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Abstract This paper arises from a number of studies of machine/problem relation- 
ships, software development techniques, language and machine design. It develops 
a category-theoretic framework for the analysis of the relationships between 
programmer, virtual machine, and problem that are inherent in discussions of "ease 
of programming", "good programming techniques", "structured programming", and so ono 
The concept of "analogy" is introduced as an expllcatum of the comprehensibility of 
the relationship between two systems. Analogy is given a formal definition in 
terms of a partially ordered structure of analogy categories whose minimal element 
is a "truth" c~ "proof" category° The theory is constructive and analogy relation- 
ships are computable between defined systems, c~ classes of system. Thus the 
structures developed may be used to study the relationships between programmer, 
problem, and virtual machine in practical situations. 

io Introduction 

There has long been a folk-lore of computing comprising moralistic fables 
(ESPOL and the Cactus Stack), mysterious creatures (the "good" programmer) and dark 
rites ("structured programming"), all concerned with value judgements about machines, 
problems and programmers, and their interrelationships. Like all real folk-lore 
this wealth of material cannot be dismissed - it provides the only constructive 
approaches to many problems central to computer systems engineering. And yet is is 
difficult to incorporate it in computer science because: 

(a) it is evaluative rather than descriptive - not, "technique A exists", but, 
"technique-A is better than technique B"; 

(b) as essential human element is often involved - not, "modular programs run 
better", but "modular programming techniques encourage prograrmmers to produce better 
results". 

These sources of difficulty, both involving subjective elements, have tended to 
undermine attempts to take a scientific approach to software development, or virtual 
machine design, and to make the results of studies in these areas to consist of 
isolated techniques or authoritarian dogma~ 

One effect of these problems has been to emphasize research on software 
production techniques that minimize human involvement, such as automatic pr to,ram 
verification [i] which evaluates only in terms of 'correctness', or n0n-imperative, 
a ssertional languages [2] and theorem-~rovin~ [3] where programming is reduced to 
problem-descriptiono However, the rigour of approach possible in these areas comes 
only because they avoid, rather than resolve, the problems stated above. The 
concept of program-proving is one component of "structured programming" but it does 
not contribute in itself to the actual process of structuring the problem to be 
suitable for algorithmic solution on a particular virtual machine° We cannot avoid 
the human component in terms such as "good programming techniques", "good machine 
design", and so on - terms which we all understand as going way beyond the sheer 
physical evaluation of correctness, speed, cost, etc. 
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It is the contention of this paper that both the problems stated above can 
be overcome and that a rigorous mathematical foundation can be established for the 
analysis and development of program development techniques, virtual machine design, 
and so on° The formulation proposed in this paper has the advantage of being 
constructive and leading to evaluations that can be computed in practical situations. 
The previously formalized concept of program verification plays a key role as a pivot 
for a far wider formalization of problem~programmer~machine relationships, in which 
both imperative and assertional languages appear as natural elements° 

The basis for the formulation is the concept of an analogy relation as an 
explicatum of the comprehensibility of the relationship between two systems. The 
use of category theory enables the analogy relation to he formally defined 
independently of any particular structures for the two systems, and hence avoids the 
pre-supposition of theories of human cognitive skills, program structures, or the 
representation of problems° The application of the theory requires the relevant 
categories to be defined (in terms of automata [~,5], Petri nets [6], or lattices of 
flow diagrams [7,8], etc.), but the basic theory itself is independent of changes in 
our techniques for system representation. It turns out that the possible analogy 
relations between two systems form a natural and significant partial order (in fact 
a semi-lattice) and are finite in number when the two systems are themselves finite. 
It is these two properties, coupled with their psychological significance, which 
make analogy relations a practical explicatum of many of the concepts of structured 
programming. 

The next section of this abstract is concerned with presenting the problems 
discussed in terms of a three-part relationship between programmer, problem and 
machine° Section 3 is a formal presentation and discussion of a category-theoretic 
formulation of analogy relations. The final section is concerned with how the 
results obtained may be applied (this paper presents work in progress and it is 
expected that the actual paper and presentation will contain more exemplars than can 
he given at present)o 

