
RepGrid • WebGrid • RepGrids
RepNet • RepDoc • RepScript

Rep Plus
Conceptual Representation Software

RepGrid Manual
Eliciting, Entering, Editing and
Analyzing a Conceptual Grid

May 2021

Brian R Gaines and Mildred L G Shaw

http://cpsc.ucalgary.ca/~gaines/repplus/

Contents

Contents i

1 Conceptual Grids 1
1.1 RepGrid, WebGrid and RepGrids . 1

2 Opening, saving and creating grid files 3
2.1 Opening a grid file . 3
2.2 Save, Save As . 4
2.3 Undo . 4
2.4 New . 4
2.5 Copy, Exchange, Elements, Constructs—Open dialogue or drag and drop 5

3 Editing a grid 6
3.1 Options pane . 7

3.1.1 Grid description . 7
3.1.2 Grid terminology and defaults . 7
3.1.3 Default rating scale . 7
3.1.4 Grid annotation . 8
3.1.5 Rating scale data types: ratings, categories, integers, numbers 8
3.1.6 Metavalues in ratings: open, unknown, any, none, inapplicable 8

3.2 Elements pane . 10
3.2.1 Element annotation and weights . 11
3.2.2 Editing element data . 12
3.2.3 Sorting elements . 13

3.3 Constructs pane . 13
3.3.1 Construct names . 14
3.3.2 Construct annotations, weights and reversal 15
3.3.3 Editing the ratings of elements on constructs 16
3.3.4 Assigning categories to rating scale ranges 16
3.3.5 Categorical, numeric and integer construct rating scale types types 18
3.3.6 Representing ordinal relations between constructs 22

3.4 Classes—intersects and anticipation . 24
3.4.1 Classes Pane . 25
3.4.2 Anticipation: classes as intersects, templets, cases, rules 27
3.4.3 Editing class meanings . 27
3.4.4 Using classes for classification . 29

i

3.4.5 Exporting classes as descriptions, logical expressions and conceptual nets . . 30
3.4.6 Using the Classes pane analyses with grids where classes have not been speci-

fied . 32
3.4.7 Classes as ideal elements or compound constructs in grids 33

3.5 Items pane . 34
3.5.1 User-defined items . 35

3.6 Scripts pane . 36

4 Grid entry, elicitation and export scripts 39
4.1 Enter Grid . 39
4.2 Elicit Grid . 44
4.3 Export grid data . 51
4.4 Analyze grid data . 51
4.5 Modifying scripts . 51

5 Grid display and analysis 52
5.1 Display: Plotting the grid as a matrix of ratings of elements on constructs 52

5.1.1 Display plot output . 53
5.1.2 Including classes as elements or constructs in the analyses 54

5.2 Synopsis: Histograms and scree plot . 55
5.2.1 Synopsis histogram and scree plots output 57

5.3 Focus: Sorting by similarity and hierarchical clustering 58
5.3.1 Focus cluster plot output . 59
5.3.2 Focus data output . 61
5.3.3 Status of the Focus hierarchical clusters . 62

5.4 PrinGrid Map: Spatial rotation and scree plot . 65
5.4.1 PrinGrid Map plot output . 68
5.4.2 PrinGrid Map with Voronoi diagram . 69
5.4.3 PrinGrid Map with alternative metrics . 70
5.4.4 PrinGrid Map with mixed construct types 74
5.4.5 PrinGrid 3D plot . 74
5.4.6 PrinGrid text output . 75
5.4.7 Pringrid analysis of hierarchical data . 77

5.5 Crossplot: Plotting elements on constructs as orthogonal axes 78

ii

5.6 Compare: Comparison of grids with some common elements and/or constructs . . 81
5.6.1 Methodology of grid comparison . 81
5.6.2 The compare dialogue . 82
5.6.3 Comparing grids with substantial numbers of elements and constructs in com-

mon . 83
5.6.4 Comparing grids with a substantial number of elements in common 84
5.6.5 Comparing grids with a substantial number of constructs in common 86

5.7 Match analysis: Display matches between elements and between constructs 88
5.7.1 Using ideal elements derived from classes in a Match analysis 90
5.7.2 Match analysis of Wason’s card selection task 92

5.8 Analysis of selected elements and constructs . 94
5.9 Analysis of weighted elements and constructs . 96

6 Style—managing the font and colour scheme of analyses 100
6.0.1 Colour selection . 101

7 Editing and exporting RepGrid output 102

8 RepGrid/WebGrid integration 104
8.1 Transferring grid data from RepGrid to WebGrid 104
8.2 Transferring grid data from WebGrid to RepGrid 108

9 Data Formats 109
9.1 Basic grid format . 109
9.2 Spreadsheet grid entry format . 112

10 Appendix: Elicit Scripts 114
10.1 Script: Elicit Grid.repscript . 114
10.2 Script: Elicit/Main.repscript . 115
10.3 Script: Elicit/Elements.repscript . 118
10.4 Script: Elicit/EditElement.repscript . 120
10.5 Script: Elicit/Constructs.repscript . 122
10.6 Script: Elicit/AddConstruct.repscript . 123
10.7 Script: Elicit/Match.repscript . 126

11 Bibliography 129

iii

1 Conceptual Grids
To support the application of his personal construct psychology, George Kelly (1955) developed a
method for eliciting a person, or group’s, conceptual framework that he termed a conceptual grid
(p.301). He described it as providing a cybernetic model (p.302) of a person’s psychological space
(p.301)—emphasizing his rejection of the dichotomy between constructivism and behaviorism, one
of the many that he explicitly transcended.

Kelly’s grid elicitation and analysis techniques enable one to model personal, or social, conceptual
frameworks for diverse domains by eliciting the bipolar constructs through which people differenti-
ate significant elements in a particular domain. His primary interest was clinical psychology and he
developed a particular form of the grid to model a clients’ models of their immediate social world in
which people were significant to them in a variety of roles. He termed this a role repertory grid, of-
ten abbreviated to repertory grid or repgrid. In much of the personal construct psychology literature
these terms became used more generally to denote Kelly’s generic “conceptual grid,” but his general
term is more descriptive.

Kelly’s grid method is applicable in any domain and has been used for conceptual modelling
across a very wide range of disciplines such as clinical psychology (Leach et al., 2001), psychiatry
(Kirkcaldy et al., 1993), education (Pope and Denicolo, 2001), management studies (Tan et al., 2009;
Bellman, 2012; Rad et al., 2013), consumer studies (Mireaux et al., 2007), architectural studies (To-
fan et al., 2014), and software engineering (Young et al., 2005) including requirements elicitation
(Shaw and Gaines, 1996a; Dey and Lee, 2017).

1.1 RepGrid, WebGrid and RepGrids

The RepGrid, WebGrid, and RepGrids tools provide the capability to elicit, enter, edit and analyze
conceptual grid data, and to reflect back the underlying conceptual representations in graphic form.
They can be scripted to offer interactive dialogs and analyses, and includes scripts for Shaw’s (1980)
conversational elicitation, and for the entry of grids that have been elicited through interviews and
other methods (Jankowicz, 2004; Fransella et al., 2004; Fromm, 2004; Caputi, 2011). The analyses
present grids in a way that reflects their meaning in order to promote discussion, understanding,
decision-making, conflict mediation, and further elicitation.

In the 1980s Kelly’s conceptual grids became recognized as powerful tool for eliciting knowledge
from domain experts in order to develop computer-based expert systems and were enhanced in vari-
ous ways to support such applications. Most of the enhancements are consistent with Kelly’s (1955)
exposition of personal construct psychology and, in particular, they may be used to exemplify his
fundamental postulate, that psychological processes are driven by the need to anticipate events.

RepGrid includes such enhancements, notably a wider range of data types for grids, the capa-
bility to collect and store additional data as part of a grid file, and the ability to use the conceptual
structures in grids to classify elements in a variety of ways through classes defined in terms of Kelly’s
(1955, p.121) “intersect of properties” and having subordination and preference relations to one an-
other.

1

These enhancements allow RepGrid to be used for teaching and research in cognitive science, ar-
tificial science and knowledge management. However, the user interface has been designed such that
the new capabilities are not intrusive and the program can be used as a conventional grid elicitation
and analysis tool without involving them. For researchers in personal construct psychology, the en-
hancements also enable Kelly’s (1955, p.121) notions of how people anticipate events to be explored.

RepGrid is designed to be open architecture through its scripting capabilities which enable its
functionality to be used by other programs, and its own capabilities to be modified and extended
by researchers. Like the other Rep Plus tools it incorporates the RepScript tool and provides pro-
grammable access to its own functionality, statistical techniques, the graphic capabilities of RepNet,
and so on.

2

2 Opening, saving and creating grid files
An orange grid icon shown on the right is used for a RepGrid file. It contains lists of
the elements and constructs, ratings of elements on constructs, class specifications,
analysis parameters and numerous ancillary items of information such as the purpose
of the elicitation, name of elicitation, date and time of elicitation, and so on. It may
contain user-defined data specific to a particular study, and system-defined data relat-
ing to parameters chosen, window size and position, and so on, supporting RepGrid
and WebGrid operation. The data is held in a text format that is both human and machine readable.

2.1 Opening a grid file

Clicking on the Open button in the RepGrid panel of the Rep Plus Manager window (Figure 1) brings
up a dialog for opening a file, with grid files indicated by their distinctive icons. If a file is selected
RepGrid will attempt to open it as a grid, reporting an error if the data cannot be interpreted as
such. RepGrid can decode grids files in most of the many formats that have been used by past and
current generations of grid programs (including a WebGrid page saved as the HTML source), but
those it saves are not necessarily backwards compatible.

Figure 1: Opening a grid file from the Manager Window

3

All Rep Plus files contain a file type identifier and grid files may also be opened by using the
Open (command-O) or Open Recent commands in the File menu, double-clicking on a grid file, or
dragging it to the Rep Plus application icon or Manager window.

2.2 Save, Save As

Selecting the Save option in the File menu or keying command-S, may be used to save the grid data to
its existing file. The Save As option may be used to save the grid to a new file.

When a grid is saved the analysis parameters last used and the states of the analysis tools and
scripts menus are saved with it. They are restored when the grid is re-opened so that if particular
analyses or scripts are being used for that grid they do not have to be set up each time it is opened.
The RepGrid window size and position is also saved and restored, as are the column widths of the
various tables of grid data.

2.3 Undo

When grid data is changed the state of the grid before the change is recoded, the Undo item in the
Edit menu becomes active, and selecting it or keying command-Z restores the state of the grid be-
fore change. The last fifty state changes since the grid was opened are recorded supporting multiple
undoing. This information is discarded when the grid is closed.

2.4 New

Selecting the Grid option in the New submenu of the File menu, or keying command-N, creates a
new grid with standard default values. Clicking in the New button in the RepGrid area of the Rep
Plus Manager window has the same effect

The grid that is created is a copy of the current default grid stored in the GridScripts directory in
the RepPlus directory in the Documents or MyDocuments directory, or in the GridScripts directory in
the same directory as the Rep Plus application where a default grid is preinstalled.

Users may store as many potential default grids as they wish in the GridScripts directory in the
RepPlus directory in the Documents or MyDocuments directory. This enables a user to set up a de-
fault grid with different parameter defaults, such as terms for elements and constructs, analysis pa-
rameters and graphic styles, or even default initial elements and constructs. They can select which
one is to be copied when a new grid is created by clicking in the Menu symbol (☰) in the RepGrid
panel of the Manager window (Figure 2).

Figure 2: Setting the default grid to be copied when creating a new grid

4

The hierarchical popup menu shows the available grids in the submenu on the right. The grids
black and neon are user-developed for purposes of presentation. The grid default is system installed
and designed for use in publications that will be published in colour but often printed in monochrome.

The main menu on the left provides three options:

Set default grid Select which of the grids on the right is the default to be copied when a new
grid is created;

Create copy of grid create a copy of the selected grid on the right—a useful alternative to chang-
ing the default grid when only one new grid of a different type is required;

Create copy of styles create a copy of the selected grid on the right containing only the styles—
useful if some default grids contain elements and/or constructs;

Open grid Open the selected grid for editing—making it simple to access the possible default
grids in order to make changes to them.

Users do not need to access these capabilities and can simply use the New Grid command in the
File menu or Manager window to create an empty grid that is a copy of the system-installed default
grid. However, in complex projects the capability to switch between default grids may be very useful
to help organize the workflow and help to ensure uniformity in the styles of presentations.

2.5 Copy, Exchange, Elements, Constructs—Open dialogue or drag and drop

It is often required to open a copy of a grid with only the elements or constructs or with both but
unrated. These options are available through four buttons in the RepGrid panel of the Manager win-
dow:

Copy Open a copy of a grid;
Exchange Open a copy with the ratings all set to be open;
Elements Open a copy with only the elements;
Constructs Open a copy with only the constructs.

If the button is clicked then a file selection dialogue appears that may be used to specify the grid.
Alternatively, a grid file may be dragged to the button (Figure 3)..

Figure 3: Dragging a grid file to one of the buttons in the RepGrid panel

Drag and drop is also effective with the New and Open buttons, in the first case opening a copy
and in the second the original grid.

5

3 Editing a grid
Clicking on the file named Arthur in the file open dialog opens that grid file in the Options tab of a
RepGrid window (Figure 4).

Figure 4: Opening a grid file—the RepGrid Options pane

The tab ribbon along the top lets allows one to select any one of the panes: Options, Elements,
Constructs, Classes, Items, and Scripts. The two rows of buttons at the bottom provide access to a
range of grid analyses ($5).

When the data in a RepGrid window is changed one can save the changed data in its original
file through the Save command (or command-S) in the File menu. The Save As… command in the
File” menu allows one save the grid in a different file. RepGrid supports multi-level undo through
the Undo command at the top of the Edit menu (or command-Z) which becomes active if grid data
is changed. Only changes in grid data are recorded as undoable and, since the grid files also keep
track of the window position, the Save command is always available. If the Undo command is active
and one attempts to close a RepGrid window without saving the grid data then a warning is given
providing the opportunity to save the data before the window is closed.

The RepGrid window opens with the Options pane showing, and clicking on one of the other
tabs brings its pane into view. The following sections describe the functions of each pane.

6

3.1 Options pane

The Options pane shows some overall features of the grid and allows them to be entered or edited. It
has three panels: Grid Description, Grid Terminology and Defaults, and Grid Annotation (Figure 4).

3.1.1 Grid description

The Grid Description panel comprises three items. The Name field is intended to identify the person
from whom the grid was elicited. This is used to identify the grid in the titles of the analyses.

Since several grids might be elicited from the same person, a Note field is provided to allow fur-
ther identification. The note, and other identifiers such as the date and time when the grid was cre-
ated, may be specified to be included in parentheses after the name Arthur in analyses (§6).

The Purpose field is used to express the purpose or context for eliciting the grid. Computer-based
elicitation tools use this field to remind the user of the reason why they are developing a grid, and the
analysis tools add this to the title to show the purpose or context of the elicitation.

3.1.2 Grid terminology and defaults

The Grid Terminology and Defaults panel comprises seven items. In grids the entities being con-
strued are termed elements and the dimensions of construing, their perceived characteristics, are
termed constructs. These are somewhat technical terms, and it is often better for users to substitute
more colloquial terms appropriate to the domain or topic under consideration. In this grid Arthur,
or the person facilitating the elicitation, has chosen to use the term situation for element and quality
for construct.

3.1.3 Default rating scale

The default scale for the Ratings data type in RepGrid may be set to range over a set of integers from
a minimum of 100 to a maximum of +100. Scales of 1 to 5, 7 or 9 are commonly used. A two-valued
rating scale of 1 to 2 forces the user to make binary distinctions without ‘shades of gray.’ Using 1 to
3 provides a middle option that allows a user to express neutrality between the two poles of a con-
struct. However, users often prefer to have the further gradations of a 1 to 5, 1 to 7 or 1 to 9 scale
available to them. In the literature one will also find a variety of other scales used, such as a –7 to +7
scale or a 1 to 11 scale.

One may change the rating scale as one adds constructs, and thus have constructs with different
rating scales in the same grid. RepGrid will analyze such grids correctly since it rescales the con-
structs to a common range as part of its analyses. However, having different rating scales for differ-
ent constructs is not a common usage of grids, and we do not recommend that this feature be used
except with experienced users when it is appropriate to their project.

7

3.1.4 Grid annotation

The Grid Annotation panel at the bottom provides a multi-line text field to store any annotation that
may be useful. It is not shown in any of the analyses and may be used to help keep track of any data
relevant to the grid. If there is extensive annotation the window may be enlarged to display it.

3.1.5 Rating scale data types: ratings, categories, integers, numbers

The Data Types check boxes control what data types are offered. If none are checked then conven-
tional rating scales only are offered, and advanced features such as construct names and rating scale
categories, weights, and so on, are not made available so as to simplify usage. If any type or combina-
tion of types is checked then those types are offered together with the more advanced features.

Four data types are currently supported:-

Ratings: integer ratings in the range -100 to +100 with the default scale as specified, where one
may specify category labels (including the pole names) for ranges of ratings;
Categories: labeled categories, implemented as a subtype of Ratings where the rating scale is
derived from the number of categories specified;
Numbers: floating point numbers representing the value along a dimension such as height,
weight or time;
Integers: integer numbers, implemented as a subtype of Numbers restricted to have no decimal
places, a significant distinction conceptually but not technically.

3.1.6 Metavalues in ratings: open, unknown, any, none, inapplicable

RepGrid also supports the analysis of grids having meta-values for some of the ratings. The Metaval-
ues check boxes control what meta-values will appear on the rating scale popup menus that are made
available to users for grid data entry. The possible meta-values are:-

? Open: indicating that a rating has not yet been requested or entered;
* Any: indicating that any of the metavalues or values might apply, usually used in the specifica-
tion of an ideal element to indicate that a construct is irrelevant;
^ Inapplicable: indicating that the construct is not applicable to the element, perhaps because
the element does not fall under the the pole of a another construct superordinate to that under
consideration;
! Unknown: indicating that the construct is applicable but the specific rating is unknown or
irrelevant;
~ None: indicating that the construct is applicable but none of the available ratings is appropri-
ate, usually only used with Categories when a suitable one has not yet been made available.

The single characters such as as ? and ! before the names provide a succinct representation of a
metavalue when a grid is displayed. The attached description is intended a reminder of the meaning
of the metavalue, understandable to those facilitating the use of grids.

8

For purposes of display to users, both the single character and the description may be edited by
the facilitator to be more meaningful to users. The description that appears to end users may be
modified by the facilitator to be more meaningful to them, e.g. Open might be changed to Enter a
rating. When the grid is stored the standard character for the metavalue is used, but when it is dis-
played the alternative specified is used.

The meta-values and rating types are related through a logical structure that may itself be repre-
sented as a tiered structure of constructs (Figure 5).

range of
convenience

! unknown

^ none

ratings numbers

categories integers

? open * any

construct

~ inapplicable

Figure 5: Type hierarchy of meta-values and rating types

The construct node at the top represents a partial definition of a construct that is completed
through the specification of its range of convenience below (supporting Kelly’s (1955) notion that
constructs with the same name may have differing ranges and foci of convenience). The first three
metavalues reflect this structure allowing a construct to be mentioned but possibly not used: open
when no data has been entered; any when the construct is not relevant to a distinction because it is
inapplicable or its value does not matter, typically used in specifying ideal elements; and inapplicable
when the construct is not applicable to an element, a distinction important to representing the or-
dinal, or laddered (Reynolds and Gutman, 1988; Corbridge et al., 1994; Korenini, 2014), structure
of constructs in grid form. e.g. in a grid on holiday resorts, the construct poor beaches—good beaches
may be inapplicable to inland resorts but still very significant in comparing waterside resorts.

The final two metavalues indicate that an element is within the range of convenience of a con-
struct but: its rating is unknown or, possibly, irrelevant to the purpose of the elicitation; or corre-
sponds to none of the ratings, usually categories, made available.

In computing matching scores, any matches any value or metavalue, inapplicable matches inap-
plicable, and none is treated as an alternative middle value in relation to the poles but at the greatest
possible distance from the actual middle value of the scale. Otherwise, metavalues match no other
value, returning the greatest possible distance as if they were opposite poles.

In most conventional grid elicitation, the only metavalue used is ? to indicate that a rating has
not yet been entered. However, sometimes clients are given options such as any and none, or both
and neither, and RepGrid supports such metavalues.

9

If metavalues are not used then clients typically use the middle value of a rating scale as a neu-
tral value representing all the possible metavalues above, and the distinction between them is not
captured in the grid (Yorke, 1978, 1983). This seems to to be adequate in many situations, but the
capability to refine grids with more explicit metavalues is significant when using them to develop
computational models of anticipatory processes (Gaines and Shaw, 1993a,b) and to represent hierar-
chical knowledge structures (Shaw and Gaines, 1998).

3.2 Elements pane

Clicking on the Elements tab brings up the elements pane (Figure 6). This lists the numerical order of
the elements in the grid in the column on the left, and their names in the next column.

Figure 6: RepGrid Elements pane showing element numbers and names

Rows may be selected by clicking in the number column on the left which selects and highlights
the row clicked. Multiple rows may be selected by holding down the shift key for contiguous selec-
tions and the command key for non-contiguous selections, consistent with the normal conventions
of the Mac and Windows operating systems. One purpose of selecting rows is to allow them to be
deleted by pressing the delete or backspace key. Others are the selection of only part of a grid for dis-
play and analysis (§5.8), and to enable the data in them to be dragged to another application such as
a net in RepNet or a document in a word processor.

10

3.2.1 Element annotation and weights

The element names are always shown, and the associated note, weight and value fields may also be
shown dependent on which boxes are checked in the row on the left under the data. Figure 7 shows
the Elements pane with all the fields activated and some elements selected.

Figure 7: RepGrid Elements pane with all fields showing

The note field may used to annotate an element, and the first line may be displayed in the out-
put from analysis. If the annotation in the note field is long it may be edited separately by double-
clicking on the element number to open its note field in an edit pane (Figure 8).

Figure 8: RepGrid Elements pane note field opened by double-clicking on number field

Element annotation is particularly useful if the relevant name is not sufficiently descriptive of
the element or the reason for including it, for example, a person referenced by name might have a
note best friend or manager, and one referenced by role might have a note giving their actual name.

The weight value may be used to give some elements more influence than others in various anal-
yses (§5.9). If integer values are used the effect of weighting is the same as if the element data
had been entered the number of times specified in the weight.

The Weight checkbox determines whether the element weights are used in analyses, and the Se-
lect checkbox determines whether only selected elements are used in analyses.

11

3.2.2 Editing element data

Any field except the number in the first column and the values in the last column may be edited by
clicking on it, which selects it for editing (Figure 9). When the name has been edited, pressing the
return or enter key or clicking elsewhere deselects it for editing and centres the name again.

Figure 9: Clicking in a field selects it for editing

Pressing the tab key makes next visible field editable, stepping from name to note and weight if
these are visible, and then to the name in the next row, creating a new row if at the end of the table.
This supports rapid entry of whatever fields are being used for a particular grid. The Add button at
the bottom right may also be used to add an additional row.

The popup menu of constructs at the top right appears when the Value box is checked allows
a construct to be selected for which the rating values are provided in the rightmost column. The
column header shows the range of possible values.

The ratings of the elements on the construct may be entered through a popup menu whose avail-
ability is indicated by the menu cursor that appears as one mouses over a rating (Figure 10).

Figure 10: Mouse cursor changes to indicate a popup menu is available to edit a rating

Clicking in the rating field activates the popup menu allowing one to select a rating (Figure 11).

Figure 11: Popup menu editing a rating in the Elements pane

Ratings may also be edited as text in the same way as other fields by pressing the tab key to make
the first rating editable, or by clicking in a rating and releasing the popup menu without selecting a
new rating.

When editing the ratings as text, the tab key sequences down through the ratings, and has no
effect if pressed in the last one.

12

3.2.3 Sorting elements

The list of elements may be sorted by clicking on the element number and dragging it to a differ-
ent position, or by clicking on a column heading which sorts textual columns alphabetically and nu-
meric ones numerically. Clicking on the heading of an already sorted column reverses the sort order.
Figure 12 shows the elements sorted by ratings on the construct like—dislike after the ratings col-
umn header has been clicked. The elements will remain sorted by ratings if the construct selected is
changed.

Figure 12: Sorting elements

Sorting in this way, or by dragging, does not renumber the elements and hence is only tempo-
rary. Clicking on the Sort button at the lower right makes it permanent and renumbers the elements
accordingly.

3.3 Constructs pane

Clicking on the Constructs tab in the RepGrid window brings up the constructs pane (Figure 13).
This lists the numerical order of the constructs in the grid in the column on the left, their left hand
pole (LHP) names in the next column, and their right hand pole (RHP) names in the next column.

Editing constructs in this pane is similar to editing elements as described above. Rows may be
selected for deletion with the delete or backspace key by clicking in the number field. They may be
added by clicking the Add button or keying tab when the last (non-value) field of a construct is ed-
itable. The construct pole name fields are always shown, and the associated note, weight, value, level
and output fields may also be shown dependent on which boxes are checked in the row under the
data. Figure 14 shows the Constructs pane with all the fields activated and some constructs selected.

13

Figure 13: RepGrid Constructs pane showing construct numbers and poles

3.3.1 Construct names

Construct names may be used a way of naming the range of convenience of the construct separately
from that of its poles. When it is displayed in graphic or textual output, the construct name is treated
as a noun and the pole name as an adjective qualifying that noun, e.g. golfer as construct name and
good—poor as its a pole names will display as good golfer—poor golfer. The name column is placed to
the right of the pole columns in the Constructs pane to encourage this usage. In the literature con-
structs are often named through their pole names, e.g. flexible—rigid, and RepGrid defaults to this
convention if a name is not supplied.

Construct names are uncommon in normal grid data but are useful in applications where the
pole names are insufficient to identify the construct, e.g. with “Q-sort” (Stephenson, 1953) data
where the elements are statements, all the constructs are agree—disagree, and the name field is used
to identify the person responsible for rating that construct.

Construct names can also be used to represent ordinal relations between constructs (Kelly, 1955,
p.56) by entering a construct name that is the same as a pole name of a superordinate construct
(§3.3.6).

14

Figure 14: RepGrid Constructs pane with all fields showing

3.3.2 Construct annotations, weights and reversal

Each construct can be annotated, and the first line of the annotation may be shown in analyses.
Lengthier annotation can be edited as described for elements, by double-clicking on the construct
number to open its note field in an edit pane.

The weight value enables some constructs to be given greater weight than others in various anal-
yses (§5.9). If integer values are used the effect of weighting is the same as if the construct data had
been entered the number of times specified in the weight.

The Weight checkbox determines whether the construct weights are used in analyses, and the
Select checkbox determines whether only selected constructs are used in analyses.

The capabilities of specifying a construct as an output or giving it a level relative to other con-
structs are provided to support algorithms for modelling the conceptual structure represented in a
grid, such as various forms of machine learning.

Constructs may be sorted by clicking the column headers or by clicking on the construct number
and dragging it to a different position. Clicking on the Sort button renumbers the constructs to make
the sort order permanent.

Clicking on the Reverse button reverses any selected constructs. That is the poles are interchanged
and the ratings complemented such that there is no difference in meaning. Such reversal occurs au-
tomatically in analyses but it is sometimes appropriate to adjust it in the original grid, for example, to
show all the preferred poles on the left or right.

15

3.3.3 Editing the ratings of elements on constructs

Ratings may be edited through the keyboard or popup menu as for elements, and the tab key be-
haviour is the same as for elements.

Double-clicking on a construct number opens up the note field of a construct for lengthier anno-
tation as it does for an element (Figure 15). It also makes the construct’s rating scale range available
for editing in case it does not correspond to the default range given in the Status pane. RepGrid sup-
ports the editing and analysis of grids containing constructs with differing rating scales by rescaling
all ratings to the same range (a floating point double in the range -1.0 to +1.0) before analysis. If a
rating scale is changed after element ratings have been entered then the ratings are rescaled propor-
tionately along the new scale (note that this rescaling may lose information).

Figure 15: RepGrid Constructs pane note and categories field for a rating scale

3.3.4 Assigning categories to rating scale ranges

The points, or ranges, on a rating scale may be assigned textual labels termed categories. The left and
right hand pole names are treated as initial categories (Figure 15) and, if no further categories are
allocated, will be assigned non-overlapping ranges from the lowest rating value to the mid-point of
the scale, and from the mid-point to the highest rating value, respectively. The mid-point itself will
be omitted to avoid overlap if there is an odd number of rating values. This is apparent in the popup
menu shown on the right of Figure 11.

