
ANALOGY CATEGORIES, VIRTUAL MACHINES, AND STRUCTURED PROGRAMMING

B.R. Gaines
Man-Machine Systems Laboratory,

Depto of Electrical Engineering Science,
University of Essex, Colchester, U.K.

Abstract This paper arises from a number of studies of machine/problem relation-
ships, software development techniques, language and machine design. It develops
a category-theoretic framework for the analysis of the relationships between
programmer, virtual machine, and problem that are inherent in discussions of "ease
of programming", "good programming techniques", "structured programming", and so ono
The concept of "analogy" is introduced as an expllcatum of the comprehensibility of
the relationship between two systems. Analogy is given a formal definition in
terms of a partially ordered structure of analogy categories whose minimal element
is a "truth" c~ "proof" category° The theory is constructive and analogy relation-
ships are computable between defined systems, c~ classes of system. Thus the
structures developed may be used to study the relationships between programmer,
problem, and virtual machine in practical situations.

io Introduction

There has long been a folk-lore of computing comprising moralistic fables
(ESPOL and the Cactus Stack), mysterious creatures (the "good" programmer) and dark
rites ("structured programming"), all concerned with value judgements about machines,
problems and programmers, and their interrelationships. Like all real folk-lore
this wealth of material cannot be dismissed - it provides the only constructive
approaches to many problems central to computer systems engineering. And yet is is
difficult to incorporate it in computer science because:

(a) it is evaluative rather than descriptive - not, "technique A exists", but,
"technique-A is better than technique B";

(b) as essential human element is often involved - not, "modular programs run
better", but "modular programming techniques encourage prograrmmers to produce better
results".

These sources of difficulty, both involving subjective elements, have tended to
undermine attempts to take a scientific approach to software development, or virtual
machine design, and to make the results of studies in these areas to consist of
isolated techniques or authoritarian dogma~

One effect of these problems has been to emphasize research on software
production techniques that minimize human involvement, such as automatic pr to,ram
verification [i] which evaluates only in terms of 'correctness', or n0n-imperative,
a ssertional languages [2] and theorem-~rovin~ [3] where programming is reduced to
problem-descriptiono However, the rigour of approach possible in these areas comes
only because they avoid, rather than resolve, the problems stated above. The
concept of program-proving is one component of "structured programming" but it does
not contribute in itself to the actual process of structuring the problem to be
suitable for algorithmic solution on a particular virtual machine° We cannot avoid
the human component in terms such as "good programming techniques", "good machine
design", and so on - terms which we all understand as going way beyond the sheer
physical evaluation of correctness, speed, cost, etc.

692

It is the contention of this paper that both the problems stated above can
be overcome and that a rigorous mathematical foundation can be established for the
analysis and development of program development techniques, virtual machine design,
and so on° The formulation proposed in this paper has the advantage of being
constructive and leading to evaluations that can be computed in practical situations.
The previously formalized concept of program verification plays a key role as a pivot
for a far wider formalization of problem~programmer~machine relationships, in which
both imperative and assertional languages appear as natural elements°

The basis for the formulation is the concept of an analogy relation as an
explicatum of the comprehensibility of the relationship between two systems. The
use of category theory enables the analogy relation to he formally defined
independently of any particular structures for the two systems, and hence avoids the
pre-supposition of theories of human cognitive skills, program structures, or the
representation of problems° The application of the theory requires the relevant
categories to be defined (in terms of automata [~,5], Petri nets [6], or lattices of
flow diagrams [7,8], etc.), but the basic theory itself is independent of changes in
our techniques for system representation. It turns out that the possible analogy
relations between two systems form a natural and significant partial order (in fact
a semi-lattice) and are finite in number when the two systems are themselves finite.
It is these two properties, coupled with their psychological significance, which
make analogy relations a practical explicatum of many of the concepts of structured
programming.

