET B(J)<XI2 $1019 311 ZI3

This command places the 2-word value of X in cells J and J+1 of the
array B, the 9-character string $10 in cells J+2 through J+6, the
number 311 in cell J+1, and the 3-word value of Z in cells J+8

PDP-ll AIMS PROGRAMMING MANUAL Page 35
Strings and Arrays - section 6

through J+10.

Similarly, the command

LET B(J»XH2 $1019 y Z'3

unpacks cells J through J+l0 of the array B into the 2-word
variable X, the 9-character string $10, the 1-word variable Y, and
the 3-word var ia bl e Z.

The list following the < or > may be any sequence of elements
of the form

[name]H[precision]

or

[dollar line]H[number of characters]

For the packing command the [name] may be replaced by an expression
if desired, like

. [ne]H[precision]

[precision] is an [ne] specifying the number of words to be
occupied by the numerical value. Error 10 will occur if the value
cannot be represen ted within this length.

[number of characters] is an [ne] specifying the number of
characters to be packed or unpacked. Strings are packed
2-characters per word and an extra character is required at the end
to terminate the packed string. Thus the number of array cells
required by the element

[dollar line]'[ne]

is ([ne]+2)/2 . When packing a dollar-line into an array, the line
need not contain exactly [ne] characters. If the string contains
less, the array will be padded-out with terminator characters. If
the string contains more, it will be truncated after [ne]
characters. The terminator character has the value 128.

If the [precision] specification is omitted it will be taken
as 1. The [number of characters] specification must always be
present.

PDP-11 AIMS PROGRAMMING MANUAL Page 36
Strings and Arrays - section 6

Obtaining the names of your variables

For diagnostic purposes it is sometimes useful to obtain a
complete list of all the simple variable names that exist within a
program. This may be done with the %X element in a string
expression. %X100+V evaluates to the name of the V'th simple
variable in the program. If V is too large the element evaluates
to the null string. For example, the following program prints a
list of all the variables currently in existance:

goo LET V=O
902 PUT %X100+V>$1 :UNLESS $1=" :PRINT $1 :LET V=V+1 :LOOP

PDP-11 AIMS PR OGR At+i IN G MANUAL Page 37
String Comparisons - section 7

7. STRING COMPARISONS I

The relational operators listed in section 5 may be used to
compare strings for equality or alphabetical ordering, or to test
if one string contains another.

These comparisons are of the form

[string'] [operator] [string2]

where [string1] is a dollar-line, and [string2] may be either a
dollar-line or a quoted string.

EXAMPLE MEANING

[s1]Js2] true if [51] contains [82J anywhere
[81]"[52] true if (s 1] begins with [s2]
[s 1] <[s2J true if [s1] alphabetically less than [52J
[s 1]= [s2] true if [s 1] the same as [52]
[s 1]> [s2] true if [81] alphabetically greater than [s2]
[s1]<>[s2] true if [s1] not the same as [s2]

The alphabetical ordering is such that 'A' is less than 'B',
'ABC' is less than 'ABO', and so on. The ordering of punctuation
characters can be found from the table in section 26.

The <, >, and = operators may be combined to specify
less-than-or-equal, etc.

The and" relations are also true if the two strings are
equal.

These expressions evaluate to -1 if the relation is true, and
to 0 otherwise.

String comparisons are most often used in the IF command, but
any of the above relations may occur as an element of a numerical
expression. For example:

>1$ABC
>IF $1_'BC' : PRINT 'GOOD'
GOOD
>50$NO
>51$YES
>PRINT $1_'B'
- 1
>PRINT $1_'X' !5<6
- 1
>P $50-($1""AB')
YES
>

The IF command simply evaluates the expression and continues
along the line if the low-order 16 bits of the value are non-zero.

PDP-11 AIMS PROGRAMMING MANUAL Page 38
String Comparisons - section 7

When perform1ng an embedded match like

IF $1 ' ABC'

the systen var1able QI (see section 11) is set to the number of
times the first character of 'ABC' is found in $1. This is useful
when searching symbol tables. See section 8 for an example.

\

PDP-11 AIMS PROGRAMMING MANUAL Page 39
PUT command - section 8

8. THE 'PUT' COMMAND I

In its simplest form the PUT command is a left-ta-right string
assignment of the form

PUT [string expression] > [destination string]

where the > is the assignment operator.

>PUT 'HELLO'>$1 :LIST
1 $HELLO

>

A slightly more complex example is:

PUT 'ABC123DEF' >$1 X >$2

This may be read as 'PUT the string ABC123DEF into dollar-line-l,
look for a number and assign it to the simple variable X, and put
the rest of the string into dollar-line-2' •

>LIST :PRINT X
1 $ABC
2 $DEF
123

>

Another possibility is

>PUT 'ABCDEF' >$1 'CD' 'ZAM' >$2 :LIST
1 $ABZAM
2 $EF

>

This may be read as 'PUT ABCDEF into dollar-line-1, look for CD,
replace it by ZAM, and PUT the rest into dollar-line-2' •

The PUT processor is probably best understood in terms of a
state diagram. Every PUT command has an easily recognised lefthand
side, which is the [string expression] shown above. The PUT
processor begins by evaluating this string expression and creating
a copy of the resulting string. We shall refer to this string as
the 'source string'. The rest of the PUT command-line specifies
how the source string is to be decomposed, converted, or copied
into other strings, variables, or arrays.

The diagram on the next page gives an 'exploded' view of the
possible PUT commands which may help to clarify the description
below.

Define source string

PUT string expression

o
:t'

to:!

~
~

Set mode & destination strin~

Open destination string

> .$ ne

<
Note 1 Set for
------'----, embe dded

match

Temporarily close
destination string

<> ----if one already
open

:: Set for ------ anchored
match

else

Note 1: also re-opens a
temporarily-closed
destination string.

Look for something

Look for a number
and assign value
to the name

Data name

Quoted String ---.

) ') f Dollar Line
"~"

\\\1 - %G ne

\F ne (Char Filter)

Perform replacement

Replacement string
expression, may be
null

<, >, =, <> 7

escape route to State 1

else

\
Copy rest of source string to
destination string, if any

Close destination string, if any

~
Continue executing current program line

PDP-ll AIMS PROGRAMMING MANUAL Page 41
PUT command - section 8

The righthand-side of the PUT command-line may be indefinitely
long. We may regard the PUT proc essoras going round a cycle of
three main states until the end of the command.

PUT [se] [search mode] [destination] [look for] [replace by]
~-------state 1----------'" A_state 2_'" "' __ state 3 __ '"

"'--------------may be repeated indefinitely-----------~

STATE 1: DEFINE SEARCH MODE

In this state we expect one of 4 operators

>$[ne]

=

<

<>

Gato state 2.

If 11ne [ne] 1s a dollar-line, delete it.
Open $[ne] as the current destination string,
and set embedded search mode.

Set anchored search mode.

Set embedded search mode. No destination.

Set embedded search mode. Temporarily close the
current destination string, if any. The old
destination string may be re-opened later by
using the < operator in state 1.

If none of the above alternatives are found, goto state 5.

STATE 2: LOOK FOR S~ETHING

In this state we expect to be told what to look for in the
source string. One of the following may occur:-

$[ne] Look for an occurrence of the string in $[ne]

~[string] ~ Look for [string]

"[string]" Look for [string]

[name] Look for a number and assign it to [name] and
goto state 2. Number will be scaled according to
decimal point if one present. A number is
defined as zero or more spaces, an optional minus
sign, followed by at least one digit or a decimal
point.

[name]'[ne] As above but expect [ne] digits after the pOint.
Surplus digits discarded. Number scaled by
10"'[ne] whether point present or not.

%G[ne] Copy [ne] characters

%F[ne] Look for a class of characters (see page 44)

PDP-11 AIMS PROGRAMMING MANUAL Page 42
PUT command - section 8

The interpreter now searches the source string for the
specified data. If the search mode is anchored, the search will
fail if the data is not immediately found at the current point in
the source string. In this case goto state 4. If the search is
embedded, characters are copied from the source string to the
destination string until the search is satisfied, or the source
string is exhausted. If exhausted go to state 4. If found, skip
over the found data in the source string and goto state 3.

If none of the above alternatives is found, copy the rest of
the source string to the destination string and goto state 5.

STATE 3: PERFORM REPLACEMENT

In this state we expect to find a string to be appended to the
destination string in place of the data that we have just found in
state 2. Two forms are allowed:

[string expression] The expression is evaluated and
appended to the destination string, if
any.

[null] No action

Goto state 1.

STATE 4: SEARCH HAS FAILED

If this was an embedded search, delete any characters copied
to the destination string whilst performing the last search. Close
the destination string if it exists. Proceed to· the next line of
the program.

STATE 5: COMMAND SUCCESSFULLY COMPLETED

Close the current destination string if it exists.
executing the current program line.

Continue

Note that both states 1 and 2 exit to state 5 if no valid
alternative is found. There is an important difference however:
the exit from state 2 copies the remainder of the source string to
the destination string, whereas the exit from state 1 does not.
Thus

PUT $1>$1 'FRED' 'SAM' :GOTO .••

will replace the first occurrence of FRED by SAM in $1, and will
delete the rest of $1. But

PUT $1)$1 'FRED' 'SAM' < :GOTO

will do the replacanen t and retain the whole of $1.

PDP-11 AIMS PROGRAMMING MANUAL Page 43

Examples

>PUT 'ABCDE'='AB'>$1 :P $1
CDE
>PUT 'ABCDE'='BC'>$1 :P $1
>

PUT command - section 8

[Anchored search for AB
[No replacement, put rest into $1.
[Anchored search for BC
[Fails since string does not begin
[with B, $1 unchanged.

>PUT
DE
>PUT
A

'ABCDE'<'BC'>$1 :P $1 [Embedded search for BC
[No replacement, put rest into $1.

'ABCDE'>$1 'BC'>$2 :P $1;$2 [Copy into $1
[Embedded search for BC

DE [No replacement, put rest into $2.
>PUT 'ABCDE'>$1 'XY'>$2
>P $1

:P $1;$2 [Copy into $1

ABCDE
>PUT 'ABCDE'>$1 'BC"XY'>$2
AXY
DE
>PUT '123'=X :P X

123
>PUT

45
>PUT
-45

45'=X :P X

-45'=X :P X

>PUT - 56'=x :P X
>P X

[Embedded search for XY fails
[Everything goes into $1, $2 unchanged.

:P $1;$2 [Copy into $1
[Embedded search for BC, replace with
[XY, put rest into $2.
[Anchored search for a number.
[Value is assigned to variable X.
[Leading spaces are skipped when
[searching for a number.
[A minus sign is accepted
[as a negative number.
[But only directly before a digit.
[It failed
[so X is unchanged. -45

>PUT
ABEF

'AB(CD)EF'>$1 '('<>')'< :P $1 [Copy into $1

>PUT 'ABC123DEF'<X='D'>$1
123

EF

'ABCDEF'>$1%G3 :P $1

[Look for (, turn output off, look
[for), turn output on again.

:P X;$1 [Embedded search for
[a number and assign it to X,
[inSist number is followed by D
[and put the rest into $1.
[Copy into $1
[and pass the next 3 characters only.

>PUT
ABC
>PUT
XYZ
ABCD
>PUT
A

'XYZABCD'>$1%G3>$2 :P $2;$1 [Copy into $1

/
CD
EFG

[take the next 3 characters only
[and put the rest into $2.

'AB/CD/EFG'>$1 'B'>$2%G1>$3$2>$4 :P $1;$2;$3;$4
[Copy into $1 until you find a B
[Put the next character into $2
[Then start copying into $3 until
[you find $2, and put the rest into $4.

PDP-11 AIMS PROGRAMMING MANUAL Page 44
PUT command - section 8

The next example shows the use of the PUT command to implement
a simple interpreter for another language.

>LIST
100 PRINT 'COMMAND', : INPUT $1
110 PUT $1< X 'PLUS' < Y :PRINT X+Y :GOTO 100
120 PUT $1 < X 'MINUS' < Y :PRINT X-Y :GOTO 100
130 PUT $1 < X 'TTIMES' < Y :PRINT X.Y :GOTO 100
140 PRINT "r DCIi'T UNDERSTAND" :GOTO 100
>RUN
COMMAND ·WHAT IS 4 PLUS 6?

10
COMMAND ·TYPE 7 MINUS 4

3
COMMAND .123TIMES 2
246
COMMAND .WHAT IS 8 OVER 2
I DON'T UNDERSTAND
COMMAND ·HOW MANY TIMES MUST I ASK YOU?
I DON'T UNDERSTAND
COMMAND •

SF CHARACTER FILTER

When using the PUT command to analyze data strings, we often
need to search the source string for a class of characters, rather
than for a specific string. This is done by using a character
filter like

%F[ne]

in state 2 of the PUT command.
characters as follows:

[ne] CLASS OF CHARACTER

The [ne] specifies a class of

1 Separators (ASCII codes between 0 and 40 octal)
2 All digits (0,1,2,3,4,5,6,7,8 and 9)
4 All letters (A to Z, and a to z)
8 The remaining characters (lE. those not listed above)

16 Convert letters to lower case (else to upper case)

These values may be combined to specify classes which are the union
of those given above. For example, %F6 specifies the class
consisting of all letters and digits.

The action of the filter is to move characters from the source
string to the destination string (if any), provided the characters
belong to the class specified by [ne]. As soon as a character is
met that does not belong to the class specified, the moving action
stops and the next part of the PUT command is executed. The source
string pointer is left PJinting at the character that stopped the
filter ing action, and this character is thus the first one to be
processed by any subsequent searching or copying operation. Note
that, unlike most state 2 operators, %F cannot cause the PUT
command to fail. Execution always continues with the rest of the
command line, even if there are no characters that match the filter
class.

PDP-ll AIMS PROGRAMMING MANUAL Page 45
PUT command - section 8

>PUT $l=$Fl>$l [Removes leading spaces etc from $1
>PUT 'ABC12(?'+DEF'>$1%F4>$2 :P $1;$2
ABC [Copies letters into $1
(?'+DEF [and puts rest into $2.
>PUT '12-NOV-78'=D<%F8>1F4<>$F8=Y :P D Y;$l

12 78 [Looks for a number and aSSigns it to D
NOV [skips punctuation, copies letters to $1,
> [skips punctuation, and assigns numbe~ to Y.
>PUT 'LABEL2: OPR'>1F6>2F8<>%Fl>$3 :P $1;$2;$3
LABEL2 [Copies letters or digits into $1, then

[copies punctuation into $2, skips spaces
OPR [and puts the rest into $3.

Note that all letters copied by $F4 are converted to upper
case. This is useful when writing programs to accept user commands
in both upper and lower case. This conven tion can be reversed by
$F16 which causes all letters to be converted to lower case.

QI - SYMBOL TABLE LOOKUP

When performing an embedded match, like for example

AIMS will scan along the string $1 looking for a match with the
first character of the string $2. As a side-effect of this
comparison, the system variable QI is set to the number of such
matches that occur upto the point at which the whole of $2 is found
(if it is).

>LI
10 $,BEAR,FOX,ELEPHANT,COW,HORSE,

100 INPUT $1 :PUT " '$1>$2
110 IF $10_$2 :PRINT QI :GOTO 100
120 PRIN T ' ANIMAL NOT KNOWN' : GOTO 100
>RUN
'FOX

2
·COW

4
·SEAL
ANIMAL NOT KNOWN
'ELEPH

3 ,
In the above example the string $10 forms a table of animal names,
each one beginning with a comma. Line 100 reads a name from the
keyboard and places it in $2 with a comma in front of it. The
comparison in line 110 then performs an automatic symbol-table
lookup and QI gives the position of the animal in the table.

This technique is often conven ien t for decoding command
strings, in which case the action taken at line 110 would probably
be something like

PDP-11 AIMS PROGRAMMING MANUAL Page 46
PUT command - section 8

GOTO 200+50 *Q1

providing an immediate switch to a specific routine for each
command (section 19).

We may think of the first character in $10 as a delimiter
which divides the string into a number of substrings. After an
embedded search, QI gives the number of the substring that matched.
Notice that partial matching is possible, as in the 'ELEPH' example
given above. We can prevent this if necessary by putting a comma
at both ends of the test string: the string ',ELEPH,' will not be
found, whereas ' ,ELEPHANT,' will.

IS - SELECTION OPERATOR

As noted in section 6, the element %S[ne1] $[ne2] may occur in
a string expression. This operator is complementary to the Q1
facility described above. The element evaluates to the [ne1J'th
substring of $[ne2], without the enclosing delimiter characters.
For example, using $10 as given above:-

>PRINT %S2 $10
FOX
>P %S5 $10
HORSE
>

If [ne 1] is greater than the number of delimiter characters in the
string, the %S construction evaluates to the null string.

PDP-11 AIMS PROGRAMMING MANUAL Page 47
INPUT command - section 9

I 9. THE 'INPUT' COMMAND I

The INPUT command is a way of reading strings or numbers from
the user's terminal or 0 ther device. The syn tax is

INPUT [echo] (timeout] #[ne 1] 1[ne2] [as r.h.s. of the put command]

Note: most of the items are optional but if present they must occur
in the order given above.

INPUT is exactly like PUT except that the source string is
obtained from the device on channel [nel], rather than from a
string expression. When the string has been read AIMS en ters the
PUT ' proc essor at state 1 just as if it had found a > sign. The
command

INPUT [echo] [timeout] l[ne1] ?[ne2] [etc]

is thus equivalent to

PUT [string from channel [nel]] > [etc]

After an INPUT command control normally resumes along the same
line. Control will fall through to the next line if a device error
or end-of-file condition occurs or if the implied PUT command
fails. The various failure conditions are distinguished by the
value of QE, see section 16.

If l[ne1] is omitted, channel 2 is used by default.

The ?[ne2] is optional. If present the string in dollar-line
[ne2] is printed as a cue to the user. If absent, - is printed.
This only occurs if the input channel is a terminal. For example

10 $HELLO MATE!
100 INPUT ?10 $10 :LOOP
>RUN
HELLO MATE :GOOD AFTERNOON
GOOD AFTERNOON

[User types 'GOOD AFTERNOON'
[which changes cue line

PDP-11 AIMS PROGRAMMING MANUAL Page 48
INPUT command - section 9

CONTROL OF ECHOING

Characters typed
immediately so that
automatic echoing may
placed directly after

at the keyboard are normally
you can see what you have

be suppressed by means of the
the INPUT command word:-

pr inted back
typed. This
< operator

>INPUT < $1 : PRINT i 'YOU SAID '$1
I [User types 'HELLO' which does not echo
YOU SAID HELLO
>

Note that when echo is suppressed there is no automatic
carriage-return or line feed at the end of an input line. The
newline after the I above is caused by the PRINT j command.

This facility allows a program to obtain confidential
information from a user without leaving a printed record. For
example, The login program turns off the echOing when it asks for
your pa sswor d .

The carriage-return and linefeed that occurs when the user
terminates his input line may be suppressed by means of the =
operator. This allows several questions to be asked on the same
line. For example

'>20 $YOUR NAME?
>21 $AND AGE?
>INPUT = ?20 $1
YOUR NAME? FRED
>

. INPUT Timeout

:TAB 20 :INPUT ?21 $2
AND AGE? 36

When an INPUT oommand is executed the program is normally
suspended until a line has been typed by the user. If the user
fails to respond or goes away, the program could remain suspended
indefinitely. The programmer may avoid this by using the [timeout)
feature :-

INPUT [echo]>[ne]

This causes the INPUt command to terminate after [ne] seconds, even
if nothing has been typed by the user. Control resumes on the same
line as the INPUT command, and the destination string contains
whatever the user typed upto the moment of timeout. The system
variable QD indicates the type of termination as follows:

QD Termination reason
0 User typed a line ending with carr iage-return.
1 User typed a line ending with ESCAPE, ACCEPT or ALTMODE.
2 Timeout.
3 User typed a line ending with linefeed.

PDP-11 AIMS PROGRAMMING MANUAL Page 49
INPUT command - section 9

INPUTTING SINGLE CHARACTERS

The INPUT command reads a complete line of text up to a
carriage-return or line feed character. An alternative command,
called ACCEPT, is provided to allow a program to obtain characters
from the keyboard one at a time. The syntax is identical to that
for the INPUT command.

)ACCEPT $1 :PRINT $1
.AA [User presses key 'A'
)

The control-Y and RUBOUT editing facilities are not available
in ACCEPT mode; these characters are treated like all others. The
control-C and control-O abort characters still function. The
carriage-return key appears as carriage-return followed by
line feed •

CONVERSION OF NUMERIC STRINGS TO VALUES

Although
descr ibed in

AIMS treats
section 6 a

decimal point, as

)LET X=12345 :PRINT X@A2
123.45

>

all numbers as being integers, we
facility for pr inting values with a

Thus it is possible to perform fixed-point real arithmetic provided
all numbers are scaled by the appropr ia te power of ten (100 in the
above example).

When numbers are input, AIMS provides the capability either of
accepting a decimal point anywhere, with appropriate scaling, or of
specifying the number of digits required after the point. See
description of state 2 in section 8. For example

>INPUT X YI2 :PRINT X Y :LOOP
.123 123.45

123 12345
·123.45 123

12345 12300
·123456 123.456

123456. 12345
·123.456 123456

·123456 12345600
•

PDP-11 AIMS PROGRAMMING MANUAL Page 50
Transfer of Control - section 10

10. TRANSFER OF CONTROL I

IMPLICIT TRANSFERS

Control normally proceeds horizontally along the program line
curren tly being executed. When this line is completed control
passes to the line'with the next higher number.

Certain commands exhibit conditional properties, like for
example the IF command, which only continues along the line if the
condition is satisfied. If the condition is not satisfied control
will 'fall through' to the next line.

This convention, whereby successful commands Il"oc eed
horizontally and unsuccessful commands proceed vertically, is
extended in AIMS so that many commands have an implied conditional.
For example:-

100 READ 15 BO :WRlTE 16 BO :LOOP
110 PRINT 'END OF FILE' : STOP

[the # specifies an
[1/0 channel number

This program copies a file by reading it into the array-buffer B,
and writing it out again. Control will remain on line 100 until
the end of the file is reached, at which point the READ command
will fail, causing line 110 to be obeyed.

EXPLICIT TRANSFERS

Apart from these conventions, several commands are provided
for explicitly changing the order of program execution.

GOTO [ne] This causes a jump to line [ne] of the program.
Error ?L will result if the line does not exist.

[ne] may be a simple line number, or a more complicated numerical
expression, enabling comput.ed and assigned goto' s to be performed.

• •• :LOOP This command only makes sense when placed at'ttie
end of a line. It causes the line to be
executed again.

LOOP is <picker than a GOTO because the interpretor already knows
where the current line is.

PDP-11 AIMS PROGRAMMING MANUAL Page 51
Transfer of Control - section 10

SUB ROUT IN E T RAN SFERS

nOSUB [ne]

RETURN

This is used for calling part of a program as a
subroutine. The curren t line-number is
remebered on a system stack, and a 'GOTO [ne]'
is executed. The program thus entered should
eventually return control by means of the RETURN
command. It is meaningless to place commands
beyond a GOSUB on the same line.

The line-number previously stacke.d by the last
GOSUB command is unstacked into the system
variable QA. A 'GOTO NL(QA)' is then executed.

(Note that NL(J) is a system function whose value is the next line
above line J of the program.) The RETURN command effectively
transfers control back to the line following the GOSUB command that
entered the subroutine. For example

100 LET J=O
110 GOSUB 500
120 PRINT 'HI' :GOSUB 500
130 PRINT 'END' :STOP
500 LET J=J.1 :PRINT 'HO' J :RETURN
>RUN
HO 1
HI
HO 2
END
>

As can be seen from the above example, GOSUBs may be nested; that
is to say, a piece of program that has been entered via a GOSUB may.
itself do a GOSUB to some other program, and so on. The maximum
depth to which this nesting may be carried is an AIMS assembly
parameter. It is normally set at sixteen.

Two variants of the RETURN command are provided to cater for
multiple return-points and for situations where one does not want
to ret urn at all:-

RETURN [ne]

RETURN

As RETURN except that it performs a
'GOTO NL(QA.[neJ)'. This permits a return to a
point several lines beyond the line containing
the GOSUB.

If any command follows a RETURN
line, the GOTO is not executed.
this case simply unstacks the
number.

on the same
The RETURN in
return line-

This allows a jump out of a subroutine without causing an
accumulation of return links on the gosub stack. It is useful, for
example, in cases where a subroutine detects an unusual error
condition.

Note that 'RETURN :GOSUB NL(QA)' implements a coroutine switch.

PDP-ll AIMS PROGRAMMING MANUAL Page 52
Transfer of Control - section 10

A further command is provided principally to save program space and
typing:-

DO [ne] Causes a temporary transfer of control to line
[ne]. The effect is to execute line [ne] as if
it occupied the position of the DO command.
When line [ne] is completed, control goes to the
line following the DO command, unless line [ne]
performs a further transfer of control.

DO commands may be chained to any depth. They always operate as if
the 'done' line occupied the position of the highest-level DO
command.

100 PRINT 'HA' :DO 200
110 PRINT 'HO' : STOP
200 PRINT 'HE' :DO 300
300 PRINT 'HI'
>RUN
HA
HE
HI
HO

TRANSFERS BETWEEN RUN & EDIT MODES

AIMS is initially in edit mode. This mode allows programs to
be entered and direct commands to be executed. When a program is .
established the RUN command may be used to start execution:-

RUN [ne]

STOP

Makes all user-created simple variables
I.ttldefined. Sets system variables to their
default values. Scans the program for ARRAY
declarations and performs the necessary
a ss ignmen ts. Starts the program at the next
line greater than or equal to [ne].

Stops program execution and switches back to
edit mode. The system variable QA is set to the
number of the line containing the STOP command.
All variables, arrays, lines and files remain as
they were at the time of the STOP.

Since all commands may be used in both run and edit modes, we also
have :-

GOTO [ne]

RUN [ne]

As a direct command. Starts the program at line
[ne] without performing the initialisation
associated with the RUN command. Useful for
restarting a program.

As a stored command. Used for it s initialising
effects. (eg. deletes unwanted variable names~
sets up array names, resets system variables to
a standard state.)

PDP-ll AIMS PROGRAMMING MANUAL Page 53

THE 'WAIT' COMMAND

WAIT [ne]

Transfer of Control - section 10

This command suspends the user for [ne] tenths
of a second. Control resumes along the line
after this interval. Note that the interval is
only resolved to the nearest tenth of a second,
so that a WAIT N command may actually delay
the user for any time between (N-1) and (N+1)
tenths of a second. See also section 21.

TRANSFERS TO AIMS EXECUTIVE PROGRAMS

EXIT

BYE

Runs the privileged AIMS executive program, see
section 23.

Runs the privileged AIMS program 'LOGOUT' which
logs the user off. See section 23.

PDP-11 AIMS PROGRAMMING MANUAL Page 54
System Variables and Functions - section 11

11. SYSTEM VARIABLES AND FUNCTIONS I

A number of simple variables and functions are permanently
defined. The functions allow the user to call certain machine-code
routines that are conveniently accessed in a functional way. The
system variables are just like any other variable in that they may
be referenced and assigned by the user, but they are also modified
by AIMS, often as a side-effect of a command.

SYSTEM VARIABLES

QA Contains miscellaneous auxiliary
individual command descriptions.

information.

QC Column counter. See section 6.

QD

QE

Indicates reason for termination of INPUT command.
section 9.

When an error occurs the error number is placed in QE.
section 16.

QF Global output format. Default is O. See section 5.

See

See

See

QG Garbage-collection threshold. Preset to 350.
20.

See section

QI Set up as a side-effect of string comparisons. When
searching for string2 in string 1 , QI counts the number of
times the first character of string2 has been found in
string1. See section 8.

QL Line co un tel'. See section 6.

QQ When an error occurs QQ is examined. If QQ is zero, a
standard error message is printed. If QQ is non-zero, a
'GOSUB QQ' is executed and QQ is set to zero. A user
program may thus trap errors by setting QQ to the line
number of an error-handling routine. Default i.s zero. See
section 16.

QS Amount of free space in characters available within the
user's existing memory area. See section 20.

QW Global output width. Default is 4.

All system variables are reset to their default values by the RUN
command.

PDP-ll AIMS PROGRAMMING MANUAL Page 55
System Variables and Functions - section 11

SYSTEM FUNCTIONS

DA()

DA (1)

DA (2)

DA(3)

DA (4)

DA(5)

DA(6)

OR(n)

The day of the month (1 to 31)

The month (1 =Jan, 12=Oec)

The year - 1900

Day of the week (O=Mon, 6=Sun)

Day number within year (1st Jan=l, 31st Oec=365 or 366)

416*(year-1970) + 32*month + day

416*(year-1965) + 32*month + day

Accesses DR11C hardware registers if present (n=O to 16)

EP() Controls the precision with which numerical expressions
are evaluated. See section 5.