The Categories text field in the bottom half of the note field editor allows the pole names to be
edited and additional categories to be allocated to rating scale values or ranges as shown in the in
Figure 16 where a label has been specified for each value of the 5 point scale. These labels are used in
the popup menus (Figure 17), and are also available to conceptual modelling algorithms.

More complex specifications of the relations between ratings and categories are possible by spec-
ifying an explicit numeric range for a category as one or two numbers separated by a space before the
category label as shown in Figure 18. A single number specifies the rating associated with the cate-
gory, and a pair the range of ratings.

16

Figure 16: Specification of intermediate categories

Figure 17: Popup menu showing specified values and categories

Figure 18: Specification of overlapping category ranges

The ranges for categories may overlap and, if two or more categories apply to the same rating, all
of those that apply are shown separated by commas (Figure 19).

Figure 19: Popup menu showing overlapping categories

Bare labels and numerically specified labels may be freely mixed, and the RepGrid labelling algo-
rithm will attempt to achieve what seems to be intended. Any problems with label specification can
be made apparent by checking the popup menu it generates. The first and last label are used as the
pole names in the plots from the various analyses.

The capability to specify labels indicating the meanings intended to be associated with intermedi-
ate rating values is particularly useful in communal studies where a grid is developed by a core group

17

reflecting expected community constructs and provided without ratings to members of the target
community to provide their individual ratings. In such studies it may be useful to attempt to pro-
mote a common understanding of the use of intermediate values on the rating scales.

For example, the overlapping labelling of a scale illustrated in Figure 19 may be more appropriate
for some purposes than one which allocates a different label for each scale point. It indicates that
the stronger terms, very flexible and very rigid, apply only to the extreme of the scale but the more
general term, flexible and rigid, encompasses a range of ratings, and this representation may be closer
to common linguistic usage.

The Use in plots check box indicates that the category labels rather than the numeric rating val-
ues should be used in the output of analyses that show rating values, such as Synopsis, Display and
Focus.

3.3.5 Categorical, numeric and integer construct rating scale types types

As well as conventional rating scales, RepGrid supports the use of categorical, integer and numeric
(floating point) data types in grids (§3.1). If all four construct types are checked in the Options pane
then the Constructs construct Add button at the lower right changes to one with menu icon on the
left that allows the type of construct to be added to be selected. Figures 20 and 21 illustrate this for a
grid about house choices that uses multiple construct types.

Figure 20: RepGrid Constructs pane offering multiple construct types

18

Figure 21: Popup menu for selecting a construct type

In this grid the first six constructs are rating scales and the last three are categories, integers and
numbers, respectively. Double-clicking on the seventh construct opens up the note and categories
fields for editing (Figure 22).

Figure 22: RepGrid Constructs pane note and categories fields for a categorical construct

The category names are arbitrary strings entered when the Category button is clicked to add a
categorical construct. The number of points on the associated rating scale is from 1 to the number of
categories entered and the Use in plots option is set by default. If it is unset then the categories will
be represented by their associated rating values in the output from analyses. In addition to the bare
categories that determine the rating scale, numerically specified categories may be entered as for the
Ratings type.

The ratings of elements on categorical constructs can be entered and changed through the Value
field, textually or using a popup menu, in the same way as for ratings (Figure 23).

Figure 23: Popup menu showing specified categories

Categories are generally assumed to be ordered so that they may be treated as a conceptual di-
mension, but unordered categories may also be represented by unchecking the Ordered check box.

19

Some analyses can take this account, but distance-based analyses, such as Focus and PrinGrid, will
still treat the categories as ordered.

The category labels can be edited after ratings have been entered, and additional categories can
be added without existing ratings being affected. The order of the labels can also be changed with-
out the ratings being affected. However, if both the labels and the order need to be changed this
should be done as two separate edits as, otherwise, the intended outcome is ambiguous.

If a category label is deleted then any elements rated with that category will have their ratings set
to be open.

The Construct Note and Categories fields opens up automatically when a new construct, other
than ratings, is added in order to allow the category labels and/or the range of the numeric rating
scales to be specified.

Double-clicking on the eighth construct, named Price (000s), show that it has numeric values in
the range 200.00 to 600.00, and that categories have been assigned to ranges of prices (Figure 24).
The precision required is inferred from the maximum number of decimal places specified in the
Range fields.

Figure 24: RepGrid Constructs pane note, range and categories fields for a numeric construct

The Use in plots option is unchecked by default but can be checked to indicate that categories
rather than numeric values should be used in analyses. The Bins field allows the number of bins to be
set in the Synopsis analysis histograms if categories are not being used in plots.

The ratings of elements on numeric constructs can be entered and changed through the Value
field, textually or by using a popup menu, in the same way as for ratings (Figure 25).

The first and last category will be used as the pole names and it is normal for the first to have the
same lower bound as the overall range and the last to have the same upper bound as the range.

Double-clicking on the ninth construct, named Year, show that it has integer values in the range
1960 to 1999, and that categories have been assigned to ranges of years (Figure 26). Subranges have
been allocated category labels as shown and the other features are the same as those for the more
general Numbers type, e.g. the popup rating menu of Figure 27.

20

Figure 25: Popup menu (truncated) showing some possible values and categories

Figure 26: RepGrid Constructs pane note, range and categories fields for an integer construct

.........

Figure 27: Popup menu (truncated) showing possible values and categories

21

3.3.6 Representing ordinal relations between constructs

The availability of metavalues (§3.1.6) and the capabilities to specify construct names (§3.3.1) and
categories (§3.3.4) combine to enable Kelly’s (1955, p.56) ordinal relations between constructs to be
represented in a grid. Entering a construct name that is the same as a pole name or category of a su-
perordinate construct is recognized as specifying that the first construct is subordinate to the second.
The metavalue ~ Inapplicable may be used to rate a construct as irrelevant if it is a subordinate to the
opposite pole of one applicable to the element. When elements are split into two differently named
elements to avoid an inconsistency arising from ordination, the previous name may be represented
in a categorical construct so that the linkage between the new elements is still represented in the
grid.

Figure 28 illustrates how this may be done for the example discussed in §3.1.6 of the construct
poor beaches—good beaches being subordinate to the waterside pole of the construct inland—waterside.
At the top are the element names and construct poles and names entered in RepGrid; in the center
the ratings of three exemplary elements; and bottom a conceptual net formally derived from the
grid. The elements are vacation locations: Arrimoor, construed as an inland town where the poor
beaches—good beaches construct is inapplicable; Stonyside, construed as a seaside town with poor
beaches; and Sandyside, construed as a seaside town with good beaches.

Arrimoor
Stonyside

Sandyside

inland location waterside location
poor beaches waterside location good beaches waterside location

1 5 5
~ 1 5

location

Arrimoor

poor beaches
waterside location

Sandyside

good beaches
waterside location

inland location waterside location

Stonyside

Figure 28: Representing ordinal relations between constructs in a grid

The net at the bottom may be derived from the grid (§3.4.5) and vice versa—conceptual nets
and conceptual grids provide alternative, but equivalent, representations of conceptual structures
(Gaines and Shaw, 2012). The concepts represented by the poles poor beaches and good beaches are
false for experiences of Arrimoor because they are irrelevant, whereas for those of Stonyside and
Sandyside they are relevantly false and true, respectively. The figure illustrates Kelly’s (1955) no-
tions that: a grid represents a conceptual “network” (p.304); there is an essential difference between
a property being “false” and being “irrelevant” (p.60).

22

The concepts corresponding to the elements are the anonymous nodes at the bottom of the net
with the element names shown underneath them. Each of these nodes represents a constellation
of experiences, direct and mediated, that have been attributed to an entity identified by the element
name. These experiences could each be represented by further anonymous nodes subordinate to
the named one, and further nodes subordinate to these. The bottom nodes could be understood as
representing individual events, or states of affairs, that is, as events which are construed as the states
of individual entities (Gaines, 2015). All of this is subsumed into the notion of an element in a grid.

The element names are, from a logical perspective, arbitrary labels providing a unique identifier
for what is construed as an entity, but, for purposes of communication, are usually terms that are
generally used to indicate the constellation of experiences associated with the hypothesized entity or
descriptive terms sufficient to identify it in the context of their usage. Such considerations address
Kelly’s (1955) concerns deriving from Korzybski (1951) and Whitehead (1929) that one should
recognize that the elements are not concrete entities given by reality but are themselves constructed
by carving events from experiences and construing certain collections of events to attributable to
some entity. The interpretation of the entity construct from a realist perspective might be that we
evolved in a corner of the universe that naturally partitions into entities in a way relevant to our
survival, and from a constructivist perspective that, perhaps as a consequence, we tend to structure
our social and built environments in the same way.

The named node, its subordinates and superordinates may be seen as constituting what has come
to be termed the mental file (Récanati, 2013) that a person creates to group their experiences of an
object in their environment. The superordinate nodes shown are some of those in the mental file of
the person from whom the grid has been elicited that she or he deems relevant to the topic of select-
ing a vacation location.

Ordinal relations between constructs are often elicited by laddering techniques (Reynolds and
Gutman, 1988; Corbridge et al., 1994; Korenini, 2014). Their explicit representation in the grid sup-
ports elicitation techniques that provide feedback to users on the consistency between the ordinal
relations that have been elicited by laddering and the rating values they have specified (Korenini,
2014). For example, in figure 28, rating Arrimoor as having poor or good beaches would be inconsis-
tent with it being rated as inland. Inconsistency may indicate error in the data entered, that a partic-
ular element is an anomaly that does not conform to normal expectations or that it is heterogeneous
with different parts, or aspects, having different characteristics.

If the source of the inconsistency is attributed to the element being somewhat heterogenous
and having multiple significant states then a common technique is to split it into two more elements
representing these states, for example Mary as a doctor and Mary as a mother. Kelly’s (1955, p.50)
construction corollary states that “a person anticipates events by construing their replications”, but the
decision to treat one event as a replication of another is a significant abstraction that may itself be
problematic.

Korzybski (1951) saw such abstraction of events as a powerful technique essential to the devel-
opment of human knowledge and civilization, but also cited excessive abstraction as major source of
psychological problems. He promoted his chain-indexing technique as a therapy for such problems,
in which client’s were taught to separate events that they attributed to the same entity by indexing

23

the name under which they subsumed the events. Problems “may become trivial or nonexistent if we
become conscious of the identifications involved” (Korzybski, 1951, p.173).

For example, the inconsistency of Arrimoor being rated as having poor beaches when it has also
been rated as inland might be resolved if it is noted that the town is predominantly remote from wa-
ter but does have a small district far from the main town that is by the sea. Entering the different
locations as two separate elements with notes indicating that one is Arrimoor town and the other Ar-
rimoor seaside allows the conflict to be resolved (Figure 29). This shows in the grid and net the com-
monality of the two locations as being in Arrimoor but distinguishes them in terms of the inland—
waterside construct.

location

Arrimoor

poor beaches
waterside location

Sandyside

good beaches
waterside location

inland location waterside location

Stonyside

Arrimoor (town)
Arrimoor (seaside)

Stonyside
Sandyside

inland location waterside location
poor beaches waterside location good beaches waterside location

1 5 5 5
~ 1 1 5

Figure 29: Splitting an element to resolve inconsistency

This example illustrates the techniques whereby structures that represent human knowledge in a
way that people find understandable and adequate must be further refined to enable computational
reasoning to emulate human reasoning. This process has come to be termed knowledge engineer-
ing: “The vocabulary initially used by the expert to talk about the domain with a novice is often inadequate
for problem-solving; thus the knowledge engineer and expert must work together to extend and refine it.”
(Hayes-Roth et al., 1983).

3.4 Classes—intersects and anticipation

Kelly (1955, p.121) explicates the basis of anticipation as the recognition that an event can be con-
strued as falling at the intersect of a set of properties: “What one predicts is not a fully fleshed-out event,
but simply the common intersect of a certain set of properties. If an event comes along in which all the prop-
erties intersect in the prescribed way, one identifies it as the event he expected.” A class in RepGrid pro-

24

vides the means to specify an intersect of the properties of elements as encoded in a grid, notably the
basic constructs, categories and already defined classes.

This specification may be seen as constituting the meaning of the class, and can be interpreted in
a variety of ways. For example, classes may be treated as ideal elements or as compound constructs
dependent on their roles in analysis and application (§3.4.7). In case-based reasoning (Kolodner,
1993) the ideal elements are regarded as prototypical cases, and in rule-based reasoning (Buchanan
and Shortliffe, 1984) the compound constructs are regarded as the premises of rules.

The support of metavalues (§3.1.6) already provides the means to specify a basic intersect as an
ideal element having ratings on the constructs providing the properties of the intersection, and the
metavalue * Any on those that are not relevant to it—where ideal is understood in the sense of ide-
alization rather than perfection. An ideal element, such as ideal house may well represent a desired
anticipation, but it may equally well be an intersect representing an undesired anticipation, such as a
rugby player knowing that the intersect of handling the ball and knocking or throwing it forward is
a foul play to be avoided. Classes extend the basic specification of an intersect in terms of constructs
and ratings to also include specification in terms of relations with other classes, corresponding to one
possible anticipation being subordinate to, preferred to, or an exception to, another.

From a personal construct psychology perspective, intersects, ideal elements, cases and rules are
all subsumed by, and exemplify, Kelly’s (1955, p.8-9) notion of templets as patterns that are fitted to
events. The basic constructs of a conventional grid represent the dimensions of some part of the elici-
tee’s psychological space, the compound constructs that we have termed classes represent intersects
in that space in terms of the basic constructs and the other classes already defined. Classes may be
regarded as more complex specifications of ideal elements and also treated as dichotomous constructs
whose poles specify that the ideal element can fit (match closely), or cannot fit (match poorly), an-
other element.

Classes were originally introduced in RepGrid to support the development of knowledge-based
or expert systems where Kelly’s (1955, p.46) fundamental insight, that construct systems evolved
to support the anticipation of events, is operationalized by eliciting grids from domain experts and
using them to emulate the anticipatory processes underlying human expertise (Boose and Gaines,
1988; Shaw and Gaines, 2005).

3.4.1 Classes Pane

Clicking on the Classes tab brings up the classes pane (Figure 30). This lists the numerical order of
the classes specified for the grid in the column on the left, followed by the number of elements that
could fall under a class, the class names, and their meanings in terms of the constructs, categories
and other classes that have already been specified.

Editing classes in this pane is similar to editing elements or constructs as described above. Rows
may be selected and sorted, the class number and name are always shown and the count, meaning
and note fields may be shown or hidden. The Add, Sort and Delete buttons act as before. The re-
maining controls and the editing capabilities activated by double-clicking on a class number or de-
scription are specific to classes and are detailed below.

25

Figure 30: RepGrid Classes pane showing class numbers, element counts, names and descriptions

The grid shown represents a well-known expert system dataset devised by Cendrowska (1987)
to demonstrate issues with machine learning algorithms in the 1980s, and has been widely studied
because the problem is simple enough to be understood but complex enough to exhibit significant
aspects of computational knowledge acquisition, representation and inference. The problem is pre-
sented as one of contact lens prescription where a hard lens is suitable for an astigmatic client and
a soft one otherwise, but there are exceptional conditions making a contact lens unsuitable. One of
these is reduced tear production but Cendrowska posits that this should only be tested if the other
exceptions do not apply because the test is invasive and expensive.

The dataset is represented in the grid by the 5 constructs and 24 elements that Cendrowska
specifies which encompass all possible prescription situations. The elements have been named to
include the correct prescription, and the exception cases identified by an asterisk, in order to make
it easier to assess the outcome of classification. The classes shown represent a complete solution in
a form intended to emulate the expert’s decision processes: the initial considerations based on astig-
matism; the possible exceptions; and the final prescriptions.

The two prescription classes at the end are the recommendations for action: prescribe soft and
prescribe hard. The implicit recommendation for no prescription, prescribe none, applies to the resid-
ual elements not covered by these classes. If it was desired to show it explicitly the class specification
would be no lens but prefer prescribe soft or prescribe hard.

26

3.4.2 Anticipation: classes as intersects, templets, cases, rules

The Case and Rule radio buttons at the top right specify whether the classes should be interpreted
as cases or rules. The actual class specifications do not change but the way they are described is dif-
ferent. Figure 31 show the classes pane above when the interpretation is changed to rules. The en-
tailments shown for the lens construct arise because that construct has been flagged as an Output
and hence treated as the conclusion of a rule. The need to be explicit about the separation between
premise and conclusions is peculiar to rule interpretations and not required for case-based reason-
ing.

Figure 31: Classes pane with Rule interpretation

3.4.3 Editing class meanings

To enter a new class click on the Add button and type in the new class name (Figure 32).

Figure 32: Entering the class exception hard

To specify the meaning of the new class, or edit that of an existing one, double-click on the class
number or meaning to bring up the Edit Class dialog (Figure 33). The first row shows the class being
edited; the second a popup menu of classes and associated editing buttons for removing the class
shown in the menu from the meaning of the class being edited, or adding it in positive or negative
form; the third the constructs; and the fourth the categories associated with the construct above.

Under these areas is a non-editable text area showing the meaning of the class as it is defined, an
editable text area where the class may be annotated, and buttons to cancel the class dialog without
changing the class meaning, or to update the class meaning to be that entered or edited.

27

Figure 33: Editing the meaning of the class exception hard

The menu of classes at the top is automatically computed to be those without any dependen-
cies on the class being edited so that entering a dependency cannot lead to a circular specification.
This computation is independent of the order of the classes so that they can be reordered as the user
wishes. Selecting the class hard feasible and clicking on Add in the Class row adds that class to the
specification of the meaning of exception hard (Figure 34), that is the class exception hard is specified
as a subclass of hard feasible and inherits the meaning of that class (lens feasible and astigmatic).

Figure 34: Entering a dependency on the class hard feasible

Similarly, selecting the construct young—old, its category old and clicking Add in the Category
row makes old part of the meaning (Figure 35). This category is defined in the construct to be either
presbyopic or pre-presbyopic.

Figure 35: Entering construct category as part of a description

If old had not been specified as category for the construct, one could achieve the same effect in
the class description by adding both presbyopic and presbyopic which be interpreted as the disjunc-
tion of the two categories, pre-presbyopic or presbyopic (Figure 36).

When the meaning of the class has been completely specified, clicking on the Update button sets
the meaning of the class and closes the dialog.

28

Figure 36: Entering a disjunction of construct categories as part of a description

The Not buttons add the negation of the class, construct or category, but their use is not recom-
mended for constructs and categories as positive specifications are more natural and easier to un-
derstand. However negative links to classes are useful because they allow preferences (for cases) or
exceptions (to the premises of rules) to be specified. The name of the button changes between Prefer
for cases and Not for rules to reflect the differing interpretations of negative links between classes.

The removal of a construct is a quick way to remove the construct and associated categories.
The capability to add a bare construct or its negation to a specification allows classes to be specified
in terms of the relevance or irrelevance of certain constructs. For example, in the philosophy of art
it has proved difficult to establish an agreed definition of what it is to be an art object and there are
many competing attempts (Davies, 1991). However, consensus might be achieved about the collec-
tion of dimensions along which any art object might be construed (Gaut, 2000), and the relevance of
these dimensions to the discussion of any entity might be sufficient to establish that the discussion is
about an art object (Gaines and Shaw, 2012; Gaines, 2015). The positioning of an art object on cer-
tain dimensions would be significant for establishing its category as primitive art, representational
art, African art, and so on, but it is the expectation that certain ways of construing will be accepted
as relevant that establishes its status as an art object.

3.4.4 Using classes for classification

The Classify button outputs classifications based on the classes and constructs. The Match text al-
lows the metavalues to be specified which will match anything, usually just * but sometimes it is
convenient to allow ? also. The three check boxes after By determine whether the classification is
by class, by element or by construct. Figure 37 shows elements classified by class for the contact lens
grid.

Classification by Classes

!"#lens feasible: $%&'#()$*#!+#,)-.#()$*#!+#$%&'#()$*#/+#,)-.#()$*#/+#$%&'#()$*#0+#,)-.#()$*#0+#$%&'#()$*#1+#2%2*#

()$*#34+#2%2*#()$*#!!4+#,)-.#()$*#1+#$%&'#()$*#5+#2%2*#()$*#!54

/"#lens infeasible: 2%2*#()$*#!+#2%2*#()$*#/+#2%2*#()$*#0+#2%2*#()$*#1+#2%2*#()$*#5+#2%2*#()$*#6+#2%2*#()$*#7+#

2%2*#()$*#8+#2%2*#()$*#!9+#2%2*#()$*#!/+#2%2*#()$*#!0+#2%2*#()$*#!1

0"#soft feasible: $%&'#()$*#!+#$%&'#()$*#/+#$%&'#()$*#0+#$%&'#()$*#1+#2%2*#()$*#!!4+#$%&'#()$*#5

1"#hard feasible: ,)-.#()$*#!+#,)-.#()$*#/+#,)-.#()$*#0+#2%2*#()$*#34+#,)-.#()$*#1+#2%2*#()$*#!54

5"#exception soft: 2%2*#()$*#!!4

6"#exception hard: 2%2*#()$*#34+#2%2*#()$*#!54

7"#prescribe soft: $%&'#()$*#!+#$%&'#()$*#/+#$%&'#()$*#0+#$%&'#()$*#1+#$%&'#()$*#5

8"#prescribe hard: ,)-.#()$*#!+#,)-.#()$*#/+#,)-.#()$*#0+#,)-.#()$*#1

Figure 37: Classification of elements by classes

29

The Select checkboxes for the elements, constructs and classes determine which items are in-
cluded in the classification, for example, Figure 38 shows the elements classified by the last two
classes.

Classification by Classes

!"#prescribe soft: $%&'#()$*#+,#$%&'#()$*#-,#$%&'#()$*#.,#$%&'#()$*#/,#$%&'#()$*#0

1"#prescribe hard: 2)34#()$*#+,#2)34#()$*#-,#2)34#()$*#.,#2)34#()$*#/

Figure 38: Classification of elements by selected classes

3.4.5 Exporting classes as descriptions, logical expressions and conceptual nets

The Export List button at the bottom right of the Classes pane has a menu symbol at the left provid-
ing options to export the classes as a textual list, logical expressions, or conceptual nets (Figure 39).
In each case, the Case and Rule radio buttons at the top right specify whether the classes should be
interpreted as cases or rules.

Figure 39: Class export options

Figures 40 shows the class specification exported as a list of cases or of rules.

Cendrowska Descriptions of Classes as Cases

!"#lens feasible means $%&'($'#)*&+#$),*&' and &%-.()#'*(-#/-%01$',%&

2"#lens infeasible means $%&'($'#)*&+#$),*&' and -*01$*0#'*(-#/-%01$',%& and &%#)*&+

3"#soft feasible means)*&+#4*(+,5)* and &%'#(+',6.(',$

7"#hard feasible means)*&+#4*(+,5)* and (+',6.(',$

8"#exception soft means +%4'#4*(+,5)* and .9%/* and /-*+59%/,$ and &%#)*&+

:"#exception hard means ;(-0#4*(+,5)* and ;9/*-.*'-%/* and %)0 and &%#)*&+

<"#prescribe soft means +%4'#4*(+,5)* and +%4'#)*&+ but prefer *=$*/',%&#+%4'

>"#prescribe hard means ;(-0#4*(+,5)* and ;(-0#)*&+ but prefer *=$*/',%&#;(-0

Cendrowska Descriptions of Classes as Rules

!"#lens feasible means $%&'($'#)*&+#$),*&' and &%-.()#'*(-#/-%01$',%&

2"#lens infeasible means $%&'($'#)*&+#$),*&' and -*01$*0#'*(-#/-%01$',%& and entails &%#)*&+

3"#soft feasible means)*&+#4*(+,5)* and &%'#(+',6.(',$

7"#hard feasible means)*&+#4*(+,5)* and (+',6.(',$

8"#exception soft means +%4'#4*(+,5)* and .9%/* and /-*+59%/,$ and entails &%#)*&+

:"#exception hard means ;(-0#4*(+,5)* and ;9/*-.*'-%/* and %)0 and entails &%#)*&+

<"#prescribe soft means +%4'#4*(+,5)* but not *=$*/',%&#+%4' and entails +%4'#)*&+

>"#prescribe hard means ;(-0#4*(+,5)* but not *=$*/',%&#;(-0 and entails ;(-0#)*&+

Figure 40: Classes listed as cases or rules

30

Figure 41 shows the class and construct specifications exported as a conceptual net supporting case-
based reasoning. A link to the data in the grid is automatically included so the elements may be used
to test that the correct anticipations are made. The script CNet may be run to provide an inference
engine for paraconsistent monadic first-order logic (FOL) and interpret the visual language repre-
senting the class and construct specifications as assertions in FOL.

lens
infeasible

reduced tear
production

no lens

lens
feasible

normal tear
production

hard
feasible astigmatic soft

feasible
not

astigmatic

exception
hard

hypermetrope

old

no lens

exception
soft

myope

presbyopic

no lens

prescribe
hard

hard
lens

prescribe
soft

soft
lens

contact lens client cases

soft hard no

lens construct

normal reduced

tear production construct

not astigmatic astigmatic

not astigmatic — astigmatic construct

myope hypermetrope

myope — hypermetrope construct
young

pre-presbyopic presbyopic

old

young — old construct

Grid
Contact Lens
Prescription

Figure 41: Classes exported as case-based reasoning net

It is difficult to design an automatic layout algorithm that can emulate as perspicuous an ar-
rangement of the conceptual net as can a person, and the initial layout provided by RepGrid can
usually be improved manually. Figure 42 shows the net of Figure 41 after manual adjustment to
make it more comprehensible and where CNet has been run on a particular case.

lens
infeasible

reduced tear
production

no lens

lens
feasible

normal tear
production

hard
feasible

astigmatic
soft

feasible
not

astigmatic

exception
hard

hypermetrope

old

no lens

exception
soft

myope

presbyopic

no lens

prescribe
hard

hard
lens

prescribe
soft

soft
lens

contact lens client cases

soft hard no

lens construct

normal reduced

tear production construct

not astigmatic astigmatic

not astigmatic — astigmatic construct

myope hypermetrope

myope — hypermetrope construct

young

pre-presbyopic presbyopic

old

young — old construct

Grid

Contact Lens
Prescription

Figure 42: Case-based reasoning net with improved layout—inferences shown

31

The vertical lines in concepts indicate they are true, horizontal that they are false. The orange
background indicates an assertion, green an inference through opposition, grey an inference through
irrelevance, and red lines indicate an inference through logical necessity. The CNet Manual provides
detailed information and further examples.

Figure 43 shows the same class and construct specifications exported as a conceptual net sup-
porting rule-based reasoning. The constructs and grid are not shown as they are the same as Figure
42. CNet may again be used to infer anticipations but based on logical definitions rather than abduc-
tive case/prototype-based reasoning that may better model human inference.

lens
infeasible

reduced tear
production

no lens

lens
feasible

normal tear
production

hard
feasible

astigmatic
soft

feasible
not

astigmatic

exception
hard

hypermetrope

old

no lens

exception
soft

myope

presbyopic

no lens

prescribe
hard

hard
lens

prescribe
soft

soft
lens

contact lens client rules

Figure 43: Classes exported as rule-based reasoning net

3.4.6 Using the Classes pane analyses with grids where classes have not been specified

The Classify capability of the Classes pane is useful as a way of summarizing a grid even when no
classes are defined. Figure 44 shows the classifications by constructs of the grid about learning situa-
tions used initially to illustrate editing a grid—the elements falling under each construct pole.

Figure 45 shows the classification by elements of the same grid—the construct pole under which
each element falls.

Figure 46 shows the constructs and elements in the learning situations grid exported as a concep-
tual net.

Each element is represented as a state of affairs representing an experience of a learning situation
that is expressed in the grid, with the element name as an indicial property indicating the type of the
experience.

Running CNet, setting the pole of a construct true, and running abductive inference over the
cases allows relations between the constructs to be discovered, for example that like always implies
involvement and that dislike always implies specific content. These asymmetric relations sometimes,
but not always, correspond to the symmetric matches of other analyses, but sometimes provide dif-
ferent insights into the conceptual model implicit in the grid.