The next section of this abstract is concerned with presenting the problems
discussed in terms of a three-part relationship between programmer, problem and
machine° Section 3 is a formal presentation and discussion of a category-theoretic
formulation of analogy relations. The final section is concerned with how the
results obtained may be applied (this paper presents work in progress and it is
expected that the actual paper and presentation will contain more exemplars than can
he given at present)o

2o Machines~ Problems and Pro~ammers

EoG.Does ~he V.M.
~ provide a string

. --~ ~ data-type and an
~.~.now natural I ~ algebra of string
is string syntax . mtax ~ ~ operatlons
tO progrsmm

data acquisition sequence
be expressed as string-
handling

Fisure 1 The Three-Part Relationship Between Virtual. Machine,
Programmer and Problem (with examples)

693

The obvious relationship to analyse in studying ease of programming is that
between virtual machine and problem° However, this leaves the human component
implicit in the evaluation, and a better basis for analysis is that of Fig. 1 which
shows the full three-part relationship between virtual machine, problem, and
programmer. Introducing the programmer explicitly and emphasizing the symmetry of
the three separate relationships is important in enabling us to distinguish, for
example, between something being "easier for the progeammer" because: (a) it
contributes to making the virtual machine intrinsically easier to use and understand;
(h) it contributes to structuring the problem in a more comprehensible form; (c) it
makes for a simple relation between problem and virtual machine which it is easy to
express as a program. These possibilities are readily confounded - languages ame
both problem-orientated and programmer-orientated in their facilities and either
aspect may make a contribution to ease of progmamming. Published discussions of
structured programming [91 move freely between these three possibilities, commenting
on language facilities which make for readable programs (the machine/pro~eammer
relationship), the structured fragmentation of problems for ease of understanding
(the problem/programmer relatlonship), program verification (the problem/machine
relationship), and so Ono

Fig° 2 shows how the basic triangle of Fig° 1 iterates naturally to portray
the tree of virtual machines [lO,11] found on most systems° The usual hierarchy of
the machines themselves is apparent, but its supplementation by the explicit incorp-
oration of the programmer/machine relationships places new emphasis on the decoupling
action of a virtual machine str~/ctume - the problem of the pro~ammer at one level
is the virtual machine of the next lower level, and there are no direct linkages
between levels. One obvious question to ask in ter~,s of Fig. 2 is whether a
programmer/problem pair is being linked in at the appropriate node in the hierarchy,
e.g. if, for some reason, the fluid dynamicist shown in Fig. 2 was tackling problems
requi~ing high-speed bit manipulation, or list-processing, he might be better off
linked to VMn+ 2 (intermediate language) or VMn+ 3 (LISP), respectively° That is, it

raises the question of the VM node that has ~eatest analogy to the problem, structure.
However, on infomming our errant programmer of these preferred alternatlves, we are
roundly informed that he finds the intermediate language too vast to remember and
the LISP syntax too weird for words - FORTRAN is to him a natural language and he is
sticking to ito That is, there is another question as to the VM node that has
~[eeatest analogy to the pro~ammer's (current) co~nltive structure t.

The term "analogy" used in the preceding discussion has obvious colloquial
connotations, but unless the meaning of the term can be defined more precisely,
preferably operationally and quantitatively, the arguments must remain at their usual
informal level° I first attempted %o develop a rigorous expllcatum for the concept
when working on programmable digital differential analysers (DDA's) and attempting
to classify problems in temms of the appropriate computing techniques [12]. In
solvin E differential equations it is clear that the DDA has not only advantages in
speed but also in ease of use© The psychological advantage arises because it is an
~ computer whose structure closely resembles that of the differential equations
t solves° The important psychological relationship between analogy and ease of

use is explored in Ref. 1 where a tentative formulation in terms of category theory
is proposed.

Although developed in a fTamework where it is fairly obviously appropriate,
once abstracted this concept of analogy proved capable of wider extension to language
and machine analysis and design° For example, two minicomputer designs provided a
contrast between the earlier machine aimed at high packing density of proEeams (a
major technical objective in microcomputers where store costs dominate) and the later
machine aimed at ease of program development° The stark contrast between the
requirement for detailed hand-coding and impossibility of compilation of the former,
and the natural relationship to algebraic language of the latter, placed analogy in
the role of another technical factor that could be traded against, for example,
program packing density. There was a strong incentive to quantify "analogy" in
such a way that these trade-offs could be clearly expressed. A possible