FC() MONITOR: total available real memory in bytes. Equals
total real memory minus the size of all resident monitor
program and data structures.

GV(J)

DOS: Total amount of free space in characters available
for program expansion. Indicates the amount by which the
user's memory area could be expanded by the CORE command.

The J'th global communication variable. See section 21.

JS() User's job status vector. See section 22.

LE(J)

NL(J)

PK(L)

PT(J)

Value is number of characters in dollar-line J, or
dimension of array in line J.

Value is the number of the next line above lineJ, or zero
if no higher line.

Privileged function enabling examination (both) and
modification (DOS only) of real memory locations.
MONITOR: argument L is byte-address of word in kernel
virtual address space (L must be even) .. DOS: argument L.
is absolute word-address of location to be accessed (le ..
PDP-l1 byte-address over 2).

I/O channel pointers. See section 14.

QX(c,n) I/O channel status information. See section 13.

SS() System status vector. See section 23.

TA(N) Bit tally. Value is the number of bits that are , in N.

TI() The time of day in tenths of a second past midnight. Use
LET H=TI()/10 H=H/3600 M=QA/60 S=QA
to get time of day in hours, minutes and seconds. Note
that dividing by 36000 does not work because QA is only·
valid if remainder is less than 32768.

PDP-11 ArMS PROGRAMMING MANUAL Page 56
System Variables and Functions - section 11

I 12. THE »CODE» COMMAND I

CODE [string expression]

The string expression is evaluated, and is then treated.·
exactly as if it had been typed in as a command to AIMS.

>LIST
10 LET J =30
20 CODE J"PRINT 'HO'"
40 LIST

>RUN
HO

>

10 LET J=30
20 CODE J"PRINT 'HO'"
30 PRINT 'HO'
40 LIST

This command allows running programs to modify themselves.
This is useful for coding arrays with computed dimensions, and for
implemen ting programs that coml?ile into AIMS.

It should be understood that the CODE command does treat the
string exactly as if it had been typed as a command. So that

CODE J [Deletes line J of the program

CODE 'LET X=6' [Assigns 6 to X

lOCO DE ' 1 OLET X=6' [Overwrites itself

It is not possible to put other commands on the
beyond the CODE command. Control always goes to the next
the CODE is completed (unless the coded command involves
transfer of control, such as a GOTO) •

CODING ARRAYS

same line
line when
a direct

Arrays may be dimensioned at run-time by coding the array
line. For example

100 CODE L 'ARRAY' $1 D

will create an array of dimension D in line L of the program, the
array name being taken from the string variable $1. Note that the
action of declaring an array, either by a direct command or by
coding it, does not define the array name. The array name is a
simple variable that is assigned a value equal to the array line
number by the RUN command. Therefore, when using CODE to create
arrays at run-time, the array name must be assigned explicitly like

100 LET AB=L :CODE L 'ARRAY AB • D

PDP-ll AIMS PROGRAMMING MANUAL Page 57
CODE command - section 12

Note that the text following the command CODE above is a
string expression which will be evaluated as described in section
6. If OF or QW is non-zero the CODE command may fail due to the
appearance of commas or decimal points in the values of Land D.
It is safer to zero the conversion format explicitly like

100 LET AB=L :CODE L@W@A 'ARRAY AB ' D@W@A

In order to save space, programmers sometimes use one array
for several differen t ~rposes and alter its size appropr ia tely
using CODE commands. Thus the statement

100 CODE '10 AR A 'D@W@A

might be executed at a time when there is already an array in line
10 with perhaps a size different from D. This technique is
perfectly legitimate, but it should be borne in mind that when the
CODE command is executed, space is needed for both the old and new
versions of the array A. Thus the attempt to save space may
actually cause a temporary need for twice the space. This may be
avoided by deleting the old array before coding the new one like
this:

100 CLEAR A,A
110 CODE '10 AR A 'D@W@A

THE 'X' COMMAND

The line editing command

X [ne] [etc]

is actually equivalent to

PUT [listing of line [ne]]) $[temp] [etc]
CODE $[temp]
[if it was a direct X command, list the changed line]

where $[temp] is a temporary string variable invisible to the user.

Although the X command is mainly useful when typing in a
program, it can be used within an AIMS program. When used in this
latter way, the line is not printed. For example, the following
program performs an editing function over a specified range of
lines :-

2 PRINT 'CHANGE', :INPUT $1
3 CODE 6 'X F' $1
4 PRINT 'RANGE', : INPUT F T
5 IF F>T :STOP

[Line 6 created by line 3
7 LET F=NL(F) :OOTO 5

It is sometimes useful to place a 4iisting of a particular
program line into a string variable, where it may be manipulated
with the PUT command. Note that an X command like

PDP-11 AIMS PROGRAMMING MANUAL

x [ne] ." 1 $

will put a listing of line [ne] into $1.
CODE $1 will restore the line.

Warning

Page 58
CODE command - section 12

After manipulation, a

Note that since the X command involves a CODE, it creates a
completely new instance of the edited line. Consequently if the X
command is used to edit an ARRAY line, any data in the cells of the
array will be lost. Also, space is temporarily required for two
copies of the array, as explained above.

PDP-ll AIMS PROGRAMMING MANUAL Page 59
Input/OUtput - section 13

I 13. INPUT/OUTPUT FACILITIES I

Data transfer is performed via logical I/O channels. Upto
eight channels may be used by each job at the same time. They are
numbered from 1 to 8. Note that use of an I/O channel ties up
scarce monitor resources; programmers should minimimise the number
of channels that are used concurrently.

CHANNEL/DEVICE ASSOCIATION

Before a channel is
channel to a specific
command

used it is necessary to connect the
peripheral device. This is done by the

INIT '[channel] [device name]

which initialises the channel and attaches the specified physical
device to it. This command will fail with a code in QE if the
device is not available.

The device name should be specified as a string expression
evaluating to one of the following:-

DOS

DP u

DK u

DF u
PR u
pp u

DT u
LP u
'!Mu

KB u
PTu
PC u
SD

MON

RPcu
RPEcu
RPFcu
RPGcu
RKcu
RKGcu
RSDcu
RSEcu
RXcu
RFcu
PRcu
PPcu
TAcu
TCcu
LPcu
MTcu
TUcu
TRHcu
KBn
PTn
pen
3D
UD

DEVICE

RP03 moving-head disk
RP04 moving-head disk
RP05 moving-head disk
RP06moving-head disk
RK05 moving-head disk
RK06 moving-head disk
RS03 fixed-head disk
RS04 fixed-head disk
RX11 floppy disk
RF11 fixed-head disk
paper tape reader
paper tape punch
TAll cassette tape
TC11/TU56 DECtape
line pr inter
TMAll/TU10 magnetic tape
TU16 magnetic tape
TR07-F magnetic tape
terminal input
terminal output
pseudo-console (for slaved jobs, see section 24)
system disk (for executive use only)
standard user disk (a'pplication program default)

MON: c is a letter distinguishing different controllers of the same
type, c=A for first controller, c=B for second, and so on. u is a
digit from 0 to 7 specifying the unit number. DOS: u is the device
unit number and at least one space is required between the dev ice
name and the unit number.

PDP-11 AIMS PROGRAMMING MANUAL Page 60
Input/Output - section 13

The presence
necessarily mean
MONITOR.

of a device in the above table does not
that the device is currently supported by DOS or

When all 110 has been completed, the association between
channel and device may be terminated by means of the command·

RELEASE #[channel]

The RELEASE command is necessary to free buffer space. In the case
of non-Shareable devices like paper tape readers, the command also
frees the device for use by someone else. It is essential to
RELEASE channels as soon as they are no longer needed.

Once the channel has been initialised, any I/O command can be
made to reference that device by specifying the appropriate channel
number in the command. For example, if we said

INIT #5 'PP'

which attaches channel 5 to the paper tape punch, then the command

PRINT #5 'YOUR NAME IS ' $2

would punch that string. This example is oversimplified because
for file-oriented devices like disks and DECtape we also need to
specify the file to which I/O is directed. This is done by means
of the 'OPEN' command.

CHANNEL/FILE ASSOCIATION - OPEN & CLOSE COMMANDS

The OPEN command associates a named file and data mode with a
specified channel. All channels must be OPENed before I/O can be
performed.

OPEN H[channel] [mode] [filename] [[dept user]]

where
[mode] specifies the type of file access required as:

o Sequential reading of a text file (DOS openi) •
1 Create a text file for sequential writing (DOS openo) An

error will oocur if the file already exists.
2 Obsolete, do not use.
3 Obsolete, do not use.
4 Open existing contiguous file for random access.
5 Open channel for physical I/O (use with ~eat care) •
6 DOS: Similar to mode 4, see Fast Access Directory.

[dept user] specifies the department and user numbers in square
brackets. If absent the current user is assumed.

This command searches the device directory for the specified file
and connects the file to the channel. The command may fail with a
code in QE due to file not found or protection violations.

If the device is not file structured the [filename] and
[dept user] specifications are ignored and may be omitted.

PDP-11 AIMS PROGRAMMING MANUAL Page 61

If an OPEN command is given to a channel that has not been
initialised, the channel is automatically initialised to the
default disk for user files, a5 given by UD (MON) or SS(8) (DOS).

file names must con3tst of lotter3 or· diglt3. A namH 1~

composed of two parts: (1) a name upto 6 characters long, and (2)
an extension upto 3 characters long. A period is used to separate
the two parts. Both parts are significant, so that all the
following are different valid filenames:-

JACK.BAS JACK. DMP DIRECT. BAS DIRECT. DAT JACK TEST34

The file extension is normally used to indicate the general type of
.the file, and is chosen from a small set of standard mnemonics:-

EXTENSION

.BAS

.CTL

.DAT

.DMP

.LNK

.LOG

.SYS
.TMP

TYPE OF FILE

Linked text file containing a saved AIMS program
Text control file for BATCH or OBEY proc essing
Fixed-length contiguous data file
Fixed-length contiguous file containing one or more
dumped AIMS program overlays
As .DMP but for AIMS version 3 executive
programs only
Linked text file
Log file written by BATCH processor
Contiguous f 11e for use by executive programs
Temporary file

The elemen t [filename] in an AIMS command should be specified
as a string expression which evaluates to the desired name.

Examples

>LI
1 $JACK. LNK
2 $JACK

>OPEN #5 0
OK

$1 :OPEN 116 1 $2' .TMP' :PRINT 'OK

)OPEN :fJ7 1 'JACK.LNK'
>PRINT QE/256

2
>

[JACK.LNK opened & JACK.TMP created
: PRINT 'OK

[command fail ed because
[file already exists

Decimal department/user numbers may be specified in square
brackets like

OPEN IF5 0 'JACK.LNK[16 17]'

or

OPEN #5 0 'JACK.LNK['DN UN

if DN and UN are variables with the appropriate values.

PDP-11 AIMS PROGRAMMING MANUAL Page 62
Inpu~/Output - section 13

When the user has finished reading or writing a file he should
close it by means of the command

CLOSE I;[channel]

In the case of an output file this command causes the device
directory to be updated to include the new file. In the case of an
input file the CLOSE may be necessary to permit other users to
access the file. The CLOSE command also frees buffer space. The
RELEASE command performs a CLOSE automatically if necessary.

DATA TRANSFER COMMANDS

When a channel has been initialised and opened, data may be
transferred using any of the following commands:-

INPUT fI[channel]
PRINT #[channel]
TAB I;[channel]

READ If[channel]
WRITE f;[channel]

Reads a string
Writes a string
Tabulation command

Random access binary
transfers

Data may be filed in two forms:-

1) Text files. These are DOS-compatible linked files in even
parity ASCII mode. They may be used to store strings, but may
only be accessed sequentially.

2) Random-access binary files. These are DOS-compatible contiguous
files of fixed length. Data is transferred in a random-access
mode between a point on the file and an AIMS array. The LET
command may then be used to unpack the data into variables or
strings. See section 14.

SIMPLIFIED I/O CONVENTIONS

The above rather complicated scheme provides the user with the
full power of the DOS I/O monitor. However, a set of default
conven tions is provided to cater for the normal requiremen ts of the
major ity of users.

When a user logs onto the system, channels and 2 are
initialised for output and input to the user's terminal. In
addition, each I/O command references a default channel if none is
specified. Thus we have

CHANNEL DEVICE

PT

2 KB

3 def

DEFAULT CHANNEL FOR

AIMS error message output
the LIST, PRINT and TAB commands
input of commands to AIMS
the INPUT command
CALL and SAVE program filing commands
DELETE, RENAME and ALLOC commands

PDP-11 AIMS PROGRAMMING MANUAL Page 63
Input/Output - section 13

lj

5
def
def

LOAD and DUMP program filing commands
OPEN, CLOSE, MTAPE, READ and WRITE commands

where 'def' represents the default disk for user filing. Channels
3 to 8 may be initialised explicitly by the user if desired. If
not, they will be initialised automatically to the default user
filing disk by the OPEN command.

SIMPLE USE OF FILES

For those who are unfamiliar with the DOS monitor, the basic
technique for sequentially accessing a text file is illustrated
below:-

TO READ AN EXISTING FILE TO WRITE A NEW FILE

define fil en ame :
OPEN 115 0 • ABC' OPEN #6 1 ' ABC '

transfer data:
INPUT #5 $1 PRINT :fJ6 $1

close the file:
CLOSE #5 CLOSE #6

When writing a new file, the CLOSE at the end causes the device
directory to be updated. The new file cannot be read until a CLOSE
has been done.

A lEXT EDITING EXAMPLE

The following program shows the use of AIMS to perform a
simple editing function. It copies a text file and replaces all
occurrences of the word 'BASIC' with the word 'AIMS', creating a
new file called 'TMPFIL'.

10 $FILENAME*
100 INPUT ?10 $1 :OPEN'5 0 $1 :GOTO 120
110 PRINT 'FILE '$1' NOT FOUND' :GOTO 100
120 OPEN #6 1 'TMPFIL' :GOTO 140
130 PRINT 'CANNOT CREATE OUTPUT FILE' :STOP
140 INPUT '5 $1 :GOTO 160
150 CLOSE #5 : CLOSE 16 : PRINT 'OK' : GOTO 100
160 PUT $1>$1 'SASIC"AIMS'< :LOOP
110 PRINT 16 $1 :GOTO 140
>RUN
FILENAME*GUNKO
FILE GUNKO NOT FOUND
FILENAME*MANUAL
OK
FILENAME*

Note the use of the < in line 160 to make sure that the whole of $1
is copied.

PDP-11 AIMS PROGRAMMING MANUAL

DIRECTORY MANIPULATION COMMANDS

DELETE #[channel] [filename]

Page 64
Input/Output - section 13

Deletes the specified file from the directory of the device
INITed on [channel]. Default channel is 3, default device is the
user filing disk. Command will fail with a code in QE if the file
does not exist or is protected against deletion. See section 16
for error codes. MON: a file cannot be deleted if it is open on
any other channel of this or any other job.

RENAME #[channel] [new filename se] ,[old filename se]

Renames the file as specified. Defaults as for DELETE. A
decimal file protection code may be included in the [new filename]
specification if it is desired to alter the file protection:

RENAME 'TEMP.SRC(237)', 'TEST.SRC'

Gives the new file a protection of 355 octal.

DEFAULT AND SYSTEM DISKS

As mentioned above, if you attempt to OPEN a channel that is
not currently initialised, the system initialises it by default.
The device thus obtained is the one that is recommended for normal
use by all application programs. This depends on the available
hardware and will therefore vary between installations. The
default device is chosen automatically at system initialisation
time and will normally be the largest disk in the configuration.

MON: The special devicename UD is automatically translated by
MONITOR into the name of the current default device. Channels can
be connected to the default device explicitly if required by
1Nl Ting 'UD'.

DOS: The default devicename is stored in radix50 in 3S(8).
Channels may be connected to the default device explicitly by means
of the command

INIT H[channel] ~R3S(8)' 0'

Obviously, the default device can also be obtained without
doing an INIT, by making sure that the channel is RELEASEd before
OPENing it.

The name SD translates to the name of the system device. This
is the device used by the executive programs and for swapping. SD
is not necessarily the same as the default device.

PDP-l1 AIMS PROGRAMMING MANUAL Page 65
InputlOutput - section 13

CHANNEL STATUS INFORMATION - QX(C.N)

The system function eX(c,n) gives information about the
current state of 1/0 channel number c:

QX(c,O)
QX(c,1)
QX(c,2)
QX(c,3)

MON only:

QX(c,4)

QX(c,5)

QX(c,6)
QX(c,1)
QX(c,8)

DOS .STAT status (0 if channel not INITed)
Device blocksize in words (set by INIT)
Length of file in blocks (modes 4 to 6 only)
Block number where file begins (modes 4 to 6 only)

State of slave job if channel connected to a pc:
0: No slave job and line alp buffer empty
9: Slave job in TI wait and line olp buffer empty

10: Slave output is available in buffer
any other value indicates slave job busy

Device status/error .information applicable when last
operation on this channel finished (see below)
Slave job number if channel connected to a PC
Number of the PC to which channel c is connected
Latest known position of device.
(eg: disk cylinder number, magtape record count)

The QX function returns 2-word values and therefore needs
EP () > 1.

Functions 4, 6 and 7 are only meaningful when the channel is
connected to a pseudo-console. The use of these functions is
described in section 24.

PDP-11 AIMS PROGRAMMING MANUAL Page 66
Input/Output - section 13

Channel Status Word (MON only)

The function QX(c,S) delivers a positive value indicating the
latest known state of the device connected to channel c, This
function may be examined to get further information if a command
fails due to a device problem. It is especially useful after a
READ or WRITE command that fails due to a device problem. The
value is bit-coded as follows:-

Dec Octal Name Meaning

Status
1
2
4
8

16
32

Errors
256

512

1024
2048

4096

8192
16384

32768

000001 NXU
000002 UNS
000004 OFL
000010 WLK
000020 MOV
000040 TMK

000400 PSU

001000 HDE
BOT

002000 WLE
004000 NXA

EOT
010000 ECM

020000 DAT
040000 MIS

100000 NXM

Nonexistant unit
Unit unsafe (hardware fault)
Unit offline
Unit write-locked
Un it in motion (eg: heads, tape mov ing)
MagnetiC Tape-Mark sensed

Position unknown (eg: disk seek incomplete, bad
magtape)
Disk: wrong header found after seek
Magtape: at Beginning-of-Tape
Attempted write when write-locked
Nonexistant device address
Magtape: physical End-of-Tape sensed
End of medium reached
Magtape: long record read
Data invalid (checksum, parity, CRC)
Data missed due to tim1ng constraints (eg:
UNIBUS latency problem)
Nonexistant memory addressed

PDP-l1 AIMS PROGRAMMING MANUAL Page 67
DDOPR command - section 13

DEVICE-DEPENDENT OPERATIONS (MON only)

Most I/O activity is done using the 1Nl T, OPEN, READ, WRITE,
CLOSE and RELEASE commands which are implemented for all devices in
a un iform manner. The programmer need not concern himself with the
detailed characteristics of the device which is being used.
However there are some devices that have special characteristics or
facilities that cannot be subsumed under the standard scheme. The
DDOPR command provides program control of these device-dependent
features. By its very nature the DOOPR command performs a
different set of functions for each type of device, so programs
using the command must be aware of the device that is being used.

DDOPR #[channel] [command se]>$[reply ne]

The command performs the operation specified by [command se] on the
device connected to [channel}. Reply information may be returned
in $[reply ne]. The >$[reply ne] may be omitted if no reply string
is wanted. [command se] is generally a single word identifying the
operation required. The command fails if this operation is not
applicable to the device. Otherwise the command always succeeds
and its effect may be found from the reply string and by
examination of the channel status word QX(c,5) when the operation
is completed.

Successful execution of the ODOPR command does not imply that
the operation thus initiated has been successfully completed; it
merely indicates that the operation Is applicable to the device.
Some OOOPR functions suspend job execution until the operation has
been completed, whilst others merely initiate device activity and
continue job execution without delay. This depends upon the
operation and the device type, and reference should be made to the
description of the DOOPR functions for each device.

Note that the channel status word QX(c,5) is set by the
monitor when control returns to the user after an AIMS command.
For those DDOPR functions that cause no delay, the channel status
after the command gives the state of the device when the operation
was initiated; this will almost certainly differ from the device
state when the operation has been completed.

The DDOPR command '?' i.s applicable to all devices for which
DDOPR is implemented and it returns in the reply string a list of
the DDOPR command words for the device, separated by commas. For
example, we can get a list of the DOOPR commands for the TMA11/TU10
magnetic tape transport as follows:

>INIT #5 'THAO:' :DDOPR #5 '?'>$l :PRINT $1
SPACE,WMARK,UNLOAD,REWIND,PARITY,OENSITY
>

Some command take arguments. For example the recording
density of a TMAll transport may be set to 556 BPI with the command

DDOPR #c 'DENSITY=556'

The '?' facility may also be used to obtain a list of the
acceptable command arguments. For example

PDP-11 AIMS PROGRAMMING MANUAL

>DDOPR #5 'DENSITY=?'>$1 :PRINT $1
200,556,800,D800
>

Page 68
DDOPR command - section 13

This is a list of the valid density settings for the particular
type of tape transport connected to channel 5.

DDOPR commands may be issued at any time. The monitor will
wait for the device controller and/or drive to become free if
necessary. Jobs that become suspended on DDOPR functions are
sh ufflabl e and swappable.

PDP-l1 AIMS PROGRAMMING MANUAL Page 69
Magnetic tape - section 13

MAGNETIC TAPE - GENERAL INFORMATION

The two ends of a magnetic tape are marked with a short strip
of reflective material that is stuck onto the back of the tape.
The tape transport detects these markers photoelectrically and sets
status bits which can be read by the program. The marker at the
front of th e tape is called the Begion iog-of -Tape or BOT marker.
It defines the LOAD POINT, which is the earliest point on the tape
where data may be stored. The REWIND operation always returns a
tape to its load point. The marker at the far- end of the tape is
called the End-of-Tape or EOT marker. Information cannot be
written beyond this point. The BOT and EOT status is available to
the program in the Channel Status word QX(c,5) under MON, and via
the MTAPE command under DOS.

The area between the BOT and EOT markers is available for data
stor-age. Depending on the type of transport, there are either 7 or
9 channels across the width of the tape where a bit may be stor-ed.
These channels taken together constitute a FRAME capable of storing
one parity bit and 6 (for 7 channel) or 8 (for 9 channel) data
bits. A number- of frames are written contiguously along. the tape
to form a RECORD.

Two recording techniques are used: NRZI and Phase-Encoding.
Both techniques use a vertical parity bit (VRC) associated with
each frame as already described. A dual-gap recording head enables
the hardware to perform a read-after-write check on each frame as
it is written. With the NRZI technique a longitudinal parity bit
is calculated for each channel over the whole record, and these
bits are then written as an extra frame at the end called the LPC.
For 9 channel NRZI tapes a cyclic redundancy check byte (CRC) is
computed over the whole record and stored immediately before the
LPC. The LPC and CRC are generated and checked automatically by
hardware. The Phase-Encoded technique is more reliable and it is
used only with 9 channel tapes and at the higher recording
densities (1600 BPI upwards). There is no LPC or CRe, but the
hardware is capable of detecting a drop-out on any channel. If a
frame is read and one of the channels is found to have dropped out,
the hardware automatically reconstructs the missing data bit by
making use of the VRC parity. If more than one channel drops out
an error is signalled.

With 9 channel tape there are 8 data bits in each frame so one
PDP-ll byte occupies one frame on the tape. If you write an array
A() to tape, A(O)&255 goes into the first frame, A(O)_-8 into the
second, A(1)&255 into the third, and so on.

With 7 channel tape there are only 6 data bits per frame and
two different formats are available: Industry Compatible format,
and Dump format. In Industry Compatible format each 8-bit PDP-l1
byte occupies one frame on the tape, and the two most significant
bits of each byte are not used (le. ignored on write, set to zero
on read). Thus an array is written as A(0)&63, (A(O)_-8)&63,
A(1)&63 and so on. In Dump format each PDP-l1 byte occupies two
frames on the tape. The low order 4 bits go in the first frame and
the high order 4 bits in the second frame. The remaining two data
channels in each frame are not used. For practical purposes the 7
channel industry compatible format ls only useful for processing

PDP-l1 AIMS PROGRAMMING MANUAL Page 70
Magnetic tape - section 13

tapes to suit other machines (eg: IBM).

The area of tape between the BOT and EOT markers can contain
zero or more RECORDS, each record being separated from the next by
an inter-record GAP. Gaps are created automatically when records
are wr it ten. They exist mainly to allow time for the transport to
start and stop inbetween records.

There are two kinds of record that can be written on the tape:
(1) Data Records, containing information supplied by the user when
the record is written, and (2) TAPE-MARKs. A Tape-Mark is a
special short record containing no data. Tape-Marks can only be
written by giving a special write-tape-mark command to the
hardware. Tape-Marks are useful because they are detected
automatically by the hardware causing a status bit to be set. They
may be used to mark important points on the tape such as
end-of-file (EOF) or the last data record on the tape. The latter
point is called the Logical End-of-Tape (LEOT) and is not to be
confused with the physical EOT marker. Any space between LEOT and
EOT is spare tape that has not yet been used. An LEOT may be
overwritten with additional records if desired. Eventually the
tape will become full and this will be shown by the presence of the
EOT status bit following a write operation. It is possible to
wr it e a record that extends up to the physical EOT marker, but
records should not be written when at or beyond the EOT marker,
otherwise you may run off the end of the tape.

Whenever the tape is stationary the read/write heads are
resting in an inter-record gap. A write command creates one new
record on the tape with the record length being determined by the
transfer bytecount. The hardware requires that records be at least
16 and not more than 4000 frames. Successive records may be
written with different lengths if desired, but this is not
recommended because it requires a more complicated program to read
the tape.

Each read command reads one whole record. If the transfer
bytecount is larger than the record on the tape, this will be
indicated by the fact that PT() is incremented by less than the
transfer bytecount. If the record on the tape is longer than the
transfer bytecount, the whole record is still read but only the
requested number of bytes are given to the user and the
End-of-Medium bit (octal 10000) will be set in the channel status
word (MON only).

Spacing operations are provided which enable the tape to be
positioned without data transfer. The forward space operation is
given a record count and it moves the tape forwards over that
number of data records. If a Tape-Mark is encountered it is spaced
over and the operation is then terminated. Thus you can skip to
the next Tape-Mark by giving a space command with a large record
.count. A forward space operation is also terminated if the EOT
marker is met. A backwards spacing operation is also available and
it works identically except that it is terminated by the BOT marker
rather than the EOT one. Note that when a Tape-Mark terminates a
space operation, the Tape-Mark has always been spaced over.
Consequen tly the tape stops in a differen t position if a forward
space is terminated by a Tape-Mark than if a backwards space had
been terminated by the same mark.

PDP-ll AIMS PROGRAMMING MANUAL Page 11
Magnetic tape - section 13

MON: For spacing and error recovery purposes the monitor keeps
track of the current tape position by means of a counter. This
coun ter is se t to zero when th e tape is at BOT, and is incremen ted
by one for every data record or Tape-Mark that is passed over in
the forwa rds direction. Similarly the counter is decremen ted by
one for every record or Tape-Mark that is passed over in the
backwards direction. At any moment the counter thus indicates the
absolut.e tape position in terms of records from the BOT. This
position count is available to the programmer via QX(c,8).

Due to mechanical imperfections the tape does not necessarily
come to rest with the heads exactly in the middle of the
inter-record gaps. This means that head position differs according
to the direction from which a gap was entered. One consequence of
this is that if a tape is initially at BOT and is spaced forwards
and then backwards by one record, the final position may not be
near enough to the marker to raise the BOT signal. This does not
matter, in that the heads are positioned correctly for reading the
first record, but it does mean that an apparently balanced sequence
of spacing operations may not reproduce the original status.

Under certain unlikely error conditions the hardware may
track of where the tape is and QX(c,8) will become invalid.
is indicated by the Position Unknown error bit (octal 400) in
channel status .word (MON only). If the program is aware of
required position count it may be able to recover by rewinding
tape and doing further space operations.

lose
This

the
the
the

Data transfer operations always advance the tape position by
one record. Space operations however may be terminated prematurely
by errors, Tape-Marks, or BOTIEOT markers. A program intending to
skip over a particular number of records should compute the
required position in terms of QX(c,8) and verify that it has
arrived there when the spacing operation completes (MON only). The
monitor software has a built-in error recovery procedure that will
retry a failed space operation several times before giving up, so
if a space operation fails due to an error it is probably
irrecoverable. Programs that are aware of the detailed
organisation of a particular tape may be able to recover further by
searching for a record that contains some known information.

