COMPUTATIONS FOR ALGEBRAS AND GROUP REPRESENTATIONS

Wayne Eberly

A Thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy in the

University of Toronto

(© Wayne Eberly 1989

Abstract.

This thesis is an examination of several problems which arise in the structure theory
of associative algebras and matrix representations of groups, from the standpoint
of computational complexity.

We begin with computational problems corresponding to the Wedderburn decom-
position of matrix algebras over a field — the computation of a basis for the radical,
of bases for the simple components of a semi-simple algebra, and the expression of
a simple algebra as a full matrix ring over a division algebra. Building on the work
of Friedl and Roényai, we present a simple and efficient probabilistic algorithm for
the computation of simple components of a semi-simple algebra. We also present
probabilistic algorithms for the decomposition of simple algebras over C and R.
If the inputs for these problems are algebraic numbers, and are represented as el-
ements of a single number field, then the decompositions can be performed using
exact (symbolic, rather than numerical) computations, in polynomial time and with
small probability of failure. We also note that these computational problems cannot
be solved reliably by strictly numerical methods, when numerical approximations of
arbitrary real or complex numbers are allowed as input: the corresponding decision
problems are undecidable.

It is well known that the problems of decomposing matrix algebras and of decom-
posing matrix representations of finitely generated groups are closely related. We
state formal reductions between these computational problems in order to obtain
efficient algorithms for the problem of deciding whether a matrix representation is
completely reducible, for the computation of isotypic components of a completely
reducible matrix representation (Serre’s “canonical decomposition”), and for com-
putation of a set of irreducible components of a completely reducible representation
over C and over R (Serre’s “explicit decomposition”). Again, we obtain efficient
probabilistic algorithms for exact solutions of problems, where previous algorithms
have computed numerical estimates.

We continue by considering the computation of character tables (and single entries of
these tables) for various classes of groups. We provide analysis of (slightly modified)
algorithms which have been observed to perform well in practice. In particular,
we analyse Burnside’s method, to conclude that a character table over C can be
computed from a Cayley table for G, using time polynomial in the number n of
elements of (G. Examining a generalisation of Dixon’s method, we show that a
character table for G over C can also be computed using space polylogarithmic in n
and time polynomial in n — or, in parallel, using time polylogarithmic in n, with
a polynomial number of processors. We analyse a combinatorial method for the
computation of an entry of the character table of the symmetric group S,, over C
to show that this problem is in PSPACE. We also note that, in the worst case, this
algorithm requires time in Q(22Lv™ /| /n)).

Acknowledgements

I would like to thank my thesis committee of Allan Borodin, Steve Cook, Faith
Fich, Eugene Luks, and David Rowe for their valuable suggestions and criticism.

My thesis supervisor, Joachim von zur Gathen, suggested the topic and has been of
great help throughout the preparation of the thesis. I hope to be able to pose such
insightful questions and comments myself someday.

I had a number of helpful discussions with Mark Giesbrecht, Andrew Granville, Jim
Hoover, Bill Kantor, Rudi Mathon, Jim Mclnnes, and Lajos Rényai, whom I now
thank.

The Natural Sciences and Engineering Research Council of Canada, the University
of Toronto, and my family all provided financial support while this thesis was being
written.

Finally, for keeping me aware of the world outside my office, I thank Paul Beame,
Josh and Laurie Benaloh, Richard Cleve, Hazel Everett, Thornton Gianfredi, Lloyd
Grinham, Arvind and Lorene Gupta, Jim Hoover, Bruce Kapron, Valerie King, Paul
Meyer, Naomi Nishimura, Stephen Pope, Jane Power, Prabhakar Ragde, Murray
Sherk, Dan Simon, Gord Turpin, Dave Wilkes, and the friendly staff of Don Valley
North Toyota.

1.

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2.

2.1.
2.2.

2.2.1.
2.2.2.
2.2.3.

2.3.

2.3.1.
2.3.2.
2.3.3.
2.3.4.
2.3.5.

24.

2.4.1.
2.4.2.
2.4.3.
2.4.4.
2.4.5.

