Yet Another Block Lanczos Algorithm:
How To Simplify the Computation and Reduce Reliance on
Preconditioners in the Small Field Case

Version With Proofs

*
Wayne Eberly
Department of Computer Science
University of Calgary
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
eberly@ucalgary.ca

ABSTRACT

A new block Lanczos algorithm for computations over small
finite fields is presented and analysed. The algorithm can
be used to solve a system of linear equations or sample uni-
formly from the null space whenever the number of nilpotent
blocks with order at least two in the Jordan form of the given
coefficient matrix is less than the block factor on the right.
It can also be used to confirm that this matrix condition is
not satisfied, in order to confirm that preconditioning of the
given matrix is required.

Categories and Subject Descriptors

1.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms, analysis of algorithms; F.2.1
[Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—computations in fi-
nite fields, computations in matrices

General Terms
Algorithms, Reliability, Performance

Keywords

Randomized computations, computations over small fields,
Lanczos algorithms

1. INTRODUCTION

Since the mid nineteen-eighties, Krylov-based algorithms
have been used to solve systems of linear equations over
finite fields or to sample from the null space of matrices
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over such fields, as needed to solve a variety of problems. A
considerable amount of work has subsequently taken place
to improve the efficiency and reliability of these methods;
the LinBox home page, www.linalg.org, is a good source
for additional references about this. These techniques have
been effective when storage requirements prohibit the use of
elimination-based methods and when other special-purpose
techniques have not been available.

Various matrix properties have been assumed when prov-
ing the reliability of these methods. For computations over
large fields these assumptions have not been problematic,
because extremely simple and efficient matrix “precondition-
ers” can be used to establish the properties that are required;
quite a few of these are presented in the report of Chen et
al. [2]. Unfortunately the set of preconditioners available
for computations over small fields is more limited — to my
knowledge only a sparse preconditioner first described by
Wiedemann has presently been analyzed (see [9], [2], [4]),
and this is somewhat more costly than desirable.

At present, the set of problems that can be solved reliably
over small fields by these techniques without precondition-
ing is quite limited: Villard [8], has demonstrated that if
rectangular blocks are used (with the block size on the left
exceeding the block size on the right by at least two) then a
block Wiedemann algorithm can be used, reliably, to find a
nonzero element of the null space of any singular matrix.

In this paper two additional matrix problems are consid-
ered, namely, the solution of a linear system Az = b (re-
turning either a solution for the system or a certificate es-
tablishing that it is inconsistent) and the problem of the uni-
form and random selection of elements from the null space
— a problem that must be solved for computations over Fs
when sieve-based algorithms for integer factorization are ap-
plied [1].

As their names suggest, Krylov-based algorithms perform
computations over the Krylov space of a set of vectors. In
particular, an algorithm using block size r on the right re-
quires that an initial set of r vectors v1, va, . . ., v, is somehow
provided, and the algorithm (either implicitly or explicitly)
carries out a search in the Krylov space generated by these
vectors, that is, the space spanned by the set of vectors A'v;
for i > 0 and 1 < j < r. Virtually all of the Krylov-based
algorithms that have been investigated to date require either
that the vectors vy, ve,...,v, are given as part of the input



or that they are randomly generated.

Suppose now that k is a positive integer. We will say that
a matrix A (with entries in a finite field F4 with ¢ elements)
is k-derogatory if the first k invariant factors of the matrix
are divisible by z? or, equivalently, the Jordan normal form
of A includes at least k nilpotent Jordan blocks with order
at least two. We will call the matrix A k-nonderogatory,
otherwise. If the above-mentioned vectors v1,vs, ..., v, are
to be chosen randomly then it is easily demonstrated that it
is necessary for the coefficient matrix A to be nonderogatory
if a Krylov-based algorithm is to be used reliably to solve a
linear system. This is also a necessary condition if one wishes
to sample uniformly and randomly from the null space of a
given matrix.

In this paper a new block Lanczos algorithm that uses
rectangular blocks (such that the difference between the
block size on the left and the block size on the right is
at least logarithmic in the order of the coefficient matrix)
is described. With high probability the Krylov space on
the right is completely searched, during the computation,
at low cost. The orthogonalization process (that is at the
heart of any “Lanczos” algorithm) used here is somewhat
simpler than those of the prior block Lanczos algorithms of
Coppersmith [3] or Hovinen [6]. Unlike the simpler method
of Montgomery [7] it does not require that the coefficient
matrix be symmetric and its reliability can proved.

Henceforth F, will denote the finite field with ¢ elements
and, for integers i and j, F,"*J will denote the set of i x j
matrices with entries in Fy.

2. ITERATION OVER A KRYLOQV SPACE

Given a matrix A € F,"*", r vectors v1,v2,...,v, €
F,"*! and a positive integer &, the algorithm described in
this section will either traverse the Krylov space generated
by wvi,v2,...,v, or will fail — the latter happening with
probability less than 7¢~%.

The algorithm begins with a Lanczos phase to generate

the following pair of sets.
e The set S; consists of m ordered pairs of vectors,

S1 :{(M17V1)7(M27V2)7~~~7(:um17l/m1)} (1)
such that, for 1 < 4,5 < ma, i, v; € F"*! and

¢ 1 ifi=j,
b Ay = 2
il {0 if i )
o The set Ss is a set of ms vectors
So={A1, A2, ..., Ama } 3)
such that
AN =0 (4)

for 1 < i < ms.

In particular, if successful, the algorithm returns sets S; and
Ss, as described above such that

l/1,7/2,...7Vm1,>\1,)\27...,)\m2

span a large subspace of the Krylov space generated by
V1, V2, ..., Up.

The algorithm begins with a uniform and independent
selection of a set of vectors ui,us,...,us € F,"*' where

£>r+2([log,n]+0). (5)

1. Initialize S1, S2, s, sr, Lo and U
loop
Sr = Sr+1
Initialize R
4. Orthogonalize the vectors in R; if each of the
resulting vectors is zero then break
if (U] < £ — [log, n] — J) then
if (U < {(8L7 1)5 (SL, 2)7 B (SLv‘g)}) then

w

5. sp:=sp+1
6. Initialize the sequence of vectors L,
7. Orthogonalize L,
8. U:=UU{(sz,1),(s,2),...,(sr,€)}
else
9. Report failure and break
end if
end if

10. Either update S1, S2 U, R or proceed to
elimination phase
end loop

Figure 1: Lanczos Phase of the Main Algorithm

All subsequent steps of this algorithm are deterministic.

2.1 Detailsof the Algorithm

The major stages of the Lanczos phase are shown in Fig-
ure 1. Throughout its execution S; is a set of ordered pairs of
vectors, and Sa is a set of vectors (with sizes m1 and mo re-
spectively) satisfying the various conditions shown in Equa-
tions (1)—(4), above. The integers s;, and sr represent the
“stages” of the generation of vectors on the left and on the
right that are currently in progress.

The algorithm maintains sequences Lo, L1, ..., Ls, of vec-
tors, each of length ¢: At each point in the computation

L; ={0i1,052,...,04) (6)

where o;; € F,"*! for 0 < i < sp and 1 < j < £. Vec-
tors in these sequences are either completely “processed” or
“unprocessed.” A set of ordered pairs of integers

UC{(i,j)|0<i<spand1<j<{}

is used to keep track of the “unprocessed vectors:” For 0 <
i <spand 1< 5 <4 the jth vector o;,; in the sequence L;
is “unprocessed” if and only if (¢,5) € U.

The algorithm also maintains a set R of vectors that is
used to continue generation of the desired Krylov space, as
described below.

2.1.1 Initialization

Sets S1 and Sz are initially empty, so that m1 = ma =
0. Variables sy and sgr are set to have values 0 and —1
respectively. Lo is set to be the sequence

Lo = <U1,UQ,. .o 711,4)7

so that 0¢,; = u; for 1 < ¢ < £ and, since each of these
vectors is initially unprocessed,

U =1{(0,1),(0,2),...,(0,0)}.

2.1.2 Initialization of R

Since sg is incremented at the beginning of the first exe-
cution of the loop body, sg > 0 whenever R is initialized at



step 3. If sg = 0 then R is set to include the input vectors:
R:={vi,v2,...0r} if sg = 0.

Otherwise, sg > 1 and R is set to include the product of A
and each vector currently in R, that is,

R:={Av|veR}

2.1.3 Orthogonalization of Veectorsin r
Each vector ¢ € R is updated at step 4,

if sg > 0.

mi

Ci=C—> (A v, (7)

J=0

to ensure that ,uj-A(j =0for 1 <j<m; and for all ( € R.
As is the case for other variants of the Lanczos algorithm
we will reduce the cost of this computation by showing that
M;AC = 0 for most values of j before this step is carried out.

2.1.4 |Initialization of L,

Since Ly is initialized at step 1, and sy, is incremented at
step 5 immediately before step 6, it is clear that sy, > 1 and
the set Ls, —1 is defined each time step 6 is performed. The
sequence L, is initialized to be

t t t
LSL = <A 0'5L71,1,A Osp,—1,25-- .,A O-SL7172>7

that is, for 1 < j < ¢, the j*" entry 0s,,j in the sequence LS{%
is initialized to be the product of A’ and the (current) j*
entry in the sequence Ls, —1.

2.15 Orthogonalization of Vectorsin L,

For 1 <5 <4, the jth vector o5, ,; in the sequence L, is
updated at step 7,

mi

=D (0%, A ®)

k=0

Osp,j = Osp.j

to ensure that UELJ-AUR =0 for 1 < k < mi. Once again
the cost of this computation can be reduced by showing that

UﬁL’jAl/k = 0 for most values of k before this step.

2.1.6 Updating s:, S», U and R

Suppose that R = {k1,K2,...,K|r|} at this point.

Step 10 begins with the use of an elimination-based pro-
cess to compute the dimension, s, of the vector space S that
is spanned by the vectors

{Ar; | 1 < <|R[}
as well as a sequence of integers 41,42, ..., %s such that
1<41 <ip <--- <isg <|R|

and the vectors Ak, , AKi,, ..., Akig form a basis for S.

For each integer j such that 1 < j < |R| and such that
Jj & {i1,i2,...,is}, Ak; is written as a linear combination
of the above vectors, that is, elements c; 1, ¢j2,...,¢js of Fq
are obtained such that

S
Ak; = E cjnAKi,;
h=1
the vector

S
Rj = Kj — E Cj,hRip
h=1

which is in the null space of A, is added to S> at this point:
So:=S2U{K; | 1 <j<|R|and j ¢ {i1,i2,...,i5}}

Now let Br € Fy"*° be the matrix whose columns are the
above vectors ki, , Kiy, ..., Ki,. Note that the matrices Br
and ABgr each have full rank s.

Let Br € Fq"X‘U‘ be a matrix whose columns are the
vectors o; ; (included in the sequences Lo, L1, ..., Ls, ) such
that (4,7) € U, arranged so that oy,; appears to the left of
0, Whenever h < j.

Let t be the rank of B ABg, which is clearly at most s.
The algorithm continues by computing the lexicographically
first linearly maximal independent subset of the rows of this
matrix; let

Ir = {(i1,41), (@2, 42), ..., (@, Je)} CU

indicate the rows of the matrix that have been included in
this subset of rows so that the k™" row selected is the row
vector T, = O-’fkvjk' ABpg for 1 < j <t. Compute a maximal
linearly independent

Ic = {hi,ha, ... he} C{1,2,...,5}

as well; set ER S Fq"Xt to be the submatrix of Br with these
columns and let C € F,*** be the nonsingular submatrix
othLAB r which rows from Ir and columns from Ic. S; is
now updated by adding ordered pairs

(Bma+1, Vmy+1)s (my 425 Vmy42); -+« 5 (Bmq+t, Vg +t)5

where m; is the size of the set before this update, tim,+x =
iy, and where v, yx is the k™™ column of the matrix
Br-C™' for 1 < k < t. It is easily seen, by the choice of
the above vectors, that if the set S; satisfied conditions (1)
and (2) before this update then it does so after, as well.

Suppose s = t, so that Br = Bg. Set U is first updated
by removing the positions of vectors that have now been
fully “processed:” U := U \ I. The remaining “unprocessed”
vectors are orthogonalized against the vectors that have been
included in Si, that is, each remaining vector a; ; for (3, ) €
U is updated as

m1+s

oigi=0i— Y. (0f;Ave)

k=mi+1

so that U;J-Ayk = 0 for each ordered pair (ur,vr) € S1.
Following the computation of these vectors, the algorithm
updates the set R by setting R to be the set

R:= {Vm1+17 VUmq42y-- )y Vm1+5}'
On the other hand, if ¢ < s then each vector A that is a
column of Bgr not included in Bp is updated as

m1+t

A=A— > (AN vk

k=mji+1

Set S5 is now initialized to include the vectors A that have
been computed as above, so that S3 = {A\1,A2,..., As—¢}
where AX1, A)a, ..., AXs_; are linearly independent and so
that pi ANy =0for 1 <k <mjand1 < h <s—t The
set R is now updated to

R = {Vmi+1,Vmi+42, s Vmq 1t} U S3

and we proceed to the elimination phase of the algorithm.



2.2 Elimination Phase

The final phase of the algorithm consists of a loop in which
we repeatedly update the sets R, S2 and S3 and the value
of sr as follows.

(i) For each vector A € R we compute the value

mi

X=AX=Y" (uhAAN) v 9)

k=1

so that ,u}iAX =0for 1 <k <mi. Set R to be the set
of vectors A\ that have been produced.

(ii) Using an elimination-based process, R is partitioned
to form a pair of sets, R’ and R, so that the vectors
in the set

S={Ap|peS3UR'}
are linearly independent, and so that, for each vector

X € R”, AX is a linear combination of the vectors in S.
Indeed, elements ¢, of F, are computed such that

A= Y A
TESZ3UR/
and these are used to compute a value
A=A — Z crT
TES3UR/
in the null space of A.

All of the above values A\* are now added to S3. S3
and R are replace by the sets S3 U R’ and R’, respec-
tively, and sg is incremented.

The process terminates when it is discovered that R = ().

2.3 Propertiesof Sets

LEMMA 1. The following properties are satisfied at the be-
ginning of each execution of the loop body of the algorithm
shown in Figure 1.

(a) Si is a set of ordered pairs as shown at line (1) satis-
fying the conditions given at line (2).

(b) Sz is a set of vectors in the null space of A.
(c) If Sy is as shown at line (1) then o} ;Avy = 0 for every

ordered pair of integers i and j such that (i,j) € U, and
for1 <k <m;.

LEMMA 2. At the beginning of each execution of the body
of the loop in the algorithm in Figure 1, either s, = 0 and

U € {(0,1),(0,2),...,(0,0)}

orsp, > 1 and

U - {(SL - 1, 1), (SL - 1,2),. vy (SL,Z),
(SL, 1), (SL,Z),. .oy (SL,K)}

Suppose that S3 = () before and at the beginning of the
final execution of the loop body in the Lanczos phase.

LEMMA 3. The following properties are satisfied at the be-
ginning of each execution of the body of the loop in the algo-
rithm shown in Figure 1 (where S1 is as shown at line (1)),
and at the beginning of each execution of the loop body in
the elimination phase:

(a) sp >0, and the set of vectors
Vi={p [1<i<mi}U{oi; | (i) € U}
spans the same vector space as the set of vectors

VQ:{(At)iUHOSiSSL andlgjgg},

(b) sr > —1; if sg > 0 then the set of vectors
Wi :{I/i | 1§i§m1}USQU53
spans the same vector space as the set of vectors

sz{Aivj|0§igsR andlgjgr}.

Suppose that S3 = () before the final execution of the body
of the loop in the Lanczos phase.

LEMMA 4. Suppose the algorithm does not report fail-
ure. Then the following properties are satisfied on termina-
tion.

(a) The set {v; | 1 < i< my}US2USs spans the Krylov
space that is generated by vi,va, ..., Vr.

(b) The set of vectors Sa2 spans the intersection of the above
Krylov space and the null space of A.

2.4 Reducing the Cost of Orthogonalizations

As in all Lanczos-based algorithms, the time and space
used by this algorithm will be reduced by simplifying the
orthogonalizations of vectors that are required.

LEMMA 5. Consider any execution of the algorithm shown
in Figure 1.

(a) Consider any vector ¢ that is being orthogonalized at
step 4 of the algorithm or during the elimination phase.
If j <=m1 —6¢ — 1 then ME-AC = 0 before this orthog-
onalization is carried out.

(b) Consider any vector os, ; that is being orthogonalized
at step 7. If k <= mq1 — 20 — 2r then O'EL’]-AV}C =0
before this orthogonalization is carried out.

Thus the orthogonalization steps at lines (7) and (9), and
at (8), can respectively be replaced by the simpler (and
cheaper) operations

mi1

Ci=C— > (AQy; (10)

j=min(1l,m; —6{—7r+1)

and

Osp,j = Osp,j —

D (05,5 A . (11)

k=min(1,m1—2£—2r+1)

The vectors o;; must also be orthogonalized as part of
step 10 as additional ordered pairs are added to Si. The
next lemma implies that O(nf) operations over F, are used
as part of these steps to update this vector.

LEMMA 6. At most 3¢ ordered pairs are added to S1, after
the creation of a vector o; ; before either the algorithm ends,
or the ordered pair (i,j) is removed from U (at which point,
an updated version of o;; is used as the first entry of an
ordered pair that is added to S1).