PDP-11 AIMS PROGRAMMING MANUAL Page 72
Magnetic tape - section 13

DOS-compatible Files on magnetic tape

Files written on magnetic tape by the DOS operating system
have the following format:-

1) A 7-word file header record.
2) One or more 256-word records containing file data.
3) An end-of-file indication. This is just one Tape-Mark.

The file header contains the file name in format:

o File name in radix50
ditto

2 File extension in radix50
3 Department/user numbers
4 File protection code in low-order byte
5 Creation date in DOS format
6 spare

512 bytes of file data are stored in each 256-word tape
record. This differs from linked disk files where the first word
of each block is a pointer to the next block.

Any number of files may be written on the tape. There is no
explicit directory structure since each file header contains the
department/user number of that file. Obviously file retrieval will
be quicker if files with the same department/user number are kept
together on the tape.

Two contiguous Tape-Marks are used to indicate the logical end
of tape. This LEOT indicator is written beyond the end of the last
file. Like all files the last file ends with an EOF indicator
(which is one Tape-Mark). Hence if there are any files on a tape
there are always three contiguous Tape-Marks at the LEOT. If an
additional file is written at a later time, its header record is
written over the last two Tape-Marks.

PDP-11 AIMS PROGRAMMING MANUAL Page 73
Magnetic tape - section 13·

TMAl1 ITU1 0 Tape Transeort

These are available in two types: 7 channel and 9 channel.
The 9 channel type is preferred unless compatability with other
machines is required. The recording method is NRZI. With the 7
channel transports there are three program selectable recording
densities and two data formats (industry compatible and Dump). The
9 channel transports always operate at 800 BPI.

The following DDOPR functions are provided (.MONonly):

SPACE=n
SPACE=-n
WMARK
UNLOAD

Skips forwards over n records
Skips backwards over n records
Writes a Tape-Mark
Rewinds and makes unit inaccessable until readied by
operator

REWIN D Fast winds tape to BOT
PARITY=EVEN
PARITY=ODD

Sets par ity (default is odd)
DENSITY=d Sets recording density and format as specified by d. For

9 channel d must be 800. For 7 channel d may be 200,
556, 800 or D800. 0800 specifies Dump format which is
only available at 800 BPI.

The SPACE and WMARK commands suspend the job until completion •.
During these operations both the transport and the controller are
busy. The UNLOAD and REWIND commands resume immediately leaving
the transport busy (ie. rewinding) but the controller free. A
function may be initiated on another un it if desired whilst the
rewind proceeds. The PARITY and DENSITY commands resume
immediately without affecting controller or transport (they simply
store information in the monitor) •

PDP-11 AIMS PROGRAMMING MANUAL Page 74
MTAPE command - section 13

MTAPE command (DOS only)

This command provides for control of magnetic tape drives.
The syntax is:

MTAPE #[channel] [function ne] [argument ne]

where [function ne] specifies the function to be performed:

1: UNLOAD. The tape is rewound and switched offline.
3: REWIND.
4: FORWARD SPACE. Skips forward over [argument ne] records.

Stops onEOF or EOT with remainder count in QA.
5: BACK SPACE. Skips backwards over [argument ne] records.

Stops on EOF or BOT with remainder count in QA.
6: SETS DENSITY & PARITY from [argument ne] which should be

Den sity·256+Par ity
0=200 BPI O=odd
1=556 BPI l=even
2=800 BPI
3=800 BPI dump mode (default).

7: READ UNIT STATUS to QE. This is bit-coded:
QE& 7 La st command wa s :

O=Unload
1=Read
2=Write
3=Write EOF
4=Rewind
5=Forward space
6=Back space

128 Tape has just moved over an EOF mark
256 Tape at BOT
512 Ta pe at EOT
1024 Write locked
2048 Even parity (else odd)
4096 7 -track (else 9-track)
8192*density (as above)
32768 Error caused by last command

The tape unit status is also returned in QE by all other
functions of the MTAPE command.

If the spacing functions terminate because an EOF mark is met,
the EOF mark is spaced over and counted and then QA is set to the
difference between [argumen t ne] and the number of records or marks
actually spaced over.

The MTAPE command actually executes a DOS .SPEC EMT with the
function code taken from [function ne] and SPCBLK+4 set from
[argumen t ne]. On completion QE is set from SPCBLK+2 and QA is set
from SPCBLK+6. For further information see the DOS Device Driver
Package manual. The MTAPE command can also be used to control any
other dev ice that implemen ts the .SPEC EMT.

PDP-ll AIMS PROGRAMMING MANUAL Page 75
Random Access Filing - section 14

14. RANDOM AGGESS FILING

The READ and WRITE commands allow data to be transferred
between an AIMS array and any region of a contiguous file. These
commands are not applicable to linked files.

Associated with each 1/0 channel is a pOinter denoted by PT(N)
where N is the channel number. The value of this pointer is a
number which designates a particular word of the associated file.
A value of zero indicates the first word of the file, and so on.
The channel pointer is automatically set to zero when a channel is
opened. These pointers are 2-word quantities that cannot be
referenced when EP()=l.

READ I[channel] A(J) [V5: optional bytecount ne]
WRITE

When a READ or WRITE command is executed, the file address for
the transfer is taken from the current value of the channel
pointer. After the transfer, the pointer is automatically
incremented by the number of words transferred. The pointer may be
referenced in an AIMS program just like an ordinary variable. In
particular, the LET command may be used to change the value of the
pointer at any time. This mechanism provides a completely general
random access capability.

Before using the READ or WRITE commands the data file must be
opened using mode 4 or 6. For example, the following program reads
words 253 through 268 of the file called 'AGGTS.DAT' into the array
B:-

10 ARRAY B 15
100 OPEN #5 4 'AGGTS.DAT' :GOTO 120
110 PRINT 'GANNOT OPEN FILE' :STOP
120 LET PT(5)=253 :READ 15 B() :GOTO 140
130 PRINT 'ERROR READING FILE' :STOP
140 PRINT 'THE POINTER IS NOW'PT(5)

>RUN
THE POINTER IS NOW 269
>

Line 120 initialises the channel pointer and executes a READ
command. AIMS reads words from the file, starting with the 254'th
word, and places them in successive cells of the array B. This
continues until the end of the array is reached. The number of
words read is thus determined by the array dimension. After the
transfer the channel pointer is updated to point to the word
following the last one read.

The array name may be subscripted, giving the capability of
reading into part of an array like

120 LET PT(5)=253 :READ 15 B(9) :GOTO 140

PDP-11 AIMS PROGRAMMING MANUAL Page 76
Random Access Filing - section 14

In this case 7 words will be read into cells 9 through 15 of the
array. V3: note that the transfer always continues to the end of
the array. VI: Transfers may be terminated before the end of the
array by specifying a non-zero [bytecount ne].

ERRORS WITH READ AND WRITE COMMANDS

The READ and WRITE commands will fail if an attempt is made to
transfer over the end of a file. In this case the transfer is
abor ted as soon as the a ttempted overrun is detected, and the
amount of data actually transferred can be obtained from the
channel pointer value. Do not assume that the transfer has been
done up to the end of the file; in most cases no data is
transferred.

The READ command can also fail due to device errors such as
parity or seek failures. DOS: QE contains the DOS .TRAN error
status reply. MON: The channel status word QX(c,5) gives a precise
description of the error. Take note: the information contained in
the channel status word is useful both for distinguishing different
types of failure and for diagnosing hardware errors. Programs
should print QX(c,5)@R8 and programmers should pay attention to it.

STRUCTURED DATA

The READ and WRITE commands transfer words directly between a
file and an array without regard to the format of the data within
the array. The LET and PACK co~ands may be used to fill the array
with numbers, bit-patterns, or strings of characters, forming a
logical record in any desired format. For example, some of the
numbers in the array may be pointers to other records, allowing the
construction of hierarchical data structures.

CREATING CONTIGUOUS FILES - ALLOC COMMAND

DOS supports two types of files: linked files and contiguous
files. Linked files are used mainly for storing text, and they
consist of a number of blocks scattered anywhere on the storage
medium. The blocks for a particular file are chained together in a
linked list, enabling the whole file to be accessed sequentially
once the address of the first block is known. Since the only way
to locate a particular block of a linked file is to trace the chain
from the first block, linked files cannot be used for random
access. Linked files are created using mode 1 of the OPEN command.
This enters the specified filename into the directory and also
stores the address of the first data block of the file. Additional
data blocks are linked on as required whilst the file is being
written. When the file is CLOSEd additional information is stored
in the directory entry, such as the length of the file and the
address of the last block.

In contrast, each contiguous file occupies a single region on
the storage medium. A contiguous file is th us described completely

PDP-l1 AIMS PROGRM1HING MANUAL Page 77
Random Access Filing - section 14

by the device address where it begins and its length.
files are created by means of the ALLOC command:

ALLOC [ne] '[channel] [filenameJ

Contiguous

This command searches the directory for the specified file and
fails if the file already exists. Otherwise it searches the
storage medium for a free area of at least [neJ*64 words. The
command fails if no suitable region can be foun~. If all is well
[ne]*64 words of the found region are allocated to the new file,
which is entered into the directory together with the size and
starting device address.

Once a contiguous file has been created by an ALLOC command,
the associated region on the storage medium may be used for random
access filing. To do this it is necessary to open the file in mode
4 or 6. The OPEN command in these modes simply searches the
directory for the file and remembers the starting device address
and file length. Random access transfers may then be done using
the READ and WRITE commands without incurring any directory
overheads.

A major problem with contiguous files is the difficulty of
finding a suitabl e contiguous region on the storage medium.
Although the total free space on the medium may be quite large, it
often happens that there is still no region big enough for the file
that one is trying to allocate. This happens because of the linked
files, which may be scattered all over the medium causing the free
regions to be split up into lots of small a.reas. The solution to
this problem is to allocate all required contiguous files when the
storage medium is relatively empty. If it is not known in advance
exactly what files will be required, a single large contiguous file
may be allocated to reserve a suitable area. This file may later
be deleted and re-allocated to one or more contiguous files as
required.

INPUT/OUTPUT TO PHYSICAL DEVICE ADDRESSES

For certain applications, such as listing disk directories, it
is necessary to gain direct access to the storage medium without
the constraints of a file structure. This may be done by INITing
the device on a particular channel, and then OPENing the channel in
mode 5. The READ and WRITE commands may then be used as described
under 'Random Access Filing' above. In this case the channel
pointer specifies a physical word-address on the device rather than
a relative address within a file.

This direct access method should be used with extreme care
since it allows corruption of the device file structure. The mode
5 open is only available to EXEC-privileged programs. See section
22.

As al'l example, the following privileged program uses mode 5 to
read the NFD blocks on device DKO and print a list of all
department/user numbers:-

PDP-1' AIMS PROGRAMMING MANUAL Page 78
Random Access Filing - section 14

>LIST
8 ARRAY A 255

100 INIT /15 'DK' :OP~N 115 5 :GOTO 120
'10 PRINT '?CANNOT OPEN DISK IN MODE 5" : STOP
120 LET PT(5)~256 :GOSUB 800 :REM READ MFD BLOCK
130 IF A():::O :PRINT 'END OF MFD' :STOP
140 LET J=1 PT(5)=256 tt A() :GOSUB 800 : REl-l READ NEXT MFD BLOCK
150 PRINT (A(J)65535)/256',"QA, :TAB 10 :PRINT A(J+1)
160 LET J=J+4 :IF J<256 :GOTO 150
170 GOTO 130
800 LET P=PT(5) :READ '5 A(): RETURN
810 PRINT '?ERROR 'Q8' READING DISK BLOCK 'P/256 :STOP
>RUN

1, 1 2
16, 16 990
16, , 7 '000

END OF MFD
>

File Structures and the MOUNT command (HON only)

The MONITOR system of file directories is written not on a
physical device but on a logical entity called a STORAGE STRUCTURE.
This is a virtual device providing a vector of bytes numbered from
zero upto some maximum depending on the capacity of the medium.
The device is randomly accessible and word addressable. Each
storage structure is mapped onto one or more physical device units
by the MONITOR software:

a FILE STRUCTURE is a system of director les, bitmaps, etc.
which is wr it ten on a

STORAGE STRUCTURE, a virtual device which is mapped by the
monitor onto

one or more physical device units.

Each file structure has its own name which can be upto six
alphanumeric characters long. This name need not bear any
resemblance to the names of the devices on which the structure is
stored. A file structure residing on a particular diskpack might
be mounted one day on unit RPAO and the next day on unit RPA2. It
could have the same file structure name on each occasion.

Physical un it names are listed on page 59.

In practice nearly all jobs are concerned with accessing files
rather than physical devices, so most INITs will be specifying file
structure names rather than physical un it names. For example the
command INIT 15 'DATA: I will connect channel 5 to the file
structure called DATA, and the program need not know which physical
unit the volume is mounted on.

The MOUNT command provides a way of telling the system that a
file structure is presen t on a particular physical un it.

PDP-ll AIMS PROGRAMMING MANUAL Page 19
Random Access Filing - section 14

~·1OlJNT f/[ehannel] [function ne] [se]

The functions are:

o MOUNTs a file structure and defines its name
1 DIS~lOUNTs a file structure, making it inaccessible

Function 0 - MOUNT

Function 0 causes the monitor to take note of the file
structure already existing on a particular volume. [se] specifies
the physical unit name where the volume is moun too, and also the
logical name by which the associated file structure is to be known.
[se] should evaluate to a string of the general form

[physical unit name]: [structure name]

For example NOUNT 0 'RPA1 :FRED' makes files on RP11 disk drive
number 1 accessible via the file structure named FRED. After this·
operation any job in the system may execute an ItUT 'FRED:' command
to access the file structure (subject to user capabilities) .

The execution of a MOUNT command causes the monitor to read
relevant directory information from the volume. The command will
fail if the volume does not have a recognised directory.

Function 1 - DISMOUNT

Function 1 is used to withdraw a file structure from use.
[se] should evaluate to a string of the form

[file structure name]:

The command will fail if the file structure is currently being
referenced by any job in the system. If the structure is not in
use the file structure name is deleted from the monitor's table of
structure names, and all monitor information about the file
structure (eg: bitmaps) is removed from memory.

After a DISMOUNT the file structure can no longer be
by name, and any job attempting to INIT it will get a
found error. The corresponding physical devices can
accessed in mode 5 (subject to user capabilities).

accessed
device not
still be

Note that the DISMOUNT command only operates on resident
monitor data structures, it does not affect the state of the files
on the storage media.

Warn ing! when exchanging diskpacks it is essen tial to
DISMOUNT the old pack before removing it and bringing up the new
one. Failure to do so may result in the new pack being overwritten
with information pertaining to the old one.

The AIMS executive program provides MOUNT and DISMOUNT
commands for convenience. The STRUCTURES and RESOURCES commands

PDP-11 AIMS PROGRAMMING MANUAL Page 80
Random Access Filing - section 111

both give a list of the currently existing structures.

FAST ACCESS DIRECTORY - MODE 6 OPEN (DOS only)

The DOS file handling operations are rather inefficient and
involve several disk transfers to find a given file. This can
cause unwarranted delays when several data files have to be opened
one a fter another. Programmers may avoid this to some exten t by
dedicating 1/0 channels to the most often used files. These
channels may then be opened once at the beginning of the program
and will give fast access to the data files thereafter. But this
technique cannot be used if there are more than two or three such
files since there are only 8 channels and 1, 2 and 4 are usually in
use for terminal 1/0 and program overlaying.

The mode 6 OPEN, which is an AIMS option, eliminates this
problem for contiguous files. This option provides an in-memory
directory which stores the particulars of the most often referenced
files. The OPEN command in mode 4 or 6 searches this directory
before searching the device. If the file is in the fast access
directory the OPEN is instantaneous and does not involve any device
transfers. If the file is not found in the fast access directory
the device is searched in the normal way.

The fast access directory can only hold a small number of
files. This number is a configuration parameter which is normally
set to 32. The files can come from any mixture of disks. The
directory is initially empty when the system is started. The
programmers control which files get entered into the directory as
follows: only those files that are OPENed in mode 6 are entered
into the directory. Once a. file is in the directory both modes 4
and 6 benefit from the faster access,

Files are entered into the directory in a circular fashion, so
that if the directory capacity is exceeded the oldest entry will be
overwritten .

Warning! there is no automatic way of deleting entries from
the fast access directory when a diskpack is dismounted. If you
change a diskpack without clearing the fast access directory the
system may continue to access the old files on the new diskpack,
causing catastrophic corruption of the file structure.

In order to get the full benefit from the fast access
directory, it is essential to avoid channel INITs, since the INIT
operation itself involves DOS overlaying activity. It is necessary
for a channel to be INITed before it can be OPENed, but this need

. only be done once at the beginning of the program, or only when
switching to another device. Since the RELEASE operation
disconnects the channel from the device, RELEASEs should also be
avoided. Thus the correct procedure is

At beginning of program:

INIT channel to required device, or ensure channel
is released if you want the default device.

PDP-ll AIMS PROGRAMMING MANUAL Page 81
Random Access Filing - section 14

To open the next file:

OPEN "[channel] 6 [filename]

Since the OPEN command performs a CLOSE implicitly. it is not
necessary to CLOSE the channel before going on to OPEN the next
mode 6 file.

You can examine the mode 6 directory by giving the EXEC
command

. DIR M6:

Note that mode 6 is really a fast way of opening contiguous
files in mode 4. The fast access directory does not work for any
other mode of opening and does not apply to linked files.

PDP-11 AHiS PROGRAMMING MANUAL Page 82
Program Filing - section 15

15. FACILITIES FOR FILING AIMS PROGRAMS

CALL AND SAVE

The SAVE and CALL commands allow programs to be saved as text
files in a format that is compatible with other DOS programs such
as the Editor and PIP.

SAVE ft[ne1] [filename],[ne2],[ne3]

Creates t~e specified file on the device assigned to channel
[nel], deleting any previous file with that name. Writes program
lines [ne2] to [ne3] inclusive to the file in the same format as
that produced by the LIST command. Closes the file.

If ,[ne2],[ne3] are absent, the whole program is saved.

If #[ne1] is absent, channel 3 will be used.

CALL [ne1] #[ne2] [filename]

Opens the specified file on channel [ne2]. This file must be
in ASCII format. Reads the file line by line and CODEs each I1ne.
This adds the CALLed program to the program already in memory (if
any) in an interleaving mode. Existing lines are unchanged unless
they have the same number as lines of the called program.

When the end of the file is reached, control goes to the line
following the CALL command if [nel] is absent. Otherwise a RUN
[nel] is performed, except that system and user-defined simple
varjables are not changed. Array names are defined as with an
ordinary RUN.

Since SAVE operates by translating the binary-image of the
program into a text file, the values of variables and the conten ts
of arrays are not written to the file and will not be restored when
the file is later CALLed.

LIBRARY DIRECTORY

Directory [16 17] is designated as a library area where
commonly used programs may be kept. The CALL command will search
this area if the specified file is not found in your own directory.

PDP-11 AIMS PROGRAMMING MANUAL Page 83
Program Filing - section 15

LOAD AND DUMP

The LOAD and DUMP commands transfer a binary-image of a
program between the user memory area and a specified region of a
contiguous file. The transfer begins at the point specified by the
channel pointer, and ends when the whole program has been
transferred. The channel pointer is updated to point by the amount
transferred. (channel po inters are explained under 'Random Acc ess
Filing' in section 14)

DUMP H[c\lannel]

LOAD [nel] #[channel] [ne2] [ne3]

All the argumen ts are optional. If D[channel] is omitted I channel
4 is assumed. If [nel] is present and non-zero, it specifies the
program line number at which execution is to begin. If [ne2] [ne3]
are absent, the LOADed program will completely overwrite the
program that executes the LOAD command. If [ne2] [ne3] are
present, they specify a range of lines of the existing program that
are to be preserved. The range consists of lines [ne2] through
[ne3]-1 inclusive. These lines will be inserted into the LOADed
program, overwriting any LOADed lines with the same numbers. This
enables selected string or numerical data to be passed from one
program overlay to another.

Any number of program overlays may be stacked one above
another in one file. It is the user' sresponsibility to remember
the position of each overlay in the file, and to set the channel
pointer appropriately before executing a LOAD or DUMP command. If
the pointer is set incorrectly, causing garbage to be read into
memory, AIMS will reload EXEC. Note that the pointer values are
assumed to be of the form [file block number]-[blocksize] and if
the pointer is not a multiple of [blocksize] it will be rounded
down to the nearest multiple. [blocksize] is 64 for the RF11
fixed-head disk, and is 256 for most other devices. DOS: After a
LOAD or DUMP the pointer is incremented. by the number of words
transferred rounded up to the next multiple of [blocksize].

Initially the user must create a contiguous file of a suitable
length by means of the ALLOC command. Before the first LOAD or
Dm1P operation the user must open the file by means of the OPEN
command in mode 4 or 6. Subsequent LOA.Ds and Dur1Ps are then
performed directly between the user memory area and the device with
zero directory overhead.

The following example shows how to create a file containing
three program overlays. The three programs are assumed to be
available as 'saved' files PROG1, PROG2 and PROG3. The RK11 disk
is assumed so that [blocksize] is 256.

>ALLOC 48 04 #pROG.DMp l :P 'OK
OK [allocate a 3072-word contiguous file
>OPEN #4 4 'PROG.DMP' :P'OK
OK [open it in mode 4
>CLEAR
>CALL 'PROGl
>DUMP #4 :P PT(4)

[call in the first part of the program
[dump it

PDP-l1 AIMS PROGRAMMING HANUAL Page 84

1024
>CLEAR
>CALL 'PROG2
>DUMP #4 :P PT(4)

1536
)CLEAR
>CALL 'PROG3
>L PT(4)=PT(4)+512

3072
>L PT(~)=0:LOA1 #4

Program Filing - section 15

[clearly it is under 1024 words long

[call in the next part
[dump it, starting at word 1024 of the
[file. This one is only 512 words long

[call in the last part
:DUHP #4 :P PT(4)

[last part is 1024 words long
[load and run the first part

In this example we incremented PT(4) after the second DUHP to
reserve a 512-word area on the file in case PROG2 is expanded in
the future. We were also careful to print PT(4) after every DUMP
command so that we know where each overlay begins.

When modifying an existing overlay of a dumped file it is
useful to know the exact size of the overlay before dumping, so as
to avoid overwriting the following overlay. Whilst the system
function UC() gives the overall size of the program in memory, the
size of the dumped overlay may be significantly smaller.
Unfortunately it is not easy to calculate the exact size in
advance. It is approximately (UC()-QS)/2 words, but this estimate
cannot be relied upon. There are three ways of getting round this
problem: (1) reserve extra space for each overlay so that an
increase in size does not affect the next one, (2) dump the overlay
into an auxiliary scratch file and print PT(4) to find out the
exact size, (3) be prepared to re-dump all the overlays. This may
be done effortlessly by using an OBEY file as described in section
211.

Unless disk space is limited it is probably easiest to
allocate a fixed amount, say 1024 or 2048 wordS, for each overlay.
The N'th overlay may then be accessed in a standard way. Since
contiguous files are of fixed length, it is also wise to ALLOCate
space for one or two more overlays than are planned. Otherwise it
will be necessary to delete the file, re-ALLOCate it. and re-DUMP
all the overlays when you run out of space.

It is recommended that LOAD and DUMP be used for normal filing·
and overlaying of frequently-used programs, and that CALL and SAVE
are used to keep permanent back-up copies of all programs.
Save-files have the long term advantage that they are compatible
with future versions of AIMS, whereas dump-files may become
unuseabl e due to changes to the internal AIMS coding. If this
occurs, a dump file can be converted to the new coding by loading
and saving it under the old AIMS, and calling and dumping it under
the new AIMS.

PDP-11 AIMS PROGRAMMING MANUAL Page 85
Errors - section 16

t 16. ERRORS

Error conditions fall into two classes:-

1) ERRORS: These are caused by incorrect use of the language or
by logical mistakes in your program. For example a
badly specified command or a reference to a variable
that has not yet been set. In these cases the program
will almost certainly need correcting and so AIMS
normally stops and prints an error message.

2) FAILURES: These occur when a correctly written program
encounters an unexpected event. A typical example is
an attempt to open a file that does not exist. This
is not necessarily an error, it may have been caused
by a user typing the wrong name. In these cases the
command will fail causing execution to #fa11 through'
to the next line of the program (see page 50). If a
command can fail for several reasons these are
distinguished by a code number that is set into the
system variable QE.

As explained in section 11, an AIMS program may trap all
errors by setting the system variable QQ to the line number of an
error handling routine. If an error occurs this routine will be
entered via a 'GOSUB 00 1 with an error code in QE.

If QQ is zero, a standard error message is printed and the
program stops. This message is of the form

? [error letter]
[the line that caused the error]

A question mark is inserted in the line to mark the point at which
the error was detected.

CODE LETTER MEANING

o
1

2
3
4
5
6
1
8
9

10
11
12
13
14

15

S
C
E
V
U

L
T
G
A
I
o
Q
y
z
p

F

No space left.
Command word not recognised
Error in syn tax
Value is outside allowed range
Reference to undefined variable
Reference to non-existant line
Referenced line is the wrong type
GOSUB overflow or RETURN underflow
Bad function or array reference
Error in I/O operation
Loss of accuracy in calculation
Use of control-C abort key
No more memory available for this job
Command not implemented
Inadequate capabilities. Attempt to perform a
pr ivileged operation which the appropr iate bits of
JS(O) do not allow
No more space left on storage medium.

PDP-11 AIMS PROGRAMMING MANUAL Page 86
Errors - section 16

Note that QQ only traps the errors tabulated above. It is not
possible to trap failures using QQ.

QA when execution stops

If execution stops due to an error, the system variable QA is
set to the number of the line containing the error.

If the program stops due to a STOP command, QA is set to the
number of the line containing the STOP command.

If the program stops due to the user typing ~C, QA is set to
the number of the line that was about to be executed. In this case
execution may be resumed at the correct pJint by giving the command
GOTO QA (assuming the user has not changed QA since the stop).

A program that stopped due to an error or a STOP command is
best resumed by the command GOTO NL(QA) which will continue
execution at the line following the error or STOP command. A
GOTO QA would merely re-execute the offending line, possibly
executing part of the line a second time, and certainly causing
another error or stop.

The DO command adds a complication to all the cases described
above: if a program stops dur ing execution of one or more DO
commands, QA is always set to the number of the line containing the
highest-level DO command. If the stop is due to an error or "'e,
the relevan t program line is normally pr inted, and this will be the
line indicated in the preceeding paragraphs. With DO commands this
line will probably differ from that indicated by the value of QA.
If DO commands are chained several levels deep, a ... c can interrupt
execution at any level, and the only indication of the interruption
point is the program line printed. Execution of such chains cannot
be correctly resumed, except by restarting at the line containing
the highest-level DO command.

Examples

>LIST
5 $HI

10 ARRAY A 5
100 PRINT 'TIME IS 'T"O'CLOCK"
>RUN
?U

·.100 PRINT 'TIME IS 'T?"O'CLOCK"
)P QA QE

100 !J
>
>PRINT A(6)+2
?V

o PRINT A(6)?+2
)PRINT $A
?T

o PRINT $A?
)PRINT 5(2)
?T

[the variable T is undefined

[subscript 6 is larger than array dimension

[line A is not a dollar-line

PDP-11 AIMS PROGRAt~ING MANUAL Page 87
Errors - section 16

o PRINT 5(2)?
>PRINT $6 $5

[line 5 is not an array

?L
o PRIN T $6? $5 [line 6 does not exist

Note that the letter following the? indicates the type of
error as given in th e table above. It is impor tan t to remember
this letter if you are going to ask someone else to explain an
error. The offending program line is printed and sometimes a? is
inserted to mark the error point. In this case the error is always
to the left of the mark. It has been found in practice that
programmers often assume that an error is of a certain type without
looking at the error letter actually printed. This procedure is
suboptimal. See also the discussion of array errors on page 21.

ABORT KEYS

control-C
This is the normal way to stop a running program. AIMS will
return to edit mode and will pr int the program line it was
about to execute. Also causes error 11 as noted above. If
error traps are enabled this effectively causes
to line QQ of the AIMS program.
If you type control-C when the program is
terminal input it is not effective until
carriage-return to terminate the input-wait.

control-O

an interrupt

waiting for
you press

Aborts a running AIMS
executive. Equivalent

program and returns to the AIMS
to execution of an EXIT command in.

the program.

