
Yet Another Block Lanczos Algorithm:
How To Simplify the Computation and Reduce Reliance on

Preconditioners in the Small Field Case

Version With Proofs

Wayne Eberly
∗

Department of Computer Science
University of Calgary

2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4

eberly@ucalgary.ca

ABSTRACT
A new block Lanczos algorithm for computations over small
finite fields is presented and analysed. The algorithm can
be used to solve a system of linear equations or sample uni-
formly from the null space whenever the number of nilpotent
blocks with order at least two in the Jordan form of the given
coefficient matrix is less than the block factor on the right.
It can also be used to confirm that this matrix condition is
not satisfied, in order to confirm that preconditioning of the
given matrix is required.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms, analysis of algorithms; F.2.1
[Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—computations in fi-
nite fields, computations in matrices

General Terms
Algorithms, Reliability, Performance

Keywords
Randomized computations, computations over small fields,
Lanczos algorithms

1. INTRODUCTION
Since the mid nineteen-eighties, Krylov-based algorithms

have been used to solve systems of linear equations over
finite fields or to sample from the null space of matrices

∗Research supported in part by Natural Sciences and Engi-
neering Research Council of Canada grant OGP00089756.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2010 Munich, Germany
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

over such fields, as needed to solve a variety of problems. A
considerable amount of work has subsequently taken place
to improve the efficiency and reliability of these methods;
the LinBox home page, www.linalg.org, is a good source
for additional references about this. These techniques have
been effective when storage requirements prohibit the use of
elimination-based methods and when other special-purpose
techniques have not been available.

Various matrix properties have been assumed when prov-
ing the reliability of these methods. For computations over
large fields these assumptions have not been problematic,
because extremely simple and efficient matrix“precondition-
ers”can be used to establish the properties that are required;
quite a few of these are presented in the report of Chen et
al. [2]. Unfortunately the set of preconditioners available
for computations over small fields is more limited – to my
knowledge only a sparse preconditioner first described by
Wiedemann has presently been analyzed (see [9], [2], [4]),
and this is somewhat more costly than desirable.

At present, the set of problems that can be solved reliably
over small fields by these techniques without precondition-
ing is quite limited: Villard [8], has demonstrated that if
rectangular blocks are used (with the block size on the left
exceeding the block size on the right by at least two) then a
block Wiedemann algorithm can be used, reliably, to find a
nonzero element of the null space of any singular matrix.

In this paper two additional matrix problems are consid-
ered, namely, the solution of a linear system Ax = b (re-
turning either a solution for the system or a certificate es-
tablishing that it is inconsistent) and the problem of the uni-
form and random selection of elements from the null space
— a problem that must be solved for computations over F2

when sieve-based algorithms for integer factorization are ap-
plied [1].

As their names suggest, Krylov-based algorithms perform
computations over the Krylov space of a set of vectors. In
particular, an algorithm using block size r on the right re-
quires that an initial set of r vectors v1, v2, . . . , vr is somehow
provided, and the algorithm (either implicitly or explicitly)
carries out a search in the Krylov space generated by these
vectors, that is, the space spanned by the set of vectors Aivj

for i ≥ 0 and 1 ≤ j ≤ r. Virtually all of the Krylov-based
algorithms that have been investigated to date require either
that the vectors v1, v2, . . . , vr are given as part of the input

or that they are randomly generated.
Suppose now that k is a positive integer. We will say that

a matrix A (with entries in a finite field Fq with q elements)
is k-derogatory if the first k invariant factors of the matrix
are divisible by x2 or, equivalently, the Jordan normal form
of A includes at least k nilpotent Jordan blocks with order
at least two. We will call the matrix A k-nonderogatory,
otherwise. If the above-mentioned vectors v1, v2, . . . , vr are
to be chosen randomly then it is easily demonstrated that it
is necessary for the coefficient matrix A to be nonderogatory
if a Krylov-based algorithm is to be used reliably to solve a
linear system. This is also a necessary condition if one wishes
to sample uniformly and randomly from the null space of a
given matrix.

In this paper a new block Lanczos algorithm that uses
rectangular blocks (such that the difference between the
block size on the left and the block size on the right is
at least logarithmic in the order of the coefficient matrix)
is described. With high probability the Krylov space on
the right is completely searched, during the computation,
at low cost. The orthogonalization process (that is at the
heart of any “Lanczos” algorithm) used here is somewhat
simpler than those of the prior block Lanczos algorithms of
Coppersmith [3] or Hovinen [6]. Unlike the simpler method
of Montgomery [7] it does not require that the coefficient
matrix be symmetric and its reliability can proved.

Henceforth Fq will denote the finite field with q elements
and, for integers i and j, Fq

i×j will denote the set of i × j
matrices with entries in Fq.

2. ITERATION OVER A KRYLOV SPACE
Given a matrix A ∈ Fq

n×n, r vectors v1, v2, . . . , vr ∈
Fq

n×1 and a positive integer δ, the algorithm described in
this section will either traverse the Krylov space generated
by v1, v2, . . . , vr or will fail — the latter happening with
probability less than 7q−δ.

The algorithm begins with a Lanczos phase to generate
the following pair of sets.

• The set S1 consists of m1 ordered pairs of vectors,

S1 = {(µ1, ν1), (µ2, ν2), . . . , (µm1
, νm1

)} (1)

such that, for 1 ≤ i, j ≤ m1, µi, νj ∈ Fq
n×1 and

µt
iAνj =

(
1 if i = j,

0 if i 6= j.
(2)

• The set S2 is a set of m2 vectors

S2 = {λ1, λ2, . . . , λm2
} (3)

such that

Aλi = 0 (4)

for 1 ≤ i ≤ m2.

In particular, if successful, the algorithm returns sets S1 and
S2, as described above such that

ν1, ν2, . . . , νm1
, λ1, λ2, . . . , λm2

span a large subspace of the Krylov space generated by
v1, v2, . . . , vr.

The algorithm begins with a uniform and independent
selection of a set of vectors u1, u2, . . . , uℓ ∈ Fq

n×1 where

ℓ ≥ r + 2
`
⌈logq n⌉ + δ

´
. (5)

1. Initialize S1, S2, sL, sR, L0 and U
loop

2. sR := sR + 1
3. Initialize R
4. Orthogonalize the vectors in R; if each of the

resulting vectors is zero then break

if (|U | < ℓ− ⌈logq n⌉ − δ) then
if (U ⊆ {(sL, 1), (sL, 2), . . . , (sL, ℓ)}) then

5. sL := sL + 1
6. Initialize the sequence of vectors LsL

7. Orthogonalize LsL

8. U := U ∪ {(sL, 1), (sL, 2), . . . , (sL, ℓ)}
else

9. Report failure and break

end if

end if

10. Either update S1, S2 U , R or proceed to
elimination phase

end loop

Figure 1: Lanczos Phase of the Main Algorithm

All subsequent steps of this algorithm are deterministic.

2.1 Details of the Algorithm
The major stages of the Lanczos phase are shown in Fig-

ure 1. Throughout its execution S1 is a set of ordered pairs of
vectors, and S2 is a set of vectors (with sizes m1 and m2 re-
spectively) satisfying the various conditions shown in Equa-
tions (1)–(4), above. The integers sL and sR represent the
“stages” of the generation of vectors on the left and on the
right that are currently in progress.

The algorithm maintains sequences L0, L1, . . . , LsL
of vec-

tors, each of length ℓ: At each point in the computation

Li = 〈σi,1, σi,2, . . . , σi,ℓ〉 (6)

where σi,j ∈ Fq
n×1 for 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ. Vec-

tors in these sequences are either completely “processed” or
“unprocessed.” A set of ordered pairs of integers

U ⊆ {(i, j) | 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ}

is used to keep track of the “unprocessed vectors:” For 0 ≤
i ≤ sL and 1 ≤ j ≤ ℓ, the jth vector σi,j in the sequence Li

is “unprocessed” if and only if (i, j) ∈ U .
The algorithm also maintains a set R of vectors that is

used to continue generation of the desired Krylov space, as
described below.

2.1.1 Initialization
Sets S1 and S2 are initially empty, so that m1 = m2 =

0. Variables sL and sR are set to have values 0 and −1
respectively. L0 is set to be the sequence

L0 = 〈u1, u2, . . . , uℓ〉,

so that σ0,i = ui for 1 ≤ i ≤ ℓ and, since each of these
vectors is initially unprocessed,

U = {(0, 1), (0, 2), . . . , (0, ℓ)}.

2.1.2 Initialization of R
Since sR is incremented at the beginning of the first exe-

cution of the loop body, sR ≥ 0 whenever R is initialized at

step 3. If sR = 0 then R is set to include the input vectors:

R := {v1, v2, . . . vr} if sR = 0.

Otherwise, sR ≥ 1 and R is set to include the product of A
and each vector currently in R, that is,

R := {Aν | ν ∈ R} if sR > 0.

2.1.3 Orthogonalization of Vectors in R

Each vector ζ ∈ R is updated at step 4,

ζ := ζ −

m1X

j=0

`
µt

jAζ
´
νj (7)

to ensure that µt
jAζ = 0 for 1 ≤ j ≤ m1 and for all ζ ∈ R.

As is the case for other variants of the Lanczos algorithm
we will reduce the cost of this computation by showing that
µt

jAζ = 0 for most values of j before this step is carried out.

2.1.4 Initialization of LsL

Since L0 is initialized at step 1, and sL is incremented at
step 5 immediately before step 6, it is clear that sL ≥ 1 and
the set LsL−1 is defined each time step 6 is performed. The
sequence LsL

is initialized to be

LsL
= 〈AtσsL−1,1, A

tσsL−1,2, . . . , A
tσsL−1,ℓ〉,

that is, for 1 ≤ j ≤ ℓ, the jth entry σsL,j in the sequence LsL

is initialized to be the product of At and the (current) jth

entry in the sequence LsL−1.

2.1.5 Orthogonalization of Vectors in LsL

For 1 ≤ j ≤ ℓ, the jth vector σsL,j in the sequence LsL
is

updated at step 7,

σsL,j := σsL,j −

m1X

k=0

`
σt

sL,jAνk

´
µk (8)

to ensure that σt
sL,jAνk = 0 for 1 ≤ k ≤ m1. Once again

the cost of this computation can be reduced by showing that
σt

sL,jAνk = 0 for most values of k before this step.

2.1.6 Updating S1, S2, U and R

Suppose that R = {κ1, κ2, . . . , κ|R|} at this point.
Step 10 begins with the use of an elimination-based pro-

cess to compute the dimension, s, of the vector space S that
is spanned by the vectors

{Aκi | 1 ≤ i ≤ |R|}

as well as a sequence of integers i1, i2, . . . , is such that

1 ≤ i1 < i2 < · · · < iS ≤ |R|

and the vectors Aκi1 , Aκi2 , . . . , AκiS
form a basis for S.

For each integer j such that 1 ≤ j ≤ |R| and such that
j /∈ {i1, i2, . . . , iS}, Aκj is written as a linear combination
of the above vectors, that is, elements cj,1, cj,2, . . . , cj,s of Fq

are obtained such that

Aκj =
sX

h=1

cj,hAκih
;

the vector

bκj = κj −
sX

h=1

cj,hκih
,

which is in the null space of A, is added to S2 at this point:

S2 := S2 ∪ { bκj | 1 ≤ j ≤ |R| and j /∈ {i1, i2, . . . , iS}}

Now let BR ∈ Fq
n×s be the matrix whose columns are the

above vectors κi1 , κi2 , . . . , κis . Note that the matrices BR

and ABR each have full rank s.
Let BL ∈ Fq

n×|U| be a matrix whose columns are the
vectors σi,j (included in the sequences L0, L1, . . . , LsL

) such
that (i, j) ∈ U , arranged so that σh,i appears to the left of
σj,k whenever h < j.

Let t be the rank of Bt
LABR, which is clearly at most s.

The algorithm continues by computing the lexicographically
first linearly maximal independent subset of the rows of this
matrix; let

IR = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ U

indicate the rows of the matrix that have been included in
this subset of rows so that the kth row selected is the row
vector τk = σt

ik,jk
ABR for 1 ≤ j ≤ t. Compute a maximal

linearly independent

IC = {h1, h2, . . . , ht} ⊆ {1, 2, . . . , s}

as well; set bBR ∈ Fq
n×t to be the submatrix of BR with these

columns and let C ∈ Fq
t×t be the nonsingular submatrix

ofBt
LABR which rows from IR and columns from IC . S1 is

now updated by adding ordered pairs

(µm1+1, νm1+1), (µm1+2, νm1+2), . . . , (µm1+t, νm1+t),

where m1 is the size of the set before this update, µm1+k =
σik,jk

, and where νm1+k is the kth column of the matrix
bBR · C−1 for 1 ≤ k ≤ t. It is easily seen, by the choice of
the above vectors, that if the set S1 satisfied conditions (1)
and (2) before this update then it does so after, as well.

Suppose s = t, so that bBR = BR. Set U is first updated
by removing the positions of vectors that have now been
fully “processed:” U := U \ I. The remaining “unprocessed”
vectors are orthogonalized against the vectors that have been
included in S1, that is, each remaining vector σi,j for (i, j) ∈
U is updated as

σi,j := σi,j −

m1+sX

k=m1+1

`
σt

i,jAνk

´
µk

so that σt
i,jAνk = 0 for each ordered pair (µk, νk) ∈ S1.

Following the computation of these vectors, the algorithm
updates the set R by setting R to be the set

R := {νm1+1, νm1+2, . . . , νm1+s}.

On the other hand, if t < s then each vector λ that is a

column of BR not included in bBR is updated as

λ := λ−

m1+tX

k=m1+1

`
µt

kAλ
´
νk.

Set S3 is now initialized to include the vectors λ that have
been computed as above, so that S3 = {λ1, λ2, . . . , λs−t}
where Aλ1, Aλ2, . . . , Aλs−t are linearly independent and so
that µt

kAλh = 0 for 1 ≤ k ≤ m1 and 1 ≤ h ≤ s − t. The
set R is now updated to

R := {νm1+1, νm1+2, . . . , νm1+t} ∪ S3

and we proceed to the elimination phase of the algorithm.

2.2 Elimination Phase
The final phase of the algorithm consists of a loop in which

we repeatedly update the sets R, S2 and S3 and the value
of sR as follows.

(i) For each vector λ ∈ R we compute the value

bλ = Aλ−

m1X

k=1

`
µt

kA(Aλ)
´
νk (9)

so that µt
kAbλ = 0 for 1 ≤ k ≤ m1. Set bR to be the set

of vectors λ that have been produced.

(ii) Using an elimination-based process, bR is partitioned
to form a pair of sets, R′ and R′′, so that the vectors
in the set

bS = {Aϕ | ϕ ∈ S3 ∪R
′}

are linearly independent, and so that, for each vector
bλ ∈ R′′, Abλ is a linear combination of the vectors in bS.
Indeed, elements cτ of Fq are computed such that

Abλ =
X

τ∈S3∪R′

cτAτ,

and these are used to compute a value

λ⋆ = bλ−
X

τ∈S3∪R′

cττ

in the null space of A.

All of the above values λ⋆ are now added to S2. S3

and R are replace by the sets S3 ∪ R′ and R′, respec-
tively, and sR is incremented.

The process terminates when it is discovered that R = ∅.

2.3 Properties of Sets

Lemma 1. The following properties are satisfied at the be-
ginning of each execution of the loop body of the algorithm
shown in Figure 1.

(a) S1 is a set of ordered pairs as shown at line (1) satis-
fying the conditions given at line (2).

(b) S2 is a set of vectors in the null space of A.

(c) If S1 is as shown at line (1) then σt
i,jAνk = 0 for every

ordered pair of integers i and j such that (i, j) ∈ U , and
for 1 ≤ k ≤ m1.

Lemma 2. At the beginning of each execution of the body
of the loop in the algorithm in Figure 1, either sL = 0 and

U ⊆ {(0, 1), (0, 2), . . . , (0, ℓ)}

or sL ≥ 1 and

U ⊆ {(sL − 1, 1), (sL − 1, 2), . . . , (sL, ℓ),

(sL, 1), (sL, 2), . . . , (sL, ℓ)}.

Suppose that S3 = ∅ before and at the beginning of the
final execution of the loop body in the Lanczos phase.

Lemma 3. The following properties are satisfied at the be-
ginning of each execution of the body of the loop in the algo-
rithm shown in Figure 1 (where S1 is as shown at line (1)),
and at the beginning of each execution of the loop body in
the elimination phase:

(a) sL ≥ 0, and the set of vectors

V1 = {µi | 1 ≤ i ≤ m1} ∪ {σi,j | (i, j) ∈ U}

spans the same vector space as the set of vectors

V2 =
n`
At´i uj | 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ

o
.

(b) sR ≥ −1; if sR ≥ 0 then the set of vectors

W1 = {νi | 1 ≤ i ≤ m1} ∪ S2 ∪ S3

spans the same vector space as the set of vectors

W2 =
n
Aivj | 0 ≤ i ≤ sR and 1 ≤ j ≤ r

o
.

Suppose that S3 = ∅ before the final execution of the body
of the loop in the Lanczos phase.

Lemma 4. Suppose the algorithm does not report fail-

ure. Then the following properties are satisfied on termina-
tion.

(a) The set {νi | 1 ≤ i ≤ m1} ∪ S2 ∪ S3 spans the Krylov
space that is generated by v1, v2, . . . , vr.

(b) The set of vectors S2 spans the intersection of the above
Krylov space and the null space of A.

2.4 Reducing the Cost of Orthogonalizations
As in all Lanczos-based algorithms, the time and space

used by this algorithm will be reduced by simplifying the
orthogonalizations of vectors that are required.

Lemma 5. Consider any execution of the algorithm shown
in Figure 1.

(a) Consider any vector ζ that is being orthogonalized at
step 4 of the algorithm or during the elimination phase.
If j <= m1 − 6ℓ− r then µt

jAζ = 0 before this orthog-
onalization is carried out.

(b) Consider any vector σsL,j that is being orthogonalized
at step 7. If k <= m1 − 2ℓ − 2r then σt

sL,jAνk = 0
before this orthogonalization is carried out.

Thus the orthogonalization steps at lines (7) and (9), and
at (8), can respectively be replaced by the simpler (and
cheaper) operations

ζ := ζ −

m1X

j=min(1,m1−6ℓ−r+1)

(µt
jAζ)νj (10)

and

σsL,j := σsL,j −
X

k=min(1,m1−2ℓ−2r+1)

(σt
sL,jAνk)µk. (11)

The vectors σij must also be orthogonalized as part of
step 10 as additional ordered pairs are added to S1. The
next lemma implies that O(nℓ) operations over Fq are used
as part of these steps to update this vector.

Lemma 6. At most 3ℓ ordered pairs are added to S1, after
the creation of a vector σi,j before either the algorithm ends,
or the ordered pair (i, j) is removed from U (at which point,
an updated version of σi,j is used as the first entry of an
ordered pair that is added to S1).

2.5 Bounding the Probability of Failure
Suppose now that the Krylov space of the given vectors

v1, v2, . . . , vr has dimension d, and let e be the dimension of
the intersection of this space and the null space of A.

Lemma 7. Suppose that n ≥ 2, δ ≥ 2, and the algorithm
described above is run using a matrix A ∈ Fq

n×n and vectors
v1, v2, . . . , vr.

(a) The algorithm fails (by executing step 9 during the
Lanczos phase) with probability at most 2q−δ.