2.5 Boundingthe Probability of Failure

Suppose now that the Krylov space of the given vectors
v1,v2,...,0, has dimension d, and let e be the dimension of
the intersection of this space and the null space of A.

LEMMA 7. Suppose thatn > 2, § > 2, and the algorithm
described above is run using a matriz A € F,"*™ and vectors
V1,V2y...,0Upr.

(a) The algorithm fails (by executing step 9 during the
Lanczos phase) with probability at most 2¢7°.

(b) If the algorithm does not report failure then the proba-
bility that d—e—|S1| > i on termination of the Lanczos
phase is less than 2¢~° + 3¢~ for any integer i > 1.

Note that the value d — e — |S1| bounds both the size of the
set S3 that is computed during the elimination phase and
the number of executions of the body of the loop in that
phase of the algorithm.

2.6 Summary

THEOREM 1. Let A € F,"*™ and v1,vs,...,v. € F,"%.
Let § > 2 be a positive integer. The algorithm described
above can be used, with £ > r + 2([log,n] + 9), to compute
a set of vectors that span the Krylov basis K generated by
V1,V2,...,Ur, as well as bases for this space and for its in-
tersection with the null space of A, failing with probability
at most 2q75.

The number of applications of A or A to vectors during
the execution of this algorithm is in ©(n) in the worst case
and, if 6 > log,n, then the expected number of additional
operations in Fy used by the algorithm is in ©(n*f).

It also uses space to to store ©(£) vectors, needed either for
the orthogonalizations that are performed while the algorithm
takes place or to support the applications of this algorithm
that are described in the sequel.

On the other hand, if § < log, n then a version of the
algorithm that fails with probability at most 7¢~%, and that
uses the above numbers of operations in the worst case, can
be obtained simply by terminating the elimination phase of
the algorithm, and reporting failure, as soon as it is noted
that |S3| > 6.

3. APPLICATIONS

In this section we will consider the application of the block
Lanczos algorithm presented in the previous section. Sup-
pose the Jordan normal form of A € F;"*™ includes exactly
m nilpotent Jordan blocks

01 0
0 1
0 1
0 1
0 0

with order at least two. Then there exists a nonsingular
matrix X € Fg"*" such that

Ay 0
A=X Ay x! (12)
0 As

where

e A, is a nonsingular matrix with order n; for some in-
teger n; such that 0 < n; <n —2m.

e A, is a block diagonal matrix

J1 0
Jo
As = . (13)

0 Im
where J, is a nilpotent Jordan block with order na, >
2, 50 Ao has order n2 = n21 +no2+ -+ nom > 2m.
e Aj is a zero matrix with order ng =n —n; —ns > 0.

If e; is the i*" standard unit vector, V; is the vector

space with basis Xei, Xes,..., Xey,,, the vector space Vs
has basis Xen,+1, Xen,4+2,...,X€n;4+ny, and V3 has basis
Xen +no+1; Xe€ni+not2, ..., Xen, then, since the above ma-

trix X is nonsingular, it is clear that Fq"Xl is the direct
sum of the vector spaces Vi, Va2, and V3. Thus each vector
x € Fg™*! can be written uniquely as the sum of vectors
a € Vi, B € Va, and v € V3. It is also clear each of the
vectors spaces Vi, Vo, and V3 is closed under multiplication
by A. Furthermore A acts as an invertible operator in Vi, a
nilpotent operator in Vs, and the zero operator in Vs.

It is clear from Equations (12) and (13), above, that V;
is the Krylov space of a set of m vectors in Va; henceforth
we will set w1, wa,...,wn to be a set of vectors in this space
such that V, is the Krylov space generated (using A) by
W1, W2, ...,Wm.

LEMMA 8. Let v; = ai + Bi +vi € F™*™ such that o; €
Vi, Bi € Vo, and v; € Vs, for 1 <i<r.

(a) The Krylov space K that is generated by vi, v, ..., v,
includes both the Krylov space K1 C V1 that is gener-
ated by a1, a2,...,ar and the Krylov space Ko C Vo
that is generated by AB1, ABa, ..., ABy.

(b) Suppose that {k1,K2,...,Kkn} is a basis for K1 and that
{A1,A2,..., A\ } is a basis for Ko, where K1 and K2 are
as given in part (a), above. Then the set of vectors

{Iil,l@'z,...,lih}U{Al,)\g,...,)\]‘}
U{Bl +717B2+725"'7ﬂ7‘+’y7‘}

spans the Krylov space generated by vi,va,...,vr.

LEMMA 9. Suppose that r > m + A for a positive inte-
ger A, and that vectors vi,va,...,v, are chosen uniformly
and independently from F,"**. Then with probability at least
1-— 2q_A there exist elements A1, A2, ... \m of V3 such the
Krylov space generated by vi,va,...,v, includes the vectors

w1 +A1,a)2 +)\2,...,wm + A
In this case the Krylov space also includes AB for all B € Va.

3.1 Solving a Consistent Linear System

Suppose A is as in Equations (12) and (13) and consider
the problem of finding a vector x such that Ax = b, for a
given b € F,"*!, assuming that such a vector exists.

An algorithm for this computation will begin with an ap-
plication of an augmentation of the algorithm using a set
V1,V2,...,0 where v1 = b and for va,vs,...,v, selected
uniformly and independently from F,"**.



Note that if the given system is consistent then b = a+ (3
such that o € V1, and 8 € Vs is an element of the Krylov
space generated by Awi, Aws, ..., Awm, for wi,ws,...,wny
as described above. Furthermore, the the fact that A acts
as an invertible operator in V; can be used to establish that
there Krylov space generated by « includes a value x such
that Ax = a. The following can now be established.

LEMMA 10. Suppose that the system Ax = b is consistent,
the number m of nilpotent blocks in the Jordan normal form
of A is at most r — A — 1, for a positive integer A > 2,
and that vectors vi,va, ..., v, are selected as described above.
Then the Krylov space generated by vi,va,...,v, includes
a solutign for the system Ax = b with probability at least
1—2¢ 7.

Suppose now that the Krylov space does contain a vector
Z such that AZ = b. Suppose that the algorithm from Sec-
tion 2 is augmented so that it maintains an additional pair
of vectors, z and res, that are initialized to have values 0
and b at step 1. Clearly

Az + res = b; (14)

the values = and res will be updated as the set S1 is modified,
in order to ensure that

pires =0

for each ordered pair (u;,v;) € Si. In particular this be
achieved by setting c; to be utb and then replacing x and res
by the values x+c;v; and res—c; Av;, respectively. It is easily
checked Equation (14) is still satisfied and that pfA(Ax —
b) = ulres = 0 after this update.

Let us compare the computed value = to the solution =
mentioned above, after all the ordered pairs in S7 have been
considered: It is clear that utA(x — %) = ul(Az —b) = 0 for
1 < < ma. Both z and 7 belong to the Krylov space that
has been generated, so x — Z must be a linear combination
of the vectors in Sz U Ss. Since each vector in S2 belongs to
the null space of A, it follows that Ax — b = Az — AT is a
linear combination of vectors A\, for A € Ss.

Now recall from Section 2 that Sz = {A1,A2,..., Amy}
(for ms = |S3|) where the vectors A1, A\a, ..., A\, are
linearly independent. Values ci1,cz,...,cm; € Fq such that

(Al‘ — b) =c1AMN F coAlg + -+ Cm3A)\m3

can be found, by a simple elimination-based process, using
@(nmg) additional operations, and, after the value x is up-
dated to be

T =T —C1A1 — C2A2 — ** — CmgAmg,

it is clear that Az = b as required.

As described above the above computation can be carried
out using a modified version of the main algorithm, requiring
storage of another two vectors (namely, z and res). Part (b)
of Lemma 7 (which bounds the probability that ms exceeds a
given size) can be used to establish that the expected number
of additional operations over F, that are required is in ©(n?).

3.2 BoundingtheNumber of Nilpotent Blocks

Next consider the problem of deciding whether A is m-
derogatory for a given integer m > 0.

LEMMA 11. Let A € F,"*". Then the Jordan normal
form of A includes exactly m nilpotent blocks with order of

at least two if and only if the intersection Z of the image of A
and the null space of A is a vector space with dimension m.

This suggests the following algorithm: Given an integer m
and a positive integer A > 2, generate 1 = m + A vec-
tors z1, 22, . . ., zr uniformly and independently, and then use
an augmented version of the algorithm from Section 2 to
compute a spanning set for the Krylov space generated by
v = AZ1,’U2 = AZQ, ey Up = Azr.

This augmented version of the algorithm maintains a sec-
ond pair of sets T and T%, such that |T1| = |Si| = ma,
|T2| = |S2| = ma,

Tl = {()017(;027"'7()07”1}

such that Ap; = v; (the second entry of the i*" ordered pair
of vectors in S1) for 1 < ¢ < mq, and where

So ={A(| ¢ €Tz}

as well. The algorithm also makes use of a set P of vec-
tors such that R = {Ap | p € P}. These sets are easily
maintained: 77 and 7% are initialized to be empty, along
with S1 and S, at the beginning of the algorithm. During
the first execution of the loop body P is initialized to in-
clude z1, 23, ..., zr at the same time as R is initialized to in-
clude v1,v2,...,v,. No further (additional) multiplications
of vectors by A or A are needed, since P can be replaced
by R immediately before R is updated at step 3. Elements
of R are updated at step 4 by adding linear combinations
of v1,v9,...,Vm,; the corresponding elements of P can be
updated by adding linear combinations of 1, v2,..., ©m,
using the same multipliers. An inspection of the updating
of R during the elimination confirms P can be updated at
the same time as R, during this part of the algorithm, with-
out additional applications of A or A’ as well. Finally, the
sets P, T1 and T> can be updated at the same time as R, S
and S> in the same way. The number of operations over F,
and the storage space needed by it are at most doubled.

On termination one should compute a maximal linearly
independent set S5 of the vectors in S, returning the cor-
responding subset of the vectors T3 in T>. Suppose that set
of k vectors 71,72,..., 7, is produced. It follows by their
construction that Ari, ATe,... A7y are linearly independent
and that A%, =0 for 1 <i<k.

LEMMA 12. Suppose that the above algorithm is applied
using a matric A € Fg" ™.

(a) If A has m < r nilpotent blocks with order at least two
in its Jordan normal form then k < m. The probability
that k < m (so that a basis for Z is not obtained) is
at most 2¢"~™.

(b) If A has m > r nilpotent blocks with order at least
two in its Jordan normal form then the probability that
k < m (so that it is not proved that A is m-derogatory)
is at most 2q_A

Consequently, since m < r — A, a basis for Z is obtained
with probability at least 1 — 2¢™% if A is m-nonderogatory.
On the other hand, if A is m-derogatory then a certificate of
this is obtained with probability at least 1 — 2¢~%, instead.

3.3 Sampling from the Null Space

Let A € F,”*™. Suppose that A is a singular matrix
that has exactly m nontrivial nilpotent blocks in its Jordan



normal form and, indeed, that the value of m is known and
that a basis for the intersection Z of the image of A and its
null space has been obtained (perhaps, using the algorithm
described in Section 3.2, above). The idealistic assumption
that one can sample elements uniformly and independently
from F4 will also be made.

Suppose that we are given an integer d > 0 and that we
wish to generate a sequence

¢1,¢2,.--,Ca

such that A(; = 0 for 1 <4 < d and such that every such
sequence is generated with probability ¢~*¢, where k is the
(generally unknown) dimension of the null space.

An algorithm to solve this problem will now be presented.
The algorithm will either generate a sequence as described
above, or it will detect and report failure. Since failure
can be detected, and its probability can be bounded, a pro-
cess that eventually produces a sequence of the above form,
whose expected running time is small, can be obtained as a
sequence of independent trials of the algorithm that will be
described, ending with the first trial that succeeds.

The probability of failure can be bounded but, unfortu-
nately, depends on the parameter d: The probability of fail-
ure is at most 2¢%. That noted, the probability of failure
can be reduced to at most 2¢~2 for a given integer A > d,
while generating sequences with the desired probabilities, by
applying the algorithm to produce a sequence of length A
and then discarding the final A — d elements.

To begin, let v1,v2,...,Um+a be uniformly and indepen-
dently selected from F,"*'. Apply the algorithm in Sec-
tion 2 with vectors Avi, Ava, ..., AUm+a to check that the
intersection of the Krylov space generated by these vectors
and the null space of A has dimension m. Since this inter-
section is a subspace of Z its dimension is at most m, and
part (a) of Lemma 12 implies that its dimension is equal
to m, and this intersection is equal to Z, with probability
at least 1 — 2¢~¢; failure should be reported if this is not
the case.

Provided that failure has not been reported, we should
continue by running the algorithm in Section 2 again, with
vectors v1,v2, ..., Un+d, and considering the set S2 that has
now been obtained. We should generate a basis for the
space X spanned by these vectors by using them to extend
the basis for Z that is already available. Since X has di-
mension at most m + d. and Z C X, this process results in
at most d additional vectors. Since the null space of A is
contained in the direct sum of V5 and Vs, these vectors are

ﬂm+1 +717ﬁm+2+727'-'3ﬁm+5376 (15)

where 0 < e <d, B € Voform+1<j <m+e,andy; € Vs
forl1 <j<e.

The process that has been described so far can be consid-
ered to be an “experiment” that implicitly defines a subspace
of V3 with dimension at most d, namely, the space W with
dimension e with basis 1,2, . . ., 7e — these vectors are eas-
ily seen to be linearly independent, because the set of vectors
including the given basis 1, B2, ..., Om for Z C Vs, as well as
the vectors at line (15), above are, by construction, linearly
independent, and because (,,+; is a linear combination of
B1,B2,...,0m for 1 <i<e.

Of course, if a basis for V3 was available then we could
also generate a subspace W of V3 with dimension at most d
using a second “experiment,” namely, by generating d linear

combinations of the elements of this basis, uniformly and
independently, and considering the subspace that is spanned
by the vectors that have been generated.

A careful consideration of the elimination process that is
needed to extend the basis in the first “experiment,” as de-
scribed above, and the observation that a given probability
distribution can be described in multiple ways, establishes
the following.

LEMMA 13. Let W be a subspace of Vs whose dimension
at most d. The probability that W is generated, using the
first of the experiments described above, is equal to the prob-
ability that W is generated using the second experiment, in-
stead.

Suppose that, as the next step in this computation, we
wish to generate a sequence

G=01+%,G =B+, Ca = Ba+ A (16)

where 31732,...,&1 belong to Z, and where 71,72, ..,74
have been selected uniformly and independently from Vs.
Consider, once again, the sequence of linearly indepen-
dent vectors 1,72, ...,7 € V3 that have been generated at
the end of the previous step. Let By, € F;"*¢ be the ma-
trix with these vectors as its columns and consider a matrix
C € F,"*? whose column are to be selected from V3. The
columns of any such matrix span exactly one vector space
W C V3 with dimension at most d. Indeed, the columns
of a given matrix C span the same vector space W as the
above vectors y1,72,...,7e if and only if there is a matrix
N € F,°%? with maximal rank e such that BN = C.
Since we wish to generate such matrices C' uniformly, and
since ByyN1 = BwNa (for Ni, N2 € F,°*?) if and only if
N1 = Na, a sequence of vectors as shown at line (16) can now
be generated, following the determination of the space W as
described above, by carrying out the following steps.

1. Generate a matrix N uniformly and randomly from
the set of matrices in F,**?¢ with rank e.

2. Set 21, 22, RN Zd to the columns of the product Byy - N.

The above matrix N is to be selected uniformly from the set
of matrices in FqEXd whose rows are linearly independent.
Such a matrix can be generated by choosing the rows, one
at a time; following the selection of the first i rows the 4+ 1%
can be selected by considering a sequence of uniformly and
independently selected vectors from F,'*?. The first of these
that is not a linear combination of the ¢ rows that have
already been selected should be used. Since the expected
number of vectors that must be considered to generate each
row is less than two, the expected number of elements that
must be uniformly selected from F, as part of this process
is in ©(de). An elimination-based process can be used to
check the rank condition given above; the expected number
of operations needed for this is in O(d®) C O(n?d). The cost
of the matrix multiplication required for the second step is
in O(ned) C O(n?d) as well.

Recall our assumption that a basis for Z is available. The
computation can be completed by using this basis to select
a sequence of m vectors 31,3, ..., 3, uniformly and inde-
pendently from zZ — choosing these independently of the
vectors 517 22, ..., Cq that have already been obtained. It is
sufficient to set (; = a + B, for 1 < i < d, to obtain a



sequence of d vectors that are uniformly and independently
selected from the null space of A, as desired. This final
step requires the selection of md < n? values uniformly and
independently from F,, followed by O(nmd) C O(n?*d) ad-
ditional operations over this field.

3.4 Certifying Inconsistency

Consider next the problem of certifying that a given sys-
tem Ax = b is not consistent, that is, that b does not belong
to the column space of A.