32

Classification by Constructs

 1.1: involvement: seminar, practical, library, programmed text, informal interaction

 1.2: remoteness: lecture, film

 2.1: flexible: practical, library, video tape, informal interaction

 2.2: rigid: lecture, tutorial, film, programmed text

 3.1: equipment: practical, film, programmed text, video tape

 3.2: no equipment: lecture, tutorial, seminar, informal interaction

 4.1: self-organised: library, programmed text, video tape, informal interaction

 4.2: staff-organised: lecture, tutorial, seminar, film

 5.1: small group: tutorial, library, programmed text, video tape

 5.2: large group: lecture, seminar, practical, film

 6.1: variable content: seminar, library, informal interaction

 6.2: specific content: lecture, tutorial, film, programmed text, video tape

 7.1: like: seminar, practical, library, informal interaction

 7.2: dislike: lecture, tutorial, film, programmed text, video tape

Figure 44: Classification of elements by constructs

Classification by Elements

 1: lecture: remoteness, rigid, no equipment, staff-organised, large group, specific content, dislike

 2: tutorial: rigid, no equipment, staff-organised, small group, specific content, dislike

 3: seminar: involvement, no equipment, staff-organised, large group, variable content, like

 4: practical: involvement, flexible, equipment, large group, like

 5: film: remoteness, rigid, equipment, staff-organised, large group, specific content, dislike

 6: library: involvement, flexible, self-organised, small group, variable content, like

 7: programmed text: involvement, rigid, equipment, self-organised, small group, specific content, dislike

 8: video tape: flexible, equipment, self-organised, small group, specific content, dislike

 9: informal interaction: involvement, flexible, no equipment, self-organised, variable content, like

Figure 45: Classification of constructs by elements

3.4.7 Classes as ideal elements or compound constructs in grids

The intersects specifying classes may be also be represented, in part, as ideal elements or as compound
constructs. The subordination relations between classes may be expanded and included in the ideal
elements, but the preference relations may not, and are included as notes. Figure 47 shows the con-
tact lens grid displayed with its classes as ideal elements.

The Analyze row in the Classes pane may be use to specify that all classes, or selected classes, are
including in grids being analyzed. This inclusion is only temporary for the purposes of the analysis.
The Case and Rule checkboxes determine whether the classes are represented by elements or con-
structs, respectively. The Add to Grid button makes it permanent. Further examples are given in the
appropriate analysis sections.

33

involvement remoteness

involvement — remoteness construct

flexible rigid

flexible — rigid construct

equipment no equipment

equipment — no equipment construct

self-organised staff-organised

self-organised — staff-organised construct

small group large group

small group — large group construct

variable content specific content

variable content — specific content construct

like dislike

like — dislike construct

ε1

lecture

remoteness

rigid

no equipment

staff-organised

large group

specific content

dislike

ε2

tutorial

rigid

no equipment

staff-organised

small group

specific content

dislike

ε3

seminar

involvement

no equipment

staff-organised

large group

variable content

like

ε4

practical

involvement

flexible

equipment

large group

like

ε5

film

remoteness

rigid

equipment

staff-organised

large group

specific content

dislike

ε6

library

involvement

flexible

self-organised

small group

variable content

like

ε7

programmed text

involvement

rigid

equipment

self-organised

small group

specific content

dislike

ε8

video tape

flexible

equipment

self-organised

small group

specific content

dislike

ε9

informal interaction

involvement

flexible

no equipment

self-organised

variable content

like

situation cases

Figure 46: Conceptual net for learning situations grid

3.5 Items pane

RepGrid makes provision for additional items of data to be added to a grid, stored with it, and edited.
These items may be viewed and edited through the Items pane. Clicking on the Items tab in the
House Choice RepGrid window brings up a pane listing the items by name and value (Figure 48).

The first five items shown are automatically generated when a new grid is created: a unique iden-
tifier string and the date, time, and location (the IP of the machine on which the grid was created),
and the status of the grid indicating whether is new or derived from an existing grid.

The next four items are fields entered in WebGrid to control the styling of the web pages gener-
ated in eliciting and analyzing this grid. It is sometimes convenient to edit these fields in RepGrid.

The final three items keep track of the RepGrid window position and size, and the column posi-
tions of the tables on the Elements and Constructs panes.

34

!"!#$%&'#$($)!"!#*

'"+,$%&'#$($)'"+,*

!"!#$%&'#$-$)!"!#*

.&/0$%&'#$($).&/0*

!"!#$%&'#$1$)!"!#*

'"+,$%&'#$-$)'"+,*

!"!#$%&'#$2$)!"!#*

.&/0$%&'#$-$).&/0*

!"!#$%&'#$3$)!"!#*

'"+,$%&'#$1$)'"+,*

!"!#$%&'#$4$)!"!#*

.&/0$%&'#$1$).&/0*

!"!#$%&'#$5$)!"!#*

'"+,$%&'#$2$)'"+,*

!"!#$%&'#$6$)!"!#*

!"!#$%&'#$78$)!"!#*

!"!#$%&'#$(9$)!"!#*

!"!#$%&'#$((8$)!"!#*

!"!#$%&'#$(-$)!"!#*

.&/0$%&'#$2$).&/0*

!"!#$%&'#$(1$)!"!#*

'"+,$%&'#$3$)'"+,*

!"!#$%&'#$(2$)!"!#*

!"!#$%&'#$(38$)!"!#*

:#!'$;!+#&';<:#

:#!'$+#&';<:#

.&/0$+#&';<:#

'"+,$+#&';<:#

#=%#>,;"!$.&/0

#=%#>,;"!$'"+,

>/#'%/;<#$.&/0$)>/#+#/$#=%#>,;"!$.&/0*

>/#'%/;<#$'"+,$)>/#+#/$#=%#>,;"!$'"+,*

'"+,$:#!'$?$!"$:#!'

!"/@&:$,#&/$>/"0A%,;"!$?$/#0A%#0$,#&/$>/"0A%,;"!

!",$&',;B@&,;%$?$&',;B@&,;%

@C">#$?$.C>#/@#,/">#

C"A!B$?$":0

!"

'"+,

!"

.&/0

!"

'"+,

!"

.&/0

!"

'"+,

!"

.&/0

!"

'"+,

!"

!"

!"

!"

!"

.&/0

!"

'"+,

!"

!"

!"

8

8

8

!"

!"

.&/0

'"+,

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

/#0A%#0

!"/@&:

!"/@&:

!"/@&:

!"/@&:

!"/@&:

!"/@&:

!"/@&:

!",$&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

&',;B@&,;%

8

8

&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

&',;B@&,;%

!",$&',;B@&,;%

@C">#

@C">#

@C">#

@C">#

.C>#/@#,/">#

.C>#/@#,/">#

.C>#/@#,/">#

.C>#/@#,/">#

@C">#

@C">#

@C">#

@C">#

.C>#/@#,/">#

.C>#/@#,/">#

.C>#/@#,/">#

.C>#/@#,/">#

@C">#

@C">#

@C">#

@C">#

.C>#/@#,/">#

.C>#/@#,/">#

.C>#/@#,/">#

.C>#/@#,/">#

8

8

8

8

.C>#/@#,/">#

@C">#

8

8

C"A!B

C"A!B

C"A!B

C"A!B

C"A!B

C"A!B

C"A!B

C"A!B

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#D>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

>/#'<C">;%

8

8

8

8

>/#'<C">;%

>/#'<C">;%

8

8

Figure 47: Grid with classes represented as ideal elements

Items may be deleted by selecting the item row and pressing the delete key. Names and values
may be edited by clicking in the cells and editing the text. Additional fields may be added by clicking
on the Add button and entering the item name and value.

Multi-line values may be edited by double-clicking on the item number which brings up a multi-
line editor as shown below for item six which defines some styles in the header of a WebGrid page
(Figure 49).

3.5.1 User-defined items

You can define your own items to use in storing additional data in a grid file, and it is common for
elicitation scripts to collect additional data and store it in this way. RepGrid will not allow such
items to have names that correspond to its own reserved names, and to avoid possible clashes user-
defined items should commence with an underline, _, character.

35

Figure 48: RepGrid Items pane showing additional items included with grid data

Figure 49: RepGrid Items pane editing a multi-line value

3.6 Scripts pane

RepGrid has an open architecture through the capability to run scripts written in RepScript that
have full access to read and modify the grid data (see RepScript manual). The scripts are text files
that users can develop to support their own analyses, such as cognitive complexity measures, or to
import and export grid data in other formats.

Clicking on the Scripts tab in the RepGrid window brings up the Scripts pane that allows such
scripts to be run (Figure 50). The script button/popup menu at the top right enables a script to be
chosen and run. It is dual-purpose in that clicking in the menu symbol on the left (or right-clicking/CTL-

36

clicking anywhere in the button) brings up a menu which enables one to select the script named in
the button, and clicking in the script name causes the script to run.

Figure 50: RepGrid Scripts pane and scripts menu

Just under the tabs is a line of text that can be set under script control, for example, to indicate
the purpose, or status of the script. Under that is an interactive text pane that may be programmed
by a script to conduct an interactive dialog, including clickable menus, or used to display status in-
formation or results. The pane is shown running the Elicit Grid script and offering various elicitation
options.

A script may be terminated at any time by pressing the esc key.
Scripts have full access to all data in the grid, can access files and interact with users. Hence they

may be used to import and export grids in any specified format, enter grids, elicit them interactively,
edit them, and so on. Scripts are text files which users may modify and create their own customized
scripts. In particular they may translate them into other languages. Rep Plus uses a Unicode text
representation so that non-Roman scripts may be used. The display and analysis tools have been
designed to use only the text entered into the grid so that they also support graphic output in the
language being used.

The initial set of scripts currently supplied with RepGrid include Enter Grid for rapid entry of
grid data, Elicit Grid for conversational elicitation of a grid, and scripts to export grids in various for-
mats. They provide basic facilities for grid entry, elicitation and export, and also serve as exemplars
for those developing custom scripts.

37

The supplied scripts are within the Rep Plus application directory GridScripts, and the name of
the script is what appears on the popup menu. User scripts may be put in the GridScripts directory
in the Rep Plus directory created automatically in the Documents or MyDocuments directory. If cer-
tain scripts are intended for use only with certain types of grids they may be placed in a GridScripts
within the directory containing the scripts, and will only appear in the scripts menu of those grids.

38

4 Grid entry, elicitation and export scripts
The scripts supplied with RepGrid accessible through the Scripts pane are designed to support rapid
entry of existing grid data, conversational elicitation of new grids, and export of grids in other for-
mats.

4.1 Enter Grid

The Enter Grid script allows existing grid data to be entered rapidly. The script is programmed to:-

• Request missing fields in the Status window such as the user’s name and the purpose of the elici-
tation

• Ask the user to enter the elements

• Ask the user to enter the constructs and their ratings on the elements

• Offer the user the option to edit and enter more elements or constructs, or to finish the entry
process

The figures below illustrate the Enter Grid script being used to enter the Arthur grid used to il-
lustrate this manual. The first screen shows the name and purpose being entered as text terminated
by the return key (Figure 51).

Figure 51: Enter Grid script entering name and purpose

39

The entry process is similar to that of a text editor. The delete key may be used to erase text, and
text may be selected, copied and pasted.

The Enter Grid script may be run immediately with a new grid, or with one where the name and
purpose have been entered on the Status pane, and/or the elements have been entered on the Ele-
ments pane. If the rating scale is other than 1 to 5 or the terms for elements and constructs are
different then these should be set up in the Status pane before the script is run. In the example
below elements have been termed situations and constructs qualities.

The script offers the facility to edit elements, constructs and ratings, and this may also be done
through the Elements and Constructs panes. The Display button provides a convenient way of check-
ing the data entered against its source to ensure that it is correct.

After the purpose has been entered, the element names are entered (Figure 52). Keying return
with an empty name terminates the element entry and proceeds to the constructs and ratings entry.

Figure 52: Enter Grid script entering element names

Figure 53 shows the pole names of the first construct being entered. Keying return after the right
pole name proceeds to the ratings entry for that construct.

Figure 53: Enter Grid script entering pole names of the first construct

Then the ratings on each element are requested (Figure 54). They can be typed in as numbers
followed by return, or by clicking the mouse and selecting a rating from a popup menu.

When all the elements have been rated on the first construct, the pole names of the second con-
struct are requested, and so on, until all the constructs and ratings have been entered. Construct en-
try is terminated when an empty pole name is entered, and the grid editing options are listed (Figure
55).

40

Figure 54: Enter Grid script entering pole names of the first construct

Figure 55: Enter Grid script options after grid entry is complete

The Display button may be used to display the grid to check that it has been entered correctly. If
not, one the list of options displayed may be clicked to list the elements or constructs may be listed
and allow the names and ratings to be edited. Clicking on List and edit your situations shows the
elements and provides options to add more or to edit an element name and ratings (Figure 56).

Clicking on the element practical displays its name and its rating on each construct (Figure 57).
Clicking on the option to delete the element displays a warning and options to do so or cancel

(Figure 58).
Clicking on the element name makes it available for editing as shown below (Figure 59).
Clicking on a construct makes the rating on the selected element available for editing (Figure

60).
Similarly, the option in Figure 55 to list and edit the constructs may be chosen. They are then

listed for editing (Figure 61).
Clicking on a construct displays it for editing (Figure 62). The editing procedures for the pole

names and the ratings are essentially the same as those described above for the elements.

41

Figure 56: Enter Grid script listing elements

Figure 57: Enter Grid script editing a selected element

Figure 58: Enter Grid script deleting the selected element

The Enter Grid script may be run at any time with an existing grid and will open with the editing
options of Figure 55 enabling the grid to be edited conversationally as described above as an alterna-

42

Figure 59: Enter Grid script editing an element name

Figure 60: Enter Grid script editing a rating on a constructt

Figure 61: Enter Grid script listing constructs

Figure 62: Enter Grid script entering pole names of the first construct

43

tive to editing through the Elements and Constructs panes. The editing is synchronized between the
scripts and the panes so that it is possible to switch back and forth between them if desired.

4.2 Elicit Grid

The Elicit Grid script supports conversational elicitation of conceptual grids by emulating the Shaw’s
(1980) interactive repertory grid elicitation program, “PEGASUS”.

The script is programmed to:-

1. Request fields that are empty in the Status window such as the user’s name and the purpose of
the elicitation

2. Ask the user to enter six or more elements
3. Elicit constructs from triads of elements until there are four
4. Check element and construct matches and offer the user the opportunity to enter more con-

structs or elements to break the matches
5. Offer the user the option to elicit more constructs from triads, edit and enter elements or con-

structs, or to finish the elicitation
6. Ask the user to rate the elements on any given constructs when the elicitation process is finished
7. Modify the elicitation process appropriately to elicit ratings for exchange grids in which the ele-

ments and constructs are given but the ratings are open, elements grids in which the elements are
given, and constructs grids in which the constructs are given.

Once steps 1 through 3 are complete the scripts loop between steps 4 and 5.
At any time during the elicitation the user can click on the analysis facilities available through

the Display, Synopsis, Focus, PrinGrid, and so on, buttons to display or analyze the grid, and then
continue the elicitation.

The Elicit Grid script operates in a similar way to the Enter Grid script except that, as shown
below, the interaction is more tutorial with and greater explanation feedback of matches to suggest
appropriate element and construct elicitation.

Clicking on the script menu option Elicit Grid brings up an initial explanatory dialog (Figure 63).
The initial elements are entered in much the same way as for the Enter Grid script (Figure 64).
The element elicitation section of the script can be edited to accommodate more specific requests

for particular types of element as, for example, might be appropriate to a role grid requesting that
family members and friends be entered, a core competency grid requesting that employees with
different types and levels of skills be entered, or a market research grid requesting that products of
certain categories and qualities be entered.

The Elicit Grid script differs from the Enter Grid script primarily in that it elicits constructs us-
ing triadic elicitation in which the user is asked in which way two elements are alike and differ from
a third, and in the feedback of element and construct matches to prompt the elicitation of further
constructs and elements to reduce the matches (Shaw, 1980).

Three elements are selected by the script and the user is asked to consider in what way two are
alike and different from the third, and to click on the one that is different (Figure 65).

44

Figure 63: Initial Elicit Grid script requesting name and purpose

Figure 64: Elicit Grid script entering element names

When the user clicks on an element in the triad they area asked to enter the construct pole
names construct pole names for the distinction being made (Figure 66).

They are then shown the the three elements of the triad rated appropriately and asked to rate
the remaining elements on the elicited construct (Figure 67).

45

Figure 65: Elicit Grid script eliciting a construct from a triad of elements

Figure 66: Elicit Grid script entering construct pole names

Figure 67: Elicit Grid script entering element ratings

When all the elements have been rated the screen in Figure 68 is shown which makes the pole
names and ratings available for editing as has been shown for the Edit Grid script. Since the process
is now one of elicitation rather than data entry it is likely that the user will not be content with the
ratings as initially entered and will edit them at this point as illustrated in the previous section.

Construct elicitation continues with further explanation and another triad of elements (Figure
69).

46

Figure 68: Elicit Grid script entering element ratings

Figure 69: Elicit Grid script eliciting a construct from a second triad of elements

When four constructs have been elicited through triads the script tests for matches between
constructs and between elements and, if it finds any above eighty per cent, asks the user to enter an
element or construct to reduce the match (Figure 70).

The user clicks on self-organized and rigid, and enters a new element, programmed text, that is
construed as both and should reduces the construct match (Figure 71).

The new element is then shown already rated appropriately on the matching constructs and the
user is asked to rate it on the remaining constructs (Figure 72).

When the new element has been rated the name and ratings can be edited as already shown.
The test for matches continues and notes an element match which prompts the elicitation of a new
construct (Figure 73).

47

Figure 70: Elicit Grid script eliciting a construct from a triad of elements

Figure 71: Elicit Grid script eliciting a construct from a triad of elements

Figure 72: Elicit Grid script eliciting a construct from a triad of elements

The new construct is then shown with the matched elements already rated appropriately on the
new construct and the user asked to the remaining elements on the new construct (Figure 74).

The process continues until there are no further matches to be displayed and various options for
further elicitation are then listed (Figure 75).

48

Figure 73: Elicit Grid script eliciting a construct from a triad of elements

Figure 74: Elicit Grid script eliciting a construct from a triad of elements

Figure 75: Elicit Grid script options

The options are the same as those for the Enter Grid script with the addition of one for triadic
elicitation. Selecting this now also provides an option for the user to select some or all the elements
of the triad (Figure 76).

The user can also use the editing facilities to add and rate elements and constructs directly. The
test for matches is applied each time the user enters an item so that further feedback is given if ap-
propriate. This process of elicitation from triads and matches, and entry and editing, proceeds until
the user is satisfied that the grid is relatively complete and chooses the option to finish.

49

Figure 76: Elicit Grid script selecting elements for a triad

Before finishing a check is made for unrated constructs such as given constructs provided by the
facilitator and the user is asked to rate the elements on these if there are any.

The Display, Synopsis, Focus Cluster, PrinGrid Map and CrossPlot buttons may be used during the
elicitation to supply an interim display or analysis of the grid. Viewing this may prompt the entry of
further elements and constructs or the editing of the grid.

The Elicit Grid script can be run with an existing a grid at any time to elicit further elements
or constructs and will automatically skip steps 1, 2 or 3, if the grid already contains the appropriate
data. For example, one can prepare a grid for use by others with the purpose specified as to under-
stand people I know, with person as the term for an element, people for elements, characteristic for
construct, characteristics for constructs, and with initial elements self and ideal self. Running the
Elicit Grid script set starting with a copy of this grid will result in the user being asked their name,
being asked for additional examples of people, having four initial constructs elicited from triads, and
then being taken through an elicitation process for further elements and constructs. One can also
enter some given constructs such as powerful—powerless that capture an important aspect of the
purpose of the elicitation, and, as already noted, the script will ask the user to rate the elements on
these as they finish.

To facilitate comparison of grids the Rep Plus Manager window allows one to open a copy of an
existing grid with the ratings reset to be open (Exchange) or with the constructs removed (Elements)
or the elements removed (Constructs). Another user, or the same user at a later time, can fill in the
ratings and add constructs and elements to such grids for comparison with the original (§5.6). It first
requests the user’s name. The Elicit Grid script supports elicitation commencing with such partial
copies of grids. It first requests the user’s name and then: with Exchange grids it asks the user to rate
all the elements on each construct in turn; with Elements grids it proceeds immediately to triadic
construct elicitation; with Constructs grids it requests elements and then asks the user to rate all the
elements on each construct in turn. It then offers the normal options.

50

4.3 Export grid data

Two scripts are supplied which allow the grid data to be exported in formats suitable for use in other
applications.

The Export Text script writes the grid data into a text window in the basic grid format described
in §9.1.

The Export Spreadsheet script writes the grid data into a text window in the tab-delimited grid
format described in §9.2.

The data in the text window can then be edited, saved, copied and pasted, or dragged to another
application.

4.4 Analyze grid data

Scripts have full access to all the information in the grid and may be used to provide additional anal-
ysis capabilities. The PrinComp script is provided as an example of the use of the mathematical and
graphic libraries available in RepScript to generate a principal components analysis with graphical
and textual output.

4.5 Modifying scripts

The scripts supplied are intended as examples that a facilitator can copy and modify to serve specific
requirements and user communities.

RepGrid looks for GridScripts directories both in the application directory and in the Rep Plus
directory where the default files are kept as discussed in §2.2. The Rep Plus directory in the Docu-
ments or MyDocuments directories is intended for scripts developed by the facilitator.

For example, one might copy the Elicit Grid scripts from the Rep Plus application directory,
rename them with an appropriate name to appear in the popup menu, and edit the Main script
to make the initial element elicitation more specific to the purpose, for example, by requesting the
names of the user’s mother and father, good friend, teachers, and so on.

One might also develop highly specific elicitation procedures for specific purposes such as market
research, knowledge management or system design requirements elicitation.

It is also reasonably straightforward to translate the existing scripts to support conversational
elicitation in languages other than English by replacing the English text with the equivalent in an-
other language. It may be necessary to slightly reorder the output to reflect the different literary
style of the target language.

51

5 Grid display and analysis
The buttons at the bottom of any pane of the RepGrid window provide access to various grid display
and analysis functions (Figure 77) which will be described in the following sections.

Figure 77: RepGrid analysis buttons

The buttons may have a small icon on the left or right. Clicking in the body of the button gener-
ally performs the analysis immediately. When the mouse cursor is over the button icon on the right
of a button it changes to a button shape, and clicking brings up a dialog enabling the analysis parame-
ters to be changed. When the mouse is over the menu icon on the left of a button it changes to show
a menu symbol, and clicking on it evokes a popup menu enabling the function of the button to be
changed.

5.1 Display: Plotting the grid as a matrix of ratings of elements on constructs

Clicking on button icon on the right of the Display button brings up a dialog which controls the way
in which the content of the grid is displayed as a matrix (Figure 78).

Figure 78: RepGrid Display dialog

The row of check boxes at the top determine whether the plot is titled, whether the elements and
constructs are numbered, whether the ratings are shaded (to indicate the top third of high values
and bottom third of low values), and whether the notes attached to elements and/or constructs are
shown.

The Values panel determines whether numeric or categorical values should be displayed: as spec-
ified by the Use in plots checkbox in the construct dialog, or temporarily overriding that setting for
all the constructs.

The Rows panel determines whether the matrix of grid data is displayed with elements or con-
structs as rows. For conceptual grids with only rating scale constructs it is conventional that con-
structs are displayed as rows, but where categorical values are displayed the plot has a more con-
densed format is the constructs are displayed as columns.

52

5.1.1 Display plot output

Figure 79 shows the plot produced when one clicks the Display button with the settings above. The
title, constructs, elements and ratings are shown.

lecture
tutorial

seminar
practical

film
library

programmed text
video tape

informal interaction

involvement remoteness
flexible rigid

equipment no equipment
self-organised staff-organised

small group large group
variable content specific content

like dislike

4 3 2 1 5 1 2 3 1
4 4 3 2 5 1 5 2 1
4 5 5 1 1 3 2 1 5
5 4 4 3 5 1 2 2 1
5 2 4 4 5 1 1 1 3
4 4 2 3 5 1 5 5 1
5 4 2 2 5 1 5 5 1

Display Arthur
"exploring the nature of learning situations"

Figure 79: Display of the data in a grid as numbers

Figure 80 shows the plot produced when one specifies the values should be shown as categories
and that the rows should be elements. Note that when no category applies to the middle value of the
scale then none is shown.

lecture
tutorial
seminar
practical
film
library
programmed text
video tape
informal interaction

involvement—remoteness
flexible—rigid

equipment—no equipment
self-organised—staff-organised

small group—large group
variable content—specific content

like—dislike

remoteness

involvement
involvement
remoteness
involvement
involvement

involvement

rigid
rigid

flexible
rigid

flexible
rigid

flexible
flexible

no equipment
no equipment
no equipment

equipment
equipment

equipment
equipment

no equipment

staff-organised
staff-organised
staff-organised

staff-organised
self-organised
self-organised
self-organised
self-organised

large group
small group
large group
large group
large group
small group
small group
small group

specific content
specific content
variable content

specific content
variable content
specific content
specific content
variable content

dislike
dislike

like
like

dislike
like

dislike
dislike

like

Display Arthur
"exploring the nature of learning situations"

Figure 80: Display of the data in a grid as categories

53

Figure 81 shows a display of the house choice grid used in earlier examples which uses four types
of construct.

325, Oaklands Drive NW
4227, Ranch Wheel Road NW
5778, Melina Drive NW
127, Realta Court NW
92, Lexington Avenue NW
436, Ryman Estate Drive NW
1, Abraham Point, NW
23,080 120th Road, NW
Ideal home

mall near—long way from stores
mountain views—town views

friendly—oppressive
good study—poor study

completely remodeled—older style
needs redecorating—good decorations

extensive modernization—inadequate modernization
low price (000s)—very high price (000s)

old year—recent year

5
5
5
3
1
2
1
5
1

2
4
5
3
1
5
1
2
1

1
2
4
1
1
5
2
1
1

1
2
3
5
4
1
3
1
1

1
5
2
5
4
5
2
1
3

5
1
2
3
5
1
5
5
5

extensive
some

extensive
inadequate

minor
minor

extensive
inadequate

extensive

575.00
282.00
364.00
465.00
247.00
328.00
414.00
543.00
400.00

1966
1975
1968
1995
1982
1975
1963
1982
1990

Display house choice
"choosing a new home"

Figure 81: Display of the data in a mixed-type grid—constructs as columns

This mixed-type grid is displayed with constructs as columns as this is more compact than a dis-
play with constructs as rows shown in Figure 82.

325, Oaklands Drive NW
4227, Ranch Wheel Road NW

5778, Melina Drive NW
127, Realta Court NW

92, Lexington Avenue NW
436, Ryman Estate Drive NW

1, Abraham Point, NW
23,080 120th Road, NW

Ideal home

mall near long way from stores
mountain views town views

friendly oppressive
good study poor study

completely remodeled older style
needs redecorating good decorations

extensive modernization inadequate modernization
low price (000s) very high price (000s)

old year recent year

5 5 5 3 1 2 1 5 1
2 4 5 3 1 5 1 2 1
1 2 4 1 1 5 2 1 1
1 2 3 5 4 1 3 1 1
1 5 2 5 4 5 2 1 3
5 1 2 3 5 1 5 5 5

extensive some extensive inadequate minor minor extensive inadequate extensive
575.00 282.00 364.00 465.00 247.00 328.00 414.00 543.00 400.00

1982 1965 1992 1974 1993 1975 1993 1969 1999

Figure 82: Display of the data in a mixed-type grid—constructs as rows

5.1.2 Including classes as elements or constructs in the analyses

As discussed in §3.4.7, classes may be converted to ideal elements or compound constructs as part of
the grid being analyzed, participate in the analysis process and be shown in the plots. Figure 47 in

54

that section shows how the contact lens grid used to illustrate classes in §3.4.1 may be displayed with
the classes represented as ideal elements. Figure 83 shows the same classes displayed as compound
constructs. The pole name are labelled with the mathematical symbols ∈ for is an element of and ̸∈
for is not an element of to indicate whether an element is, or is not, classified under the class specified.

none case 1
soft case 1
none case 2
hard case 1
none case 3
soft case 2
none case 4
hard case 2
none case 5
soft case 3
none case 6
hard case 3
none case 7
soft case 4
none case 8
none case 9*
none case 10
none case 11*
none case 12
hard case 4
none case 13
soft case 5
none case 14
none case 15*

soft lens—none lens
normal tear production—reduced tear production

not astigmatic—astigmatic
myope—hypermetrope

young—presbyopic
∉ consider hard—∈ consider hard

∉ consider soft—∈ consider soft
∉ exception hard—∈ exception hard

∉ exception soft—∈ exception soft
∉ exception reduced—∈ exception reduced

∉ prescribe hard—∈ prescribe hard
∉ prescribe soft—∈ prescribe soft

none
soft

none
hard
none

soft
none
hard
none

soft
none
hard
none

soft
none
none
none
none
none
hard
none

soft
none
none

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

reduced
normal

not astigmatic
not astigmatic

astigmatic
astigmatic

not astigmatic
not astigmatic

astigmatic
astigmatic

not astigmatic
not astigmatic

astigmatic
astigmatic

not astigmatic
not astigmatic

astigmatic
astigmatic

not astigmatic
not astigmatic

astigmatic
astigmatic

not astigmatic
not astigmatic

astigmatic
astigmatic

myope
myope
myope
myope

hypermetrope
hypermetrope
hypermetrope
hypermetrope

myope
myope
myope
myope

hypermetrope
hypermetrope
hypermetrope
hypermetrope

myope
myope
myope
myope

hypermetrope
hypermetrope
hypermetrope
hypermetrope

young
young
young
young
young
young
young
young

pre-presbyopic
pre-presbyopic
pre-presbyopic
pre-presbyopic
pre-presbyopic
pre-presbyopic
pre-presbyopic
pre-presbyopic

presbyopic
presbyopic
presbyopic
presbyopic
presbyopic
presbyopic
presbyopic
presbyopic

∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈

∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉
∈
∈
∉
∉

∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∈
∈
∉
∉
∉
∉
∉
∉
∈
∈

∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∉
∈
∈
∉
∉
∉
∉
∉
∉

∈
∉
∈
∉
∈
∉
∈
∉
∈
∉
∈
∉
∈
∉
∉
∉
∉
∉
∈
∉
∈
∉
∉
∉

∉
∉
∉
∈
∉
∉
∉
∈
∉
∉
∉
∈
∉
∉
∉
∉
∉
∉
∉
∈
∉
∉
∉
∉

∉
∈
∉
∉
∉
∈
∉
∉
∉
∈
∉
∉
∉
∈
∉
∉
∉
∉
∉
∉
∉
∈
∉
∉

Display Cendrowska
"prescribe contact lens"

Figure 83: Display with classes included as compound constructs

The other analysis programs treat the elements or constructs representing classes as if they were
normal parts of the grid and the inclusion of classes for each will not be illustrated except for the
Matches analysis where it is insightful to examine the relation between ideal elements that could be
entered without the availability of classes and those deriving from classes (§5.7.1).