(b) If the algorithm does not report failure then the proba-
bility that d−e−|S1| > i on termination of the Lanczos
phase is less than 2q−δ + 3q−i for any integer i ≥ 1.

Note that the value d− e− |S1| bounds both the size of the
set S3 that is computed during the elimination phase and
the number of executions of the body of the loop in that
phase of the algorithm.

2.6 Summary

Theorem 1. Let A ∈ Fq
n×n and v1, v2, . . . , vr ∈ Fq

n×1.
Let δ ≥ 2 be a positive integer. The algorithm described
above can be used, with ℓ ≥ r + 2(⌈logq n⌉ + δ), to compute
a set of vectors that span the Krylov basis K generated by
v1, v2, . . . , vr, as well as bases for this space and for its in-
tersection with the null space of A, failing with probability
at most 2q−δ.

The number of applications of A or At to vectors during
the execution of this algorithm is in Θ(n) in the worst case
and, if δ ≥ logq n, then the expected number of additional

operations in Fq used by the algorithm is in Θ(n2ℓ).
It also uses space to to store Θ(ℓ) vectors, needed either for

the orthogonalizations that are performed while the algorithm
takes place or to support the applications of this algorithm
that are described in the sequel.

On the other hand, if δ < logq n then a version of the

algorithm that fails with probability at most 7q−δ, and that
uses the above numbers of operations in the worst case, can
be obtained simply by terminating the elimination phase of
the algorithm, and reporting failure, as soon as it is noted
that |S3| > δ.

3. APPLICATIONS
In this section we will consider the application of the block

Lanczos algorithm presented in the previous section. Sup-
pose the Jordan normal form of A ∈ Fq

n×n includes exactly
m nilpotent Jordan blocks

2
66666664

0 1 0
0 1

. . .

0 1
0 1

0 0

3
77777775

with order at least two. Then there exists a nonsingular
matrix X ∈ Fq

n×n such that

A = X

2
4
A1 0

A2

0 A3

3
5X−1 (12)

where

• A1 is a nonsingular matrix with order n1 for some in-
teger n1 such that 0 ≤ n1 ≤ n− 2m.

• A2 is a block diagonal matrix

A2 =

2
6664

J1 0
J2

. . .

0 Jm

3
7775 (13)

where Jh is a nilpotent Jordan block with order n2,h ≥
2, so A2 has order n2 = n2,1 +n2,2 + · · ·+n2,m ≥ 2m.

• A3 is a zero matrix with order n3 = n− n1 − n2 ≥ 0.

If ei is the ith standard unit vector, V1 is the vector
space with basis Xe1, Xe2, . . . , Xen1

, the vector space V2

has basis Xen1+1, Xen1+2, . . . , Xen1+n2
, and V3 has basis

Xen1+n2+1, Xen1+n2+2, . . . , Xen, then, since the above ma-
trix X is nonsingular, it is clear that Fq

n×1 is the direct
sum of the vector spaces V1, V2, and V3. Thus each vector
x ∈ Fq

n×1 can be written uniquely as the sum of vectors
α ∈ V1, β ∈ V2, and γ ∈ V3. It is also clear each of the
vectors spaces V1, V2, and V3 is closed under multiplication
by A. Furthermore A acts as an invertible operator in V1, a
nilpotent operator in V2, and the zero operator in V3.

It is clear from Equations (12) and (13), above, that V2

is the Krylov space of a set of m vectors in V2; henceforth
we will set ω1, ω2, . . . , ωm to be a set of vectors in this space
such that V2 is the Krylov space generated (using A) by
ω1, ω2, . . . , ωm.

Lemma 8. Let vi = αi + βi + γi ∈ Fq
n×n such that αi ∈

V1, βi ∈ V2, and γi ∈ V3, for 1 ≤ i ≤ r.

(a) The Krylov space K that is generated by v1, v2, . . . , vr

includes both the Krylov space K1 ⊆ V1 that is gener-
ated by α1, α2, . . . , αr and the Krylov space K2 ⊆ V2

that is generated by Aβ1, Aβ2, . . . , Aβr.

(b) Suppose that {κ1, κ2, . . . , κh} is a basis for K1 and that
{λ1, λ2, . . . , λj} is a basis for K2, where K1 and K2 are
as given in part (a), above. Then the set of vectors

{κ1, κ2, . . . , κh} ∪ {λ1, λ2, . . . , λj}

∪ {β1 + γ1, β2 + γ2, . . . , βr + γr}

spans the Krylov space generated by v1, v2, . . . , vr.

Lemma 9. Suppose that r ≥ m + ∆ for a positive inte-
ger ∆, and that vectors v1, v2, . . . , vr are chosen uniformly
and independently from Fq

n×1. Then with probability at least
1 − 2q−∆ there exist elements λ1, λ2, . . . λm of V3 such the
Krylov space generated by v1, v2, . . . , vr includes the vectors

ω1 + λ1, ω2 + λ2, . . . , ωm + λm.

In this case the Krylov space also includes Aβ for all β ∈ V2.

3.1 Solving a Consistent Linear System
Suppose A is as in Equations (12) and (13) and consider

the problem of finding a vector x such that Ax = b, for a
given b ∈ Fq

n×1, assuming that such a vector exists.
An algorithm for this computation will begin with an ap-

plication of an augmentation of the algorithm using a set
v1, v2, . . . , vr where v1 = b and for v2, v3, . . . , vr selected
uniformly and independently from Fq

n×1.

Note that if the given system is consistent then b = α+ β
such that α ∈ V1, and β ∈ V2 is an element of the Krylov
space generated by Aω1, Aω2, . . . , Aωm, for ω1, ω2, . . . , ωm

as described above. Furthermore, the the fact that A acts
as an invertible operator in V1 can be used to establish that
there Krylov space generated by α includes a value χ such
that Aχ = α. The following can now be established.

Lemma 10. Suppose that the system Ax = b is consistent,
the number m of nilpotent blocks in the Jordan normal form
of A is at most r − ∆ − 1, for a positive integer ∆ ≥ 2,
and that vectors v1, v2, . . . , vr are selected as described above.
Then the Krylov space generated by v1, v2, . . . , vr includes
a solution for the system Ax = b with probability at least
1 − 2q−∆.

Suppose now that the Krylov space does contain a vector
bx such that Abx = b. Suppose that the algorithm from Sec-
tion 2 is augmented so that it maintains an additional pair
of vectors, x and res, that are initialized to have values 0
and b at step 1. Clearly

Ax+ res = b; (14)

the values x and res will be updated as the set S1 is modified,
in order to ensure that

µt
ires = 0

for each ordered pair (µi, νi) ∈ S1. In particular this be
achieved by setting ci to be µt

ib and then replacing x and res
by the values x+ciνi and res−ciAνi, respectively. It is easily
checked Equation (14) is still satisfied and that µt

iA(Ax −
b) = µt

ires = 0 after this update.
Let us compare the computed value x to the solution bx

mentioned above, after all the ordered pairs in S1 have been
considered: It is clear that µt

iA(x− bx) = µt
i(Ax− b) = 0 for

1 ≤ i ≤ m1. Both x and bx belong to the Krylov space that
has been generated, so x − bx must be a linear combination
of the vectors in S2 ∪S3. Since each vector in S2 belongs to
the null space of A, it follows that Ax − b = Ax − Abx is a
linear combination of vectors Aλ, for λ ∈ S3.

Now recall from Section 2 that S3 = {λ1, λ2, . . . , λm3
}

(for m3 = |S3|) where the vectors Aλ1, Aλ2, . . . , Aλm3
are

linearly independent. Values c1, c2, . . . , cm3
∈ Fq such that

(Ax− b) = c1Aλ1 + c2Aλ2 + · · · + cm3
Aλm3

can be found, by a simple elimination-based process, using
Θ(nm2

3) additional operations, and, after the value x is up-
dated to be

x := x− c1λ1 − c2λ2 − · · · − cm3
λm3

,

it is clear that Ax = b as required.
As described above the above computation can be carried

out using a modified version of the main algorithm, requiring
storage of another two vectors (namely, x and res). Part (b)
of Lemma 7 (which bounds the probability thatm3 exceeds a
given size) can be used to establish that the expected number
of additional operations over Fq that are required is in Θ(n2).

3.2 Bounding the Number of Nilpotent Blocks
Next consider the problem of deciding whether A is m-

derogatory for a given integer m ≥ 0.

Lemma 11. Let A ∈ Fq
n×n. Then the Jordan normal

form of A includes exactly m nilpotent blocks with order of

at least two if and only if the intersection Z of the image of A
and the null space of A is a vector space with dimension m.

This suggests the following algorithm: Given an integer m
and a positive integer ∆ ≥ 2, generate r = m + ∆ vec-
tors z1, z2, . . . , zr uniformly and independently, and then use
an augmented version of the algorithm from Section 2 to
compute a spanning set for the Krylov space generated by
v1 = Az1, v2 = Az2, . . . , vr = Azr.

This augmented version of the algorithm maintains a sec-
ond pair of sets T1 and T2, such that |T1| = |S1| = m1,
|T2| = |S2| = m2,

T1 = {ϕ1, ϕ2, . . . , ϕm1
}

such that Aϕi = νi (the second entry of the ith ordered pair
of vectors in S1) for 1 ≤ i ≤ m1, and where

S2 = {Aζ | ζ ∈ T2}

as well. The algorithm also makes use of a set P of vec-
tors such that R = {Aρ | ρ ∈ P}. These sets are easily
maintained: T1 and T2 are initialized to be empty, along
with S1 and S2, at the beginning of the algorithm. During
the first execution of the loop body P is initialized to in-
clude z1, z2, . . . , zr at the same time as R is initialized to in-
clude v1, v2, . . . , vr. No further (additional) multiplications
of vectors by A or At are needed, since P can be replaced
by R immediately before R is updated at step 3. Elements
of R are updated at step 4 by adding linear combinations
of ν1, ν2, . . . , νm1

; the corresponding elements of P can be
updated by adding linear combinations of ϕ1, ϕ2, . . . , ϕm1

using the same multipliers. An inspection of the updating
of R during the elimination confirms P can be updated at
the same time as R, during this part of the algorithm, with-
out additional applications of A or At as well. Finally, the
sets P , T1 and T2 can be updated at the same time as R, S1

and S2 in the same way. The number of operations over Fq

and the storage space needed by it are at most doubled.
On termination one should compute a maximal linearly

independent set S′
2 of the vectors in S2, returning the cor-

responding subset of the vectors T ′
2 in T2. Suppose that set

of k vectors τ1, τ2, . . . , τk is produced. It follows by their
construction that Aτ1, Aτ2, . . . Aτk are linearly independent
and that A2τi = 0 for 1 ≤ i ≤ k.

Lemma 12. Suppose that the above algorithm is applied
using a matrix A ∈ Fq

n×n.

(a) If A has bm < r nilpotent blocks with order at least two
in its Jordan normal form then k ≤ bm. The probability
that k < bm (so that a basis for Z is not obtained) is
at most 2qr− bm.

(b) If A has bm ≥ r nilpotent blocks with order at least
two in its Jordan normal form then the probability that
k < m (so that it is not proved that A is m-derogatory)
is at most 2q−∆.

Consequently, since m ≤ r − ∆, a basis for Z is obtained
with probability at least 1 − 2q−∆ if A is m-nonderogatory.
On the other hand, if A is m-derogatory then a certificate of
this is obtained with probability at least 1 − 2q−∆, instead.

3.3 Sampling from the Null Space
Let A ∈ Fq

n×n. Suppose that A is a singular matrix
that has exactly m nontrivial nilpotent blocks in its Jordan

normal form and, indeed, that the value of m is known and
that a basis for the intersection Z of the image of A and its
null space has been obtained (perhaps, using the algorithm
described in Section 3.2, above). The idealistic assumption
that one can sample elements uniformly and independently
from Fq will also be made.

Suppose that we are given an integer d > 0 and that we
wish to generate a sequence

ζ1, ζ2, . . . , ζd

such that Aζi = 0 for 1 ≤ i ≤ d and such that every such
sequence is generated with probability q−kd, where k is the
(generally unknown) dimension of the null space.

An algorithm to solve this problem will now be presented.
The algorithm will either generate a sequence as described
above, or it will detect and report failure. Since failure
can be detected, and its probability can be bounded, a pro-
cess that eventually produces a sequence of the above form,
whose expected running time is small, can be obtained as a
sequence of independent trials of the algorithm that will be
described, ending with the first trial that succeeds.

The probability of failure can be bounded but, unfortu-
nately, depends on the parameter d: The probability of fail-
ure is at most 2q−d. That noted, the probability of failure
can be reduced to at most 2q−∆ for a given integer ∆ > d,
while generating sequences with the desired probabilities, by
applying the algorithm to produce a sequence of length ∆
and then discarding the final ∆ − d elements.

To begin, let v1, v2, . . . , vm+d be uniformly and indepen-
dently selected from Fq

n×1. Apply the algorithm in Sec-
tion 2 with vectors Av1, Av2, . . . , Avm+d to check that the
intersection of the Krylov space generated by these vectors
and the null space of A has dimension m. Since this inter-
section is a subspace of Z its dimension is at most m, and
part (a) of Lemma 12 implies that its dimension is equal
to m, and this intersection is equal to Z, with probability
at least 1 − 2q−d; failure should be reported if this is not
the case.

Provided that failure has not been reported, we should
continue by running the algorithm in Section 2 again, with
vectors v1, v2, . . . , vm+d, and considering the set S2 that has
now been obtained. We should generate a basis for the
space X spanned by these vectors by using them to extend
the basis for Z that is already available. Since X has di-
mension at most m+ d. and Z ⊆ X , this process results in
at most d additional vectors. Since the null space of A is
contained in the direct sum of V2 and V3, these vectors are

βm+1 + γ1, βm+2 + γ2, . . . , βm+e, γe (15)

where 0 ≤ e ≤ d, βj ∈ V2 for m+1 ≤ j ≤ m+e, and γj ∈ V3

for 1 ≤ j ≤ e.
The process that has been described so far can be consid-

ered to be an“experiment”that implicitly defines a subspace
of V3 with dimension at most d, namely, the space W with
dimension e with basis γ1, γ2, . . . , γe — these vectors are eas-
ily seen to be linearly independent, because the set of vectors
including the given basis β1, β2, . . . , βm for Z ⊆ V2 as well as
the vectors at line (15), above are, by construction, linearly
independent, and because βm+i is a linear combination of
β1, β2, . . . , βm for 1 ≤ i ≤ e.

Of course, if a basis for V3 was available then we could
also generate a subspace W of V3 with dimension at most d
using a second “experiment,” namely, by generating d linear

combinations of the elements of this basis, uniformly and
independently, and considering the subspace that is spanned
by the vectors that have been generated.

A careful consideration of the elimination process that is
needed to extend the basis in the first “experiment,” as de-
scribed above, and the observation that a given probability
distribution can be described in multiple ways, establishes
the following.

Lemma 13. Let W be a subspace of V3 whose dimension
at most d. The probability that W is generated, using the
first of the experiments described above, is equal to the prob-
ability that W is generated using the second experiment, in-
stead.

Suppose that, as the next step in this computation, we
wish to generate a sequence

bζ1 = bβ1 + bγ1, bζ2 = bβ2 + bγ2, . . . , bζd = bβd + bγd (16)

where bβ1, bβ2, . . . , bβd belong to Z, and where bγ1, bγ2, . . . , bγd

have been selected uniformly and independently from V3.
Consider, once again, the sequence of linearly indepen-

dent vectors γ1, γ2, . . . , γe ∈ V3 that have been generated at
the end of the previous step. Let BW ∈ Fq

n×e be the ma-
trix with these vectors as its columns and consider a matrix
C ∈ Fq

n×d whose column are to be selected from V3. The
columns of any such matrix span exactly one vector space
W ⊆ V3 with dimension at most d. Indeed, the columns
of a given matrix C span the same vector space W as the
above vectors γ1, γ2, . . . , γe if and only if there is a matrix
N ∈ Fq

e×d with maximal rank e such that BWN = C.
Since we wish to generate such matrices C uniformly, and
since BWN1 = BWN2 (for N1, N2 ∈ Fq

e×d) if and only if
N1 = N2, a sequence of vectors as shown at line (16) can now
be generated, following the determination of the space W as
described above, by carrying out the following steps.

1. Generate a matrix N uniformly and randomly from
the set of matrices in Fq

e×d with rank e.

2. Set bζ1, bζ2, . . . , bζd to the columns of the product BW ·N .

The above matrix N is to be selected uniformly from the set
of matrices in Fq

e×d whose rows are linearly independent.
Such a matrix can be generated by choosing the rows, one
at a time; following the selection of the first i rows the i+1st

can be selected by considering a sequence of uniformly and
independently selected vectors from Fq

1×d. The first of these
that is not a linear combination of the i rows that have
already been selected should be used. Since the expected
number of vectors that must be considered to generate each
row is less than two, the expected number of elements that
must be uniformly selected from Fq as part of this process
is in Θ(de). An elimination-based process can be used to
check the rank condition given above; the expected number
of operations needed for this is in O(d3) ⊆ O(n2d). The cost
of the matrix multiplication required for the second step is
in O(ned) ⊆ O(n2d) as well.

Recall our assumption that a basis for Z is available. The
computation can be completed by using this basis to select
a sequence of m vectors β′

1, β
′
2, . . . , β

′
d uniformly and inde-

pendently from Z — choosing these independently of the

vectors bζ1, bζ2, . . . , bζd that have already been obtained. It is

sufficient to set ζi = bζi + β′
i, for 1 ≤ i ≤ d, to obtain a

sequence of d vectors that are uniformly and independently
selected from the null space of A, as desired. This final
step requires the selection of md ≤ n2 values uniformly and
independently from Fq, followed by O(nmd) ⊆ O(n2d) ad-
ditional operations over this field.

3.4 Certifying Inconsistency
Consider next the problem of certifying that a given sys-

tem Ax = b is not consistent, that is, that b does not belong
to the column space of A.

If the matrix A is m-nonderogatory then so its transpose
and, as observed by Giesbrecht, Lobo and Saunders [5], the
probability that µtb = 0 is at most 1/q if the system of linear
equations Ax = b is inconsistent and µ is a uniformly and
randomly chosen element of the null space of At.

An algorithm that certifies inconsistency of a system Ax =
b, for anm-nonderogatory matrix A can now be obtained us-
ing the algorithms that have already been described above:
One should first determine the number of nilpotent blocks
with order at least two in the Jordan normal form of At,
and compute a basis for the space Z corresponding to the
matrix At, by an application of the algorithm described in
Subsection 3.2. This should the followed by an application
of the algorithm from Subsection 3.3 to produce a sequence
of ∆ vectors ζ1, ζ2, . . . , ζ∆ that are uniformly and indepen-
dently selected from the null space of At: If the previous
algorithm did not fail (that is, it really did compute a basis
for Z), and the system Ax = b is inconsistent, then a vec-
tor ζ such that ζtA = 0 but ζtb 6= 0, establishing that b is
not in the column space of A, will have been produced with
probability at least 1 − q−∆.

As described here the algorithm can “fail” for a variety
of reasons. This can be addressed by combining it with an
attempt to solve the given system using the algorithm in
Subsection 3.1. The result is an algorithm — which should
receive the matrix A, vector b, and a positive integer m —
and which produces either a vector x such that Ax = b, a
vector µ such that µtA = 0 but µtb 6= 0, a proof that the
matrix A is m-derogatory, as described above, or where the
only reason for failure is an unlucky choice of the random
values that have been selected. Consequently repeated trials
of this will eventually result in one of outputs (i), (ii), or (iii).
In the event of (iii) a user should presumably try again with
a larger value of m or apply a preconditioner in order to
bring A into a more manageable form.