PDP-11 AIMS PROGRAMMING HANUAL Page 88
Errors - section 16

FAILURE ERROR CODES RETURNED BY MONITOR (NON only)

When a command fails the monitor r0.turns an error code in the
system variable QI. This code is in two parts: 01 = 2S()*EH + P:C.
EC identifies a general class of errors, and ER identifies each
type of error uniquely. Programmers will find debu~ging much
easier if they print QII256 and QA and take note of their values.
It has been found in practice that programmers often assume that a
failure is of a particular type when in fact it is of another type ..
Failure to observe QI assists this process.

If you think that the monitor returns a misleadin..fS code in QI
under certain circumstances this should be reported to Arbat.

Under DOS an error code is returned in QE rather than Q1. To
maintain compatability AIMS VS translates the MONITOR error code
into DOS form and stores it in QE. Hence programs originally
wr it ten to run under DOS should run ok under 110NI TOR. New progra:ns
written for AH1S V5 should use QI rather than QE because the QI
codes are more specific and reliable.

The possible EC and ER codes are tabulated below. Note that
all failures are uniquely identified by the ER value, and the EC
value may be regarded as a classification of the ER values. There
are however some failure conditions that are not specifically
covered by an ER code, and these only return an EC code (leaving ER

·zero). All codes are even numbers, and EC is never zero.

NAt1E QII256 REM FAILURE CONDITION

EC.PGM 2 Error in program

ER .IUO
ER. BOB
ER.AOS

EC.VAL

ER. COf-l
ER.CHA

EC.1FN

16
17
18

24
25

2
2
2

4

4
4

6

Illegal MIO code
Parameter block address out of bounds
Particular argument address out of bounds

Illegal· value

Invalid command code
Invalid I/O channel number

Inappropr ia te function

Channel not open
Channel open in wrong mode

ER. CNO
ER.IMD
ER.IDF
ER.IFF

32
33
34
35

6
6
6
6

Illegal function for this unit or structure
Illegal function for this file

EC .RDY

ER.DWN
ER.OFL
ER.GON
ER .WLK

EC. END

40
41
42
43

8

8
8
8
8

10

Device

Device
Device
Device
Device

End of
file)

not ready

down
offline
withdrawn
write-locked

data (including end of medium, end of

PDP-l1 AIMS PROGRAMHING MANUAL Page 89

EC. TRA

ER. DA T 56
ER. BMR 57
ER. BNW 58

EC.SPA

ER.FUL
ER. QEX
ER.ALC

EC.SYN

. ER. DEL
ER.LEN

EC.PTH

64
65
66

72
73

ER. DNF 80
ER.DPR 81
ER. DAS 82
ER. UNF 83
ER.ARU 84
ER.APR 85

EC.FIL

ER. FNF
ER.FPR
ER. FLK

EC.FEX

EC. CAP

EC.NIM

88
88
90

12

12
12
12

Errors - section 16

Error during data transfer, see Channel Status
word QX(c,S) for further details

User data, or UFD transfer
File system bitmap read
File system bitmap write

Not enough space on device

14 Storage medium full
14 User's quota exhausted
14 Insufficient contiguous space available

16

1 6
16

18

18
18
1 8
18
18
18

20

Syntax error in file or device specification

Illegal delimiter character
Name or path too long

Cannot access path

Device or structure not found
Dev ice or structure protected
Device assigned to someone else
No such device or structure
File area not found
File area protected

Canot access file

20 File not found
20 File protected
20 Someone else has exclusive access to f He

22 File already exists

24 Inadequate capabilities

26 Facility not implemented in this system

In the case of the EC.RDY and EC.TRA errors,. further
information about the state of the device can be obtained from the
Channel Status word QX(c,5).

PDP-ll AIMS PROGRAMHING MANUAL Page 90
Errors - section 16

ERRORS FROM INPUT/OUTPUT COMMANDS (mainly DOS)

These events are all failures, except those marked with a ?
which are errors as described above.

CONTEXT

Hne]
INIT
INIT
OPEN
OPEN
INPUT

INPUT
PRINT

LOAD

LOAD
LOAD

CONTEXT

EVENT

?V
?y
fail
?y
fail
?I

fail
?I

?y

fail

QE/256

MEANING

Channel number [ne] less than 1 or greater than 8
Not enough memory left for channel control-block
No such device (QE irrelevant)
Not enough memory for data-buffer
Error code in QE (see below)
Channel not rNITed, or not OPEN, or device not
capable of input
Error code in QE (see below)
Channel not INITed, or not OPEN, or device not
capable of output
Not enough memory to load program, or hot enough
for use by DOS
Attempt to load garbage
Error code in QE (see below)

MEANING (DOS)

OPEN in mode 0 (=open i)
2

3
6
7

OPEN in mode
2
7

1 ,

13

File nonexistant, or being modified by someone
else, or nonexistant directory
More than 62 OPENs without corresponding CLOSE
File protected
Device not capable of input

(=openo)
File already exists
Device not capable of output, or directory is
protected against file creation
No user file directory for given [dept user]
Illegal file name

OPEN in mode 4 or 6
13 Illegal file name
for other error conditions, QE is bit coded as follows

bit 6 0 file is not contiguous
bit 7 0 file does not exist

CONTEXT

ALLOC

DELETE

RENAME

INPUT

PRINT

PDP-11 AIMS PROGRAMMING MANUAL Page 91
Errors - section 16

QU256 MEANING (DOS)

2 File already exists
7 Directory protected against file creation

10 Directory full
11 No file directory for given [dept user] number
13 Illegal file name

2 File does not exist anyway
6 File protected

12 File in use
13 Illegal file name

2 Old name does not exist
2 New name al read y exists
6 File protected

14 File in use
15 Illegal file name

bit coded as follows:-
64 End of file, or end of medium
32 Device parity error

4 Character parity error
2 Checksum error
1 Invalid line terminator, or not enough space to

read in complete line

?F Device full.
Apart from ?F, the PRINT command always succeeds.

READ and WRITE
Bit coded as follows:-
32168 Hardware error such as parity or seek failure
16384 End of medium (see note below)

The end-of-medium bit is only set for sequential media like
paper tape. If you are using mode 5 to aCCess bulk-storage devices
like disks and DECtape, an attempt to access beyond the end of the
medium will cause a fatal DOS error. When using mode 4 or 6 to
access a contiguous file, AIMS will safely trap any attempt to
access beyond the end of the file, but the end-of-medium bit is not

. set. So programmers should test the harware error bit first and
assume an end-of-file condition if the bit is not set.

Care should be exercised when testing QE for error codes.
Codes that appear in QE/256 should be tested as such, since the low
order bits of QE may contain random junk. Bit-coded conditions
should be tested using the logical & operator rather than testing
for equality, since QE may contain other random bits. Note also
that if bit 32168 is set, QE will appear to be negative. If you
intend to pr int QE it is advisable to mask it with a sixteen bit
mask like 1_16-1.

PDP-11 AIMS PROGRA~~ING MANUAL Page 92
Errors - section 16

TRAPPING ERRORS WITH QQ

In a production environment is is often desirable to prevent
errors from being communicated to the end-users of the
This may be done by setting QQ non-zero. Should ~n error

AIt1S will GOSUB QQ without pr lnti ng any message. The
at line QQ may then take corrective action.

program
system .
occur,
program

The programmer should exercise exteme care when using this
error trapping facility since it can give rise to subtle problems
that are not easily diagnosed.

The following example shows an error trap handler that stops
the current activity if the user types control-C, and exits to a
special error recovery overlay if any other error occurs:-

100 LET QQ=900

900 RETURN :IF QE=11 :PRINT 4STOPPED4 :LET OQ=900 :GOTO 500
910 PRINT 'FATAL ERROR 'OE' AT LINE 'QA
920 LET PT(4)=4096 :LOAD 1

It is possible to resume execution after an error trap by
using the stacked return line number inconjunction with the GOTO or
RETURN commands, or using the NL() function to skip a trap-causing
program line. Note however that programs containing DO commands
cannot always be correctly resumed because the stack does not
contain sufficient information.

PDP-11 AIMS PROGRAMMING MANUAL Page 93
Command Summary - section 17

17. COMt1AND SUMMARY I

ACCEPT ?[ne J [ass ignmen t list]

Reads a single character from a terminal keyboard.

ACOMP A(J) B(K) N

Compares the block of N cells in the two arrays.

ALLOC [neJ #[channelJ [filenarne]

Creates a contiguous file of length 64*[neJ words on the device
assigned to [channelJ, with name [filenarneJ.

AMOVE A(J) B(K) N

Moves the block of N cells from A(J) ·to B(K).

BYE [ne J

Logs job [ne] off the system. Default job is self.

[number1] ARRAY [name] [number2]

Sets up an array in line [number1] of the program. [name] is a
1 or 2-character variable name which is automatically assigned
the value [number1] by the RUN command. [number2J specifies the
highest legal array subscript. The array will have [number2]+1
cells numbered from 0 through [number2J.

CALL [startJ #[channel] [filename]

Calls the specified program file and performs a 'RUN [start]',
except that previously existing simple variables remain derined

CLEAR [ne1J,[ne2]

Clears program lines [ne1] through [ne2].

CLOSE #[channelJ

Closes the specified channel. Default is 4.

CODE [se]

Obeys the string [seJ as if it had been typed as an AIMS
command.

CORE [ne J

Adjusts the user's memory allocation so that the free space as
given by QS is at least [neJ characters. Oommand will fail if
insufficient memory available.

PDP-l1 AIMS PROGRAMMING MANUAL Page 94
Command Summary - section 17

DDOPR '[channel] [command se]>$[reply ne]

Performs device-dependent operations.

DELETE 41 [channel] [filename]

Deletes a file from the device assigned to channel.

DIAL [dialler ne] [phone number se]

In itia tes a phone call.

DO [ne]

Executes program line [ne]. The line is executed as if it
occupied the position of the DO command. Control returns to the
line following the DO command.

DUHP fI[channel]

Dumps the whole program in binary-image form.

EXIT

Returns control to the AIMS executive program EXEC.

GARB

Performs a garbage collection.

GOTO [ne]

Transfers control to line [ne] of the program.

GOSUB [ne]

stacks the number of the current line and transfers control to
line [ne].

INPUT [echo] [timeout] H[channel] ?[ne] [assignment list]

If ?[ne] is present, prints line $[ne] as a cue to the user. If
?[ne] is absent, prints * as a cue. Reads a line of text from
the specified channel, default 2 •. Decomposes the string as for
the PUT command.

IF [ne] .••

Continues execution of the current line if the value of the low
order 16 bits of [ne] is non-zero.

1Nl T 11 [channel] [dev icename]

Initialises the channel and attaches the specified device.

LET [name1]=[ne1] [name2]=[ne2] ...

Assigns the value of [nel] to the variable enamel], and so on.

PDP-ll AIMS PROGRAMHING MANUAL Page 95
Command Summary - section 17

LINE [line neJ [function neJ [argumentJ

Command for controlling communication lines
interfaces.

LIST [ne1],[ne2J

and t.erminal

Lists lines [nelJ through [ne2] of the program on channel 1.

LOAD [startJ #[channel] [fromJ [toJ

Overlays the AIMS program area with the binary-image stored in
the file open on [channelJ. Starts the program at line [start].
Lines [fromJ through [toJ-1 passed as arguments.

:LOOP

Executes the current program line again. Only makes sense as
the last command on a line. Quicker than a GOTO. May be put in
by terminating the program line with colon.

~10UNT [function ne] [seJ

Mounts/dismounts detachable storage media, and
logical file-structure name with physical device.

MTAPE #[channel] [function ne] [argument ne]

associa tes

DOS: Dev ice-dependen t control command for use with magne tic
tape. Returns tape unit status in QE and residue count in QA
(if applicable).

OPEN #[channelJ [modeJ [filenameJ

Opens the specified file.

PACK A(J) [separator se],[nel] [ne2]

Packs dollar-lines [ne1] through [ne2] into array, using
[separator seJ to mark the end of each string in the array.

PRINTf![channel] [se]

Writes the string [se] [newline] onto [channel], default is 1.

PRINT ft[channel] [se],

As above, but does not append [newline].

PUT [se] [search mode] [destination] [look for] [replacement]

Decomposes the string [se] as specified.

READ {nchannel] [array name]([subscriptJ) [V5: opt bytecount]

Fills the array in line [array name] with binary data read from
the file open on [channel].

PDP-11 AIMS PROGRAMMING MANUAL Page 96
Command Summary - section 11

RELEASE # [channel]

Performs a CLOSE if channel open. Then releases the device.

REM [comm en t]

[comment] is ignored. Control goes directly to next line.

RENANE 1t[channel] [newname], [oldname]

Renames a file. [oldnarne] and [newname] are separate string
expressions, separated by a comma.

RETURN [ne]

Unstacks
command
control
[ne] is

the line number previously stacked by the last GOSUB
and assigns it to the system variable QA. Transfers

to the next 1 ine greater than or equal to QA+[ne] • If
absent a value of 1 is used.

RETURN : •••

Unstacks the return line number into QA and continues executing
the current line.

RUN [ne]

Deletes all simple variables, sets all system variables to their
default values, and performs ARRAY name assignments. Then
starts the program at line NL([ne]-1).

SAVE #[channel] [filename], [ne 1], [ne2]

Saves program lines [ne1] through [ne2} as specified text file.

SCAN [recsize ne] [keylen ne] [array] [mode] [key ne] [count]

Scans the array for the specified key and sets QA.

SETNM1 [se]

Sets the job's program na'lle to the first six characters of [se].
This name is used by the SYSTAT printout.

STOP

Stops execution of the AIMS progra~ and sets QA to the number of
the stop line.

SWIFT [line ne] [function ne] [arg]

Special command for communication with
switching network.

TAB #[channel] [ne] [se]

S.W.I.F.T message

Prints the [se] repeatedly until column [ne] is reached.
Default channel is 1. Default [se] is one space.

PDP-ll AIMS PROGRA1·lMING MANUAL Page 97
Command Summary - section 17

tJI~LESS [ne} ..•

Continues execution of the current program line if the value of
[ne] is zero •

. UNPACK A(J) [separator se],[nel] [ne2]

Unpacks array into block of strings in lines [ne1] through
[ne2], using [separator se] to detect end of each string in the
array.

VGARB

Deletes all user-defined variables that are not referenced in
the current program.

WAIT [ne] [wake mask ne]

Suspends execution for [ne] ten ths of a second or until
specified event happens.

WAKE [se]

Wakes all jobs named [se] if they are wake-enabled.

WRITE fJ[channeJ,.] [array name]([subscriptJ) [V5: opt bytecount]

Writes the content of the array in line [ne] in binary to the
file open on [channel].

x [number] [look for] [replace by]

Changes [look for] to [replace by] in line [number] of the
program amd prints line [ne].

PDP-ll AIMS PROGRAMMING MANUAL Page 98
Executive - section 18

18. AIMS EXECUTIVE PROGRAM - EXEC

EXEC is a privileged AIMS program that is run when you have
logged onto the system or whenever you give the EXIT command. The
main purpose of EXEC is to provide an enviro~~ent in which the user
may quickly and easily develop his own AIMS programs. There are
EXEC commands for loading, running, calling, copying, deleting and
renaming files, for listing device directories, and for examining
the state of the system.

Most EXEC commands may be abbreviated to a single letter. In
the command descriptions the element [filename] denotes a file
name, with optional device name, unit number, file extension, and
department/user numbers. The full syntax of a [filena~e] is

[dev] [un it]: [name]. [ext] [[dept user]]

For example:

FRED F RED. BAS DT2:FRED F RED[16 16] DK1:FRED.BAS[40 42]

Some commands allow a class of files
just one. This is done by means of
[filespec] is identical to that of a
character * may be substituted for
fields. For example:

to be specified rather than
a [filespec]. The syntax of a

[filena'11e] except that the
either the [name] or the [ext]

FRED. * denotes all files whose name is FRED, with any

·.BAS
extension.
denotes all files whose extension is BAS, with
any name.

Most of the commands that take a [filename] as an argument
will also accept a list of [filename] fields separated by commas.

It is sometimes necessary to qualify a command by specifying
some optional feature. This is done by means of a #switch', which
is defined to be of the form /X where X is the name of the switch.

Whenever EXECis waiting for a command it prints

You can get a help message for any command by typing the command
word followed by a question mark. For example
.REN ?
will give help on the RENAHE command. The following commands are
allowed:-

PDP-ll AIMS PROGRAMMING MANUAL Page 99

CALLING PROGRAMS

RUN [filenameJ

Executive - section 18

Loads and runs a dumped AlMS program. The default
fUe extension is Dt-!P. This command is used for
running most production programs. The library
area (1617J 15 searched iftheprograInisnot
found on your own area. Eg:
.R ED
EDITOR V1J
FILE:

EXECUTE (filename]

EXECUTE

Calls and runs a saved AIMS program. Default file
extension is BAS. The library area [16 17 J is
searched if the the program is not found on your
own area.

E command without a filename enters AnlS edit mode
allowing program development. Eg:
.E
>

LOAD [filenameJ As RUN except it does not start program execution.
This 1:9 used to bring a dumped program into memory
so that it can be modified.

CALL [filename] As EXECUTE except it does not start program
execution. This is used to bring a saved program
into memory 80 that it can be modified.

All of the above commands may be abbreviated to a· single letter.
Any command may be prefixed with the letter Z to give the program
executive privileges if these are allowed. (le: ZH, ZE, ZL AND Ze)

If the executive does not recognise a command word, it treats
the word as a filename and attempts to RUN the corresponding .DMP
file. This permits user-defined extensions to the executive
command repertoire. For example, since ED is not a valid full or
abbreviated executive command, the command

.ED

is equivalent to .RUN ED and will cause the file ED.DHP to be
loaded and executed.

PDP-11 AIMS PROGRAMMING MANUAL Page 100
Executive - section lB

FILE CONTROL

COpy [destination]=[sourceJ
Copies a file from one place to another.
[source] and [destination] are [filename]
specifications.

Switches:
IU Update. lE. if [destination] file already

exists delete it before copying. Without the
update switch, an existing contiguous file may be
copied into, provided it is large enough. IU
forces re-ALLOCation of the file.

IG:n Sets QG to n. Useful when copying files
containing very long strings.

Examples
.COpy TEST.BAS=ABC.BAS
.CO DK1:TEST.BAS:ABC.BAS
.CO TEST.BAS=ABC.BAS/U [de.lete TEST.SAS if necessary
.CO DK1:ACCTS.SAV:DKO:ACCTS.DAT
.CO DK1:=MEMO.TXT [destination name same as source
.CO PP:=MEMO.TXT[16 17J
.CO FRED.DAT=SAM.DAT/U [reallocate FRED.DAT

DEL [filespec] Deletes the specified files.
Switch:

IP Pr int names of deleted files.

DIR [filespec]

Switches:
IF
IS
10

FREE [dev]:

MAP [devJ:

RELEASE

Lists the specified subset of the user's
file directory.

list in abbreviated (Fast) format
list in expanded (Slow) format
list UFD entry in octal

Gives the number of free blocks left on
device [dev].

Prints a map for device [dev] showing which
physical blocks are occupied by files.

Releases 110 channels 5 to 8. Useful
for closing files left open by last
program.

REN [newname] :[dev]: [oldnameJ
Renames the specified file. [newnameJ may
include an octal <protection) field.

TYPE [filename] Lists any text file in a paginated format.
Useful for getting neat listings of saved
AIMS programs.

Switches:
IL:n Length of page in lines. Default 69.

The number of lines of text appearing will be 7
less than this since the heading takes 7 lines.

IW:n Margin. Defines width of paper. Default 72.
IT:n Sets tab width to n characters.

PDP-ll An-IS PROGRAMMING MANUAL Page 101

/G:n Sets QG to n. Useful for typing files
containing very long strings.

VIEW [filenarne] For viewing a file on a visual display. Pauses at
the bottom of each screen; press space to S8t next
screen. H ill also search for str i nr:;s. Type
VIEW? for list of switches.

ADf1INISTRA TIVE

BYE

CPUTIHE

DAYTHiE

HELP

JOB
JOB n
JOB .

Logs th e user off the system.

Prints the user s run time

Prints the date and time of day.

Prints a list of all EXEC comnands.

Gives a summary of the state of each
Gives summary for job number n only.
Gives summary for your job only.

Options: any or all of JLAMSIRC to select subset and
of printout. J ? for further information.

KILL Jn Forcibly logs out job number n.

job.

order

KILL Kn Forcibly logs out the job controlled by
console number n.

METER Prints accurate system load statistics.
Options:

T Totals since system started
M Mean in last l-second period, exponentially

weighted with 10-second time constant
C AIMS command utilisation (in some systems)

t-10UNT un it name : structurename
~10N: Makes structure accessible.

DISMOUNT structurename
~10N: Makes structure inaccessible.

RESOURCES Lists the resources available on the
system. Devices, memory size, ete.

SCHEDULE Prints current access restrictions
from SS(1) .

SCHEDULE N Sets normal access
SCHEDULE R Restricts access to departments<17

SEGMEI~TS Gives position, size and state of all
memory segments.

options:
S Name, origin and state in SID order
11 MAP OF PHYSICAL t-1EHORY

SET

PDP-l1 AIMS PROGRAMtlING MANUAL Page 102
Executive - section 18

Allows on-line alteration of varinus
system parameters. Options are:

SET ~CHO. - turnn echoing on and off
SET leASE. - controls lower-ta-upper case input conversion
SET OCASE * - controls lower-ta-upper case output conversion
SET PARITY * - turns even-parity printout on and off
SET PAUSE. - turns AS/AQ pause mode on and off
SET IMAGE. - turns line image mode on and off
SET SPEED - selects baud rate
SET FILL - sets number of filler characters
SET MEMHAX - sets system-wide per-job memory limit

* denotes ON or OFF as appropriate.

SYSTAT Gives a summary of the state of the system.
Options:

C Hemory util isation
E Error statistics
S Swapping statistics
T Run and up times
X Extra information

Default: all except X

TELL [destination] [message]
Sends a one-line message to the specified
place. [destination] may be Jn for job
number n, or Kn for console number n.

UFDS [dev]: Lists the master file directory giving
the number of files and amount of space
being used by each [dept user] number.

UNLOCK [filespec]

VFIDIR

WHO

Unlocks the specified files. Files are 'locked' when·
they are in the proc ess of being created. If the system
is stopped due to a crash or operator intervention whilst
a fil e is locked, the file will remain locked when the
system is next started. This is a nuisance because
locked files cannot be deleted or renamed. The UNLOCK
command is provided to cure this problem. The DIRECTORY
listing command will show if a file is locked.
Warning! Files must be unlocked as soon as the system is
restarted. If other files are created when a locked file
exists, and the locked file is then unlocked, the. device
directory will be corrupted. To minimise the risk of
this happening, the SYSINI program scans the system disk
for locked files and unlocks them every time the system is
started. But the problem may still arise on other disks
in a multi-disk configuration. Because of the danger of
unlocking files at the wrong time, the UNLOCK command is
only available to privileged users.

MaN: Lists the volatile file directory which
contains data about files curren tly or
recen tly in use.

Shows who is curren tly using the system.
Short form of JOBS.

PDP-l1 AIMS PROGRAMMING MANUAL Page 103
Executive - section 18

EXA~lPLE SESSION SHOWING SOME EXEC COHMANDS

MONITOR v1a AIMS v4h j7-kO
dept,user:1617
password:

.help
commands are:-
0) run,load,execute,call,priv,bye,help
1) directory ,unlock
2) copy
3) listlp
4) delete,ttyin
5) rename ,type ,view
6) tell,force,kill,broadcast,cputime,daytime
7) set,release,fcore,resources,schedule
8) free,map,ufds
9) obey
10) jobs,who
11) systat
12) segmen ts
13) structures
14) vfidir
15) queue,submit
16) user
17) meter

.day
11 hrs 6 mins 20.6 secs on thursday 3-feb-77

.sys
monitor vla, AIMS v4h

uptime 0:29:04, null time 0:16:32
= 43.1% run + 0.0% iowait + 56.9% idle.
mean uptime 14:31:31 in 1011 sessions.

total memory 64k(2048p)
monitor: 394p program + 71p fixed data + 313p buffers (6752=67%

free)
available memory 40640(1270p), 28448(889p) occupied (70% full)

memmax=20000(625p) vfimin=1536

swapping statistics:
total swap space 2384p, 2384p free
o jobs swapped now, total segmen ts swapped O. rate limit 32 Op! sec •

. jobs
jb lin -area- --segment sizes in w--- status -run time- irun -age--

1 k12 040056 in terp =65 28 editor=4352 ti 1 04: 23 . 108 29
2 pO 016016 in terp =6528 watch = 800 sI lz 01 .000 30
3 p2 016016 interp=6528 batch =2720 sI lz 01 .000 30
4 k4 060060 interp=6528 idle =21WO ti 1 03 .000 30
5 p4 016016 in terp =6528 luc ifa=4 608 to 2z 05:23 .122 1 5
6 k14050057 interp=6528 view =2144 ti lz 48 .026 08
7 kO 016017 interp=6528 jobs =2336 r4 lz 04 .032 03

P DP-l1 AIHS PROGRA/'1MING MANUAL Page 104
Executive - section 18

.dir/f
dkO-016017-
dia typ.d QC pc.dmp dsklst.bas gorefs.bas
dkcopy.bas dskrat .bas maclst.bas io.bas
fcomp. bas ed .dmp bchess.bin im .bas
nThers. bin imsys. bin r eseq. bas draws .bin
s.mac rantty.bas numer8.bas dskluk.bas
tsubs .bas dskrat .doe ee .dmp watch.doe
milk.mac

213 blocks in 31 files.

.dir Is[16 16]*.dmp

directory listing for dkO-016016 on 3-feb-77)
logout drop 4c <233> 9-apr-76 @4753
login dmp 19c <237> 29-oct-76 @4491
exec drop 107c <233> 9-apr-76 @3937
batch dmp 14c <277> 14-aug-76 @4377
dia typ drop 50c <233> 27 -oet-76 @3453
total of 194 blocks in 5 files.

. bye
11:15:34 3-feb-77 j6 kO 016017 AIMS library
run=O:OO:05 connect=0:OO:30 dk disk=216 bye

odt.bas
pc.bas
im .dmp
cref.bas
qtest .bas
[scan.bas

block size=2S6

PDP-ll AIMS PROGRAMMING MANUAL Page 105
'Tips - section 19

19. SOME PROGRAMMING TIPS

This section contains a mixture of general advice and specific
programming 'tricks' which have been found useful.

Program Development

When programs are being developed one often gets several
diferent versions of a program stored in different places under the
same filename. So it is a good idea to make the program identify
its version for the benefit of the user. It is also useful for the
programmer if each program contains a REMark line indicating the
date when it was last changed. Even with these precautions the
maintenance of a large and changing suite of progra~s is still a
major activity. It is helpful to keep a log book which records all
modifications.

It is a good idea to establish a standard format for most
programs. Efficiency considerations suggest that strings and
arrays should be stored in low-numbered lines, see section 20. It
is often confusing to have dollar-lines scattered throughout a
program, especially if these are data strings that do not need to
be saved with the program. Since every line is numbered it is
ofta'! difficult to see where subroutines begin and end. . A REMark
line is helpful before each routine. It is easier to modify a
program if it conforms to a standard line numbering scheme. For
sma.ll . programs it is conven ien t to use multiples of ten such as
100, 110, 120 etc. l10difications can then be inserted at 105, 115
and so on. For larger programs an interval of two is better,
giving 100, 102, 104, 106 initially and modific:ations on odd lines.
When the modifications have been checked out the program can be
resequenced using RESEQ. BAS and a fresh listing obtained.

Program layout is to some extent a matter of taste, but the
following scheme has been found satisfactory:

o - 9:
8 - 18:

19
20 - 80:

80 - 99:

100 up:
1000-1999:
2000 on:

Working dollar-lines, initially empty
Arrays
REM progl'am version and date last modified
Fixed dOllar-lines, and space for small tables of data
strings.
Normally empty, useful for extra initialisation code
when testing a program.
Start of real prograQ.
Reserved for library routines.
For large dollar-line tables.