2.5.

2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.

2.6.

Table of Contents

Introduction

Symbolic Computations

Models of Computation

Symbolic Computations over Fields

Solving Systems of Linear Equations

Factoring Polynomials over Number Fields and Finite Fields
Isolation of Roots over Number Fields

Factoring Polynomials over R and C

Computations for Associative Algebras

Definitions and Notation: The Structure Theorems
Representations of Algebras for Computations
Regular Matrix Representations
Conversion Between Representations
Extension of Scalars
Computation of the Radical
Computations over Fields of Characteristic Zero
Computations over Finite Fields
Algebras Without Identity Elements
Algebras over Field Extensions
Computation of the Radical and Squarefree Decomposition
Computation of Simple Components
Computation of Simple Components using Idempotents
The Algorithm of Friedl and Rényai
A New Algorithm for Simple Components
Minimising the Use of Factorisation
Extraction of Simple Components over R and C
Decompositions of Simple Algebras
Simple Algebras and Idempotents
Simple Algebras over Finite Fields
Simple Algebras over C
Simple Algebras over R
Simple Algebras over Number Fields
Related Problems

10
16
20
30
35

41

42
49
49
52
95
58
59
66
75
76
79
82
83
90
95
104
110
116
118
125
129
136
153
159

3.

3.1.
3.2.

3.2.1.
3.2.2.

3.3.

3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.

3.4.

3.4.1.
3.4.2.

Computations for Representations of Groups

Linear and Matrix Representations of Groups
Matrix Representations of Finitely Generated Groups
Reductions Between Problems
Equivalence of Matrix Representations
Matrix Representations and Characters of Finite Groups
Basic Definitions
Burnside’s Algorithm for Character Tables
Dixon’s Algorithm for Character Tables
A New Algorithm for Character Tables
Matrix Representations of Finite Groups
Computations for the Symmetric and Full Linear Groups
Computations for Characters of the Symmetric Groups
Computations for Characters of the Full Linear Groups

Final Remarks

References

162

163
176
178
191
194
194
202
214
222
229
231
231
240

245
247

Introduction.

This thesis is an examination of several problems in the structure theory of associa-
tive algebras and matrix representations of groups from the standpoint of compu-
tational complexity. The algebraic theory suggests numerous computational prob-
lems; we find applications for these problems in areas including crystallography and
atomic and nuclear spectroscopy. No provably correct and efficient algorithms are
known for some of these problems. In other cases, we have algorithms which have
been observed to perform well in practice, but whose worst case (or average case)
performance have not been analysed — at least, not by the standards of complexity
theory. Our goals, then, include the discovery of new, provably efficient algorithms
for these problems, or the analysis and (where possible) improvement of existing
algorithms. We also look for reductions between problems, allowing us, in some
cases, to conclude that problems are intractable — that no efficient algorithms for
them exist.

We examine algorithms which perform exact computations — which accept “sym-
bolic” representations of inputs such as integers, rational numbers, or (more gen-
erally) algebraic numbers, and which return symbolic representations of outputs.
Such algorithms are of use if we have available “symbolic” representations of our
inputs — and this is the case for problems such as the analysis of the regular ma-
trix representation, or the computation of the character table over C, of a finite
group (such as the symmetry group for a physical system), and for a number of
problems concerning the computation of characters of linear and other continuous
groups. The symbolic outputs returned by these algorithms can be used to obtain
numerical estimates of the real or complex numbers being represented of arbitrarily
high accuracy. Unlike fixed precision numerical estimates, these symbolic represen-
tations can also be used reliably to determine the sign of small real numbers, and
to decide whether such a number is nonzero.

We should note that our condition that exact representations of inputs be available
(so that these symbolic methods are applicable) will be unrealistic in many cases.
Clearly, we should also look for algorithms which accept numerical estimates of
inputs (preferably, with a bound on the error in these estimates also stated), and
which either return accurate estimates of the outputs (again, with a bound on error
provided) or indicate that such estimates cannot be determined from the inputs,
as is the case, for example, when we attempt to solve a system of linear equations
which is numerically singular. Such algorithms would be applicable to problems for
which exact representations of inputs are not easily obtained; we suspect that these
algorithms would also be more efficient than corresponding symbolic methods. A
variety of numerical algorithms for the problems we discuss have been proposed; we
leave the job of proving that these algorithms are correct and efficient (as described
above), or of finding better numerical algorithms, for further work.