4. FURTHER WORK
This paper has been a kind of “demonstration of concept,”

in that it describes an algorithm that has not yet been im-
plemented. It is possible that some of the results presented
here could be improved and, indeed, this would certainly be
desirable: While it is sufficient to store approximately 7ℓ
pairs of vectors to be used for the orthogonalizations that
are considered in Subsection 2.4 I do not know whether it is
necessary and, of course, the number of vectors to be stored
should be reduced if this is possible.

Indeed, it is not clear that the algorithm described in Sec-
tion 2 is necessary: It is certainly plausible (but, to my
knowledge, not yet verified) that an existing block Wiede-
mann algorithm could also be used to carry out the compu-
tations described in Section 3.

The small field preconditioner mentioned at the begin-
ning of this paper is arguably more expensive than is desir-

able, but it also achieves a stronger matrix property than
is used here, in that it ensures, with high probability, that
the number of nontrivial invariant factors of the precondi-
tioned matrix is small. Are there other, less expensive small
field preconditioners, that are sufficient to ensure the weaker
condition that the preconditioned matrix is nonderogatory?

A final theoretical question concerns a property of the null
space of a matrix: Is it possible to discover the dimension of
the null space (and, therefore, the rank of the given matrix)
using only the fact that the matrix is nonderogatory, and
without preconditioning? Note that the algorithm to sample
from the null space in Section 3 does not require this value
and, as far as I can tell, fails to provide any information that
could be used to discover this in general. I suspect that the
answer to this question is “no,” but have no idea of how to
prove this.

5. REFERENCES
[1] J. P. Buhler, J. H. W. Lenstra, and C. Pomerance.

Factoring integers with the number field sieve. In The
Development of the Number Field Sieve, volume 1554 of
Lecture Notes in Computer Science, pages 50–94.
Springer-Verlag, 1993.

[2] L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J.
Turner, and G. Villard. Efficient matrix preconditioners
for black box linear algebra. Linear Algebra and Its
Applications, 343–344:119–146, 2002.

[3] D. Coppersmith. Solving linear equations over GF(2):
Block Lanczos algorithm. Linear Algebra and Its
Applications, 192:33–60, 1993.

[4] W. Eberly. Reliable Krylov-based algorithms for matrix
null space and rank. In Proceedings, 2004 International
Symposium on Symbolic and Algebraic Computation,
pages 127–134, Santander, Spain, 2004.

[5] M. Giesbrecht, A. Lobo, and B. D. Saunders. Certifying
inconsistency of sparse linear systems. In Proceedings,
1998 International Symposium on Symbolic and
Algebraic Computation, pages 113–119, University of
Rostock, Germany, 1998.

[6] B. Hovinen and W. Eberly. A reliable block Lanczos
algorithm over small finite fields. In Proceedings, 2005
International Symposium on Symbolic and Algebraic
Computation, pages 177–184, Beijing, China, 2005.

[7] P. L. Montgomery. A block Lanczos algorithm for
finding dependencies over GF(2). In Advances in
Cryptology—EUROCRYPT ’95, volume 921 of Lecture
Notes in Computer Science, pages 106–120.
Springer-Verlag, 1995.

[8] G. Villard. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear
systems. In Proceedings, 1997 International Symposium
on Symbolic and Algebraic Computation, pages 32–39,
Maui, Hawaii, 1997.

[9] D. Wiedemann. Solving sparse linear equations over
finite fields. IEEE Transactions on Information Theory,
IT-32:54–62, 1986.

APPENDIX
The following sections will not included in the extended ab-
stract in the conference proceedings but will be available in
a full version of the paper that will be available at the au-
thor’s web site and cited in conference version. They are
included here for the convenience of referees.

A. PROOFS OF CLAIMS IN SECTION 2

A.1 Proof of Lemma 1
The claims in Lemma 1 follow by a reasonably straight-

forward induction on the number of executions of the loop
body.

The claims are trivial for the first execution of the body
of the loop, since S1 and S2 have each been set to be empty
at this point.

Suppose now that i ≥ 1 and that the part (a) of the claim
is satisfied at the beginning of the ith execution of the loop
body. Note that during the execution of this body of the
loop, zero or more additional ordered pairs are added, that
is, S1 is replaced by

S1 ∪ {(µm1+1, νm1+1), (µm1+2, νm1+2), . . . , (µm1+s, νm1+s)}

where the additional ordered pairs, shown, above, are com-
puted during Step 10. Each of the vectors

νm1+1, νm1+2, . . . , νm1+s

is computed in Step 10 as a linear combination of vectors in
the set R, and it is assured at step 4 that these are orthog-
onal to µ1, µ2, . . . , µm1

. Consequently

µiA
tνj = 0 for 1 ≤ i ≤ m1 and m1 + 1 ≤ j ≤ m1 + s.

Similarly, the vectors µm1+1, µm1+2, . . . , µm1+s are each
selected in step 10 from the set of vectors σi,j such that
(i, j) ∈ U . The ordered pairs in U either belonged to U at
the beginning of this execution of the loop body — in which
case, it follows by the induction hypothesis (and part (d)) of
the claim) that they are orthogonal to ν1, ν2, . . . , νm1

— or
they are introduced at step 8, in which case it is assured by
the processing at the previous step that they are orthogonal
to ν1, ν2, . . . , νm1

as well. It follows that

µt
iAνj = 0 for m1 + 1 ≤ i ≤ m1 + s and 1 ≤ j ≤ m1

as well.
Finally, the construction of νm1+1, νm1+2, . . . , νm1+s at

step 10 ensures that, for m1 + 1 ≤ i, j ≤ m1 + s,

µt
iAνj =

(
1 if i = j,

0 if i 6= j.

It follows the the above equations, and the inductive hypoth-
esis, that the set of ordered pairs S1 satisfies the condition
at line (2) at the end of this execution of the loop body. The
set also clearly satisfies this constraint at the beginning of
the next execution as well; that is, part (a) of the claim is
satisfied at the beginning of the next execution of the body
of the loop.

Establishing part (b) is straightforward, since S2 is only
modified by adding a set of vectors that are clearly in the
null space of A.

Finally, it should be noted that the set U is only modi-
fied at steps 8 and 10 of the algorithm. The orthogonaliza-
tion process at step 7 (and the inductive hypothesis) ensure

that σt
i,jAνk = 0 for each pair of integers i and j such that

(i, j) ∈ U , and for 1 ≤ k ≤ m1 following step 8. The orthog-
onalization process following the updating of U in step 10
ensures that σt

i,jAνk for each pair of integers i and j such
that (i, j) ∈ U and for 1 ≤ k ≤ m1 + s at the end of step 10
as well. Since the set U is not changed between the end
of one execution of the loop body and the beginning of the
next, it follows that part (c) of the claim is also satisfied
at the beginning of the next execution of the loop body, as
required.

Note: It follows from the argument given above that the
claims given as parts (a) and (b) of the lemma are also sat-
isfied at the beginning of the execution of the elimination
phase of the algorithm; this will be used to establish some
of the results that follow.

A.2 Proof of Lemma 2
It is necessary and sufficient to show that either sL = 0

and

U ⊆ {(0, 1), (0, 2), . . . , (0, ℓ)}

or sL > 0 and

U ⊆ {(sL − 1, 1), (sL − 1, 2), . . . , (sL, ℓ),

(sL, 1), (sL, 2), . . . , (sL, ℓ)}.

at the beginning of the ith execution of the body of the loop,
for each integer i such that the loop body is executed i or
more times. This is easily established by induction on i.

The above relationship clearly holds when i = 1, since SL

is initialized to be 0 and U is set to be

{(0, 1), (0, 2), . . . , (0, ℓ)}

just before the execution of the loop begins.
Suppose that i ≥ 2, the loop body is executed at least

i times, and the above relationship holds at the beginning
of the ith execution of the loop body. During this execution
of the loop body, either the tests above step 5 succeed and
steps 5–8 are executed, the first test succeeds and second
fails, so that step 9 is executed, or the first test fails so that
steps 5–9 are skipped.

In the first of these cases, the success of the tests before
step 5 ensure that sL ≥ 0 and

U ⊆ {(sL, 1), (sL, 2), . . . , (sL, ℓ)}

immediately before step 5. The execution of steps 5–8 (which
begins with sL being incremented) clearly ensures that sL ≥
1 and

U ⊆ {(sL − 1, 1), (sL − 1, 2), . . . , (sL, ℓ),

(sL, 1), (sL, 2), . . . , (sL, ℓ)}.

after these steps are completed. No ordered pairs are added
to U during step 10 (although some may be removed) so the
above containment holds at the end of this execution of the
loop body and the beginning of the next.

In the second of these cases, the execution of step 9 ter-
minates the execution of the loop. Consequently there is no
i+1st execution of the loop body, and nothing to be proved.

In the final case (steps 5–9 are skipped), the value of sL

is not changed by this execution of the loop body and no
ordered pairs are added to U (again, some may be removed
at step 10). Consequently the above relationship holds at the

end of this execution of the loop body, and at the beginning
of the next execution of the loop body, as needed to complete
the proof.

Note: A consideration of this argument can be used to
establish a slightly more general result, which will be used
in remaining proofs: The relationships concerning sL and U
also hold at the beginning of step 10 in the body of this
loop and at the beginning of the elimination phase of this
algorithm.

A.3 Proof of Lemmas 3 and 4

Lemma 14. Let i be a positive integer such that the body
of the loop in the algorithm shown in Figure 1 is executed
at least i times. Suppose that, at the beginning of the ith

execution of the body of the loop,

• V is the vector space spanned by the vectors σi,j for
0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ, and

• W is the vector space spanned by the vectors AtσsL,j

such that 1 ≤ j ≤ ℓ and (sL, j) /∈ U .

Then

(a) Atσi,j ∈ V for all integers i and j such that 0 ≤ i ≤
sL − 2 and 1 ≤ j ≤ ℓ.

(b) For each integer j such that 1 ≤ j ≤ ℓ there exist vec-
tors ηj ∈ V and θj ∈ W such that AtσsL−1,j = ηj + θj.

Note: In the following proof if it necessary to consider
the values of several variables and sets as these are changed
during an execution of the body of the loop. While appro-
priate notation will be used to keep track of these values for
some variables and sets (so that, for example, the argument

refers to sets U , bU , and U ′, using each to represent the set
assigned to the variable U at different points in the compu-
tation) this is not feasible for the vectors being processed:
Each vector σi,j will have several different values during the
execution of the loop; the context of the claims made, below,
should identify precisely which value is being referred to in
each case.

Proof. The result can be proved by induction on i. If
i = 1 then sL = 0 and claim is trivial. Indeed, it is trivial
for each integer i such that sL = 0 at the beginning of the
ith execution of the body of the loop.

Suppose now that i is any positive integer such that the
above relationships hold at the beginning of the ith execu-
tion of the loop body. These relationships also hold at the
beginning of step 10 during this execution of the loop body,
if step 10 is reached, provided that the above vector spaces V
and W are adjusted to agree with the above definitions when
sL and U are modified.

To see that this is the case, note that either both tests
preceding step 5 succeed, so that steps 5–8 are executed,
the first test succeeds and the second fails, so that step 9 is
executed, or the first test fails so that steps 5–9 are skipped.

Suppose that steps 5–8 are executed, so that sL is incre-

mented to have value csL = sL +1. Let bV be the vector space
spanned by the vectors σi,j for 0 ≤ i ≤ csL and 1 ≤ j ≤ ℓ
after steps 5–8 have been carried out. Then, since LcsL

is
initialized to be the sequence

〈AtσcsL−1,1, A
tσcsL−1,2, . . . , A

tσcsL−1,ℓ〉

at step 5, and the orthogonalization at step 7 does not
change the vector space spanned by the vectors σi,j for

0 ≤ i ≤ csL − 1 = sL and 1 ≤ j ≤ ℓ, the vector space bV
contains the original vector spaces V and W as well as each
vector AtσcsL−1,j for 1 ≤ j ≤ ℓ. As a result (again, since the
vectors σi,j are not changed by these steps, for i < csL) one

can see that Atσi,j ∈ bV for 0 ≤ i ≤ csL − 1 and 1 ≤ j ≤ ℓ as
needed to establish the analogue of claim (a), above.

Notice next that, following step 8, the set U is updated to
be

bU = U ∪ {(csL, j) | 1 ≤ j ≤ ℓ}.

Let cW be the vector space spanned by the vectors AtσcsL,j

such that 1 ≤ j ≤ ℓ and (csL, j) /∈ bU . Then, since (csL, j) ∈ bU
for all j, cW = {0}. However, as noted above, AtσcsL−1,j ∈ bV,
so one can choose ηj = AtσcsL−1,j and θj = 0 for 1 ≤ j ≤ ℓ
in order to establish the analogue of claim (b).

Suppose next that step 9 is executed; then failure is
reported and the computation ends at this point. Step 10 is
not reached and, since there is no subsequent execution of
the loop body, nothing must be proved.

The desired result is trivial in the remaining case (steps 5–
9 are all skipped), since sL, the vectors σi,j for 0 ≤ i ≤ sL

and 1 ≤ j ≤ ℓ, and the vector spaces V and W are all

unchanged. Set csL = sL, bV = V, bU = U , and cW = W in
this case.

It remains to consider the effect of step 10. Let V ′ be the
vector space spanned by the vectors σi,j for 0 ≤ i ≤ csL and
1 ≤ j ≤ ℓ on completion of step 10; while some of these vec-
tors are modified this is done as part of an orthogonalization
process, so that the vector space spanned by these vectors is

not changed: V ′ = bV. Now if 0 ≤ i ≤ csL − 2 and 1 ≤ j ≤ ℓ

then, as observed at the end of Section A.2, (i, j) /∈ bU at
the beginning of the execution of step 10. Consequently if
i ≤ csL − 2 then neither the vector σi,j nor Atσi,j is changed
as step 10 is carried out. It follows that Atσi,j ∈ V ′. Thus
part (a) of the claim is satisfied once again at the beginning
of the next execution of the body of the loop (if, indeed, this
statement is reached), as needed.

It remains to argue that the analogue of claim (b) holds
at the end of the execution of step 10. That is, we must

show that if 1 ≤ j ≤ ℓ then there exist vectors ηj ∈ V ′ = bV
and θj ∈ W ′ such that AtσcsL−1,j = ηj + θj , where U ′ ⊆ bU
is the set that has replaced bU and where W ′ is the vector
space spanned by the vectors AtσcsL,j such that σcsL,j /∈ U ′.

Recall that cW and W ′ are each defined as the vector
spaces spanned by sets of vectors. Since cW is defined in

terms of vectors that are not in bU none of these vectors
is changed by the computations that follow. Each of these
vectors is part of the spanning set used to define W ′ so that

cW ⊆ W ′.

Now, the orthogonalization process included in step 10
can be modelled as a sequence of updates

σh,i := σh,i + ασj,k

where α ∈ Fq, (h, i) ∈ U ′, and where (j, k) ∈ bU \ U ′. Let us
consider the effect of each change on the decomposition of
the vector AtσcsL−1,m for 1 ≤ m ≤ ℓ whose existence is to
be maintained.

Since

bU ⊆ {(csL − 1, 1), (csL − 1, 2), . . . , (csL, ℓ),

(csL, 1), (csL, 2), . . . , (csL, ℓ)},

h ∈ {csL − 1,csL} and j ∈ {csL − 1,csL}. Each of these cases
is considered separately below.

Case: h = j = csL − 1. In this case an update

σcsL−1,i := σcsL−1,i − ασcsL−1,k

is performed, where α ∈ Fq, (csL−1, i) ∈ U ′ and (csL−1, k) ∈
bU\U ′, so that i 6= k. The spaces bV and cW are not changed by
this update (that is, the sets of vectors used to define these
span the same vector spaces as they did before the update
took place), and the vectors AtσcsL−1,t are not modified for
any integer t such that 1 ≤ t ≤ ℓ and t 6= i. It is therefore
sufficient in this case to confirm that AtσcsL−1,i can still be

written as the sum of vectors in bV = V ′ and cW ⊆ W ′ after
this update.

Both AtσcsL−1,i and AtσcsL−1,k can be written in this way
before the update performed; suppose that

AtσcsL−1,i = ηi + θi and AtσcsL−1,j = ηj + θj

where ηi, ηj ∈ bV and θi, θj ∈ cW before the update. Then,
following the update,

AtσcsL−1,i = η′i + θ′i

for η′i = ηi − αηj ∈ bV and θ′i = θi − αθj ∈ cW, as required.
Case: h = csL and j = csL − 1. In this case an update

σcsL,i := σcsL,i − ασcsL−1,k

is being performed, where (csL, i) ∈ U ′ ⊆ bU . The vector

AtσcsL,i is not included in the spanning set that defines cW,

so the set of vectors used to define cW spans the same vector
space as before. None of the vectors AtσcsL−1,j are changed,
for any of the integers j such that 1 ≤ j ≤ ℓ, so the analogue
of claim (b) continues to hold.

Case: h = j = csL. In this case an update

σcsL,i := σcsL,i − ασcsL,k

is being performed, where (csL, i) ∈ U ′ and (csL, k) ∈ bU \ U ′,

so that i 6= k. Since (csL, i) ∈ bU and (csL, k) ∈ bU , neither
AtσcsL,i nor AtσcsL,k is included in the spanning set used to

define cW, so this set of vectors spans the same vector space
as it did before the update. As in the previous case, none of
the vectors AtσcsL−1,j such that 1 ≤ j ≤ ℓ is changed by this
update, so the analogue of part (b) of the claim continues
to hold, once again.

Case: h = csL − 1 and j = csL. In this case an update

σcsL−1,i := σcsL−1,i − αi,kσcsL,k

is being considered, where αi,k ∈ Fq, (csL − 1, i) ∈ U ′ and

(csL, k) ∈ bU \ U ′. Unlike the previous cases we will consider
the effects of all such updates at once: For every integer i
such that (csL − 1, i) ∈ U ′, the vector σcsL−1,i is updated as
follows:

σcsL−1,i := σcsL−1,i −
X

(csL,k)∈bU\U′

αi,kσcsL,k.

Suppose that AtσcsL−1,i = ηi + θi where ηi ∈ bV = V ′ and

θi ∈ cW before these updates, for 1 ≤ i ≤ ℓ. Then, following
the updates,

AtσcsL−1,i = ηi + θ′i

where

θ′i = θi −
X

(csL,k)∈bU\U′

αi,kA
tσcsL,k.

Now it suffices to notice that θ′i ∈ W ′: θi ∈ W ′ since θi ∈
cW and cW ⊆ W ′. Each of the vectors AtσcsL,k such that

(csL, k) ∈ bU \ U ′ belongs to W ′ as well, because each is
included in the spanning set that defines W ′. Consequently

AtσcsL−1,i is the sum of vectors in bV = V ′ and in W ′ as
required.

Consequently the analogue of part (b) is satisfied at the
end of step 10 (provided that these computations are ac-
tually carried out, that is, that algorithm does not report
failure and terminate instead). Consequently the claims
also hold at the beginning of the i + 1st execution of the
loop body, if such an execution takes place.