5.2 Synopsis: Histograms and scree plot

Display presents the grid as a matrix of ratings of elements on constructs and is useful for examining
the grid data, for example, in checking data entry. There are other assessments of the data in a grid

55

where an alternative form of display is useful, for example, how the element ratings are distributed
across the possible values; are they skewed, have both poles been used, and so on. A histogram of the
distribution of the element ratings on a construct supports rapid appraisal of such considerations.
One may also be interested in the complexity of cognition exhibited; are all the constructs similar in
the distinctions they make, how many distinctions are being instantiated, and so on.

The Synopsis presentation provides a different presentation of the grid data that addresses these
issues by displaying histograms of the distribution of the element ratings on the constructs and a
scree plot of the variance in the data accounted for by its principal components.

Clicking on button icon on the right of the Synopsis button brings up a dialog which controls the
way in which the output is displayed (Figure 84). There are two panels, one managing the output of
the histograms, and the other the scree plot of the principal components.

Figure 84: RepGrid Synopsis dialog

The check boxes on the histograms panel determine whether: the plot is titled; the constructs
are numbered; the notes attached to the constructs are shown; a horizontal rating value scale and/or
a vertical count scale are shown. The radio buttons determine whether the element labels should
be as specified by Use in plots or all numeric or categorical. The text field on the right enables the
geometry of the histograms to be adjusted. It can contain up to 5 numbers separated by commas: the
number of pixels for each vertical increment in the histogram bars; their widths; horizontal space
between bars; vertical space between histograms, and horizontal space at the end of each plot. If
fewer than 5 values are specified the remainder are filled from the appropriate position in the default
values 3, 3, 8, 4, 4.

The check boxes on the components panel determine whether: the plot is titled; Frontier’s (1976)
comparative plot of the distribution if the principal components were randomly generated should
also be plotted to provide an estimate of the number of significant components. The text field on the
right enables the geometry of the scree plot to be adjusted. It can contain up to 4 numbers separated
by commas: whether the vertical numeric increments are 1 or 2; vertical separation between scale
points; horizontal separation between scale points; horizontal space at each end of plot. If fewer
than 4 values are specified the remainder are filled from the appropriate position in the default val-
ues 2, 3, 20, 10.

56

In both cases there is rarely a need to change the detailed geometry but the options are available
to fine-tune the output for presentation or publication. Mousing over either the text field brings up
help text giving information about available parameters.

5.2.1 Synopsis histogram and scree plots output

Figure 85 shows the plot produced when one clicks the Synopsis button with the settings above for
the grid displayed in Figure 79.

involvement remoteness
1 2 3 4 5

flexible rigid
1 2 3 4 5

equipment no equipment
1 2 3 4 5

self-organised staff-organised
1 2 3 4 5

small group large group
1 2 3 4 5

variable content specific content
1 2 3 4 5

like dislike
1 2 3 4 5

Distribution Arthur
"exploring the nature of learning situations"

0
10
20
30
40
50

1 2 3 4 5 6 7

2.4

Components Arthur

Figure 85: Synopsis of grid data

Figure 86 shows the plot produced when one clicks the Synopsis button with the settings above
for the grids displayed in Figure 81. The histograms on at the bottom illustrate how construct cate-
gories are shown in histograms.

Both grids were elicited using PEGASUS-style elicitation with feedback of matches and the his-
tograms show that the ratings on all constructs are fairly evenly distributed with poles used. Grids
elicited in other ways may not have these characteristics, such as those with given constructs that
those filling in the ratings do not normally use within their own constructions.

The scree plots suggest that the first grid exhibits some 2 significant underlying dimensions, and
the second right 3. This provides a rapid assessment of the cognitive complexity of the grids—a full
PrinGrid analysis (§5.5) would enable the nature of the underlying distinctions to be investigated.
Note that the estimate of significant dimensions does not necessarily indicate that some constructs

57

mall near long way from stores
1 2 3 4 5

mountain views town views
1 2 3 4 5

friendly oppressive
1 2 3 4 5

good study poor study
1 2 3 4 5

completely remodeled older style
1 2 3 4 5

needs redecorating good decorations
1 2 3 4 5

extensive modernization inadequate modernization
extensive some minor inadequate

old year recent year
old oldish fairly modern recent

low price (000s) very high price (000s)
low medium high very high

Distribution house choice
"choosing a new home"

0
10
20
30
40

1 2 3 4 5 6 7 8 9

3.4

Components house choice

Figure 86: Synopsis of grid data with mixed types

are redundant but more likely that there are insufficient elements to discriminate between all the
constructs.

5.3 Focus: Sorting by similarity and hierarchical clustering

Shaw’s (1980) Focus algorithm sorts the rows and columns of the grid display to bring similar ele-
ments and similar constructs closer together, and also shows the hierarchical structure of similarities
that results from sorting the grid in this way.

Clicking on button icon on the right of the Focus button brings up a dialog that controls the Fo-
cus analysis which can be presented as a graphic plot or as textual data (Figure 87).

The upper pane controls the presentation of the graphic plot. The row of check boxes at the top
determine whether: a plot is produced; it is titled; the elements and constructs are numbered; the
ratings are shaded (to indicate the top third of high values and bottom third of low values); the notes
attached to elements and/or constructs are shown.

58

Figure 87: RepGrid Focus Cluster dialog

The Values panel determines whether numeric or categorical values should be displayed: as spec-
ified by the Use in plots checkbox in the construct dialog, or temporarily overriding that setting for
all the constructs.

The Rows panel determines whether the matrix of grid data is displayed with elements or con-
structs as rows. The Tree panel determines whether Focus cluster tree for the columns is shown at
the top of the grid or at the lower right.

The Interior check box controls the Focus matching strategy. Leaving it unchecked specifies the
standard Focus algorithm in which items are matched only against the items at the edges of existing
clusters. This sometimes leads to items with a high match to interior items being shown as having a
lower match to an edge item. Checking the Interior check box allows Focus to match against interior
items in an existing cluster; it then displays the interior match and places the item at the edge of that
cluster that has highest match to the item.

The Power value determines the exponent used in the Minkowski metric used to compute match-
ing scores (Shaw, 1980, p.160). The default (and generally recommended) power of 1.0 defines the
standard city block metric normally used in the Focus algorithm. A power of 2.0 defines a Euclidean
metric. Fractional powers in the range 0.1 to 10.0 may be used—a higher power weights larger dif-
ferences more than smaller ones, and vice versa.

The Cut off values determine the level of match below which an element or construct cluster will
not be shown. The Scale value determines how much space will be allocated to the trees showing the
cluster hierarchies.

The row of check boxes near the bottom determine whether: textual data from the analysis is
displayed; element and construct data are output; match matrices, cluster links, and sorts are output.

5.3.1 Focus cluster plot output

Figures 88 and 89 shows the Focus cluster plots produced for the grids displayed in Figures 79 and
81 when Focus button is clicked with the settings above. The grids have been sorted to bring closely
matching elements together, and closely matching constructs together.

59

100 90 80 70 60

100 90 80 70 60

library
informal interaction
practical
seminar
tutorial
lecture
film
programmed text
video tape

small group large group
involvement remoteness

self-organised staff-organised
flexible rigid

variable content specific content
like dislike

no equipment equipment

1 3 4 4 2 5 5 1 1
1 1 1 2 3 4 5 2 3
1 1 3 4 4 5 5 2 2
1 1 2 3 4 4 5 5 2
1 1 3 2 4 4 5 5 5
1 1 2 2 4 5 5 5 5
3 1 5 1 1 2 5 4 5

Focus Cluster Arthur [Interior]
"exploring the nature of learning situations"

Figure 88: Focus Cluster analysis

100 90 80 70 60 50

100 90 80 70 60

5778, Melina Drive NW
4227, Ranch Wheel Road NW
436, Ryman Estate Drive NW
127, Realta Court NW
92, Lexington Avenue NW
Ideal home
1, Abraham Point, NW
325, Oaklands Drive NW
23,080 120th Road, NW

good study—poor study
extensive modernization—inadequate modernization
old year—recent year
completely remodeled—older style
very high price (000s)—low price (000s)
long way from stores—mall near
town views—mountain views
needs redecorating—good decorations
oppressive—friendly

3
2
1
5
4
1
3
1
1

extensive
some
minor

inadequate
minor

extensive
extensive
extensive

inadequate

1968
1975
1975
1995
1982
1990
1963
1966
1982

2
5
5
5
4
3
2
1
1

364.00
282.00
328.00
465.00
247.00
400.00
414.00
575.00
543.00

1
1
4
3
5
5
5
1
1

1
2
1
3
5
5
5
4
4

2
1
1
3
5
5
5
5
5

2
4
1
5
5
5
4
5
5

Focus Cluster house choice
"choosing a new home"

Figure 89: Focus Cluster of a mixed-type grid—constructs as columns

60

5.3.2 Focus data output

Figure 90 shows the data underlying the Focus analysis of Figure 88 when the Data checkbox is set in
the Focus dialog.

Figure 90: Data underlying a Focus Cluster analysis

61

The element and construct Matches are shown as a percentage of the maximum possible match,
and it should be noted that the values on the diagonal and below it in the construct match matrix
correspond to the match when one of the constructs is reversed in its values. The Links data corre-
sponds to the clusters in the plot. The R indicates that the Focus algorithm has reversed the con-
struct in determining the highest matches. The Sort data indicates how the algorithm has sorted the
grid data to produce the Focus plot.

5.3.3 Status of the Focus hierarchical clusters

This manual does not cover the detailed interpretation of grid analyses but there several books that
do so (Shaw, 1980, 1981; Shaw and McKnight, 1981; Pope and Denicolo, 2001; Jankowicz, 2004).

One issue that may arise is the meaningfulness of the cluster structure. Most grid datasets are
too small for meaningful statistical analysis, but Heckmann and Bell (2016) have shown how boot-
strap techniques (Efron and Tibshirani, 1993; Davison and Hinkley, 1997) may be used to investi-
gate the robustness of the clusters against perturbation of the grid data. Bootstrap techniques are
non-parametric in making no assumptions about the distribution from which the data is drawn, but
treat the actual dataset as a sample fully representing that distribution and run the analysis many
times against samples of that dataset to estimate the sensitivity of the full analysis to partial datasets.

Users may make a similar analysis in RepGrid by selecting different subsets of elements and con-
structs and comparing the resulting plots to provide some insight into the dependency of the results
on the data provided, perhaps leading to further elicitation if there are concerns about the robust-
ness of what seem to be interesting structures.

Note also that the elicitation techniques used may have a major impact on the representative-
ness of the grid data and the results of analysis. Shaw’s (1980) computer-based elicitation techniques
continually analyze the data, feed back high matches between elements and between constructs, and
suggest the type of constructs or elements that the elicitee might add to reduce them (§4.2). This is
designed to ensure that the clusters shown in analysis are not artefacts of inadequate coverage of the
domain.

It is informative to test the cluster analysis on grids with a known hierarchical structure to deter-
mine whether it reproduces that structure. Shaw and Gaines (1998) did this for artificial and natural
datasets where hierarchical structures were represented in grids. Figure 91 shows the simple hierar-
chy they used as an initial test.

g

c

h

1 2

i

d

j

3 4

k

e

l

5 6

m

f

n

7 8

a b

o

Elements

Hierarchy of
Constructs

Figure 91: Simple hierarchy

62

Figure 92 shows this simple hierarchy represented as grid and then clustered using the Focus
algorithm. It can be seen that Focus has reconstructed the original hierarchy from the grid represen-
tation. Indeed it can be shown from a mathematical analysis that it will necessarily do so for such
hierarchical structures.

100

50

0

100 50 0

7
8

6
5

4
3

2
1

k l
e f
m n

i j
c d
g h
a b

~ ~ 5 1 ~ ~ ~ ~
5 5 1 1 ~ ~ ~ ~
5 1 ~ ~ ~ ~ ~ ~
~ ~ ~ ~ 5 1 ~ ~
~ ~ ~ ~ 1 1 5 5
~ ~ ~ ~ ~ ~ 5 1
1 1 1 1 5 5 5 5

Focus Cluster: 'reconstruct hierarchy' [Interior]

1
2

3
4

5
6

7
8

a b
c d
e f
g h
i j

k l
m n

1 1 1 1 5 5 5 5
1 1 5 5 ~ ~ ~ ~
~ ~ ~ ~ 1 1 5 5
1 5 ~ ~ ~ ~ ~ ~
~ ~ 1 5 ~ ~ ~ ~
~ ~ ~ ~ 1 5 ~ ~
~ ~ ~ ~ ~ ~ 1 5

Display: 'reconstruct hierarchy'

Figure 92: Simple hierarchy represented in a grid, Display and Focus Cluster

The metavalue ~ Inapplicable has been used in representing the ordinal relationships in the hi-
erarchy as discussed in §3.3.6 on ordinal relations in grids. Yorke (1978; 1983) has noted that the
middle value of a rating scale is ambiguous in being used for multiple purposes such as inapplicable,
and it is interesting to see the impact of doing so with this dataset.

Figure 93 shows the grid with the midpoint value 3 replacing the metavalue ~ together with the
resulting Focus analysis. Again it can be seen that Focus has reconstructed the original hierarchy
suggesting that the overloading of the midpoint of a rating scale may not be a significant problem in
practice.

100

80

60

40

100 80 60 40

7
8

6
5

4
3

2
1

e f
k l
m n

i j
g h
c d
a b

5 5 1 1 3 3 3 3
3 3 5 1 3 3 3 3
5 1 3 3 3 3 3 3
3 3 3 3 5 1 3 3
3 3 3 3 3 3 5 1
3 3 3 3 5 5 1 1
1 1 1 1 5 5 5 5

Focus Cluster: 'reconstruct hierarchy' [Interior]

7
8

6
5

4
3

2
1

e f
k l
m n

i j
g h
c d
a b

5 5 1 1 3 3 3 3
3 3 5 1 3 3 3 3
5 1 3 3 3 3 3 3
3 3 3 3 5 1 3 3
3 3 3 3 3 3 5 1
3 3 3 3 5 5 1 1
1 1 1 1 5 5 5 5

Display: 'reconstruct hierarchy'

Figure 93: Simple hierarchy represented in a grid with no metavalues

63

The simple hierarchy is artificial and it is interesting to take a less well-structured example from
the literature and test it in the same way. Figure 94 is extracted from a paper analyzing the rela-
tions between the early Internet services shortly after the Internet was commercialized in 1995
(Gaines et al., 1997). It may be seen as an example of Plato’s collection and division (diaresis) tech-
nique (Kaldis, 2008; Gill, 2010), applied to modern technologies, but also exhibits some of the com-
plications that Aristotle (Balme, 1987) notes in the application of the technique, such as the use of
the same differentia on different branches, and exemplars that cut across the categorization.

Figure 94: An analysis of relations between Internet services (Gaines et al., 1997)

Figure 95 shows the Internet services represented as a grid using the midpoint of the scale to
represent inapplicable, and then clustered in Focus. Again it can be seen that the Focus algorithm
has reconstructed the hierarchy, this time developed for an exposition of the services based on the
collection and division method. That is, grid elicitation represents an alternative method to Plato’s
diaresis that develops the same structural model of the domain.

The construct matches in Figure 95 illustrate another feature of the Focus analysis. High matches
are of obvious interest because they indicate similar constructs, but the low matches of other other
constructs are also significant because they indicate major dimensions of construing that structure
the domain. For example, the lowest matched constructs in Figure 95 are access—awareness and

64

100 90 80

100 90 80 70 60 50

News
Email
Talk
IRC
List server
LISZT
Internet address finder
Archie
CHRONO
Yahoo
Alta Vista
WWW services
Telnet
FTP
WWW file access
Gopher
MUD

text — rich media
publication — interaction
presented — fetched
individual — community
synchronous — asynchronous
fast — slow
registered — unregistered
lists — email
manual — automatic
keyword — changes
name — content
communication — services
access — awareness

3
3
3
3
3
3
3
3
3
3
3
1
5
3
1
5
5

3
3
3
3
3
3
3
3
3
3
3
1
1
5
5
5
5

3
3
3
3
3
3
3
3
3
3
3
3
3
1
5
5
5

5
1
1
5
5
3
3
3
3
3
3
3
3
3
3
3
5

5
5
1
1
5
3
3
3
3
3
3
3
3
3
3
3
3

1
3
3
3
5
3
3
3
3
3
3
3
3
3
3
3
3

1
3
3
3
5
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
1
5
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
1
5
3
3
3
3
3
3

3
3
3
3
3
3
3
3
1
5
5
3
3
3
3
3
3

3
3
3
3
3
3
3
1
5
5
5
3
3
3
3
3
3

1
1
1
1
1
1
1
5
5
5
5
5
5
5
5
5
3

1
1
1
1
1
5
5
5
5
5
5
1
1
1
1
1
1

Focus Cluster: Internet services [Interior]
"classify Internet services"

Talk
Email
IRC
News
List server
MUD
Gopher
WWW file access
FTP
Telnet
WWW services
Archie
Yahoo
Alta Vista
CHRONO
LISZT
Internet address finder

access — awareness
communication — services

individual — community
synchronous — asynchronous

registered — unregistered
publication — interaction

presented — fetched
text — rich media

name — content
keyword — changes

manual — automatic
lists — email

fast — slow

1
1
1
1
1
1
1
1
1
1
1
5
5
5
5
5
5

1
1
1
1
1
3
5
5
5
5
5
5
5
5
5
1
1

1
1
5
5
5
5
3
3
3
3
3
3
3
3
3
3
3

1
5
1
5
5
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
1
5
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
1
1
1
1
5
5
3
3
3
3
3
3

3
3
3
3
3
1
1
1
5
3
3
3
3
3
3
3
3

3
3
3
3
3
1
1
5
3
1
5
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
1
5
5
5
3
3

3
3
3
3
3
3
3
3
3
3
3
3
1
1
5
3
3

3
3
3
3
3
3
3
3
3
3
3
3
1
5
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
5

3
3
3
5
1
3
3
3
3
3
3
3
3
3
3
3
3

Display: Internet services
"classify Internet services"

Figure 95: Internet services represented in a grid, Display and Focus Cluster

communication—services that are the top two distinctions made in the preliminary division of the
domain in Figure 94. In a principal components analysis, as discussed in the following section, these
constructs will appear as those dominating the structure of the domain and having the highest load-
ing on the first two components. Thus, it is important to study the entire Focus cluster, not just the
part representing the high matches.

5.4 PrinGrid Map: Spatial rotation and scree plot

Kelly (1955, ch.6) presents constructs as defining the dimensions of a psychological space (Kelly,
1969; Shaw and Gaines, 1992) in which the elements are located. The PrinGrid analysis is consistent
with this and treats a grid as defining a geometric configuration in which the constructs form the
axes of an n-dimensional space and the elements are represented by points located in that space de-
termined by their ratings on the constructs. It rotates the configuration to lower its dimensionality
as much as possible so that it may be plotted with principal components as axes in 2 or 3 dimensions.

65

Slater (1976; 1977) first applied this method of principal components analysis to conceptual grid data
using a non-statistical, distance-based, geometric model and algorithms developed by Gower (1966)
and his presentation of the results as biplots (Gower and Hand, 1995; Gower et al., 2011).

Clicking on button icon on the right of the PrinGrid button brings up a dialog which allows a
principal component analysis of the grid to be displayed (Figure 96).

Figure 96: RepGrid PrinGrid Map dialog

The check boxes in the first row determine whether: a graphic plot is produced; it is titled; the
elements and constructs are numbered; the percentage variance accounted for by each component
is shown at the bottom of the plot; the component axes are shown; the axes, if shown, are labelled by
component number and percentage variance.

The check boxes in the second row determine whether: the constructs and the notes attached
to them are shown; the construct names are allowed to wrap if there are multiple words; they are
placed vertically below or above their location in the plot, or horizontally to its right or left; a Voronoi
diagram is plotted to indicate the points closest to the element location.

The check boxes in the third row determine whether: the elements and the notes attached to
them are shown; the element names are allowed to wrap if there are multiple words; they are placed
vertically below or above their location in the plot, or horizontally to its right or left; the constructs
are plotted with the mean at the origin (so that asymmetric distributions of elements on constructs
are visible); the construct dimensions are shown as a line between the poles.

Note that the Means check box determines whether the construct pole positions are symmet-
rical about the origin or whether they are placed such that the mean of the element values on the
construct is at the origin. This option is useful to allow the plot to convey information about the
asymmetrical use of a construct. It maximizes the information conveyed in that the angles between
dimensions convey the correlations between them, the length of each conveys the combined loadings
on the components plotted, and the position of the centre conveys the mean element value.

The check boxes in the fourth row determine: the overall scale of the plot (a useful option for
larger grids to make more space for the labels and prevent then being spread too far from their orig-

66

inal positions); the cut off variance percentage below which components will not be shown; the ratio
between the construct and element plot position multipliers (adjusting the length of the construct
axes); the margins, if any, that will be added to the rectangle around the plotted points (specified as
two numbers with a space between for horizontal or vertical components, e.g. 5 15, or one specify-
ing both, followed by an optional “V” if the margins only apply when a Voronoi diagram is plotted);
whether the element and construct pole names are spread out automatically to avoid overlap (one
can also drag them to different positions in the plot itself).

Note that the C/E adjustment is also a useful option for grids with large numbers of constructs
as the geometry of the analysis tends to project the element outside the hypercube formed by the
constructs. Since only the relative direction of the construct dimensions is meaningful, not the abso-
lute position of the poles, this scaling has no effect on the interpretation of the analysis.

The X and Y axis menus in the fourth row show the principal components with the percentage
variance for which each accounts, and are used to select which components, if any, are plotted on
the horizontal and vertical axes. The relative placement of the four quadrants is arbitrary, and the
Reverse check boxes allow the plot to be reversed horizontally and vertically for greater perspicuity.
These are useful options if multiple PrinGrid analyses are to be compared as they enable one to show
the elements in similar quadrants in successive plots to the extent that this is possible.

The Z axis check box in the fifth row specifies that a three-dimensional plot should be produced,
with the menu and Reverse checkbox specifying what component should be plotted on the Z axis
and whether it should be reversed. The three values on the right specify the rotations in degrees of
the X, Y and Z axes, respectively. The rotations are computed in the order Y, X, Z to keep the Y plots
vertical if only X and Y rotations are used.

The check boxes in the sixth row determine whether: a scree plot should be produced; is titled;
Frontier’s (1976) comparative plot of the distribution if the principal components were randomly
generated is also plotted to provide an estimate of the number of significant components.

The text field on the right enables the geometry of the scree plot to be adjusted. It can contain
up to 4 numbers separated by commas: whether the vertical numeric increments are 1 or 2; vertical
separation between scale points; horizontal separation between scale points; horizontal space at each
end of plot. If fewer than 4 values are specified the remainder are filled from the appropriate position
in the default values 2, 3, 20, 10. In practice there is rarely a need to change the detailed geometry of
the scree plot but the options are available to fine-tune the output for presentation or publication.
Mousing over either the text field brings up help text giving information about available parameters.

The row of check boxes near the bottom determine whether a textual analysis is produced, and,
if so, whether the percentage variances for the components are output, and whether the element and
construct loadings on the components are output.

The menu at the bottom left specifies the metric to be
used in calculating the data matrix for principal components
analysis, either construct covariances or element distances
(Minkowski—any power).

67

5.4.1 PrinGrid Map plot output

Figure 97 shows the plot produced for the grid of Figure 79 when one clicks the PrinGrid button
with the settings above.

0

10

20

30

40

50

1 2 3 4 5 6 7

lecture

tutorial

seminar

practical

film

library

programmed text

video tape

informal interaction remoteness

involvement

rigid

flexible

no equipment

equipment

staff-organised

self-organised

large group

small group

specific content

variable content

dislike

like

1: 57.3%

2: 24.8%

PrinGrid Map Arthur [Covariances]
"exploring the nature of learning situations"

Percentage variance in each component
1: 57.3% 2: 24.8% 3: 12.0% 4: 3.2% 5: 1.3% 6: 1.2%

2.4

Components Arthur

Figure 97: PrinGrid Map analysis

The plot opens in RepNet, and may be edited, annotated, and saved as a net and in graphic in-
terchange formats. In particular, while the spread algorithm makes a reasonable attempt to place the
element and pole names in a way that avoids overlap, the human eye may see more perspicuous lo-
cations. There are connecting lines between the labels and the points they label so that the linkage is
apparent regardless of the label location.

The scree graph at the bottom plots the percentage variance accounted for by each component.
The superimposed graph plots Frontier’s (1976) estimated distribution if the principal components

68

were randomly generated which has been found to provide a good estimate of the number of signif-
icant components (Jackson, 1993). The number indicates this in terms of where the plots cross—
when there is fractional value of significant components indicated the recommendation in the liter-
ature is to round down. However, if the estimate is used as a complexity indication the continuous
scale of the fractional values may be useful.

Note that the comparative plot may cross the scree plot more than once indicating that there
is more than one possible estimate of the number of significant components. There are continuing
studies of such estimation techniques (Peres-Neto et al., 2005)—the literature is growing and the
articles noted here provide useful search terms for such later literature as they are generally cited.

5.4.2 PrinGrid Map with Voronoi diagram

The interpretation of the PrinGrid Map plot generally involves noting: construct dimensions that
intersect at a small angle and hence are similar in the context of the set of elements that have been
construed (Kelly, 1969, p.105); elements that cluster together and hence are similar in the context of
the constructs used to construe them; and the positioning of those clusters on the construct dimen-
sions to gain understanding of the basis of the similarity.

This information is apparent visually in the conventional principal components analysis biplot
(Gower et al., 2011) but there is no graphical plot supporting the visualization of element clusters as
there is for Focus. Cluster analysis has long been a major research topic and there are a large number
of approaches and algorithms to support it (Hennig et al., 2016), but most automated techniques are
not simply explicable to those reflecting on their conceptual structures through grid analysis.

However, one readily-explained technique that supports visual understanding of a principal
components biplot is to superimpose a Voronoi diagram (Okabe et al., 1992) that partitions the space
to show locations that are nearer to one element location than to any other element location. This
is a simple notion that dates back to Descartes and Dirichlet, and is easy to explain. However, com-
puter algorithms to generate the diagram for any set of points proved difficult to design and prone
to round-off errors for a variety of ill-conditioned configurations, and automatic generation of the
diagrams was not implemented in the early grid analysis programs. Later research has resulted in a
number of sound algorithms (Fortune, 1987) and computer implementations (Okabe et al., 1992).

Figure 98 shows the Voronoi partitions that PrinGrid superimposes on the plot when the Voronoi
option is selected at the top right of the dialog (Figure 96). The options to wrap and centre the labels
vertically above or below the locations were also selected to create a more compact appearance mak-
ing it easier to place the element labels within their associated partitions. The Focus element tree
from Figure 88 is shown at the right for comparison.