If the matrix A is m-nonderogatory then so its transpose
and, as observed by Giesbrecht, Lobo and Saunders [5], the
probability that u'b = 0 is at most 1/q if the system of linear
equations Ax = b is inconsistent and p is a uniformly and
randomly chosen element of the null space of A’

An algorithm that certifies inconsistency of a system Az =
b, for an m-nonderogatory matrix A can now be obtained us-
ing the algorithms that have already been described above:
One should first determine the number of nilpotent blocks
with order at least two in the Jordan normal form of A,
and compute a basis for the space Z corresponding to the
matrix A*, by an application of the algorithm described in
Subsection 3.2. This should the followed by an application
of the algorithm from Subsection 3.3 to produce a sequence
of A vectors (1,(2,...,(a that are uniformly and indepen-
dently selected from the null space of A’: If the previous
algorithm did not fail (that is, it really did compute a basis
for Z), and the system Ax = b is inconsistent, then a vec-
tor ¢ such that ¢*A = 0 but (b # 0, establishing that b is
not in the column space of A, will have been produced with
probability at least 1 — ¢~ 2.

As described here the algorithm can “fail” for a variety
of reasons. This can be addressed by combining it with an
attempt to solve the given system using the algorithm in
Subsection 3.1. The result is an algorithm — which should
receive the matrix A, vector b, and a positive integer m —
and which produces either a vector x such that Az = b, a
vector u such that u*A = 0 but u'b # 0, a proof that the
matrix A is m-derogatory, as described above, or where the
only reason for failure is an unlucky choice of the random
values that have been selected. Consequently repeated trials
of this will eventually result in one of outputs (i), (ii), or (iii).
In the event of (iii) a user should presumably try again with
a larger value of m or apply a preconditioner in order to
bring A into a more manageable form.

4. FURTHER WORK

This paper has been a kind of “demonstration of concept,”
in that it describes an algorithm that has not yet been im-
plemented. It is possible that some of the results presented
here could be improved and, indeed, this would certainly be
desirable: While it is sufficient to store approximately 7/
pairs of vectors to be used for the orthogonalizations that
are considered in Subsection 2.4 I do not know whether it is
necessary and, of course, the number of vectors to be stored
should be reduced if this is possible.

Indeed, it is not clear that the algorithm described in Sec-
tion 2 is necessary: It is certainly plausible (but, to my
knowledge, not yet verified) that an existing block Wiede-
mann algorithm could also be used to carry out the compu-
tations described in Section 3.

The small field preconditioner mentioned at the begin-
ning of this paper is arguably more expensive than is desir-

able, but it also achieves a stronger matrix property than
is used here, in that it ensures, with high probability, that
the number of nontrivial invariant factors of the precondi-
tioned matrix is small. Are there other, less expensive small
field preconditioners, that are sufficient to ensure the weaker
condition that the preconditioned matrix is nonderogatory?

A final theoretical question concerns a property of the null
space of a matrix: Is it possible to discover the dimension of
the null space (and, therefore, the rank of the given matrix)
using only the fact that the matrix is nonderogatory, and
without preconditioning? Note that the algorithm to sample
from the null space in Section 3 does not require this value
and, as far as I can tell, fails to provide any information that
could be used to discover this in general. I suspect that the
answer to this question is “no,” but have no idea of how to
prove this.
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APPENDIX

The following sections will not included in the extended ab-
stract in the conference proceedings but will be available in
a full version of the paper that will be available at the au-
thor’s web site and cited in conference version. They are
included here for the convenience of referees.

A. PROOFSOF CLAIMSIN SECTION 2
A.1 Proof of Lemmal

The claims in Lemma 1 follow by a reasonably straight-
forward induction on the number of executions of the loop
body.

The claims are trivial for the first execution of the body
of the loop, since S1 and S2 have each been set to be empty
at this point.

Suppose now that ¢ > 1 and that the part (a) of the claim
is satisfied at the beginning of the i*® execution of the loop
body. Note that during the execution of this body of the
loop, zero or more additional ordered pairs are added, that
is, S1 is replaced by

S1 U {(:u/m1+17yml+1)7 (:u’m1+27yml+2)7 e (Mm1+s,Vm1+s)}

where the additional ordered pairs, shown, above, are com-
puted during Step 10. Each of the vectors

Vmi+1,Vmi+2,- -3 Vmq+s

is computed in Step 10 as a linear combination of vectors in
the set R, and it is assured at step 4 that these are orthog-
onal to p1, p2, .. ., ftm, . Consequently

,uiAtuj:O for1<i<miand m;+1<j<m;+s.

Similarly, the vectors fim,+1,thmq+2,-- -, lm,+s are each
selected in step 10 from the set of vectors o;,; such that
(i,j) € U. The ordered pairs in U either belonged to U at
the beginning of this execution of the loop body — in which
case, it follows by the induction hypothesis (and part (d)) of
the claim) that they are orthogonal to v1,va,...,Vm, — or
they are introduced at step 8, in which case it is assured by
the processing at the previous step that they are orthogonal
to v1,va,...,Um,; as well. It follows that

wiAv; =0 formi+1<i<mi+sand1<j<m

as well.
Finally, the construction of vm,41,Vm;+2,..;Vm +s at
step 10 ensures that, for m; +1 <i,7 < mj + s,

piAvj = {1 lfl :j:’
0 ifi#j7.
It follows the the above equations, and the inductive hypoth-
esis, that the set of ordered pairs S; satisfies the condition
at line (2) at the end of this execution of the loop body. The
set also clearly satisfies this constraint at the beginning of
the next execution as well; that is, part (a) of the claim is
satisfied at the beginning of the next execution of the body
of the loop.

Establishing part (b) is straightforward, since Sz is only
modified by adding a set of vectors that are clearly in the
null space of A.

Finally, it should be noted that the set U is only modi-
fied at steps 8 and 10 of the algorithm. The orthogonaliza-
tion process at step 7 (and the inductive hypothesis) ensure

that O'E’jAI/k = 0 for each pair of integers ¢ and j such that
(i,7) € U, and for 1 < k < m; following step 8. The orthog-
onalization process following the updating of U in step 10
ensures that af,jAuk for each pair of integers i and j such
that (4,j) € U and for 1 < k < mi + s at the end of step 10
as well. Since the set U is not changed between the end
of one execution of the loop body and the beginning of the
next, it follows that part (c) of the claim is also satisfied
at the beginning of the next execution of the loop body, as
required.

Note: It follows from the argument given above that the
claims given as parts (a) and (b) of the lemma are also sat-
isfied at the beginning of the execution of the elimination
phase of the algorithm; this will be used to establish some
of the results that follow.

A.2 Proof of Lemma 2

It is necessary and sufficient to show that either sy = 0
and

U € {(0,1),(0,2),...,(0,0)}

or s;, > 0 and

U - {(SL - 1, 1), (SL - 1,2),. ey (SL,K),
(SL, 1), (SL,Q),. ey (SL,E)}.

at the beginning of the i*® execution of the body of the loop,
for each integer ¢ such that the loop body is executed ¢ or
more times. This is easily established by induction on 1.

The above relationship clearly holds when ¢ = 1, since St
is initialized to be 0 and U is set to be

{(0,1),(0,2),...,(0,0)}

just before the execution of the loop begins.

Suppose that ¢ > 2, the loop body is executed at least
7 times, and the above relationship holds at the beginning
of the i*" execution of the loop body. During this execution
of the loop body, either the tests above step 5 succeed and
steps 5-8 are executed, the first test succeeds and second
fails, so that step 9 is executed, or the first test fails so that
steps 5-9 are skipped.

In the first of these cases, the success of the tests before
step 5 ensure that sy, > 0 and

UcC {(5L7 1)7 (SL72)7 ) (SL,E)}

immediately before step 5. The execution of steps 5-8 (which
begins with sy, being incremented) clearly ensures that s >
1 and

U g {(SL — 1, 1), (SL — 1,2),. ey (SL,K),
(sr,1),(s5,2),...,(sc,0)}.

after these steps are completed. No ordered pairs are added
to U during step 10 (although some may be removed) so the
above containment holds at the end of this execution of the
loop body and the beginning of the next.

In the second of these cases, the execution of step 9 ter-
minates the execution of the loop. Consequently there is no
i+ 15 execution of the loop body, and nothing to be proved.

In the final case (steps 5-9 are skipped), the value of s,
is not changed by this execution of the loop body and no
ordered pairs are added to U (again, some may be removed
at step 10). Consequently the above relationship holds at the



end of this execution of the loop body, and at the beginning
of the next execution of the loop body, as needed to complete
the proof.

Note: A consideration of this argument can be used to
establish a slightly more general result, which will be used
in remaining proofs: The relationships concerning sy, and U
also hold at the beginning of step 10 in the body of this
loop and at the beginning of the elimination phase of this
algorithm.

A.3 Proof of Lemmas3and 4

LEMMA 14. Let i be a positive integer such that the body
of the loop in the algorithm shown in Figure 1 is executed
at least i times. Suppose that, at the beginning of the i
execution of the body of the loop,

o V is the vector space spanned by the vectors o;; for
0<i<spandl1<j</{ and

o W is the vector space spanned by the vectors A'cs, ;
such that 1 < j < ¢ and (sp,j) ¢ U.

Then

(a) A'o;; € V for all integers i and j such that 0 < i <
s —2and 1< j </

(b) For each integer j such that 1 < j < £ there exist vec-
tors n; € V and 0; € W such that A'os, _1,; = n; +0;.

Note: In the following proof if it necessary to consider
the values of several variables and sets as these are changed
during an execution of the body of the loop. While appro-
priate notation will be used to keep track of these values for
some variables and sets (so that, for example, the argument
refers to sets U, [7, and U’, using each to represent the set
assigned to the variable U at different points in the compu-
tation) this is not feasible for the vectors being processed:
Each vector o;,; will have several different values during the
execution of the loop; the context of the claims made, below,
should identify precisely which value is being referred to in
each case.

PROOF. The result can be proved by induction on i. If
i = 1 then s = 0 and claim is trivial. Indeed, it is trivial
for each integer i such that s;, = 0 at the beginning of the
i*™® execution of the body of the loop.

Suppose now that i is any positive integer such that the
above relationships hold at the beginning of the i*" execu-
tion of the loop body. These relationships also hold at the
beginning of step 10 during this execution of the loop body,
if step 10 is reached, provided that the above vector spaces V
and W are adjusted to agree with the above definitions when
st and U are modified.

To see that this is the case, note that either both tests
preceding step 5 succeed, so that steps 5-8 are executed,
the first test succeeds and the second fails, so that step 9 is
executed, or the first test fails so that steps 5-9 are skipped.

Suppose that steps 5-8 are executed, so that s, is incre-
mented to have value s; = s;, +1. Let IA/ be the vector space
spanned by the vectors o;; for 0 < ¢ < spand 1 < j </
after steps 5-8 have been carried out. Then, since Ls; is

initialized to be the sequence
t t t
<A O'gz—l,laA O'gz_LQ, e 7A O'gz_l,g>

at step 5, and the orthogonalization at step 7 does not
change the vector space spanned by the vectors o; ; for

0<i<sr—1=spand1l < j </, thevectorspace)?
contains the original vector spaces V and W as well as each
vector Atai,l,j for 1 < j < /. As aresult (again, since the
vectors o;,; are not changed by these steps, for i < 5) one
canseethatAtai,j eﬁforogigﬁ—landlgjgfas
needed to establish the analogue of claim (a), above.

Notice next that, following step 8, the set U is updated to
be

U=UU{GL.j)|1<j<0).

Let W be the vector space spanned by the vectors A* O5L,j
such that 1<j<fland (51,j) ¢ U. Then, since (sz,j) € U
for all 7, W = {0}. However, as noted above, Al Os5-1,5 € V
so one can choose n; = A’ os5-1;and 0 =0for 1 < j </
in order to establish the analogue of claim (b).

Suppose next that step 9 is executed; then failure is
reported and the computation ends at this point. Step 10 is
not reached and, since there is no subsequent execution of
the loop body, nothing must be proved.

The desired result is trivial in the remaining case (steps 5—
9 are all skipped), since s, the vectors o, ; for 0 < i < s,
and 1 < j < /¢, and the vector spaces V and W are all
unchanged. Set 57 = sp, V V, U U, and W W in
this case.

It remains to consider the effect of step 10. Let V' be the
vector space spanned by the vectors o;; for 0 <7 < 57 and
1 < j < £ on completion of step 10; while some of these vec-
tors are modified this is done as part of an orthogonalization
process, so that the vector space spanned by these vectors is
not changed: V=Y. Now if 0<i<5p—2and1<j </
then, as observed at the end of Section A.2, (i,7) ¢ U at
the beginning of the execution of step 10. Consequently if
i < 51 — 2 then neither the vector o; ; nor A’o; ; is changed
as step 10 is carried out. It follows that Atai,j € V'. Thus
part (a) of the claim is satisfied once again at the beginning
of the next execution of the body of the loop (if, indeed, this
statement is reached), as needed.

It remains to argue that the analogue of claim (b) holds
at the end of the execution of step 10. That is, we must
show that if 1 < j < £ then there exist vectors n; € V' = y
and 0; € W' such that Aloe _,; = n; +0;, where U’ C U
is the set that has replaced U and where W' is the vector
space spanned by the vectors A'os; ; such that s ; ¢ U'.

Recall that W and W' are each defined as the vector
spaces spanned by sets of vectors. Since W is defined in
terms of vectors that are not in U none of these vectors
is changed by the computations that follow. Each of these
vectors is part of the spanning set used to define W’ so that

WCw.

Now, the orthogonalization process included in step 10
can be modelled as a sequence of updates

Ohyi i= Oh,i +Q0jk

where « € Fy, (h,i) € U’, and where (j,k) € U\ U’. Let us
consider the effect of each change on the decomposition of
the vector AtO'S’Z_Lm for 1 < m < ¢ whose existence is to
be maintained.



Uc{Gr-1,1),6G6L-12),...,G5,0,
(51,1),(52,2), ..., (51, 0)},

he{sr —1,50} and j € {sf — 1,51}. Each of these cases
is considered separately below.
Case: h = j =51 — 1. In this case an update

057 —1,i *= 055 —1,i — Q057 -1,k

is performed, where o € Fy, (51 —1,i) € U’ and (57 —1,k) €
[?\U’, so that ¢ # k. The spaces Y and W are not changed by
this update (that is, the sets of vectors used to define these
span the same vector spaces as they did before the update
took place), and the vectors Atagz,l’t are not modified for
any integer t such that 1 <t < £ and t # i. It is therefore
sufficient in this case to confirm that AtO'gZ,lyi can still be
written as the sum of vectors in ¥ = V' and W C W' after
this update.

Both A'os;_1,; and A'os; 1, can be written in this way
before the update performed; suppose that

Atasfi_u =n;+060; and Ato'gz_lyj =n;+0;

where n;,n; € Y and 0:,0; € W before the update. Then,
following the update,

AtUs’i—l,i = 7]; + 0;'

for ) =ni —am; €V and 6 = 60; — ab; € W, as required.
Case: h =31 and j = 57 — 1. In this case an update

Osg.i = Osp,i — QO0sp 1,k

is being performed, where (57,7) € U' C U. The vector
Atagzﬂ- is not included in the spanning set that defines )7\/\,
S0 the set of vectors used to define W spans the same vector
space as before. None of the vectors A’og; _1 ; are changed,
for any of the integers j such that 1 < j < £, so the analogue
of claim (b) continues to hold.

Case: h = j = 5r. In this case an update

Osg.i i= Osp,i — Q083 k

is being performed, where (57,i) € U’ and (51,k) € U\ U,
so that i # k. Since (57,i) € U and (5z,k) € U, neither
A'os i nor A'os: 4 is included in the spanning set used to
define 17\/\, so this set of vectors spans the same vector space
as it did before the update. As in the previous case, none of
the vectors At(fgz,lyj such that 1 < j < /¢ is changed by this
update, so the analogue of part (b) of the claim continues
to hold, once again.
Case: h =5 —1 and j = s7. In this case an update

Osp—1,i *= Osp—1,4 — ®4,kO57 .k

is being considered, where o, € Fq, (51 — 1,7) € U’ and
(s.k) € U \ U’. Unlike the previous cases we will consider
the effects of all such updates at once: For every integer 4
such that (57 — 1,i) € U’, the vector 57 _1,; is updated as

follows:
Os7—1,i = 055 —1,i — E Q4 k05T k-

(ST k) ET\U

Suppose that Atagi,l,i = n;, + 0; where 7; € 17 =V and
0; € W before these updates, for 1 < i < ¢. Then, following
the updates,

AtO'S’Z—l,i =n + 0;
where

/ t
Hi = 91 — E Oéi,kA UsAL,k~
(5T, k) €U\’

Now it suffices to notice that 0, € W': 0; € W' since 0; €
W and W C W'. Each of the vectors Atas’z,k such that

(5z,k) € U\ U’ belongs to W' as well, because each is
included in the spanning set that defines W’ . Consequently
A'os 1, is the sum of vectors in Y =V and in W as
required.

Consequently the analogue of part (b) is satisfied at the
end of step 10 (provided that these computations are ac-
tually carried out, that is, that algorithm does not report
failure and terminate instead). Consequently the claims
also hold at the beginning of the i + 15° execution of the
loop body, if such an execution takes place. [

Note: Once again, it is easily checked from the above
that relationship claimed to hold at the beginning of the
execution of the loop body also holds later on. It also holds
at the point when an elimination phase begins (if there is
one), and this will be used in later proofs.

LEMMA 15. At the beginning of each execution of the body
of the loop of the algorithm shown in Figure 1, s;, > 0 and
(for S1 as defined at line (1) and my = |S1])

{ui | 1<i<mipUdos; | (4,5) €U} =
{0i; |0<i<spand1<j<f} (I7)

This relationship also holds at the beginning of the elimina-
tion phase of the algorithm (if, indeed, there is one).