Note: Once again, it is easily checked from the above
that relationship claimed to hold at the beginning of the
execution of the loop body also holds later on. It also holds
at the point when an elimination phase begins (if there is
one), and this will be used in later proofs.

Lemma 15. At the beginning of each execution of the body
of the loop of the algorithm shown in Figure 1, sL ≥ 0 and
(for S1 as defined at line (1) and m1 = |S1|)

{µi | 1 ≤ i ≤ m1} ∪ {σi,j | (i, j) ∈ U} =

{σi,j | 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ} (17)

This relationship also holds at the beginning of the elimina-
tion phase of the algorithm (if, indeed, there is one).

Proof. This is another straightforward proof by induc-
tion on the number of executions of the body of the loop.

At the beginning of the first execution of the loop body
S1 = ∅ so that m1 = 0 and

{µi | 1 ≤ i ≤ m1} = ∅;

sL = 0 and U = {(0, j) | 1 ≤ j ≤ ℓ}, so that

{σi,j | (i, j) ∈ U} = {σi,j | 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ}

so that equation (17) holds at this point.
Suppose that equation (17) is correct at the beginning of

the ith execution of the body of the loop for a nonnegative
integer i. Either both tests before step 5 succeed during
the ith execution of the loop body, so that steps 5–8 are
executed, the first test succeeds and the second fails, so that
step 9 is executed, or the first test fails and steps 5–9 are
skipped.

If steps 5–8 are executed then sL is incremented to have
value csL = sL + 1 during the execution of these steps.
Neither S1 nor any vector σi,j such that 1 ≤ i ≤ sL and
(i, j) /∈ U is changed; and the ordered pairs

(csL, 1), (csL, 2), . . . , (csL, ℓ)

are added to U (which is otherwise unchanged). Conse-
quently the equation at line (17) is satisfied once again, on

completion of step 8, provided that the references to sL, S1

(and m1), and U refer to the values that this integer variable
and pair of sets have on the completion of this step.

If step 9 is executed then there is no i + 1st execution of
the body of the loop, because failure is reported and the
computation ends, so nothing must be proved.

Finally, it is clear that the equation at line (17) is satisfied
before the beginning of step 10 if steps 5–9 are skipped, since
sL, S1 (andm1), U , and the vectors σi,j such that 0 ≤ i ≤ sL

and 1 ≤ j ≤ ℓ are unchanged between the beginning of this
execution of the loop body and the beginning of step 10 in
this case.

It remains only to consider the execution of step 10. Note
that sL and the vectors σi,j such that 0 ≤ i ≤ sL and
1 ≤ j ≤ ℓ are not changed by this step, so that the set

{σi,j | 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ}

is not changed. On the other hand, S1 is changed (if an
i+ 1st execution of the loop body will take place): A set of
vectors

(µm1+1, νm1+1), (µm1+2, νm1+2), . . . , (µm1+2, νm1+s)

is added to this set, where

µm1+1 = σi1,j1 , µm1+2 = σi2,j2 , . . . , µm1+s = σis,js

for distinct ordered pairs

(i1, j1), (i2, j2), . . . , (is, js)

that belonged to U at the beginning of the execution of
this step. These are removed from U (which is otherwise
unchanged) if the loop body will be executed again; U is not
changed at all if this is the final execution of this loop body.
It follows that the execution of step 10 does not change the
set

{µi | 1 ≤ i ≤ m1} ∪ {σi,j | (i, j) ∈ U}

either — it merely moves a set of vectors from the second set
forming the above union into the first. Thus the equation at
line (17) is satisfied at the end of step 10 and at the beginning
of the next execution of the loop body — if, indeed, it is
executed again — or at the beginning of the elimination
phase, as required to complete the proof.

The next lemma concerns two unusual cases. The more
usual situation is considered in the lemma that follows.

Lemma 16. Suppose that body of the loop of the algorithm
shown in Figure 1 is only executed once.

(a) Computation ends at step 4 if and only if vi = 0 for
1 ≤ i ≤ r.

(b) If computation ends at step 10 then, for 1 ≤ i ≤ r, vi

is a linear combination of the vectors in the set

{νi | 1 ≤ i ≤ |S1|} ∪ S2 ∪ S3

for the sets S1, S2, and S3 as these are defined at the
beginning of the execution phase of the algorithm.

Proof. This follows by inspection of the code and the
description of each step found in Section 2.

Lemma 17. Let i be a positive integer such that i ≥ 2 and
the body of the loop is executed is executed at least i times.
Let

W1,i = {νj | 0 ≤ j ≤ m1}

where m1 = |S1|, for S1 as shown at line (1) and as defined
at the beginning of the ith execution of the loop. Let S2,i be
the set S2 as it is defined at the beginning of the ith execution
of the loop.

(a) Suppose there is an i+1st execution of the loop as well,
and let W1,i+1 and S2,i+1 be the corresponding sets de-
fined at the beginning of the i + 1st execution of the
loop. Then Aν is a linear combination of the vectors in
W1,i+1 ∪ S2,i+1 for every vector ν ∈W1,i.

(b) If the ith execution of the body of the loop ends at step 4
then Aν is a linear combination of the vectors in W1,i∪
S2,i for all ν ∈W1,i.

(c) Finally, if the ith execution of the body of the loop ends
at step 10 then Aν is a linear combination of the vectors

in cW1 ∪ bS2 ∪ bS3 for every vector ν ∈W1,i, where

cW1 = {νj | 0 ≤ j ≤ |bS1|}

for where bS1 (respectively, bS2 and bS3) is the set as-
signed to the variable S1 (respectively, S2 and S3) at
the beginning of the elimination phase of the algorithm.

Proof. Each part of the claim can be established by
noticing, on inspection of the code, that if the body of the
loop of the algorithm is executed at least k times, for k ≥ 2,
then there exist sets

X2, X3, . . . , Xk

of vectors such that

W1,j = X2 ∪X3 ∪ · · · ∪Xj

for 2 ≤ j ≤ k, that is, W1,j ⊆W1,j+1 for 2 ≤ j ≤ k− 1, and
that S2,j ⊆ S2,j+1 for 2 ≤ j ≤ k − 1 as well. Indeed (noting
that both S1 and S2 are empty sets at the beginning of the
first execution) we may set W1,1 = S2,1 = ∅, so the above
inclusions are now satisfied when j = 1 as well.

(a) The first part of the claim is easily established by in-
duction on i, using the above and by inspection of the
code.

Suppose, for a basis, that i = 2 and that the body of
the loop is executed at least three times. Suppose that
ν is a vector in W1,2; then one can see by inspection of
the code that Aν is one of the vectors included in the
initialization of set R when step 3 is reached, during the
second execution of the body of the loop. Consequently
this belongs to the vector space spanned by the vectors
in W1,2 ∪ R at this point. The orthogonalization of
vectors in R performed at step 4 does not change this
vector space, so that Aν belongs to the vector space
spanned by the vectors in W1,2 ∪ R at the end of this
step as well. Since there is a third execution of the
loop one can see by inspection of the code (including
the updating of S1 and S2) that each vector in R, at
the end of step 4, is a linear combination of the vectors
in X3 that are added to W1,3 and the vectors added
to S2,2 to produce S2,3. It follows that Aν is a linear
combination of the vectors in W1,3 ∪ S2,3, as required.

Now suppose that i ≥ 2 and the properties in part (a)
of the claim hold for i. Since there is nothing further
to prove if the body of the loop is not executed at least
i+2 times, let us assume that an i+2nd execution takes
place.

Let ν be a vector in W1,i+1. Then either ν ∈ W1,i or
ν ∈ Xi+1 = W1,i+1 \W1,i.

In the first case it follows by the inductive hypothesis
that Aν is a linear combination of vectors in W1,i+1

and S2,i+1. Since W1,i+1 ⊆W1,i+2 and S2,i+1 ⊆ S2,i+2,
it follows that Aν is in the linear span of the vectors
in W1,i+2 ∪ S2,i+2 as required.

On the other hand, if ν ∈ Xi+1 then Aν is one of the
vectors included in the set R when step 3 is executed,
as part of the i + 1st execution of the loop body. The
argument given in the basis can now be applied to con-
clude that Aν is in the linear span of the vectors in
W1,i+2 ∪ S2,i+2 in this case as well.

(b) Suppose that i ≥ 2 and the ith execution of the body of
the loop ends at step 4: Then all the vectors included
in the set R at step 3 have been set to zero after the or-
thogonalization process in step 4. Let ν ∈W1,i. Then,
as observed in the proof of part (a), Aν is a linear com-
bination of the vectors in W1,i ∪S2,i if ν ∈W1,i−1, and
Aν is one of the vectors used to initialize R (in step 3) if
ν ∈ W1,i \W1,i−1. Since the orthogonalization process
updates every vector in R by adding a linear combina-
tion of the vectors in W1,i, the fact that Aν has been
replaced by zero implies that Aν is a linear combination
of these vectors, as claimed.

(c) Finally, suppose that the ith execution of the body of
the loop ends at step 10 and is followed by the begin-
ning of the elimination phase. Once again let ν ∈W1,i;
then either ν ∈ W1,i−1 or ν∈W1,i \W1,i−1. In the for-
mer case the claim follows because Aν ∈W1,i ∪S2,i, as

argued above, and because W1,i ⊆ cW1 and S2,i ⊂ bS. In
the latter case Aν is one of values include in the set R at
step 3, and an inspection of the orthogonalization pro-
cess in step 4 and the update process at step 10 (prior
to the beginning of the elimination phase) confirms that

Aν is a linear combination of vectors in cW1 ∪ bS2 ∪ bS3

in this case as well.

Lemma 18. Let i be a positive integer such that the body
of the loop in the elimination phase of the algorithm is exe-
cuted at least i times. Let W1 = {νi | 1 ≤ i ≤ |S1|} for the
set S1 as it is defined at the end of the elimination phase,
and let S2,i (respectively, S3,i) be the sets of vectors assigned
to the variable S2 (respectively, S3) at the beginning of the
ith execution of the loop body.

(a) If there is also an i + 1st execution of the body of this
loop and ν ∈W1 ∪S3,i then Aν is a linear combination
of vectors in W1 ∪ S2,i+1 ∪ S3,i+1.

(b) If the algorithm ends immediately after the ith execution
of the body of the loop then, if S2 and S3 are as defined
at end of this execution, and ν ∈W1 ∪ S3 then Aν is a
linear combination of the vectors in W1 ∪ S2 ∪ S3.

Proof Sketch. Virtually the same argument as used to
proved parts (a) and (b) of the previous lemma can be used
to establish this one, as well: One makes use of the contain-
ments S2,i−1 ⊆ S2,i and S3,i−1 ⊆ S3,i and a consideration of
the way that vectors in S3,i \ S3,i−1 are used to update the
sets S2 and S3 during an ith execution of the body of this
loop.

Proof of Lemma 3. Both claims can be proved by in-
duction on the number of executions of the body of each in
the loops in the algorithm described in Section 2.

(a) Consider first the body of the loop in the algorithm
shown in Figure 1. The first claim is trivially satisfied
at the beginning of the first execution of the body of
this loop, since S1 = ∅ (so that m1 = 0), sL = 0,
σ0,j = uj for 1 ≤ j ≤ ℓ, and U = {(0, j) | 1 ≤ j ≤ ℓ}:

V1 = V2 = {u1, u2, . . . , uℓ}.

Suppose now that i ≥ 1, the body of the loop is ex-
ecuted at least i times, and sets of vectors V1 and V2

span the same vector space at the beginning of the ith

execution of the loop.

During this execution of the loop, either both tests be-
fore step 5 succeed and steps 5–8 are executed, the first
test succeeds and the second fails, so that step 9 is ex-
ecuted, or the first test fails and steps 5–9 are skipped.

Suppose first that both tests succeed and steps 5–8 are
executed. In this case, sL is incremented, and replaced
by csL = sL +1, so that the set of vectors V2 mentioned
in the claim is replaced by the set

cV2 = {(At)iuj | 0 ≤ i ≤ csL and 1 ≤ j ≤ ℓ}.

On the other hand, during this computation, each of
the vectors σcsL,j is initialized to be equal to AtσsL,j for
1 ≤ j ≤ ℓ, and the ordered pairs (csL, j) are added to U
for 1 ≤ j ≤ ℓ. Notice that, by Lemma 15, σsL,j ∈ V1

for 1 ≤ j ≤ ℓ so it is clear by the inductive hypothe-
sis that AtσsL,j is a linear combination of the vectors

in bV2. Since the orthogonalization process at step 7
does not change the vector space spanned by the vec-
tors being processed, it should be clear that steps 5–8

replace the set V1 by another set of vectors, bV1 that

spans a subspace of the vector space spanned by bV2.

Since bV1 includes all the vectors in V1 it is clear, by the
inductive hypothesis, that the vector (At)ivj is in the

linear span of the vectors in cV1, for 0 ≤ i ≤ sL and
1 ≤ j ≤ ℓ. It is therefore necessary and sufficient to
show that (At)csLuj = (At)sL+1uj is in the linear span
of these vectors, as well, in order to establish that the

vectors in cV1 and in cV2 span the same vector space.

Consider the vector (At)sLuj ; since this is in V2 it fol-
lows by the inductive hypothesis that this is in the lin-
ear span of the vectors in V1 and the alternative char-
acterization of this set given by Lemma 15 can be used
to conclude that

(At)sLuj = ω1 + ω2 + ω3

where

• ω1 is a linear combination of the vectors σh,i such
that 0 ≤ h ≤ sL − 2 and 1 ≤ i ≤ ℓ,

• ω2 is a linear combination of the vectors σsL−1,i

such that 1 ≤ i ≤ ℓ, and

• ω3 is a linear combination of the vectors σsL,i such
that 1 ≤ i ≤ ℓ.

Consequently (At)csLuj = Atω1 + Atω2 + Atω3. It fol-
lows by part (a) of Lemma 14 that Atω1 is an element
of the vector space spanned by the vectors in V1, so
it belongs to the vector space spanned by the vectors

in cV1 as well. Part (b) of Lemma 14, and the fact
that the orthogonalization process at step 7 does not
modify the vector space spanned, imply that Atω2 is in

the vector space spanned by the vectors in cV1 as well.
Since AtσsL,i was used as the initial value for σcsL,i,
the above observations and characterization of ω3 im-
ply that Atω3 is in the vector space spanned by the

vectors in cV1 too. Consequently (At)csLσj is also in
the vector space spanned by these vectors, so that the

vectors in cV1 and in cV2 span the same vector space.

Suppose next that step 9 is executed; then there is no
i + 1st execution of the loop, or elimination phase, so
there is nothing that must be proved.

Finally, if steps 5–9 are skipped entirely then the sets V1

and V2 are not changed, during the execution of the
loop body, before step 10 is reached.

Thus the vector spaces (corresponding to) V1 and V2

immediately before the execution of step 10 span the
same vector space, as required.

Now it suffices to note that, while step 10 includes an
orthogonalization process that modifies some of the vec-
tors in V1 and V2 this does not modify the vector space
that either set of vectors spans. Since these sets of vec-
tors are not changed between the end of step 10 and
the beginning of the next execution of the loop body,
it follows that the vector spaces V1 and V2 span the
same vector space at the beginning of the i+1st execu-
tion of the loop body (if there is such an execution), or
at the beginning of the elimination phase of the algo-
rithm (if there is not). Since S1 and U are not modified
at all during the elimination phase, V1 and V2 are not
changed either, so they span the same vectors space
throughout the elimination phase.

(b) The proof of part (b) is similar to that of part (a): We
proceed, again, by induction on the number of execu-
tions of the body of each of the loops in the algorithm.
To begin, consider the body of the loop of the Lanczos
phase of the algorithm as this is shown in Figure 1.

If the body of the loop is only executed once before
the algorithm moves to the elimination phase then it
is clear that the vectors in W1 must span a subspace
of that spanned by W2 = {v1, v2, . . . , vr}, since each of
the vectors in W1 is a linear combination of the vec-
tors in W2. Part(b) of Lemma 16 now implies that W1

and W2 span the same vector space.

One can see by inspection of the code (echoing the ar-
gument used to establish the above lemma) that W1

and W2 span the same vector space, namely, the space
spanned by v1, v2, . . . , vr, at the beginning of the sec-
ond execution of the body of this loop whenever this
loop is executed two or more times.

It is also clear, since sR = −1 at the beginning of the
first execution of the loop body and since sR is incre-
mented during every such execution, that sR = i − 1,
and

W2 = {Ajvk | 0 ≤ j ≤ i− 1 and 1 ≤ k ≤ r}

at the beginning of the ith execution of the loop body
whenever this loop body is executed i or more times.

Finally, a containment relation is clear. Suppose that
i ≥ 1 and the body of the loop is executed i or more
times; let W1,i (respectively, Wi,i+1) be the set W1 as
this is defined at the beginning of the ith (respectively,
i+1st) execution of the body of the loop. Then W1,i ⊆
W1,i+1.

With all that noted, let i be an integer such that i ≥ 1,
the sets of vectors W1 and W2 that are defined at the
beginning of the ith execution of the body of the loop
span the same vectors space, and suppose the body of
the loop is executed at least i + 1 times. Notice that
the vector space spanned by W1,i+1 is a subspace of the
vector space spanned by the vectors in the set

W1,i ∪ {Aγ | γ ∈W1,i}.

Since W1,i spans the same space as the set of vectors
Ajvk such that 0 ≤ j ≤ i − 1 and 1 ≤ k ≤ ℓ it follows
from the above thatW1,i+1 must span a subspace of the
space spanned by the vectors Ajvk for 0 ≤ j ≤ i and
1 ≤ k ≤ ℓ. It is necessary and sufficient to establish
thatAjvk is in the space spanned byWi+1, for 0 ≤ j ≤ i
and 1 ≤ k ≤ ℓ, in order to establish that W1 and W2

span the same vector space at the beginning of the i+1st

execution of the loop.

Suppose first that 0 ≤ j ≤ i− 1; then it follows by the
inductive hypothesis that Ajvk is in the space spanned
by W1,i, and the containment of W1,i in W1,i+1 estab-
lishes the desired result.

On the other hand, if j = i and i ≥ 1, as assumed
above, then Ajvk = A(Aj−1vk) = Aγ for a vector γ
that is in the vector space spanned by W1,i. It follows
by part (a) of Lemma 17 thatAγ is in the space spanned
by W1,i+1 for each vector γ ∈ W1,i. All linear combi-
nations of these vectors must be in the space spanned
by W1,i+1 so, in particular, Ajvk = Aivk must be in
this space. It follows that W1 and W2 span the same
vector space at the beginning of the i + 1st execution
of the body of the loop.

It follows by the same argument that W1 and W2 span
the same vector space at the end of the final execution
of this loop, so they also span the same vector space at
the beginning of the elimination phase.

Precisely the same argument, using Lemma 18 in place
of Lemma 17 (and recalling that S2 is a subset of the
null space of A) can be applied to establish that W1

and W2 span the same vector space at the beginning of
every execution of the loop in the elimination phase of
the algorithm, and on its termination.

Proof of Lemma 4. Consider the set of vectors

{νi | ≤ i ≤ m1} ∪ S2 ∪ S3

mentioned in the claim; it follows by part (b) of Lemma 3
that each of the vectors in this set belongs to the Krylov
space generated by v1, v2, . . . , vr.