The first problem we face, when considering symbolic computations for these alge-
braic problems, is that of choosing a model of computation in which we can consider
exact computations for problems (and, in particular, which allows us to solve de-
cision problems involving “zero tests” correctly) while considering computations
for matrix algebras and representations of groups over R and C — those problems
which arise most often in physical applications. As we note in Section 1, strictly
numerical computations are not sufficient for the correct solution of some intuitively
simple problems. For example, we cannot decide reliably whether the polynomial
x? + € is squarefree or irreducible in R[x], given only a numerical estimate for a
(small) real number e. On the other hand, we cannot represent an arbitrary real
or complex number uniquely using a finite string of 0’s and 1’s. We deal with this
problem by assuming that our inputs are algebraic numbers (whose minimal poly-
nomials over Q are known). We note again that this is a nontrivial restriction: it
implies that transcendental numbers such as 7 and e cannot be included in the
input for the problems considered. However, we can still consider (and solve) the
problems associated with finite and continuous groups mentioned above. Again, we
cannot guarantee reliable solutions for the associated problems using arbitrary real
or complex numbers as inputs, by strictly numerical methods.

The model of computation is discussed in detail in Section 1. We also note that
several problems with efficient solutions over number fields (in particular, the solu-
tion of systems of linear equations, and the factorisation of univariate polynomials)
can also be solved efficiently under this model. The results require very minor mod-
ifications of proofs which have appeared elsewhere; we include them here because
we make repeated use of these operations (in our nonstandard model) later in the
thesis.

Section 2 of the thesis is concerned with the decomposition of matrix algebras —
specifically, the computation of a basis for the radical of a matrix algebra; the com-
putation of bases for the simple components of a semi-simple matrix algebra; and
the decomposition of a simple algebra (that is, the expression of the algebra as a full
matrix ring over a division algebra). We consider both Boolean computations over
“concrete” fields, such as finite fields, number fields, and (for the model described
in Section 1) over C and R, and arithmetic (or “algebraic”) computations over a
more general class of fields (namely, over perfect fields).

We build on the work of Friedl and Rényai [43], and of Rényai [102]-[104]. After re-
viewing their algorithms for the computation of the radical, and for the computation
of simple components of semi-simple matrix algebras over finite fields and number
fields, we present an alternative (deterministic) algorithm for the computation of
simple components of semi-simple algebras over number fields (and a corresponding
probabilistic algorithm over finite fields), eliminating the computations over field
extensions required by Friedl and Ronyai’s algorithm. We also present a probabilis-
tic algorithm for this problem, which minimises the use of factorisation (the most

expensive part of the algorithm). In particular, we show that with high probability,
it is sufficient to factor a single squarefree polynomial, and solve small systems of
linear equations, in order to solve this problem. Since the problem of factoring
squarefree polynomials is easily shown to be (NCQ) reducible to this problem, this
is in some sense the best we can do. We then show how these algorithms can be
applied to decompose algebras over R and C.

We also consider the decomposition of simple algebras. Roényai has presented an
efficient algorithm for this problem for algebras over finite fields, as well as evi-
dence that the problem is intractable, for decompositions of algebras over Q (see
[103], [104]). In contrast, we present efficient probabilistic algorithms (again, using
exact, rather than numerical computations, assuming inputs are algebraic) for the
decomposition of simple algebras over C and R. Previous iterative (numerical) al-
gorithms for these problems may compute values whose “symbolic” representations

have length exponential in the input size, when used to decompose algebras over R
or C.

In Section 3 we examine computations for matrix representations and characters of
groups over fields. We begin with problems for which little or no information about
the underlying group is available, and move on to problems for which we have more
information about the structure of the group — and to problems for special classes
of groups.