2o Machines~ Problems and Pro~ammers 
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Fisure 1 The Three-Part Relationship Between Virtual. Machine, 
Programmer and Problem (with examples) 
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The obvious relationship to analyse in studying ease of programming is that 
between virtual machine and problem° However, this leaves the human component 
implicit in the evaluation, and a better basis for analysis is that of Fig. 1 which 
shows the full three-part relationship between virtual machine, problem, and 
programmer. Introducing the programmer explicitly and emphasizing the symmetry of 
the three separate relationships is important in enabling us to distinguish, for 
example, between something being "easier for the progeammer" because: (a) it 
contributes to making the virtual machine intrinsically easier to use and understand; 
(h) it contributes to structuring the problem in a more comprehensible form; (c) it 
makes for a simple relation between problem and virtual machine which it is easy to 
express as a program. These possibilities are readily confounded - languages ame 
both problem-orientated and programmer-orientated in their facilities and either 
aspect may make a contribution to ease of progmamming. Published discussions of 
structured programming [91 move freely between these three possibilities, commenting 
on language facilities which make for readable programs (the machine/pro~eammer 
relationship), the structured fragmentation of problems for ease of understanding 
(the problem/programmer relatlonship), program verification (the problem/machine 
relationship), and so Ono 

Fig° 2 shows how the basic triangle of Fig° 1 iterates naturally to portray 
the tree of virtual machines [lO,11] found on most systems° The usual hierarchy of 
the machines themselves is apparent, but its supplementation by the explicit incorp- 
oration of the programmer/machine relationships places new emphasis on the decoupling 
action of a virtual machine str~/ctume - the problem of the pro~ammer at one level 
is the virtual machine of the next lower level, and there are no direct linkages 
between levels. One obvious question to ask in ter~,s of Fig. 2 is whether a 
programmer/problem pair is being linked in at the appropriate node in the hierarchy, 
e.g. if, for some reason, the fluid dynamicist shown in Fig. 2 was tackling problems 
requi~ing high-speed bit manipulation, or list-processing, he might be better off 
linked to VMn+ 2 (intermediate language) or VMn+ 3 (LISP), respectively° That is, it 

raises the question of the VM node that has ~eatest analogy to the problem, structure. 
However, on infomming our errant programmer of these preferred alternatlves, we are 
roundly informed that he finds the intermediate language too vast to remember and 
the LISP syntax too weird for words - FORTRAN is to him a natural language and he is 
sticking to ito That is, there is another question as to the VM node that has 
~[eeatest analogy to the pro~ammer's (current) co~nltive structure t. 

The term "analogy" used in the preceding discussion has obvious colloquial 
connotations, but unless the meaning of the term can be defined more precisely, 
preferably operationally and quantitatively, the arguments must remain at their usual 
informal level° I first attempted %o develop a rigorous expllcatum for the concept 
when working on programmable digital differential analysers (DDA's) and attempting 
to classify problems in temms of the appropriate computing techniques [12]. In 
solvin E differential equations it is clear that the DDA has not only advantages in 
speed but also in ease of use© The psychological advantage arises because it is an 
~ computer whose structure closely resembles that of the differential equations 
t solves° The important psychological relationship between analogy and ease of 

use is explored in Ref. 1 where a tentative formulation in terms of category theory 
is proposed. 

Although developed in a fTamework where it is fairly obviously appropriate, 
once abstracted this concept of analogy proved capable of wider extension to language 
and machine analysis and design° For example, two minicomputer designs provided a 
contrast between the earlier machine aimed at high packing density of proEeams (a 
major technical objective in microcomputers where store costs dominate) and the later 
machine aimed at ease of program development° The stark contrast between the 
requirement for detailed hand-coding and impossibility of compilation of the former, 
and the natural relationship to algebraic language of the latter, placed analogy in 
the role of another technical factor that could be traded against, for example, 
program packing density. There was a strong incentive to quantify "analogy" in 
such a way that these trade-offs could be clearly expressed. A possible 
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quantification, based on the tentative categozT-theoretic concepts of Ref. 1 but now 
worked out in detail, is given in the following section. It turns out to be 
surprisingly straighZforwaPd and capable of direct application° 
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Fig.ure 2 The Hierarchy of Virtual Machines and Programmers 
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3. A Category-Theoretic Formulation of Analosy 

If we had tried t o  formulate the concept of an analogy relation a decade ago 
we would have been forced to frame it in terms of particular algebraic or topological 
st-ructures. For the machine, a finite automaton structure would have been obvious° 
For the programmer or problem, however, any single structure would have imposed 
severe restrictions on the generality of the results and left them open to criticisms 
which applied only to the specific structures chosen to model human cognitive 
processes, or problem specifications, and not to the notion of analogy itself. 