(a) This follows by part (b) of Lemma 17 and part (b) of
Lemma 18: Regardless of whether termination ends at
step 4 of the body of the loop in the first phase or on
completion of the loop in the second phase, the vector
space spanned by

{νi | 1 ≤ i ≤ m1} ∪ S2 ∪ S3

is contained in the Krylov space, includes each of the
vectors v1, v2, . . . , vr and, by the above lemma, is closed
under multiplication by A. The only such space is the
Krylov space itself.

(b) Clearly, each of the vectors in S2 is in the intersection
of the Krylov space and the null space of A, so the

vector space that is spanned by this set of vectors is a
subspace of this intersection.

Suppose now that λ is an element of the intersection
of the Krylov space and the null space of A. Then it
follows by part (a) that

λ =

m1X

h=1

chνh + κ+ ω (18)

where c1, c2, . . . , cm1
∈ Fq and where κ is a linear com-

bination of the vectors in S2, and where ω is a linear
combination of the vectors in S3. Now it follows by the
orthogonality relations given at line (2), the fact that
each vector in S2 is in the null space of A, and the fact
that µt

iAη = 0 for 1 ≤ i ≤ |S1| and η ∈ S3, that, for
1 ≤ i ≤ m1,

µt
iAλ = µt

ia

m1X

h=1

chνh

!
+ µt

iAκ+ µt
iAω

=

m1X

h=1

chµ
t
iAνh + 0

(since Aκ = 0 and µt
iAω = 0)

= ciµ
t
iAνi (since µt

iAνh = 0 if h 6= i)

= ci.

On the other hand, µt
iAλ = 0, since λ is in the null

space of A. Thus ci = 0 for 1 ≤ i ≤ m1, so that
λ = κ + ω is a linear combination of the vectors in S2

and S3.

Suppose that S3 = {ζ1, ζ2, . . . , ζm3
} so that

ω = d1ζ1 + d2ζ2 + . . . ,+dm3
ζm3

for d1, d2, . . . , dm3
∈ Fq. Since κ and λ are both in the

null space of A, ω = λ− κ is in the null space as well,
so

d1Aζ1 + d2Aζ2 + · · · + dm1
Aζm1

= Aω = 0.

However, it follows by the construction of S3 that the
vectors Aζ1, Aζ2, . . . , Aζm1

are linearly independent, so
that d1 = d2 = · · · = dm1

= 0 and ω = 0 as well. Thus
λ = κ so that λ is a linear combination of the vectors
in S2, as claimed.

A.4 Proof of Lemmas 5 and 6

Lemma 19. Consider the value of sL and the set S1 at the
beginning of any execution of the loop body in the algorithm
shown in Figure 1, and at the beginning of the elimination
phase.

If i is an integer such that 0 ≤ i ≤ sL − 4 and 1 ≤ j ≤ ℓ
then

(a) σi,j = µk for some ordered pair (µk, νk) ∈ S1.

(b) Atσij is a linear combination of the first entries in the
ordered pairs that have been included in S1:

Atσi,j =

m1X

h=1

chµh

where ch ∈ Fq for 1 ≤ h ≤ m1.

Furthermore, if ch 6= 0, for 1 ≤ h ≤ m1, then

µh = σu,v

for integers u and v such that 1 ≤ v ≤ ℓ and 0 ≤ u ≤
i+ 3 ≤ sL − 1.

Proof. Recall that, for 0 ≤ i ≤ sL and 1 ≤ j ≤ ℓ,
either σi,j ∈ {µ1, µ2, . . . , µm1

} or (i, j) ∈ U . It follows
by Lemma 2, and the remarks at the end of Section A.2,
that σi,j ∈ {µ1, µ2, . . . , µm1

} whenever i ≤ sL − 2, implying
part (a). Indeed, part (a) is also satisfied at the beginning
of a previous execution of the loop body, namely the first
execution of the loop body such that sL = i + 2. We will
consider the processing of vectors between this execution of
the loop body and the current one in order to complete the
proof.

Let cm1 be the size of the set S1 at the beginning of this
previous execution of the loop body; then, at this point, S1

consists of the ordered pairs (µh, νh) for 1 ≤ h ≤ cm1. It
follows again by Lemma 2 that (i, j) /∈ U at this point so

that, in fact, σi,j = µk where k ≤ cm1. Furthermore, if bU is
the set U as it is defined at the beginning of this execution
of the loop body then part (a) of Lemma 14 can be used to
establish that

Atσi,j =

dm1X

h=1

bchµh +
X

(h,k)∈bU

dh,kσh,k

where bch ∈ Fq for 1 ≤ h ≤ cm1 and dh,k ∈ Fq for (h, k) ∈ bU
as well. Since sL currently has value i+2, µh must be equal
to σu,v where u ≤ i+ 2 at this point, for 1 ≤ h ≤ cm1.

Consider the effect of subsequent executions of the loop
body, up to the beginning of the execution when the value of
sL will be incremented to i+3. The orthogonalizations that
are performed update vectors by adding linear combinations
of the vectors µh for ordered pairs (µh, νh) in S1. While
additional ordered pairs can be added to S1, they must all
be of the form (µh, νh) where µh = σu,v, for u ≤ i + 2,
since these are the only vectors that are available before
sL is incremented. Now, since sL is incremented during this
execution of the body of the loop, steps 5–8 of the algorithm
are executed, so that the tests prior to step 5 succeeded, and
it is must be the case that the set U is a subset of

{(i+ 2, 1), (i+ 2, 2), . . . , (i+ 2, ℓ)}

at this point. Consequently, if m′
1 is the size of the set S1

at this point then S1 now consists of the first m′
1 ordered

pairs (µh, νh) for 1 ≤ h ≤ m′
1 that will also be in S1 at the

beginning of subsequent executions of the loop body, and
Atσi,j can now be expressed as

Atσi,j =

m′

1X

h=1

c′hµh +
ℓX

k=1

d′kσi+2,k

where c′h ∈ Fq for 1 ≤ h ≤ m′
1, d

′
k ∈ Fq for 1 ≤ k ≤ ℓ and,

furthermore, each d′k is only nonzero if (i+ 2, k) is included
in the set U at the beginning of this execution of the loop
body.

Next consider the effect of subsequent executions of the
loop body, up to the beginning of the execution when the
value of sL will be incremented to i + 4. The only or-
dered pairs added to S1 must be of the form (µh, νh) where
µh = σu,v for u ≤ i + 3 since no other vectors σu,v are yet
available. Orthogonalizations update vectors by adding lin-
ear combinations of the first entries of ordered pairs that
have already been added to S1. Finally, since step 5 of the

loop body will be executed once again, all ordered pairs
(i + 2, k) for 1 ≤ k ≤ ℓ must have been removed from
the set U at this point. Consequently, if m∗

1 is the size
of S1 at this point then each of the ordered pairs (µh, νh)
for 1 ≤ h ≤ m∗

1 in S1 at this point will also be included in S1

during subsequent executions of the loop body, and

Atσi,j =

m∗

1X

h=1

c∗hµh

where c∗h ∈ Fq for 1 ≤ h ≤ m∗
1.

Now, since the claim in the statement of this lemma con-
cerns a a vector σi,j where i is less than or equal to the
current value of sL minus four, the claim concerns an execu-
tion of the loop body that follows the one described above.
Consequently m1 ≥ m∗

1 at this point and the equation given
in part (b) can be obtained by setting ch to be c∗h for 1 ≤
h ≤ m∗

1 and setting ch to be zero for m∗
1 + 1 ≤ h ≤ m1.

Lemma 20. Consider the set

S1 = {(µ1ν1), (µ2, ν2), . . . , (µm1
, νm1

)}

at any point during the execution of the algorithm in Fig-
ure 1 and at the beginning of the elimination phase of the
algorithm. Suppose that µk = σik,jk

for 1 ≤ k ≤ m1.
Then, if k1 and k2 are integers such that 1 ≤ k1 < k2 ≤

m1, then ik2
≥ ik1

− 1.

Proof. Notice that if k1 < k2 then the ordered pair
(µk2

, νk2
) was added to S1 either during the same execu-

tion of the loop body as (µk1
, νk1

), or during an execution
that followed the inclusion of (µk1

, νk1
). For all integers ih

and jh the ordered pair (µh, νh) such that µh = σih,jh
is

added to S1 during the same execution of the loop body as
the one in which the ordered pair (ih, jh) is removed from
the set U .

The claim now follows from Lemma 2 and inspection of
the code in Figure 1: The set U cannot include any ordered
pairs (u, v) such that u ≤ ik1

− 2 at any execution of the
loop body that either includes the introduction of (µk1

, νk1
)

to S1 or follows it.

Corollary 1. Once again, consider the above set S1 at
the beginning of any execution of the loop body of the algo-
rithm in Figure 1 and at the beginning of the elimination
phase of the algorithm.

If i is an integer such that 0 ≤ m1 − 6ℓ then Atµi is a
linear combination of the vectors µ1, µ2, . . . , µi+6ℓ−1.

Proof. We claim first that if i ≤ m1−6ℓ then µi = σji,ki

for integers ji and ki such that ji ≤ sL − 4 and 1 ≤ ki ≤
ℓ. Suppose otherwise: then ji ≥ sL − 3 and it follows by
Lemma 20, above, and an inspection of the code, that

µi+c = σji+c,ki+c
for 1 ≤ c ≤ 6ℓ

where (ji+1, ki+1), (ji+2, ki+2), . . . , (ji+6ℓ, ki+6ℓ) are distinct
ordered pairs of the form (u, v), where sL − 4 ≤ u ≤ sL and
1 ≤ v ≤ ℓ. Since only 5ℓ such ordered pairs exist this is
clearly impossible.

It now follows by Lemma 19 (again, setting µi = σji,ki
)

that

Atσi,j =

m1X

h=1

chµh,

where ch ∈ Fq for 1 ≤ h ≤ m1 and where ch is only nonzero
if µh = σu,v for integers u and v such that 1 ≤ u ≤ ji + 3
and 1 ≤ v ≤ ℓ.

Consider the largest integer w such that 1 ≤ w ≤ m1 and
µw = σiw,jw where iw ≤ ji + 3. One can see, again, by
Lemma 20 that each of the vectors

µi, µi+1, . . . , µw

must be equal to one of the ordered pairs σu,v where ji−1 ≤
u ≤ ji + 4 and 1 ≤ v ≤ ℓ and, again, no such ordered pair
corresponds to more than one of the above vectors. Since
only 6ℓ such ordered pairs exist it follows that w−i ≤ 6ℓ−1;
the claim now follows by Lemma 19.

Lemma 21. Consider the sets S1 and S2 at the beginning
of any execution of the body of the loop in the algorithm in
Figure 1, and at the beginning of the elimination phase. If i
is an integer such that 1 ≤ i ≤ m1 − r then

Aνi = φi + τi

where φi is a linear combination of the vectors ν1, ν2, . . . , νj,
for j = min(m1, i+ 2r − 1), and where τi is a linear combi-
nation of the vectors in S2.

Proof. Note that at most r ordered pairs are added to
the set S1 during each execution of the loop body so, since
i ≤ m1 − r, the loop body has been executed at least once
more since the ordered pair (µi, νi) was introduced. Indeed,
the size of S1 was at most i + r − 1 ≤ m1 − 1 at the end
of the execution of the loop body that included this ordered
pair in S1. A subsequent execution of the loop body must
therefore have run to completion (without terminating the
computation but, possibly, leading to the elimination phase)
since at least one more ordered pair was subsequently added
to S1.

The result now follows by Lemma 17, above, and the ob-
servation that at most r more ordered pairs have been added
to S1 during this next execution of the loop body — so that
the size of S1 is at most i+ 2r − 1 at this point.

Proof of Lemma 5. The claims are trivial for the first
execution of the body of the loop of the algorithm shown in
Figure 1, since S1 = ∅ and m1 = 0 at this point.

(a) Consider first the orthogonalizations at step 4 of the
body of the loop shown in Figure 1. Suppose that ζ is
one of the vectors orthogonalized at step 4, and consider
any vector µj such that 1 ≤ j ≤ m1 − 6ℓ− r. It follows
by Corollary 1, above, that

Atµj =

j+6ℓ−1X

h=1

chµh

for c1, c2, . . . , cj+6ℓ−1 ∈ Fq.

On the other hand, ζ = Aνk where m1−r+1 ≤ k ≤ r1,
since νk is the second entry of one of the ordered pairs
added to S1 during the previous execution of the loop
body.

It follows that

µt
jAζ = µt

jA
2νk

= (Atµj)
tAνk

=

j+6ℓ−1X

h=1

chµ
t
hAνk

= 0,

by the condition at line (2), since h ≤ j + 6ℓ − 1 ≤
m1 − r − 1 < k.

Similarly, if a value ζ is being orthogonalized as shown
at line (9) during the elimination phase of the algo-
rithm, then either ζ = Aνi for an integer i such that
mi − r + 1 ≤ i ≤ m1, or ζ = Aτ for τ ∈ S3. The
same argument as above can be used to establish that
µt

jAζ = 0 for 1 ≤ j ≤ m1 − 6ℓ− r in either case.

(b) Suppose next that σsL,j is one of the vectors that is be-
ing orthogonalized during an execution of step 7 in the
algorithm shown in Figure 1; then σsL,j = AtσsL−1,j

before this step begins.

Suppose that (sL − 1, j) ∈ U at this point. Then an
examination of the algorithm (including the details of
step 10) confirms that σt

sL−1,jAνh = 0 for 1 ≤ h ≤ m1

at this point in the computation.

Suppose instead that (sL − 1, j) /∈ U ; then σsL−1,j =
µh, for some integer h between 1 and m1, that is,
σsL−1,j is the first entry of an ordered pair that has
been included in S1.

Consider now the smallest integer h such that µh =
(sL − 1, k) for any integer k. It follows by Lemma 20,
above, that each one of the vectors

µh, µh+1, . . . , µm1

must be equal to one of the vectors

σsL−2,1, σsL−2,2, . . . , σsL−2,ℓ,

σsL−1,1, σsL−1,2, . . . , σsL−1,ℓ.

The orthogonality conditions given at line (2) clearly
imply that µh, µh+1, . . . , µm1

are distinct, so it must be
the case that m1 −h+1 ≤ 2ℓ, that is, h ≥ m1 − 2ℓ+1.

It follows that if (sL − 1, j) /∈ U then σsL−1,j = µh for
some integer h such that m1 − 2ℓ + 1 ≤ h ≤ m1. In
this case it is clear (once again, by the orthogonality
conditions at line (2)) that

σt
sL−1,jAνk = 0

for every integer k such that 1 ≤ k ≤ m1 − 2ℓ.

Now consider an integer k such that k ≤ m1 − 2ℓ −
2r. It follows by Lemma 21 that there exist elements
c1, c2, . . . , ck+2r−1 of Fq and a vector τ in the linear
span of the vectors in S2 such that

Aνk =

k+2r−1X

h=1

chνh

!
+ τ.

Since each vector in S2 is in the null space of A, Aτ = 0.
It now follows that

σt
sL,jAνk = (AtσsL−1,j)

tAνk

= σt
sL−1,jA(Aνk)

=

k+2r−1X

h=1

chσ
t
sL−1,jAνh

!
+ σt

sL−1,jAτ

= 0.

This follows, in particular, by the fact that h < m1 +2ℓ
if h ≤ k + 2r − 1, so that σt

sL−1,jAνh as noted above,
and by the fact that τ is in the null space of A.

Proof of Lemma 6. This is a consequence of Lemma 20
and the fact that if i = 0 then U = ∅ at the beginning of the
execution of the body of the loop in which σi,j is initialized,
while

U ⊆ {(i− 1, 1), (i− 1, 2), . . . , (i− 1, ℓ)}

at the beginning of this execution of the loop body if i > 0.
Suppose first that the ordered pair (i, j) is eventually re-

moved from the set U ; the current version of the vector σi,j

is used as the first entry of an ordered pair (µh, νh) that is
added to S1 during the same execution of the body of the
loop. If S1 had size m1 at the beginning of the execution of
the loop body in which σi,j was initialized then it is clear
that h > m1 and one can see by the above lemma that each
of the values

µm1+1, µm1+2, . . . , µh

must be equal to σu,v where 1 ≤ v ≤ ℓ and v ∈ {i−1, i, i+1}.
Furthermore each of these 3ℓ vectors σu,v can be used as
the first entry of at most one of these ordered pairs. Conse-
quently h−m1 ≤ 3ℓ as claimed.

Suppose, on the other hand, that 3ℓ or more additional
ordered pairs are eventually added to S1 without using σi,j

as the first entry in an ordered pair; then it follows by the
above counting argument that a vector σu,v must be used
as the first entry of an ordered pair added to S1 for u ≥
i + 2. However this is impossible, since (i, j) will not have
been removed from the set U before this: The second test
before step 5 will fail, and the Lanczos phase of the algorithm
will terminate, before vectors σu,v such that u ≥ i + 2 are
initialized at all.

A.5 Proof of Lemma 7
The proof of Lemma 7 is rather long. It can be split into

the following stages, each of which will be handled in one of
the subsections that follows.

• To begin it will be shown that (because of the use of a
different block size on the left and the right) it can be
assumed, without loss of generality, that the matrix A
has at most r invariant factors that are different from 1
or x. This assumption is defended in Subsection A.5.1,
below.

• It can also be shown that, at each point during the
execution of the body of the loop shown in Figure 1,
either failure or a premature movement to the elimi-
nation phase can only take place if a matrix V t

LAVR is
rank-deficient, where the columns of VL are an initial
set of the vectors

u1, u2, . . . , uℓ, A
tu1, A

tu2, . . . , A
tuℓ,

(At)2u1, (A
t)2u2, . . . , (A

t)2uℓ, . . .

and where the columns of VR are an initial set of the
vectors

v1, v2, . . . , vr, Av1, Av2, . . . , Avr,

A2v1, A
2v2, . . . , A

2vr, . . .

This will be shown in Subsection A.5.2.

• Finally, the above can be applied with previously estab-
lished bounds [10] to bound the probability of failure of
the algorithm as well as the probability of premature
termination of the Lanczos phase, in order to establish
the lemma. This is carried out in Subsection A.5.3.

A.5.1 Assumption Concerning Invariant Factors
For the rest of this proof we will assume that A has at

most r invariant factors that are different from 1 or x; the
goal of this section is to defend that assumption.

Suppose now that the Krylov space of the given vectors
v1, v2, . . . , vr has dimension d; let x1, x2, . . . , xd ∈ Fq

n×1 be
a basis for this Krylov space. Recall that the Krylov space
is (by definition) closed under multiplication by A, so that
Axi is a linear combination of x1, x2, . . . , xd for each integer i
such that 1 ≤ i ≤ d.

Let y1, y2, . . . , yn−d be a completion of this as a basis
for Fq

n×1, that is, suppose that the vectors

x1, x2, . . . , xd, y1, y2, . . . , yn−d ∈ Fq
n×1

are linearly independent. We may now define a matrix bA ∈
Fq

n×n as an operator on these vectors. Let

bAxi = Axi for 1 ≤ i ≤ d (19)

and let

bAyj = 0 for 1 ≤ j ≤ n− d. (20)

Linearity can be used to define bAz for any other vector z ∈
Fq

n×1.
A consideration of a “rational Jordan form” of a matrix

(block diagonal, with blocks that are companion matrices
of powers of irreducible polynomials) establishes that if a
matrix has more than r invariant factors that are different
from 1 or x then its image is not contained in a Krylov
space of r or fewer vectors. This can be used to argue the
following.

Fact 1. The above matrix bA has at most r invariant fac-
tors that are different from 1 or x.