ProOF. This is another straightforward proof by induc-
tion on the number of executions of the body of the loop.

At the beginning of the first execution of the loop body
S1 = 0 so that m1 = 0 and

{pi [1<i<mi} =0
s =0and U = {(0,5) | 1 < j < {}, so that
{ai,j\(i,j)eU}:{oi,j|0§i§sLand1§j§€}

so that equation (17) holds at this point.

Suppose that equation (17) is correct at the beginning of
the i*" execution of the body of the loop for a nonnegative
integer i. Either both tests before step 5 succeed during
the ™ execution of the loop body, so that steps 5-8 are
executed, the first test succeeds and the second fails, so that
step 9 is executed, or the first test fails and steps 59 are
skipped.

If steps 58 are executed then sy, is incremented to have
value 5 = sp + 1 during the execution of these steps.
Neither S; nor any vector o;; such that 1 < ¢ < s and
(i,7) ¢ U is changed; and the ordered pairs

(52,1),(55,2),..., (5L, 0)

are added to U (which is otherwise unchanged). Conse-
quently the equation at line (17) is satisfied once again, on



completion of step 8, provided that the references to sr, S1
(and m1), and U refer to the values that this integer variable
and pair of sets have on the completion of this step.

If step 9 is executed then there is no 4 + 1°* execution of
the body of the loop, because failure is reported and the
computation ends, so nothing must be proved.

Finally, it is clear that the equation at line (17) is satisfied
before the beginning of step 10 if steps 5-9 are skipped, since
sL, S1 (and my), U, and the vectors ; ; such that 0 < i < s,
and 1 < j < /¢ are unchanged between the beginning of this
execution of the loop body and the beginning of step 10 in
this case.

It remains only to consider the execution of step 10. Note
that sr and the vectors o;,; such that 0 < i < sp and
1 < j </ are not changed by this step, so that the set

{0ij|0<i<spand1<j<{(}

is not changed. On the other hand, S; is changed (if an
i+ 1°* execution of the loop body will take place): A set of
vectors

(Brma+15 Vmy+1), (Hma 425 Vg +2);5 « « 5 (Bmy+2, Vg +5)
is added to this set, where

Hmi+1 = Oiy g1 Bmy+2 = Oig oy -+ s hmy+s = Oig g

for distinct ordered pairs

(i1, 1), (i2,52), - - -, (is, Js)

that belonged to U at the beginning of the execution of
this step. These are removed from U (which is otherwise
unchanged) if the loop body will be executed again; U is not
changed at all if this is the final execution of this loop body.
It follows that the execution of step 10 does not change the
set

{pi |1 <i<mi}u{oi; | (4,j) €U}

either — it merely moves a set of vectors from the second set
forming the above union into the first. Thus the equation at
line (17) is satisfied at the end of step 10 and at the beginning
of the next execution of the loop body — if, indeed, it is
executed again — or at the beginning of the elimination
phase, as required to complete the proof. [J

The next lemma concerns two unusual cases. The more
usual situation is considered in the lemma that follows.

LEMMA 16. Suppose that body of the loop of the algorithm
shown in Figure 1 is only executed once.

(a) Computation ends at step 4 if and only if v; = 0 for
1< r.

(b) If computation ends at step 10 then, for 1 < i < r, v;
is a linear combination of the vectors in the set
{vi | 1<i< |51} US2USs
for the sets S1, S2, and Ss as these are defined at the
beginning of the execution phase of the algorithm.
Proor. This follows by inspection of the code and the

description of each step found in Section 2. []

LEMMA 17. Let i be a positive integer such thati > 2 and
the body of the loop is executed is executed at least i times.
Let

Wii={y; |[0<j<mi}

where my = |S1|, for S1 as shown at line (1) and as defined
at the beginning of the i execution of the loop. Let Sa; be
the set So as it is defined at the beginning of the i™ execution
of the loop.

(a) Suppose there is an i+ 1 execution of the loop as well,
and let Wi ;11 and S2,i41 be the corresponding sets de-
fined at the beginning of the i + 15 execution of the
loop. Then Av is a linear combination of the vectors in
Wh,i+1 U S2,i41 for every vector v € W1 ;.

(b) If the i™ execution of the body of the loop ends at step 4
then Av is a linear combination of the vectors in Wy ;U
So,i for allv e Wy ;.

(¢) Finally, if the i'™ execution of the body of the loop ends
at step 10 then Av is a linear combination of the vectors

n ﬁ/\l U §2 U §3 for every vector v € Wi ;, where
Wi ={y; |0<j <[5}

for where S (respectively, S, and §3) is the set as-
signed to the variable S1 (respectively, S2 and Ss3) at
the beginning of the elimination phase of the algorithm.

Proor. Each part of the claim can be established by
noticing, on inspection of the code, that if the body of the
loop of the algorithm is executed at least k times, for k > 2,
then there exist sets

X23-X31"'7Xk
of vectors such that
lej :XQU.X3U"'U.X]'

for 2 S j S k‘, that iS, lej g Wl,j+1 for 2 S ] S k— 1, and
that Sz,; C Sz 41 for 2 < j <k —1 as well. Indeed (noting
that both S; and S2 are empty sets at the beginning of the
first execution) we may set W11 = Sa1 = 0, so the above
inclusions are now satisfied when j = 1 as well.

(a) The first part of the claim is easily established by in-
duction on ¢, using the above and by inspection of the
code.

Suppose, for a basis, that i = 2 and that the body of
the loop is executed at least three times. Suppose that
v is a vector in Wi o; then one can see by inspection of
the code that Av is one of the vectors included in the
initialization of set R when step 3 is reached, during the
second execution of the body of the loop. Consequently
this belongs to the vector space spanned by the vectors
in Wi2 U R at this point. The orthogonalization of
vectors in R performed at step 4 does not change this
vector space, so that Av belongs to the vector space
spanned by the vectors in W72 U R at the end of this
step as well. Since there is a third execution of the
loop one can see by inspection of the code (including
the updating of S1 and S2) that each vector in R, at
the end of step 4, is a linear combination of the vectors
in X3 that are added to Wi 3 and the vectors added
to S2,2 to produce S2,3. It follows that Av is a linear
combination of the vectors in Wi 3 U S 3, as required.
Now suppose that ¢ > 2 and the properties in part (a)
of the claim hold for . Since there is nothing further
to prove if the body of the loop is not executed at least
i+2 times, let us assume that an i+2"¢ execution takes
place.



Let v be a vector in Wi ;41. Then either v € Wy ; or
v e Xipr = Wi \ Wiy

In the first case it follows by the inductive hypothesis
that Av is a linear combination of vectors in Wi ;41
and S2,;+1. Since Wy ;41 € Wi 42 and Sa,i41 C S2,i+2,
it follows that Av is in the linear span of the vectors
in Wi i42 U S2,542 as required.

On the other hand, if v € X,;;+1 then Av is one of the
vectors included in the set R when step 3 is executed,
as part of the i + 15" execution of the loop body. The
argument given in the basis can now be applied to con-
clude that Av is in the linear span of the vectors in
Wi iy2 U Sa 42 in this case as well.

(b) Suppose that i > 2 and the i*® execution of the body of
the loop ends at step 4: Then all the vectors included
in the set R at step 3 have been set to zero after the or-
thogonalization process in step 4. Let v € W1 ;. Then,
as observed in the proof of part (a), Av is a linear com-
bination of the vectors in W1 ;U S2; if v € W11, and
Av is one of the vectors used to initialize R (in step 3) if
v € Wi, \ Wi—1. Since the orthogonalization process
updates every vector in R by adding a linear combina-
tion of the vectors in Wi ;, the fact that Av has been
replaced by zero implies that Av is a linear combination

of these vectors, as claimed.

(¢) Finally, suppose that the i*® execution of the body of

the loop ends at step 10 and is followed by the begin-
ning of the elimination phase. Once again let v € Wy ;;
then either v € Wy ;—1 or veWi; \ Wi,;—1. In the for-
mer case the claim follows because Av € Wi ; U Ss ;, as
argued above, and because W1 ; C Wi and Sa,i C S. In
the latter case Av is one of values include in the set R at
step 3, and an inspection of the orthogonalization pro-
cess in step 4 and the update process at step 10 (prior
to the beginning of the elimination phase) conﬁrms that
Av is a linear combination of vectors in W1 U Sg U Sg
in this case as well. [

LEMMA 18. Let ¢ be a positive integer such that the body
of the loop in the elimination phase of the algorithm is exe-
cuted at least i times. Let W1 = {v; | 1 <1 < |S1|} for the
set S1 as it is defined at the end of the elimination phase,
and let Sa; (respectively, Ss ;) be the sets of vectors assigned
to the variable Sa (respectively, S3) at the beginning of the
i™ execution of the loop body.

(a) If there is also an i + 1°* execution of the body of this
loop and v € W1 U S3; then Av is a linear combination
of vectors in W1 U Sai41 U S3,i41.

(b) If the algorithm ends immediately after the it execution
of the body of the loop then, if So and S3 are as defined
at end of this execution, and v € W1 U S then Av is a
linear combination of the vectors in W1 U S2 U S3.

PRrROOF SKETCH. Virtually the same argument as used to
proved parts (a) and (b) of the previous lemma can be used
to establish this one, as well: One makes use of the contain-
ments Sz ;-1 C S2,; and S3,—1 C S3,; and a consideration of
the way that vectors in S3; \ S3,,—1 are used to update the
sets S2 and S3 during an i*" execution of the body of this
loop. O

Proor orF LEMMA 3. Both claims can be proved by in-
duction on the number of executions of the body of each in
the loops in the algorithm described in Section 2.

(a) Consider first the body of the loop in the algorithm
shown in Figure 1. The first claim is trivially satisfied
at the beginning of the first execution of the body of
this loop, since S1 = @ (so that m1 = 0), s = 0,
oo =u;for 1 <j</l andU={(0,5)]|1<j5<(}:

Vl :VQI{U1,uQ,...,Ug}.

Suppose now that i > 1, the body of the loop is ex-
ecuted at least ¢ times, and sets of vectors Vi and V2
span the same vector space at the beginning of the i*"
execution of the loop.

During this execution of the loop, either both tests be-
fore step 5 succeed and steps 5-8 are executed, the first
test succeeds and the second fails, so that step 9 is ex-
ecuted, or the first test fails and steps 5-9 are skipped.
Suppose first that both tests succeed and steps 5—8 are
executed. In this case, sy is incremented, and replaced
by 51 = s +1, so that the set of vectors Vo mentioned
in the claim is replaced by the set

Va = {(A")

On the other hand, during this computation, each of
the vectors o5 ; is initialized to be equal to A’ ; for
1 < j < ¢, and the ordered pairs (5, 7) are added to U
for 1 < j < ¢. Notice that, by Lemma 15, 05, ; € V1
for 1 < j < £ so it is clear by the inductive hypothe-
sis that A’os, ; is a linear combination of the vectors

u; | 0<i<5gand1<j</f}

in V5. Since the orthogonalization process at step 7
does not change the vector space spanned by the vec-
tors being processed, it should be clear that steps 5-8
replace the set Vi by another set of vectors, Vi that
spans a subspace of the vector space spanned by Va.

Since 171 includes all the vectors in Vi it is clear, by the
inductive hypothesis, that the vector (A*)%v; is in the
linear span of the vectors in f/\l, for 0 < 7 < s; and
1 <j < £ It is therefore necessary and sufficient to
show that (A")*Zu; = (A")*LT1y; is in the linear span
of these Vectors as Well in order to establish that the
vectors in V1 and in V2 span the same vector space.
Consider the vector (A")*Lwu;; since this is in V5 it fol-
lows by the inductive hypothesis that this is in the lin-
ear span of the vectors in V4 and the alternative char-
acterization of this set given by Lemma 15 can be used
to conclude that

(AN Lu; = w1 + wa + ws

where

e w; is a linear combination of the vectors o}, ; such
that 0 < h <sp—2and 1 <i </,

® w2 is a linear combination of the vectors os, —1,;
such that 1 <1i </, and

® ws is a linear combination of the vectors o5, ; such
that 1 <i < 2.

Consequently (A%)*Lu; = Alw; + Alws 4+ Atws. It fol-
lows by part (a) of Lemma 14 that A‘w, is an element
of the vector space spanned by the vectors in Vi, so
it belongs to the vector space spanned by the vectors
in Vi as well. Part (b) of Lemma 14, and the fact
that the orthogonalization process at step 7 does not
modify the vector space spanned, imply that Afws is in



the vector space spanned by the vectors in f/z as well.
Since AtasL,i was used as the initial value for o ;,
the above observations and characterization of ws im-
ply that Atw3 is in the vector space spanned by the
vectors in V; too. Consequently (AY)*Lo; is also in
the vector space Spanned by these vectors, so that the
vectors in V1 and in V2 span the same vector space.
Suppose next that step 9 is executed; then there is no
i + 15¢ execution of the loop, or elimination phase, so
there is nothing that must be proved.

Finally, if steps 5-9 are skipped entirely then the sets V4
and V2 are not changed, during the execution of the
loop body, before step 10 is reached.

Thus the vector spaces (corresponding to) Vi and Va
immediately before the execution of step 10 span the
same vector space, as required.

Now it suffices to note that, while step 10 includes an
orthogonalization process that modifies some of the vec-
tors in V7 and V5 this does not modify the vector space
that either set of vectors spans. Since these sets of vec-
tors are not changed between the end of step 10 and
the beginning of the next execution of the loop body,
it follows that the vector spaces Vi and Va2 span the
same vector space at the beginning of the i + 15 execu-
tion of the loop body (if there is such an execution), or
at the beginning of the elimination phase of the algo-
rithm (if there is not). Since S; and U are not modified
at all during the elimination phase, V4 and V5 are not
changed either, so they span the same vectors space
throughout the elimination phase.

The proof of part (b) is similar to that of part (a): We
proceed, again, by induction on the number of execu-
tions of the body of each of the loops in the algorithm.
To begin, consider the body of the loop of the Lanczos
phase of the algorithm as this is shown in Figure 1.

If the body of the loop is only executed once before
the algorithm moves to the elimination phase then it
is clear that the vectors in Wi must span a subspace
of that spanned by Ws = {v1,v2,...,v,}, since each of
the vectors in Wi is a linear combination of the vec-
tors in Wa. Part(b) of Lemma 16 now implies that W1
and W5 span the same vector space.

One can see by inspection of the code (echoing the ar-
gument used to establish the above lemma) that W;
and W3 span the same vector space, namely, the space
spanned by wv1,v2,...,v,, at the beginning of the sec-
ond execution of the body of this loop whenever this
loop is executed two or more times.

It is also clear, since sg = —1 at the beginning of the
first execution of the loop body and since sg is incre-
mented during every such execution, that sp = ¢ — 1,
and

Wo={A |0<j<i—1land1<k<r}

at the beginning of the " execution of the loop body
whenever this loop body is executed ¢ or more times.
Finally, a containment relation is clear. Suppose that
i > 1 and the body of the loop is executed i or more
times; let Wi ; (respectively, W; ;11) be the set Wi as
this is defined at the beginning of the " (respectively,
i+15%) execution of the body of the loop. Then W1 ; C
Wit

With all that noted, let ¢ be an integer such that ¢ > 1,
the sets of vectors Wi and W5 that are defined at the
beginning of the i'" execution of the body of the loop
span the same vectors space, and suppose the body of
the loop is executed at least i + 1 times. Notice that
the vector space spanned by W7 ;11 is a subspace of the
vector space spanned by the vectors in the set

Wl,i U {A’y | v E Wl,i}-

Since W1 ,; spans the same space as the set of vectors
Adyy such that 0 < j <i—1and 1 <k < ¢ it follows
from the above that Wi ;41 must span a subspace of the
space spanned by the vectors AJv, for 0 < j < i and
1 < k < {. Tt is necessary and sufficient to establish
that A’wvy, is in the space spanned by Wiy 1, for 0 < j < 4
and 1 < k < /4, in order to establish that W; and Wa
span the same vector space at the beginning of the i4-1%¢
execution of the loop.

Suppose first that 0 < j < i — 1; then it follows by the
inductive hypothesis that A7vy, is in the space spanned
by Wi, and the containment of Wi ; in Wi ;41 estab-
lishes the desired result.

On the other hand, if j = ¢ and ¢ > 1, as assumed
above, then AJvy = A(A7"'vy) = Ay for a vector v
that is in the vector space spanned by Wi ;. It follows
by part (a) of Lemma 17 that A~ is in the space spanned
by Wi i1 for each vector v € Wi ;. All linear combi-
nations of these vectors must be in the space spanned
by Wi,it1 so, in particular, A7v, = A'vj, must be in
this space. It follows that W; and W5 span the same
vector space at the beginning of the i 4+ 15 execution
of the body of the loop.

It follows by the same argument that W; and W2 span
the same vector space at the end of the final execution
of this loop, so they also span the same vector space at
the beginning of the elimination phase.

Precisely the same argument, using Lemma 18 in place
of Lemma 17 (and recalling that Sy is a subset of the
null space of A) can be applied to establish that W,
and W5 span the same vector space at the beginning of
every execution of the loop in the elimination phase of
the algorithm, and on its termination. [

PROOF OF LEMMA 4. Consider the set of vectors

{vi]| <i<mi}US2USs

mentioned in the claim; it follows by part (b) of Lemma 3
that each of the vectors in this set belongs to the Krylov
space generated by vi,va, ..., vr.