A category-theoretic framework for a theory of analoEy avoids these problems. 
By representing the machine, pmogP~er, and problem as arbitrary categories, the 
way is left open for any particular structure to be postulated for any one of them, 
and for the accepted structures to change with out states of knowledge and technology 
without affecting the fundamental concept of analogy° In addition, even if the 
basic structures we use remain unaltered, the use of category theory enables us to 
cope with changes in emphasis and significance - we may wish to examine the analogy 
between a particular problem and a particular program , or between a class of problems 
and a class of programs - we may wish to specify either a particular value or a 
particular function as a result to be verified° A category can be highly specific, 
e.g. a single discrete set, or highly general, e.g. a class of algebras, and it can 
express constraints upon both objects and functions. 

This leads naturally into out first postulate: 

Postulate I A system can be represented by a category. 

This is, perhaps, immediately acceptable for virtual machines, acceptable on trust 
for problems, but dubious fop pPogmammems~ The fimst two cases ape adequate for 
many important results, and if programmer is replaced by, 'cognitive model of 
programmer I , then the third case becomes mope reasonable. Goguen's papers on 
category theory applied to the semantics of computation [8,13], system structure 
and behaviouP /14,15], and human and artificial cognitive processes /16], present 
the case for this postulate far better than any arguments here. 

The next question is how may we compare two syc~tems (categories) for an 
analogy between them ? To get so~e idea of what is involved it is useful to have 
some informal specific category in mind, say that of automata [1~,15]. The notion 
of isomorphism, or any kind of moPphlsm, between the categories is not useful 
because in general we expect each to have structure not[ reflected in the other - an 
analogy is a partial correspondence - one automaton ma> ---7 transit many s t a t e s  duping 
one transition in the other, and vice versa, but some states of each can be put into 
mutual corTespondence. Since we cannot map directly J~om one system to the other 
we introduce a "correspondence" category that maps onto each, and ensure that these 
mappings are non-trivial by requiring them to be faithfl/l functol-s. A faithful 
functo~" has important structure correspondence p r ~  in that it carries 
commutative diagrams in one category into commutative diagrams in the other, in both 
directions. 

Despite this restriction however our structure, like all partial correspondence 
concepts, is as yet very weak and allows for many trivial "correspondence categories"° 
We strengthen it by intmoducin E a key concept, that of a "truth" category, which is a 
correspondence category with the minimal structure sufficlent to express the essence 
of one of the other two categories° For example, suppose one of our categories is 
essentially a description of a process for calculating tax due, and our other 
category (which we shall call the "model") is essentailly a compute/- program to 
perform this calculation° Then the truth category might represent a simple input/ 
output map of data in and results out, ioeo we ape not interested in how the original 
calculation was done and do not want this to be reflected in the program - all we 
want are correct final results fop given data° 
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Note that the redundancy in the problem specification will probably be not 
only in structure but also in the domains of data - the domains in the truth 
category will tend to be smaller than the implied domains in the problem specific- 
ation (and the actual domains in the computer program). The tr,/th category is the 
minimal stPuctume that we wish to reflect from the problem category through the 
truth category into the modal category, and vice versa° It clearly forms the basis 
for program verification and may be termed a "proog' category when the main categories 
ape a problem and a program° 

Postulate II A truth category having a faithful functor to each of a category and 
its model can adequately represent all that we mean by a "correct", or "significant", 
or "adequate", or "true", analoKyo 

TRUTH CATEGORY 

Representing the 
essence of the 
category modelled 

eg overall data/ 
output transforma 

F, faithful 
functor 

/ A~ALOOY MODET 
0ATEGORY 0 be modelled ~ F/0ATEGORY 

eg arbitrary but~ ~pr eg a program 
: o~; class of 

definable system/ relationship ~ ograms 

/ L between syste~ 
and model 

Figure 3 Diagram Defining the A~logy Cate~or[ Between a System 
and its Model 

We now have sufficient s%Tuctur~ t o  fommulate the concept of an "analogy 
category", or just "analogy". It is a correspondence category that makes the 
diagram of Fig. 3 commute, ice. the faithful functors from the truth categomy factor 
through the analogy category. Hence the functors from the analogy category reflect 
all properties reflected by the truth category, together with certain other~ that 
the category and its model have in common but which go beyond those strictly requi~ed 
by the truth category° It is of course just these other properties which make the 
difference between the analogy fop addition, say, offered by a universal Turing 
machine and that offered by a digital computer - at truth level the Turing machine is 
everything that the computer can beo 
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Figure ~ A Semi-Lattice of Analogies 

The arrows are faithful functors: ......... > necessamy 

- - - ~ possible 

There can clearly be many analogy categories for a given category/%Tuth/model 
(CTM) triple, but the direction and faithfulness of the functors guarantee that the 
analogy categories ape "smaller" than eitheP the categoPy or its model° Fig. 4 
shows a set of four analogies, ANo, AN1, AN 2 and AN 3. Each necessarily has the 

prescribed triple of al-Pows connecting it to the CTM tPiple~ However, there may 
also be faithful functors between the analogies themselves, and these define an 
impomtant relation between analogies. Because the existence of faithful functors 
is reflexive, asymmetric and ~ansitive, the relation induced is a partial order, 
and we shall write : 

AN > AN ~ F: AN faithful~ AN 
n m m n 

where ANn and AN m are analogy categories. The relation is in fact somewhat stronger 

since we can show that least upper bounds, if they exist, are unique, and greatest 
lower bounds always exist and are unique (Ruth is a universal lower bound), and 
hence analogies form a lower semi-lattice. 