Lemma 22. Let α ∈ Fq
n×1 be any element of the Krylov

space generated by the vectors v1, v2, . . . , vr using the ma-
trix A.

(a) f(A)α = f(bA)α for any polynomial f ∈ Fq[x].

(b) (f(At)β)tα = (f(bAt)β)tα for every polynomial f ∈
Fq[x] and for every vector β ∈ Fq

n×1.

(c) (f(At)β)tAα = (f(bAt) bAα for every polynomial f ∈
Fq[x] and every vector β ∈ Fq

n×1, as well.

Proof. Let α be any element of the Krylov space gener-
ated by the vectors v1, v2, . . . , vr. Then α is a linear com-
bination of the vectors x1, x2, . . . , xd (comprising a basis

for this Krylov space) that are used to define bA at Equa-

tions (19) and (20), so it is clear that Aα ∈ bAα.

(a) Since the Krylov space generated by v1, v2, . . . , vr is
closed under multiplication by A it is easily proved by

induction on e that Aiα = bAiα for every element α of
this Krylov space and for every integer i ≥ 0 as well.

Now let f ∈ Fq[x]; then

f = cex
e + ce−1x

e−1 + · · · + c1x+ c0

for an integer e ≥ 0 and for ce, ce−1, . . . , c1, c0 ∈ Fq, so

that

f(A)α =
eX

h=0

chA
hα

=

eX

h=0

ch bAhα

= f(bA)α,

as claimed.

(b) Part (b) follows from part (a), since

(f(At)β)tα = βt(f(A)α) = βt(f(bA)α) = (f(bAt)β)tα

as claimed.

(c) Finally, the claim in part (c) is easily established using
part (b) and the polynomial g = x · f .

Notice that it follows by part (a) of the above lemma that
the Krylov space generated by v1, v2, . . . , vr, using matrix A,
is the same as the vector space generated by these vectors

using matrix bA instead. As noted before that, bA has at
most r invariant factors that are different from 1 or x. The
above assumption can therefore be justified by establishing
that the algorithm in Figure 1 behaves in essentially the

same way using bA as the given coefficient matrix as it does
when A is the given matrix instead. The remaining lemmas
in this section establish that this is the case.

Now let u1, u2, . . . , uℓ ∈ Fq
n×1 and consider the following

executions of the algorithm shown in Figure 1 on inputs
v1, v2, . . . , vr, when u1, u2, . . . , uℓ have been chosen as the
used to initialize the sequence L0 at step 1:

(i) The algorithm is executed using the matrix A.

(ii) The algorithm is executed using the matrix bA.

Let sL, sR, S1, S2, µi, νi, Li, σi,j R and U denote the
values that are maintained during execution (i) of the algo-
rithm, as these are described in Section 2, and let bsL, bsR

bS1, bS2, bµi, bνi, bLi, bσi,j , bR and bL denote the corresponding
values that are maintained during execution (ii), instead.

Lemma 23. Let i ≥ 1. Then the body of the loop in the
algorithm shown in Figure 1 is executed i or more times dur-
ing execution (i) of the algorithm, as described above, if and
only if it is executed i or more times during execution (ii)
times, as well. The values maintained by the algorithms are
related as follows at the beginning of the ith execution of
the loop body, whenever the loop body is executed i or more
times.

(a) bsL = sL and bsR = sR.

(b) |bS1| = |S1|, bνi = νi for 1 ≤ i ≤ |S1|, and there exist
polynomials fi,j ∈ Fq[x] for 1 ≤ i ≤ |S1| and 1 ≤ j ≤ ℓ
such that

µi = fi,1(A
t)u1 + fi,2(A

t)u2 + · · · + fi,ℓ(A
t)uℓ

and

bµi = fi,1(bAt)u1 + fi,2(bAt)u2 + · · · + fi,ℓ(bAt)uℓ

as well.

(c) bS2 = S2.

(d) For 1 ≤ i ≤ sL and 1 ≤ j ≤ ℓ there exist polynomials
fi,j,k for 1 ≤ k ≤ ℓ such that

σi,j = fi,j,1(A
t)u1 + fi,j,2(A

t)u2 + · · · + fi,j,ℓ(A
t)uℓ

and

bσi,j = fi,j,1(bAt)u1 + fi,j,2(bAt)u2 + · · · + fi,j,ℓ(bAt)uℓ

as well.

(e) bR = R.

(f) bU = U and, for every ordered pair (i, j) such that 1 ≤
i ≤ sL and 1 ≤ j ≤ ℓ such that (i, j) /∈ U , and for every
integer k such that 1 ≤ k ≤ |S1|, σi,j = µk if and only
if bσi,j = bµk.

Proof. This follows by a straightforward induction on i,
using the results of Lemma 22 and inspection of the algo-
rithm shown in Figure 1.

Lemma 24. The following properties are satisfied by ex-
ecutions (i) and (ii) of the algorithm shown in Figure 1,
where these are as described above.

(a) Each execution uses the same number of executions of
the body of the loop.

(b) If i is an integer such that the body of the loop is exe-
cuted at least i times (for either execution of the algo-
rithm) then the first execution fails by executing step 9
during the ith execution of the loop body if and only if
the second does so, as well.

(c) If i is an integer such that the body of the loop is exe-
cuted at least i times (for either execution of the algo-
rithm) then the algorithm terminates at step 4 of the ith

execution of the body of the loop, during execution (i),
if and only if at does so during execution (ii) as well.

(d) If i is an integer such that the body of the loop is ex-
ecuted at least i times (for either execution of the al-
gorithm) then the algorithm moves to the elimination
phase immediately after the execution of step 10, in the
ith execution of the loop body as part of execution (i)
of the algorithm, if and only if it does as part of execu-
tion (ii) as well.

Proof. This can be established by a continuation of the
argument used to prove Lemma 23, above: Notice that, by
the results of Lemmas 22 and 23, precisely the same condi-
tions are checked in order to decide whether the algorithm
should be terminated during the final execution of the loop
body at (or immediately before) steps 4, 9, and 10, so the
same decisions are made in each case.

A continuation of this argument establishes the following
as well.

Lemma 25. Suppose that executions (i) and (ii) of the
algorithm, described above, proceed to an elimination phase.
Let

S1 = {(µ1, ν1), (µ2, ν2), . . . , (µm1
, νm1

)}

be the set of ordered pairs of vectors computed (as “S1”) by
execution (i) of the algorithm, at beginning of the elimination
phase, and let

cS1 = {(bµ1, bν1), (bµ2, bν2), . . . , (bµdm1
, bνdm1

)}

be the corresponding set of ordered pairs of vectors computed
(as “S1”) by execution (ii) of the algorithm, at the beginning
of the elimination phase.

Then m1 = cm1 and, indeed, νi = bνi for 1 ≤ i ≤ m1.

A.5.2 Characterization of Failure or Premature Ter-
mination

For j ≥ 0, let VL,j ∈ Fq
n×(j+1)ℓ be the matrix with

columns

u1, u2, . . . , uℓ, A
tu1, A

tu2, . . . , A
tuℓ, . . .

(At)ju1, (A
t)ju2, . . . , (A

t)juℓ

Let br be the rank of A and set bVL ∈ Fq
n×br be the matrix

whose columns are the initial br columns of the above matrix
VL,⌈r/ℓ⌉.

Let VR,j ∈ Fq
n×(j+1)r be the matrix with columns

v1, v2, . . . , vr, Av1, Av2, . . . , Avr, . . .

Ajv1, A
jv2, . . . , A

jvr.

Lemma 26. Let i ≥ 1 such that the body of the loop in
the algorithm shown in Figure 1 is executed at least i times.
Suppose, furthermore, that

|U | < ℓ− ⌈logq n⌉ − δ

at the beginning of the ith execution of the loop body, so that
either steps 5–8 or step 9 are executed. Then i ≥ 2, ℓsL < br,
and either

U ⊆ {(sL, 1), (sL, 2), . . . , (sL, ℓ)}

(so that step 9 is not executed) or the matrix

V t
L,sL−1AVR,sR−1 ∈ Fq

ℓsL×rsR

has rank less than ℓsL.

Proof. To begin notice that, by construction, |U | = ℓ
at the beginning of the first execution of the loop, so that
i ≥ 2 if |U | < ℓ − ⌈logq n⌉ − δ. Furthermore it is clear,
by inspection of the code that, whenever the tests following
step 4 are executed,

|S1| = (sL + 1)ℓ− |U |,

so that

ℓsL = |S1| − ℓ+ |U | < |S1| − ⌈logq n⌉ − δ.

Since the orthogonality relations at line (2) imply that the
vectors Aν1, Aν2, . . . , Aνm1

are linearly independent, |S1| =
m1 is less than or equal to the rank br of A and it follows by
the above that ℓsL < br as well.

Now consider the sets S1 and U as they were defined at
an earlier execution of the body of the loop, namely, the
execution when the value of the variable “sL” was first set
to be equal to one less than its value at the beginning of the
ith execution of the body of the loop. It follows by part (a) of
Lemma 3, and by Lemma 15, that the columns of the above
matrix VL,sL−1 span the same vector space as is spanned by
the vectors

{σj,k | 0 ≤ j ≤ sL − 1 and 1 ≤ k ≤ ℓ},

where the vectors in this set are as defined at the end of this
earlier execution of the body of the loop (and the beginning
of the one that follows it).

Consider once again the (later) execution of the loop body
that is mentioned in the statement of the lemma and, in
particular, the set S1 as it is defined when the tests after
step 4 are carried out. It follows by part (b) of Lemma 3,

the fact that Av = 0 for all v ∈ S2, and the fact that S3 = ∅
at this point, that (for m1 = |S1|) the vectors

Aν1, Aν2, . . . , Aνm1

span the same vector space as the columns of the matrix
AVR,sR−1.

Suppose now that the matrix V t
L,sL−1AVR,sR−1 has full

rank, ℓsL. Then it follows by the above observations and
inspection of the code — notably including the greedy way
in which values are chosen to be removed from U — that
each of the ordered pairs (j, k) for 0 ≤ j ≤ sL − 1 and
1 ≤ k ≤ ℓ must have been removed from U and used to
define the first entry of an ordered pair (µh, νh) that has
been added to S1 before the beginning of the ith execution
of the body of the loop. Consequently

U ⊆ {(sL, 1), (sL, 2), . . . , (sL, ℓ)}

at this point, as required to establish the above claim.

Lemma 27. Let i ≥ 1, suppose that the loop in the al-
gorithm shown in Figure 1 is executed at least i times, and
that step 10 is reached during the ith execution of the loop
body. Consider the values sL and sR, and the sets S1, S2

and S3 as they are defined on completion of this step of the
algorithm.

(a) Suppose that (sL+1)ℓ is less than or equal to the rank br
of A at this point. Then either the matrix V t

L,sL
AVR,sR

has rank less than that of AVR,sR
at this point, or the

body of the loop will be executed at least once more.

(b) Suppose, instead, that (sL + 1)ℓ is greater than br. If

the matrices bVLAVR,sR
and AVR,sR

have the same rank
then the body of the loop will be executed at least once
more. Otherwise the elimination phase will begin after
the completion of this step; the size of the set S1 will

be greater than or equal to the rank of bVLA
tVR,sR

when
the elimination phase begins.

Proof. The argument needed to establish this lemma re-
sembles the one used to prove the previous one.

(a) Suppose first that (sL + 1)ℓ is less than or equal to the
rank of A. Once again, it follows by Lemma 3 that
the columns in the matrix VL,sL

span the same vector
space as the vectors

{µj | 1 ≤ j ≤ m1} ∪ U, (21)

while the columns of the matrix AVR span the same
vector space as the vectors

{Aνj | 1 ≤ j ≤ m1} ∪ {Aτ | τ ∈ R}, (22)

for S1, m1 and R as they are defined at the beginning
of this execution of step 10. Consequently V t

L,sL
AVR,sR

has the same rank as the matrix W t
LWR, where WL has

the columns shown at line (21) andWR has the columns
shown, and it suffices to consider W t

LWR instead.

Note next that W t
LWR is block diagonal: Its top left

block is the identity matrix with order m1, while its
bottom right block is a matrix whose columns include
those of the matrix Bt

LABR that is considered as part
of step 10 of the algorithm, and that has the same rank
as this matrix.

The claim now follows immediately by a consideration
of the details of step 10, since the Lanczos phase of the

algorithm is only terminated at this point if Bt
LABR is

rank deficient.

(b) The claim for the case that (sL + 1)ℓ > br follows by a
repetition and continuation of this argument, using the

fact that the columns of the matrix bVL are a subset of
those of the matrix VL,sL

that is defined at this point,
and by an inspection of the details of step 10.

A.5.3 Completion of the Proof
The next lemma is easily proved and allows the results

from [10] to be easily applied.

Lemma 28. Let C ∈ Fq
n×d be a matrix with full rank

d ≤ n and let w1, w2, . . . , wn−d be a basis for the set of
vectors

N = {w ∈ Fq
n×1 | wtC = 0}

Let y1, y2, . . . , yk ∈ Fq
n×1. Then the vectors

yt
1C, y

t
2C, . . . , y

t
kC

are linearly independent in Fq
d×1 if and only if the vectors

w1, w2, . . . , wn−d, y1, y2, . . . , yk

are linearly independent in Fq
n×1.

Proof. Suppose first that the vectors yt
1C, y

t
2C, . . . , y

t
kC

are linearly dependent in Fq
d×1, so that there exist elements

α1, α2, . . . , αk of Fq, not all zero, such that

α1y
t
1C + α2y

t
2C + · · · + αky

t
kC = 0.

It follows that α1y1 + α2y2 + · · · + αkyk ∈ N , so that this
vector is a linear combination of w1, w2, . . . , wn−d and, since
at least one of α1, α2, . . . , αk is nonzero it clearly follows that
the set of vectors

y1, y2, . . . , yk, w1, w2, . . . , wn−d

is linearly dependent.
Suppose, conversely, that the set of vectors

y1, y2, . . . , yk, w1, w2, . . . , wn−d

is linearly dependent, so there exist elements α1, α2, . . . , αk,
β1, β2, . . . , βn−d in Fq, not all zero, such that

α1y1+α2y2+· · ·+αkyk +β1w1+β2w2+· · ·+βn−dwn−d = 0.

Furthermore, at least one of α1, α2, · · ·+αk must be nonzero,
since it is given that the set of vectors w1, w2, . . . , wn−d is
linearly independent. Now, since wt

iC = 0 for 1 ≤ i ≤ n−d,
it follows that

α1y
t
1C + α2y

t
2C + · · · + αky

t
kC = 0

as well, establishing that that the set of vectors

yt
1C, y

t
2C, . . . , y

t
kC

is also linearly dependent, as required.

The following is a result of a part of Lemma 3.11 of [10]
using the notation in this paper.

Lemma 29 (Eberly and Hovinen [10]). Suppose the
matrix A ∈ Fq

n×n has at most r invariant factors that are
different from 1 or x and has rank br. Let x1, x2, . . . , xh be a
set of linearly independent vectors in Fq

n×1.

Suppose that u1, u2, . . . uℓ are chosen uniformly and inde-
pendently from Fq

n×1 and, for an integer k such that 1 ≤
k ≤ br, let S be the set of vectors consisting of x1, x2, . . . , xh

along with the first k of the vectors

u1, u2, . . . , uℓ, A
tu1, A

tu2, . . . , A
tuℓ,

(At)2u1, (A
t)2u2, . . . , (A

t)2uℓ, . . .

(a) If h+ k < n then the above set S of vectors is linearly
dependent with probability at most

1 + 2q1+r−ℓ

(q − 1)qn−(h+k)
< 2qk+k−n.

(b) If h + k > n and 1 ≤ j ≤ n then the above set S of
vectors spans a subspace of Fq

n×1, whose dimension is
at most n− j, with probability at most

1

(q − 1)q(k+k−n)+j−1
+

2qr−ℓ+1

(q − 1)qj−1

≤
1

q(h+k−n)+j−1
+

2q1−2δ

n2
.

A final lemma concerning the size of the set U will also
be helpful

Lemma 30.

|U | ≥ ℓ− r − ⌈logq n⌉ − δ ≥ ⌈logq n⌉ + δ

at the beginning of the each execution of the body of the loop
of the algorithm shown in Figure 1 and at the beginning of
the elimination phase, and

|U | ≥ ℓ− ⌈logq n⌉ − δ

immediately before step 10 in each execution of the body of
the loop in the algorithm in Figure 1.

Proof. This follows by a straightforward induction on
the number i of executions of the loop body, of the algorithm
shown in Figure 1, that have already taken place. The claim
is satisfied when i = 0 since |U | = ℓ at the beginning of the
first execution of the loop body and immediately before the
first execution of step 10.

Suppose i ≥ 1, that |U | ≥ ℓ−r−logq n⌉−δ after the first i

executions of the loop body, and that an i+1st execution of
the loop body also takes place.

If |U | < ℓ−⌈logq n⌉−δ then steps 5–8 are executed as part

of the i + 1st execution of the loop body, adding another ℓ
elements to U , so that

|U | ≥ (ℓ− r − ⌈logq n⌉ − δ) + ℓ

≥ ℓ−⌉ logq n⌉ − δ

immediately before the execution of step 10. On the other
hand, if the size of U is initially greater than ℓ−⌈logq n⌉− δ

at the beginning of the i+1st execution of the loop body, so
that steps 5–9 are skipped, then it is also at least at large
immediately before step 10 as well.

Now it suffices to note that at most r elements are removed
from U when step 10 is carried out so that

|U | ≥ ℓ− r − ⌈logq n⌉ − δ

at the beginning of the i + 2nd execution of the loop body
once again, if there is one, or at the beginning of the elimi-
nation phase, otherwise.

The fact that ℓ− r−⌈logq n⌉− δ ≥ ⌈logq n⌉+ δ follows by
the choice of ℓ.

Proof of Lemma 7. Consider now the execution of the
algorithm shown in Figure 1 when it is given a matrix A ∈
Fq

n×n and vectors v1, v2, . . . , vr. As explained in Subsec-
tion A.5.1 this computation will be indistinguishable from

a computation in which A is replaced by the matrix bA that

is considered there. An examination of bA confirms that this
matrix has at most r invariant factors that are different
from 1 or x and, furthermore, that this matrix has rank d−e
where d is the dimension of the Krylov space generated by
v1, v2, . . . , vr and e is the dimension of the intersection of
this space and the null space of A. We will therefore as-
sume, without loss of generality, that the given matrix A
has these properties.

(a) Let i be an integer such that i ≥ 1 and the body of the
loop of the algorithm in Figure 1 is executed at least
i times. It follows by Lemma 26 that if the algorithm
fails during the ith execution of the loop body, by exe-
cuting step 9, then the matrix V t

L,sL−1AVR,sR−1 must
have rank less than ℓsL, where sL and sR are as defined
at the point when the test before step 9 is carried out,
and with VL,sL−1 ∈ Fq

n×sL and VR,sR−1 ∈ Fq
n×sR

as at the beginning of Subsection A.5.2. Part (a) of
Lemma 26 also establishes that ℓsL is less than the
rank of A at this point.

Now a consideration of part (b) of Lemma 3, the fact
that S2 is a subset of the null space of A, and the
fact that S3 = ∅ at this point, confirm that the matrix
AVR,sR

has rank |S1|. indeed, its columns span the
same vector space as the vectors Aνi for 1 ≤ i ≤ |S1|
and it follows by the orthogonality relations at line (2)
that the latter set of vectors is linearly independent.