(a)

This follows by part (b) of Lemma 17 and part (b) of
Lemma 18: Regardless of whether termination ends at
step 4 of the body of the loop in the first phase or on
completion of the loop in the second phase, the vector
space spanned by

{vi |1<i<mi}US2USs

is contained in the Krylov space, includes each of the
vectors v1, ve, . . ., vy and, by the above lemma, is closed
under multiplication by A. The only such space is the
Krylov space itself.

Clearly, each of the vectors in S> is in the intersection
of the Krylov space and the null space of A, so the



vector space that is spanned by this set of vectors is a
subspace of this intersection.

Suppose now that A is an element of the intersection
of the Krylov space and the null space of A. Then it
follows by part (a) that

mi1
A= E ChUh + K+ w (18)
h=1
where c1,c2,...,cm,; € Fq and where  is a linear com-

bination of the vectors in Sz, and where w is a linear
combination of the vectors in S3. Now it follows by the
orthogonality relations given at line (2), the fact that
each vector in S3 is in the null space of A, and the fact
that ufAn =0 for 1 < i < |S1| and n € S, that, for
1<i<ma,

my
,uEA)\ = /Jfa (Z c;Lz/;L> + ,uEAli + ,quw

h=1

mq
= Z ChuﬁAVh +0

h=1

(since Ak = 0 and pfAw = 0)
= cipt Av; (since ptAvy, = 0 if h # 1)
= C;.

On the other hand, ufAX = 0, since A is in the null
space of A. Thus ¢; = 0 for 1 < ¢ < mg, so that
A = K+ w is a linear combination of the vectors in Ss
and Ss3.

Suppose that Ss = {1, (2, .-
w=di(1 +d2C2+ ..., +dm;Cm,

for di,da,...,dm,; € Fq. Since k and A are both in the
null space of A, w = X\ — k is in the null space as well,
S0

,Cms } SO that

d1AC1 + dQACQ + -+ dmlAle = Aw = 0.

However, it follows by the construction of Ss that the
vectors A(i, A, ..., A(m, are linearly independent, so
that dy =d2 =+ =dm; =0 and w =0 as well. Thus
A = Kk so that A is a linear combination of the vectors
in Sz, as claimed. [

A.4 Proof of Lemmas5 and 6

LEMMA 19. Consider the value of si and the set S1 at the
beginning of any execution of the loop body in the algorithm
shown in Figure 1, and at the beginning of the elimination
phase.

If i is an integer such that 0 < i <sp —4and1 <5</
then

(a) 0i,; = pr for some ordered pair (i, vi) € Si.

(b) Alai; is a linear combination of the first entries in the
ordered pairs that have been included in Si:

my
t
Aloi; = capn

h=1
where ¢, € Fg for 1 <h <m;.
Furthermore, if cn # 0, for 1 < h < mg, then

Hh = Ou,v

for integers u and v such that 1 < v </f and 0 < u <
i+ 3 <sp—1.

PrOOF. Recall that, for 0 < i < s and 1 < j < 4,
either o;; € {p1,p2,-..,pm,} or (4,j) € U. It follows
by Lemma 2, and the remarks at the end of Section A.2,
that o;,; € {p1, p2, .- ., m, } whenever i < sy — 2, implying
part (a). Indeed, part (a) is also satisfied at the beginning
of a previous execution of the loop body, namely the first
execution of the loop body such that sy, = i + 2. We will
consider the processing of vectors between this execution of
the loop body and the current one in order to complete the
proof.

Let m1 be the size of the set S; at the beginning of this
previous execution of the loop body; then, at this point, Si
consists of the ordered pairs (up,vp) for 1 < h < my. It
follows again by Lemma 2 that (¢,j) ¢ U at this point so
that, in fact, o5 ; = ux where k < mi. Furthermore, if U is
the set U as it is defined at the beginning of this execution
of the loop body then part (a) of Lemma 14 can be used to
establish that

mi
t o~
Aoy = E Chptn + E dn,kOh,k
h=1 (h,k)eU

where ¢, € F, for 1 < h < i and dpj, € Fy for (h,k) € U
as well. Since sy, currently has value i+ 2, pu, must be equal
t0 ou,w Where u < 4 + 2 at this point, for 1 < h < mj.

Consider the effect of subsequent executions of the loop
body, up to the beginning of the execution when the value of
st will be incremented to i+ 3. The orthogonalizations that
are performed update vectors by adding linear combinations
of the vectors pp, for ordered pairs (pp,vp) in S1. While
additional ordered pairs can be added to Si, they must all
be of the form (un,vn) where pn = ouw, for u < i+ 2,
since these are the only vectors that are available before
sr, is incremented. Now, since sy, is incremented during this
execution of the body of the loop, steps 5-8 of the algorithm
are executed, so that the tests prior to step 5 succeeded, and
it is must be the case that the set U is a subset of

{(i4+2,1),(i +2,2),...,(t+2,0)}

at this point. Consequently, if m] is the size of the set Si
at this point then S; now consists of the first m} ordered
pairs (up,vp) for 1 < h < m) that will also be in S at the
beginning of subsequent executions of the loop body, and
A'o;,; can now be expressed as

m) ¢
t / /
Aloij = Z Chibh + de0i+2,k
h=1 k=1

where ¢, € F, for 1 < h < m}, d, € Fy for 1 <k < £ and,
furthermore, each dj, is only nonzero if (i + 2, k) is included
in the set U at the beginning of this execution of the loop
body.

Next consider the effect of subsequent executions of the
loop body, up to the beginning of the execution when the
value of s; will be incremented to ¢ + 4. The only or-
dered pairs added to S; must be of the form (un,vr) where
fh = Ou,w for u < i+ 3 since no other vectors oy, are yet
available. Orthogonalizations update vectors by adding lin-
ear combinations of the first entries of ordered pairs that
have already been added to Si. Finally, since step 5 of the



loop body will be executed once again, all ordered pairs
(1 + 2,k) for 1 < k < £ must have been removed from
the set U at this point. Consequently, if m] is the size
of S1 at this point then each of the ordered pairs (pn,vn)
for 1 < h < mj in S at this point will also be included in S1
during subsequent executions of the loop body, and

my
t *
A Oi,j = E Chllh
h=1

where ¢j, € Fy for 1 <h < m].

Now, since the claim in the statement of this lemma con-
cerns a a vector o;; where ¢ is less than or equal to the
current value of sy, minus four, the claim concerns an execu-
tion of the loop body that follows the one described above.
Consequently m1 > m] at this point and the equation given
in part (b) can be obtained by setting c;, to be ¢, for 1 <
h < m] and setting ¢ to be zero for mi +1 < h<m;. O

LEMMA 20. Consider the set

S = {(N1V1)7 (“271/2)’ R (/‘l’m17ym1)}

at any point during the execution of the algorithm in Fig-
ure 1 and at the beginning of the elimination phase of the
algorithm. Suppose that uy = o0y, 5, for 1 <k <mjy.

Then, if k1 and k2 are integers such that 1 < k1 < ke <
mai, then ik, > ik, — 1.

PrOOF. Notice that if k1 < k2 then the ordered pair
(tko, Vi) was added to S either during the same execu-
tion of the loop body as (fik,,Vk, ), or during an execution
that followed the inclusion of (uk,, vk, ). For all integers i,
and jj the ordered pair (un,vn) such that pp, = oy, 5, is
added to S1 during the same execution of the loop body as
the one in which the ordered pair (ip,jn) is removed from
the set U.

The claim now follows from Lemma 2 and inspection of
the code in Figure 1: The set U cannot include any ordered
pairs (u,v) such that u < 45, — 2 at any execution of the
loop body that either includes the introduction of (px, , vk, )
to S1 or follows it. [J

COROLLARY 1. Once again, consider the above set S1 at
the beginning of any execution of the loop body of the algo-
rithm in Figure 1 and at the beginning of the elimination
phase of the algorithm.

If i is an integer such that 0 < m1 — 6 then A'u; is a
linear combination of the vectors pi1, b2, .. ., [lit6e—1-

PRrROOF. We claim first that if ¢ < m;—6¢ then p; = 0y, ;
for integers j; and k; such that j; < sp —4 and 1 < k; <
£. Suppose otherwise: then j; > sr — 3 and it follows by
Lemma 20, above, and an inspection of the code, that

Mitc :Uji+c,ki+c for 1 SCS 64
where (ji+1, ki+1), (ji+2, ki+2), ey (ji+6g, ki+6[) are distinct
ordered pairs of the form (u,v), where sp —4 < u < sz, and
1 < v < {. Since only 5¢ such ordered pairs exist this is
clearly impossible.

It now follows by Lemma 19 (again, setting u; = o0, ;)
that

mi
t
Aoy = E Chfbh,
h=1

where ¢, € Fq for 1 < h < m; and where ¢, is only nonzero
if pun = oy, for integers u and v such that 1 < u < j; + 3
and 1 < v < /.

Consider the largest integer w such that 1 < w < m; and
fw = Ciy i, Where i, < j; + 3. One can see, again, by
Lemma 20 that each of the vectors

Miy fit1s -5 Pw

must be equal to one of the ordered pairs oy, where j; —1 <
u < ji+4and 1 <v < /{ and, again, no such ordered pair
corresponds to more than one of the above vectors. Since
only 64 such ordered pairs exist it follows that w—i < 6 —1;
the claim now follows by Lemma 19. [

LEMMA 21. Consider the sets S1 and Sz at the beginning
of any execution of the body of the loop in the algorithm in
Figure 1, and at the beginning of the elimination phase. If i
is an integer such that 1 <i < my —r then

Avi = ¢i + 13

where ¢; is a linear combination of the vectors v, va, ..., v;,
for 7 = min(ma,i+ 2r — 1), and where 7; is a linear combi-
nation of the vectors in Sa.

PRroOF. Note that at most r ordered pairs are added to
the set S1 during each execution of the loop body so, since
i < my — r, the loop body has been executed at least once
more since the ordered pair (u;,v;) was introduced. Indeed,
the size of S1 was at most i +r —1 < m; — 1 at the end
of the execution of the loop body that included this ordered
pair in Si. A subsequent execution of the loop body must
therefore have run to completion (without terminating the
computation but, possibly, leading to the elimination phase)
since at least one more ordered pair was subsequently added
to S1.

The result now follows by Lemma 17, above, and the ob-
servation that at most r more ordered pairs have been added
to S1 during this next execution of the loop body — so that
the size of Sp is at most ¢ + 2r — 1 at this point. [

ProOOF OF LEMMA 5. The claims are trivial for the first
execution of the body of the loop of the algorithm shown in
Figure 1, since S1 = @ and m1 = 0 at this point.

(a) Consider first the orthogonalizations at step 4 of the
body of the loop shown in Figure 1. Suppose that ( is
one of the vectors orthogonalized at step 4, and consider
any vector uj; such that 1 < j < m; —6¢—r. It follows
by Corollary 1, above, that

j+60—1

Alp; = Z Chith
h=1

for c1,c2,...,¢cj+60—1 € Fq.

On the other hand, ( = Avy where mi—r+1 <k < ryq,
since vy is the second entry of one of the ordered pairs
added to Si during the previous execution of the loop
body.

It follows that

/.L;AC = ,u§A2Vk
= (A"py)" Avy
j+60—1
Z cnph Avy
h=1

=0,



by the condition at line (2), since h < 7 +60—1 <
mi—r—1<k.

Similarly, if a value ¢ is being orthogonalized as shown
at line (9) during the elimination phase of the algo-
rithm, then either { = Ay; for an integer i such that
m; —r+1<i¢<my, or ( = At for 7 € S3. The
same argument as above can be used to establish that
,uﬁAC =0for 1 <j<my—6¢—rin either case.

Suppose next that o, ; is one of the vectors that is be-
ing orthogonalized during an execution of step 7 in the
algorithm shown in Figure 1; then os, ; = A'os, _,.;
before this step begins.

Suppose that (s — 1,7) € U at this point. Then an
examination of the algorithm (including the details of
step 10) confirms that U;L_l,]-AVh =0for1<h<m
at this point in the computation.

Suppose instead that (sp — 1,5) ¢ U; then o5, —1,; =
n, for some integer h between 1 and mi, that is,
0s;—1,; is the first entry of an ordered pair that has
been included in S;.

Consider now the smallest integer h such that p, =
(s — 1,k) for any integer k. It follows by Lemma 20,
above, that each one of the vectors

hs Boht1s - -y [y

must be equal to one of the vectors

Osp,—2,1,0s,-2,25 -+ -5 0sp —2,0,

Os;—1,1,0s,—1,2y---,0s, —1,£-

The orthogonality conditions given at line (2) clearly
imply that pn, g1, - - -, bm, are distinct, so it must be
the case that m; —h+1 < 2/, that is, h > mq —2(+ 1.
It follows that if (s, — 1,7) ¢ U then o4, —1,; = us for
some integer h such that mi —2¢+1 < h < my. In
this case it is clear (once again, by the orthogonality
conditions at line (2)) that

t
UsL—l,jAVk =0

for every integer k such that 1 < k < mj — 2/.

Now consider an integer k such that & < m; — 2¢ —
2r. It follows by Lemma 21 that there exist elements
€1,C2,...,Ckt2r—1 Of Fg and a vector 7 in the linear
span of the vectors in Ss such that

k+2r—1
Avy = ( Z Cth> + 7.

h=1

Since each vector in Sz is in the null space of A, A7 = 0.
It now follows that

ol JAu, = (Alos, 1) Ay

SL»J
= O-.ZLfl,jA(Ayk‘)

k+2r—1
t t
= E ChUstl,jAVh +O-SL71,]'AT

h=1

=0.

This follows, in particular, by the fact that h < mi+2¢
if h < k+2r—1, so that 0§L71,jAVh as noted above,
and by the fact that 7 is in the null space of A. []

ProoF OoF LEMMA 6. This is a consequence of Lemma 20
and the fact that if ¢ = 0 then U = () at the beginning of the
execution of the body of the loop in which o; ; is initialized,
while

UC{(i—1,1),(:—-1,2),...,¢—1,0)}

at the beginning of this execution of the loop body if i > 0.

Suppose first that the ordered pair (4,7) is eventually re-
moved from the set U; the current version of the vector oy, ;
is used as the first entry of an ordered pair (un,vs) that is
added to S; during the same execution of the body of the
loop. If S; had size m; at the beginning of the execution of
the loop body in which o; ; was initialized then it is clear
that A > mj and one can see by the above lemma that each
of the values

HKmi4+1, Bmy42, -5 b
must be equal to oy, where 1 <v < fandv € {i—1,4,i4+1}.
Furthermore each of these 3¢ vectors o, can be used as
the first entry of at most one of these ordered pairs. Conse-
quently h —my < 3¢ as claimed.

Suppose, on the other hand, that 3¢ or more additional
ordered pairs are eventually added to S; without using o;,;
as the first entry in an ordered pair; then it follows by the
above counting argument that a vector o, , must be used
as the first entry of an ordered pair added to S; for u >
1+ 2. However this is impossible, since (3, j) will not have
been removed from the set U before this: The second test
before step 5 will fail, and the Lanczos phase of the algorithm
will terminate, before vectors oy, such that u > ¢ + 2 are
initialized at all. [

A5 Proof of Lemma?7

The proof of Lemma 7 is rather long. It can be split into
the following stages, each of which will be handled in one of
the subsections that follows.

e To begin it will be shown that (because of the use of a
different block size on the left and the right) it can be
assumed, without loss of generality, that the matrix A
has at most r invariant factors that are different from 1
or z. This assumption is defended in Subsection A.5.1,
below.

e It can also be shown that, at each point during the
execution of the body of the loop shown in Figure 1,
either failure or a premature movement to the elimi-
nation phase can only take place if a matrix V} AVg is
rank-deficient, where the columns of Vi are an initial
set of the vectors

g, Alug, Alus, ..., Alug,
(At)Q'LLl, (At)2UQ, ey (At)2'l,Lg, [SPEN

and where the columns of Vi are an initial set of the
vectors

U, U2,y ...

. Avy,
2 2
A ’Ul,A v2, ..

This will be shown in Subsection A.5.2.

e Finally, the above can be applied with previously estab-
lished bounds [10] to bound the probability of failure of
the algorithm as well as the probability of premature
termination of the Lanczos phase, in order to establish
the lemma. This is carried out in Subsection A.5.3.

V1,02, ...,0r, Av1, Ava, ..

2
AU



A5.1 Assumption Concerning Invariant Factors

For the rest of this proof we will assume that A has at
most 7 invariant factors that are different from 1 or x; the
goal of this section is to defend that assumption.

Suppose now that the Krylov space of the given vectors
v1,v2,...,v, has dimension d; let x1,z2,...,2q4 € F;"** be
a basis for this Krylov space. Recall that the Krylov space
is (by definition) closed under multiplication by A, so that
Ax; is a linear combination of 1, x2, . . ., x4 for each integer ¢
such that 1 <i <d.

Let y1,y2,...,yYn—a be a completion of this as a basis
for F,"*', that is, suppose that the vectors
 Yn—d c Fqnxl

L1,T2,...,Td,Y1,Y2, .-

are linearly independent. We may now define a matrix Ae

F,"*™ as an operator on these vectors. Let
Av; = Aw; for1<i<d (19)
and let
A\ijO for1<j<n-—d (20)

Linealrity can be used to define Az for any other vector z €
Fom >t

A consideration of a “rational Jordan form” of a matrix
(block diagonal, with blocks that are companion matrices
of powers of irreducible polynomials) establishes that if a
matrix has more than r invariant factors that are different
from 1 or z then its image is not contained in a Krylov
space of r or fewer vectors. This can be used to argue the
following.