We begin by considering computations for matrix representations of arbitrary
finitely generated groups. As in Section 2, we consider the decomposition of struc-
tures — in this case, of matrix representations, given the matrix representing each
one of a set of generators for the underlying group. As in Section 2, there are three
stages in the decomposition of these structures: the problem of deciding whether a
matrix representation is completely reducible; of computing the “isotypic” compo-
nents of a completely reducible representation (Serre’s “canonical decomposition” of
the representation); and of computing a set of irreducible components of an isotypic
representation (Serre’s “explicit decomposition”). These problems are known to be
closely related to the computational problems (for matrix algebras) of Section 2 —
Gabriel ([45]-[49]) decomposes matrix representations by examining related matrix
algebras. While we cannot use the algorithm he presents for (polynomial-time)
symbolic computations, we use his ideas to obtain formal reductions between the
problems of Sections 2 and 3, in order to apply the results and algorithms of Sec-
tion 2 to the problems for matrix representations of groups. In addition, these
reductions can be used to conclude that Rényai’s negative results, for the decom-
position of simple algebras over Q, are applicable to the problem of computing
irreducible components over Q of a matrix representation for a finitely generated
group. (That is, assuming the extended Riemann Hypothesis, and allowing proba-
bilistic polynomial time reductions, we can conclude that this problem is as difficult
as that of factoring squarefree integers.)

Having seen that these computational problems for matrix representations are as
difficult as the corresponding problems for matrix algebras, we show that a related
problem — deciding whether two matrix representations over Q for a group G
are equivalent — is provably easier than the corresponding problem for matrix
algebras (again, assuming the extended Riemann hypothesis, and that factorisation
of squarefree integers is difficult).

We next examine computations for matrix representations and characters of fi-
nite groups. We provide analysis for standard algorithms for the computations of
character tables over C — Burnside’s algorithm, and Dixon’s modification of this
method. We also present a third (new) algorithm, which we obtain by making a fur-
ther modification to Dixon’s algorithm. Part of this job is very easy: the standard
methods generate character tables by factoring polynomials (over number fields and
over finite fields, respectively), and solving systems of linear equations. We need
only apply subsequent results about the complexity of these operations in order to
conclude that Burnside’s algorithm can be used to compute a character table using
time polynomial in the size of the of the group. The analysis of Dixon’s method
is slightly more challenging; we apply results concerning the size of the smallest
prime in an arithmetic progression in order to prove that Dixon’s algorithm uses
time polynomial in the input size in the worst case. Unfortunately, it appears to be
necessary to apply results which assume the extended Riemann hypothesis if we are
to prove that Dixon’s algorithm has running time bounded by a polynomial function
of the input size with small degree. While the new algorithm we present may con-
ceivably be slightly less efficient than Dixon’s original algorithm in the worst case,
we note that it can be proved to be practical, in that its running time is bounded
by a small degree polynomial function of the input size, as well as asymptotically
efficient, without recourse to any unproved number theoretic hypotheses. We also
note that Dixon’s algorithm (and our new algorithm) can be implemented using a
uniform family of Boolean circuits of size polynomial, and depth polylogarithmic,
in the number of elements of the input group G. Thus, the problem of computing
a character table over C from a Cayley table of a finite group is in NC.

We conclude by examining computations of characters for two special classes of
groups: the symmetric groups, and the general linear groups. The additional in-
formation we have about the structure of these groups, and the nature of their
representations and characters, has been used to design more efficient algorithms
for the computations discussed above. However, it also allows us to pose new, much
more difficult problems. The literature on computations for these problems is vast;
in Section 3.4, we scratch the surface by giving a brief introduction to some of
these problems and the algorithms commonly used to solve them. A straightfor-
ward analysis of one such algorithm is used to show that one of these problems is in
PSPACE. Similar analyses can be used to prove that related problems are also in
this complexity class. We also give a lower bound for the worst case running time
for one of these algorithms: we show that a commonly used combinatorial method

4

for the computation of entries of the character table of the symmetric group S,
computes Q(22Lv7) /|\/n|) intermediate values in order to generate a specific entry
in this table; in contrast, the input for this problem has size O(n logn).