PDP-11 AIMS PROGRAMMING MANUAL Page 106
Tips - section 19

Decoding User Commands

The first serious AIMS program that you write will most
probably be one that reads a string from the terminal, recognises a
set of 'command words', and goes to a specific routine for each
valid command. Suppose the commands are BUY, SELL, NEWSTOCK, and
DELETE. The commands should be chosen so that they are easily
remembered by the user and suggest to him the function that the
command performs. Experienced users will become irritated if they
have to type long commands so we should choose command words that
can be abbreviated to one or two letters without ambiguity, and the
decoding program should be written to accept such abbreviations.

We might be tempted to start like this:

20 $COt1HAND:
100 INPUT ?20 $1
110 IF $1"';B' :GOTO 200 :REM BUY
120 IF $1 , .. S' :GOTO 300 : REM SELL
130 IF $l

A

'N' :GOTO 400 :REM NEWSTOCK
140 IF 1p 1 A· D• :GOTO 500 : REM DELETE
150 PRI.'NT '?' :GOTO 100

This si.mple scheme has several disadvantages. Although it
recognil3es abbreviated commands, it does not check the command word
properly: it would accept BONGO as a command and interpret it as
BUY. The program would not recognise a valid command if it had a
few sp:aces in front of it. The decoding routine does not remove
the command word from $1, so if there is any other information
following the command this will have to be split off by each
command routine. The program is also I' ather large and will
incr ea se by one line for each new command. Finally, the program
offers no help to the user if he does not know what commands are
available. It is good practice when implementing a complicated
program to provide the user with a standard command which he can
al~rnys give to elicit help from the program.

An i'llproved v€!rsion is given below. It begins by removing
leading separator character's from the users input, and then strips
of.:'f the next sequence of letters which is taken to be the command
\olOrd. This leaves $1 containing any arguments that followed _the
command. The program has a list of all valid commands in $21 and
it uses the QI facility of section 8 to validate the received
command.

19 REM Vl 1-AUG-76
20 $COMMAN D:
21 $,BUY,SELL~NEWSTOCK,DELETE,
22 $B-UY STOCK, S-ELL STOCK, N-EWSTOCK, D-ELETE STOCK

100 INPUT ?20 $:IF $_'?' :PRINT $22 :LOOP
102 PUT $=%F1>$%F4=%F1>$1
104 PUT " '$>$:2 :IF $21_$2 :GOTO 100-(QI+1)
106 PRINT '? ':$; "TYPE? FOR HELP" :GOTO 100

In this example the program goes to line 200, 300, 400 etc.
depending on the position of the recognised command word in $21 as
given by QI. In more complicated applications it may be necessary
to c@.ll a diff,sren t ov~rlay for each command. This could be done

PDP-11 AIMS PROGRAHMING MANUAL Page 107
Tips - section 19

by r eplac ine; line 104 with:

104 PUT ','$>$2 :IF $21_$2 :LET PT(4)::1024*QI :LOAD 1/14 O,?

This loads the appropriate overlay and passes to it $1 which
contains the argument string.

Unpacking Strings as Integers

For very intricate string manipulations it is sometimes useful
to be able to access a string one character at a time. Although
this can be done by using %01 it is more efficient to place the
string into an array and then use the arithmetic operations to
access particular bytes.

To get the string into the array we use the packing facil ity
of the LeT commmand as described in section lll.

8 ARRAY A 60
1 00 LET A () < $ 111 12 0

If $1 contains the string ABGDE these characters will be packed
into the array like

A(2):
A(1) :
A(O):

+
*B + A

The characters are packed two-per-word and the end of the string is
marked with 128. All the characters are stored as integers in the
range 1 to 127 according to the ASCII code shown i~ section .26.

The following subroutine may be used to obtain the J"th
character of the string:

700 IF j&-l :LET C:::A(J/2 -8&255 :RETURN
7 0 2 L ET C = A (J) & 2 : R ET U R t~

See also the discussion of byte unpacking on page 21.

Printing the Date and Time of Day

The date and time of day are often needed in headings. A nice
format is

13:25 HRS WEDNESDAY 13-JUN-78

and this is returned in $0 by the routine

800 LET T=TI()/10
802 PUT T/3600@W2@F1~: 'QA/60@W2@F5~ HRS ~%SDA(3)+1$806'DAY'

DA()~-~%SDA(1)$808~-;DA(2)@W>$

804 RETURN
806 $,~DN,TUES.WEDNES,THURS,FRI,SATUR!SUN
808 $,JAN,FEB,HAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

PDP-11 AIMS PROGRAHMING MANUAL Page 109
Tips - section 19

This generator requires EP(»l. Line 800 takes about 5
milliseconds to execute. If you are using RX and not RN, the line
may be reduc ed to

aoo LET HX::(HA*RX+RC)&R11

giving fast'er execution. If you need to c all the generator from
several po lnts in the program use "DO 800" since this is faster
than making line 800 into a subroutine and using a GOSUB.

The random numbers returned by this routine are considerably
more random than those obtained by playing with TI() or JS(4) or
any other system data.

Square Roots

Square roots may be calculated by an iterative technique:

800 LET T=N*100 1=1 X=T/2 :UNLESS X :PRINT ON LESS THAN 2" :STOP
802 LET Y=(X+T/X)/2 :UNLESS X=Y :LET X=Y 1=1+1 :LOOP
804 RETURN

The routine should be called with the number in N. It returns ten
times the square root in X and also in Y. The factor of ten arises
because the routine actually finds the square root of 100*N due to
the 'lOO in line 800. Greater accuracy may be achieved by changing
line 800 to multiply N by a larger even power of two.

The variable I counts the number of iterations actually
performed. I is not part of the algorithm and references to I may
be omitted if speed is important.

Inputting Octal Numbers

This can be done by inputting the number as if it were in
decimal and then using string manipulation to strip off the digits
one by one. The following routine removes the first number from
the string in $1 and returns its octal value in the variable C:

800 LET C=O T=O :PUT $1=T>$1
802 PUT T@W>$2 :IF $2_"8'1$2_'9" :PRINT "ILLEGAL NUMBER' :STOP
804 PUT $2>$%Gl>$2 :LET N()<$fl1 :LET C=8*C+(N()&127)-48 :LOOP
806 RETURN
808 ARRAY !>J 0

The routine uses the array N to eonvert each digit to its
corresponding ASCII code.

PDP-l1 AIMS PROGRAMMING MANUAL Page 110
Speed and Size - section 20

20. EXECUTION SPEED AND MEMORY OCCUPANCY

Since AnfS is interpretive, every character in a program] ine
is scanned whenever that 11ne is executed. When aline 1.'3 coded it
is compacted as far as possible by

1) Storing the line number as a 16-bit binary word
2) Removing the colon and all spaces before and after each

command word
3) Storing each command word, whether abbreviated or typed in

full, as a single special character.
4) Converting all numerical constants (eg: 123) to binary.
5) Converting all variable and function references to 2-byte

internal forms.

All program lines are chained together in a forwards-linked
list with the lowest line number at the head. Normal progression
through a program involves stepping to the next line on this list.
Any out-of-sequence reference to a line, such as a GOTO, GOSUB, DO,
ARRAY or string reference, involves a search from the head of the
list till the required line is found. Consequently lower numbered
line s are found qu icker.

When programming for speed:-

a) Use low line numbers for frequently used dollar-lines and
arrays.

b) Avoid unnecessary spaces in program lines.
c) Avoid multiple references to the same array element when this

could be assigned to a simple variable.
d) Do not work out the same expression several times when it could

be done once and assigned to a variable.
e) Try and get small loops onto one line and use the LOOP command.

This is quicker than a GOTO.
f) Use multiple commands on one line, rather than many commands on

separate lines.
g) Avoid nanipulating strings where an equivalent effect could be

obtained by operating on numbers in arrays.
h) Do not use the PUT command where the IF com~and would do.
i) Use the smallest IX'ssible value of EP().

If the string expression on the lefthand side of a PUT command
is anything other than a single dOllar-line, a temporary copy of
the value-string will be made whenever the command is executed.
Thus the command

PUT .! ~$1>$1

needs enough space for three copies of $1. PUT commands using long
strings thus take a lot of time and space.

Every program line requires about 2+(N+l)/2 words of
where N is the number of characters in the line, counting
words as one character, and ignoring the line number.
estimate is approximate due to the operations descibed at
(S) above) Thus it takes less memory to put several commands
line rather than giving them each a line to themselves.

memory.
command

{This
(4) and
on one

PDP-! 1 AIHS PROGRAMlHNG HANUAL Page 111
Speed and Size - section 20

Execution times

As a mugh guide it may be estimated that AIMS ar itllmettc runs
about 500 times slower than the best machine code. AIl-iS string
handling and I/O operations take about the same time as they would
if coded in machine code.

Taking the mean execution time
arithmetic operations like LET X=X+1,
following operation-times are obtained:

for a mixture of typical
LET X=y*Z, LET X=Y/Z, the

AH1S version 2 on 11/20 cpu: 3.18 milliseconds
AH1S version 3 on 11/20 cpu: 1. 95
AIMS version 2 on 11/45 cpu: 1. 71
AIHS version 3 on " /45 cpu: , • 08

GARBAGE COLLECTION

Whenever a line is altered it is recreated an.j the old line
remains in memory as garbage. A garbage collection routin~ is
provided which scans the whole program area, removes the unwanted
lines, and creates a compact line-structure. This process can be
invoked explicitly by the ~GARB~ command, but it is not normally
necessary to do so. Whenever the interpretor advances to a new
program line it checks the amount of free space that is available
(as given by QS). If it is below a threshold given by the value of
the system variable QG, then a garbage collection is performed. QG
is initially set to 350 characters, which is sufficient for the PUT
command operating on a string of normal length.

If AIt1S runs out of space in the middle of a program line, it
abandons execution of that line, does a garbage. collection, and
gives error S. The error is fatal in the sense that execution is
abandoned at an indeterminate point in the line, and the result may
be different if the line is re-executed from the beginning.
Therefore, if you need to manipulate long strings of length N
characters, the garbage threshold QG should be set to at least
3i1 (4+N). Alternatively, QS can be checked explicitly at an
appropriate point in the program and a GARB command executed if it
is toc low.

Garbage collection is a very slow process which should . be
avoided if possible. Running with a large value of QG will cause
frequent collections and slow the program down.

The VGARB command is used to delete unwanted user-defined
simple variables. This deletes all user-defined variables that are
not men tioned in the current program and recovers the space used.
This command is useful for deleting unwanted variables that have
collected during passage through a sequence of overlays. It has
the advantage over RUN that it does not make all variables
undefined.

PDP-l1 AIMS PROGRAHNING MANUAL Page 112
Speed and Size - section 20

CONTROL OF MEMORY USAGE

In a multi-user environment there is a central pool of free
space and each user is allocated memory as he requires it. The
allocation is performed in pages of 32 words (HON) or blocks of 128
words (DOS) • At any given momen t each user owns a particular
number of blocks, as given by the system function UC(). This space
is occupied as follows:-

a) About 150 words are used as workspace by the interpreter.
b) About 20 words for the system variables.
c) P+1 words for each P-word precision simple variable defined by

the user.
d) About 2+CN+1)/2 words for each N-character program line
e) D+6 words for each array of dimension D
f) Some free space private to the job as given by QS.

We have already mentioned that a garbage collection is performed
automatically if QS falls below QG. After such a collection QS is
checked again, and if it is still below QG+100, an attempt is made
to obtain more memory from the monitor. Thus the user~s area is
expanded automatically as necessary, and a working free space
margin of at least QG characters is maintained. This process will
proceed until all the available memory has been allocated to users.
If a user"s memory requirements continue to expand beyond this
point he will be operating with QS<QG causing repeated B;arbage
collections. In this extreme case the collection rate can be
reduc ed by setting QG to a smaller val ue, but this will run the
risk of a no-space-left error condition.

When an EXIT or LOAD command is executed, the users memory
area is automatically reduced to an optimum size such that QS is
about QG+100. Thus the system reclaims memory that is no longer
needed by a user.

A special command is provided to allow explicit control of the
user~s memory area:-

CORE [ne]

This command adjusts the user~s memory area such that QS is at
least [ne] and not more than [ne]+256. The command will fail if
there is insufficient memory. The command always succeeds if [ne]
specifies a reduction in the user's area.

This command is useful in two cases:-

a) CORE QG returns surplus free space to the common pool.

b) CORE [ne] allows a user to grab space for future use.

Note: memory adjustment is an expensive operation that holds up
other JODS on the system since it involves shuffling user memory
areas. It is possible to minimise job memory areas by including
lines like

GARB :CORE

P DP-11 AIMS PROGRAMMING MANUAL Page 113
Speed and Size - section 20

in program~J, but this should only be done after a careful. analY3is
of the likely effects. A line of the above sort might cause two

. memory shuffles and these have to be weighed against the reduction
in swapping that the smaller job size will give. Memory shuffles
also hold up input/output operations. Note that the CLEAR command
performs a GARB impliCitly, so if you do a GARB after a CLEAR this

'will waste a lot of time.

It is neither necessary nor desirable to give CORE, CLEAR, or
GARB commands before or after a LOAD.

DOS: the system function FC() gives the amount of memory left
in the common pool. A negative value of Fe () indicates that the
pool is empty and that the system is running below its safety
margin. This situation arises when FC()=O and a number of users
then perform operations that cause DOS to claim storage.

ERRORS DUE TO LACK OF ME~1ORY SPACE

Some AIMS commands may cause an error due to lac 1(of memory
space. There are two different errors that can happen: ?S and 11.

The ?S error means that the command cannot be performed for
lack of free space within the user area (ie. QS is too small). It
may still be possible to perform the command successfully by
securing a larger value of QS. You may be able to achieve this
without increasing the size of your user area, by doing a garbage
collection. This can be done either with an explicit GARB command
or by setting QG to a suitably large value. (Remember that the
automatic garbage collection tries to keep QS>QG.) An explicit GARB
is not recommended because the value of QS immediately afterwal'ds
depends upon the amoun t of garbage that happened to be around.
This is usually indeterminate and there is thus no guarantee that
the GARB will always release sufficient space. A suitably large
value of QS may also be obtained by increasing the total size of
the user area with a CORE command, thereby increasing both UCC) and
QS. Note that however large the area is made, garbage will still
accumulate until QS gets near QG. SO the command may succeed at
first and then fail later when sufficient garbage has accumulated.
You must either place the CORE command immediately before the
command that needs the space, or you must set QG appropriately. If
QG is not set appropriately, a GARB is desirable before the CORE.

The ?Y error means that the command cannot be completed for
lack of memory in the entire system. It arises in three ways only:
(1) attempt to CODE an array with insufficient QS and no scope for
UCC) expansion, (2) attempt to convert a number to a string of
digits with the width setting (@W) too big, and (3) DOS:
insufficien t monitor buffer space when performing file operations.
Errors (2) and (3) cannot be removed by changing QS or QG or by.
doing GARBs or COREs.

PDP-11 AIMS PROGRAMMING MANUAL Page 114
Speed and Size - section 20

MEMORY REQUIREMENTS FOR FILE OPERATIONS
\

Every channel that is INITed requires 16 (MON) or 32 (DOS)
words. This is reclaimed only when the channel 1s RELEASEd. DOS:
Whenever a file is OPENed there is a transient requirement for· at
least 768 words. Once the file is open this requirement falls to
zero if open in modes 4 through 6, or to the device buffer size if
open in modes 0 or 1.

Device
DF
DP

others

Buffer size
64 words

512
256

This buffer space is reclaimed when the channel is CLOSEd.

DOS: DELETE and RENAME have transient requirements for 768
words. INITing a non-disk device requires 256 words for the device
driver. This is not reclaimed until the channel is RELEASEd.

The READ and WRITE commands have transient requirements for
data buffers if the transfer runs across device block boundaries.

PDP-l1 AIMS PROGRAMMING MANUAL Page 115
In ter-job Commun ication - sect.ion 21

I 21. COMMUNICATION BETWEEN DIFFERENT USERS

GLOBAL VARIABLES

There
array of
users, and
function) •
which 0 to
Multi-word
page 18.

is a standard system function, GV (N), wh ich ace esses an
global variables. These variables may be read by all
may be set by certain privileged users (see JS()

There are at least 8 variables numbered from 0 to 7, of
3 are reserved for use by AIMS executive programs.
references like GV(3,N) may be used as with arrays, see

These variables are useful for inter-job communication, since
a value may be set into GV() by one job and later read by another
job. GV() may also be used as a shared array to save space. For
example if a number of jobs all require access to a large database
via an index, it may be efficient to keep the top level of the
index in GV(). This would require perhaps a 100 or 200 word global
vector, which can be arranged when the AIMS system is configured.

LOCKS

Where a number of jobs require access to some shared facility,
such as a common database, it is often necessary to control the
accesses so that only one job is able to modify the data at a time.
Otherwise unexpected results may be obtained when several jobs
simultaneously update the same part of the database.

A global variable may be used to effect the necessary control
if each job contains an appropriate sequence of commands. Suppose
we set GV(n)=O when the shared facility is idle, and we set it to 1
whenever a job is accessing the facility. Each job should then
contain a procedure like:

1) Wait till GV(n)=O.
2) Se t G V (n) = 1 •
3) Access the facility as required.
4) Set GV(n)=O.

This proc edure ensures that only one job has access to the facility
at a time, provided steps (1) and (2) are carried out as a single
operation that cannot be interrupted by the execution of any other
job. Steps (1) and (2) may be done as follows:

100 LET T=GV(N) GV(N)=1 :IF T=l :WAIT 10 :LOOP

Because the examination and setting of GV(n) is done using a single
AIMS command (the LET command above), the two operations cannot be
interrupted. Control will remain on line 100 until some other job
sets GV(n) to zero. GV(n) is then set back to 1 and control goes
to the line following 100.

Rather than setting GV(n) to 1, it may be more informative to
set it to the number of the job that is currently using the

PDP-l1 AIMS PROGRAMl"lING MANUAL Page 1 1 6
Inter-job Communication - section 21

facility. This may be done as follows:

lOO LET GV(N)=GV(N)-J*CGV(N)=O) :UNLESS GVCN)=J :WAIT 10 :LOOP

In this case control will remain on line lOO until someone sets
GV(N) to zero. Control then resumes on the next line with GV{N)
set to the job number J. J may be obtained from JS(3), see section
22. Notice the use of a conditional expression CGV(N)=O) to test
and set the lock in one command.

SIMULTANEOUS FILE UPDATES

Where several jobs are updating the same file it is essential
to use a lock to control the accesses as described above. A
further complication is caused by the use of the READ and WRITE
commands. As noted in section 14, these commands allow any number
of words to be transferred between any point in the file and an
array. In fact, however, most real devices like disks and DECtape
can only transfer data in blocks of 256 words. In addition, the
transfers must begin at a device address that is a multiple of the
block size. AIMS handles this problem automatically. If you give
a READ or WRITE command with an array size that is not a multiple
of the device block size, or with a device address (ie. PTe)
val ue) that is not such a multiple, AIMS will buffer the transfer.
It does this by setting up a temporary memory buffer, reading a
complete device block into the buffer, extracting (for a READ) or
modifying (for a WRITE) the data in the buffer, and then writing
the complete block back to the device (for a w"RITE).

This means that a single READ command in your program may
actually involve two separate reads from the device, and a single
WRITE command may actually involve two reads and three writes to
the device. These multiple transfers may be interleaved with
computation or I/O done by other jobs.

These considerations should be borne in m ind when design ing
the systan of locks that controls access to a database. For
example, in some cases it may be sufficien t to have a lock that
simply pr even ts the simUltaneous update of the same record, so that
one job can update record A whilst another job is updating record
B. But if the two records happen to be stored in the same block on
the device, the multiple reads and writes of the whole block may
cause problems.

SENDING r1ESSAGES BETWEEN TERMINALS

A terminal is regarded as an input device and an output
device. The input side of each terminal is identified by a console
number, C, which is always even. The corresponding output device
is iden ti fled by the number C+l; which is thus always odd. For

I

PDP-11 AIMS PROGRAMMING MANUAL Page 117
Inter-job Communication - section 21

example, the first two terminals are denoted as

KB 0 input side of console 0
PT 1 output side of console 0
KB 2 input side of console 2
PT 3 output side of console 2

Users may send messages to one another by means of the PRINT
command:-

)INIT #5 'PT 7' :PRINT 115 'HELLO TERllINAL 6' :PRINT 'OK
OK
>

Sends the message 'HELLO TERMINAL 6' to console 6.

Only privileged jobs may INIT terminals belonging to other
users.

Short messages maybe sent trom one terminal to another
by means of the EXEC TELL command, see section 18. This
command is implemented in terms of INIT and PRINT commands
as described above.

Extended WAIT command

There is an optional
enables certain events
moment. The syntax is:

extension to the WAIT command which
to be detected at the earliest possible

WAIT [time ne] [wake mask ne]

where [wake mask ne] is a bit mask specifying a set of events which
are to wake the job. lE. the WAIT will be prematurely tenninated
if one of these even ts occurs.

1 Con tro lling conso le acti v 1ty
2 WAKE command from other job
4 reserved
8 Completion of autodialling sequence

16 Slave job (on connected PC) requires service

Note that if [wake mask ne] is omitted, it will evaluate to zero
and the WAIT command will function as usual.

Take note:

Events are remembered from one execution of a WAIT command to
the next. A WAIT command will cause no delay if the wake mask
matches an event which has occurred since the last WAIT command.
Note that this happens even if the program has processed the event
in the meantime.

Unwanted events that have been remembered may be cleared by
executing a WAIT command with a zero wait time and an appropriate
mask. Use a wait time of -1 if you want to wait indefinitely for
an event.

PDP-l1 AIMS PROGRAt1MING MANUAL Page 11 Cl
Inter-job Communication - section 21

When developing a program that uses the wake mask, remember
that every carr iage-return that you type will count as controll ing
console activity.

WAKE command

This command allows one job to wake another sleeping job. The
syn tax is:

WAKE [se]

The first six characters of [se] are assumed to be the name of a
progr~,. The WAKE command scans all jobs on the system and wakes
those which are executing a program of that name. QA is set to the
number of jobs that are woken.

The program. name that is used in this context is that printed
by the EXEC JOBS command. It is settableby the SETNM1command:

SETNAM [se]

Sets the program name of your job to the first 6 characters of
[se] .

Normally two jobs wishing to communicate using the WAKE
command will agree on unique program names which they will publish
using the SETNAM command.

Whilst job A is sleeping, job B may create a data file or
alter a GV() value, and then WAKE job A. This'avoids the need for
job A to repeatedly look for events which may not have happened.

Note that the WAKE command Simply sets a status bit associated
with the named job(s). If such a job is WAITing with a [wake mask]
containing 2, the setting of this bit terminates the waiting
condition. If the job is not waiting the bit is still set but it
has no i'illTledia te effect. When the job next executes a WAIT with
mask 2 it will cause no delay because the bit is already set.

\

PDP-11 AIMS PROGRA~~ING MANUAL Page 119
Job Status - section 22

22. JOB STATUS INFORMATION

Associated with every job is a job status vector, accessed by
the system function JS(N) as follows:-

JS(O)
JS(1)
JS(2)
JS(3)

JS(2,4)
JS(6)

Right byte: Job privileges
DOS departmentluser numbers for this job
Argumen t set by LOGIN command (ignored by AH1S)
Right byte: Number of console controlling this job
Left byte: 2*Job number
Cumulative runtime for this job (1/S0'ths sec)
User's connect time in tens of seconds

U* entries above JS(6) are liable to change as the system ***
*** is developed. Although some executive programs refer to ***
.** these entries, ordinary programmers should not do so. ***

All these may be read by the user, but only JS(O) may be set.

There are several levels of privilege at which an AHlS job may
run. JS(O) is a status word whose bits indicate different
pr ivileges:-

BIT DEC

0-1
2
3 8
4 16
5 32
6 64
7 128

8-15

MEANING

Intrinsic job priority (OO=highest, 11=10west)
Reserved for future ex·pansion
1 if job is logged in
o if job allowed to set GV(n)
1 if STOP command and control-C are allowed
1 if control-O abort character is to be recognised
o if program is an AIMS-executive (EXEC)
Reserved for system use

This status word is initially set to zero before a user logs
onto the system. The user may set any bit of JS(O) by means of the
LET command. For example

100 LET J S (0) = 16

will set bit 4. However, the user cannot clear any bits of JS(O).
This convention allows the user to reduce his privileges, but
pr even ts him from increasing them. Mon: an unpr'ivileged user can
reduce his priority within the limits specified in JS(2).

Whenever the AIMS executive program EXEC is recalled, either
as a result of an EXIT command, or of the control-O key, bits 0,1
and 4-7 of JS(O) are cleared, giving the program executive
privileges.

PDP-l1 AIMS PHOGRAt4MING MANUAL Page 120
Job Status - section 22

EXEC PRIVILEGES

a) Unrestricted access to disk directory [16,'6], which is used
for system administration and accounting.

b) Capability of writing into the system status vector SS(N).

c) Allowed to set the right byte of JS(O) unconditionally.

d) All owed to commun icate with terminals owned by other users.

e) Allowed to execute the LOGIN and LOGOUT commands.

f) Allowed to examine and deposit (DOS) in real memory
by means of the PK() functlon.

g) Allowed to bypass the file structure on directory devices
and thus gain direct access to the storage medium.

h) Allowed to 1Nl T any pseudo-console.

INTRINSIC JOB PRIORITY

Each job competes for central processor time with a priority
that depends on the job's behaviour. For example, jobs coming out

. of keyboard wait-states are more likely to be run than jobs that
are compute-bound. Apart from this dynamically changing job
priority, every job has an 'intrinsic priority' which is detennined
by bits 0 and 1 of JS(O). These are set by the user or by EXEC to
define four broad classes of job:-

o Top-priority job pre-empts all others of lower priority.
Normal interactive job; (control-O and EXIT force
this priority)

2 For low-priority interactive jobs, or fast through-put batch.
3 Lowest pr ior ity for background jobs. Will not run unless all

higher-pr ior ity jobs are blocked.

AIMS executive programs run at priority ato ensure fast·
response. EXEC reduces its priority to 1 as soon as it runs.
Users may further reduce their priority for background processing.
Pr ivileged users may rai se their pr iol" ity to a for fast overall
response at the expense of others.

Note: be careful when changing these bits of JS(a) to preserve the
remaining bits which determine your privileges. The priority bits
should be set using the inclusive-OR operator (!) and cleared using
the AND (&) or exclusive-OR (\) operators.

PDP-11 AIMS PROGRAMMING MANUAL Page 121
System Administration - section 23

23. SYSTEt1 ADMINISTRATION

Some of the facilities described in
an integral part of the AIMS language
They are provided by programs written in
these programs are normally tailored
installation.

sections 23 and 24 are not
and are subject to change.

the AIMS language, and
to meet the needs of each

The AIMS system essentially provides the capability of running
a number of AIMS programs at the same time. Each such program is
associated with and controlled by a particular console. The AIMS
system itself is not concerned with the identity or legality of the
user, or with the demands he makes upon system resources. User
identification, access restriction, and accounting are functions
performed by privileged programs written in AIMS. These are
referred to as AIMS executive programs, and they may be modified by
the system administrator to implemen t any desired resource
managemen t \Xllicy.

There are three executive programs that are essential to the
operation of the system:-

LOGIN

EXEC

LOGOUT

This is run automatically when a user connects to the
system. It performs the screen ing functions associated
with 'logging in'.

Provides the AIMS 'monitor' as seen by the user once he is
logged in. Control goes to EXEC when the control-O key is
pressed, or if the EXIT command is executed.

This is run when the BYE command is given. It performs
the function of 'logging off' a user. This may involve
updating an accounting file and perhaps ensuring that the
user is not occupying more than his allotted disk space.

These programs are privileged (see section 22) and cannot be
interfered with by the user.

When LOGIN is run the only clue to the user's identity is his
console number, which gives the position of his terminal. Some
terminals may be situated in highly secure areas, in which case no
further screening need be done. In most cases however the user
should be asked to identify himself by giving a secret password.
LOam can validate this by looking it up in a file of permitted
users. This file may also contain information about the resources
and privileges allowed to the user. LOGIN may then set the job
status word JS(O) appropriately before passing control to the user.

Once a user has been admitted to the system by LOGIN,
subsequent system behaviour may be made dependent on the user's
identity. For example, a particular applications program may be
run automatically for a class of users.

PDP-ll AIMS PROGRAMMING MANUAL Page 122
System Administration - section 23

LOGIN AND LOGOUT COMMANDS

These commands are only available to EXEC-privileged programs.

LOGIN [nel] [ne2]

Sets JS(1) to the value of [ne2] which must be a valid DOS
department/user number. Also notifies DOS that the job is now
running under department/user number [ne2]. Sets ,]S(2) to the
value of [nel]. JS(2) is ignored by AIMS and may thus be used for
any purpose. The present executive programs use JS(2) to hold a
unique internal user code that is set by LOGIN and referenced by
LOGOUT. Control resumes on the same program line.