694

quantification, based on the tentative categozT-theoretic concepts of Ref. 1 but now
worked out in detail, is given in the following section. It turns out to be
surprisingly straighZforwaPd and capable of direct application°

eg HqN471
microeode

" Pr°gn ~ I "~+l=Z1"u
g micro- ~ e g HCN471

instruction
programmer J set

writer
eg HCN471

intermediate
language

eg HCN471
LISP 7.4 s ~ o w n as

same one

eg compiler
writer

eg HCN471
FORTRAN VI

-.v= n+3 ~, J eg author
eg 0AI ~ language in
developer LISP

f Progn+ 3

eg fluid
dynamicist

eg teacher

Fig.ure 2 The Hierarchy of Virtual Machines and Programmers

695

3. A Category-Theoretic Formulation of Analosy

If we had tried t o formulate the concept of an analogy relation a decade ago
we would have been forced to frame it in terms of particular algebraic or topological
st-ructures. For the machine, a finite automaton structure would have been obvious°
For the programmer or problem, however, any single structure would have imposed
severe restrictions on the generality of the results and left them open to criticisms
which applied only to the specific structures chosen to model human cognitive
processes, or problem specifications, and not to the notion of analogy itself.

A category-theoretic framework for a theory of analoEy avoids these problems.
By representing the machine, pmogP~er, and problem as arbitrary categories, the
way is left open for any particular structure to be postulated for any one of them,
and for the accepted structures to change with out states of knowledge and technology
without affecting the fundamental concept of analogy° In addition, even if the
basic structures we use remain unaltered, the use of category theory enables us to
cope with changes in emphasis and significance - we may wish to examine the analogy
between a particular problem and a particular program , or between a class of problems
and a class of programs - we may wish to specify either a particular value or a
particular function as a result to be verified° A category can be highly specific,
e.g. a single discrete set, or highly general, e.g. a class of algebras, and it can
express constraints upon both objects and functions.

This leads naturally into out first postulate:

Postulate I A system can be represented by a category.

This is, perhaps, immediately acceptable for virtual machines, acceptable on trust
for problems, but dubious fop pPogmammems~ The fimst two cases ape adequate for
many important results, and if programmer is replaced by, 'cognitive model of
programmer I , then the third case becomes mope reasonable. Goguen's papers on
category theory applied to the semantics of computation [8,13], system structure
and behaviouP /14,15], and human and artificial cognitive processes /16], present
the case for this postulate far better than any arguments here.

The next question is how may we compare two syc~tems (categories) for an
analogy between them ? To get so~e idea of what is involved it is useful to have
some informal specific category in mind, say that of automata [1~,15]. The notion
of isomorphism, or any kind of moPphlsm, between the categories is not useful
because in general we expect each to have structure not[reflected in the other - an
analogy is a partial correspondence - one automaton ma> ---7 transit many s t a t e s duping
one transition in the other, and vice versa, but some states of each can be put into
mutual corTespondence. Since we cannot map directly J~om one system to the other
we introduce a "correspondence" category that maps onto each, and ensure that these
mappings are non-trivial by requiring them to be faithfl/l functol-s. A faithful
functo~" has important structure correspondence p r ~ in that it carries
commutative diagrams in one category into commutative diagrams in the other, in both
directions.

Despite this restriction however our structure, like all partial correspondence
concepts, is as yet very weak and allows for many trivial "correspondence categories"°
We strengthen it by intmoducin E a key concept, that of a "truth" category, which is a
correspondence category with the minimal structure sufficlent to express the essence
of one of the other two categories° For example, suppose one of our categories is
essentially a description of a process for calculating tax due, and our other
category (which we shall call the "model") is essentailly a compute/- program to
perform this calculation° Then the truth category might represent a simple input/
output map of data in and results out, ioeo we ape not interested in how the original
calculation was done and do not want this to be reflected in the program - all we
want are correct final results fop given data°

696

Note that the redundancy in the problem specification will probably be not
only in structure but also in the domains of data - the domains in the truth
category will tend to be smaller than the implied domains in the problem specific-
ation (and the actual domains in the computer program). The tr,/th category is the
minimal stPuctume that we wish to reflect from the problem category through the
truth category into the modal category, and vice versa° It clearly forms the basis
for program verification and may be termed a "proog' category when the main categories
ape a problem and a program°

Postulate II A truth category having a faithful functor to each of a category and
its model can adequately represent all that we mean by a "correct", or "significant",
or "adequate", or "true", analoKyo