The way in which the elements cluster is now more readily perceived through the adjacency of
their Voronoi partitions. For example, the highly related pairs on the left of the Focus tree are in ad-
jacent partitions, and the linear sort of the tree appears as a two-dimensional path through adjacent
Voronoi partitions. The relation between the partitions and the construct poles that characterize
them is also apparent.

Gärdenfors (2000) has developed a theory of conceptual spaces that parallels Kelly’s of psycho-
logical space in its psychological, philosophical and empirical foundations and techniques, and has

69

lecture

tutorial

seminar

practical

film

library

programmed
text

video
tape

informal
interaction

remoteness

involvement

rigid

flexible

no
equipment

equipment

staff-organised

self-organised

large
group

small
group

specific
content

variable
content

dislike

like

library

informal interaction

practical

seminar

tutorial

lecture

film

programmed text

video tape

Figure 98: PrinGrid Mapwith Voronoi diagram (left) compared with Focus cluster (right)

argued that the Voronoi partition associated with an entity models its role as a conceptual prototype
in Rosch’s (1978; 1978) theory of categorization. There is significant ongoing research on conceptual
spaces and their applications (Zenker and Gärdenfors, 2015; Kaipainen et al., 2019), much of which
is relevant to personal construct psychology studies, even though the two areas have, so far, had little
interaction.

5.4.3 PrinGrid Map with alternative metrics

The analysis of conceptual grids is largely based on distance measures calculated from the differ-
ences in ratings, but the major algorithms in common use are based on different measures, for ex-
ample: construct covariances or correlations in Slater’s (1976; 1977) INGRID; sum of absolute dif-
ferences in Shaw’s (1980) FOCUS; and chi-squared distances deriving from correspondence analysis
(Greenacre, 2007, pp.177-181) in Feixas’ RECORD/GRIDCOR (Feixas and Cornejo, 1996). Gower
(1966) shows that distances matrices based on any of these, or other metrics complying the axioms
for distance measures, may be be embedded in Euclidean space and analyzed using principal compo-
nents analysis.

There are interesting relationships between these measures: covariances are equivalent to a
Minkowski distance of power 2.0; sum of absolute differences is equivalent to a Minkowski distance
of power 1.0; the two may be seen as related by regarding the power of 2.0 as weighting a difference
by itself making larger differences more significant; correlations may be regarded as covariances nor-
malized by standard deviations making the spread of usage of a rating scale less relevant; and so on.

The different distance measures underlying the mainstream techniques for developing concep-
tual models from grid data may raise questions about why one measure is used rather than another,

70

what difference does it make, which is best, and so on. Part of the answer is in the design objectives
of the developers: Slater and Shaw were concerned to develop presentations of the grid data that
would be understandable to those from whom the grids were elicited and could be simply explained
to them. Slater took Kelly’s notion of elements in the space defined by constructs and rotated that
space to create a map of the elements in the plan that captured as much as possible of the spatial re-
lationships between them. Shaw sorted the grid to bring similar items together, and presented this as
hierarchical trees around the grid itself. From Slater’s and his clients’ perspective the Euclidean met-
ric was natural to the space being rotated. From Shaw’s and her clients’ perspective the simple sum of
absolute differences was easy to understand in the sorted grid that is part of the Focus presentation.

In RepGrid alternative metrics are made available in the Focus Cluster (and associated analyses)
and PrinGrid Map, with the default for Focus being Minkowski distances power 1.0, and that for
PrinGrid being covariances (equivalent to Minkowski distances power 2.0 (Gower, 1966)). How-
ever, both analyses may be run for any Minkowski power, not because any nonstandard value is
recommended, but so that researchers may experiment with different metrics if they wish, for ex-
ample, to run a sensitivity analysis to find what features of a conceptual model, if any, are subject to
significant variation as the metric is changed.

For example, Figure 99 shows Pringrid Map analyses for Minkowski powers of 1.0, 2.0, 0.5 and
4.0. The first two are commonly used values and it can be seen that the component variances for
2.0 are the same as for covariances as in Figure 97 (as they must necessarily be). The unusual val-
ues of 0.5 and 4,0 show what happens as the power moves towards 0.0 where the elements will be
equidistant, and towards infinity where the distance will be the maximum absolute difference over
all constructs.

What is apparent, for this particular grid, is that the topology of the elements and their relations
to the constructs changes little with this wide variation of the metric—the interpretation of the con-
ceptual map is insensitive to the choices of metric shown. The same construct dimensions intersect
at a small angle; the connectivity of the element Voronoi partitions is the same; and the positioning
of those partitions on the construct dimensions is much the same.

It is possible to construct artificial grids where more substantial changes occur, and there are
changes in the metric, for example those resulting from weighting constructs that can result in mean-
ingful changes (§5.9). However, we have found for natural grids elicited to investigate anticipa-
tory relations in a significant domain well-known to the elicitee, the analyses of Focus and Pringrid
closely track one another, and that this seems to continue to apply to an wider spread of metrics.

There is scope for research on the impact of metrics on the analysis and interpretation of con-
ceptual grids, and Rep Plus provides technical support for this. In theoretical terms, one might pre-
cisify the interpretations guidelines noted above and analyze the impact of varying the metric on
the angle of intersection of the constructs, connectivity of the Voronoi partitions, and their relation
to the construct dimensions, or similar interpretive guidelines. Empirically, one might analyze the
impact of different metrics on the actually interpretation of a large corpus of grid data.

71

0

10

20

30

40

50

60

1 2 3 4 5

lecture

tutorial

seminar

practical film

library

programmed
text

video
tape

informal
interaction

remoteness

involvement

rigid

flexible

no
equipment

equipment

staff-organised

self-organised

large
group

small
group

specific content

variable
content

dislike

like

PrinGrid Map Arthur [Power: 1]
"exploring the nature of learning situations"

Percentage variance in each component
1: 63.1% 2: 24.2% 3: 10.8% 4: 1.8%

1.9

Components Arthur

0

10

20

30

40

50

1 2 3 4 5 6 7

lecture

tutorial

seminar

practical

film

library

programmed
text

video
tape

informal
interaction

remoteness

involvement

rigid

flexible

no
equipment

equipment

staff-organised

self-organised

large
group

small
group

specific
content

variable
content

dislike

like

PrinGrid Map Arthur [Power: 2]
"exploring the nature of learning situations"

Percentage variance in each component
1: 57.3% 2: 24.8% 3: 12.0% 4: 3.2% 5: 1.3% 6: 1.2%

2.4

Components Arthur

0

10

20

30

40

50

60

1 2 3 4

lecturetutorial

seminar

practical film

library

programmed
text

video
tape

informal
interaction

remoteness

involvement

rigid

flexible

no
equipment

equipment

staff-organised

self-organised

large
group

small
group

specific
content

variable
content

dislike

like

PrinGrid Map Arthur [Power: 0.5]
"exploring the nature of learning situations"

Percentage variance in each component
1: 63.3% 2: 22.9% 3: 10.8% 4: 3.0%

1.7

Components Arthur

0

10

20

30

40

1 2 3 4 5 6 7 8

lecture

tutorial

seminar

practical

film

library

programmed
text

video
tape

informal
interaction

remoteness

involvement

rigid

flexible

no
equipment

equipment

staff-organised

self-organised

large
group

small
group

specific
content

variable
content

dislike

like

PrinGrid Map Arthur [Power: 4]
"exploring the nature of learning situations"

Percentage variance in each component
1: 44.5% 2: 23.2% 3: 14.8% 4: 6.2% 5: 5.1% 6: 3.8% 7: 2.4%

2.8

Components Arthur

Figure 99: PrinGrid Map analyses with different Minkowski distance powers

72

Any such research needs to take into account both the ethos of personal construct psychology
and the massive body of literature on the metrics of psychological space, and some of the interactions
between them in Kelly’s early studies preceding his 1955 book and his later commentaries on the
nature of psychological space. Good starting points are Kelly’s (1938) paper that analyzes Spencer’s
(1862, p.216) definition of evolution as “change from an indefinite, incoherent homogeneity to a def-
inite, coherent heterogeneity” in mathematical and psychological terms, linking it to his discussion
with Cyril Burt of selection effects in correlations and to Thurstone’s (1935) use of factor analysis to
study the “vectors of mind”.

Kelly’s student, Emmons (1939), extended his analysis with a critical study of factor analysis in
psychology, and Kelly links it to his later research in an address to theMoscow Psychological Society in
1961 where he emphasizes that constructs are independent dimensions of psychological space that
are brought into relationships as a selection effect of the elements chosen to populate that space in a
particular context (Kelly, 1969, p.105)—construct systems create a coherent heterogeneity in Spencer’s
incoherent homogeneity or James’ (1890, p.488) buzzing confusion of experience. Similarly, he empha-
sizes that there are no intrinsic distances in psychological space (Kelly, 1969, p.105), but these may
be introduced to measure similarities between elements as counts of their incidences and voids with
construct poles (Kelly, 1955, p.) (which can be extended to rating scales as structures constituted by
multiple constructs (Gaines and Shaw, 2012, §3.4)).

The most substantial literature on the appropriate distance measures for psychological data is in
studies of psychophysics from the 1930s to our era. The road map commences with Attneave’s (1950)
survey of dimensions of similarity, and proceeds through Torgerson’s (1958) theory and methods of scal-
ing, Shepard’s (1964)metric structure of stimulus space, Tversky’s (1977) features of similarity, Nosof-
sky’s (1985) identification of separable-dimension stimuli, to Algom and Fitousi’s (2016) half a century of
research on Garner interference and the separability–integrality distinction.

The psychophysics literature is useful in presenting the issues in the operationalization of the
notion of psychological distance but is largely based on perceptual similarities of well-defined physical
stimuli and it not clear to what extent any conclusions apply to the complex experiences represented
as elements in personal construct psychology. That in itself is a major research topic.

There are also issues with the notion of similarity in the psychological literature that have inter-
esting constructivist interpretations. James (1890, p.579) noted that an entity could be similar to
a second entity in some respect and similar to a third in another respect, but the second and third
entities may have no similarity—the constructs on which a psychological metric is based may tac-
itly change. Nosofsky (1985, p.427-430) explains finding a different metric for similarities than that
which Shepard (1964) derived as Shepard’s subjects using different perceptual information from
that which he varied in designing the experiment—the experimenter-as-scientist and the subject-as-
scientist may employ different construct systems.

73

5.4.4 PrinGrid Map with mixed construct types

The PrinGrid Map analysis may be applied to grids with any mixture of the rating scale types avail-
able in Rep Plus. For example, Figure 100 shows a plot produced for the grid of Figure 81. The multi-
ple types of the constructs are not apparent, as they are in the Focus plot, because the actual ratings
are not shown in a PrinGrid map as they are in a Focus clustering.

0
10
20
30
40

1 2 3 4 5 6 7 8

325, Oaklands Drive NW

4227, Ranch Wheel Road NW

5778, Melina Drive NW

127, Realta Court NW92, Lexington Avenue NW

436, Ryman Estate Drive NW
1, Abraham Point, NW

23,080 120th Road, NW

Ideal home

long way from stores

mall near

town views

mountain views

oppressive

friendly

poor study

good study

older style

completely remodeled

good decorations
needs redecorating

inadequate modernization

extensive modernization

very high price (000s)

low price (000s)

recent year

old year

1: 39.4%

2: 26.9%

PrinGrid Map house choice [Covariances]
"choosing a new home"

Percentage variance in each component
1: 39.4% 2: 26.9% 3: 17.2% 4: 7.7% 5: 5.1% 6: 2.2% 7: 1.3%

3.4

Components house choice

Figure 100: PrinGrid Map analysis of a mixed-type grid

5.4.5 PrinGrid 3D plot

It is sometimes of interest to show three components in what is essentially a two-dimensional sec-
tion of a three-dimensional plot. Figure 101 shows the three-dimensional output generated when
the check box to the left of the Z axis specification in Figure 96 is clicked. The X-Z plane is shown by
the orange rectangle, and lines have been dropped from the element and construct pole positions to
their coordinates in this plane.

74

lecture

tutorial

seminar

practical

film

library

programmed text

video tape

informal interaction

remoteness

involvement

rigid

flexible

no equipment

equipment

staff-organised

self-organised

large group

small group

specific content

variable content

dislike

like

1: 57.3%

2: 24.8%

3: 12.0%

PrinGrid Map Arthur [Covariances]
"exploring the nature of learning situations"

Percentage variance in each component
1: 57.3% 2: 24.8% 3: 12.0% 4: 3.2% 5: 1.3% 6: 1.2%

Figure 101: Three dimensional PrinGrid Map display

What component is shown on what is axis is arbitrary and may be varied for perspicuity, as may
the angles of rotation of the three-dimensional plot before it is projected into two dimensions for
display.

5.4.6 PrinGrid text output

Figure 102 shows the textual output of the data underlying the plot of Figures 97 produced when
the Data checkbox at the bottom left of Figure 96 is checked, and below it the data underlying the
plot of Figure 100. Note that the variance and Frontier estimate are shown for all the components,
not just those above the specified cut-off, and also that, if comparing the data with other principal
components analyses, the absolute values of the loadings produced are arbitrary and depend on how
the grid data has been scaled—only the relative values are meaningful.

75

Figure 102: Data from the PrinGrid Map principal components analyses of the grids

76

5.4.7 Pringrid analysis of hierarchical data

It is interesting to compare Focus and PrinGrid analyses of the hierarchical data structures analyzed
in §5.3.3 because, in both cases, the number of independent constructs used is known in advance.
Figure 103 shows PrinGrid plots in 2 and 3D for the simple artificial hierarchy with seven constructs
of Figure 92. The second and third components are equal, and can be seen on the left that a plot of
the first two components does not adequately discriminate between the elements, but on the right
that a plot of all 3 components clusters all the elements appropriately but not as clearly as in the Fo-
cus plot.

0
10
20
30

1 2 3 4 5 6 7

1
2

3
4

5
6
7
8

b
a

d

c

fe
hg
ji
lk
nm 1: 33.3%

2: 16.7%

PrinGrid Map 'reconstruct hierarchy' [Covariances]

Percentage variance in each component
1: 33.3% 2: 16.7% 3: 16.7% 4: 8.3% 5: 8.3% 6: 8.3% 7: 8.3%

7.0
3.3

Components 'reconstruct hierarchy'

0
10
20
30

1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

b

a

d

c

f

ehg
ji
lk
nm

1: 33.3%

2: 16.7%

3: 16.7%

PrinGrid Map 'reconstruct hierarchy' [Covariances]

Percentage variance in each component
1: 33.3% 2: 16.7% 3: 16.7% 4: 8.3% 5: 8.3% 6: 8.3% 7: 8.3%

7.0
3.3

Components 'reconstruct hierarchy'

Figure 103: PrinGrid analysis of an artificial hierarchy in 2 and 3 dimensions

Frontier’s (1976) comparative plot of the distribution two intersections indication that 3 com-
ponents may reasonably account for the data but 7 are better. In the 3D plot, the correspondence of
the axes to the a—b, c—d and e—f constructs shows that the plot accurately represents the higher
levels of the hierarchy, but the lack of representation of the four lowest level constructs indicates
that a 3D plot cannot capture all of them, as would be expected with the artificial 7-dimensional
data.

Figure 104 shows a comparison of PrinGrid and Focus analysis of the natural hierarchy of In-
ternet services in the 1990s analyzed in §5.3.3. The Frontier plot indicates that 2D and 12D analy-
ses are significant, picking up the 2 major constructs differentiating the Internet services, access—
awareness and computer-mediation communication—services, as well as the 12 constructs fully dif-
ferentiating them. The element clusters of the Voronoi diagram correspond to those in the Focus
element tree. Both forms of presentation make apparent the relations between the elements but
through different visualizations—they complement one another.

77

0
10
20

1 2 3 4 5 6 7 8 9 10 11 12

Talk

Email

IRC
News

List
server

MUD

Gopher

WWW file
access

FTP

Telnet

WWW
services

Archie

Yahoo

Alta
Vista

CHRONO

LISZT

Internet
address
finder

PrinGrid Map Internet services [Covariances]
"classify Internet services"

12.0

2.4

Percentage variance in each component
1: 27.5% 2: 19.5% 3: 10.3% 4: 7.8% 5: 6.2% 6: 5.6% 7: 5.6% 8: 4.9% 9: 3.7% 10: 3.3% 11: 2.8% 12: 2.8%

Focus tree Internet services
"classify Internet services"

Figure 104: PrinGrid analysis of a natural hierarchy compared with Focus analysis

5.5 Crossplot: Plotting elements on constructs as orthogonal axes

Quadrant diagrams that show two orthogonal constructs as axes together with a set of elements
plotted in the four quadrants thus created are commonly used in many literatures. The Crossplot tool
in RepGrid allows two or three constructs to be selected as axes and the elements to be plotted in 2D
or 3D respectively according to their ratings on the selected constructs,

Clicking on button icon on the right of the Crossplot button brings up a dialog which allows the
constructs for a crossplot to be selected (Figure 105). The options are similar to those for PrinGrid
except that the axes are constructs not components.

The row of check boxes at the top determine whether: the plot is titled; whether the elements
and constructs are numbered; whether the element labels are spread to prevent overlap; what mar-
gins will be added for a Voronoi diagram; the scale of the plot.

78

Figure 105: RepGrid Crossplot dialog

The row of check boxes on the second row determine whether: element notes should be shown;
element labels should wrap; labels should be vertically above or below their location; whether a
Voronoi diagram for the element locations should be plot.

The row of check boxes on the third row determine whether: construct notes should be shown;
construct labels should wrap.

The fourth row allows the construct for the X axis to be selected, followed by a check box deter-
mining whether it is reversed.

The fifth row allows the construct for the Y axis to be selected, followed by a check box deter-
mining whether it is reversed.

The sixth row allows the construct for the Z axis to be selected, followed by a check box deter-
mining whether it is reversed.

On the bottom row, the 3D check box specifies whether a three-dimensional plot will be pro-
duced and numbers in the three text boxes following determine the rotations of the 3D plot.

79

Figure 106 shows the plot produced when one clicks the Crossplot button with the settings above.

lecturetutorial

seminar

practical

film

library

programmed text

video tape

informal interaction

involvement remoteness

rigid

flexible

Crossplot Arthur
"exploring the nature of learning situations"

Figure 106: Crossplot of the elements on two selected constructs

Figure 107 shows the three-dimensional output generated when the 3D check box is also set.

lecture
tutorial

seminar

practical

film

library

programmed text

video tape

informal interaction

equipment

no equipment

involvement

remoteness

rigid

flexible

Crossplot Arthur
"exploring the nature of learning situations"

Figure 107: Crossplot of the elements on three selected constructs

Crossplots are useful visual presentations of grid data in their own right, and also useful in hav-
ing users come to understand the PrinGrid plots as rotations of multi-dimensional crossplots.

80

5.6 Compare: Comparison of grids with some common elements and/or constructs

When two grids were elicited from the same person or from two members of the same community
who are expected to use similar terminology to identify events and shared concepts, if they have
have elements and/or constructs in common it is possible to be able to compare them for similarities
and differences in the use of constructs and the construing of elements. The Compare tool in Rep-
Grid provides a graphic comparison of such grids based on the MINUS algorithm of Shaw (1980)
extended to grids having a diversity of rating scales including multiple types.

Note that determining common elements across grids is based on lexical equality of the element
names, and common constructs on the lexical equality of the pole names and construct names (if
any). Hence a grid being compared should not have two or more elements with the same name or
two or more constructs that are equal on the above criterion. The supposition that lexically equiv-
alent elements and/or constructs are intended by the elicitee(s) to have the same meaning needs
careful consideration and justification if the analysis is to be meaningful. This can be addressed
by discussions with the elicitees or a focus group representing them or managing the study.

5.6.1 Methodology of grid comparison

The methodological basis of grid comparison is illustrated in Figure 108 where two grids overlap in
a central region of common elements/constructs and three pairs of peripheral regions having: com-
mon elements but different constructs; common constructs but different elements; and different
elements and constructs.

Different E in G1
Common C

Different E in G2
Common C

Common E
Different C in G1

Different E in G1
Different C in G1

Common E
Common C

Common E
Different C in G2

Different E in G2
Different C in G2

G1

G2

E

C

C

E
Figure 108: Pairwise comparison of grids with some common elements and/or constructs

The differences in ratings between the two grids in the common subgrid in the centre may be
used to determine the degree of consensus and conflict (Shaw and Gaines, 1989) of the elicitees for
each element and each construct represented in the subgrid. In essence, the common constructs are
used to match the common elements, and the common elements are used to match the common
constructs.

In the regions having some commonality this can be used to enable the items that are lexically
different in one grid to be matched against all the items of that type in the other grids and the best

81

matches can be displayed. This is achieved by analyzing the subgrids comprising the central sub-
grid combined with each of the four peripheral grids to its left and right and above and below it. In
essence: the common constructs in the central grid are used determine the best match for any ele-
ment in G1 of an element in G2, and vice versa; the common elements in the central grid are used
determine the best match for any construct in G1 of an construct in G2, and vice versa.

Figure 109 shows three common instances of the general schema shown in 108. On the left,
grids having both elements and constructs in common arise in many different ways, as a temporal
sequence from one individual, developing a grid at one time and then rerating after a learning expe-
rience, or through an exchange of grids where two or more people develop grids supplying their own
elements and constructs and then exchange them with one another so that each person rates the
other’s elements on the other’s constructs, and so on. In the centre, grids having common elements
but different constructs arise when two or more individuals develop grids using a commonly agreed
set of elements and wish to see the similarities and differences in their individual constructs. On the
right, grids having common constructs but different elements arise when two or more individuals
develop grids using a commonly understood set of public constructs and wish to see the similarities
and differences in their individual experiences in terms of these constructs.

Common E
Different C in G1

Common E
Different C in G2

Different E in G1
Common C

Different E in G2
Common C

Common E
Common C

E

C

G1 G2G2

G1

E

C

Exchange Grid Best Construct Matches Best Element Matches
Consensus & Conflict Correspondence & Contrast Correspondence & Contrast

E EC

C
G2

G1

Figure 109: Some special cases of pairwise comparison of grids

The following subsections illustrate how the Compare tool analyses these three types of data,
including grids instantiating the more situation shown in Figure 108 where all three forms of analysis
may be possible. There are additional analyses possible for research designs where large numbers of
grids have been elicited with the various forms of overlap discussed above, or even when there is no
overlap but only a common domain of interest, and these are covered in the RepGrids manual.

5.6.2 The compare dialogue

Clicking on button icon on the right of the Compare button brings up a dialog which allows the cur-
rent grid to be compared with a another selected one Figure 110). The Open Grid button at the bot-
tom left is highlighted, and the Compare button on the left is disabled, because one needs to open a
second grid for comparison before proceeding with the analysis. Clicking on the Open Grid button
brings up a standard file open dialog where one can open a secondary grid for comparison. One may
also drag a grid file to the dialogue to open it for comparison.

Note that the Select check boxes in the Element and Construct panes may be used to restrict the
items in the primary grid that are used in the comparisons. This enables a subgrid to be used in a

82

Figure 110: RepGrid initial Compare dialog

comparison and dynamically adjusted as a result of the comparison. This capability may be used, for
example, to implement Shaw’s (Shaw, 1980, p.77) CORE algorithm to identify core constructs in a
set of grids. In particular, the WebGrid port of the Compare functionality provides an interactive
user interface that makes this a very simple activity.

5.6.3 Comparing grids with substantial numbers of elements and constructs in common

Common E
Common C

E

C

G2

G1Figure 111 shows the dialog when a grid having both elements and con-
structs in common is opened. The text at the top identifies the grids being
compared and the number of elements and constructs they have in common.

Figure 111: Compare dialog—grid with same elements and constructs opened for comparisonThe first row of check boxes determine whether: the plot is titled; elements and constructs are
numbered; high and low differences are shaded; notes attached to elements and constructs are shown.

The second row determines whether matches will be graphed; match values will be shown; the
cumulative percentage of matches above or equal to the match value will be shown; and specifies
the threshold, cut off, and scale. The Threshold value determines where in the plot matches will be
shown as below threshold. The Cut off value specifies the lowest match that will be plotted. The Scale
value determines how much space will be allocated to the graph of matches.

The panel below is only visible if the grids being compared have both common elements and
common constructs. The four radio buttons select whether a Minus plot of the difference grid is
required and, if so, whether the rows should be constructs or elements, or whether a Compare plot is
required where the best matching constructs or elements are shown. The Split check box determines
whether a Minus plot shows the difference in ratings or the actual ratings on separate lines (Compare
plots when only elements or only constructs are in common always use separate lines).

83

In the bottom row, the Power value determines the exponent used in the Minkowski metric used
to compute matching scores as discussed in §5.3. The normal mode of comparison is that the pri-
mary grid is compared with the secondary grid, and the Reverse order check box reverses this.

Figure 112 shows the plot produced when one clicks the Compare button with the settings above.

100 80 60

100 80 60

video tape
programmed text
library
tutorial
informal interaction
seminar
practical
lecture
film 100.0 (11.1%)

82.1
82.1 (33.3%)
75.0
75.0 (55.6%)
67.9
67.9 (77.8%)
64.3 (88.9%)
57.1 (100.0%)

equipment no equipment
small group large group

like dislike
self-organised staff-organised

flexible rigid
involvement remoteness

variable content specific content

83.3 (14.3%)
80.6 (28.6%)
77.8 (42.9%)
75.0 (57.1%)
72.2 (71.4%)
69.4 (85.7%)
63.9 (100.0%)

1 2 1 2
2 2 2 1
2 1 2 1 1 1
3 2 1 1 2
3 3 1 2 1
2 1 2 1 4 1

3 4 2 1 2 1

Compare Arthur consensus with Mary [Match 74.60]
"exploring the nature of learning situations"

Figure 112: Comparing two grids with the same elements and constructs

On the left is shown the absolute difference between the ratings in the two grids with the con-
structs and elements sorted so that those that are most similar in the two grids are the top and on
the left, respectively. The number on the right of the the title is the overall match between the two
grids. If the power is set to 1.0 it corresponds to both the mean construct match and the mean ele-
ment match.

The graphs on the right provide a plot of the individual construct and element matches between
the grids being compared. The numbers on the right show the numeric match value and, in paren-
theses, the cumulative percentage of items matching at that value or greater.

5.6.4 Comparing grids with a substantial number of elements in common

Common E
Different C in G1

Common E
Different C in G2 G2

G1

E

Best Construct Matches
Correspondence & Contrast

C

C

Figure 113 shows the Compare dialog when a grid having the same elements
but different constructs is opened for comparison. Figure 114 shows the
plot produced when clicks on the Compare button with the settings above.
Each of the constructs in the primary grid is shown with the best matching
construct in the secondary grid on the line below it. Element differences
have also been computed based on the two grids of matching constructs, and
constructs and elements have been sorted so that those that are most similar
in the two grids are the top and on the right, respectively.

84

Figure 113: Compare dialog—grids with same elements but different constructs

100 80 60

100 80 60

video tape
tutorial
practical
programmed text
lecture
library
informal interaction
seminar
film 100.0 (11.1%)

89.3 (22.2%)
85.7
85.7
85.7 (55.6%)
78.6 (66.7%)
71.4
71.4
71.4 (100.0%)

formal informal

formal informal

static medium dynamic medium

learners all at same time learners at different times

learners all at same time learners at different times

formal informal

formal informal

like dislike

variable content specific content

equipment no equipment

self-organised staff-organised

small group large group

flexible rigid

involvement remoteness

91.7

91.7 (28.6%)

80.6

80.6 (57.1%)

77.8

77.8 (85.7%)

75.0 (100.0%)

5 3 3 5 5 2 1 2 5

5 3 3 5 5 2 1 2 5

1 4 2 4 5 3 3 5 1

3 5 5 1 5 1 2 5 5

3 5 5 1 5 1 2 5 5

5 3 3 5 5 2 1 2 5

5 3 3 5 5 2 1 2 5

5 4 2 5 5 1 1 2 5

5 4 3 5 4 1 1 2 5

1 5 1 2 4 3 5 5 1

2 4 3 2 5 1 1 4 5

1 2 4 1 5 1 3 4 5

2 4 2 5 4 1 1 3 5

3 3 1 2 4 1 1 2 5

Compare Arthur correspondence from Mary [Match 82.14]
"exploring the nature of learning situations"

Figure 114: Comparing two grids with the same elements

The plot shows the best match in Mary’s grid for each construct in Arthur’s grid. If the Reverse
order check box is set then a similar plot showing the best match in Arthur’s grid for each construct
in Mary’s grid will be produced.