It is this semi-lattice stPucture that forms the richest component of our 
formulation of analogy - it gives a rigorous explicatum to the concept of one 
si-~ucture being more analogous than another and it ensures that if two analogies 
cannot be compared directly there is a unique common analogy (their glb) which 
expresses theim maximum mutual relationship° 
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Postulate III The semi-lattice ordering of analog categories adequately represents 
what we mean by one analogy heing "more comprehensive", "closer", or "more detailed", 
than another. 

The role of the truth category may now be seen as a constraint ensuring the 
relevance of an analogy (our correspondence categories might be called "analogies" 
and our analogy categories "relevant analogies") - truth is the minimal element of 
an analogy° The non-existence of a maximal element (making the semi-lattice into a 
lattice) corresponds to the possibility of forming different analogies between the 
same parts of a structure. One should not be tempted to call them "falsW' analogies 
because these may be ruled out by appropriate choice of the truth category. The 
possibility of two analogies not being encompassed by another (having no common upper 
bound, or even no upper bounds at all) corTesponds to the possibility of two people 
having "different points of view" - you may form an analogy which helps you, and I 
may form a very different one that suits me, but providing they are beth adequate 
fop the task in hand (have the truth, at least, in common) the present theory does 
not attempt to judge between them - i.e. it leaves ample scope fop debates on style, 
salubrious habits, and so on. If, however, these styles and habits become incorp- 
orated into the truth category then the theory does provide the necessary legalistic 
tools to enforce them° It is also able to comment that X's style implies Y's (ioeo 
forces X to do all that Y does plus some other mannePisms), or that ZTs structured 
programming techniques encompass those of both X and Y. 

Other useful concepts may be expressed in terms of analogy categories and 
Figs° 3 and 4. If we require the model to be an "emulator" then essentially we 
require it to reflect all the s%Tucture in the system emulated and the functor from 
the truth category to the modelled category becomes an isomorphism° The diagram of 
Fig. 3 then collapses to a triangle in which a faithful functor from the category to 
its model factors through the analogy. Milner [17] gives some interesting examples 
of "simulation" between programs within an algebraic framework that represents one 
concrete form of the abstract categories discussed here~ The development of 
assertional programming languages may be seen as an attempt to make the model 
category isomorphic to the modelled category. The semi-lattice then becomes a 
lattice with the maximal element being isomorphic to them both. Fig. 1 may also be 
expanded with more model categories and we may consider analogy categories that are 
common to two or mope models, i.e. the common features of different models° This 
sets up a further partial order on analogies that is compatible with that already 
defined and hence extends ito 

Diagrams of possible relationships, such as those of Figs. i and 2, may now 
be seen as imbeddable in a whole web of analogy relations which express all the 
differing bases on which one may wish to compare the various structures° The rigour 
and practical utility of this web of relations is a function only of the extent to 
which we are prepared to define the items in the boxes in such diagrams - a not 
unexpected result! However, it is worth noting that virtually any attempts at 
formal definition are utilizable, from weak constraints to highly specific structures 
- the approach developed in this paper enables the mutual relationships implied by 
various definitions to be explored. 

~. Conclusions 

The concepts developed in this paper are global in nature rather than specific 
to particular aspects of the theor 7 of computation or programming (technology or 
psychology). They do not conflict with or supersede the many current studies of the 
mathematical structure of programming itself, of virtual machines, of system analysis, 
or programmer psychology, and so ono Rather they provide tools for relating these 
diverse studies not only within their own frame of reference, but also globally in 
terms of the compatibility and conflict between prescriptions based on differing 
terms of reference and points of view° The term "structured programming" has come 
to mean a great many things to a great many people, and in its vet 7 diversity lies 



699 

the danger that the momentum generated will be dissipated in a mange of dogmas from 
different "schools". The formalism of "analogy categories" developed in this paper 
enables The essential cohesion of the various approaches to he expressed both 
Pigomously and meaningfully on a basis of secure mathematical foundations. 
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