LOGOUT

Kills the job and returns its memory to the common pool. All
1/0 channels must be released by the program before executing a
logout command. Control never returns.

BYE [ne]

Forces job number [ne] to execute the system LOGO UT program.

PDP-l1 AIMS PROGRAMMING MANUAL Page 123
System Administration - section 23

SYSCOi"l command (MON only)

The SYSC(1M command enables a user program to exchange
information with the monitor in the form of strings. It permits
the reading and setting of certain monitor data items without
requiring knowlege of the internal monitor organisation.

SYSCOM [command se]>$[reply ne]

[command se] specifies the function required I and
returns a reply string in $[reply ne] if present.
functions are implemented:

? Returns a list of all SYSCOM functions

the monitor
The following

DEVTRA
STRUCTURES
UNITS

Returns the system device translation table
Returns a list of all structures c urr en tly MOUNTed
Returns a list of all device units that exist

Other functions may be implemented from time to time.

PDP-11 AIMS PROGRAMMING MANUAL Page 12~

System Administration - section 23

SYSTEM STATUS VECTOR

A 50-word system status vector accessed by the function SS(N)
is prov ided. It can be read by all users but can only be written
by executive programs. These status words are used to control the
way in which the system is used:-

SS<O)
ss (1)
SS (2)
SS(2,3)
SS{2,5)
SS(7)
SS(8)
SS(9)
SS(10)
SS(11)

Maximum amount of memory that a job may use (words/32)
Access control word (see below)
Interval (in 1/50'ths sec) between scheduling decisions
System null time in 1/50'ths sec (2-word quantity)
System lost time in '/50 'ths sec (2-word quantity)
Address of mode 6 fast access directory, if any
Name of default user filing disk in r adix50
System feature switch, see below
256'Version + Mark number of system
Name of system disk in radix50

III Entries above SS(11) are liable to change as the system ."
•• , is developed. Although some system programs refer to .. ,
". these entries, ordinary programmers should not do so. ".

ss (12)
SS (13)
SS(14)
SS(15)
SS (16)
SS (17)
SS(20)
SS(20+n)

SS(28)
S5(29)
35(30)
5S (32)
3S(33)
SS <34)
55(35)

55<38)
55<39+n)

5S(46)
5S(47)

Address of job table (for use by PK() function)
Number of job slots in job table
Address of console table
Number 0 f highest console + 2
Number of highest pseudo-console +2
Number of terminal designated as 'system console'
Number of priority queues in cpu scheduler.
For n=1 to 55(20). Time quantum in 1/50'ths sec for
jobs 1n run priority queue N.
Total allocated swapping space in 1K-word blocks
Amount of free swapping space in 1K-word blocks
Amount of occupied swapping space in 128-word blocks
Total number of swap transfers done, both in and out
Instantaneous number of jobs swapped out
Number of hardware errors during swap transfers
Number of jobs aborted due to irrecoverable swapping
hardware errors
Number of software checksUm errors on swap-in
For n= 1 to 85(20). Resident protect time for
jobs in run pr ior ity queue n.
Number of fair-schedules done
Seconds until fair scheduling acts

Note: 5S() words not mentioned above are reserved and may actually
be in use for internal purposes. Words above SS(20) depend on
options that may not be present in your configuration.

5S(0) influences the behaviour of the AIM5 monitor when
serVicing requests for more memory. S5(1) is used by the login
program, LOGIN. Depending on the value of 55< 1), access to the
system may be restricted to local users, or further logins may be
prevented entirely. This allows the system to offer a variety of
reduced services whilst it is doing resource-critical background
proc ess ing .

PDP-11 AIMS PROGRAMMING MANUAL Page 125
System Administration - section 23

SYSTEM FEATURE SWITCH

SS(9) i.'1 a bjt mask indicating the presence of VnrlOU!",
optional features which may be included in an AH1S system when it
is configured. Each bit is set to 1 to indicate presence of the
feature:

8 Swapping system
16 Multi-level priority scheduler
32 Crash dump
64 Pseudo-consoles

128 reserved
256 Extended performance metering
512 DOS: Mode 6 fast access directory

1024 Fair-scheduling
204 8 WAKE command
4096 System supports segments

FO RMAT OF AC C ESS CONTROL WORD SS (1)

SS(1) may be set by the system manager to limit access to
various classes of users. It is bit-coded as follows:-

BIT MEANING WHEN SET TO

System is being initialised, no logins allowed.
2 System is initialised. (I.E. DA() and TIC) are set etc.)
4 Restrict all logins to people with department numbers < 17.
8 Allow logins from local terminals.

16 Allow logins from remote (I.E. modem) terminals.
32 Do not ask for password if job is being logged-in

by a pseudo-console (1. E. if job is slaved) •
64 Allow logins from pseudo-consoles.

128 Do not ask for password if user is logging-in with a
department number greater than 16. This effectively removes
password security from non-system departments.

When the system is started, bit 1 is zero. This causes the
LOGIN program to run the system initialisation program SYSINI which
converses with the operator and initialises the system. SYSINI
then sets bits 1 and 2 and returns control to LOGIN. The remaining
bits of SS(1) are set by SYSINI as specified by the operator. They
may also be set by other privileged programs at any time. The
default value for SS(1) is 132 octal, which is 64!16!8!2. SS(1)
may be examined and changed by means of the executive SCHEDULE
command.

PDP-11 AIMS PROGRAMMING MANUAL Page 126
System Administration - section 23

PASSWORDS

The DOS fUe structure provides for partitioned
accessed via the job's department/user numher. It does
password security or accounting. These facilities are
by the AIMS login and logout programs using a file
which contains the department/user number and password
user known to the system.

DEPAR'INENTlUSER NUMBERS

d.i. reet0r les
not prov id€:
lmplemen ted
'USERS.SYS'

of every

Each new user should be allocated a department and a user
number which must be entered into the master file directories of
every device that the user is permitted to access. This is done
using the fEN switch in PIP or the USER.DMP utility.

Two disk areas are treated specially by AntS:-

[16 16] System administration area. This area
freely by AIMS executive programs, and
at all by any other program. It is used
passwords and accounting information.

can be accessed
cannot be accessed
to hold files of

(16 17] AII1S library. EXEC searches this area by default if a
requested program cannot be found in the user's own file
directory.

Note that all references to department/user numbers are in
decimal, whereas DOS uses octal numbers.

LOGIN PROGRAM - LOGIN

When a user connects to the system a new job is created and
the AIMS login program, LOG IN , is run. At this stage the job is
running under the AIMS system account [16 16]. This does not imply
any loss of security since LOGIN is privileged and cannot be
stopped by the user.

LOGIN begins by examining the state of the system using the
FCO, SS(), and PK() functions. If LOGIN decides that the user
should not be allowed to use the system, it may pr int a message to
this effect and kill the job by executing the LOGOUT command.
Alternatively, if the system can accept another job, LOGIN will ask
the user for his departmen t/user number and password, and validate
these by reference to the file 'USERS.SYS'. If all is well, LOG IN
will log the user in by executing the LOGIN command, which also
changes the department/user number to the appropriate value. LOGIN
now examines words 21 to 25 of the user's record in USERS.SYS to
see if they contain a filename and department/user specification.
If so, LOGIN opens the specified .DMP program on channel 4, and
LOADs and runs the first overlay of it. If not, LOGIN transfers
control to EXEC via the EXIT command.

I

PDP-11 AIMS PROGRAMMING MANUAL Page 127
System Administration - section 23

FORMAT OF USERS.SYS FILE

The file begins with an 8-word header as follows:-

0: file creation date
1: number 0 f en tries
2: base address of first user record
3: number of words per user record
4: base address for storing system-wide memo string
5 to 7 spare

This is followed by a table of 1-word entries g~vlng the valid
department/user numbers. Unoccupied entries contain zero. The
relative position of an entry in this table is used as an internal
code iden ti fying the user.

Following the department/user table there is. a table ot:
fixed-length records, one record for each user. Each record
contains password and accounting information for the user. This
table begins at the file address (le. PT() value) given in Word2
of the header, and the size of the records is given in Hord3 of the
header. The PT() value of the record for user number U is thus
given by Word2 + U*Word3, where U is the internal code derived from
the departmen t/user table.

This scheme allows the size of the tables or records to be
altered without affecting existing administrative programs. The
internal code number, U, is computed by LOGIN and entered into the
left half of JS(2) by the LOGIN command. Once a user is logged in
his record may thus be accessed directly by reference to .JS(2). In
particular, the logout program uses JS(2) to update 2ccounting
information in the user's record.

Each user record is currently 32 words long and has the
fo 11 owi ng format:-

0:
4:
5:
7:
9 :

10:
12 :
20:
21 :
25:
26:
28:
29

Up to 7-character password
Bit-mask indicating user's pr ivileges
Cumulative connect time in seconds
Cumulative run time in 1/50ths of a second
Date when user last logged off
Time when user last logged off in tenths of a second
Upto 15-character name of user
Number of times user has logged in
upto 6-character name of program for auto-start.
Department/user number of auto-start program.
Logout quota on default disk (-1=infinity)
Default file protection

to 31 spare

Words 21 to 25 are used by the LOGIN program to cause a
user-specified program to be run automatically whenever someone
logs in under a particular [p,p] number. The specified file is
assumed to be in DUMP format with a file extension of .DMP. If no
program is specified (detected by word 25 being zero), LOGIN will
run the EXEC program.

PDP-'1 AIMS PROGRAMMING MANUAL Page 128
System Administration - section 23

The privilege bit-mask is identical in format to JS(O). This
8-bit mask is stored in the right-half of JS(2) by the login
program. EXEC inclusive-OR' s the mask into JS(O) whenever it
relinquiShes control to the user.

Word4 of the header indicates the address of the system memo
string area. The program SYSMEM.BAS allows a Short string to be
stored in this area. The login program prints this string if the
user has not logged in since the message was stored • This is a
simple way of not! fying all users.

ACCOUNTING OPERATIONS

Use of the system is monitored chiefly by the login and logout ..
programs.

The login progam sets words 9 to 11 of the user's record to·
the date and time of login, and increments word 20.

During the running of a job the runtime is aqcumulated by AIMS
in JS(4) and JS(5), and the connect time in JS(6).

The logout program updates the user's record by:

. a) Adding the runtime from JS(4-5) to words 7~8.
b) Adding the connect time from JS(6) to words 5-6.
c) Resetting words 9-1' to the current time and date.

LOGOUT PROGRAM - LOGO UT

The logout program, LOGOUT, is called in response to the· BYE
command. Apart from the accounting operations noted above it
performs the following functions:

a) Releases all I/O channels
b) Kills the job by executing the LOGOUT command

If desired the logout program may perform other functions,
such as writing a transaction file, or deleting temporary files
from the user - s disk area.

PDP-11 AIMS PROGRAMMING MANUAL Page 129
System Administration - section 23

PERFQRMANCEMONITORING - WATCH OPTIQN

There is a system data file called LASTUP.SYS which is used to
store performance data relating to the current running of the AIMS
system. This file is initialised by SYSINI when the system is

. started up. SYSINI uses this file to store the date and time when
the system was started, thus enabling the SYSTAT program to compute
the system uptime. There is a standard executive program called
WATCH which is logged-in on a pseudo-console by SYSINI, and which
normally runs until the system is taken down. WATCH wakes itself
up every ten minutes and stores system performance data in
LASTUP.SYS.

WATCH is also used to perform long-term time-dependent
functions on behalf of other executive programs. For example,
WATCH wakes up at midriight and updates the DA() and TI() functions.
WATCH may also be instructed to start the BATCH controller at a
specified time of day, thus providing a completely automatic batch
processing facility (see section 24). Customers may make their own
additions to WATCH to implement other time-dependent functions as
required.

MON: WATCH is also used to log hardware errors and to deal
with user/operator communication if a device goes down. For
example, if the lineprinter runs out of paper WATCH will print the
message

[Problem with device LPAO]

on the user's terminal and the operating console.

PDP-l1 AIMS PROGRAMMING MANUAL Page 130
Batch Proc essing - section 24

I 24. CONTROL FILES AND BATCH PROCESSING

A job is normally controlled by a user typing commands at a
console, but there are some situations in which this interactive
mode of working is inconvenient:-

a) Since each job requires one console, the job capacity of a
system is limited to the number of consoles in the installation.
For small installations this may be unduly restrictive, causing
reduced utilisation of the other hardware components.

b) If the commands that are needed to run a job are known
completely in advance, it would be more convenient to place them
in a file, and get the system to execute this f He as if the
commands had been typed at a console. This is especially useful.
if the command sequence is at all lengthy or complex. A typical
example of this is the command sequence required to CALL and
DUMP a large number of program overlays into a dump-format file.,

.c) Some jobs may perform a large amount of input/output or
computation, causing them to take several hours to complete. It
is obviously tedious for an operator to remain present for the
duration of the job, simply in order to type in the occasional
command.

d) Routine maintenance procedures, such as file updates, disk
dumps, and so on are best done by some automatic. procedure so as
to minimise operational errors.

To cater for these situations, AII'1S provides a facility which
allows one job to send commands to another job. The job which
sends the commands is called the master job, and the other one is
called the slave job. The slave job receives the commands exactly

. as if they had been typed by someone at a console, and in fact the
slave job need not know whether it is being controlled by a person
or by a master job.

This facility is implemented in AIMS by means of a special
device called a 'pseudo-console', which is emulated by the AIMS
system software. A master job may INIT a pseudo-console, and may
then send messages to it by means of the PRINT command. To the
slave job the pseudo-console looks like an ordinary console, and it
receives the commands on channel 2 in the normal way. Similarly,
if the slave job generates any printout, it is sent to the
pseudo-console v ia channel 1 as usual. The master job may read the
slave job's pr intout by INPutting strings from the pseudo-console.
Thus the master job is able to 'type' commands to the slaved job,
and to 'read' the printout from the slaved job, just like a person
sitting at a real console.

The pseudo-console facility is provided in a fairly crude
form r and the mechanics of its use require a fair knowledge of the
internal struct~~e of AIMS. These details are described later. We
now describe the two standard executive programs that are provided
to cater for normal user requirements.

PDP-11 AIMS PROGRAMMING t-1ANUAL Page 131
Ba tch Proc ess ing - sect ion 211

OB EY command

OBEY is one of the commands available under EXEC. The syntax·
is

OBEY [filename]

where the file is assumed to have an extension of .CTL.

This command causes the specified file to be executed by a
slave job. The printout from the slave job is displayed on the
console where the OBEY command was typed. When you give an OBEY
command, your current job becomes a master job. The master job
finds a free pseudo-console, logs it in, reads your control fUe,
sends the commands one at a time to the slave job, reads the slave
pr intout, and pr ints it on your console. When the end of the
control file is reached, the slave job is logged out, the master
job releases the pseudo-console, and you are returned to EXEC.

The OBEY command thus requires two job slots and the use of
your console, so it does not save any resources. It is mainly
useful for saving time and typing when it is required to execute ·a
fixed sequence of commands online. For example. you can keep a
library of standard control files that build program overlays, list
all the programs in a particular suite. or copy them from disk to
magnetic tape or vice versa. The OBEY command has the additional
advantage that it provides a printout in a standard format, with
the date and time of day, showing exactly what has been done. This
is invaluable for the routine maintenance of complex application
suites, since the printouts may be filed away and referenced later
if some problem occurs.

Unlike most EXEC facilities,
aborted with control-O, since .this
running. OBEY may be aborted by
causes EXEC to logout the slave job.

BATCH proc ess ing

the OBEY command cannot be
would leave the slave job still
typing carriage-return which

The batch processing option allows complete jobs to be run
automatically without the use of a real console. A user may create
a control file containing any sequence of EXEC, AnIS or user-level
commands. fie may then· use the executive SUBMIT command to enter
his control file into a queue of jobs waiting to be run .. Later on
this queue will be read by a standard executive program called

.BATCH. BATCH reads each queue entry in turn and executes the
control files using a pseudo-console and slave jOb. The printout
from the slave job is returned to the user's disk area as a log
file which is written by BATCH.

The master job controller, called BATCH, is itself normally
run on a pseudo-console, so that the whole process does not require
the use of any real consoles. When compared with interactive use I
the batch process has the disadvantage of requiring an extra job
slot for the BATCH controller. However, since BATCH can run two
slave jobs concurrently, this overhead is not too severe. With

PDP-l1 AIMS PROGRAMMING MANUAL Page 132
Batch Processing - section 24

large AlMS inst.allations it is normal to leave the BATCH controller
running all the time on a detached pseudo-console. The controller
wakes up when necessary and scans the queue for newly submitted
jobs. For smaller installations where memory space is at a premium
it is more usual to run the BATCH contra ller only dur ing off-peak
hours such as overn ight •

The batch proc essing option prov ides some extra EXEC commands
as follows:-

.QUEUE LIST

Lists the batch queue showing what jobs are waiting for
batch proc essing •

• SUBMIT [filename]

Enters the specified control file into the batch que1le.

A number of switches may be used with the SUBMIT command
to specify options:

%AF'TER:hrs:mins

%RUN:hrs:mins

Example

Do not run. until after the specified time.
Default is run as soon as possibl e.

Abort job if run time exceeds this limit.
Default is 10 minutes.

SUBMIT FRED%A:20:30 %R:5:0

Submits the file called FRED.CTL, with a runtime limit of five
hours, not to be run before 8:30 in the evening .

• QUEUE KILL

Deletes from the Queue the last en try that you made. Used
to cancel an erroneous SUBHIT command .

• QUEUE KILL #n

Deletes your entry number n from the queue .

• KILL Pn

Aborts the job running on pseudo-console number n. Used to
kill a job that has already been started by BATCH.

PDP-11 AIMS PROGRA~1ING MANUAL Page 133
Batch Processing - section 24

Control files

Both the OBEY command and the batch processing option expect a
control file in the following format:-

dep usr [First line is department/user numbers only

[body of control file

B [La st 1 ine must be a BYE command

The contro 1 file should have an extension of . CTL. The first 1 ine
of the file must contain the department/user number under which the
job is to be run. The password need not normally be given
(although this is an option controlled by SS(1)). The following
lines may contain anything, provided this makes sense to whatever
program is being run. Normally the second line of the file should
contain some EXEC command, since control goes to EXEC after login.
The last line of the file should be a BYE command.

Note that the control and log files are to be found under the
department/user number of the job that did the SUBMIT command.
This number need not be the same as the number under which the
batch job runs.

Control-O and control-C may be included in a control file by
using the syntax AO and AC.

It is sometimes useful to be able to send commands directly to
the batch controller during the running of a slave job. This .is
done by means of a line in the control file that begins with a
perca1t sign. By convention any control line beginning with % is
interpreted as a command to BATCH and is not sent to the slave job.
The following BATCH commands are implernented:-

%NOTIME

%TIME

%NOLOG

%LOG

Suppresses the time-of-day, which is normally printed
by BATCH at the left margin of all lines in the log
file. In this mode the log file contains only what
would appear on a real console.

Restores the time-of-day printout.

Suppresses all log file output.

Restores log file output.

%PRIORITY:n Sets the intrinsic job priority of the slave job to n
(wheren is between 1 and 3). Default is 1.

These batch commands may be placed anywhere in the control
file after the first line. The %PRIORITY command is only effective
if it 1 s read by the batch controller at a time when the slave job
is executing a user program, so it should normally be placed after
a RUN or EXECUTE command.

PDP-11 AIMS PROGRAMMING MANUAL Page 134
Batch Processing - section 24

Log files

BATCH creates a log file under the department/user' number of
the job that submitted the request. The file has the same name as
the control file, and an ext.ension of .LOG. Any previous file with
this name will be deleted by BATCH.

EXAMPLE USE OF OBEY COMMAND

This example shows a control file for copying a set of
programs from DECtape onto disk. The control file contains the
following text:-

16 16
CO =DT:NEX.BAS/U
CO =DT:DIRECT.BAS/U
CO =DT:COPY.BAS/U
co ::DT:PIP.BAS/U
CO =DT:SYSTAT.BAS/U
CO =DT:JOBS.BAS/U
CO =DT:MAP.BAS/U
CO =DT:OBEY.BAS/U
CO =DT:SET.BAS/U
CO =DT:QUEUE.BAS/U
B

When this file is obeyed we get the following printout at the
terminal :-

.OBEY GETNEX
15: 10:54 PC 6 INITIALISED AS JOB 4
15:10:54 AIMS V2C
15:10:54 J4-P6
15:10:55 DEPT,USER: 16 16
15:11:03
15:11:03 .CO =DT:NEX.BAS/U
15:11:35
15:11:35 • CO =DT:DIRECT.BAS/U
15: 12:30
15:12:34 · CO =DT:COPY.BAS/U
15: 13:37
15: 13: 38 · co =DT:PIP.BAS/U
15: 1J.t:01
15:14:03 • CO =DT:SYSTAT.BAS/U
15:1J.t:28
15: 14: 28 • CO =DT:JOBS.BAS/U
15: 15: 04
15: 15: 05 · CO =DT:MAP.BAS/U
15: 15: 26
15: 15: 26 • CO =DT:OBEY.BAS/U
15:16:04
15:16:09 · CO =DT:SET.BAS/U
15:16:30
15:16:31 .CO =DT:QUEUE.BAS/U
15: 17: 05
15: 17: 05 .B

PDP-l1 AIMS PROGRA~4ING MANUAL Page 135
Batch Processing - section 24

15:17:08
15:17:08
15:17:08

RUN Tll-fE 1 MINS 35.9 SECS
CONNECT TIME 6 MINS 10.0 SECS
BYE

Batch and Obey examples

AIMS V2C
Jl-K2
DEPT,USER: 16 16
PASSWORD:

. DIR • .CTL
DF 0: [1 6, 1 6]

23-MAR 1 FRED.CTL
TOTAL OF 1 BLOCKS IN 1 FILES.

.COPY PT3:=FRED.CTL
16 17

[This is a very simple control file

DA
J
B

[Which we now OBEY
PC 6 INITIALISED AS JOB 7
AIMS V2C
J7-P6
DEPT , USER: 16 17

• DA

.OBEY FRED
14:53:15
14:53:15
14:53:16
14:53:16
1-4:53:24
14:53:25
14:53:26
14:53:33

14 HRS 53 MINS 25.7 SECS ON THURSDAY 29-MAR-13

.J 1 4: 53: 33
14:53:35
14:53:46
14:53:47
14:54:00
14:54:02
14:54:12
14:54:13
14:54:24
14:54:24
14:54:33
14:5-4:36
14:54:36
14:54:31

JOB LINE AREA PROGRAM SIZE ST P RUNT1ME CONNECT TIME
1 K2 1 6,16 OBEY 1,152 SL 1 05
2 PO 16,16 WATCH 512 SL 1 05
3 P2 1 6,16 BATCH 2,048 SL 1 2:15:03
4 K4 16,16 LOGIN 1,152 TI 0 00
5 KO 40,41 EXEC 768 T1 1 01: 06
6 P4 40,41 !MP1 3,328 R4 18:59
7 p6 16,17 JOBS 1,408 R3 1 02

• B
RUN TIME 3.0 SECS
CONNECT TIME 1 MINS 20.0 SECS
BYE

Looking at the JOBS printout above, you can see the
master job running the OBEY program, and the slave job
number 1 running on pseudo-console 6.

You can also see the batph controller, which is

01: 20
11:25:40
71:25:20

21 : 30
37:40
20:50
01: 00

sleeping (job 3), and the job that it is currently running (job 6) •

• QUEUE LIST
FROM 14:32 HRS 29-MAR-73, FREE=500
[40, 41J #1 SUBMIT TRIAL %RUN:4:0 (IN PROGRESS)

PDP-11 AIMS PROGRAMMING MANUAL Page 136
Batch Process - section 24

.• SUBMIT FRED [Example of queueing a batch request
1 FRED QUEUED

.Q L
FROM 14: 32 HRS
[40, 41J iFl
[16, 16] In

29-MAR-73, FREE=492
SUBMIT TRIAL %RUN:4~O
SUBMIT FRED %RUN:O:l0

(IN PROGRESS)

.0 K [Delete submitted request trom queue
FRED KILLED

.WHO
. J 1-WHO-K2 J2-WATCH-PO J 3-BATCH-P2 J4-LOGIN-K4 J5-EXEC-KO J6-TMP1-p4

.KILL J4 [Kill a job directly
JOB 4-LOGIN-[16,16] KILLED, K4 DETACHED •

. W
Jl-WHO-K2 J2-WATCH-PO J3-BATCH-P2 J5-EXEC-KO Jo-TMP1-P4

.W [Wonder if batch job has finished
J 1-WHO-K2 J2-WATCH-PO J3-BATCH-P2 J5-EXEC-P2 ·J6-LOGOUT-P4

.W [Yes, it is just logging out now
J1-WHO-K2 J2-WATCH-PO J3-BATCH-P2 J5-EXEC-P2

.0 L [It should have gone from queue
QUEUE EMPTY

.CO PT3:=TRIAL.CTL[40,41
40,41 [This was his control file
E TMPl
CONTRO
S 'nUMP
BYE

[Examine his log file
.CO PT3:=TRIAL.LOG[40,41
14:33:13 29-NAR-73 AIMS V2C BATCH V1D
14:33:14 PC 4 INITIALISED AS JOB 6
14:33:17 AIMS V2C
14:33: 17 J6-P4
14:33:18 DEPT,USER:40,41
14:33:19
14:33:19
14:33:21
15:25:01
15:25:08
15:25: 10
15:25:10
15: : 10

.E TMP1
FILE:CONTRO
>S'DUHP
>BYE
RUN TIME 45 MINS 37.3 SECS
CONNECT TIME 52 MINS 0.0 SECS
BYE

.8 [Now we log out
RUN TIME 24.3 SECS
CONNECT TIME 10 MINS 20.0 SECS
BYE

PDP-11 AIMS PROGRAMMING MANUAL Page 137
Batch Processing - section 24

Driving pseudo-consoles - Master jobs

A master job connects itself to a pseudo-console by INITing it
on a particular I/O channel. A privileged job may INIT any
pseudo-console, even if it is already in use by another master job.
An unprivileged job can only INIT a pseudo-console if it is either

a) Not attached to a slave job, or

b) Attached to a slave job that is logged in under the same
department/user number as the master job, provided the
slave job is not poten tially pr ivileged.

These restrictions are designed to prevent unprivileged users from
inter fer ing with pr ivileged system jobs.

Normally a master job will want to create a new slave job and
will therefore need· to find a pseudo-console that is free. MON:
The special d ev icename PCX is translated by the monitor into the
name of the lowest-numbered free PC. The command INIT #c 'PCX:'
will connect channel c to a free PC and the number of the PC thus
obtained my be found from QX(c,7), see page 65. DOS: There is no
convenient way of finding a free pc. The method involves peeking
at the KTAB system table, see the utility program PCDEMO.BAS.

Once the channel is INITed, the master job may PRINT and INPUT.
messages in the. normal way. PC's are special in that input and
output may be done on the same channel number.

The INPUT command will extract characters from the slave job's
console output buffer until a line terminator is found or the
buffer becomes empty. The string thus obtained is given to the
master job. Note that this string may not be a complete line (the
slave job may be compute-bound at the time), and also that the
INPUT command never suspends the master job. Hence the master job
should contain a routine that repeatedly INPUTs from the PC until a
null string is returned. The routine can assemble the slave job's
output into proper lines by scanning it for [crllf]. It is also
necessary for this routine to detect when the slave job is waiting
for console input, since this often happens when half a line has
been printed (eg. the slave job's input prompt string). The
routine must also notice if the slave job logs itself out, so that
the master does not wait indefinitely for output that will never be
generated. On the other hand the routine should be sure to collect
the printout from the LOGOUT program, which may appear after the
job has logged out.