85

100 80 60

100 80 60

library
tutorial
practical
informal interaction
seminar
video tape
programmed text
lecture
film 96.4 (11.1%)

89.3 (22.2%)
82.1
82.1
82.1 (55.6%)
78.6 (66.7%)
75.0 (77.8%)
64.3 (88.9%)
57.1 (100.0%)

variable content specific content

self-organised staff-organised

equipment no equipment

like dislike

flexible rigid

small group large group

like dislike

formal informal

learners all at same time learners at different times

static medium dynamic medium

on your own mentored

easy to develop difficult to develop

learners in different places learners all in same place

experiential learning 'book' learning

91.7 (14.3%)

80.6

80.6 (42.9%)

77.8 (57.1%)

75.0 (71.4%)

72.2

72.2 (100.0%)

5 2 3 5 4 1 1 2 1

5 2 3 5 2 4 4 1 1

3 1 5 1 1 5 4 2 5

5 2 4 5 4 1 1 1 1

1 4 2 1 3 2 5 4 5

1 2 4 3 4 1 1 5 5

1 4 2 1 2 5 5 5 5

4 3 3 5 4 1 1 1 1

5 1 1 4 1 3 5 1 1

3 2 4 3 1 5 2 1 5

1 5 4 5 4 1 2 1 1

3 3 4 1 1 1 5 5 5

3 5 5 4 5 3 1 5 5

4 4 1 3 3 4 4 5 4

Compare Mary correspondence from Arthur [Match 78.57]
"exploring the nature of learning situations"

Figure 115: Comparing two grids with the same elements in reverse order

The reduced overall match value indicates that Mary’s constructs enable her to better understand
Arthur’s than vice versa, and the effect of this is apparent in the construct and element match plots.

5.6.5 Comparing grids with a substantial number of constructs in common

Different E in G1
Common C

Different E in G2
Common C

G1 G2

C

E EFigure 116 shows the Compare dialog when a grid having the
same constructs but different elements is opened for compar-
ison. Figure 117 shows the plot produced when one clicks on
Compare. Each of the elements in the primary grid is shown
with the best matching element in the secondary grid on the line
below it. Construct differences have also been computed based
on the two grids of matching elements, and elements and constructs have been sorted so that those
that are most similar in the two grids are the top and on the right, respectively.

The Reverse order check box may be used to determine the best matches for Paul’s elements in
Arthur’s grid.

86

Figure 116: Compare dialog—grids with same constructs but different elements

100 80 60

100 80 60

talking to an expert

reading a book

talking to an expert

watching others

reflecting on experience

solving a problem

asking for a critical appraisal

asking for a critical appraisal

watching others

tutorial

library

seminar

lecture

informal interaction

practical

programmed text

video tape

film

89.3 (11.1%)

85.7 (22.2%)

82.1

82.1

82.1 (55.6%)

71.4

71.4 (77.8%)

67.9

67.9 (100.0%)

equipment—no equipment
variable content—specific content
flexible—rigid
self-organised—staff-organised
small group—large group
like—dislike
involvement—remoteness 91.7 (14.3%)

86.1 (28.6%)
75.0
75.0
75.0 (71.4%)
72.2 (85.7%)
69.4 (100.0%)

5

2

5

3

5

3

4

4

3

4

1

4

2

4

3

5

5

2

3

4

3

4

1

3

3

3

4

4

1

4

4

1

4

5

5

4

2

1

2

5

1

1

2

2

5

2

1

2

4

1

1

5

5

4

3

1

3

4

1

1

2

2

4

5

3

5

4

5

1

2

1

1

4

1

2

4

1

3

5

5

5

4

1

3

4

1

2

5

2

5

4

1

4

5

1

3

2

2

5

2

1

4

5

3

4

1

1

5

4

1

2

5

1

2

5

5

5

3

1

2

4

1

1

2

3

5

Compare Arthur correspondence from Paul [Match 77.78]
"exploring the nature of learning situations"

Figure 117: Comparing two grids with the same constructs

When a grid has a substantial number of elements and constructs the same, as discussed in
§5.6.3, all three forms of match discussed above are possible. As shown in Figure 111, a panel appears
in the Compare dialog box that allows the grid to be compared in terms of its common elements only
(as in §5.6.4), its common constructs only (as in §5.6.5), or its common elements and common con-
structs (as the default in §5.6.3).

87

5.7 Match analysis: Display matches between elements and between constructs

It is often useful to be able to view the matches between selected elements or constructs in reverse
order, for example, to see all the matches with an ideal element or a particularly significant construct.
Clicking on button icon on the right of the Matches button brings up a dialog which allows matching
elements and matching constructs to be displayed (Figure 118).

Figure 118: RepGridMatch dialog

The first row of check boxes determine whether: matches are output for elements, constructs, or
both; element and construct notes are shown.

The second row specifies: the Power of the exponent used in the Minkowski metric used to
compute matching scores (§5.3); the Cut off match value below which matches will not be shown;
whether element and construct numbers will shown; whether the Honey index will be shown (Honey,
1979; Jankowicz, 2004); and whether the matches are separated by element or construct, or all
sorted together.

The two sets of three radio buttons in the third row select whether: all, selected or unselected
items are matched with all, selected or unselected items. The selection of elements and constructs
is set up in the Elements and Constructs panes, respectively (and is independent of the state of the
TextAnalyze Select check boxes).

The two radio buttons at the beginning of the bottom row select whether the matches are shown
in a text window or as an HTML table in your browser window.

Figure 119 shows the output produced when one clicks on the Matches button with Text or
HTML selected.

88

Figure 119: Element and construct matches—left text, right HTML

Figure 120 shows the Match dialog set up to show the matches Honey index between the con-
struct like—dislike which has been selected and all the other constructs.

Figure 120: Selecting construct matches with Honey indices

Figure 121 shows the output produced when one clicks on the Matches button.

89

Figure 121: Construct matches with Honey indices—left text, right HTML

Honey (1979) defined his index for purposes of content analysis and Jankovicz (2004) proves a
detailed exposition of his method. The RepGrids tool for analyzing multiple grids in Rep Plus pro-
vides computational support for carrying out such content analyses including the use of indicators
such as matches, mode scores, and Honey indices.

5.7.1 Using ideal elements derived from classes in a Match analysis

The Classes pane provides the option to include ideal elements derived from the classes in the grid
supplied to any analysis program. Doing so with theMatches analysis provides useful insights into
how the use of ideal elements entered directly may be used to solve a decision problem, and what
further contribution is made through the extended properties available to specify intersects as classes.

If the Include checkbox in the Classes pane is checked for the contact lens prescription grid as
discussed in §5.1.2 and theMatch dialog is brought up it shows 32 elements, the 24 elements in the
grid plus the 7 ideal elements generated from the classes. The ideal elements are automatically se-
lected when they are added so that requesting the 100% matches of all the separated unselected ele-
ments with the selected ones will show what classes match each of the 24 cases. In addition the Con-
structs pane has been set to include all the constructs other than the lens prescription in the matches.

Figure 122: Match dialog to match each contact lens case against ideal elements from classes

Figure 123 shows the matches in two columns. The classes Consider soft and Prescribe soft gen-
erate the same ideal element with the only difference being in the comment field of the latter, prefer

90

exception soft or exception reduced, and similarly for consider and prescribe hard. Consequently every
case is matched against a consider/prescribe pair but, as the comments indicate, the prescribe match
should not be taken into account if there is an exception match.

Figure 123: Matches of contact lens cases against ideal elements from classes

Thus the match analysis based on the ideal elements provides a solution to the lens prescrip-
tion problem but leaves the inference of preferring, or taking into account, exceptions to the user.

91

It might be regarded as a decision support system designed to aid people in making better decision
rather than an expert system that carries out the full inferential process. For some types of problem,
the long-standing technique of matching ideal elements in conceptual grids may be seen as as a viable
alternative to the logical inference techniques of artificial intelligence, or more generally, these tech-
niques may be seen as similar approaches to supporting and emulating aspects of human intelligence.

If one is interested in modelling human decision-making then both the grid and logical inference
models might be over-structured. For example, it might be appropriate to factor the grid of ideal el-
ements in a way that makes each stage of the decision process dependent on only one construct. The
initial step might be based on the construct of astigmatism and suggest prescribing a hard lens if the
client is astigmatic and a soft lens otherwise, subject no exceptions applying. The next step might be
based on the constructs of myopia and presbyopia and the possible exceptions based on intersects of
them. The final step on either branch might be based on the construct of tear production and the ex-
ception if it is reduced. This interpretation satisfies Cendrowska’s requirements and is a simple and
natural representation of a readily learnt anticipatory process that can be derived from the classes or
the ideal elements based on them.

Such considerations suggest that that the personal construct framework represented in con-
ceptual grids and associated classes or intersects might be useful in the study of human rationality.
Cendrowska’s contact lens problem is rather more complex than the simple logical tasks that have
been used in empirical studies of human rationality but analyzing those tasks in terms of matching
ideal elements might provide insights into the difficulties that people have in solving what are appar-
ently very simple logical tasks.

5.7.2 Match analysis of Wason's card selection task

For example, consider Wason’s original card selection task: “The subjects were presented with the fol-
lowing sentence, ‘if there is a vowel on one side of the card, then there is an even number on the other side,’
together with four cards each of which had a letter on one side and a number on the other side. The task was
to select all those cards, but only those cards, which would have to be turned over in order to discover whether
the experimenter was lying in making the conditional sentence.” (Wason, 1968, p.273). There are four
possible card types and two possible visible sides, so there are eight possible cases that may be repre-
sented in a grid (Figure 124).

The first two constructs in the grid represent the factual situation, the next two the subject’s
knowledge of it, and the last whether the situation is consistent with the experimenter’s statement
or shows it to be a lie. A situation where both sides of the card are visible and provide evidence of a
lie can be defined as a class visible is vowel and visible is odd (Figure 125).

If this card is included as an ideal element and the matches are computed based on the two visi-
ble constructs representing the subject’s knowledge then, because only one side of the card is visible,
the maximum match is 50% (Figure 126). However, the four situations that matched are the ones
where a vowel or an odd number is visible which are the correct selections. What requires expla-
nation with Wason’s task is that the majority of subjects did not arrive at this solution and made
incorrect selections.

92

Card C-O, C showing (C visible, OK)
Card C-O, O showing (O visible, OK)
Card C-E, C showing (C visible, OK)
Card C-E, E showing (E visible, OK)
Card V-O, V showing (V visible, lie)
Card V-O, O showing (O visible, lie)
Card V-E, V showing (V visible, OK)
Card V-E, E showing (E visible, OK)

consonant actual — vowel actual
odd actual — even actual

consonant visible — vowel visible
odd visible — even visible

consistent — lie

consonant
consonant
consonant
consonant

vowel
vowel
vowel
vowel

odd
odd

even
even
odd
odd

even
even

consonant
!

consonant
!

vowel
!

vowel
!

!
odd

!
even

!
odd

!
even

consistent
consistent
consistent
consistent

lie
lie

consistent
consistent

Display: Wason (1968) QJEP "Reasoning about a rule"
"select card to turn over to check if it was a lie to say 'if there is a vowel on one side there is an even number on the other'"

Figure 124: Grid representing the possible situations of Wason’s card selection task

Figure 125: Class specifying the state of card that provides evidence of a lie—as case or rule

Figure 126: Matches of the class as an ideal element to the situations of Wason’s card selection task

One explanation might be that the inference is difficult for people that the statement if there is a
vowel on one side of the card, then there is an even number on the other side is a lie if a card has a vowel
on one side and an odd number on the other. If the problem was stated in terms of a violation, that
a card with a vowel on one side and an odd number on the other is not allowed then the two conditions

93

where a card should be checked are both contained in the problem statement and the selection task
might be easier.

Such considerations have triggered wide-ranging research into variants of Wason’s task and
other reasoning problems, and there is now a massive literature of empirical data requiring expla-
nation together with many theories suggesting further investigations (Evans et al., 1993; Hardman
and Macchi, 2003; Stenning and Lambalgen, 2008; Adler and Rips, 2008). The conceptual modelling
tools in Rep Plus provide a personal construct psychology framework within which to represent and
compare such results and theories.

5.8 Analysis of selected elements and constructs

RepGrid makes it possible to display or analyze only part of a grid. At the bottom left of the Elements
(§3.2) and Constructs (§3.3) panes are check boxes specifying that only selected items should be an-
alyzed. In essence the grid to be analyzed is reduced to contain only the selected items, and hence all
the analyses may be used on a partial grid without actually deleting elements or constructs.

In Think Again Shaw and McKnight (1981) present an example of the use of conceptual grids in
decision support that illustrates the application of selected and weighted constructs in grid applica-
tions. As elements the user enters seven cars as potential choices together with an ideal car that will
serve to elicit his preferences, and has rated the cars on relevant constructs. Figure 127 shows the
grid developed to help in the choice of a car, and Figure 128 shows a Focus analysis where the cars
clustered with ideal car suggest a basis for making an appropriate choice.

Ford Festiva
Honda Civic

Volkswagen Golf
Subaru Justy

Toyota Tercel
Nissan Sentra

Hyundai Excel
Ideal car

high fuel consumption low fuel consumption
high running cost low running cost

low engine reliability high engine reliability
low brake reliability high brake reliability

dull and boring stylish
comfortable ride bumpy

noisy quiet
lots of color choice not much color choice

5 1 3 3 4 1 2 5
3 2 4 3 5 4 1 5
5 5 4 3 3 1 2 5
3 3 5 5 1 3 2 5
4 1 3 5 5 3 4 5
2 3 5 1 4 4 1 1
4 4 3 5 2 1 3 5
1 2 2 3 5 1 4 1

Display Jim
"choosing a car"

Figure 127: Car choice decision-support grid

94

100 90 80 70 60 50

100 90 80 70

Toyota Tercel
Hyundai Excel
Honda Civic
Ford Festiva
Ideal car
Subaru Justy
Volkswagen Golf
Nissan Sentra

high running cost low running cost
dull and boring stylish

bumpy comfortable ride
noisy quiet

high fuel consumption low fuel consumption
low engine reliability high engine reliability

not much color choice lots of color choice
low brake reliability high brake reliability

5 1 2 3 5 3 4 4
5 4 1 4 5 5 3 3
2 5 3 4 5 5 1 2
2 3 4 4 5 5 3 1
4 2 1 5 5 3 3 1
3 2 5 5 5 3 4 1
1 2 4 5 5 3 4 5
1 2 3 3 5 5 5 3

Figure 128: Focus Cluster analysis of car choice decision-support grid

After seeing this analysis he may be interested in clustering based only on what he sees as the
most significant constructs, and can restrict the analysis by selecting these in the Constructs pane and
clicking on Analyze Select as shown in Figure 129.

Figure 129: Car choice decision-support grid with analysis based on selected constructs

Clicking on the Focus button now results in an analysis based only on the selected constructs
(Figure 130). The elements to be used can be selected on the Elements pane in the same way. Using
Analyze Select for both elements and constructs provides the facility to display or analyze partial
grids without editing the grid data.

95

100 90 80 70 60 50

100 90 80 70 60

Nissan Sentra
Hyundai Excel
Honda Civic
Ford Festiva
Ideal car
Volkswagen Golf
Subaru Justy
Toyota Tercel

low engine reliability high engine reliability
high fuel consumption low fuel consumption

high running cost low running cost
low brake reliability high brake reliability

1 2 5 5 5 4 3 3
1 2 1 5 5 3 3 4
4 1 2 3 5 4 3 5
3 2 3 3 5 5 5 1

Figure 130: Focus Cluster analysis of car choice decision-support grid based on selected constructs

5.9 Analysis of weighted elements and constructs

Grid analysis can be refined in a more nuanced fashion by weighting elements and constructs. At the
bottom left of the Elements and Constructs panes are check boxes specifying that the weight values
should be used in analyses, notably Display, Synopsis, Focus Cluster, PrinGrid Map, andMatch. The use
of weights is indicated in the title of the output and the weight is shown in square parentheses by the
elements and constructs in the plot.

Figure 131 shows the Constructs pane of the car choice grid where the user has weighted the con-
structs to indicate their relative importance to him in deciding which car best satisfies his needs. The
ShowWeight and Analyze Weight check boxes have been selected to show the weights and use them
in analysis.

Figure 131: Car choice decision-support grid with weighted constructs

Clicking on the Display button displays the grid with the fact that weights are in use noted in the
title, and the weight values displayed on the right of each construct (Figure 132).

96

Ford Festiva
Honda Civic

Volkswagen Golf
Subaru Justy

Toyota Tercel
Nissan Sentra

Hyundai Excel
Ideal car

high fuel consumption low fuel consumption [8]
high running cost low running cost [9]

low engine reliability high engine reliability [6]
low brake reliability high brake reliability [10]

dull and boring stylish [5]
comfortable ride bumpy [6]

noisy quiet [4]
lots of color choice not much color choice [2]

5 1 3 3 4 1 2 5
3 2 4 3 5 4 1 5
5 5 4 3 3 1 2 5
3 3 5 5 1 3 2 5
4 1 3 5 5 3 4 5
2 3 5 1 4 4 1 1
4 4 3 5 2 1 3 5
1 2 2 3 5 1 4 1

Display Jim [Weights]
"choosing a car"

Figure 132: Display of car choice decision-support grid with construct weights

Only the relative values of weights are significant, and they may take any value from zero up-
wards. It is common to use 0 through 10 or 0 through 100. In the calculation of match scores for the
Focus and Matches analyses, construct weights are used to weight differences in values on constructs
in computing element matches, and element weights are used in computing construct matches. The
effect on the analysis is the same as if the item with weight n had been entered in the grid n times.

Figure 133 shows the weighted Focus analysis for the car choice grid.

100 90 80 70 60 50

100 90 80 70

Toyota Tercel
Nissan Sentra
Volkswagen Golf
Subaru Justy
Ideal car
Ford Festiva
Honda Civic
Hyundai Excel

high running cost low running cost [9]
dull and boring stylish [5]

bumpy comfortable ride [6]
noisy quiet [4]

high fuel consumption low fuel consumption [8]
low engine reliability high engine reliability [6]

not much color choice lots of color choice [2]
low brake reliability high brake reliability [10]

5 4 4 3 5 3 2 1
5 3 3 5 5 4 1 4
2 2 1 5 5 4 3 5
2 1 3 5 5 4 4 3
4 1 3 3 5 5 1 2
3 1 4 3 5 5 5 2
1 5 4 3 5 5 4 2
1 3 5 5 5 3 3 2

Focus Cluster Jim [Interior, Weighted]
"choosing a car"

Figure 133: Focus Cluster analysis of car choice decision-support grid based on weighted constructs

In the unweighted analysis of Figure 128 Ideal car clusters most closely with Ford Festiva. How-
ever, in the weighted analysis of Figure 133, Ideal car clusters most closely with Subaru Justy.

97

If the user wishes to see the rank ordering of the matches of the Ideal car against all the others
then Ideal car may be selected in the Elements pane, and Matches selected in the Analysis menu with
the parameters selected as shown below to show the element matches of the selected element with
all the others (Figure 134). This results in the list of matches shown in Figure 135.

Figure 134: Match analysis to show how Ideal car compares the actual cars

Figure 135: WeightedMatch analysis of decision-support grid
Weights may also be used in other analyses. Figure 136 shows the PrinGrid output with the con-

struct weights specified. Ideal car appears to be discriminated by the first component plotted on the
horizontal axis, with Ford Fiesta being the nearest to it.

Ford Festiva

Honda Civic

Volkswagen Golf

Subaru Justy

Toyota Tercel

Nissan Sentra

Hyundai Excel

Ideal car

low fuel consumption

high fuel consumption [8]

low running cost

high running cost [9]

high engine reliability

low engine reliability [6]

high brake reliability

low brake reliability [10]

stylish

dull and boring [5]

bumpy [6]

comfortable ride
quiet

noisy [4]

not much color choice [2]

lots of color choice

1: 39.1%

2: 24.2%

PrinGrid Map Jim [Covariances, Construct Weights]
"choosing a car"

Figure 136: Weighted PrinGrid analysis of decision-support grid

98

The element and construct weights, if selected, are used multiplicatively in the calculation of
the distance matrix for a principal components analysis. The effect of the weighting of the principal
components analysis is equivalent to that of putting each element and each construct in the grid
several times according to the weight allocated to it.

The results are similar to, but not the same as, those of the Focus andMatch analyses, and this
is because those analyses are based on a boxcarmetric which sums absolute distances whereas the
principal components analysis uses a Euclideanmetric which sum the square of the distances and
hence gives a greater weight to larger differences.

Ford
Festiva

Honda
Civic

Volkswagen
Golf

Subaru
Justy

Toyota
Tercel

Nissan
Sentra

Hyundai
Excel

Ideal
car

low fuel
consumption

high fuel
consumption

[8]

low running
cost

high running
cost [9]

high engine
reliability

low engine
reliability [6]

high brake
reliability

low brake
reliability [10]

stylish

dull and
boring [5]

bumpy
[6]

comfortable
ridequiet

noisy [4]

not much
color choice

[2]

lots of color
choice

PrinGrid Map Jim [Power: 1, Construct Weights]
"choosing a car"

Figure 137: Weighted PrinGrid analysis of decision-support grid—Power 1.0, Voronoi diagram

Issues of alternative metrics and related research in the literature have been discussed in §5.4.3.
The psychometrics literature suggests the boxcarmetric corresponding to a Minkowski power of 1.0
is appropriate to human decision-making, which indicates that Figure 137 is more appropriate than
Figure 136. However, the role of the grid analysis is to aid the client(s) to better understand the basis
of the decision, not make it for them, and the grid analyses are primarily a basis for discussion, a con-
versation with self or a group discussion with those who will be effected by the decision. Study of the
effect of different weightings and metrics can be used to ensure that the analyses reflect the intrinsic
indeterminacy of multivariable decision-making. Some possibilities may be clearly unattractive, but
others involve trade-offs between different desiderata that may be clarified by the analyses.

99

6 Style—managing the font and colour scheme of analyses
Clicking on the Style button brings up the dialog controls the colour schemes and grid identifier used
in graphic output from all the analyses (Figure 138).

Figure 138: RepGrid Style dialog

All graphic output in Rep Plus is in the form of nets, graphic data structures that are detailed in
the the RepNet Manual, can be edited and annotated in RepNet, and can be converted to a variety
of graphic formats suitable for high-quality publication in documents, presentations and the web
(§7).

Grid Plots The Grid Plots panel is common to all analyses. If the Monochrome checkbox is checked
then all the analyses are in shades of grey determined only by the intensity of the colour selected, not
its hue. The popup menu and associated text box specify the font and size of text output. The Back
checkbox and associated swatch specifies whether the analyses have a coloured background and, if
so, what colour is to be displayed. Colours may be specified for: the title; element names and trees;
construct names and trees; and values of ratings and component percentages.

Display/Histogram/Focus/Compare The Display/Histogram/Focus/Compare panel is specific to
those analyses. Colours may be specified for: the background tints to low, medium and high rating
values; and lines joining element and construct names to the grid.

100

PrinGrid/Crossplot The PrinGrid/Crossplot panel is specific to those analyses. Colours may be
specified for: the construct dimension lines; plot axes; X-Z plane and lines dropping to it in 3D out-
put; link lines connecting element and construct names to their coordinates; and Voronoi diagrams.

Scree The Scree panel is specific to that analysis. Colours may be specified for: the scree plot; com-
parison plot; estimated number of underlying dimensions; and scales.

Clases The Clases panel is specific to the listing of the class meanings. Colours may be specified for:
the class name; semantic logical terms; logical connectives; and values.

Identifier The Identifier panel is common to all analyses. It specifies what fields will be used to con-
struct a phrase that identifies the grid. The ID is an item named ID which the user can enter as a
customized identifier for the grid. If its use is specified and no ID item has been entered then the
UID item that RepGrid automatically creates to provide the grid with a unique identifier is used.
The Name and Note are those entered in the fields of the Options pane. If both are specified then the
Note is placed in parentheses after the Name. The Date and Time items are those item that RepGrid
automatically creates when a grid is created. If no identifier fields are specified then the default of
Name and Note is used.

Numeric Text Data The Numeric Text Data specifies the font to be used for data such as arrays. The
font should be a monospaced to ensure the proper alignment of the data.

6.0.1 Colour selection

The colour swatches allow colours to be specified using either standard named colours or the colour
selection widgets native to the platform on which Rep Plus is running. Clicking in the left half of a
swatch brings up a menu of the 140 standard colours specified in the World Wide Web CSS docu-
mentation from which a colour may be selected (Figure 139).

Rep Plus tracks the last colour selected and this is presented as the first option at the top of the
menu so that it is easy to replicate the previous colour selected. Clicking in the right half of a swatch
brings up a colour selection widget native to the platform on which Rep Plus is running allowing for
custom colours to be specified. Examples are provided in the RepNet Manual which also details how
the grid colours are translated into colour styles in RepNet.

101

Figure 139: Colour selection when left half of swatch is clicked

7 Editing and exporting RepGrid output
The graphic plots and textual output from the RepGrid analyses may be used in reports, papers, the-
ses or web pages, and Rep Plus supports their conversion to forms appropriate for publication. The
plots produced by RepGrid analyses are vector graphics nets in RepNet format. The text outputs are
fully styled documents in RepDoc format. Both can can be saved, exported, dragged and copied/-
pasted in a variety of formats to document processors to produce a publication-quality documents.

RepNet organizes graphics as a set of nodes and links between them. Nodes can be selected by
clicking on them and selected nodes are indicated with a light blue surround. Mousing down or
CTL-clicking or right clicking in the graphic outside the nodes brings up a popup menu allowing
the selected items to be exported as SVG, PNG or JPEG files (Figure 140). All three are standard
graphic formats for the web. PNG and JPEG are generally accepted by word processors. SVG is a
graphic interchange format accepted by graphics editors such as such as Illustrator, EazyDraw and
Inkscape.

Figure 140: RepGrid graphic display of the data in a grid

102

RepNet also provides extensive graphic editing facilities such that the RepGrid analyses can be
annotated for publication. More details are available in the RepNet manual.

Copy and paste of vector graphics is problematic with some word processors, particular for im-
ages containing Unicode text. When you select Copy from the Edit menu a bitmap image at screen
resolution is made available in the clipboard for applications that cannot decode a RepNet file. You
can increase the image resolution by using the Scale setting in each analysis dialog, and the font size
setting in the Style dialog. Increase each by the same factor of 2 or 3 and generate a plot that is two
or three times as large as usual. Copy this as a bitmap, paste it into your word processor, and rescale
it to be 2 or 3 times smaller. The image quality when printed will then be substantially higher.

Exporting the graphic to a file, SVG or a 2x or 3x PNG or JPEG, provides an alternative process
for exporting high-quality images to publications and presentations.

Text in RepDoc can be dragged or copied/pasted to other RepDoc documents or other docu-
ment processes whilst in RTF retaining all styling. Graphic output from RepGrid can also dragged
or copied/pasted to RepDoc documents to provide composite documents that can be saved or ex-
ported as RTF.

103

8 RepGrid/WebGrid integration
WebGrid (Gaines, 1995) was developed in 1994 as a way of making RepGrid functionality available
on the World Wide Web and public WebGrid servers have long been used as an alternative to the
stand-alone RepGrid program (Gaines and Shaw, 1996, 1997, 1998; Shaw and Gaines, 1996b, 1998).
Whilst WebGrid proves the same functionality as RepGrid, the user interfaces for grid entry, elicita-
tion and analysis are different, and Rep Plus is designed to make it simple to move grid data back and
forth between the two programs so that users may move freely between them.

Rep Plus includes WebGrid and can act as a web server over the Internet, a local intranet, or
on the same machine that is running the Rep Plus suite of programs. If RepGrid and WebGrid are
running on the same machine the user interfaces of each provide capabilities to move grid data back
and forth between them so that the two program can be used in an integrated fashion for different
aspects of a task as the user prefers.

8.1 Transferring grid data from RepGrid toWebGrid

At the bottom left of the RepGrid window is a button labelled WebGrid (Figure 141). If clicked it
starts up the WebGrid server for local use (if it is not already running) and copies the data from the
grid being edited in RepGrid to WebGrid.

Figure 141: RepGrid to WebGrid transfer button

In addition, licking on the menu symbol on the left of the WebGrid button brings up a menu
that allows one to select what WebGrid page will open with the grid data (Figure 142), for example
one may transfer to Display and see the grid data displayed. The default choiceWebGrid takes one to
the WebGrid main page.

Figure 142: RepGrid to WebGrid transfer menu

Figure 143 shows the house choice grid opening in WebGrid after WebGrid has been clicked in
its RepGrid window (Figure 20).

104

Figure 143: RepGrid grid data opened in WebGrid

105

The house choice grid was developed in WebGrid and uses its customization capabilities to
restyle its pages. The CSS and HTML code to do so is automatically included as an item of data in
the grid file, and shows up in the Items pane (§3.5). The item has no effect on the operation of Rep-
Grid but is recognized as styling data in WebGrid.