TRUTH CATEGORY

Representing the
essence of the
category modelled

eg overall data/
output transforma

F, faithful
functor

/ A~ALOOY MODET
0ATEGORY 0 be modelled ~ F/0ATEGORY

eg arbitrary but~ ~pr eg a program
: o~; class of

definable system/ relationship ~ ograms

/ L between syste~
and model

Figure 3 Diagram Defining the A~logy Cate~or[Between a System
and its Model

We now have sufficient s%Tuctur~ t o fommulate the concept of an "analogy
category", or just "analogy". It is a correspondence category that makes the
diagram of Fig. 3 commute, ice. the faithful functors from the truth categomy factor
through the analogy category. Hence the functors from the analogy category reflect
all properties reflected by the truth category, together with certain other~ that
the category and its model have in common but which go beyond those strictly requi~ed
by the truth category° It is of course just these other properties which make the
difference between the analogy fop addition, say, offered by a universal Turing
machine and that offered by a digital computer - at truth level the Turing machine is
everything that the computer can beo

697

TRUTH

CATEGORY

\ \ \
.. %
% k

k %

MODEL

Figure ~ A Semi-Lattice of Analogies

The arrows are faithful functors: > necessamy

- - - ~ possible

There can clearly be many analogy categories for a given category/%Tuth/model
(CTM) triple, but the direction and faithfulness of the functors guarantee that the
analogy categories ape "smaller" than eitheP the categoPy or its model° Fig. 4
shows a set of four analogies, ANo, AN1, AN 2 and AN 3. Each necessarily has the

prescribed triple of al-Pows connecting it to the CTM tPiple~ However, there may
also be faithful functors between the analogies themselves, and these define an
impomtant relation between analogies. Because the existence of faithful functors
is reflexive, asymmetric and ~ansitive, the relation induced is a partial order,
and we shall write :

AN > AN ~ F: AN faithful~ AN
n m m n

where ANn and AN m are analogy categories. The relation is in fact somewhat stronger

since we can show that least upper bounds, if they exist, are unique, and greatest
lower bounds always exist and are unique (Ruth is a universal lower bound), and
hence analogies form a lower semi-lattice.

It is this semi-lattice stPucture that forms the richest component of our
formulation of analogy - it gives a rigorous explicatum to the concept of one
si-~ucture being more analogous than another and it ensures that if two analogies
cannot be compared directly there is a unique common analogy (their glb) which
expresses theim maximum mutual relationship°

698

Postulate III The semi-lattice ordering of analog categories adequately represents
what we mean by one analogy heing "more comprehensive", "closer", or "more detailed",
than another.

The role of the truth category may now be seen as a constraint ensuring the
relevance of an analogy (our correspondence categories might be called "analogies"
and our analogy categories "relevant analogies") - truth is the minimal element of
an analogy° The non-existence of a maximal element (making the semi-lattice into a
lattice) corresponds to the possibility of forming different analogies between the
same parts of a structure. One should not be tempted to call them "falsW' analogies
because these may be ruled out by appropriate choice of the truth category. The
possibility of two analogies not being encompassed by another (having no common upper
bound, or even no upper bounds at all) corTesponds to the possibility of two people
having "different points of view" - you may form an analogy which helps you, and I
may form a very different one that suits me, but providing they are beth adequate
fop the task in hand (have the truth, at least, in common) the present theory does
not attempt to judge between them - i.e. it leaves ample scope fop debates on style,
salubrious habits, and so on. If, however, these styles and habits become incorp-
orated into the truth category then the theory does provide the necessary legalistic
tools to enforce them° It is also able to comment that X's style implies Y's (ioeo
forces X to do all that Y does plus some other mannePisms), or that ZTs structured
programming techniques encompass those of both X and Y.

Other useful concepts may be expressed in terms of analogy categories and
Figs° 3 and 4. If we require the model to be an "emulator" then essentially we
require it to reflect all the s%Tucture in the system emulated and the functor from
the truth category to the modelled category becomes an isomorphism° The diagram of
Fig. 3 then collapses to a triangle in which a faithful functor from the category to
its model factors through the analogy. Milner [17] gives some interesting examples
of "simulation" between programs within an algebraic framework that represents one
concrete form of the abstract categories discussed here~ The development of
assertional programming languages may be seen as an attempt to make the model
category isomorphic to the modelled category. The semi-lattice then becomes a
lattice with the maximal element being isomorphic to them both. Fig. 1 may also be
expanded with more model categories and we may consider analogy categories that are
common to two or mope models, i.e. the common features of different models° This
sets up a further partial order on analogies that is compatible with that already
defined and hence extends ito

Diagrams of possible relationships, such as those of Figs. i and 2, may now
be seen as imbeddable in a whole web of analogy relations which express all the
differing bases on which one may wish to compare the various structures° The rigour
and practical utility of this web of relations is a function only of the extent to
which we are prepared to define the items in the boxes in such diagrams - a not
unexpected result! However, it is worth noting that virtually any attempts at
formal definition are utilizable, from weak constraints to highly specific structures
- the approach developed in this paper enables the mutual relationships implied by
various definitions to be explored.