We should acknowledge a number of sources. The texts of Curtis and Reiner [31],
Serre [112], Jacobson [67], [68], and van der Waerden [117], [118] present the math-
ematical foundations on which our computational problems are based — and oc-
casionally provide constructive proofs which are easily converted to algorithms for
these problems. Friedl and Rényai [43], and Rényai [102]-[104] have previously
considered some of the problems we discuss from the point of view of computa-
tional complexity; we make use of their techniques and build on their algorithms.
Much of the literature on computational group theory deals with these problems,
presenting algorithms which have been observed to perform well in practice, and,
less frequently, with formal proofs of correctness and efficiency. In particular, we
have made use of the work of Dixon [34], [35] and Gabriel [45]-[49] when consid-
ering computations for matrix representations and character tables of groups. The
surveys of Butler [16], Cannon [17], and Neubiiser [93] include discussions of al-
gorithms for the computations of character tables; the bibliography of Felsch [40]
of papers in computational group theory has also been useful. Finally, we should
note that discussions of the physical applications of group theory often discuss the
computations of characters, and the decomposition of matrix representations, for
finite and continuous groups. We have made use of the very readable discussions
of the representation theory of the symmetric groups and of the linear groups, of
Hamermesh [61] and Wybourne [119]. Leech and Newman [79] also discuss the
physical applications of the algebraic problems we consider.

1. Symbolic Computations

In this section, we provide those details about the model of computation and the
representation and manipulation of elements of various fields which are to be dis-
cussed in later sections. The model of computation is discussed in Section 1.1. In
Section 1.2, we describe the representation of elements of various domains to be
used for Boolean computations. We also discuss “arithmetic” representations of
elements of field extensions. Sections 1.3-1.6 deal with computations which arise
frequently in the rest of the thesis: the solution of a system of linear equations over
a field, and the factorisation of a univariate polynomial over a field.

Most of this material is standard and is included for the sake of completeness. There
are a few minor exceptions: We note in Section 1.4 that Landau’s algorithm for the
factorisation of polynomials over number fields can be adapted to produce an “arith-
metic” reduction from the factorisation of polynomials whose coefficients lie in an
algebraic extension of a perfect field F' to factorisation of polynomials in F'[z], and
that a similar reduction can be obtained for the squarefree decomposition of polyno-
mials (see [76] for Landau’s algorithm). In Section 1.5, we show that algorithms for
the isolation of complex roots of integer polynomials can be applied to isolate the
complex roots of a polynomial whose coefficients lie in an arbitrary number field.
These extensions of results are routine (and are of little interest on their own). The
method of representing algebraic numbers within R or C (introduced in Section 1.2
and used in Section 1.6) may be of more interest. It is based on the method used by
Collins and his collaborators for quantifier elimination over real closed fields (in [24],
[4]), but permits the representation of nonreal algebraic numbers. We show in later
sections that it is more useful for the problems we discuss than numerical methods
for representing members of R or C.

1.1. Models of Computation

We begin by specifying the (standard) models of computation and measures of costs
which we have in mind when describing algorithms for algebraic problems. When
specifying algorithms in the rest of the thesis, we will generally use a high level
(“Pascal-like”) language, leaving out the details of implementing these algorithms
in the models described below.

Many of the problems we examine use elements of some (arbitrary) field F as
input, and produce elements of this field as output. The arithmetic complexity of
an algorithm for such a problem is independent of both the representation of field
elements and the implementation of field arithmetic. Field operations (+, —, X,
and +), “zero tests” (taking a single element o € F' as input and producing the
Boolean value true if @ = 0, and false otherwise), and “selections” (between two
field elements on the basis of a third, Boolean, input) are all considered to have unit
cost. Hence, we count the number of these steps which are performed in order to
measure the (sequential) time used by an algorithm. When measuring (sequential)
space, we count the number of field elements stored. Time and space are measured
as functions of the number of (field) inputs for the algorithm.