The notes attached to the elements in the grid are in HTML with links to images and these are
displayed when the elements themselves occur in appropriate contexts in WebGrid. Figure 144
shows the WebGrid page when the user clicks on Add quality in the fourth row to elicit a new con-
struct from the triad of elements suggested. The element annotation contains links to relevant im-
ages that are displayed to help the use recollect the nature of the element.

Figure 144: Hypertext annotation of elements in WebGrid elicitation

106

Figure 143 shows how the annotation appears in the table of top matches for Ideal home..

Figure 145: Hypertext annotation of elements in WebGrid list of matches

The element annotation for the top element is:
<p align="center">

Mary--very isolated. John--good hunting in own garden!

107

The hypertext links are to images on the local server but could be to images or sounds anywhere on
the web. Thus, the multimedia capabilities of web browsers enhance elicitation processes in Web-
Grid beyond those available in RepGrid. See the WebGrid manual for further details.

If WebGrid is not running on the same machine then grid data from a RepGrid file may may be
uploaded using the Upload link on WebGrid’s startup page.

8.2 Transferring grid data fromWebGrid to RepGrid

When the WebGrid server recognizes it is running on the same machine as its client it modifies the
user interface in the web browser to enable grid data being processed in the browser to be copied to
Rep Plus to great a new grid window in RepGrid. A Rep Plus button is created at the bottom right of
the WebGrid main page (Figure 143). Clicking on this copies the grid file to Rep Plus.

In addition to the Rep Plus button. the grid icon normally at the top right of every
WebGrid page becomes a button with Rep + superimposed on the icon, and clicking
on this also copies the grid data to Rep Plus and opens it in RepGrid. Thus, transfer-
ring data between WebGrid and RepGrid is a simple process that can be performed at
any time.

Note that the grid that opens on either side of the transfer is a copy of that in the originating ap-
plication. When transferring back to RepGrid the copy may be saved with the same name as the
original grid or as a new version. If the old version is still open the user needs to close it without sav-
ing or otherwise manage the existence of multiple versions of the grid.

If WebGrid is running on a different machine then the grid data may be downloaded as a file
either by clicking on the Save button at the main page and following the instructions there, or by
simply saving the page as HTML. Rep Plus will open a WebGrid HTML file in RepGrid and extract
the grid data from it.

108

9 Data Formats
Rep Plus supports a number of data formats for information transfer, including the basic file format
of our earlier grid programs which is useful as a transfer format for grid data that needs to be digi-
tally encoded for use in RepGrid. There is also an alternative spreadsheet format which can also be
useful to encode data for fir RepGrid.

9.1 Basic grid format

The basic grid format used in Shaw’s (1980) original repertory grid elicitation and analysis programs
has been adopted by others and also provides a simple format for transfer of any grid data. Grids in
this format have the following structure:-

Line 1 4 numbers separated by commas:-
Number of elements—E
Number of constructs—C
Lower limit of rating scale
Upper limit of rating scale

The next 3 lines are optional
Line 2 Purpose
Line 3 Name
Line 4 Note
The ratings may be entered in one of two formats, packed or separated
Line 5 Rating of Construct 1 on each element with no space

e.g. 12345—ratings may include meta-values
Line 5 Rating of Construct 1 on each element separated by commas

e.g. 1,2,3,4,5—ratings may include meta-values
The remaining items may be truncated and missing information will be filled appropriately
Line 5+C Left Pole of Construct 1
Line 6+C Right Pole of Construct 1
Lines 7+C to 4+3*C Remaining Constructs
Line 5+3*C Element 1
Lines 5+3*C to 4+3*C+E Remaining Elements
Line 5+3*C+E Singular for Construct
Line 6+3*C+E Plural for Construct
Line 7+3*E+C Singular for Element
Line 8+3*E+C Plural for Element

The grid data on “exploring the nature of learning situations” used in previous sections is shown
below in this format.

9,7,1,5
exploring the nature of learning situations
Arthur
after class discussion
432151231
443251521

109

455113215
544351221
524451113
442351551
542251551
involvement
remoteness
flexible
rigid
equipment
no equipment
self-organised
staff-organised
small group
large group
variable content
specific content
like
dislike
lecture
tutorial
seminar
practical
film
library
programmed text
video tape
informal interaction
situation
situations
quality
qualities

A file in this format may be opened as a grid in RepGrid, or the file or the text may be dragged to
the Rep 5Manager window to create a new grid as (Figure 146).

As documented above, some of the lines in the grid data may be omitted and will be filled ap-
propriately. This enables existing grid ratings to be transferred rapidly to RepGrid with other fields
being added in the RepGrid editor as required. Below is a minimal version of the grid above.

9,7,1,5
432151231
443251521
455113215
544351221
524451113
442351551
542251551

If a file with this data is opened, or the data is dragged to a grid window and dropped on it, and
the Display button is clicked then the output will be as shown in Figure 147. The elements and con-
structs have been given identifiers sufficient to support meaningful display and analysis, and the
name, purpose, and full construct and element names may be entered in the appropriate RepGrid
fields as required.

110

Figure 146: Grid data being dragged and dropped on the Rep Plus Manager window

E1
E2
E3
E4
E5
E6
E7
E8
E9

L1 R1
L2 R2
L3 R3
L4 R4
L5 R5
L6 R6
L7 R7

4 3 2 1 5 1 2 3 1
4 4 3 2 5 1 5 2 1
4 5 5 1 1 3 2 1 5
5 4 4 3 5 1 2 2 1
5 2 4 4 5 1 1 1 3
4 4 2 3 5 1 5 5 1
5 4 2 2 5 1 5 5 1

Display

Figure 147: Minimal grid data displayed after being dragged and dropped

111

9.2 Spreadsheet grid entry format

A simple format for single or multiple grid data entry using spreadsheet programs was defined for
RepGrid 2 and is supported by Rep Plus. It is based on the tab-delimited file format available in most
spreadsheet programs.

The format is very simple, consisting of text separated by tab characters, and can also be gener-
ated in text editors and word processors, so that it provides another easy way to get data into Rep-
Grid. Multiple grids may be stored in the same spreadsheet, and the format is designed to avoid the
need to enter redundant data. For example, if several grids have the same scale this need be entered
once only, similarly if several grids use the same elements, or the same constructs, these need be spec-
ified once only. This is particularly useful in entering grid data where multiple grids have common
elements and/or common constructs.

Data is read in row by row commencing with the first row, and the various value settings per-
sist unless overwritten by later settings. The first cell in a row normally contains a keyword such
as Name, Note, Purpose, Range or Grid. The rest of the cells in that row contain data relating to the
keyword. The keywords can be any order except that Grid must be the final one, and signifies that
the grid data follows on several rows. The grid data must be terminated by a blank line (or by being
the final data in the spreadsheet). Outside grid data, blank lines, and those not commencing with a
keyword, are skipped and may be used to improve appearance and for comments.

Figure 148 shows some grid data in a spreadsheet:

Figure 148: Two grids entered in a spreadsheet

Row 1 is optional and specifies the name for the first grid to be pets. If this row is omitted the
name is set to be Grid-1.

Row 2 is optional and specifies the note for the first grid to be test data.
Row 3 is optional and specifies the purpose for the first grid to be illustrate data transfer.
Row 4 is optional and sets the scale range to be 1 to 9. If this row is omitted the range is set by

default to be 1 to 5.
Row 5 is required and specifies that a grid dataset follows, with 3 elements, dog, cat and rabbit.

The count of the number of elements in the grid following is obtained from the number of entries on
this line.

112

Rows 6 and 7 specify two constructs and the ratings for each of the elements on these constructs.
Row 8 is blank and terminates the building of the first grid. Further data will belong to further

grids.
Row 9 changes the scale to be from -3 to +3. If this line was not present the scale would remain

as 1 to 9.
Because the name, note and purpose keywords have been omitted, the name will be generated as

Grid-2 and the note and purpose fields will be the same as those already specified.
Row 10 specifies that a grid dataset follows. Since no new elements are specified, the three ele-

ments already specified continue to apply.
Row 11 specifies the first construct of a new grid. Since no pole names are specified, the corre-

sponding construct in the previous grid applies, that is, remote—friendly.
Row 12 specifies another construct.
Row 13 is blank and end of the spreadsheet. It terminates building the second grid.
If this spreadsheet data is dragged to the Rep 5Manager window, or is saved using the Text (tab

delimited) option and opened in Rep Plus, two RepGrid windows are created, one for each of the
grids in the spreadsheet file. These are shown below together with a Display of each grid.

Figure 149: RepGrid windows created from spreadsheet tab-delimited data

113

10 Appendix: Elicit Scripts
The sample scripts for elicitation are in English and emulate Shaw’s (1980) PEGASUS program.
Facilitators may wish to edit them to make them more appropriate to particular communities and to
translate them into other languages. The scripts are listed here to illustrate what is involved.

For many purposes there will be no need to change the programming and modifying the quoted
text which constitutes the dialog will be sufficient. The programming language is fully documented
in the RepScript Manual and editable in the Rep Plus Script Editor which automatically lays it out
and colours it to make the syntactic form more apparent.

10.1 Script: Elicit Grid.repscript

The Elicit Grid script sets up the text styles, shows the welcome message, and passes control to the
Main script at the Initial entry point.
// PEGASUS-style (Shaw 1980) conversational elicitation with feedback from matches

// set up standard text styles
StyleAdd("Text",1,0,12,RGB(0,100,0),"") // 12 pt green
StyleAdd("Center",2,0,12,RGB(0,100,0),"") // 12 pt green centred
StyleAdd("CenterBold",2,1,12,RGB(0,100,0),"") // 12 pt green centred bold
StyleAdd("HeadBig",2,1,18,RGB(255,0,0),"") // 18 pt red centred bold
StyleAdd("Head",2,1,14,RGB(255,0,0),"") // 14 pt red centred bold
StyleAdd("CenterBoldBig",2,1,14,RGB(0,100,0),"") // 14 pt green centred bold

// initialize appearance
SetBackColor(RGB(240,240,255))
StyleSet("Text")

// Commence flow of interactive dialog
Select Case vGet
Case ""

UndoSave("Elicit Grid")
SetMessage("")
hSet("true","Initial") // set a flag to tell other code we are in initial phase
if gGet("Context")="" or gGet("Name")="" or gGetI("ne")<6 then

TextClear
Output("PEGASUS Plus"+EOL+EOL,"HeadBig")
Output("Program Elicits Grids and Sorts Using Similarities"+EOL+EOL,"Head")
Output("This is a program to elicit a Repertory Grid. ")
Output("A repertory grid is a technique devized by George Kelly to help you explore the

dimensions of your thinking. ")
Output("Please read carefully everything that is shown, and make sure you understand what you

have to do. ")
Output(EOL+EOL)

end if
ScriptFlow("/Elicit/Main/Initial") // normal entry

Case "*" // re-entry to script window when grid edited elsewhere
TextClear
Output("Continue Repertory Grid Elicitation"+EOL+EOL,"Head")
ScriptFlow("/Elicit/Main/Initial")

End Select

114

10.2 Script: Elicit/Main.repscript

TheMain script controls the flow of elicitation, passing control to other scripts which take action
and then return to the Main script.
dim ne,nc,status As integer, te,tes,ten,tc,tcs,tcn As string
ne=gGetI("ne")
nc=gGetI("nc")
status=gGetI("Status")
te=gGet("E")
tes=gGet("Es")
if ne=1 then ten=te else ten=tes
tc=gGet("C")
tcs=gGet("Cs")
if nc=1 then tcn=tc else tcn=tcs

sub ClearMatches()
dim i,n As integer
n=gGetI("MatchC","80","0","M","MV") //get rid of construct matches in existing grid
for i=0 to n-1

hSet(vGetI(i,"MV"),vGet(i,"M"),"MatchC")
next
n=gGetI("MatchE","80","0","M","MV") //get rid of element matches in existing grid
for i=0 to n-1

hSet(vGetI(i,"MV"),vGet(i,"M"),"MatchE")
next

end sub

Select case ScriptState

Case "Initial" // initial entry point
// main ScriptFlow of control
hEmpty("MatchE")
hEmpty("MatchC")
ClearMatches
ScriptFlow("CheckName","Context")

Case "Context"
ScriptFlow("CheckContext","InitialElements")

Case "InitialElements"
SetMessage(gGet("Name")+" is considering """+gGet("Context")+"""")
ScriptFlow("GetInitialElements","CheckExchange")

Case "CheckExchange"
if status=3 or status=5 then // exchange or constructs

ScriptFlow("Constructs/RateAnyOpen","Options") // don't test for matches
else

ScriptFlow("Triads","CheckMatches") // new grid or elements
end if

Case "CheckMatches"
ScriptFlow("Match/DoMatch","Options")

Case "Options"
hRemove("Initial") // unset flag
TextClear
Output("Select an option"+EOL+EOL,"Head")
Output("Your grid has "+str(ne)+" "+ten+" and "+str(nc)+" "+tcn+", and you may chose what to do

next. ")
Output("Click on one of the options below to select it."+EOL+EOL)
if nc<gGetI("LimitC") and ne>2 then Output("T\Elicit another "+tc+" from a triad"+EOL,"

CenterBold")
Output("E\List and edit your "+tes+EOL,"CenterBold")

115

Output("C\List and edit your "+tcs+EOL,"CenterBold")
Output("X\Finish now"+EOL,"CenterBold")
ScriptWait("OptionsClick",kClick)

Case "OptionsClick"
select case InCode
case "T"

ScriptFlow("AddConstruct/DoTriadChosen","CheckMatches")
case "E"

ScriptFlow("Elements/List","CheckMatches")
case "C"

ScriptFlow("Constructs/List","CheckMatches")
case "X"

ScriptFlow("Constructs/RateAnyOpen","Halt") // Check for unrated given constructs
case "$"

ScriptFlow("Options")
else

Alert("Not editable","The item in which you clicked cannot be edited")
ScriptWait("OptionsClick",kClick)

end select

Case "Halt"
TextClear
Output(EOL+"User has finished"+EOL,"Head")
Halt("")

Case "CheckName"
if gGet("Name")="" then

hSet("false","Initial")
Output(" What is your name or identification: ")
ScriptWait("InputName",kText)

else
ScriptFlow

end if
Case "InputName"

gSet("Name",Input)
Output(EOL+EOL)
ScriptFlow

Case "CheckContext"
if gGet("Context")="" then

hSet("false","Initial")
Output("State your purpose"+EOL+EOL,"Head")
Output("You must decide on a purpose for doing the grid and keep this in mind when you chose

the "+tes+"--")
Output("the things you are going to think about during the program. These "+tes+" will then

be used to elicit "+tcs+".")
Output(EOL+EOL)
Output("If you make a typing error press the delete key as many times as you want to eraze a

character, then carry on.")
Output(EOL+EOL)
Output(" What is your purpose? ")
ScriptWait("InputContext",kText)

else
ScriptFlow

end if
Case "InputContext"

gSet("Context",Input)
Output(EOL+EOL)
ScriptFlow

Case "GetInitialElements"
if ne<6 then

if hGet("Initial")="false" then TextClear // if we collected name or context
hSet("false","Initial")
Output("Name six or more "+tes+EOL+EOL,"Head")

116

Output("You must choose a set of "+tes+" keeping in mind why you want to do this grid. ")
if tes="Elements" and status<>5 then // only output following text if type of elements has

not been specified and not a "Constructs" copy
Output("They could be people, events, pieces of music, pictures, books or what you want, ")
Output("but whatever you chose they must be of the same type and each must be well known to

you. ")
Output("Try to choose specific things. ")

end if
Output("Now type each one after each colon. ")
Output("Do not forget to press return after each. ")
Output("When you have entered as many "+tes+" as you wish, just press return alone to

continue")
Output(EOL+EOL)
ScriptFlow("GetElements")

else
ScriptFlow

end if

Case "GetElements"
Output(" What is "+te+" "+str(ne+1)+": ")
ScriptWait("InputElement",kText)

Case "InputElement"
Output(EOL)
if Input="" then

if ne>=6 or status=5 then // "Constructs" copy allowed to avoid triadic elicitation
Output(EOL)
ScriptFlow

else
Alert("Not enough "+tes,"You have entered only "+str(ne)+" "+tes+". You need at least 6 to

elicit a grid.")
ScriptFlow("GetElements")

end if
else

hEmpty("X")
hSet(Input,"Name","X")
gSet("NewE","X")
ScriptFlow("GetElements")

end if

Case "Triads"
hSet("","E") // select random triads
select case nc-sGetI(gGet("OpenC")) // don't include any given constructs that are totally

unrated
case 0

ScriptFlow("AddConstruct/DoTriad","Triads")
case 1

TextClear
Output("How to think about "+tcs+EOL+EOL,"Head")
Output("Now you have one "+tc+" you know what to do. ")
Output("You may think of "+tcs+" as lines along which each of your "+tes+" has a place in

relation to all the other "+tes+". ")
Output("Please do not use "+tcs+" which do not apply to all your "+tes+". ")
Output("An example of this is redhead--blond, as it is impossible to rate a person with black

hair on this "+tc+". ")
Output("One pole must be in some sense what the other is not, and they must divide your "+tes

+" into two approximately equal groups, ")
Output("so please try to avoid "+tcs+" where nearly all the "+tes+" are at one end. ")
Output("An example might be ""extremely tall--not extremely tall"""+EOL+EOL)
ScriptFlow("AddConstruct/DoTriadNoClear","Triads")

case 2
ScriptFlow("AddConstruct/DoTriad","Triads")

case 3
ScriptFlow("AddConstruct/DoTriad","Triads")

else
ScriptFlow

117

end select

Case "Compile"
ScriptFlow

else
Halt("Flow error--no label "+ScriptState+EOL)

end select

10.3 Script: Elicit/Elements.repscript

The Elements script lists, adds and rates elements, and allows members of a triad to be chosen.
dim ne,nc,status As integer, te,tes,ten,tc,tcs,tcn As string
ne=gGetI("ne")
nc=gGetI("nc")
status=gGetI("Status")
te=gGet("E")
tes=gGet("Es")
if ne=1 then ten=te else ten=tes
tc=gGet("C")
tcs=gGet("Cs")
if nc=1 then tcn=tc else tcn=tcs

dim i,j,jj,n As integer, lhp,rhp,v,e,e1,e2,s,t As string, b As Boolean

Select case ScriptState

Case "List"
TextClear
Output("List of "+tes+EOL+EOL,"Head")
for j=0 to ne-1

n=gGetI("OpenE",str(j))
if n=0 then s="" else s=" ("+str(n)+" "+tcs+" not rated)"
Output("E"+str(j)+"\"+" "+gGet("E",str(j))+s+EOL)

next
Output(EOL)
if ne<gGetI("LimitE") then Output("A\Click here to add another "+te+"."+EOL,"CenterBold")
Output("$\Click in an item to edit it, or here if you have finished editing."+EOL,"CenterBold")
ScriptWait("ListClick",kClick)

Case "ListClick"
select case Left(incode,1)
case "$"

ScriptFlow
case "A"

ScriptFlow("AddElement","List")
case "E"

hSet(Right(incode,len(incode)-1),"E")
ScriptFlow("EditElement/DoEditElement","List")

else
Alert("Not editable","The item in which you clicked cannot be edited")
ScriptWait("ListClick",kClick)

end select

Case "AddElement"
TextClear
Output("Add another "+te+EOL+EOL,"Head")
Output(" What is "+te+" "+str(ne+1)+": ")
ScriptWait("AddElementIn",kText)

Case "AddElementIn"
if Input="" then

118

Output(EOL)
ScriptFlow

else
hSet(ne,"E")
hEmpty("X")
hSet(Input,"Name","X")
gSet("NewE","X")
Output(EOL+EOL+"Give your "+te+", "+Input+", a rating on each "+tc)
Output(" by entering a number or clicking to use a popup menu."+EOL+EOL)
ScriptFlow("CRatingLoop")

end if

Case "CRating" // Entry after an element match
TextClear
Output("Rate your "+te+" on the "+tcs+EOL+EOL,"Head")
Output("Give your "+te+", "+gGet("E",hGet("E"))+", a rating on each "+tc)
Output(" by entering a number or clicking to use a popup menu."+EOL+EOL)
ScriptFlow("CRatingLoop")

Case "CRatingLoop"
j=hGetI("E")
vCountSet(0,"Sort") // set up a vector of unrated constructs
for i=0 to nc-1

v=gGet("V",str(i),str(j))
if v<>"?" then Output(" "+gGet("C",str(i))+": "+v+EOL) else vPush(i,"Sort")

next
ScriptFlow("CRatingLoopOpen")

Case "CRatingLoopOpen"
if vOK("Sort") then

ScriptFlow("CRatingLoopOut")
else

Output(EOL)
ScriptFlow("EditElement/DoEditElement")

end if
Case "CRatingLoopOut"

i=vPopI("Sort")
hSet(i,"C")
Output(" "+gGet("C",str(i))+": ")
ScriptWait("CRatingLoopIn",kCMenu)

Case "CRatingLoopIn"
Output(EOL)
i=hGetI("C")
j=hGetI("E")
s=NthField(Input," ",1)
gSet("V",str(i),str(j),s)
if gGet("V",str(i),str(j))<>s then

Call gGet("C",str(i),"X")
s=hGet("Range","X")
Alert ("Value not appropriate","Enter a value in the range "+sGet(s,1)+" to "+sGet(s,2))
ScriptFlow("CRatingLoopOut")

else
ScriptFlow("CRatingLoopOpen")

end if

Case "ChooseTriad"
hRemove("E")
ScriptFlow("ReListTriad")

Case "ReListTriad"
TextClear
Output("Choose a triad of "+tes+EOL+EOL,"Head")
Output("Press the return key to have the program select a triad. ")
Output("Or, you may select up to three "+tes+" yourself. If you select less than three the

others will be selected at random."+EOL+EOL)
s="Triad: "
e=hGet("E")
jj=sGetI(e)

119

for j=1 to jj
t=gGet("E",sGet(e,j))
if j=1 then s=s+t else s=s+", "+t

next
Output(s+EOL+EOL)
e=hGet("E")
for j=0 to ne-1

if sFind(e,str(j))=0 then
Output("E"+str(j)+"\"+" "+gGet("E",str(j))+EOL)

end if
next
Output(EOL)
Output("$\Click in your chosen "+te+" to select it, or here if you have finished selecting."+

EOL,"CenterBold")
ScriptWait("TriadClick",kClick)

Case "TriadClick"
select case Left(incode,1)
case "$"

ScriptFlow
case "E"

e1=hGet("E")
e2=Right(incode,len(incode)-1)
j=sGetI(e1)
if j=0 then hSet(e2,"E") else hSet(sMake(e1,e2),"E")
if j>1 then

ScriptFlow
else

ScriptFlow("ReListTriad")
end if

else
Alert("Not editable","The item in which you clicked cannot be edited")
ScriptWait("TriadClick",kClick)

end select

Case "Compile"
ScriptFlow

else
Halt("Flow error--no label "+ScriptState+EOL)

end select

10.4 Script: Elicit/EditElement.repscript

The EditElement script supports editing an element name and ratings.
dim ne,nc,status As integer, te,tes,ten,tc,tcs,tcn As string
ne=gGetI("ne")
nc=gGetI("nc")
status=gGetI("Status")
te=gGet("E")
tes=gGet("Es")
if ne=1 then ten=te else ten=tes
tc=gGet("C")
tcs=gGet("Cs")
if nc=1 then tcn=tc else tcn=tcs

dim n,i,j As integer, s,v As string, ok As Boolean

Select case ScriptState

Case "DoEditElement"

120

TextClear
j=hGetI("E")
s=gGet("E",str(j))
Output("Edit "+te+" """+s+""""+EOL+EOL,"Head")
OutPut("E\ Name of "+te+": "+s+EOL+EOL)
for i=0 to nc-1

Output("C"+str(i)+"\ "+gGet("C",str(i))+": "+gGet("V",str(i),hGet("E"))+EOL)
next
Output(EOL)
if hGet("Initial")="" then
Output("D\Click here to delete the "+te+EOL,"CenterBold")
end if
Output("$\Click on the "+te+" name or the "+tc+" to edit it, or here when you have finished

editing"+EOL,"CenterBold")
ScriptWait("EditClick",kClick)

Case "EditClick"
s=Incode
Select Case Left(s,1)
case "D"

ScriptFlow("EDelete")
case "E"

ScriptFlow("EOut")
case "C"

hSet(Right(Incode,len(Incode)-1),"C")
ScriptFlow("CRatingOut")

case "$"
ScriptFlow // return as specified by caller

else
Alert("Not editable","The item in which you clicked cannot be edited")
ScriptWait("EditClick",kClick)

end select

Case "EDelete"
j=hGetI("E")
s=gGet("E",str(j))
ok=Confirm("OK to delete "+s+"?","Deleting the "+te+", "+s+", is irreversible. Click on OK if

you really want to delete it.")
if ok then

gSet("RemoveE",str(j))
ScriptFlow

else
ScriptFlow("DoEditElement")

end if

Case "EOut"
TextClear
s=gGet("E",hGet("E"))
Output("Edit name of "+te+" """+s+""""+EOL+EOL,"Head")
Output(" Name of "+te+": ")
ScriptWait("EIn",kText)
Output(s)

Case "EIn"
if Input="" then

ScriptFlow("DoEditElement")
else

Output(EOL)
hSet(Input,"Name","X")
gSet("E",hGet("E"),"X")
ScriptFlow("DoEditElement")

end if

Case "CRatingOut"
TextClear
i=hGetI("C")
j=hGetI("E")

121

Output("Edit rating for "+te+" """+gGet("E",str(j))+""""+EOL+EOL,"Head")
Output(" "+gGet("C",str(i))+": ")
ScriptWait("CRatingIn",kCMenu)
OutputSelect(gGet("V",str(i),str(j)))

Case "CRatingIn"
Output(EOL)
if Input="" then

ScriptFlow("DoEditElement")
else

i=hGetI("C")
j=hGetI("E")
s=NthField(Input," ",1)
gSet("V",str(i),str(j),s)
Call gGet("C",str(i),"X")
if gGet("V",str(i),str(j))<>s then

s=hGet("Range","X")
Alert ("Value not appropriate","Enter a value in the range "+sGet(s,1)+" to "+sGet(s,2))
ScriptFlow("CRatingOut")

else
ScriptFlow("DoEditElement")

end if
end if

Case "Compile"
ScriptFlow

else
Halt("Flow error--no label "+ScriptState+EOL)

end select

10.5 Script: Elicit/Constructs.repscript

The Constructs script lists and edits constructs.
dim ne,nc,status As integer, te,tes,ten,tc,tcs,tcn As string
ne=gGetI("ne")
nc=gGetI("nc")
status=gGetI("Status")
te=gGet("E")
tes=gGet("Es")
if ne=1 then ten=te else ten=tes
tc=gGet("C")
tcs=gGet("Cs")
if nc=1 then tcn=tc else tcn=tcs

dim i,k,n As integer, s,c As string

Select case ScriptState

Case "List"
TextClear
Output("List of "+tcs+EOL+EOL,"Head")
for i=0 to nc-1

n=gGetI("OpenC",str(i))
if n=0 then s="" else s=" ("+str(n)+" "+tes+" not rated)"
Output("C"+str(i)+"\"+" "+gGet("C",str(i))+s+EOL)

next
Output(EOL)
if nc<gGetI("LimitC") then Output("A\Click here to add another "+tc+"."+EOL,"CenterBold")
Output("$\Click in an item to edit it, or here if you have finished editing."+EOL,"CenterBold")
ScriptWait("ListClick",kClick)

122

Case "ListClick"
select case Left(incode,1)
case "$"