Let w1, w2, . . . , wn−|S1| be a basis for the set

w ∈ Fq
n×1 | wtAVR,sR

= 0}.

It follows by Lemma 28 that the set S of vectors that
include w1, w2, . . . , wn−|S1| and the columns of VL,sL−1

must span a vector space with dimension less than n−
|S1| + ℓsL, that is, this set of vectors must be linearly
dependent.

One can also see by part (a) of Lemma 3 that |S1| +
|U | = ℓ(sL + 1) at this point in the computation.

It follows that the above set S of vectors has size

n− |S1| + ℓsL = n− (ℓ(sL + 1) − |U |) + ℓsL

= n− ℓ+ |U |

< n− ⌈logq n⌉ − δ,

since |U | < ℓ− ⌈logq n⌉ − δ in this point, and it follows
by an application of part (a) of Lemma 29 with k =
ℓsL and h = n − |S1| that, if u1, u2, . . . , uℓ are chosen
uniformly and independently, then that algorithm fails
at this point with probability at most 2q−⌈logq n⌉−δ ≤
(2q−δ)/n.

Clearly the body of the loop is executed at most n times,
so the probability that the algorithm fails, by executing
step 9, at any point at all, can now be bounded by 2q−δ

as claimed.

(b) Now let i be a positive integer such that 0 ≤ i ≤ d− e
where, as noted above, A is assumed to have rank d−e.

We wish to bound the probability that |S1| < d− e− i
on termination of the Lanczos phase of the algorithm,
when the algorithm does not report failure.

Notice that, since failure is not reported, such an exe-
cution of the Lanczos phase of the algorithm must end
either at step 4 or at step 10. Termination at step 4
can be ruled out because this only happens when each
vector Aνi can be expressed as a linear combination of
vectors in

{νj | 1 ≤ j ≤ |S1|} ∪ S2,

and it can be argued in this case that |S1| = d− e.

Let bS1 be the set of ordered pairs included in the set
“S1” immediately before an execution of step 10, and let
bU be the set of values included in “U” at this point as
well. As explained in Subsection 2.1.6, and elaborated
upon in the proof of Lemma 27, the Lanczos phase of
the algorithm is terminated during this execution of
step 10, on an attempt to add a set of s additional

ordered pairs to this set, where AVR,sR
has rank |bS1|+

s at this point. In particular, the Lanczos phase is
terminated on the discovery that only t such ordered
pairs can be added for t < s.

One of the following three cases must hold.

(i) The Lanczos phase ends during an execution of the
body of the loop shown in Figure 1, in the manner
described above, when ℓ(sL + 1) < d− e.

(ii) The Lanczos phase ends during an execution of the
body of the loop, as described above, when ℓ(sL +

1) ≥ d − e and when |bS1| + s ≤ d − e − i, where s
is the value mentioned above.

(iii) The Lanczos phase ends during an execution of the
body of the loop, as described above, on the first
execution of the body of the loop such that ℓ(sL +

1) ≥ d − e and when |bS1| + s > d − e − i, where s
is the value mentioned above.

Note that |S1| > d+e− i if the Lanczos phase proceeds
past any of the points mentioned above.

Consider an execution of the body of the loop in which
ℓ(sL + 1) ≤ d − e on completion of step 10, so that
case (i) holds. It follows by part (a) of Lemma 27
that the matrix V t

L,sL
AVR,sR

has rank less than that of
AVR,sR

after step 10 is executed. At this point, the ma-

trix AVR,sR
has rank |bS1|+s. Let w1, w2, . . . , wn−|bS1|−s

be a basis for the space

N = {w ∈ Fq
n×1 | wtAVR,sR

= 0}; (23)

it now follows by Lemma 28 that the Lanczos phase can
only end at this point if the set S of vectors that include
the above vectors, along with the columns of VL,sL+1,
span a vector space with dimension less than n.

Now notice that the size of this set of vectors is

ℓ(sL + 1) + n− |bS1| − s

= bS1| + |bU | + n− |bS1| − s

= n+ |bU | − s

≥ n+ |bU | − r (since s ≤ r)

≥ n+ ℓ− ⌈logq n⌉ − δ − r (by Lemma 30)

≥ n+ ⌈logq n⌉ + δ (by the choice of ℓ).

Part (b) of Lemma 29 can now be applied, with h =

n− |bS1| − s, k = ℓ(sL + 1), and j = 1, to conclude that
the probability that the elimination phase begins after
this execution of the loop body is at most

q−δ

n
+
q1−2δ

n2
≤

2q−δ

n
.

Next consider an execution of the body of the loop in
which case (ii) is applicable. In follows by part (b) of

Lemma 27 that the matrix bV t
LAVR,sR

has rank less than

that of AVR,sR
, for bVL ∈ Fq

n×(d−e) as described at the
beginning of Subsection A.5.2.

Once again let w1, w2, . . . , wn−|bS1|−s be a basis for the

set N shown at line (23) above. Lemma 28 can be ap-
plied, once again, to conclude that the set S of vectors

that includes these along with the columns of bVL must
span a vector space with dimension less than n.

Since case (ii) is applicable |bS1| + s ≤ d − e − i. Sup-

pose, in particular, that |bS1| + s = d− e− i− ∆ for a
nonnegative integer ∆. Then the above set of vectors S
has size at most

(d− e) + n− |bS1| + s

= (d− e) + n− (d− e− i− ∆)

= n+ i+ ∆.

Part (b) of Lemma 29 can now be applied, with h =

n − |bS1| − s, k = d − e, and j = 1, conclude that
Lanczos phase ends after this execution of step 10 with
probability at most

1

(q − 1)qi+∆
+

2q1−2δ

n2
≤ q−i−∆ +

2q−δ

n
.

Finally, consider case (iii). Let

∆ = (|bS1| + s) − (d− e− i)

so that ∆ is a positive integer and, if S is the set of
vectors described in the consideration of the previous
case then S has size

(d− e) + (n− |bS1| − s) = n+ i− ∆.

It follows by part (b) of Lemma 27 that the rank of
bV tAVR,sR

must be less than that of AVR,sR
and, fur-

thermore (since the size of |S1| is supposed to be less
than d − e − i) that S must span a vector space with
dimension less than

(n− |bS1| − s) + (d− e− i)

= (n− (d− e− i+ ∆)) + (d− e− i)

= n− ∆.

Part (b) of Lemma 29 can now be applied once again,

with h = n − |bS1| − s, k = d − e, and j = ∆ + 1,
to conclude that the Lanczos phase ends at this point,
with |S1| < d− e− i, with probability at most

1

q(i−∆)+∆+1−1
+

2q1−2δ

n2
≤ q−i +

2q−δ

n
.

Having considered these cases it remains only to no-
tice that step 10 is executed at most n times. Case (ii)

cannot arise more than once for any choice of the non-
negative integer ∆ that is mentioned in its analysis, as
given above, while case (iii) is only possible once. The
above bounds can now be added combined to conclude
that |S1| has size less than d− e− i, on termination of
the Lanczos phase of the computation, with probability
at most

n ·

„
2q−δ

n

«
+
X

∆≥0

q−i−∆ + q−i ≤ 2q−δ + 3q−i,

as claimed.

A.6 Proof of Theorem 1
Consider an execution of the algorithm described in Sec-

tion 2, with vectors u1, u2, . . . , uℓ chosen uniformly and in-
dependently from Fq

n×1 for ℓ ≥ r + 2(⌈logq n⌉ + δ).
The bound on failure included in Theorem 1 follows by

part (a) of Lemma 7.
The applications of the matrix At to vectors is easily lim-

ited to the initialization of vectors in the sequences LsL
at

step 6 of the algorithm shown in Figure 1, for sL > 0, and
to the orthogonalizations of these vectors at step 7: Notice
that the orthogonalization of σsL,j shown at line (11) can
be carried out by applying At to σsL,j and using the step

σsL,j := σsL,j −
X

k=min(1,m1−2ℓ−2r+1)

((AtσsL,j)
tνk)µk.

As a result At is applied (at most) twice for each vector that
is eventually included as the first entry of an ordered pair
included in the set S1 or that remains in the set U . The
number of applications of At used here is at most

2(|S1| + |U |) < 2n+ 4ℓ,

where the sets S1 and U are as defined at the end of the
Lanczos phase of the algorithm.

The remaining initializations, updates, and orthogonaliza-
tions of vectors can be carried out by applying A at most
three times for each vector in one of the sets R that is to be
processed, during the Lanczos phase, provided that step 10
is implemented sensibly: A first application is needed to ini-
tialize each vector in the set R at step 3; a second application
to every such vector is sufficient for the orthogonalization
step (as shown by line (10) at step 4; and A is applied to
each vector κ ∈ R once again at the beginning of step 10.
An examination of the details of step 10 confirms that each
each vector Aκ can — and should be — maintained for each
κ ∈ R throughout this step, and that this can be used to
update the elements of the set U that are described there
without further applications of either A or At.

Since each of the vectors R is included either as the second
entry of an ordered pair in S1, or added to S2 or S3, one can
see that the number of applications of A to vectors during
the Lanczos phase is at most 3(|S1|+ |S2|+ |S3|) where S1,
S2 and S3 are as defined at the end of the Lanczos phase
of the computation. An examination of the details of the
elimination phase confirms that the number of applications
of A to vectors during the entire computation is at most
3(|S1| + |S2| + |S3|), for S1, S2 and S3 as they are defined
on termination, as well.

It is easy to see by inspection of the code that the size of S2

never exceeds r — a vector is only added to S2 when the size
of the set R is decreased. On the other hand, |S1|+|S3| is less

than or equal to the dimension of the Krylov space generated
by v1, v2, . . . , vr and this is clearly at most n. Thus |S1| +
|S2| + |S3| ≤ n+ r, so at most 3n+ 3r applications of A to
vectors are required.

A similar analysis can be used to establish that O(nℓ(n+
ℓ)) = O(n2ℓ) additional arithmetic operations over Fq are
used during the Lanczos phase, because O(nℓ) operations
are needed to initialize and process each vector before either
this vector is used in an ordered pair in S1 or added to one
of the sets S2 or S3, or the Lanczos phase ends.

In order to bound the expected number of additional op-
erations over Fq used by the elimination phase, notice that if
m3 is the size of S3 on termination then O(nℓm3) operations
are used for orthogonalization steps and O(nm2

3) steps are
used for the applications of Gaussian elimination that are
required. Consequently the number of additional operations
needed is in O(nm3(ℓ + m3)). Now if m3 ≤ ⌈logq n⌉ then

this bound is clearly in O(n2ℓ) as needed. It is never more
than cubic in n since m3 cannot be greater than n. One
can now see, by an application of part (b) of of Lemma 7,
that if δ ≥ ⌈logq n⌉ then the probability that |S3| exceeds
⌈logq⌉ is at most 5/n. It follows from the above that the
expected number of additional operations used by the elim-
ination phase is at most linear in

1 · ℓn2 + 5
n
· n3 ∈ O(n2ℓ),

as claimed.
The remark that follows the statement of the theorem

follows by a straightforward extension of the above analysis,
applying the probability bounds given in Lemma 7.

B. PROOFS OF CLAIMS IN SECTION 3

B.1 Proofs of Lemmas 8 and 9

Proof of Lemma 8. Consider the representation of A as
shown at lines (12) and (13). Since the matrixA1 is nonsin-
gular its minimal polynomial f is not divisible by x. On
the other hand, A2 is nilpotent so that its minimal polyno-
mial g is a power of x: g = xh for h ≥ 2. Since A3 is the
zero matrix it is clear that g(A3) = 0 as well.

Consequently the above polynomials f and g are relatively
prime, so there exist polynomials h1, h2 ∈ Fq[x] such that

h1 ≡

(
1 mod f

0 mod g
and h2 ≡

(
0 mod f

1 mod g.

Now consider vectors vi = αi + βi + γi for 1 ≤ i ≤ r,
where αi ∈ V1, βi ∈ V2, and γi ∈ V2. Let K be the Krylov
space generated by v1, v2, . . . , vr and let K1 be the vector
space generated by α1, α2, . . . , αr, as in the statement of
the lemma. It will be useful to consider a “Krylov space”
that is not mentioned in the statement of the lemma, as

well: let bK2 be the Krylov space generated by the vectors
β1 + γ1, β2 + γ2, . . . , βr + γr.

Notice that, by the descriptions of V1, V2 and V3 preceding
the claim, h1(vi) = αi for 1 ≤ i ≤ r, so that α1, α2, . . . , αr ∈
K. Since K is closed under multiplication by A if follows
that K1 ⊆ K.

Similarly, h2(vi) = βi + γi for 1 ≤ i ≤ r, and bK2 ⊆ K as
well.

On the other hand, vi = αi + (βi + γi) so that vi can

be written as a sum of elements of K1 and bK2. Indeed, it

is clear that every element of the Krylov space K can be
expressed in this way.

Finally, notice that K1 ∩ bK2 = {0}. Thus K is the direct

sum of K1 and bK2.

(a) Notice that, since Aγ = 0 for all γ ∈ V3, A(βi + γi) =

Aβi for 1 ≤ i ≤ r. Consequently K2 ⊆ bK2 and the
claim follows from the containments that have been es-
tablished above.

(b) The second claim follows from the fact that K is the

direct sum of K1, and bK2, and that the set of vectors

{λ1, λ2, . . . , λj} ∪ {β1 + γ1, β2 + γ2, . . . , βr + γr}

mentioned in the statement of the lemma is a basis
for bK2.

Notice that the following — which will be used again —
has also been proved.

Lemma 31. If vi = α1 + β1 + γ1 where αi ∈ V1, βi ∈ V2

and γi ∈ V3 for 1 ≤ i ≤ r, then the Krylov space bK2 that is
generated by the vectors β1+γ1, β2+γ2, . . . , βr+γr is a subset
of the Krylov space K that is generated by v1, v2, . . . , vr.

A consideration of the decomposition of the matrix A2

shown at line (13) confirms that there exist values

bω1, bω2, . . . , bωm ∈ V2

such that

An2,i−1bωi 6= 0 = An2,ibωi for 1 ≤ i ≤ m

and the Krylov space generated by bω1, bω2, . . . , bωm is equal
to V2. Indeed, bω1, bω2, . . . , bωm can be chosen as generators of
the Jordan blocks in the decomposition shown at line (13). It
is clear that the set of vectors Ajbωi such that 0 ≤ j ≤ n2,i−1
and 1 ≤ i ≤ m forms a basis for V2. The next lemma follows
directly from this.

Lemma 32. Every element β ∈ V2 can be written uniquely
as

ϕ1(A)bω1 + ϕ2(A)bω2 + · · · + ϕm(A)bωm

for polynomials ϕ1, ϕ2, . . . , ϕm ∈ Fq[x] such that the degree
of ϕi is less than n2,i for 1 ≤ i ≤ m.

Proof of Lemma 9. A slightly stronger result will be
established: It will be shown that the probability that

ω1 + λ1, ω2 + λ2 + . . . , ωm + λm

are not all found in the Krylov space, for some choice of
λ1, λ2, . . . , λm ∈ V3, is at most

q−∆−1 + q−∆−2 + · · · + q−∆−m.

Recall that each vector vi can be written (uniquely) as
αi+βi+γi where αi ∈ V1, βi ∈ V2, and γi ∈ V3 for 1 ≤ i ≤ r.

With that in mind notice that, by Lemma 31, it is suffi-
cient to show that ω1+λ1, ω2+λ2, . . . , ωm+λm are each con-

tained in bK2 for some choice of λ1, λ2, . . . , λm ∈ V3, where
bK2 is as described in the above lemma.

Indeed, since λ1, λ2, . . . , λm can be chosen freely from V3,
it is sufficient to consider the probability that the vectors

ω1, ω2, . . . , ωm are each included in the Krylov space gen-
erated by β1, β2, . . . , βr — for if ωi is in the Krylov space
generated by β1, β2, . . . , βr, for 1 ≤ i ≤ m, then

ωi = ψi,1(A)β1 + ψi,2(A)β2 + · · · + ψi,r(A)βr

for some choice of polynomials ψi,1, ψi,2, . . . , ψi,r ∈ Fq[x],
implying that ωi + λi is in the Krylov space generated by
β1 + γ1, β2 + γ2, . . . , βr + γr, for the values

λi = ψi,1(A)γ1 + ψi,2(A)γ2 + · · · + ψi,r(A)γr ∈ V3,

for 1 ≤ i ≤ r, as well.
Furthermore we may assume without loss of generality

that ωi = bωi for 1 ≤ i ≤ m, for the values bω1, bω2, . . . , bωm

that are discussed above: If ω1, ω2, . . . , ωm is any set of vec-
tors in V2 generating V2 as a Krylov space, then the Krylov
space generated by β1, β2, . . . , βm includes ω1, ω2, . . . , ωm if
and only if this space includes bω1, bω2, . . . , bωm.

Notice now that if m = 0 then there is nothing to prove.
If m = 1 then it follows by Lemma 32 that (since the vec-

tors β1, β2, . . . , βr are chosen uniformly and independently
from V2)

β1 = ϕ1(A)bω1, β2 = ϕ2(A)bω1, . . . , βr = ϕr(A)bω1

where ϕ1, ϕ2, . . . , ϕr are chosen uniformly and independently
from the set of polynomials with degree less than n2,1 in
Fq[x]. Now

ϕ1(0) = ϕ2(0) = · · · = ϕr(0) = 0

(and, consequently, bω1 is not in the Krylov space generated
by β1, β2, . . . , βr) with probability q−r ≤ q−∆−1. On the
other hand, if ϕi(0) 6= 0 for some integer i such that 1 ≤
i ≤ r then the polynomials ϕi and xn2,1 are relatively prime
and there exists a polynomial ψ ∈ Fq[x] such that

ψ × ϕi ≡ 1 mod xn2,1 .

In this case ψ(A)βi = ψ(A)ϕi(A)bω1 = bω1 so that bω1 is in
the Krylov space generated by β1, β2, . . . , βr as required.

Suppose next that m ≥ 2; one can see, by Lemma 32, that

βi = β′
i + ϕm,i(A)bωm, (24)

for 1 ≤ i ≤ r, where the values β′
1, β

′
2, . . . , β

′
r are chosen

uniformly and independently from the Krylov space gen-
erated by bω1, bω2, . . . , bωm−1, and where ϕm,1, ϕm,2, . . . , ϕm,r

are chosen uniformly and independently from the set of poly-
nomials with degree less than n2,m in Fq[x]. Now

ϕm,1(0) = ϕm,2(0) = · · · = ϕm,r(0) = 0

(and bωm is not in the Krylov space generated by the vectors
β1, β2, . . . , βr), with probability q−r ≤ q−m−∆.

Suppose, instead, that ϕm,i(0) 6= 0 for some integer i.
Reordering v1, v2, . . . , vr (and β1, β2, . . . , βr) we may assume
without loss of generality that i = r and that ϕm,r(0) 6= 0.

It follows again that ϕm,r and x2,m are relatively prime,
so that there exists a polynomial ψm ∈ Fq[x] with degree
less than n2,m such that ψm ×ϕm,r ≡ 1 mod xn2,m , and the
Krylov space generated by β1, β2, . . . , βr certainly includes

ψm(A)βr = ψm(A)(ϕm,r(A)bωr + β′
r) = bωm + β′′

r , (25)

where β′′
r = ψm(A)β′

r is an element of the Krylov space
generated by bω1, bω2, . . . , bωm−1 depending only on βr, so that
it is clearly chosen independently of β1, β2, . . . , βr−1.