For these reasons the master routine that obtains output from
the slave job is somewhat complex. A suitable routine is given
below: -

800 REM GET LINE FROM SLAVE JOB
805 PUT $7>$1$6$6>$7 :RETURN 4
810 INPUT #5 $:UNLESS $=" :PUT 7>$7 :GOTO 805

MON:
815 if qx(5,4)=9 :put $7>$1 :put >$7 :return 2
820 if qx(5,4) :return 3

PDP-11 AIMS PROGRAMMING MANUAL Page 138
Batch Processing - section 24

825 return 1

DOS:
815 unless pk(jt+j-1) :unless pk(kp+10) :return 1
820 if (pk(jd+14)&255)=238 :put $7>$1 :put >$7 :return 2
825 return 3

where

#5 is PC channel
$6 contains [er/If]
$7 is buffer used for building up a full line
$1 is full line returned by routine
DOS only:
JT is address of job table
J is the number of the slave job
JD is address of slave job's JOBDAT block
KP is address of PC's entry in KTAB

The routine has four returns:

1 Job has logged out, there is no more pr inout.
2 Job is waiting for input, $1 is remainder of pr intout.
3 Job is busy, no full line available yet.
4 Full line of printout in $1

The master job sends characters to the slave job by PRINTing
them to the PC channel. These characters are sent through CONSER
just as if they originated from a real console. The master job
should normally end each line with %C13, rather than [cr/lf],
because CONSER will add a linefeed. The lines mayor may not be
echoed .depending on whether or not the slave job has suppressed
echoing. The master job should not send characters to the slave
job unless the slave j ob is waiting for input, otherwise the
correspondence between input and output will be upset. This
correspondence is maintained automatically provided the master
input routine is always called after each PRINT to the PC.

Since the PC-driving procedure is rather complex and is
affected by internal changes to AIMS, it is strongly recommended
that programmers should use the standard subroutine given above.

PDP-11 AIMS PROGRAMMING MANUAL Page 139
Line Communication Facilities - section 25

25. LINE COMMUNICATION FACILITIES

The standard AIMS system will support any mixture of
asynchronous line interfaces operating at speeds upto 9600 Baud for
output and 2400 Baud for input. (eg. KL, DL, DC, Le, DJ, OH, DZ).
Line characteristics such as speed, parity, echoing, filling, and
the interpretation of control characters, may be varied under
program control to suit the needs of each individual terminal.
These facilities are primarily intended for interactive terminals
such as Teletypes, DECwriters, and visual displays, which
communicate with people. Extra facilities are needed if a line is
to be used for other purposes, such as computer-to-computer
communication or the control of special-purpose teletype-compatible·
devices. A number of options are available as follows:-

1) Synchronous Line Option

Provides support for synchronous interfaces operating at
speeds upto 2400 Baud (eg DP11, DU11).

2) Image Mode Option

Allows any line to be treated as an 8-bit wide
input/output device with no character interpretation. This
permits the control of special-purpose devices like filmstrip
projectors and cassette recorders, where all eight bits may be
used for data transmission.

3) Specialised Communication Protocols

Special facilities are available for connecting an AIMS
system to some well known message switching networks, such as
S.W.I.F.T. and C.B.I.P.S. Other facilities can be provided
on request.

These options are described in more detail below.

PDP-ll AIMS PROGRAMMING MANUAL Page 140
Line Communication Facilities - section 25

Line Modes

Each communication line is capable of operating in two modes:-

1) Normal Mode

Most fines operate in this mode. Data is assumed to be
ASCII, parity is stripped on input and may be generated on
output. Characters like carriage-return, nUll, rub out ,
control-Y, control-C, and control-O are treated specially.

Terminals operating in normal mode may be either attached
er detached. Typing carriage-return on a detached terminal
creates a new job and causes the LOGIN program to be run. The.
terminal is then said to be attached to that job, and the
characters control-O and control-C affect job execution. The
terminal becomes detached when the user logs out.

2) Image Input Mode

Received bytes are assumed to be eight bits wide and no
special formatting or interpretation takes place. It is
normal to use image mode when a terminal is detached. If an
attached terminal is placed in image mode, the terminal loses
control of the job until normal mode is restored. The PRINT,
INPUT and ACCEPT commands may be used to commun icate with an
image mode line, but the LINE command is recommended.

PDP-11 AIMS PROGRAMMING MANUAL Page 141
Line Communication Facilities - section 25

The LINE command

The LINE command provides
characteristics, and of sending
or packets. The command controls
of an 1/0 channel. The syntax is

a means of changing line
and receiving data in 8-bit bytes
a line directly without the use

LINE [line number ne] [function ne] [optional argument]

where

[line number ne]
[function ne]
[argumen t]

is console line number (not channel number)
specifies the function to be performed
depends on function.

The function codes are:

o Input of 1 byte to QA. If the line is in image
mode, the full eight bits will be obtained.

1 Image-mode outp'ut of low-order 8 bits of [argument ne]
2 Read line characteristics into QA, set line

characteristics from [argument neJ.
3 Set modem status from [argument ne], read latest modem

status into QA.
4 Set line speed (Baud rates).
5 Reserved.

These facilities are elaborated below.

Function 0 - Input one byte

To input one byte:

100 LINE L 0 : [Here with byte in QA]
110 [Here if input buffer empty]

The line number L must be even. If there are any characters in the
input buffer, the LINE command succeeds and the next received byte
is returned in the system variable QA. If the line is in image
input mode QA will have a value between 0 and 255 (decimal)
corresponding exactly to the received data byte. If the line is in
normal mode QA will be between 0 and 127 (decimal) and certain
characters like Null, AC, Aa etc. are not seen due to special
interpretation. If no characters are available control goes to the
next line of the program. Thus the command never suspends the job.

If you want to wait until a character is available, use the
following subroutine:

700 LINE L :LET C=QA :RETURN
705 WAIT 30 1 :GOTO 700

This routine returns with a character in C. If there a re no
characters the routine waits for three seconds and tries again.
Any characters that arrive during the wait will be buffered in the
normal way and all such characters will be delivered by the

PDP-11 AIMS PROGRAMMING MANUAL Page 142
Line Communication Facilities - section 25

subroutine at the end of the wait period.

If you need to respond as soon as a character is received, the
possibhe three second delay may not be acceptable. In this CF.lse

you could use

705 WAIT 1 1 :GOTO 700

which will respond within 100 milliseconds. The WAIT 1 should not
be used unnecessarily since it places heavy demands on system
resources. If you need to respond quickly to every character typed
it is best to place the line in image input mode and use a
WAIT 30 1.

Function 1 - Image Output

For image output the line number L must be odd. The
argumen t is output to the line exactly as supplied with no
generation, filling or eRC computations. The LINE command
succeeds I but if the line output buffer is full the job
suspended for a while. .

8-bit
parity
always
may be

The following program sends an asc ending 'binary coun t'
pattern to a specified line:

20 $LINE NUMBER:
100 INPUT 720 L :LET L=L!1 :GOTO 120
110 PRINT '7' :GOTO 100
120 LET 8=0
130 LINE L 1 B :LET B=B+1 :LOOP

Function 1 - Force

A privileged job may also use function 1 with an even line
number 1. In this case the character is processed by the system
exactly as if it had been typed at the keyboard of the terminal
connected to line L. This facility is useful in tutorial
situations where an instructor can show someone what to type even
if he is at a remote terminal. It is also useful occasionally if a
terminal becomes faulty in the middle of an important job.

The executive FORCE command allows you to type on other
keyboards in this way.

PDP-11 AIMS PROGRAMMING MANUAL Page 143
Line Communication Facilities - section 25

Function 2 - Line Characteristics

Function 2 of the LINE command allows the line characteristics
word to be read and set under program control. If [argument] is
-1, the command simply reads the line characteristics into QA. If
[argument] is positive, certain bits of the characteristics word
are set as specified, and the old characteristics are returned in
QA.

The command

LINE L 2, -1 :LET C=QA

will read the characteristics of line L and store them in the
variable C. Note the comma which avoids 2 -1 evaluating to 1.

The line characteristic word C is a bit mask in format:

Input side (L even):

1 Suppress echo of carriage-return linefeed only.
2 Suppress echo until completion of next INPUT or

ACCEPT command. (still echoes LF & CR)
4 Image mode input.
8 Simplex line, inhibit all echo.

16 Convert lower-case input to upper-case.
32 Convert input from CCI'IT telex code to ASCII

128 Every character is treated as a break-character.

256 Line is attached to a job.
C/512&15 Interface type code (see below)

Ou t pu t s id e (L 0 dd) :

4 Convert lower-case output to upper-case.
8 Line output is paused by control-So

16 Pause mode is enabled.
32 Convert output from ASCII to CCITT telex code.
64 Suppress program printing (like control-X).

128 Generate even parity on output.
512+ same as for input side.

Interface type codes:

o KL 11
1 LC11 (parallel DECwriter)
2 DCll (programmable speed, modem control)
3 DL 11 (incl uding DL ll-E)
4 Pseudo-console
5 DPll (synchronous)
6 DHll multiplexer
7 DJ11 multiplexer
8 DZ11 multiplexer

Bit values greater than 128 are read-only and cannot be
changed by the LINE command.

PDP-11 AIMS PROGRAMMING MANUAL Page 144
Line Communication Facilities - section 25

The command

LINE L 2, -1 :LINE L 2 QAIB

may be used to set a particular bit B. The command

LINE L 2, -1 :LINE L 2 QA&-B-1

may be used to clear a particular bit E. The bit aSSignments are
such that

LINE L 2

establishes the normal default conditions.

PDP-11 AIMS PROGRAMMING MANUAL Page 145
Line Communication Facilities - section 25

Function 3 - Modem Status

Control of modems is an AIMS option. When the option is
present AIMS takes full advantage of the facilities provided by
interfaces such as the DL11-E, DM11-BB and DC11, and will answer
the phone, deal with carrier fail, etc. in an appropriate manner.
Function 3 of the LINE command enables the user to read the state
of a modem, and also to control its operation if desired.

The modem state is represented as a device-independent bit
pattern as follows:

hardwa re state:

- 1 Modem is connected to line (ie. DATA rather than TELE)
• 2 Modem is sending out a carrier (ie. REQ-TO-SEND is on).

4 Modem is ready for sending
8 Modem is receiving a carrier (ie. CAR DET on).

16 The received carrier has changed state (ie. come up
or gone down).

32 The phone is ringing (this pulses in step with the. bell)

Software control bits:

• 64
- 128

Do not answer phone when it rings.
Do not d rap the line, even if c arr ier fail s .

The bits marked - may be changed by means of function 3. The other
bits are determined by the. state of the modem and are read-only.

The software control bits allow calls to be ignored on
particular lines, and also enable a line to be held regardless of
what is going on at the other end. This is useful in experimental
or error-prone conditions.

When using function 3 of the LINE command, the line number
must be even. If [argument ne] is -1, the command just reads the
current modem status into QA. If [argument ne] is positive, the
command sets the modem status as specified, and then reads the
latest status into QA. The status returned in QA may differ from
[argument ne] if you attempt to set an impossible condition.

POP-ll AIMS PROGRAMMING MANUAL Page 146
Line Communication Facilities - section 25

Function 4 - Speed Setting

Some line interfaces, such as the DC11, OH11, and OZll allow
program variation of the Baud rate. This is done by writing the
appropriate speed code into the interface hardware register, using
function 4 of the LINE command:

LINE [line ne] 4 [speed ne]

sets the speed of line number [line ne] as specified by [speed ne).
[speed ne] must evaluate to one of the permitted speed codes for
the line interface. The DCll has four possible speeds coded from 0
to 3. The actual speeds obtained depend on the particular type of
DCll. For the DHll and DZ11 the speed code specifies a definite
speed as follows:

Code DZ 11 DHll (Baud)
0 50 N/A
1 75 50
2 110 75
3 134.5 110
4 150 134.5
5 300 150
6 600 200
7 1200 300
8 1800 600
9 2000 1200

10 2400 1800
11 3600 2400
12 4800 4800
13 7200 9600
14 9600 External speed A
15 N/A External speed B

For example the command LINE 6 4 9 would set the receive speed of
DJ line KB6 to 1200 Baud. Normally the keyboard and pr inter will
be operated at the same speed, and a second LINE command is needed
to change the printer speed like LINE 7 4 9 to set PT7.

Speed changing may be done more easily by means of the
executive

.SET SPEED b

command, which sets the speed of both keyboard and .pr inter to b
Baud.

PDP-l1 AIMS PROGRAMMING MANUAL Page 147

AUTOMATIC DIALLING

AIMS supports the DN11 automatic dial un it which enables the
system to initiate a telephone or Telex call under program control.

In it ia ti ng a Call

The command

DIAL [DN11 number ne] [phone number se)

stores the curren t DN11 status in QA, checks if the DN 11 is free,
and if so begins dialling the number specified by the string
expression. Execution continues along the same line as the DIAL
command.

If the DN11 is busy or is without power the DIAL command fails
. and simply returns the current DNll status in QA.

Reading DN11 Status

The status of a DN11 may be read at any time by means of the
command

DIAL [DN11 number ne]

which returns the current DN11 status in QA and continues execution
along the line.

The value returned in QA is the contents of the DN11 hardware
status register which has bits set as follows:-

Octal Decimal

40 32

010000 4096

040000 16384

100000 32768

Meaning

Call request. PDP-l1 is attempting to initiate
a call.
Call established. A number has been dialled and
the called party has answered.
Data line occupied. The line is already in use,
you must wait until the present call terminates.
Abandon call. The dial attempt was
unsuccessful, try again.
Modem power off.

Checking for Call Establishment

When you execute a command like

DIAL 2 '012833801'

this merely initiates the dialling sequence; it does not wait for
the connection to be made. It is the programmer's responsibility

PDP-l1 AIMS PROGRAMMING MANUAL Page 148
Line Communication Facilities - section 25

to check later that the call has been correctly established. This
may be done by reading the DN11 status with a second DIAL comrr.and
and checking to see if the CALL ESTABLISHED bit is set.

A program can use the WAIT/WAKE mechanism to suspend execution
until a dialling sequence is completed by doing a WAIT command with
a [wake mask ne] which includes 8.

Example program

To make a call on DNll number 2.

90 LET Z=1 16-1
100 DIAL 2 '012833801' :WAIT 200 8 :GOTO 110
102 PRINT '?CANNOT START DIALLING, DN11 STATUS:' QA&Z :STOP
110 DIAL 2 :IF QA&32 :PRINT 'OK' :GOTO ...
112 PRINT '?CANNOT ESTABLISH CALL, DNll STATUS:' QA&Z :STOP

In this example we use a 20 second timeout so that the program
recovers even if for some reason the DN11 fails to complete the
dialling sequence.

PDP-l1 AIMS PROGRAMt1ING MANUAL Page 149
SWIFT CBT - section 25

AIMS facilities for communication with SWIFT J

The facilities described in this subsection are necessarily
dependent upon decisions taken by S.W.I.F.T. and these cannot be
determined or predicted by Arbat.

Communication with the SWIFT concentrator is by means of a
DUll interface to a synchronous modem. The line communications
protocol is similar to but differen t from the IBM binary
synchronous contention protocol. Message::; are transmitted over the
line in blocks of upto 384 bytes which are CRC checked. The line
traffic consists of a sequence of data blocks interspersed with
control sequences which are used for block acknowledgement and line
turnaround.

A special AIMS command, SWIFT, is provided for driving the
DUll line. This enables an AIMS system to support the SWIFT
communications protocol in a two level manner:

1) AIMS contains a machine-code program for transmitting and
receiving data blocks and control sequences. This program
also converts between the internal ISO character code and the
EBCDIC code that is used on the line, and it computes theCRC
check bytes for each data block.

This program does not however concern it self with the details
of the communications protocol. It merely transmits sequences
or blocks as directed by the second level, and noti fies the
second 1 evel whenever a sequence or block is received.

2) There is a special AIMS job, called the SWIFT protocol job,
which receives the information from level 1 and take::; the
appropr la te action to implemen t the SWIFT commun ications
protocol. This job is responsible for making line bids, .
sending blocks, checking CRCs, acknowledging blocks, error
recovery and so on. Message blocking and deblocking is
performed by level 1 under instructions from level 2.

AIMS contains
one data

holding
receiving
capable of
characters) •

Message Reception

a BLOCK BUFFER capable of transmitting or
block. It also contains a MESSAGE BUFFER
one maximal length message (upto 2000

When a data block is received it is stored in the block buffer
and the protocol job is notified. If the block is acceptable the
protocol job will instruct level 1 to append the block to the
message buffer, and another block can then be received. Eventually
a complete message is assembled in the message buffer and the
protocol job then notifies the SWIFT message handling job that a
message has arrived. The message handling job can read the message
into an array by means of a SWIFT command.

PDP-11 AIMS PROGRAMMING MANUAL Page 150
SWIFT CBT - section 25

Message Transmission

When a message is ready for transmission the SWIFT message
handling job places it in the message buffer by executing a SWIFT
command. This command also notifies the protocol job that a
message is awaiting transmission.

The protocol job then obtains control of the line by
transmitting an appropriate set of control sequences and prepares
to send the message. It instructs level 1 to begin deblocking the
message by moving the first 384 bytes of it fr-om the message buffer
to the block buffer and appending the appropriate CRC bytes. The
message is also converted from ISO to EBCDIC at this stage. When
the block has been transmitted the protocol job will wait for an
acknowledgement and will send the block again if necessary. If the
block is accepted the protocol job will instruct level 1 to move
the next 384 bytes of the message into the block buffer and so on.

Eventually the whole message is
the protocol job will then notify
that the message has been sen t. At
buffer is marked as being free
loaded into it if desired.

Message Handling Job

successfully transmitted and
the SWIFT message handling job
the same time the message

so that another message can be

This job is responsible for transferring messages between disk
and the AIMS message buffer, the actual transmission or reception
of the messages being performed by the SWIFT protocol job.

Three SWIFT commands are provided for use by the message
handling job:-

SWIFT [Swift linen] 0 [command 8e]>$[ne]

Function 0 exchanges a string with the SWIFT protocol job and
enables the message handling job to communicate directly with the
protocol job. [command se] is a string expression which
constitutes a command to the protocol job. This string is sent to
the protocol job and it returns an appropriate reply string. The
reply string is stored in the dollar-line specified by [ne]. The
SWIFTO command language is described later.

SWIFT [Swift linel1] 2 A(J)

Function 2 reads a SWIFT message from the message buffer into
the array A(). The message always begins with SOH and ends with
ETX followed by a byte containing 128 (except that the 128 byte is
omitted if the message happens to completely fill the array). QA
gives the length of the message in bytes, from the SOH to the ETX
inclusive.

SWIFT [Swift line#] 3 A(J)

Function 3 copies a SWIFT message from the array A() to the
message buffer. The message at A(J) must begin with SOH and end

PDP-ll AIMS PROGRAMMING MANUAL Page 151
SWIFT CBT - section 25

with ETX. Anything following an etx is ignored. The command will
fail if the message buffer is in use for the transmission of an
earlier message or the reception of a message.

The message handling job causes a message to be transmitted by
executing a SWIFT 3 command and then going to sleep until woken by
the protocol job. The message handl,ing job then executes a SWIFT 0
command to find out if the message has been transmitted ok.
Transmission may fail due to the concentrator or line going down or
due to a race condition in which a message is received from the
concentrator after execution of the SWIFT 3 command but before the
protocol job has time to transmit the message. The message
handling job must therefore be prepared to repeat the whole message
transmission procedure, either by holding the message in an array
throughout or by retrieving it again from disk.

When the message handling job has been notified that a message
has been successfully transmitted it may do one of two things: (a)
it may initiate the transmission of another message, or (b) it may
inform the protocol job that there are no further messages to be
transmitted at the moment. The message handling job has 1.5
seconds in which to do this. During this interval the protocol job
will keep control of the line. If another SWIFT 3 command is
executed within this interval the protocol job will immediately
begin transmission of . the new message. If the protoco 1 job is
notified (via SWIFT 0) that there are no further transmissions, or
if the interval expires without notification, the protocol job will
give up line control. This is not an error condition, it simply
means that any subsequent message transmission will ,involve a line
bid. The message handling job should however make an effort to do
(a) or (b) as soon-as possible after it has been woken.

When the message handling job is idle it should be sleeping
with the WAKE enable bit set. If a message is received from the
concentrator the protocol job will WAKE the message handling job.
As for message transmission, the message handling job should
execute a SWIFT 0 command to find out the reason for its being
woken. On finding that the reason is the arrival of a message the
message handling job should read the message by executing a SWIFT 2
command. This command frees the message buffer and wakes the
protocol job, and it is possible that the protocol job will
immedia tely begin receiving another message. Consequently the
SWIFT 2 command can only be executed once per received message and
it is the responsibility of the message handling job to correctly

. store the message on disk. .

When the protocol job has received the final block of a
message from the concentrator, there will in general be some delay
before the message handling job reads the message with a SWIFT 2

. command. During this delay the protocol job will hold off the
concentrator by means of WACKs for upto 30 seconds. If the message
handling job fails to read the message within this time the
concentrator will mark the CBT as being down. Therefore the
message handling job should take care to react smartly to received
messages.

PDP-11 AIMS PROGRAMMING MANUAL Page 152
SWIFT CBT - section 25

SWIFT command Errors

The SWIFT command may fail for several reasons!-

QE Func Reason

o All
1 All
2 2

3
3 2

3
4 3

Invalid Swift line number
No protocol job
No message available
Message buffer in use
Array too small for message (QA=message length in bytes)
Message too long. for message buffer
SOH or ETX absent trom message in array

SWIFT commands used by Protocol Job

Apart trom the three SWIFT command functions described
earlier, all SWIFT functions are reserved for use by the protocol
job only. If any other job executes any of these functions
confusion will ensue.

All SWIFT commands begin with a [Swift line ne] followed by
the function code number.

SWIFT [Swift linen] 1, (ne]

Exchanges DU 11 modem status word. The con ten ts of the DU11
receiver status register is stored in QA and the register is set to
the value of [ne] if this is positive. For meaning of this
register see DU11 manual.

SWIFT [Swift line#] 4

Reads the next byte from the level 1 received event queue into
QA. The command fails with QE=2 if the event queue is empty. The
possible received events are described later.

SWIFT (Swift linen] 5 [control sequence ne] [argument se]

Instructs level 1 to transmit the control sequence specified
by [control sequence ne]. The possible control sequence numbers
are described later. [argument se] is a character string which is
converted to EBCDIC and output immediately before the bytes that
constitute the control sequence proper. This is used for
outputting the SWIFT CBT identification or line address when
transmitting ENQs or ACKOs on dial-up lines.

SWIFT [Swift linell] 6

Instructs level 1 to append the current contents of the block
buffer to the message buffer. If the block begins with SOH the
message buffer is automatically cleared before the append.
Otherwise the initial STX is removed and the block is appended to·
any partial message already present in the message buffer. The
byte that terminated the block (either ETB or ETX) is returned in
QA so that the program can tell whether the message is now

PDP-l' AIMS PROGRAMMING MANUAL Page 153
SWIFT CBT - section 25

complete. The command will fail with QE=3 if the message buffer is
too full to hold the block.

SWIFT [Swi ft line#] 7

Instructs level' to copy the next block of bytes from the
message buffer to the block buffer. The bytes are converted from
ISO to EBCDIC, STX is prefixed if the first byte is not SOH, and
ETE is added if the last byte is not ETX. The CReis calculated
and appended. After this operation the block buffer contains a
properly formatted data block ready for transmission. The command
will fail with QE=2 if the end of the message has been reached, in
which case the block buffer contains nothing in particular.

SWIFT [Swift line#] 8

Computes the CRC value for the block currently in the block
buffer and returns it in QA. If the block buffer contains a valid
block with its correct CRC, QA will be zero. Used for validating
the CRC of a received block before appending it to the message
buffer.

SWIFT [Swift linel1] 9

Resets level 1 so that the next function 7 command will
operate on the first block of the message in the message buffer~

SWIFT [Swift line#] 10, [ne]

Exchanges message buffer status. The current message buffer
status is stored in QA, and the status is then set to [ne] if this
is positive. The possible message buffer status codes are:

0 FREE Message buffer free
1 MSOP Message being transmitted from buffer or waiting to be

transmit ted
2 MSAV A received message is available in the buffer
3 MSIP A message is being received into the buffer.

The SWIFT function 3 is only allowed when the status is 0, and
function 2 is only allowed when the status is 3. Function 3 sets
the status to 1 and function 2 sets it to zero. The message buffer
status allows the protocol job to work out what the message
handl ing job is doing.

SWIFT [Swift line#] 11 [mode ne]

Initialises level 1 completely. Sets up DU1' interrupt
vectors, initialises DU11 hardware registers, resets all software
variables to standard state, abandons any pending transmiSSions,
clears the received event queue. [mode ne] specifies the mode of
operation as O=Leased, +l=Pstn, -l=Ignore. The Ignore mode
disables the DU" completely.

SWIFT [Swift line#J 12 $[ne]

DOS only: Reads the next SWIFTO command .str ing from the
message handling job into $[ne] and sets QA to the job number of
the message handling job. Command will fail if no job is currently

PDP-ll AIMS PROGRAMMING MANUAL Page 154
SWIFT CBT - section 25

executing a SWIFT 0 function.

SWIFT [Swi f't linell] 13 [job' ne] [reply se]

DOS only: Returns the string [reply se] to the specified job
which is presumed to be suspended executing a SWIFT 0 function.
Command will fail with QE= 1 if the specified job does not exist or
is not awaiting a reply.

SWIFT [Swift linef] 14 A(J)

Used for testing the system without using a real DUll
interface. Enters the DUll interrupt handler in a way which makes
it think a DU 11 receive interrupt has occurred. Instead of
examlnlng the real DU11 hardware registers, the interrupt handler
is instructed to examine the four words located at A(J) through
A(J+3). An AIMS program can set these up beforehand to simulate
any desired DUll condition. Function 14 thus allows an AIMS test
program to pump bytes into the system as if they came down the line
from a SWIFT concmtrator. DOS: A (J) is not specified in the
command. The simulated registers are always located at GV(10-13).

SWIFT [Swift linell] 15 A(J)

As function 15 except it· simUlates a DUll transmit interrupt.
This allows an AIMS test program to suck bytes from the system as
if they were going down the line to a SWIFT concentrator. DOS:
A(J) is not specified in the command. The simulated registers are
always located at GV(10-13).

SWIFT [Swift line#] 16 A(J)

Copies the contents of the BLOCK BUFFER into the array. Used
for diagnostic purposes to investigate CRC. errors on received data
blooks.

Received Event Queue

When a control sequence or a blook is received by the ibUll it
is recognised, converted to an internal EVENT CODE number, and
placed on a RECEIVED EVENT QUEUE. This is the queue that is read
by function 4 of the SWIFT command. The format of an event in the
queue is:

Event code, Low time, High time, Optional args, 0

High time*256 + Low time gives the time of day when the event
occurred in tenths of a second past midnight modulo 10000.

Some even t codes are followed by one or more a rg urn en t byt es.
For example on a dial-up line the first ENQ is received in the form
ID ENQ where ID is a five character name identifying the
concentrator. The ID characters are treated as an argument of the
basic ENQ control sequence, and level 1 therefore places an ENQ
event code on the received event queue, followed by the five ID
characters. All events on the queue are terminated by a single
zero byte.

PDP-11 AIMS PROGRAMMING MANUAL Page 155
SWIFT CBT - section 25

The proc edure for reading the next event from the queue is to
read the first byte (via function 4) and treat this as the event
code, read and store the two time bytes, then read subsequent bytes
un til a zero byte is read. These bytes then constitute the·

. argumen t if any.

Code Mean ing

A block has been received beginning with SOH
2 A block has been received beginning with STX
3 DEOT received
4 Ear received
5 ENQ received
6 RV! received
7 ITD received
8 NAK received
9 WACK received

10 ACKO received
11 ACKl received
12 Unrecognisable control sequence received
13 DU11 receiver error (receive overrun or framing error)
14 The modem status has changed
15 The last byte of a data block has just been transmitted

When it is indicated that a block has been received, it may be·
assumed that the block is stored in the block buffer. However, the
block buffer is not protected from overwriting, and if another
block is received before the event queue is serviced the first
block will be lost.

Control Sequence Codes

Level 1 can be· instructed to output control sequences or
blocks by means of function 5 of the SWIFT command. The control
sequence codes are identical to the event codes given above, except
that code 2 and codes above 11 do not apply. Thus to send a ACKO
you execute SWIFT function 5 with a sequence code of 10. The
[argument se] of function 5 is normally null but may be used, for
example, if you wiSh to send an ENQ prefixed by the five-character
CBT iden ti fier.

Control code 1 is used to
contents of the block buffer.
up by means of SWIFT function 7.
block whether it begins with SOH

SWIFTO Command Language

instruct level to output the
This must have been previously set

Code 1 is used to output the
or STX.

The message handling job communicates with the protocol job by
means of function 0 of the SWIFT command, which passes a string to
the protocol job and returns another string in reply. .

PDP-11 AIMS PROGRAMMING MANUAL Page 156
SWIFT CBT - section 25

The possible command strings that can be sent to the protocol
job are as follows:

INIT . In itialises everything without regard to current state.
RESET Sets protocol job into the normal idle state.
IGNORE Sets protocol job into the TERIGN state.
CBTID string

Informs the protocol job that the specified string
(should be 5 characters) is to be used as the CBT
iden ti fier •

CONID string

STATUS
PSN
LEASED

Informs the protocol job that the specified string is to
be used as the concentrator identifier.
Returns current state (see below).
Sets PSN (ie. dial-up) mode.
Sets leased-line mode (opposite of PSN).