FACT 1. The above matriz A has at most r invariant fac-
tors that are different from 1 or x.

LEMMA 22. Let o € F,"*! be any element of the Krylov
space generated by the vectors vi,va,...,v, using the ma-
trixz A.

(a) f(A)a=
b) (f(AHB) a = (f(ﬁt)ﬁ) o for every polynomml f e

Fqlz] and for every vector 3 € F,™*

f(A)ar for any polynomial f € Fylz].

(c) (f(AHB) Aa = (f(ﬁt),zfa for every polynomial f €
Fq[x] and every vector B € F"*", as well.

PRrROOF. Let a be any element of the Krylov space gener-
ated by the vectors vi,v2,...,v,. Then « is a linear com-
bination of the vectors zi,x2,...,2q (comprising a basis
for this Krylov space) that are used to define A at Equa-
tions (19) and (20), so it is clear that Ao € Aa.

(a) Since the Krylov space generated by vi,v2,...,vr is
closed under multiplication by A it is easily proved by
induction on e that A'a = A« for every element « of
this Krylov space and for every integer ¢ > 0 as well.

Now let f € Fg[]; then
f=cea®+cemrz® ezt

for an integer e > 0 and for ce, ce—1,...,c1,c0 € Fq, s0

that
Ao = Z cnAla
h=0
=Y endla
h=0
= (A,
as claimed.

(b) Part (b) follows from part (a), since

(F(ANB) o = B'(f(A)a) = B'(f(A)a) =

as claimed.

(F(ANB) e

(c¢) Finally, the claim in part (c) is easily established using
part (b) and the polynomial g =z - f. [

Notice that it follows by part (a) of the above lemma that
the Krylov space generated by v1, va, ..., v,, using matrix A,
is the same as the vector space generated by these vectors
using matrix A instead. As noted before that, A has at
most r invariant factors that are different from 1 or x. The
above assumption can therefore be justified by establishing
that the algorithm in Figure 1 behaves in essentially the
same way using A as the given coefficient matrix as it does
when A is the given matrix instead. The remaining lemmas
in this section establish that this is the case.

Now let u1,uz,...,us € F,"* and consider the following
executions of the algorithm shown in Figure 1 on inputs
V1,V2,...,0r, When wui,us,...,ur have been chosen as the
used to initialize the sequence Lo at step 1:

(i) The algorithm is executed using the matrix A.
(ii) The algorithm is executed using the matrix A.

Let s, sr, S1, So, i, vi, Li, 055 R and U denote the
values that are maintained during execution (i) of the algo-
rlthrn as these are debcrlbed 1n Section 2, and let 5., Sr
Sl, Sg, iy Vi, Ll, Tij, R and L denote the corresponding
values that are maintained during execution (ii), instead.

LEMMA 23. Let i > 1. Then the body of the loop in the
algorithm shown in Figure 1 is executed i or more times dur-
ing execution (i) of the algorithm, as described above, if and
only if it is executed ¢ or more times during execution (ii)
times, as well. The values maintained by the algorithms are
related as follows at the beginning of the i execution of
the loop body, whenever the loop body is executed i or more
times.

(a) 5L = s and Sg = Sg.

(b) \§1| = |S1], i = v for 1 <1 < |Si|, and there exist
polynomials fi ; € Fglz] for 1 <i < |S1| and1<j </
such that

pi = fi1(ADu1 + fio(AYuz + -+ fio(Aue

and
fl 1( )ul +f1 2( )u2+ +fi’z(1/4\t)Ug
as well.

(c) Sz =



(d) For 1 <i < s and 1 < j < £ there exist polynomials
fije for 1 <k < £ such that

iy = fig1(ADur + fij2(ADuz + -+ fije(A ue

and
Gig = figa(Aus + figa(A)us + -+ fige(A)ug
as well.

(e) R=R.

(f) U =U and, for every ordered pair (i,§) such that 1 <
1 < sp and 1 < j < such that (i,7) ¢ U, and for every
integer k such that 1 < k <|Si|, 0i,; = ux if and only
if Gij = lk-

ProoF. This follows by a straightforward induction on 4,

using the results of Lemma 22 and inspection of the algo-
rithm shown in Figure 1. [

LEMMA 24. The following properties are satisfied by ex-
ecutions (i) and (ii) of the algorithm shown in Figure 1,
where these are as described above.

(a) Each execution uses the same number of executions of
the body of the loop.

(b) If i is an integer such that the body of the loop is exe-
cuted at least i times (for either execution of the algo-
rithm) then the first exzecution fails by executing step 9
during the i™" ezecution of the loop body if and only if

the second does so, as well.

(¢) If i is an integer such that the body of the loop is exe-
cuted at least i times (for either execution of the algo-
rithm) then the algorithm terminates at step 4 of the it
execution of the body of the loop, during execution (i),
if and only if at does so during execution (ii) as well.

(d) If i is an integer such that the body of the loop is ex-
ecuted at least i times (for either execution of the al-
gorithm) then the algorithm moves to the elimination
phase immediately after the execution of step 10, in the
i™" ezecution of the loop body as part of execution (1)

of the algorithm, if and only if it does as part of erecu-
tion (ii) as well.

ProOOF. This can be established by a continuation of the
argument used to prove Lemma 23, above: Notice that, by
the results of Lemmas 22 and 23, precisely the same condi-
tions are checked in order to decide whether the algorithm
should be terminated during the final execution of the loop
body at (or immediately before) steps 4, 9, and 10, so the
same decisions are made in each case. []

A continuation of this argument establishes the following
as well.

LEMMA 25. Suppose that ezecutions (i) and (ii) of the
algorithm, described above, proceed to an elimination phase.
Let

Sy = {(/“7 V1)7 (sz VQ)’ [ERE) (I’Lml ) le)}
be the set of ordered pairs of vectors computed (as “S1”) by
ezecution (1) of the algorithm, at beginning of the elimination
phase, and let

S1 = {(//Z1>I//\1)7 (ﬁ27 /7/\2)1 ) (ﬁmA17 /V\m’T)}
be the corresponding set of ordered pairs of vectors computed
(as “S17) by execution (ii) of the algorithm, at the beginning
of the elimination phase.
Then my1 = m1 and, indeed, v; = U; for 1 <i < m;y.

A5.2 Characterization of Failure or Premature Ter-
mination
For j > 0, let Vi ; € F,"*U*D? bhe the matrix with
columns
<y Atug, cee

(At)jU1, (At)jUQ, ..

t t
UL, U2,y .oy Ug, A ur, A'uag, ..

(AN
Let 7 be the rank of A and set 17L e Fq"X? be the matrix
whose columns are the initial 7 columns of the above matrix

Vi,rr/0- ,
Let Vg,; € F"*U+D" be the matrix with columns

.y Upy Avr, Ava,y ... Aoy, ..

Ajvl,AJ'Uz, v

V1, V2, ..

, A,

LEMMA 26. Let i > 1 such that the body of the loop in
the algorithm shown in Figure 1 is executed at least i times.
Suppose, furthermore, that

|U| < £~—log,n]—¢

at the beginning of the i execution of the loop body, so that
either steps 5—8 or step 9 are executed. Theni > 2, fs;, < T,
and either

U C{(sz,1),(52,2),...,(sr,0)}
(so that step 9 is not executed) or the matriz

Vi, —1AVR sp 1 € F/o1 X0
has rank less than ¢sy,.

PRrROOF. To begin notice that, by construction, |U| = £
at the beginning of the first execution of the loop, so that
i > 2 if U < £~ [log,n] —¢. Furthermore it is clear,
by inspection of the code that, whenever the tests following
step 4 are executed,

|S1] = (sL + 1) = |U|,
so that
lsp = |S1| — £+ |U| < |S1| — [log, n] — 6.

Since the orthogonality relations at line (2) imply that the
vectors Avi, Ava, ..., Avy, are linearly independent, |S1| =
m is less than or equal to the rank 7 of A and it follows by
the above that ¢s;, < 7 as well.

Now consider the sets S1 and U as they were defined at
an earlier execution of the body of the loop, namely, the
execution when the value of the variable “sp” was first set
to be equal to one less than its value at the beginning of the
i*" execution of the body of the loop. It follows by part (a) of
Lemma 3, and by Lemma 15, that the columns of the above
matrix Vi s, —1 span the same vector space as is spanned by
the vectors

{ojr |0<j<sy—1land1<k<{(},

where the vectors in this set are as defined at the end of this
earlier execution of the body of the loop (and the beginning
of the one that follows it).

Consider once again the (later) execution of the loop body
that is mentioned in the statement of the lemma and, in
particular, the set S; as it is defined when the tests after
step 4 are carried out. It follows by part (b) of Lemma 3,



the fact that Av = 0 for all v € S2, and the fact that S35 =
at this point, that (for m; = |S1]|) the vectors

Avi, Ava, ..o AU,

span the same vector space as the columns of the matrix
AVR,SR71~

Suppose now that the matrix VLt,sL—lAVR,sR—l has full
rank, ¢s;,. Then it follows by the above observations and
inspection of the code — notably including the greedy way
in which values are chosen to be removed from U — that
each of the ordered pairs (j,k) for 0 < j < sy — 1 and
1 < k < ¢ must have been removed from U and used to
define the first entry of an ordered pair (un,vs) that has
been added to S; before the beginning of the i*" execution
of the body of the loop. Consequently

U C{(sL,1),(s£,2),...,(s2,0)}

at this point, as required to establish the above claim. [

LEMMA 27. Let ¢ > 1, suppose that the loop in the al-
gorithm shown in Figure 1 is executed at least © times, and
that step 10 is reached during the i ezecution of the loop
body. Consider the values s;, and sr, and the sets Si, So
and Ss as they are defined on completion of this step of the

algorithm.

(a) Suppose that (sp+1) is less than or equal to the rank 7
of A at this point. Then either the matriz fo’sL AVR sy
has rank less than that of AVg s, at this point, or the
body of the loop will be executed at least once more.

(b) Suppose, instead, that (sp + 1)¢ is greater than 7. If
the matrices ‘7LAVR,5R and AVR s, have the same rank
then the body of the loop will be executed at least once
more. Otherwise the elimination phase will begin after
the completion of this step; the size of the set S1 will
be greater than or equal to the rank of ‘A/LAtVR,SR when
the elimination phase begins.

PRrOOF. The argument needed to establish this lemma re-
sembles the one used to prove the previous one.

(a) Suppose first that (sz 4 1)¢ is less than or equal to the
rank of A. Once again, it follows by Lemma 3 that
the columns in the matrix Vi s, span the same vector
space as the vectors

{uj |1<j<mi}ul, (21)

while the columns of the matrix AVr span the same
vector space as the vectors

{Av; [1<j<m}U{Ar|T€R}), (22)

for S1, m1 and R as they are defined at the beginning
of this execution of step 10. Consequently VLt’sL AVR sy
has the same rank as the matrix Wﬁ Wgr, where Wy, has
the columns shown at line (21) and W has the columns
shown, and it suffices to consider W Wg instead.
Note next that W} Wg is block diagonal: Its top left
block is the identity matrix with order my, while its
bottom right block is a matrix whose columns include
those of the matrix Bt ABg that is considered as part
of step 10 of the algorithm, and that has the same rank
as this matrix.

The claim now follows immediately by a consideration
of the details of step 10, since the Lanczos phase of the

algorithm is only terminated at this point if Bt ABr is
rank deficient.

(b) The claim for the case that (s + 1)¢ > 7 follows by a
repetition and continuation of this argument, using the
fact that the columns of the matrix Vi, are a subset of

those of the matrix Vi s, that is defined at this point,
and by an inspection of the details of step 10. [

A5.3 Completion of the Proof

The next lemma is easily proved and allows the results
from [10] to be easily applied.

LEMMA 28. Let C € F,"*? be a matriz with full rank
d < n and let wi,ws,...,wn—q be a basis for the set of
vectors

N ={weF,*" | w'C =0}
Let y1,y2,...,yr € Fg"*Y. Then the vectors
yC s, yhC
are linearly independent in F,** if and only if the vectors

Wi, W2, ...y Wn—d, Y1, Y2, - -, Yk

are linearly independent in Fq"“.

PROOF. Suppose first that the vectors y:C,y5C, ..., yLC
are linearly dependent in qux ! so that there exist elements
a1, s, ..., of Fg, not all zero, such that

alyic + chyéC’ + -+ akin =0.

It follows that a1y1 + asy2 + -+ + aryr € N, so that this
vector is a linear combination of w1, wa, ..., w,_q and, since
at least one of a1, aa, . . ., ai; is nonzero it clearly follows that
the set of vectors

y17y27"'7yk7w17w27"'7wn—d

is linearly dependent.
Suppose, conversely, that the set of vectors

Y1,Y2, .-y Yk, W1, W2, . .., Wn—d

is linearly dependent, so there exist elements a1, as, ..., ak,
B1,P2,...,PBn—a in Fq, not all zero, such that

a1y +oaeye+- - Fopyr+Lrwi + Gowe +- - -+ PBr—qWn—qg = 0.

Furthermore, at least one of a1, az, - - -+« must be nonzero,
since it is given that the set of vectors wi,ws,...,Wn—q is
linearly independent. Now, since wiC =0 for 1 < i <n—d,
it follows that

a1yiC + asybC + -+ apyrC =0
as well, establishing that that the set of vectors
yi C? yé C’ MR | yic

is also linearly dependent, as required. []

The following is a result of a part of Lemma 3.11 of [10]
using the notation in this paper.

LEMMA 29 (EBERLY AND HOVINEN [10]). Suppose the
matriz A € Fg"*™ has at most r invariant factors that are
different from 1 or x and has rank v. Let x1,x2,...,xn be a
set of linearly independent vectors in F,"*'.



Suppose that ui,us, ... us are chosen uniformly and inde-
pendently from F,"*' and, for an integer k such that 1 <
k <7, let S be the set of vectors consisting of x1,%a,...,Tn
along with the first k of the vectors

e, Ug, AtU17 At’LL2, ey Atue,
(A?u1, (A)%uz, ..., (A uy, ...
(a) If h+ k < n then the above set S of vectors is linearly
dependent with probability at most
1+ 2q1+'r7£
(g — 1)gn=(rth)

Ui, uz, .

< 2gFthm,

(b)) If h+k > n and 1 < j < n then the above set S of
vectors spans a subspace of F;"**, whose dimension is
at most n — j, with probability at most

1 N 2q7‘—€+1
(g = 1)ghtk—m+i-1 © (g —1)¢gr~1
1 2q1—26

< q(hFh—n)+i—1 + n2

A final lemma concerning the size of the set U will also
be helpful

LeEmMmA 30.
|U| > £€~r—[log,n] -6 > [log,n] +¢

at the beginning of the each execution of the body of the loop
of the algorithm shown in Figure 1 and at the beginning of
the elimination phase, and

U] > €~ Nlog, n] — &

immediately before step 10 in each execution of the body of
the loop in the algorithm in Figure 1.

Proor. This follows by a straightforward induction on
the number 7 of executions of the loop body, of the algorithm
shown in Figure 1, that have already taken place. The claim
is satisfied when ¢ = 0 since |U| = £ at the beginning of the
first execution of the loop body and immediately before the
first execution of step 10.

Suppose i > 1, that |U| > {—r—log, n]—0 after the first i
executions of the loop body, and that an i+ 1°* execution of
the loop body also takes place.

If U] < £—[log,n]—d then steps 5-8 are executed as part
of the i + 1°* execution of the loop body, adding another £
elements to U, so that

[U| > (€ —r — [log, n] — &)+ £
> {—]log,n] -4

immediately before the execution of step 10. On the other
hand, if the size of U is initially greater than £— [log, n] —¢
at the beginning of the i+ 1°* execution of the loop body, so
that steps 5-9 are skipped, then it is also at least at large
immediately before step 10 as well.

Now it suffices to note that at most r elements are removed
from U when step 10 is carried out so that

|U| > £ —r—[log,n] — ¢

at the beginning of the i + 2" execution of the loop body
once again, if there is one, or at the beginning of the elimi-

nation phase, otherwise.

The fact that £ —r — [log, n] —d > [log, n] + ¢ follows by
the choice of £. [J

ProoF OoF LEMMA 7. Consider now the execution of the
algorithm shown in Figure 1 when it is given a matrix A €
F,"*" and vectors v1,va,...,v,. As explained in Subsec-
tion A.5.1 this computation will be indistinguishable from
a computation in which A is replaced by the matrix A that
is considered there. An examination of A confirms that this
matrix has at most r invariant factors that are different
from 1 or z and, furthermore, that this matrix has rank d—e
where d is the dimension of the Krylov space generated by
v1,v2,...,0, and e is the dimension of the intersection of
this space and the null space of A. We will therefore as-
sume, without loss of generality, that the given matrix A
has these properties.