ScriptFlow
case "A"

hRemove("E") // not from a triad or pair so make sure no elements
ScriptFlow("AddConstruct/AddConstruct","List")

case "C"
hSet(Right(incode,len(incode)-1),"C")
ScriptFlow("EditConstruct/DoEditConstruct","List")

else
Alert("Not editable","The item in which you clicked cannot be edited")
ScriptWait("ListClick",kClick)

end select

Case "RateAnyOpen"
if gGetI("Open")>0 then

hSet("true","RateOpen") // stop option to delete
ScriptFlow("RateOpen","RateAnyOpen")

else
hRemove("RateOpen")
ScriptFlow

end if

Case "RateOpen"
for i=0 to nc-1

k=gGetI("OpenC",str(i))
if k>n then

hSet(i,"C")
n=k

end if
next
if n>0 then

ScriptFlow("AddConstruct/RateConstruct")
else

ScriptFlow
end if

Case "Compile"
ScriptFlow

else
Halt("Flow error--no label "+ScriptState+EOL)

end select

10.6 Script: Elicit/AddConstruct.repscript

TheAddConstruct script supports adding constructs, directly, from triads and matches.
dim ne,nc,status As integer, te,tes,ten,tc,tcs,tcn As string
ne=gGetI("ne")
nc=gGetI("nc")
status=gGetI("Status")
te=gGet("E")
tes=gGet("Es")
if ne=1 then ten=te else ten=tes
tc=gGet("C")
tcs=gGet("Cs")
if nc=1 then tcn=tc else tcn=tcs

function MakeTriad() As Boolean

123

// enter with 0 or more prescribed elements in E
// select other elements at random to make the number up to 3 and return in E
// return false if not enough elements to make a triad
dim e,s As string
if ne<3 then return false
do

e=hGet("E")
if sGetI(e)>=3 then return true
s=str(GetRandom(0,ne-1))
if sFind(e,s)=0 then

if e="" then e=s else e=e+TAB+s
hSet(e,"E")

end if
loop

end function

// main program
dim i,j,n As integer, lhp,rhp,v,s,e,b As string

Select case ScriptState

Case "RateConstruct"
TextClear
i=hGetI("C")
Output("Rate "+tes+" on """+gGet("C")+""""+EOL,"Head")
ScriptFlow("ERating")

Case "AddConstruct"
TextClear
Output("Add another "+tC+EOL+EOL,"Head")
ScriptFlow("LHP")

Case "DoTriadChosen"
ScriptFlow("Elements/ChooseTriad","DoTriad")

Case "DoTriad"
TextClear
Output("Elicit "+tC+" from a triad"+EOL+EOL,"Head")
ScriptFlow("Triad")

Case "DoTriadNoClear"
ScriptFlow("Triad")

Case "Triad"
if MakeTriad then

e=hGet("E")
Output("Can you choose two of this triad of "+tes+" which are in some way alike and different

from the other one?"+EOL+EOL)
for i=1 to 3

s=sGet(e,i)
Output(s+"\"+gGet("E",s)+EOL,"CenterBoldBig")

next
Output(EOL)
Output("$\Click in the "+te+" which is different, or here if you cannot do this."+EOL,"

CenterBold")
ScriptWait("TriadClicked",kClick)

else
Halt("Not enough elements for triad"+EOL)

end if
Case "TriadClicked"

If InCode="$" then
Output(EOL)
ScriptFlow

else
e=hGet("E")

124

if sGet(e,2)=Incode then // make sure the one clicked is first
hSet(sMake(sGet(e,2),sGet(e,1),sGet(e,3)),"E")

elseif sGet(e,3)=Incode then
hSet(sMake(sGet(e,3),sGet(e,1),sGet(e,2)),"E")

end if
TextClear
Output("Name the poles of your "+tC+EOL+EOL,"Head")
Output("Now I want you to think what you have in mind when you separate the pair from the

other one. ")
Output("Just type one or two words for each pole to remind you what you are thinking or

feeling when you use this "+tC+".")
Output(EOL+EOL)
Output("X\"+"Or click here if you cannot do this"+EOL+EOL,"CenterBold")
ScriptFlow("LHP")

end if

Case "LHP"
// enter with 0 to 3 element numbers stored in "E"
e=hGet("E")
s=sGet(e,2)
if s<>"" then

s=gGet("E",s)
e=sGet(e,3)
if e<>"" then s=s+", "+gGet("E",e)
s=" {"+s+"}"

end if
Output(" Left pole rated "+gGet("MinR")+s+": ")
ScriptWait("LHPIn",kText)

Case "LHPIn"
Output(EOL)
if InCode="X" or Input="" then

Output(EOL)
ScriptFlow // return, no construct added

else
hSet(Input,"L") // hold LHP in "L"
ScriptFlow("RHP")

end if
Case "RHP"

s=sGet(hGet("E"),1)
if s<>"" then s=" {"+gGet("E",s)+"}"
Output(" Right pole rated "+gGet("MaxR")+s+": ")
ScriptWait("RHPIn",kText)

Case "RHPIn"
Output(EOL)
if InCode="X" or Input="" then

Output(EOL)
ScriptFlow // return, no construct added

else
i=nc
hSet(i,"C") // hold construct number in "C"
hEmpty("X")
hSet("R","Type","X")
hSet(hGet("L"),"LHP","X")
hSet(Input,"RHP","X")
gSet("NewC","X")
e=hGet("E")
b="true"
for n=1 to 3

s=sGet(e,n)
if s<>"" then gSet("EndV",str(i),s,b)
b="false"

next
ScriptFlow("ERating")

end if

125

Case "ERating"
TextClear
i=hGetI("C")
Output("Rate the "+tes+" on your "+tC+" """+gGet("C",str(i))+""""+EOL+EOL,"Head")
Output("According to how you feel about them, please assign to each of the following "+tes+" a

rating from ")
Call gGet("C",str(i),"X")
s=hGet("Range","X")
Output(sGet(s,1)+" ("+hGet("LHP","X")+") to "+sGet(s,2)+" ("+hGet("RHP","X")+")")
Output(" by entering a number or clicking to use a popup menu.")
Output(EOL+EOL)
Call gGet("SortV",str(i),"Sort","false")
ScriptFlow("ERatingLoop")

Case "ERatingLoop"
if vOK("Sort") then

j=vExtractI("Sort")
hSet(j,"E")
v=gGet("V",str(hGetI("C")),str(j))
if v<>"?" then

Output(" "+gGet("E",str(j))+" "+v+EOL) // show already set values
ScriptFlow("ERatingLoop")

else
ScriptFlow("ERatingLoopOut")

end if
else

Output(EOL)
ScriptFlow("EditConstruct/DoEditConstruct") // offer option to edit

end if
Case "ERatingLoopOut"

Output(" "+gGet("E",hGet("E"))+": ")
ScriptWait("ERatingLoopIn",kCMenu)

Case "ERatingLoopIn"
Output(EOL)
i=hGetI("C")
j=hGetI("E")
s=NthField(Input," ",1)
gSet("V",str(i),str(j),s)
if gGet("V",str(i),str(j))<>s then

s=hGet("Range","X")
Alert ("Value not appropriate","Enter a value in the range "+sGet(s,1)+" to "+sGet(s,2))
ScriptFlow("ERatingLoopOut")

else
ScriptFlow("ERatingLoop")

end if

Case "Compile"
ScriptFlow

else
Halt("Flow error--no label "+ScriptState+EOL)

end select

10.7 Script: Elicit/Match.repscript

TheMatch script finds and displays element and construct matches, and gives the option to add
constructs and elements to reduce the match.
dim ne,nc,status As integer, te,tes,ten,tc,tcs,tcn As string
ne=gGetI("ne")
nc=gGetI("nc")
status=gGetI("Status")

126

te=gGet("E")
tes=gGet("Es")
if ne=1 then ten=te else ten=tes
tc=gGet("C")
tcs=gGet("Cs")
if nc=1 then tcn=tc else tcn=tcs

dim i,j,n,i1,i2,j1,j2,v As integer, match As double, e,e1,e2,s As string, b As Boolean

Select case ScriptState

Case "DoMatch" // find any matches not already checked
b=false
if ne>3 and ne<gGetI("LimitE") then // test for C matches

n=gGetI("MatchC","80","0","M","MV")
//print str(n)+EOL
//print vDump("M")+EOL
//print vDump("MV")+EOL
//print hDump("MatchC")+EOL

for i=0 to n-1
s=vGet(i,"M") // get match pair
if not hCheck(s,"MatchC") then // new match

i1=sGetI(s,1) // get first construct
hSet(i1,"C1") // hold number in C1
Call gGet("C",str(i1),"X1") // hold specification in X1
i2=sGetI(s,2) // get second construct
hSet(i2,"C2") // hold number in C2
Call gGet("C",str(i2),"X2") // hold specification in X2
v=vGetI(i,"MV") // get match value
hSet(v,"M") // hold match value in M
hSet(v,s,"MatchC") // record match pair in MatchC
b=true // found a new construct match
ScriptFlow("ShowCMatch","DoMatch")

exit
end if

next
end if
if not b and nc>3 and nc<gGetI("LimitC") then // test for E matches

n=gGetI("MatchE","80","0","M","MV")
for i=0 to n-1

s=vGet(i,"M") // get match pair
if not hCheck(s,"MatchE") then // new match

hSet(s,"E") // hold matching E numbers
v=vGetI(i,"MV") // get match value
hSet(v,"M") // hold match value in M
hSet(v,s,"MatchE") // record match pair in MatchE
b=true // found a new element match
ScriptFlow("ShowEMatch","DoMatch")

exit
end if

next
end if
if not b then ScriptFlow // no matches

Case "ShowCMatch"
TextClear
Output("Break "+tc+" match"+EOL+EOL,"Head")
Output("The two "+tcs+" you called"+EOL)
Output(hGet("Identifier","X1")+EOL+hGet("Identifier","X2")+EOL,"Center")
Output("are matched at the "+hGet("M")+"% level.")
Output(" This means that most of the time you are saying "+hGet("LHP","X1")+" you are also

saying "+hGet("RHP","X2"))
Output(", and most of the time you are saying "+hGet("RHP","X1")+" you are also saying "+hGet("

LHP","X2")+"."+EOL+EOL)
Output("Think of another "+te+" which is either:-"+EOL+EOL)

127

Output("1\ "+hGet("LHP","X1")+" and "+hGet("RHP","X2")+EOL,"CenterBold")
Output("or"+EOL,"Center")
Output("2\ "+hGet("LHP","X2")+" and "+hGet("RHP","X1")+EOL+EOL,"CenterBold")
Output("$\Click on the appropriate combination, or here if you cannot do this"+EOL,"CenterBold

")
ScriptWait("BreakCMatch",kClick)

Case "BreakCMatch"
Select Case Incode
case "1"

TextClear
Output("Add a "+te+" to reduce a match between "+tcs+EOL+EOL,"Head")
Output("X\"+"Or click here if you cannot do this"+EOL+EOL,"CenterBold")
Output(" What is the "+te+" that is """+hGet("LHP","X1")+""" and """+hGet("RHP","X2")+""":

")
ScriptWait("InElement",kText)

case "2"
TextClear
Output("Add a "+te+" to reduce a match between "+tcs+EOL+EOL,"Head")
Output("X\"+"Or click here if you cannot do this"+EOL+EOL,"CenterBold")
Output(" What is the "+te+" that is """+hGet("RHP","X1")+""" and """+hGet("LHP","X2")+""":

")
ScriptWait("InElement",kText)

case "$"
ScriptFlow // return as specified by caller

else
Alert("Not understood","The item in which you clicked is not an option")
ScriptWait("BreakCMatch",kClick)

end select
Case "InElement"

if InCode="X" or Input="" then
Output(EOL)
ScriptFlow

else
j=ne
hSet(j,"E")
hEmpty("X")
hSet(Input,"Name","X")
gSet("NewE","X")
b=InCode="1"
gSet("EndV",hGet("C1"),str(j),BooStr(not b))
gSet("EndV",hGet("C2"),str(j),BooStr(b))
ScriptFlow("Elements/CRating")

end if

Case "ShowEMatch"
s=hGet("E")
e2=gGet("E",sGet(s,1))
e1=gGet("E",sGet(s,2))
TextClear
Output("Break "+te+" match"+EOL+EOL,"Head")
Output("The two "+tes+" "+e1+" and "+e2+" are matched at the "+hGet("M")+"% level. ")
Output("This means that so far you have not distinguished between them."+EOL+EOL)
Output("Think of another "+tc+" which separates "+e1+" from "+e2+"."+EOL+EOL)
Output("X\"+"Or click here if you cannot do this"+EOL+EOL,"CenterBold")
ScriptFlow("AddConstruct/LHP")

Case "Compile"
ScriptFlow

else
Halt("Flow error--no label "+ScriptState+EOL)

end select

128

11 Bibliography
Adler, J. E. and Rips, L. J. (2008). Reasoning: Studies of Human Inference and Its Foundations. Cam-

bridge University Press, Cambridge.

Algom, D. and Fitousi, D. (2016). Half a century of research on garner interference and the
separability–integrality distinction. Psychological Bulletin, 142(12):1352–1383.

Attneave, F. (1950). Dimensions of similarity. American Journal of Psychology, 43(4):516–556.

Balme, D. M. (1987). Aristotle’s use of division and differentiae. In Gotthelf, A. and Lennox, J. G.,
editors, Philosophical issues in Aristotle’s biology. Cambridge University Press, Cambridge.

Bellman, L. (2012). Auktoriserade fastighetsvärderares syn på värdering: tankemönster om kommersiella
fastigheter. Licentiate thesis.

Boose, J. H. and Gaines, B. R. (1988). Knowledge Acquisition Tools for Expert Systems. Academic Press,
London.

Buchanan, B. G. and Shortliffe, E. H. (1984). Rule-based Expert Systems: TheMYCIN Experiments of
the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA.

Caputi, P. (2011). Personal Construct Methodology. Wiley, Chichester, UK.

Cendrowska, J. (1987). An algorithm for inducing modular rules. International Journal of Man-
Machine Studies, 27(4):349–370.

Corbridge, C., Rugg, G., Major, N. P., Shadbolt, N. R., and Burton, A. M. (1994). Laddering: tech-
nique and tool use in knowledge acquisition. Knowledge Acquisition, 6(3):315–341.

Davies, S. (1991). Definitions of Art. Cornell University Press, Ithaca, NY.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods andTheir Application. Cambridge Uni-
versity Press, Cambridge.

Dey, S. and Lee, S.-W. (2017). Reassure: Requirements elicitation for adaptive socio-technical sys-
tems using repertory grid. Information and Software Technology, 87:160–179.

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. Chapman & Hall, New York.

Emmons, O. (1939). Linearity In Factor Analysis. PhD thesis.

Evans, J. S. B. T., Newstead, S. E., and Byrne, R. M. J. (1993). Human Reasoning: The Psychology of
Deduction. Lawrence Erlbaum, Hove.

Feixas, G. and Cornejo, J. M. (1996). Manual de la técnica de rejilla mediante el programa RECORD ver.
2.0. Paidós, Barcelona.

129

Fortune, S. (1987). A sweepline algorithm for voronoi diagrams. Algorithmica, 2:153–174.

Fransella, F., Bell, R. C., and Bannister, D. (2004). AManual for Repertory Grid Technique. Wiley,
Chichester, UK.

Fromm, M. (2004). The Repertory Grid Interview. Waxman, Munster.

Frontier, S. (1976). Étude de la décroissance des valeurs propres dans une analyse en composantes
principales: Comparaison avec le moddèle du bâton brisé. Journal of Experimental Marine Biology
and Ecology, 25(1):67–75.

Gaines, B. R. (1995). Porting interactive applications to the web. In 4th International WorldWide
Web Conference Tutorial Notes, pages 199–217. O’Reilly, Sebastopol, CA.

Gaines, B. R. (2015). Universal logic as a science of patterns. In Koslow, A. and Buchsbaum, A.,
editors,The Road to Universal Logic: Festschrift for 50th Birthday of Jean-Yves Béziau, pages 145–189.
Birkhäuser, Basel.

Gaines, B. R., Chen, L. L.-J., and Shaw, M. L. G. (1997). Modeling the human factors of scholarly
communities supported through the Internet and World Wide Web. Journal American Society
Information Science, 48(11):987–1003.

Gaines, B. R. and Shaw, M. L. G. (1993a). Basing knowledge acquisition tools in personal construct
psychology. Knowledge Engineering Review, 8(1):49–85.

Gaines, B. R. and Shaw, M. L. G. (1993b). Eliciting knowledge and transferring it effectively to a
knowledge-based systems. IEEE Transactions on Knowledge and Data Engineering, 5(1):4–14.

Gaines, B. R. and Shaw, M. L. G. (1996). Webgrid: Knowledge modeling and inference through the
World Wide Web. In Gaines, B. and Musen, M., editors, Proceedings of Tenth Knowledge Acquisition
Workshop, pages 65–1–65–14.

Gaines, B. R. and Shaw, M. L. G. (1997). Knowledge acquisition, modeling and inference through
the World Wide Web. International Journal of Human-Computer Studies, 46(6):729–759.

Gaines, B. R. and Shaw, M. L. G. (1998). Developing for web integration in Sisyphus-IV: WebGrid-
II experience. In Gaines, B. and Musen, M., editors, Proceedings of Eleventh Knowledge Acquisition
Workshop.

Gaines, B. R. and Shaw, M. L. G. (2012). Computer aided constructivism. In Caputi, P., Viney, L. L.,
Walker, B. M., and Crittenden, N., editors, Constructivist Methods, pages 183–222. Wiley, New
York.

Gärdenfors, P. (2000). Conceptual Spaces: The Geometry ofThought. MIT Press, Cambridge, MA.

Gaut, B. (2000). “Art” as a cluster concept. In Carroll, N., editor,Theories of Art Today, pages 25–44.
University of Wisconsin Press, Madison, WI.

130

Gill, M. L. (2010). Division and definition in plato’s sophist and statesman. In Charles, D., editor,
Definition in Greek philosophy, pages 172–199. Oxford University Press, Oxford.

Gower, J., Lubbe, S., and Le Roux, N. (2011). Understanding Biplots. John Wiley, Chichester, UK.

Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika, 53:325–338.

Gower, J. C. and Hand, D. J. (1995). Biplots. Chapman & Hall, London.

Greenacre, M. J. (2007). Correspondence Analysis in Practice. Chapman & Hall, London.

Hardman, D. and Macchi, L. (2003). Thinking: Psychological Perspectives on Reasoning, Judgment, and
Decision Making. Wiley, Hoboken, NJ.

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B. (1983). Building Expert Systems. Addison-Wesley,
Reading, Massachusetts.

Heckmann, M. and Bell, R. C. (2016). A new development to aid interpretation of hierarchical
cluster analysis of repertory grid data,. Journal of Constructivist Psychology, 29(4):368–381.

Hennig, C. M., Meilă, M., Murtagh, F., and Rocci, R. (2016). Handbook of cluster analysis. Chapman
& Hall/CRC, Boca Raton.

Honey, P. (1979). The repertory grid in action: how to use it to conduct an attitude survey. Industrial
and Commercial Training, 11(11):452–459.

Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical
and statistical approaches. Ecology, 74(8):2204–2214.

James, W. (1890). The Principles of Psychology. Macmillan, London.

Jankowicz, D. (2004). The Easy Guide to Repertory Grids. Wiley, Chichester, UK.

Kaipainen, M., Zenker, F., Hautamäki, A., and Gärdenfors, P. (2019). Conceptual Spaces: Elaborations
and Applications. Synthese Library 405. Springer„ Cham.

Kaldis, B. (2008). The question of platonic division and modern epistemology. In Dillon, J. M.,
Zovko, M.-E., and Doner, J. F., editors, Platonism and Forms of Intelligence. Akademie, Berlin.

Kelly, G. A. (1938). The assumption of an originally homogeneous universe and some of its statistical
implications. Journal of Psychology, 5:201–208.

Kelly, G. A. (1955). The Psychology of Personal Constructs. Norton, New York.

Kelly, G. A. (1969). A mathematical approach to psychology. In Maher, B., editor, Clinical Psychology
and Personality: The Selected Papers of George Kelly, pages 94–113. Wiley, New York.

131

Kirkcaldy, B., Pope, M., and Siefen, G. (1993). Sociogrid analysis of a child and adolescent psychiatric
clinic. Social Psychiatry and Psychiatric Epidemiology, 28(6):296–303.

Kolodner, J. L. (1993). Case-based Reasoning. Morgan Kaufmann, San Mateo, CA.

Korenini, B. (2014). Consistent laddering: A new approach to laddering technique. Journal of Con-
structivist Psychology, 27(4):317–328.

Korzybski, A. (1951). The role of language in the perceptual processes. In Blake, R. R. and Ramsey,
G. V., editors, Perception, an Approach to Personality, pages 170–205. Ronald Press, New York.

Leach, C., Freshwater, K., Aldridge, J., and Sunderland, J. (2001). Analysis of repertory grids in
clinical practice. British Journal of Clinical Psychology, 40:225–248.

Mireaux, M., Cox, D. N., Cotton, A., and Evans, G. (2007). An adaptation of repertory grid
methodology to evaluate australian consumers’ perceptions of food products produced by novel
technologies. Food Quality and Preference, 18(6):834–848.

Nosofsky, R. (1985). Overall similarity and the identification of separable-dimension stimuli: A
choice model analysis. Perception & Psychophysics, 38(5):415–432.

Okabe, A., Boots, B. N., and Sugihara, K. k. (1992). Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley, NY.

Peres-Neto, P. R., Jackson, D. A., and Somers, K. M. (2005). How many principal components?
stopping rules for determining the number of non-trivial axes revisited. Computational Statistics &
Data Analysis, 49(4):974–997.

Pope, M. L. and Denicolo, P. M. (2001). Transformative Professional Practice: Personal Construct Ap-
proaches to Education and Research. Whurr, London.

Rad, A., Wahlberg, O., and Öhman, P. (2013). How lending officers construe assessments of small
and medium-sized enterprise loan applications: a repertory grid study. Journal of Constructivist
Psychology, 26(4):262–279.

Récanati, F. (2013). Mental Files. Oxford University Press, Oxford.

Reynolds, T. J. and Gutman, J. (1988). Laddering theory, method, analysis, and interpretation. Jour-
nal of Advertising Research, 28(1):11–31.

Rosch, E. (1978). Principles of categorization. In Rosch, E. and Lloyd, B. B., editors, Cognition and
Categorization, pages 27–48. Lawrence Erlbaum, Hillsdale, NY.

Rosch, E. and Lloyd, B. B. (1978). Cognition and Categorization. Lawrence Erlbaum, Hillsdale, NY.

Shaw, M. L. G. (1980). On Becoming a Personal Scientist: Interactive Computer Elicitation of Personal
Models of the World. Academic Press, London.

132

Shaw, M. L. G. (1981). Recent Advances in Personal Construct Technology. Academic Press, London.

Shaw, M. L. G. and Gaines, B. (1992). Kelly’s ‘Geometry of psychological space’ and its significance
for psychological modeling. New Psychologist, pages 23–31.

Shaw, M. L. G. and Gaines, B. R. (1989). Comparing conceptual structures: consensus, conflict,
correspondence and contrast. Knowledge Acquisition, 1(4):341–363.

Shaw, M. L. G. and Gaines, B. R. (1996a). Requirements acquisition. Software Engineering Journal,
11(3):149–165.

Shaw, M. L. G. and Gaines, B. R. (1996b). Webgrid: Knowledge elicitation and modeling on the web.
In Maurer, H., editor, Proceedings of WebNet96, pages 425–432. Association for the Advancement
of Computing in Education, Charlottesville, VA.

Shaw, M. L. G. and Gaines, B. R. (1998). Webgrid II: Developing hierarchical knowledge structures
from flat grids. In Gaines, B. and Musen, M., editors, Proceedings of Eleventh Knowledge Acquisition
Workshop.

Shaw, M. L. G. and Gaines, B. R. (2005). Expertise and expert systems: emulating psychological pro-
cesses. In Fransella, F., editor,The Essential Practitioner’s Handbook of Personal Construct Psychology,
pages 87–94. Wiley, Chichester, UK.

Shaw, M. L. G. and McKnight, C. (1981). Think Again: Personal Problem-solving and Decision-making.
Prentice-Hall, Englewood Cliffs, NJ.

Shepard, R. N. (1964). Attention and the metric structure of the stimulus space. Journal of Mathe-
matical Psychology, 1(1):54–87.

Slater, P. (1976). Dimensions of Intrapersonal Space: Volume 1. John Wiley, London.

Slater, P. (1977). Dimensions of Intrapersonal Space: Volume 2. John Wiley, London.

Spencer, H. (1862). First Principles. Williams and Norgate, London.

Stenning, K. and Lambalgen, M. v. (2008). Human Reasoning and Cognitive Science. MIT Press,
Cambridge, MA.

Stephenson, W. (1953). The Study of Behavior: Q-technique and its Methodology. University of Chicago
Press, IL.

Tan, F. B., Tung, L.-L., and Xu, Y. (2009). A study of web-designers’ criteria for effective business-
to-consumer (b2c) websites using the repertory grid technique. Journal of Electronic Commerce
Research, 10(3):155–177.

Thurstone, L. L. (1935). TheVectors of Mind: Multiple-factor Analysis for the Isolation of Primary Traits.
University of Chicago science series. University of Chicago Press, Chicago.

133

Tofan, D., Avgeriou, P., and Galster, M. (2014). Validating and improving a knowledge acquisition
approach for architectural decisions. International Journal of Software Engineering and Knowledge
Engineering, 24(4):553–589.

Torgerson, W. S. (1958). Theory andMethods of Scaling. Wiley, New York.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4):327–352.

Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20(3):273–
281.

Whitehead, A. N. (1929). Process and Reality: An Essay in Cosmology. Free Press, New York.

Yorke, D. M. (1978). Repertory grids in educational research: Some methodological considerations.
British Educational Research Journal, 4(2):63–74.

Yorke, D. M. (1983). Straight or bent? an inquiry into rating scales in repertory grids. British Educa-
tional Research Journal, 9(2):141–151.

Young, S. M., Edwards, H. M., McDonald, S., and Thompson, J. B. (2005). Personality characteristics
in an xp team: a repertory grid study. SIGSOFT Software Engineering Notes, 30(4):1–7.

Zenker, F. and Gärdenfors, P. (2015). Applications of Conceptual Spaces: The Case for Geometric
Knowledge Representation. Springer, Cham.

Most of our publications cited in the references are freely available on the web

134

	Contents
	Conceptual Grids
	RepGrid, WebGrid and RepGrids

	Opening, saving and creating grid files
	Opening a grid file
	Save, Save As
	Undo
	New
	Copy, Exchange, Elements, Constructs—Open dialogue or drag and drop

	Editing a grid
	Options pane
	Grid description
	Grid terminology and defaults
	Default rating scale
	Grid annotation
	Rating scale data types: ratings, categories, integers, numbers
	Metavalues in ratings: open, unknown, any, none, inapplicable

	Elements pane
	Element annotation and weights
	Editing element data
	Sorting elements

	Constructs pane
	Construct names
	Construct annotations, weights and reversal
	Editing the ratings of elements on constructs
	Assigning categories to rating scale ranges
	Categorical, numeric and integer construct rating scale types types
	Representing ordinal relations between constructs

	Classes—intersects and anticipation
	Classes Pane
	Anticipation: classes as intersects, templets, cases, rules
	Editing class meanings
	Using classes for classification
	Exporting classes as descriptions, logical expressions and conceptual nets
	Using the Classes pane analyses with grids where classes have not been specified
	Classes as ideal elements or compound constructs in grids

	Items pane
	User-defined items

	Scripts pane

	Grid entry, elicitation and export scripts
	Enter Grid
	Elicit Grid
	Export grid data
	Analyze grid data
	Modifying scripts

	Grid display and analysis
	Display: Plotting the grid as a matrix of ratings of elements on constructs
	Display plot output
	Including classes as elements or constructs in the analyses

	Synopsis: Histograms and scree plot
	Synopsis histogram and scree plots output

	Focus: Sorting by similarity and hierarchical clustering
	Focus cluster plot output
	Focus data output
	Status of the Focus hierarchical clusters

	PrinGrid Map: Spatial rotation and scree plot
	PrinGrid Map plot output
	PrinGrid Map with Voronoi diagram
	PrinGrid Map with alternative metrics
	PrinGrid Map with mixed construct types
	PrinGrid 3D plot
	PrinGrid text output
	Pringrid analysis of hierarchical data

	Crossplot: Plotting elements on constructs as orthogonal axes
	Compare: Comparison of grids with some common elements and/or constructs
	Methodology of grid comparison
	The compare dialogue
	Comparing grids with substantial numbers of elements and constructs in common
	Comparing grids with a substantial number of elements in common
	Comparing grids with a substantial number of constructs in common

	Match analysis: Display matches between elements and between constructs
	Using ideal elements derived from classes in a Match analysis
	Match analysis of Wason's card selection task

	Analysis of selected elements and constructs
	Analysis of weighted elements and constructs

	Style—managing the font and colour scheme of analyses
	Colour selection

	Editing and exporting RepGrid output
	RepGrid/WebGrid integration
	Transferring grid data from RepGrid to WebGrid
	Transferring grid data from WebGrid to RepGrid

	Data Formats
	Basic grid format
	Spreadsheet grid entry format

	Appendix: Elicit Scripts
	Script: Elicit Grid.repscript
	Script: Elicit/Main.repscript
	Script: Elicit/Elements.repscript
	Script: Elicit/EditElement.repscript
	Script: Elicit/Constructs.repscript
	Script: Elicit/AddConstruct.repscript
	Script: Elicit/Match.repscript

	Bibliography