TRACE dev n:file.ext=options
Causes the protocol job to begin outputting a line trace
to the specified device and file (normally a 2400 Baud
vdu). Options is one or more letters selecting subsets
of the trace as:

E trace errors
R trace all received events
T trace all transmitted control sequences
M trace interactions between protocol and message

handling jobs
TRACE CL Closes trace file.
LOG string

Outputs the string to the trace channel. Used for
inserting comments into the trace.

TXEND No more messages to transmit at this time~

Protocol Job Status

The stat.us returned by the SWIFTO status command is of the
form:

S::xxxxxx B=yyyy t=zzzzz

where

xxx xxx gives the overall state of the CBT as
idle
SLAVE Concentrator is master, CBT expecting to receive a

block.
STORE

BIDRPY
NXTOPM

BLKRPY

TERCON
TERCBT

TERIGN

Waiting for message handling job to read a received
message.
Waiting for reply to a CBT line bid
Waiting for message handling job to provide the next
output message or indicate that there are no more.
Waiting for concentrator to reply to a block sent by
CBT.
Terminated by concentrator (DEOT received)
Terminated by CBT due to timeout or countout.
Probably the concentrator is down.
Terminated due to SWIFTO IGNORE command.

PDP-11 AIMS PROGRAMMING MANUAL Page 157
SWIFT CBT - section 25

yyyy gives the state of the message buffer (see SWIFT function
10) •

zzzzz shows what has happened to the most recent request for
message transmission:

BUSY message being transmitted
SENT message has been transmitted ok
FAIL message not sent

if T=FAIL status is returned when attempting to send a message. the
attempt should be repeated unless s=terxxxi the transmission
failure could have been caused by a received message overwriting
the message buffer. Note that the normal state is T=SENT and this
state is set by the INIT and RESET commands. The message handling
job is expected to know whether or not it has requested message
transmission (via SWIFT 3), and no significance should be attached
to t=sent at other times.

Summary of SWIFT command functions

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

EXS
MOD
REA
WRI
EVR
EVW
IPB
OPB
CRe
FOP
STA
1Nl
IPR
REP
IFR
OFR
RRB

Exchange strings with protocol job
Exchange modem status
Read message into array
Write message from array
Read next byte from received event queue
Initiate transmission of specified control sequence
Append block to message buffer
Fill block buffer from message buffer
Return CRe of block now in block buffer
Set to output first block via next OPB function
Exchange message buffer status
Initialise level 1
DOS only: Read next SWIFTO command string
DOS only: Send SWIFTO reply string to specified job
Simulate DU11 receive interrupt
Simulate DU11 transmit interrupt
Read raw received block

Only functions 0, 2 and 3 may be used by the message handling job.

Local Testing using a Concentrator Simulator

an AIMS system for SWIFT can be tested without making a
connection to a real SWIFT concentrator (this is an option selected
at systen generation time using F .NODU). This is done by means of
functions 14 and 15 of the SWIFT command which enable an AIMS
program to simUlate the DU11 line interface. The real SWIFT line
runs at 2400 baud or about 300 bytes per second and it is quite
feasible to simulate operation at this speed, with the exception of
the CRC checking which is very slow when written as an AIMS
program .

The test facilities currently available are as follows:-

PDP-l1 AIMS PROGRAMMING MANUAL Page 158
SWIFT CBT - section 25

SWIFTO. BAS The standard SWIFT protocol job.
DOS versions of this program
special version is needed in the
inoompatabilities between G.P.D.

Warn ing I MON and
are di fer en t. Also a
U.K. to accommodate
and CCITT standards.

SWIFTM.BAS A simple message handling Job for running the SWIFT
Qualification tests.

QUACON.BAS A job which simulates the SWIFT concentrator and
administers the Qualification tests.

QUACON is only used for local testing when it
simulate the SWIFT concentrator. To do
Qualification Tests QUACON is replaced by another
QUADRV.

is desired to
the real SWIFT
program called

Before doing any local testing it is essential to execute a.
SWIFT L 14 command to inform the system that you are going to use a
simulated DUll rather than a real one. Failure to do this will
cause a system crash when the protocol job attempts to initialise
the line (if there is no real DUll in the configuration).

The protocol job should be started on a pseudo-console by the
command sequence:-

• ZE SWIFTO
UP

THE JOB .SHOULD IMMEDIATELY GO TO SLEEP.

THE QUALIFICATION MESSAGE HANDLING JOB SHOULD BE STARTED ON
ANOTHER PSEUDO-CONSOLE AS:-

• ZE SWIFTM
LOG DEVICE:PT nn:

The job should immediately go to sleep.

Finally the concentrator simulator should be started on a fast
visual display:-

.ZE QUACON
EI.TXT READ
SINGLE-BLOCK MESSAGES CREATED
MULTI-BLOCK MESSAGE CREATED
TEST:

Two commands are now available:-

/xxxxxx Sends xxxxxx to the protocol Job as a SWIFTO command and
prints reply. Al~ows direct interaction with protocol
job if necessary.

nn Starts qualification test number nn, the test numbers
being those in the qualification specificationOPS.l0.

For local test purposes it is recommended that the logging
device for both theSWIFTO and SWIFTM jobs be the same fast visual
display as is used to control QUACON. This ensures that all

PDP-11 AIMS PROGRAMMING MANUAL Page 159
SWIFT CBT - section 25

logging output appears in an easily discernable order. If the
visual display is slower than 2400 baud it may be necessary to use
several. On no account should trace output ever be sent directly
to a lineprinter. There is a parameter DF in SWIFTO.BAS which is a
scale factor determining the length of all protocol job timeouts.
For local test IlJrposes this may be increased if necessary to
accommodate delays due to QUACON or slow logging devices.

Explanation of QUACON

Both QUACON and SWIFTM contain a block of dollar-lines that
specify the· action required for each qualification test. In the

. case of SWIFTM this merely specifies that certain messages are to
be sent to the conca'} trator in the appropr iate order. No details
are given of messages to be received from the concen trator since
SWIF'lM is always ready to receive. For QUACON the test
specification is more complicated: it includes the exact sequence
of line control signals that are to be sent to the CBT, and the
sequence expected to be received from the CBT. QUACON checks the
replies it actually receives and stops if there is any discrepancy.

The specification of a particular test is a sequence of items
in a dollar-line. The possible items are:-

nn
H=nn
T=xx
Wtt
HBtl

Send the control sequence in $nn
Expect a reply control sequence matching
Send the message block in array xx.
Wait for tt ten ths of a second.

$nn

Expect to receive a message block of the form specified by fl,
where f specifies the first byte of the block and L the last.
F and L are single digits coded as: O=ETB, 1=SOH, 2=STX,
3=ETX. So RB13 means read a block beginning with SOH and
ending with ETX.

REPnn (•••) Repeat the sequence of items enclosed in () nn times.

An example of a test specification is:

3000 $01 35 R=40 T=S1 R=41 34

This is test number 01. It may be read as: Send an ENQ ($35), read
an ACKO reply ($40), send a single-block message (array S1), read
an ACK1 reply ($41), and send an EOT ($34).

(Note: in fact the test specifications contain other items such as
SE ND2 000 , HM, WWS, and TXEND. These are obsolete and are ignored
by QUACON)

Dollar-lines 33 through 42 define the possible line control
sequences (eg: NAK, TTD, etc) in an octal represent~tion of EBCDIC.
arrays El and lE are used to convert between ISO and EBODIC.
Arrays S1, S2 and S3 contain three numbered single-block messages.
Arrays M1, M2 and M3 contain the three blocks of a single
multi-block message.

Before running any tests it is necessary to set the TRACE
control parameters for the protocol job, otherwise it will not
generate any logging output. The QUACON command

PDP-11 AIMS PROGRAMMING MANUAL Page 160
SWIFT CBT - section 25

TEST: IT PT N: =TRME

sends a TRACE command to the protocol job and enables Transmit,
Receive, Message, and Error traces.

QUACON communicates with the message handler via GV(5-7>.
Wh en you give th e command

TEST: 34

to start test number 3~, QUACON LETs the string 34 into GV(5) to
tell SWIFTM that test 34 is about to begin (strings are used
because some tests have names like AA). The message handling job
may be reset at any time by setting GV(5)=-1 t waking SWIFTM, and
waiting till GV(5)=0. SWIFTM is then ready to receive the next
test number.

SWIFTM itself only communicates with the protocol job via
functions Ot 2 and 3 of the SWIFT command. SWIFTM contains the
four messages that the qualification procedure requires the CBT to
send. The only output from SWIFTM is the logging output.

SWIFT Qualification Tests

Both SWIFTO and SWIFTM may be used without modification for
doing the qualification tests with a real SWIFT concentrator. The
set up procedure is the same, except that no SWIFT 14 or 15
commands should be given. If any local testing has been done the
system Should be restarted to restore the use of the real DU1l
interface.

For doing the tests with a real SWIFT concentrator you use
QUADRV.BAS rather than QUACON, since the concentrator simulator is
not required. QUADRV merely informs SWIFTM (via GV{S) which test
is to be done next.

Note that for the qualification tests all these programs run
at priority 0 and no other jobs should be on the system.

Special action should be taken if AIMS fails any SWIFT test.
The test should be tried at least three times; the SWIFT
concentrator test program sometimes gets into peculiar states and
it can happen that a test will succeed on the second go. The line
trace Should be examined whilst the test is gOing on to see whether
the problem appears to be a CBT or a concentrator fault. If the
behaviour shown on the line trace appears to conform to the SWIFT
specifications laid down in the OPS.10 document, reference should
be made to the latest available information about the state of the
concentrator test program. Some versions of this program will fail
certain tests although there is in fact no error in the CBT. The
concentrator operator should have a list of these faulty tests.
Finally, if the concentrator operator will not accept that the
failure is a SWIFT problem, the test should be run again with the
line trace output to a disk file. This will give a permanent copy
of the trace for further investigation.

PDP-11 AIMS PROGRAMMING MANUAL Page 161
SWIFT CBT - section 25

Explanation of Line Trace

The trace centains one line of text for each centrol sequence
that is transmitted or received. The general format is:

time state dir event

where

time is the time of day in tenths ef
module. 10000.

state is the overall state of the CBT
event iden ti fies the control sequence

received.
dir is R if the event was received

was transmitted by the CBT.

An exmple should make this clear:

1807 IDLE T E NQ
1808 BIDRPY R AKO

a second past midnight.

(see below).
or block that was sent or

by the CBT. and T if it

This shows an initially idle CBT making a line bid. It transmits
an ENQ at time 1801, and receives an ACKO at time 1808. When it
receives the ACKO the CBT state is BIDRPY. which means Awaiting
Reply to a Bid. ,The interval between the two. events may be found
by subtracting the two day times: 1808-1807=1, indicating an
interval of 0.1 secends.

The event codes are mainly self explanatory, such as ENQ. RVI.
DEOT and WACK. ACKO appears as AKO and ACKl as AK1. A received
blook will be traced as R SOH if it begins with SOH, or R STX if it

. begins with STX. An unrecognisable sequence is logged as R JUNK.

Blocks transmitted by the CBT are always traced as T SOH.
This is so even if the block begins with STX. The T SOH is
generated when the CBT begins to transmit the block. When the last
byte of the blook has been transmitted an R BTX event is legged.
For example

1809 BLKRPY T SOH
1811 BLKRPY R BTX
1812 BLKRPY R AKl

H.ere the CBT begins transmitting a block at time 1809. It finishes
block transmission 0.2 seconds later at time 1811. An ACK1 is then
received from the concentrater.

CBT timeouts give rise to. R TIM events in the trace. For
example, if the CBT were to. send a block to the cencentrator and
receive ne reply, the trace weuld appear as fellows:

1229 BLKRPY T SOH
1242 BLKRPY R BTX
7273 BLKRPY R TIM
1273 BLKRPY T ENQ
7275 BLKRPY R AKO

[begin transmitting bleck
[finish transmitting block
[timeout occurs 7273-7242= 3.1 secs later

PDP-l1 AIMS PROGRAMMING MANUAL Page 162
ASCII code - section 26

I 26. THE ASCII CHARACTER CODE I

CHARACTER %C OCTAL CHARACTER %C OCTAL
Null 0 0 @ 64 100

1 1 A 65 101
2 2 B 66 102

control-C 3 3 C 67 103
4 4 D 68 104
5 5 E 69 105
6 6 F 70 106
7 7 G 71 107
8 10 H 72 110

Tab 9 11 I 73 111
Line feed 10 12 J 74 112

1 1 13 K 75 113
Form feed 12 14 L 76 114

Return 13 15 M 77 115
14 16 N 78 116

control-O 15 17 0 79 117
16 20 P 80 120

control-Q 17 21 Q 81 121
18 22 R 82 122

control-S 19 23 S 83 123
20 24 T 84 124
21 25 U 85 125
22 26 V 86 126
23 27 w 87 127

control-X 24 30 X 88 130
control-Y 25 31 y 89 1 31

26 32 z 90 132
Escape 27 33 [91 133

28 34 \ 92 134
29 35] 93 135
30 36

...
94 136

31 37 95 137
Space 32 40 96 140

33 . 41 a 97 141
n 34 42 b 98 142
i1 35 43 c 99 143
$ 36 44 d 100 144
% 37 45 e 101 145
& 38 46 f 102 146 ,

39 47 103 147 g
(40 50 h 104 150
) 41 51 i 105 151
• 42 52 j 106 152
+ 43 53 k 107 153

44 54 1 108 154
45 55 m 109 155
46 56 n 110 156

/ 47 57 0 111 157
0 48 60 p 112 160
1 49 61 q 113 161
2 50 62 r 114 162
3 51 63 s 115 163
4 52 64 t 116 164
5 53 65 u 117 165

PDP-11 AIMS PROGRAMMING MANUAL Page 163
ASCII code - section 26

6 54 66 v 118 166
7 55 67 w 119 167
8 56 70 x 120 170
9 57 71 y 121 171

58 72 z 122 172
; 59 73 { 123 173
< 60 74 124 174
= 61 75 } 125 175
> 62 76 126 176
? 63 77 Rubout 127 177

PDP-11 AIMS PROGRAMMING MANUAL

21. IN DEX I

operator .•••• 14
when echoed • 12

I as channel specifier • • • 60

$ lines • • • • • 24, 39

,%AFTER switch
%C operator •••
%F character filter

. • • . • 132
. . . . 26,

%G operator • • • • •
%NOTIME batch command •
%PRIORITY batch command •
%R operator •• ••
%EUN switch

• 44
• 41

• • • 133
• • 133

• 26
• 132

161

%S operator • • 26, 116
%TIME batch command
%X operator

• • • • • 133
• 26,

& operator

in printed numbers
in string expression

• cue

14

29
• • 26

• 98
.SPEC EMT • •••• 74

in string expression

< and) operators with LET

= . < > operators in INPUT
=@ operator

? messages • • • • • • • •
? operator in INPUT • •

@ when echoed • • • •
@A format specifier • •
@F format specifier
@R radix specifier
@W format specifier

26

• 34

48
• 20

85
• • • 48

• 12
• 29
• 29
• 29
• 29

Abbreviated commands • • •• 6
Abort keys • • • • • • •• • 87
ACCEPT command •••• • 49
Accounting, by system •••• 128
Accuracy of calculations •••• 16
ACOMP command • • • • • • • • • • 22
Administration, of system. • 121
ALLOC command • • • • • • 76
Alphabetic comparisons ••••• 37
AMOVE command • • • • • • • 22
Anchored string search • 41
ARRAYs ••••••••••••• 18

32, 36

Page 164
Index

PDP-11 AIMS PROGRAMMING MANUAL

Arrays, as I/O buffer •••••
Arrays, dynamic encoding •••
Arrays, unpacking into strings
ASCII code ••••••••••
Assignment to strings • • •

BATCH commands • • · · • • • •
Batch proc essing • • · · · · · BATCH program • • · • · · •
Bit shift operator · • • • • · Bit tally . . • · · · • · Boolean operators · • · BOT, magtape · · • · · · · · · Broadcasting to terminals · BYE command . · · · · · · · BYE EXEC command

CALL command · • · · · · · · · CALL file command · • • · • · · Channel po inters • • • · · Channel status information · · Channel status word • •
Channels, I/O · · Character set · · · · · · Characters, ASCII value of
CLEAR command • • · · • · CLOSE command · · · · · CODE command • • · • · •
Comma, at end of PRINT · · · · Comma, in string expression • · Command failure • · •
Command summary · · · · · Command s yn tax · · · · · · · · Commas in printed numbers · • •
Commas, significance of • · · · Common data, between jobs · Communication between terminals
Communication between users · · Comparing strings · · · • · Concatenating strings · · Connect time, of job · Console names · · · • · · • · · Contiguous file creation · Control files · · · • • · · • •
Control-C key · •
Control-O key · • • · · • · • •
Control-Q key · · • • · • •
Control-S key · • • · • •
Control-X key · · · Control-Y key · · • · · · • Conversion, numbers to strings
Conversion, strings to numbers
Cooperating jobs • · · · · · • CORE command · CPUTIME command · · · · • · • · Cue strings, with INPUT • · • •

DA() functions · • · · • · Dartmouth BASIC · · · •

• 75
• 56
• 76
• 161
• 39

· 133

· 130

· 131
• 14

· 55
• 14

· 69

· 116

· 53,

· 101

· 82

· 99
• 75

· 65
66

· 59
• 24

· 26,
• 12

· 60
• 56
• 25

· 26

· 50

· 92

· 6

· 29
• 7

· 115

· 116

· 115

· 37

· 26
• 119

· 117
• 76
• 133
• 87
• 87

· 12

· 12

· 12
• 12
• 29

· 41,
• 115
• 112

· 101

· 47

• 55
• 4

122

76,

49

161

Page 165
. Index

PDP-11 A~MS PROGRAMMING MANUAL

Data filing ••••••••••• 59
Data modes • • • • • • • 62
Data transfer commands •••• • 62
Data types ••• • • • • • • 17
Date ••• • • • • • • • 55
DAYTIME command • • • • • •••• 101
Decimal pOint, input •• • 49
Decimal point, output •• 29
Decoding user commands ••••• 106
Default disk • • • • • • • • • • 64
Default file extensions • • 60
Default IIO channels • • • • 62
Default value of system variables 54
DELETE file command • • • • 64
Deleti ng a line • • •• • • • 6
Deleting program lines •• • 12
Departmen tluser numbers • • • • • 126
Device error status ••••• 66
Device names •••••••••• 59
DIAL command ••••• • • 147
Direct commands • • • • • • • 6
Directory manipulation commands • 64
Disk areas • • • • • • • • • • • 126
Dismounting removable storage media 78
DO command ••••••••••• 51
Dollar lines • • • • • • •• • 24
DOS magnetic tapes ••••••• 72
DR() system function •••••• 55
DUMP command ••••• • • • 83
Dynamic compilation ••• • 56

Echoing, control of • • • • • 48
Edit mode • • • •• ••• •• 52
Editing a program • • • • • • • • 12
Embedded string search ••••• 37, 41, 45
Environmental information • • 55
EOF f DOS magtapes •••••••• 72
EOT, magtape •• • • 69
EP{) fUnction •••••••••• 16, 55
Error codes • • • • • • • • • • • 85
Error status of devices • • • • • 66
Error trapping •• • • • • • • • 54, 85

. Error trapping, example • • • • • 92
Errors • • • • • • • • • • • 85
Errors with arrays ••• • ••• 21
Evaluation precision •••••• 16
EXEC pr ivlleges •••••• , •• 120
EXEC program • • • • • • •• 98, 121
EXECUTE file command • 99
Execution speed • • • 110
Executive programs •• 119, 121
EXIT command • • • • • 53
Expressions, numerical • 14
Expressions, string. • • 26
Extension, of filename ••••• 60

Failure codes in QE • • • • • 90
Failure codes in QI • • • 88
Failure, of a command 50

Page 166
Index

PDP-11 AIMS PROGRAMMING MANUAL

Failures ••••• • • • 85
FALSE. • • • • • • • • 14
Fast access directory •• 80
FC() function. • • • • 55
Feature bits • • • • • 125
File protection, changing it 64
File structures • • • • 78
Filenames • • • • • • • • • • • • 60
Filters in PUT command 44
FORCE command •••••••••• 142
Format, of decimal point in output 29
Format, of numbers for input •• 49
Format, of numbers for output 29
Free memory • • • • • • • 55
Functions, system defined •• 55

GARB command •• 94, 111
Garbage collection • 111
GOSUB command • • • • • • • • 51
GOTO command •••• •• • • 50
Graph plotting • • • • • • • 33
GV() function • •• • • 55, 115

HELP command • 101

I/O channels • 59
I/O error codes under DOS • • 90
I/O error codes under MONITOR • • 88
I/O memory requirements •
I/O random access •
I/O s impli fied
IF command, numer lc • •
IF command, strings •

.Image input mode
Immediate execution

• 114
• • 75

.. .. '. .. 62
14, 94

• 37, 94
• • • • 140

6
Implicit transfer of control •• 50
1Nl T command • • • • • 59
INPUT command • • • • • • 25, 47-48
INPUT command, timeout ••• 48
Input/Output ••••• • 59
Inputting one character • • • • • 49

JOB command • • • • • •
Job pr ior lty •••••
Job status information
JS() function •
JS(2), use of •
JS(4-6), use of •

Keyword searching
KILL command

. . .
101, 103
119-120
119

• 55, 119
• 122
• 128

• • • 39
• 132

KILL job command • • • • • 101

LE() function •••••••• • • 55
• • 24, 55 Length of strings •

LEOT, DOS magtapes • • • 72
LEOT, magtape • • • • • •
LET < > operators • •

• 70
• 34

LET command • • • • • , 4

Page 167
Index

PDP-ll AIMS PROGRAMMING MANUAL

LET command, array packing
Library directory • • • • • • •
Library disk area •••

• 34,
• 82

126
Line characteristics
LIN E command
Line deletion
Line editing
Line modes
Linked files
LIST command

141 ,

· 141
• 6

• • 12
140

• • • 76
• • 12

76

143

Literal strings •
LOAD command

• • • • • 14, 24
• 83

LOAD file command
Local editing
Locks • • •, ...

• • 99
• 12
• 115

• • 134 Log files • • • • • • • •
Logging out • • 53

• • • 1 4
122

. Logical operators
LOGIN command • •
LOGIN program •
LOGOUT command

.121,126
• • 122

LOGOUT program ••• •
LOOP command

121 J 128

Lost time • • • • •
• • • 50, 94

• • 124

Magnetic tapes for DOS · · 72
Magtape control under DOS · · 74
Master jobs . 130, 136
MEMMAX memory limit · 102, 124
Memory limits · · · · · · · · · · 124
Memory occupancy · 101, 11 0,
METER command · · · · 101
Mode 5 OPEN . .. · · 77
Mode 6 fast access directory · · 80
Modem control · · · · · · · · 141, 145
Modes, of access to system · 125
Modes, of data transfer · · 62
Modes, of OPENing files · 60
Monitor commands · · · · · · 98
MOUNT command · · · · · · · · · · 78, 95
MTAPE command · · · · · · · 74, 95
Multi-user considerations · 111

• 61 Names, of files • • • • • •
Names, of variables • • •
Newline, at end of PRINT
NL() function • • • •••
Null time • • • • • • • •

• 16, 36
• • • • 25

• • 55
• • 124

Numbers, input conversion • • 49
Numbers, internal representation 16
Numbers, output conversion • 29
Numer ical expressions • • • 14
Numer ical operators • • 14

OBEY command
Octal input •
OPE N command
Operators, Boolean
Operators, logical

131
• 109
• 60
• 14
• 14

112

Page 168
Index

PDP-11 AIMS PROGRAMMING MANUAL

Operators, numer ical •••••• 14
Operators, relational •••••• 14, 37
Output conversion, of numbers •• -29
Output format, of numbers •••• 29
Overflow, numerical • 19
Overlaying programs • 83

PACK command ••• 34, 95
Packi ng str ings into err ays • • • 34, 76
Pagination • • • 32
Passwords • • • • 126
Pause mode ••••••• 12, 143
Peeking at memory • • • • • • 55
Physical 1/0 •••••••••• 77
PK() function •••••••••• 55
Precision of calculations •••• 16
PRINT command • • • • • • • • • • 26
PRINT command, problems with 7
Printing numbers •• 29
Priority J of job ••• 119-120
Privileged programs • • •• 119

- Privileges, of EXEC • 120
Programediti ng • • 12
Program filing •••• • •• 82
Program name •••• • •• 119
Prompt strings, with INPUT • 47

page 169
Index

Pseudo-consoles ••••••••• 59, 125, 130, 136
PTO function. • • • .55,75
PUT command • • • ••• • 39

QA systan variable • • · • · • · 54
QC system variable · · · · · · • 32, 54
QD systan variable • • · • 48, 54
QE system variable · · · · 54, 85
QF system variable · • • 29, 54
QG system variable · · · · • 54, 112
Qt failure codes · • · · · · 88
Ql system variable · · 37, lJ.5, 54, 88
QL system variable · · • · · · · 32, 54
QQ system variable • · • • · • · 54, 85
QS system variable · · • · • · · 54, 112
QUEUE command · · · • 132
Quoted strings 14, 24
QW system variable · • · 29, 54
QX{) system function · · · · · · 55, 65

Radix for printing numbers • · · 29
Random access filing · · • · • · 75
READ command • • • · · · • • 62, 75
Relational operators · · • 14, 37
Relations, between strings • 37
RELEASE command · · · · · • · 59
REM command . • · · · · · · 96
RENAME file command • · • · 64
Replacemen t, In PUT · • • · • · • 42
Representation of numbers • • 16
RESOURCES command · • · · 101
RETURN command · · • • · 51
RUBOUT key . · · · · · 12

PDP-11 AIMS PROGRAMMING MANUAL

RU N command 52
RUN file command 99
Run mode 52
Run time, of job 119

SAVE command 82
SCAN command 22
SCHEDULE command 101
Searoh modes, in PUT .. 41
Search templates, in PUT 41
Seoul' it y, of s ystan 126
. SEGME NTS command .. 1 01
SET oommand 101
SETNAM command • 118
Shared resources 115
Shifting bit patterns 14
Simple variables 16
Simplified 1/0 62
Slave jobs 130
Space errors 113
Spaces in commands 7
Speed setting 146
Square roots 109
SSO function.. 55, 124
SS(1), use of 125
Starting a program 52, 98-99
Starting, automatic after LOADICALL 82-83
STOP command 52
Stopping a program 52, 81
String comparisons 31
String decomposition 39
String expressions 26
String terminators 25, 48
String variables 24
Strings 24, 39
Strings, length of 24
St I' ing s, packing in to arr ays 34, 76
Strings, quoted 24
Structured data filing 76
SUBMIT command 1 32
Subroutine transfers 51
Subscripted variables 18
Substrings 46
Summary of all commands .. 92
Suppressing pr intout " .. 12
SW IFT command 96, 1 49
Symbol table lookup 45
Synchronous lines .. 139
SYSCOM oommand 123
SYSINI program 125
SYSTAT command 102-103
System access, control of 124-125
System accounting 128
System administration 121
System disk 64
System functions 55
System status information 102, 124
System variables 54

Page 170
Index

PDP-11 AIMS PROGRAMMING MANUAL

TAn function, bit tally 55
TAB command 33
Tape-Marks, magtape 70
Teletype names, (see Console) 117
Telex conversions f 43
TELL command 102
Terminator, of strings 25
TIO function 55
Time of day • 55
Time quanta • 124
Timeout, with INPUT command 48
Timing even ts 53,
Tips to programmers 105
THA11/TU10 magnetic tape 73
Transfer of control 50
TRUE 14
Truncating strings 41
Truncation of numbers 20
TU10 magnetic tape 73

UCC) function 55
UFDS command 102
UNLESS command, (see IF) 97
UNPACK command 34,
Unpacking strings from arrays 34,
Update clashes 116
USERS.SYS file 127

Vadable names 16,
Versions of the system 5
VFIDIR command 102
VGARB command 97,
VIEW command 101
Volatile file directory 102

\vAlT command 53,
WAKE command 118
WHO command 102
Width, of printed numbers . .. 29
WRI TE command 62,

X command • 12,

\ operator 14
\ when echoed 12

string operator 37

_ string operator 37

55

97
76,

36

111

117

75

57

107

Page 171
Index