(a) Let i be an integer such that ¢ > 1 and the body of the

loop of the algorithm in Figure 1 is executed at least
i times. It follows by Lemma 26 that if the algorithm
fails during the i*® execution of the loop body, by exe-
cuting step 9, then the matrix Vlt,7sL_1AVR,sR—1 must
have rank less than £sp, where s;, and sg are as defined
at the point when the test before step 9 is carried out,
and with Vp s, 1 € Fqnst and Vrsp—1 € FanSR
as at the beginning of Subsection A.5.2. Part (a) of
Lemma 26 also establishes that £s; is less than the
rank of A at this point.
Now a consideration of part (b) of Lemma 3, the fact
that S2 is a subset of the null space of A, and the
fact that S3 = () at this point, confirm that the matrix
AVR, sy has rank |S1|. indeed, its columns span the
same vector space as the vectors Av; for 1 < ¢ < | S|
and it follows by the orthogonality relations at line (2)
that the latter set of vectors is linearly independent.

Let w1, w2, ..., w,_|s,| be a basis for the set

w e F™ " | w'AVg s, = 0}.

It follows by Lemma 28 that the set S of vectors that
include w1, w2, ..., wy_|s,;| and the columns of VL s, —1
must span a vector space with dimension less than n —
|S1]| + £sr, that is, this set of vectors must be linearly
dependent.

One can also see by part (a) of Lemma 3 that |S1| +
|U| = £(sp + 1) at this point in the computation.

It follows that the above set S of vectors has size

n—|S1|+ sy =n— (L(sL +1) — |U|) + ¢sL
=n—L+|U|
<n — [log,n] -4,

since |U| < £ — [log, n] — ¢ in this point, and it follows
by an application of part (a) of Lemma 29 with k =
¢s, and h = n — |S1| that, if u1,u2,...,us are chosen
uniformly and independently, then that algorithm fails
at this point with probability at most 2q_“°gq n=8 <
(247°)/n.

Clearly the body of the loop is executed at most n times,
so the probability that the algorithm fails, by executing
step 9, at any point at all, can now be bounded by 2q_5
as claimed.

(b) Now let 7 be a positive integer such that 0 <:<d—e
where, as noted above, A is assumed to have rank d—e.



We wish to bound the probability that [S1| < d—e—1
on termination of the Lanczos phase of the algorithm,
when the algorithm does not report failure.

Notice that, since failure is not reported, such an exe-
cution of the Lanczos phase of the algorithm must end
either at step 4 or at step 10. Termination at step 4
can be ruled out because this only happens when each
vector Av; can be expressed as a linear combination of
vectors in

i 1< <81} U S,
and it can be argued in this case that [S1| =d —e.

Let S1 be the set of ordered pairs included in the set
“S1” immediately before an execution of step 10, and let
U be the set of values included in “U” at this point as
well. As explained in Subsection 2.1.6, and elaborated
upon in the proof of Lemma 27, the Lanczos phase of
the algorithm is terminated during this execution of
step 10, on an attempt to add a set of s additional
ordered pairs to this set, where AVg ., has rank |§1\ +
s at this point. In particular, the Lanczos phase is
terminated on the discovery that only ¢ such ordered
pairs can be added for ¢ < s.

One of the following three cases must hold.

(i) The Lanczos phase ends during an execution of the
body of the loop shown in Figure 1, in the manner
described above, when £(sr +1) < d —e.

(ii) The Lanczos phase ends during an execution of the
body of the loop, as described above, when (s, +
1) > d — e and when |§1H—s§d—e—i, where s
is the value mentioned above.

(iii) The Lanczos phase ends during an execution of the
body of the loop, as described above, on the first
execution of the body of the loop such that £(sz +
1) > d— e and when |Si| 4+ s > d — e — i, where s
is the value mentioned above.

Note that |S1| > d+e—1i if the Lanczos phase proceeds

past any of the points mentioned above.

Consider an execution of the body of the loop in which

(s +1) < d— e on completion of step 10, so that

case (i) holds. It follows by part (a) of Lemma 27

that the matrix VLt,sLAVR,sR has rank less than that of

AVR, s after step 10 is executed. At this point, the ma-

trix AVRg s, has rank |§1|+5. Let wi,wo, ... Wy 13—
be a basis for the space
N={weF,"" | w'AVgrs, = 0}; (23)

it now follows by Lemma 28 that the Lanczos phase can
only end at this point if the set S of vectors that include
the above vectors, along with the columns of Vi s, 11,
span a vector space with dimension less than n.
Now notice that the size of this set of vectors is

s+ 1) +n—|5|—s
=Si|+ Ul +n—1[5]-s
=n+|U|-s
>n+|U|—r
>n+£—[log,n] —3§ —r (by Lemma 30)
>n+ [log,n] +4¢ (by the choice of £).

(since s < 1)

Part (b) of Lemma 29 can now be applied, with h =
n— |§1\ —s, k=4{(sz+1), and j = 1, to conclude that
the probability that the elimination phase begins after
this execution of the loop body is at most
-5 1-25 -5
a4 <2
n n? n

Next consider an execution of the body of the loop in
which case (ii) is applicable. In follows by part (b) of
Lemma 27 that the matrix \A/LtAVR,SR has rank less than
that of AVR sy, for 17L I Fqnx(d_e) as described at the
beginning of Subsection A.5.2.

Once again let w1, wo, ... Wy 18y s be a basis for the
set N shown at line (23) above. Lemma 28 can be ap-
plied, once again, to conclude that the set S of vectors
that includes these along with the columns of ‘A/L must
span a vector space with dimension less than n.

Since case (ii) is applicable |S1| +s < d — e — i. Sup-
pose, in particular, that |§1| +s=d—e—1i— A fora
nonnegative integer A. Then the above set of vectors S
has size at most

(d—e)+n—|S|+s
=d—-e)+n—(d—e—i—A)
=n4+1i+ A.
Part (b) of Lemma 29 can now be applied, with h =
n—1|S1|—s, k =d—e, and j = 1, conclude that

Lanczos phase ends after this execution of step 10 with
probability at most

-6

1 2¢"7% A 2
- <
G-Dg st =1ty

Finally, consider case (iii). Let
A=(Si|+5)— (d—e—1i)

so that A is a positive integer and, if S is the set of
vectors described in the consideration of the previous
case then S has size

(d—e)+(n—|S|—s)=n+i—A.

It follows by part (b) of Lemma 27 that the rank of

\A/tAVRysR must be less than that of AVg s, and, fur-
thermore (since the size of |S1] is supposed to be less
than d — e — i) that S must span a vector space with
dimension less than

(n—151|—5) 4 (d—e—1i)
=(n—(d—e—i+A)+(d—e—1)
=n—A.

Part (b) of Lemma 29 can now be applied once again,
with h = n—|Si|—s, k =d—e, and j = A+ 1,
to conclude that the Lanczos phase ends at this point,
with |S1]| < d — e — 4, with probability at most
1 2¢' 29 o240
q-DFAFI-1 t— o se

Having considered these cases it remains only to no-
tice that step 10 is executed at most n times. Case (ii)



cannot arise more than once for any choice of the non-
negative integer A that is mentioned in its analysis, as
given above, while case (iii) is only possible once. The
above bounds can now be added combined to conclude
that |S1| has size less than d — e — i, on termination of
the Lanczos phase of the computation, with probability
at most

2¢7° —i—A —i -5 —i
n-(—n >+§ q +q¢ <2¢° +3q¢
A>0

as claimed. [

A.6 Proof of Theorem 1

Consider an execution of the algorithm described in Sec-
tion 2, with vectors w1, us, ..., ue chosen uniformly and in-
dependently from F,"*! for £ > r + 2([log, n] + 4).

The bound on failure included in Theorem 1 follows by
part (a) of Lemma 7.

The applications of the matrix A’ to vectors is easily lim-
ited to the initialization of vectors in the sequences L, at
step 6 of the algorithm shown in Figure 1, for s > 0, and
to the orthogonalizations of these vectors at step 7: Notice
that the orthogonalization of o, ; shown at line (11) can
be carried out by applying A’ to o5, ; and using the step

Y (Aoe, ) vr)u.

k=min(1l,mj—20—27+1)

Osp,j = Osp,j —

As aresult A’ is applied (at most) twice for each vector that
is eventually included as the first entry of an ordered pair
included in the set Si or that remains in the set U. The
number of applications of A® used here is at most

2(181| + |U]) < 2n + 42,

where the sets S; and U are as defined at the end of the
Lanczos phase of the algorithm.

The remaining initializations, updates, and orthogonaliza-
tions of vectors can be carried out by applying A at most
three times for each vector in one of the sets R that is to be
processed, during the Lanczos phase, provided that step 10
is implemented sensibly: A first application is needed to ini-
tialize each vector in the set R at step 3; a second application
to every such vector is sufficient for the orthogonalization
step (as shown by line (10) at step 4; and A is applied to
each vector Kk € R once again at the beginning of step 10.
An examination of the details of step 10 confirms that each
each vector Ax can — and should be — maintained for each
K € R throughout this step, and that this can be used to
update the elements of the set U that are described there
without further applications of either A or A*.

Since each of the vectors R is included either as the second
entry of an ordered pair in S1, or added to Sz or S3, one can
see that the number of applications of A to vectors during
the Lanczos phase is at most 3(|S1| + |S2| + |S3|) where S1,
S and Ss are as defined at the end of the Lanczos phase
of the computation. An examination of the details of the
elimination phase confirms that the number of applications
of A to vectors during the entire computation is at most
3()S1| + |S2| + |S3]), for Si, S2 and Ss as they are defined
on termination, as well.

It is easy to see by inspection of the code that the size of Sa
never exceeds r — a vector is only added to Sz when the size
of the set R is decreased. On the other hand, |S1|+|S3] is less

than or equal to the dimension of the Krylov space generated
by v1,v2,...,v, and this is clearly at most n. Thus |S1| +
|S2| +1S3| < n+ 7, so at most 3n + 3r applications of A to
vectors are required.

A similar analysis can be used to establish that O(nf(n +
0)) = O(n?f) additional arithmetic operations over F, are
used during the Lanczos phase, because O(nf) operations
are needed to initialize and process each vector before either
this vector is used in an ordered pair in S; or added to one
of the sets S5 or Ss, or the Lanczos phase ends.

In order to bound the expected number of additional op-
erations over F, used by the elimination phase, notice that if
mgs is the size of S3 on termination then O(néms) operations
are used for orthogonalization steps and O(nm3) steps are
used for the applications of Gaussian elimination that are
required. Consequently the number of additional operations
needed is in O(nms(£ +m3)). Now if mz < [log,n] then
this bound is clearly in O(n*¢) as needed. It is never more
than cubic in n since m3 cannot be greater than n. One
can now see, by an application of part (b) of of Lemma 7,
that if § > [log, n] then the probability that |Ss| exceeds
[log,] is at most 5/n. It follows from the above that the
expected number of additional operations used by the elim-
ination phase is at most linear in

1-0n®+ 2 -n® € 0(n*¢),

as claimed.

The remark that follows the statement of the theorem
follows by a straightforward extension of the above analysis,
applying the probability bounds given in Lemma 7.

B. PROOFSOF CLAIMSIN SECTION 3

B.1 Proofsof Lemmas8and 9

ProoF OF LEMMA 8. Consider the representation of A as
shown at lines (12) and (13). Since the matrixA; is nonsin-
gular its minimal polynomial f is not divisible by z. On
the other hand, As is nilpotent so that its minimal polyno-
mial g is a power of z: g = x for h > 2. Since A3 is the
zero matrix it is clear that g(As) = 0 as well.

Consequently the above polynomials f and g are relatively
prime, so there exist polynomials hi, hs € Fg[z] such that

hy = 1 mod f and  hy = 0 mod f
0 mod g 1 mod g.

Now consider vectors v; = a; + ;i + v for 1 < i < r,
where «; € V1, B; € Vo, and ~; € V. Let K be the Krylov
space generated by vi,va,...,v, and let K; be the vector
space generated by ai,as2,...,a,, as in the statement of
the lemma. It will be useful to consider a “Krylov space”
that is not mentioned in the statement of the lemma, as
well: let K> be the Krylov space generated by the vectors
/31 +’yl7ﬁ2 +727"'aﬂ7‘+77"

Notice that, by the descriptions of Vi, V2 and V3 preceding
the claim, hi(v;) = «; for 1 < i < r, so that a1, a9, ...,ar €
K. Since K is closed under multiplication by A if follows
that K1 C K. R

Similarly, ho(v;) = B +v; for 1 <i <r, and Ko C K as
well.

On the other hand, v; = a; + (8 + v:) so that v; can

be written as a sum of elements of K; and 1?2. Indeed, it



is clear that every element of the Krylov space K can be
expressed in this way.

Finally, notice that K; N K> = {0}. Thus K is the direct
sum of K7 and I?g.

(a) Notice that, since Ay =0 for all v € Vs, A(Bi + i) =
AB; for 1 < ¢ < r. Consequently Ko C [?2 and the
claim follows from the containments that have been es-
tablished above.

(b) The second claim follows from the fact that K is the
direct sum of K1, and K2, and that the set of vectors

{)\1’)\27"'7Aj}u{ﬁ1 +717ﬁ2+723"'36’r+7’r}

mentioned in the statement of the lemma is a basis
for Ko. [

Notice that the following — which will be used again —
has also been proved.

LEMMA 31. Ifv, = a1 + B1 + 71 where a; € V1A, Bi € Vs
and v; € V3 for 1 < i < r, then the Krylov space Ko that is
generated by the vectors B14+71, B2+7y2, - - ., Br+7r is a subset
of the Krylov space K that is generated by vi,va,...,Vr.

A consideration of the decomposition of the matrix As
shown at line (13) confirms that there exist values

@1,@2,...,@,—” S Vg
such that

A5 £0=A"0;  for1<i<m

and the Krylov space generated by 1,02, ...,0m is equal
to V. Indeed, @1, w2, .. .,Wn can be chosen as generators of
the Jordan blocks in the decomposition shown at line (13). It
is clear that the set of vectors A7%; such that 0 < j < na;—1
and 1 < ¢ < m forms a basis for V,. The next lemma follows
directly from this.

LEMMA 32. Every element 3 € Vo can be written uniquely
as

P1(A)wr + 2 (A)D2 + -+ + om (A)wm

for polynomials 1,2, ..., om € Fqlx] such that the degree
of ;i is less than na; for 1 <i < m.

ProoOF OF LEMMA 9. A slightly stronger result will be
established: It will be shown that the probability that

w1+ A, w2 + A2+ .., W + Am

are not all found in the Krylov space, for some choice of
A1, A2, ..., Am € V3, is at most

—A

q -1 + q—A—Q

4+ q_A_m_

Recall that each vector v; can be written (uniquely) as
a;+Bi+v where a; € V1, i € Vo, andy; € Vaforl <i <.

With that in mind notice that, by Lemma 31, it is suffi-
cient to show that w1+ A1, wa+A2,. .., wm+ Ay are each con-
tained in 1?2 for some choice of A1, Aa,..., Am € V3, where
I/(\'g is as described in the above lemma.

Indeed, since A1, A2, ..., Ay, can be chosen freely from Vs,
it is sufficient to consider the probability that the vectors

wi,ws2,...,wn are each included in the Krylov space gen-
erated by (i1, 02,...,0, — for if w; is in the Krylov space
generated by (1, B2,..., 0, for 1 <i < m, then

wi = Yi,1(A)B1 + Vi 2(A)B2 + -+ + i r (A) B

for some choice of polynomials 5 1,%i2,...,%ir € Fqlz],
implying that w; + A; is in the Krylov space generated by
Bl + ’yl,ﬁg + Y2, .. 7ﬁr + Yry fOI‘ the Values

Xi = Vi 1(A)y +ia(A)va + -+ i (A)yr € Vs,

for 1 <i<r, as well.

Furthermore we may assume without loss of generality
that w; = &; for 1 < i < m, for the values 01,@2,...,0m
that are discussed above: If wi,wa,...,wn is any set of vec-
tors in V, generating Vs as a Krylov space, then the Krylov
space generated by (1, B2, ..., Bm includes wi,wa,...,wn if
and only if this space includes @1,@a, . .., Om.

Notice now that if m = 0 then there is nothing to prove.

If m = 1 then it follows by Lemma 32 that (since the vec-
tors (1, B2,..., B are chosen uniformly and independently
from V3)

B1 = p1(A)r, B2 = p2(A)Wr, ..., Br = @r(A)01

where 1, 2, ..., @, are chosen uniformly and independently
from the set of polynomials with degree less than no ;1 in
Fq[z]. Now

©1(0) = ¢2(0) =~ = ¢r(0) =0

(and, consequently, @ is not in the Krylov space generated
by B1,82,...,0,) with probability ¢7" < ¢~2~!. On the
other hand, if ¢;(0) # 0 for some integer ¢ such that 1 <
i < r then the polynomials ¢; and 2! are relatively prime
and there exists a polynomial ¢ € F,[z] such that

Y X ¢; =1 mod x"2*.

In this case ¥(A)B; = Y(A)pi(A)w1 = W1 so that @i is in

the Krylov space generated by (1, 02, ..., 3 as required.
Suppose next that m > 2; one can see, by Lemma 32, that

Bi = Bi + om.i(A)Dm, (24)

for 1 < i < r, where the values 81, 3,...,0, are chosen
uniformly and independently from the Krylov space gen-
erated by @1,Wa,...,0m—1, and where ©m 1, Pm,2;- .-, Om,r
are chosen uniformly and independently from the set of poly-
nomials with degree less than na ,,, in F4[z]. Now

©m,1(0) = pm2(0) =+ = om,(0) =0

(and @y, is not in the Krylov space generated by the vectors
B1, B2, ..., B3, with probability =" < ¢~™ 2.