~. Conclusions

The concepts developed in this paper are global in nature rather than specific
to particular aspects of the theor 7 of computation or programming (technology or
psychology). They do not conflict with or supersede the many current studies of the
mathematical structure of programming itself, of virtual machines, of system analysis,
or programmer psychology, and so ono Rather they provide tools for relating these
diverse studies not only within their own frame of reference, but also globally in
terms of the compatibility and conflict between prescriptions based on differing
terms of reference and points of view° The term "structured programming" has come
to mean a great many things to a great many people, and in its vet 7 diversity lies

699

the danger that the momentum generated will be dissipated in a mange of dogmas from
different "schools". The formalism of "analogy categories" developed in this paper
enables The essential cohesion of the various approaches to he expressed both
Pigomously and meaningfully on a basis of secure mathematical foundations.

5 o References

I. Elspasj B~, Levitt, KoNo, Waldinger, R.J. ar~ Waksmann, Ao, "An assessment of
techniques for pPoving progTam corPectness", ACM Comp. Surveys, VoI° 4,
pp. 97-147, June 1972o

2. Foster, J°M~ and Elcock, E°W., "Absys i: an incremental compile/" for assertions ;
an introduction", in Meltzer, B o and Michie, D., Machine Intelli~ence 4,
pp. 423-429, Edinburgh: University Press 1959.

3. Chang, C.L. and Lee, C.T.L., Symbolic Logic and Mechanical Theorem Proving,
New York : Academic Press 1973.

4. Arbib, M.A. and Manes, EoG., "Foundations of system theory", Automatica, Vol. i0,
pp. 285-S02, 1974o

5o Bobrow, LoS o and Arbib, MoA., Discrete mathematics, Ch. 9, Philadelphia:
Saunders, 1974.

6o Holt, AoW., "Introduction to occurrence systems", in Jacks, EoLo (ed.)
Associative InfoPmation Techniques, New York: Elseviem, 1968.

7. Scott, D., "The lattice of flow diagrams", in Dold, Ao and Eckmann, B. (eds)
Symposium on the semantics of algorithmic languages, ppo 311-$66, Berlin:
Springer, 1971.

8. Goguen, J.Ao, "Semantics of computation", in Proc. 1st Int. Syrup. on Category
Theory Applied to Computation and Control, Massachusetts, Februamy 1974.

9° Dahl, OoJo, Dijkstra, EoWo and Hoare, CoA.R., StPuctured Pro~mammin~, New YoPk:
Academic Press, 1972o

i0o Goldberg, R.P., "Survey of virtual machine meseaPch", Computer, Vol° 7, ppo 34-$5,
June 1974o

ll. Popek, GoJ. and Goldberg, R.P., "Formal requimements for virtualizahle third
genePation architectures", COmmo ACM, Vol. 17, pp. W12-421, July 1974.

12o Gaines, BoRo, "Varieties of computer - their applications and interrelationships",
IFAC Symposium, Budapest, April 1968.

1S. Goguen, J.A.~ "System theory concepts in computer science", Proc. 6th Hawaii Int.
Conf. on System Sciences, ~o 77-80, 1973o

14° Goguen, J.A., "Systents and minimal realization", Proc. IEEE Confo on Decision
and ContPol, pp. 42-46, 1971.

15. Goguen, JoA., "Realization is universal", Math. Syst. Theory, Volo 6, pp. 359-
374, 1973o

16. Goguen, J.A., "Concept representation in natural and artificial languages:
axioms, extensions, and applications for fuzzy sets", Int. J. Man-Machine
Studies, Vol. 6, pp. 513-561, September 197W.

17. Milner, R°, "An algebraic definition of simulation between programs", PrOco 2nd
Into Joint Conf. on Artificial Intelligence, London: British Computer
Society, pp. 481-489, 1971o