Notice next that, by equations (24) and (25), the Krylov
space generated by β1, β2, . . . , βr also includes the values

bβi = βi − ϕm,i(A)ψm(A)βr

= (β′
i + ϕm,i(A)bωm) − ϕm,i(A)(bωm + β′′

r)

= β′
i − ϕm,i(A)β′′

r

for 1 ≤ i ≤ r − 1. ϕm,i(A)β′′
r is an element of the Krylov

space generated by bω1, bω2, . . . , bωm−1, since β′′
r is.

Since β′
1, β

′
2, . . . , β

′
r−1 are chosen uniformly and indepen-

dently from the Krylov space generated by bω1, bω2, . . . , bωm−1

and, furthermore, since these are chosen independently of

ϕm,i(A)β′′
r , it follows that the above values bβ1, bβ2, . . . , bβr−1

are chosen uniformly and independently from the Krylov
space generated by bω1, bω2, . . . , bωm−1 as well.

Proceeding inductively on m, we may now conclude that
the probability that bω1, bω2, . . . , bωm−1 are not in the Krylov

space generated by bβ1, bβ2, . . . , bβr−1 is at most

q−∆−1 + q−∆−2 + · · · + q−∆−m+1.

Now, if bω1, bω2, . . . , bωm−1 are all members of this Krylov
space then they are certainly in the Krylov space generated
by β1, β2, . . . , βr as well. It has already been noted that
this Krylov space includes bωm + β′′

r , for a member β′′
r of the

Krylov space generated by bω1, bω2, . . . , bωm−1, so it is clear
that bωm is also contained in the Krylov space generated by
β1, β2, . . . , βr.

Adding together the bounds on probabilities that are men-
tioned above, we see that the probability that bω1, bω2, . . . , bωm

are not all in the Krylov space generated by β1, β2, . . . , βr is
at most

q−∆−1 + q−∆−2 + · · · + q−∆−m+1 + q−∆−m

as claimed.
Clearly q−∆−1 + q−∆−2 + · · · + q−∆−m ≤ 2q−∆, so the

probability bound included in the statement of the lemma
is correct.

Finally notice that, if bωi is in the Krylov space generated
by β1, β2, . . . , βr for 1 ≤ i ≤ m, then

bωi = ξ1(A)β1 + ξ2(A)β2 + · · · + ξr(A)βr

for polynomials ξ1, ξ2, . . . , ξr ∈ Fq[x]. It clearly follows (since
ξi(A)A = Aξi(A) for 1 ≤ i ≤ r) that

Aξ1(A)(β1 + γ1) +Aξ2(A)(β2 + γ2)+

· · · +Aξr(A)(βr + γr)

= Aξ1(A)β1 +Aξ2(A)β2 + · · · +Aξr(A)βr

= Abωi.

Thus the Krylov space includes Abω1, Abω2, . . . , Abωm and, in-
deed, Aβ for all β ∈ V2, as claimed.

B.2 Proof of Lemma 10
Let b = α+β for α ∈ V1 and β ∈ V2 as noted prior to the

claim.
The claim is trivial if m = 0, since V2 = {0} in this case:

b = α and A1 is nonsingular. Consequently if f1 ∈ Fq[x] is
the minimal polynomial of A1 then f1(0) 6= 0, gcd(f1, x) =
1, and there exists a polynomial g ∈ Fq[x] such that xg ≡
1 mod f1. In this case, since v1 = Ab, g(A)v1 = g(A)Ab = b,
establishing that b is in the desired Krylov space.

Suppose instead that m > 0, so that A2 is nonzero and
nilpotent. Let f1 be the minimal polynomial of A1 as above,

and let f2 be the minimal polynomial of A2, so that f2 = xh

for an integer h ≥ 2. Again, gcd(f1, f2) = 1 in Fq[x] and
there exists a polynomial g ∈ Fq[x] such that gf2 = xhg ≡
1 mod f1. In this case it suffices to note that

g(A)Ah−1v1 = g(A)Ah−1(Aα+Aβ) = α,

establishing that α is guaranteed to be in the Krylov space
generated by v1, v2, . . . , vr.

It remains only to note that if the system Ax = b is con-
sistent, for b = α+β and β ∈ V2, then β must belong to the
Krylov space generated by Aω1, Aω2, . . . , Aωm, for the set
of vectors ω1, ω2, . . . , ωm, generating V2 as a Krylov space,
that are mentioned before the claim. Consequently V2 in-
cludes a vector χ such that Aχ = β. Furthermore, if the
Krylov space generated by v1, v2, . . . , vr includes vectors

ω1 + λ1, ω2 + λ2, . . . , ωm + λm

for any choice of values λ1, λ2, . . . , λm ∈ V3, then the Krylov
space also includes the value χ′ = χ + λ for some λ ∈ V3.
Consequently Aχ′ = Aχ+Aλ = β + 0 = β, and the Krylov
space generated by v1, v2, . . . , vr includes a vector x such
that Ax = b.

The result now follows by Lemma 9, which bounds the
probability that the vector space generated by v1, v2, . . . , vr

does not include vectors of the above form.

B.3 Proofs of Lemmas 11 and 12

Proof of Lemma 11. Suppose that the Jordan normal
form of A includes exactly m nilpotent blocks with order
at least two; then A is as shown at line (12) where A1 is
nonsingular, A3 is a zero matrix. and A2 is as shown at
line (13).

Let the vectors spaces V1, V2, and V3 be as described
at the beginning of Section 3, so that A acts as an invert-
ible operator (with coefficient matrix A1) on V1, as a nilpo-
tent operator (with coefficient matrix A2) on V2, and where
AV3 = {0}. Now Fq

n×1 = V1 ⊕ V2 ⊕ V3 and it suffices to
note that the image of A is a subspace of V1 ⊕ V2, while
the null space of A is a subspace of V2 ⊕ V3. Consequently
the intersection of the image and the null space of A is a
subspace of V2.

Consider now the vectors bω1, bω2, . . . , bωm that generate V2

as a Krylov space that are described following Lemma 31.
It is clear that, since n2,i ≥ 2 for 1 ≤ i ≤ m, the set

An2,1−1bω1, A
n2,2−1bω2, . . . , A

n2,m−1bωm ∈ V2

is a linearly independent set of vectors in the image of A
and, indeed, these form a basis for the intersection of V2

and the null space of A. Consequently these form a basis for
the intersection of the image of A and the null space of A as
well, as needed to prove the claim.

Proof of Lemma 12. Suppose that τ1, τ2, . . . , τk are as
described prior to the statement of the lemma, so that the
set of vectors Aτ1, Aτ2, . . . , Aτk is linearly independent and
so that A2τ1 = A2τ2 = · · · = A2τk = 0.

(a) Since the set of vectors Aτ1, Aτ2, . . . , Aτk is linearly in-
dependent, and these vectors belong to the intersection
of the image of A and its null space, this intersection
clearly has dimension at least k. The claimed inequality
k ≤ bm now follows by Lemma 11.

Notice now that k < bm only if the Krylov space gener-
ated by z1, z2, . . . , zr does not include a set of vectors

ω1 + λ1, ω2 + λ2, . . . , ω bm + λ bm

where λ1, λ2, . . . , λ bm ∈ V3 and where ω1, ω2, . . . , ω bm are
vectors that generate V2 as a Krylov space. The prob-
ability bound that is included in part (a) is therefore a
consequence of Lemma 9.

(b) The probability bound included in part (b) can be es-
tablished by an application of the technique that was
used to prove Lemma 9: Notice that if A has bm ≥
r = m + ∆ nilpotent blocks with order at least two
in its Jordan normal form, then there exist vectors
bω1, bω2, . . . , bω bm ∈ V2, and integers n2,1, n2,2, . . . , n2, bm

that are each greater than two, that are as described
(with bm replacingm) in the text that follows Lemma 31.
Consequently each element of V2 can be uniquely ex-
pressed as described in Lemma 32, with bm replacing m
once again.

Now let zi = αi + βi + γi where αi ∈ V1, βi ∈ V2,
and γi ∈ V3 for 1 ≤ i ≤ r, and notice that, since
v1, v2, . . . , vr are chosen uniformly and independently
from Fq

n×1,

βi = ϕi,1(A)bω1 + ϕi,2(A)bω2 + · · · + ϕi, bm(A)bω bm,

where each polynomial ϕi,j is chosen uniformly from
the set of polynomials with degree less than n2,j , for
1 ≤ i ≤ r and 1 ≤ j ≤ bm and, furthermore, each
polynomial ϕi,j is chosen independently from the set of
polynomials ϕs,t such that 1 ≤ s ≤ r, 1 ≤ t ≤ bm, and
i 6= s or j 6= t.

The probability that ϕr,j(0) = 0 for every integer j
such that 1 ≤ j ≤ bm is q− bm. Suppose, now, that
this is not the case, and pick an integer j such that
1 ≤ j ≤ bm and ϕr,j(0) 6= 0. Then gcd(ϕr,j , x

n2,j) = 1,
and one can argue as in the proof of Lemma 9 that bωj is
in the Krylov space generated by βr and, furthermore,
that the Krylov space generated by β1, β2, . . . , βr is the

same as the Krylov space generated by bβ1, bβ2, . . . , bβr−1

and βr, where bβ1, bβ2, . . . , bβr−1 are chosen uniformly and
independently from the Krylov space generated by the
vectors bωh such that 1 ≤ h ≤ bm and h 6= j.

Proceeding inductively, as in the proof of Lemma 9, one
can establish that the intersection of the Krylov space
generated by Aβr−m+1, Aβr−m+2, . . . , Aβr and the null
space of A has dimension less than r with probability
at most

qm−1− bm + qm− bm + · · · + q− bm ≤ qm− bm.

This implies that intersection of the Krylov space gen-
erated by v1 = Az1, v2 = Az2, . . . , vr = Azr and the
null space of A has dimension less than r with at most
this probability as well. It now suffices to notice that
qm− bm ≤ qm−r = q−∆ ≤ 2q−∆.

B.4 Proof of Lemma 13
This can be established by a modification of the argument

used to prove Lemma 9.
Suppose, once again, that vi = αi + βi + γi where αi ∈

V1, βi ∈ V2, and γi ∈ V3 for 1 ≤ i ≤ m + d. As indi-
cated in part (b) of Lemma 8, β1 + γ1, β2 + γ2, . . . , βm+d +
γm+d all belong to the Krylov space K that is generated

by v1, v2, . . . , vm+d and, furthermore, the intersection of K
and the null space of A is contained in the Krylov space
generated by these vectors. We may therefore proceed using
β1+γ1, β2+γ2, . . . , βm+d +γm+d instead of v1, v2, . . . , vm+d.

If m = 0 then there is nothing to prove: The two “exper-
iments” described in the lemma are identical.

Suppose instead that m = 1. Since failure was not
reported before this step, the Krylov space generated by
Av1, Av2, . . . , Avd+1 includes a nonzero vector in the inter-
section of the image of A and the null space, so that the
Krylov space generated by

A(β1 + γ1), A(β2 + γ2), . . . , A(βd+1 + γd+1)

— that is, by Aβ1, Aβ2, . . . , Aβd+1 — includes such a vector
as well. Consequently, at least one of Aβ1, Aβ2, . . . , Aβd+1

must be nonzero.
Since these vectors are all in V2, there exist nonnegative

integers k1, k2, . . . , kd+1 such that ki = 0 if Aβi = 0 and such
that ki > 0 and Aki−1(Aβi) 6= 0 = Aki(Aβi) otherwise, for
1 ≤ i ≤ d+1. Reordering v1, v2, . . . , vd+1 (and β1 +γ1, β2 +
γ2, . . . , βd+1 +γd+1) as needed, we may assume without loss
of generality that kd+1 ≥ ki for 1 ≤ i ≤ d, so that kd+1 > 0.

Since m = 1 (so that the matrix A2 consists of a single
nilpotent Jordan block) and kd+1 ≥ ki for 1 ≤ i ≤ d, there
exist polynomials ϕ1, ϕ2, . . . , ϕd ∈ Fq[x], which depend only
on β1, β2, . . . , βd+1 (so that, in particular, they are inde-
pendent of γ1, γ2, . . . , γd+1), such that ϕi(A)βd+1 = βi for
1 ≤ i ≤ d.

Now, the Krylov space that is generated by β1 + γ1, β2 +
γ2, . . . , βd+1 + γd+1 is clearly the same as the Krylov space
generated by βd+1 + γd+1 and by the vectors

(βi + γi) − ϕi(A)(βd+1 + γd+1),

for 1 ≤ i ≤ d. Note also that

(βi + γi) − ϕi(A)(βd+1 + γd+1) = γi − ϕi(A)γd+1 ∈ V3

for 1 ≤ i ≤ d; let γ′
i = γi − ϕi(A)γd+1 for 1 ≤ i ≤ d.

Recall that the vectors γ1, γ2, . . . , γd are chosen uniformly
and independently from V3 and, furthermore, that they are
chosen independently of ϕ1, ϕ2, . . . , ϕd ∈ Fq[x] or γd+1 ∈ V3.
It follows that the vectors γ′

1, γ
′
2, . . . , γ

′
d are chosen uniformly

and independently from V3 as well — that is, every sequence
of vectors of this form is selected with probability |V3|

−d.
Now it suffices to note that, by the choice of kd+1, the vec-

tor bβ = Akd+1(βd+1 +γd+1) = Akd+1−1(Aβd+1) is a nonzero

element of V2 such that Abβ = 0, so that bβ is in the intersec-
tion of the null space of A and the Krylov space generated
by Av1, Av2, . . . , Avd+1. Indeed (again, since m = 1), the

single vector bβ forms a basis for this space, while the vec-

tors bβ, γ′
1, γ

′
2, . . . , γ

′
d span the intersection of K and the null

space of A. This establishes the claim when m = 1.
If m ≥ 2 then we begin as before by defining the non-

negative integers k1, k2, . . . , km+d by setting ki to be 0 if
Aβi = 0 and by choosing ki > 0 such that Aki−1(Aβi) 6= 0 =
Aki(Aβi) otherwise. Reordering v1, v2, . . . , vm+d as needed,
we may assume without loss of generality that km+d ≥ ki

for 1 ≤ i ≤ m + d − 1. Once again, since the Krylov space
generated by Aβ1, Aβ2, . . . , Aβm+d includes a nonzero ele-
ment of the null space of A, these vectors are not all zero
and km+d ≥ 1.

At this point a consideration of the structure of the ma-
trix A2 can be used to conclude that there exists a set

of vectors ω1, ω2, . . . , ωm ∈ V2 and nonnegative integers
ℓ1, ℓ2, . . . , ℓm such that the vectors ω1, ω2, . . . , ωm generate
V2 as a Krylov space, and such that

Aℓ1ω1, A
ℓ2ω2, . . . , A

ℓmωm

is a basis for the intersection of V2 and the null space of A.
Furthermore, these values can be chosen in such a way that

Akm+dβm+d = Aℓmωm +

m−1X

i=1

Aℓiωi

for values δ1, δ2, . . . , δm−1 ∈ Fq, and such that βi can be
written as

βi = β′
i + ϕi(A)βm+d

where β′
i is contained in the Krylov space generated by

ω1, ω2, . . . , ωm−1 and where ϕi ∈ Fq[x] for 1 ≤ i ≤ m+d−1
— for it would not be the case that km+d ≥ ki for 1 ≤ i ≤
m+d−1, otherwise. The vectors β′

1, β
′
2, . . . , β

′
m+d−1 and the

polynomials ϕ1, ϕ2, . . . , ϕm+d−1 depend only on the vectors
β1, β2, . . . , βm+d, so they are clearly chosen independently
of γ1, γ2, . . . , γm+d.

Note that the Krylov space generated by β1 + γ1, β2 +
γ2, . . . , βm+d + γm+d is the same as the vector space gener-
ated by βm+d + γm+d and the vectors

βi + γi − ϕi(A)(βm+d + γm+d)

= β′
i + ϕi(A)βm+d + γi − ϕi(A)βm+d − ϕi(A)γm+d

= β′
i + γ′

i,

for γ′
i = γi − ϕi(A)γm+d ∈ V3.

Since γ1, γ2, . . . , γm+d−1 are chosen uniformly and inde-
pendently from V3 and, furthermore, they are chosen in-
dependently of the polynomials ϕ1, ϕ2, . . . , ϕm+d−1 and the
vector γm+d, it is clear that γ′

1, γ
′
2, . . . , γ

′
m+d−1 are chosen

uniformly and independently from V3 as well (that is, every
such sequence is selected with probability |V3|

1−m−d).
Clearly A(β′

i + γ′
i) = Aβ′

i for 1 ≤ i ≤ m + d − 1 and the
Krylov space generated by these vectors is contained in the
Krylov space generated by ω1, ω2, . . . , ωm−1 — for β′

i is in-
cluded in this space for 1 ≤ i ≤ m + d − 1. On the other
hand, one can see by the choice of the vectors β′

i that the
Krylov space generated by Aβ′

1, Aβ
′
2, . . . , Aβ

′
m+d−1, Aβmd

is the same as the Krylov space generated by the vectors
Aβ1, Aβ2, . . . , Aβm+d, and we know that the intersection
of this space and the null space of A has dimension m.
It must therefore be the case that the intersection of the
Krylov space generated by Aβ′

1, Aβ
′
2, . . . , Aβ

′
m+d−1 and the

null space of A must be a vector space with dimension m−1
— in particular, it must be the intersection of the Krylov
space generated by Aω1, Aω2, . . . , Aωm−1 and the null space
of A.

As noted above, γ′
1, γ

′
2, . . . , γ

′
m+d−1 are selected uniformly

and independently from V3. Proceeding inductively (on m),
we may now conclude that the intersection of the Krylov
space generated by the vectors Aβ′

1, Aβ
′
2, . . . , Aβ

′
m+d−1 and

the null space of A has a basis bβ1, bβ2, . . . , bβm−1, while the
intersection of the Krylov space generated by β′

1 + γ′
1, β

′
2 +

γ′
2, . . . , β

′
m+d−1 +γ′

m+d−1 and the null space of A is spanned

by a sequence of vectors bβ1, bβ2, . . . , bβm−1, γ
′′
1 , γ

′′
2 , . . . , γ

′′
d , for

γ′′
1 , γ

′′
2 , . . . , γ

′′
d ∈ V3, such that every possible choice of the

vectors γ′′
1 , γ

′′
2 , . . . , γ

′′
d is obtained with probability |V3|

−d.

It remains only to notice that the set of vectors

Akm+dβm+d, bβ1, bβ2, . . . , bβm−1

forms a basis for the intersection of the Krylov space gener-
ated by Aβ1, Aβ2, . . . , Aβm+d and the null space of A, while
the vectors

Akm+dβm+d, bβ1, bβ2, . . . , bβm−1, γ
′′
1 , γ

′′
2 , . . . , γ

′′
d

span the intersection of the Krylov space generated by β1 +
γ1, β2 + γ2, . . . , βm+d + γm+d and the null space of A, to
complete the proof.

C. REFERENCES
[10] W. Eberly and B. Hovinen. Bounding the nullities of

random block Hankel matrices: An alternative
approach. Technical Report 2005-779-10, Department
of Computer Science, University of Calgary, 2005.
Available online at www.cpsc.ucalgary.ca/~eberly/

Research/publications.php.