Suppose, instead, that ¢m,(0) # 0 for some integer i.
Reordering v1, va, ..., v, (and B1, B2, ..., Br) we may assume
without loss of generality that ¢ = r and that @m,~(0) # 0.

It follows again that @, , and z>™ are relatively prime,
so that there exists a polynomial ., € Fg[z] with degree
less than ng,m, such that ¥, X pm,» = 1 mod "™, and the
Krylov space generated by (31, 32, ..., 3 certainly includes

Pm(A)Br = P (A) (Pm.r (A)Dr + Br) = Bm + 5,7, (25)

where 8, = ¥m(A)B, is an element of the Krylov space
generated by &1, @2, . . . ,Wm—1 depending only on 3, so that
it is clearly chosen independently of 51, B2, ..., Br—1.



Notice next that, by equations (24) and (25), the Krylov
space generated by (1, B2, ..., (- also includes the values
Bi = ﬂL - Som,i(A)wm(A),Br
= (Bi + m,i(A)Dm) — Pm.i(A)(@m + 5)
= B — om,i(A)B)

for 1 <i <r—1. ¢ni(A)8) is an element of the Krylov
space generated by ©1,©a,...,0m—1, since (. is.

Since 31,35, ...,3._1 are chosen uniformly and indepen-
dently from the Krylov space generated by &1, @2, ..., 0m—1
and, furthermore, since these are chosen ingepAendentIX of
©m,i(A)By, it follows that the above values 31, B2, ..., Br—1
are chosen uniformly and independently from the Krylov
space generated by 1, ©a, . ..,W0m—1 as well.

Proceeding inductively on m, we may now conclude that
the probability that ©1,®2,...,0m—1 are not in the Krylov
space generated by Bl, 32, . ,BTA is at most

—A—-1 —A—-2

q + q 7A7m+1.

+ PN + q

Now, if ©1,@2,...,Wm—1 are all members of this Krylov
space then they are certainly in the Krylov space generated
by (1,02,...,0r as well. It has already been noted that
this Krylov space includes &, + 8., for a member 3, of the
Krylov space generated by @1,©a,...,W0m—1, o it is clear
that @, is also contained in the Krylov space generated by
/817/627 e 7ﬂ7"

Adding together the bounds on probabilities that are men-
tioned above, we see that the probability that &1, o2, ..., 0m
are not all in the Krylov space generated by 31, B2, ..., O is
at most

—A-1

q +q7A72

—A—m-+1 —A—m

+-tq +q

as claimed.

Clearly ¢ 2 '+ ¢ 272 4. 4+ ¢ 2™ < 2¢72, so the
probability bound included in the statement of the lemma
is correct.

Finally notice that, if &; is in the Krylov space generated
by 81, B2,...,0r for 1 <i < m, then

Wi =&(A)B1L +&(A)B2+ -+ &(A)B,

for polynomials &1, &2, . . ., & € Fq[z]. It clearly follows (since
€(A)A = A&i(A) for 1 < i <r) that

A& (A)(B1 + 1) + A&(A) (B2 + 7o)+
s AL (A)(Br + )
= A& (A)B1 + A& (A)B2 + - - - + A& (A)Br
= AD;.

Thus the Krylov space includes A1, AL, . .., Am, and, in-
deed, AS for all 8 € Vs, as claimed. [

B.2 Proof of Lemma 10

Let b = a+ B for « € V; and 3 € Vs as noted prior to the
claim.

The claim is trivial if m = 0, since V> = {0} in this case:
b = « and A; is nonsingular. Consequently if f1 € Fg[z] is
the minimal polynomial of A; then f1(0) # 0, ged(f1,x) =
1, and there exists a polynomial g € F4[z] such that zg =
1 mod fi. In this case, since v1 = Ab, g(A)v1 = g(A)Ab = b,
establishing that b is in the desired Krylov space.

Suppose instead that m > 0, so that As is nonzero and
nilpotent. Let fi be the minimal polynomial of A; as above,

and let fo be the minimal polynomial of Az, so that fo = "
for an integer h > 2. Again, ged(f1, f2) = 1 in Fylz] and
there exists a polynomial g € Fy[z] such that gfs = z"g =
1 mod fi. In this case it suffices to note that

g(A)A" oy = g(A) A" (Aa + AB) = o

establishing that « is guaranteed to be in the Krylov space
generated by vi,v2,..., 0.

It remains only to note that if the system Ax = b is con-
sistent, for b = a4 3 and 8 € Vs, then 8 must belong to the
Krylov space generated by Awi, Aws, ..., Awn,, for the set
of vectors wi,wa,...,wn, generating V2 as a Krylov space,
that are mentioned before the claim. Consequently Vs in-
cludes a vector x such that Ax = (. Furthermore, if the
Krylov space generated by v1,ve,...,v, includes vectors

w1+ A, w2 + A2y, wm + A

for any choice of values A1, Mg, ..., Ay, € V3, then the Krylov
space also includes the value x' = x + A for some \ € Vs.
Consequently A’ = Ax + A\ = 3+ 0 = 3, and the Krylov
space generated by wvi,ve,...,v, includes a vector x such
that Az = b.

The result now follows by Lemma 9, which bounds the
probability that the vector space generated by vi,va, ..., v,
does not include vectors of the above form.

B.3 Proofsof Lemmas11 and 12

PRrROOF OF LEMMA 11. Suppose that the Jordan normal
form of A includes exactly m nilpotent blocks with order
at least two; then A is as shown at line (12) where A; is
nonsingular, As is a zero matrix. and Ao is as shown at
line (13).

Let the vectors spaces Vi, Va2, and Vs be as described
at the beginning of Section 3, so that A acts as an invert-
ible operator (with coefficient matrix A1) on V1, as a nilpo-
tent operator (with coefficient matrix Az) on Va2, and where
AVs = {0}. Now Fq”Xl = V1 @ Vo @ V3 and it suffices to
note that the image of A is a subspace of Vi @ Vs, while
the null space of A is a subspace of V2 & V3. Consequently
the intersection of the image and the null space of A is a
subspace of Vs.

Consider now the vectors w1, @2, . . ., wn that generate Vo
as a Krylov space that are described following Lemma 31.
It is clear that, since no; > 2 for 1 <7 < m, the set

n —1~ n —1~ n —1~
AT AT G AT By, € Vs

is a linearly independent set of vectors in the image of A
and, indeed, these form a basis for the intersection of Vs
and the null space of A. Consequently these form a basis for
the intersection of the image of A and the null space of A as
well, as needed to prove the claim. []

PrOOF OF LEMMA 12. Suppose that 71, 72,..., T, are as
described prior to the statement of the lemma, so that the
set of vectors A7, Ata, ..., A7k is linearly independent and
so that A%m = A%mp = - = A%r, = 0.

(a) Since the set of vectors A1y, A7a, ..., A7y is linearly in-
dependent, and these vectors belong to the intersection
of the image of A and its null space, this intersection
clearly has dimension at least k. The claimed inequality
k < m now follows by Lemma 11.



Notice now that k < m only if the Krylov space gener-
ated by z1, 22, ...,z does not include a set of vectors

w1+ A1, w2+ Ao, wim + A

where A1, A2, ..., A\m € V3 and where w1,ws, . ..,ws are
vectors that generate V> as a Krylov space. The prob-
ability bound that is included in part (a) is therefore a
consequence of Lemma 9.

(b) The probability bound included in part (b) can be es-

tablished by an application of the technique that was
used to prove Lemma 9: Notice that if A has m >
r = m + A nilpotent blocks with order at least two
in its Jordan normal form, then there exist vectors
W1,Wa,...,W0s € Va2, and integers m2,1,n2.2,...,N2.m
that are each greater than two, that are as described
(with m replacing m) in the text that follows Lemma 31.
Consequently each element of Vs can be uniquely ex-
pressed as described in Lemma 32, with m replacing m
once again.
Now let z; = a; + Bi + i where a; € Vi, Bi € Vo,
and v, € V3 for 1 < i < r, and notice that, since
V1,02, ...,U, are chosen uniformly and independently
from F,"*!,

Bi = i (A)o1 + @i 2(A)D2 + -+ + @i, (A) D,

where each polynomial ¢; ; is chosen uniformly from
the set of polynomials with degree less than ns j, for
1 <i<randl < j < m and, furthermore, each
polynomial ¢; ; is chosen independently from the set of
polynomials ¢ such that 1 < s <r, 1 <¢ < m, and
iF#sorj#t.

The probability that ¢, ;(0) = 0 for every integer j
such that 1 < j < m is qiﬁ, Suppose, now, that
this is not the case, and pick an integer j such that
1 <j<m and p,;(0) #0. Then ged(or,j,2™27) =1,
and one can argue as in the proof of Lemma 9 that &; is
in the Krylov space generated by (3, and, furthermore,
that the Krylov space generated by (1, B2,..., G- is the
same as the Krylov space generated by 317 32, .. ,Er_l
and (3, where ,/8\1, 327 e BTA are chosen uniformly and
independently from the Krylov space generated by the
vectors Wy, such that 1 < h < m and h # j.
Proceeding inductively, as in the proof of Lemma 9, one
can establish that the intersection of the Krylov space
generated by AB,—m+1, ABr—m+2, ..., AB, and the null
space of A has dimension less than r with probability
at most

qulfﬁz+qm7'rﬁ+___+q7ﬁt Squfn

This implies that intersection of the Krylov space gen-
erated by v1 = Azi,v2 = Azs,...,v, = Az, and the
null space of A has dimension less than r with at most
this probability as well. It now suffices to notice that
"< M =q 2 <27 O

B.4 Proof of Lemma 13

This can be established by a modification of the argument
used to prove Lemma 9.

Suppose, once again, that v; = «a; + ;i + v; where a; €
Vi, Bi € Vo, and v; € V3 for 1 < i < m+d. As indi-
cated in part (b) of Lemma 8, 81 + 71,082 + V2, - -, Bm+d +
Ym+a all belong to the Krylov space K that is generated

by v1,v2,...,Um+q and, furthermore, the intersection of K
and the null space of A is contained in the Krylov space
generated by these vectors. We may therefore proceed using
Bi1+7v1, 82472, - -+, Bmtd+Ym-+d instead of vi,v2, ..., Vmtd.

If m = 0 then there is nothing to prove: The two “exper-
iments” described in the lemma are identical.

Suppose instead that m = 1. Since failure was not
reported before this step, the Krylov space generated by
Awvy, Ava, ..., Avgy1 includes a nonzero vector in the inter-
section of the image of A and the null space, so that the
Krylov space generated by

ABr+7), AB2 +72)y - - - A(Ba+1 + Ya+1)

— that is, by AB1, ABa, ..., AB4+1 — includes such a vector
as well. Consequently, at least one of AB1, AB2,..., ABd+1
must be nonzero.

Since these vectors are all in Vs, there exist nonnegative
integers k1, ka2, ..., kay1 such that k; = 0if AB; = 0 and such
that k; > 0 and A1 (AB3;) # 0 = A (AB;) otherwise, for
1 <i < d+1. Reordering v1, v, ...,va+1 (and B +7v1, B2 +
Y2, -+ Bd+1 +va+1) as needed, we may assume without loss
of generality that kq+1 > k; for 1 <i < d, so that kqy+1 > 0.

Since m = 1 (so that the matrix A2 consists of a single
nilpotent Jordan block) and kq11 > k; for 1 < i < d, there
exist polynomials 1, @2, ..., ¢4 € Fqlz], which depend only
on B1,02,...,0Ba+1 (so that, in particular, they are inde-
pendent of v1,72,...,Ya+1), such that ¢;(A)Bar1 = B for
1<i<d.

Now, the Krylov space that is generated by (1 + 71,82 +
Y2y -, Ba+1 + Ya+1 is clearly the same as the Krylov space
generated by Ba4+1 + va+1 and by the vectors

(Bi + i) — @i(A)(Ba+1 + Ya+1),
for 1 < i < d. Note also that

(Bi + i) — @i(A)(Bat1 +vas1) = vi — @i(A)var1 € Vs

for 1 <i<d;let v, = —@i(A)yasr for 1 <i < d.

Recall that the vectors 1,72, ..., y4 are chosen uniformly
and independently from Vs and, furthermore, that they are
chosen independently of @1, 2, ..., pa € Fq[z] or Yat1 € V3.
It follows that the vectors ¥i, ¥4, . .., 74 are chosen uniformly
and independently from Vs as well — that is, every sequence
of vectors of this form is selected with probability [Vs|~¢.

Now it suffices to note that, by the choice of k441, the vec-
tor B = Aka+1 (Bat1 +7va+1) = Akd“*l(AﬁdH) is a nonzero
element of Vs, such that Aﬁ =0, so that B is in the intersec-
tion of the null space of A and the Krylov space generated
by Avi, Ava,..., Avgt1. Indeed (again, since m = 1), the
single vector B forms a basis for this space, while the vec-
tors 3,7}, 75, . .., 7 span the intersection of K and the null
space of A. This establishes the claim when m = 1.

If m > 2 then we begin as before by defining the non-
negative integers ki, ka,...,km+a by setting k; to be 0 if
Af; = 0 and by choosing k; > 0 such that A¥~1(A3;) # 0 =
A*i(AB;) otherwise. Reordering v1, vz, . . ., Umta as needed,
we may assume without loss of generality that kn,4+a > ki
for 1 <i < m+d— 1. Once again, since the Krylov space
generated by AB1, ABs, ..., ABm+a includes a nonzero ele-
ment of the null space of A, these vectors are not all zero
and kp4q > 1.

At this point a consideration of the structure of the ma-
trix A, can be used to conclude that there exists a set



of vectors wi,wa,...,wm € V2 and nonnegative integers
l1,02, ..., 0y such that the vectors wi,wa,...,w, generate
Vs as a Krylov space, and such that

zélelaul,zélbu)g7 ey A,
is a basis for the intersection of Vo and the null space of A.
Furthermore, these values can be chosen in such a way that

m—1
k Lo 2
APmtdg v = A" wm + E Atw;

=1

for values 61, 02,...
written as

,0m—1 € Fq, and such that 8; can be

Bi = B; + ¢i(A)Bmtd

where 3; is contained in the Krylov space generated by
Wi,w2,...,wm—1 and where ¢; € Fg[z] for 1 <i<m+4+d—-1
— for it would not be the case that k44 > k; for 1 < i <
m-+d—1, otherwise. The vectors 31, 83, ..., Briq_1 and the
polynomials @1, @2, ..., pm+d—1 depend only on the vectors
B1,082,..., Bm+d, so they are clearly chosen independently
of V1,725 -+ -5 Ymtd-

Note that the Krylov space generated by (1 + 71,02 +
Y2y -+« Bm+d + Ym+ad is the same as the vector space gener-
ated by Bm+d + Ym+a and the vectors

Bi + i — 0i(A)(Bm+d + Ym+a)
=B+ 0i(A)Bmtd + v — ©i(A)Bmtd — ©i(A)Ymia
=B + i,

for i = vi — pi(A)Ym+a € Vs.

Since v1,72,...,Ym+d—1 are chosen uniformly and inde-
pendently from Vs and, furthermore, they are chosen in-
dependently of the polynomials 1, @2, ..., @m+d—1 and the
vector Ym+d, it is clear that v1,74,...,%m4 a1 are chosen
uniformly and independently from Vs as well (that is, every
such sequence is selected with probability [Vs|*~™~%).

Clearly A(B; +v;) = AB{ for 1 <i <m+d—1 and the
Krylov space generated by these vectors is contained in the
Krylov space generated by w1, ws,...,wm_1 — for 3 is in-
cluded in this space for 1 < i < m+d — 1. On the other
hand, one can see by the choice of the vectors 3. that the
Krylov space generated by AB1, ABs, ..., ABmia_1,ABmy
is the same as the Krylov space generated by the vectors
AB1,AB2, ..., ABm+d, and we know that the intersection
of this space and the null space of A has dimension m.
It must therefore be the case that the intersection of the
Krylov space generated by AB1, ABs, ..., AB,+q—1 and the
null space of A must be a vector space with dimension m — 1
— in particular, it must be the intersection of the Krylov
space generated by Aw1, Awa, ..., Awmn—1 and the null space
of A.

As noted above, v1, 73, . - ., Vim+q—1 are selected uniformly
and independently from V3. Proceeding inductively (on m),
we may now conclude that the intersection of the Krylov
space generated by the vectors AB7, ABs, ..., ABy, q_1 and
the null space of A has a basis 31, 32, . ,Bm_l, while the
intersection of the Krylov space generated by 81 + 71, 85 +
Yoy Brmtd—1+Vmia—1 and the null space of A is spanned
by a sequence of vectors B1, Ba, . - ., Bm—1, Y4 V4, - .., Y4, for
v 4y, ..., € Vs, such that every possible choice of the
vectors v, 4, ..., v} is obtained with probability |Vs]|~%.

It remains only to notice that the set of vectors

Akm+d/g’m+da ﬁla ﬁQa IERN} Bm—l

forms a basis for the intersection of the Krylov space gener-
ated by AB1, ABa, ..., ABm+a4 and the null space of A, while
the vectors

k 2 A ) "on 7
A m+d/8m+daﬁlaﬁ25"'75m—17’717’727"'7’}/d

span the intersection of the Krylov space generated by (1 +
Y1, 82 + Y25+ -+ s Bm+d + Ym+da and the null space of A, to
complete the proof.
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