We also consider the sequential Boolean complexity of algorithms for problems over
specific fields (such as finite fields, Q, algebraic number fields, R, and C). We as-
sume that field elements are processed as strings of Boolean values (“bits”). We
count the number of Boolean operations (A, V, and —) performed when measuring
(sequential) time, and count the number of bits which must be stored when mea-
suring (sequential) space. Time and space are measured as functions of the length
of the input — that is, the number of bits used to represent the input. The Boolean
complexity clearly depends on the method of representation of field elements, and
the implementation of field arithmetic — and hence on the field over which we are
computing. It provides a more realistic measure of complexity for algorithms over
specific fields.

We use a random access machine (RAM) as our model of complexity when consider-
ing the sequential complexity of algorithms and problems. Random access machines
(for integer and Boolean computations) are discussed in detail by Aho, Hopcroft,
and Ullman [3]. For the reader unfamiliar with this concept, imagine an abstraction
of a general purpose computer, with an unbounded random access memory and a
finite set of data and address registers. When discussing Boolean computations, we
assume that each data register and each memory location can contain a single bit,
each address register can contain a memory address, and that the instruction set
includes instructions for input and output of bits, storage and retrieval of values
between the registers and memory, and the Boolean operations discussed above.
When discussing arithmetic complexity over some field F', we add a second set of
registers and memory locations which can contain elements of the field F', as well as

instructions for input, output, and storage of field elements and for the arithmetic
operations described above.

We are interested in the parallel complexity of algorithms and problems as well.
That is, we wish to consider the cost of implementing an algorithm when a large
number of processors can work together. It is customary to consider the parallel
time and the number of processors used when measuring parallel complexity (rather
than time and space, as for sequential computations). Again, we take an “algebraic”
or “structured” approach, assuming that a single processor can perform any field
operation in a single time step, in order to measure the parallel arithmetic complex-
ity of an algorithm; or we can take an “unstructured” approach by measuring the
parallel Boolean complexity of a computation over a specific field, assuming that
each processor can perform a Boolean operation in constant time. As in the sequen-
tial case, the (parallel) Boolean complexity will provide a more realistic measure of
complexity for algorithms over specific fields.

We use families of circuits as our model of parallel computation. An algorithm is
represented by a family of circuits, with one circuit for each possible input size.
Each circuit is an acyclic directed graph, with operations labeling nodes, and with
edges between nodes representing flow of data. The depth of the circuit — the
length of the longest directed path in the circuit — is a measure of the parallel
time required by the algorithm, while the width of the circuit measures the number
of processors used. We use families of arithmetic-Boolean circuits as our model
of parallel arithmetic computation; these are discussed in more detail by von zur
Gathen [54]. We use families of Boolean circuits for our model of parallel Boolean
computation; these are discussed by Cook [28].

One difficulty with the circuit model of computation is that it is a nonuniform
model. Different circuits are required for different input sizes; if we make no re-
strictions on the type of circuits allowed, then we can find families of circuits which
solve unreasonably hard (in some cases, undecidable) problems. We overcome this
problem by considering uniformity conditions — restrictions on the resources which
can be used to construct the n*" circuit of a circuit family. Unless stated otherwise,
families of circuits discussed in this thesis are log-space uniform, or L-uniform: a
description of the circuit for input size n can be constructed using space O(logn).
We will also consider families of circuits which are polynomial-time uniform, or
P-uniform: families for which a description of the circuit for input size n can be
constructed using time n@("). Uniformity criteria are discussed in more detail by
von zur Gathen [54] (for families of arithmetic-Boolean circuits), and by Cook [28],
and Ruzzo [106] (for families of Boolean circuits).

In some cases we will not obtain an efficient algorithm for a problem P;. Instead,
we will show that it could be solved efficiently, if we had an efficient algorithm for a
second problem, P». Formally, we exhibit a reduction from P; to P», by producing
an algorithm for P; which requires the solution of one or more instances of P, and

which is efficient — assuming that these instances of P, can be solved quickly. We
use families of oracle circuits — families of arithmetic-Boolean or Boolean circuits
which include oracle nodes solving instances of the problem P, — as a model for
these reductions. Again, these are discussed in more detail by von zur Gathen [54]
and by Cook [28].

We should also note that some of the algorithms to be discussed are probabilistic,
rather than deterministic. A positive “error tolerance”, ¢, is included as part of
the input. Probabilistic Boolean algorithms use a source of random bits (charging
unit cost for each bit used), while probabilistic arithmetic algorithms make ran-
dom choices from a finite subset of the ground field (whose size may depend on the
error tolerance). Probabilistic algorithms associate to any input a probability dis-
tribution of possible outputs; a probabilistic algorithm is considered to be correct
if it computes a valid output (rather than returning an invalid one, or reporting
failure) with probability at least 1 — e. (In fact, the probabilistic algorithms to be
discussed here will report failure, rather than returning an invalid answer.) Clearly,
efficient deterministic algorithms are preferable to probabilistic algorithms; how-
ever, we will consider some problem for which the only efficient algorithms known
are probabilistic.

In general, we consider “exact”, or “symbolic” solutions of algebraic problems,
rather than “numeric” solutions. We assume that inputs specify unique field values
(unlike floating point approximations of real numbers). For example, the ratio-
nal number % is represented by the ordered pair of integers (1, 3), rather than an
approximation such as 0.3333333. Arithmetic is exact. This approach has sev-
eral advantages: We can avoid numerical considerations such as the possibility of
overflow or underflow of values, or the effect of rounding error on the accuracy of
calculations. Because arithmetic is exact, the task of proving correctness of our
algorithms is simplified. When we perform computations over R or C, we produce
“symbolic” output which can be used to generate decimal approximations of ar-
bitrarily high accuracy. The disadvantage of this approach is the high overhead
required for exact computations. We discuss representations and algorithms for
exact arithmetic over fields in Section 1.2.

1.2. Symbolic Computations Over Fields

We consider the “exact” representation of field elements, and the cost of arithmetic,
for several fields. With the exception of our representation of (algebraic) complex
numbers, all the representations discussed here are standard.

We first consider Boolean computations.

(i)

F = Q. The rational number ¢ (a, b € Z, b > 0) is represented by the ordered
pair (a, b). For sequential computation, it is usually assumed that integers a
and b be relatively prime, since the computation of the greatest common divisor
of a numerator and denominator, and division of each by this divisor, can be
performed efficiently. We do not make this restriction when considering parallel
computations, because no efficient parallel algorithm for the computation of this

greatest common divisor is known.

Sequential algorithms for arithmetic (4, —, X, +) over Q are discussed by
Collins, Mignotte, and Winkler [27]. Aho, Hopcroft, and Ullman [3] discuss the
time required for integer arithmetic. They state results which imply that ad-
dition, multiplication, and division of rational numbers having representations
of length N can be performed using O(N log? N loglog N) Boolean operations;
see also Knuth [74]. If we drop the requirement that the numerator a and the
denominator b of a rational number a/b be relatively prime, then this can be
reduced to O(N log N loglog N) Boolean operations. Savage [107] gives algo-
rithms for addition and multiplication of N-bit integers which can be used to
obtain arithmetic-Boolean circuits of size N and depth O(log N) for addi-
tion, multiplication, and division of rational numbers.

Algebraic Number Fields. These are fields F' = Q[a], where « is a root of some
monic integer polynomial. Suppose f = fo + fiz + -+ + fo_12" 1 + 2™ is
the minimal polynomial of « (that is, the integer polynomial of lowest degree
having « as a root); if « is the root of any monic integer polynomial, then its
minimal polynomial will also be monic. The field Q[«] is isomorphic to the field
Q[x]/(f), and has a basis

2 n—1
1, a,0%, ..., «

over Q. Thus an arbitrary element v of F' can be represented by a set of rational
numbers gg, g1, ..., gn_1 such that

y=go+ga+ -+ gn1a"t.

Using this representation, we implement arithmetic over F' by implementing
arithmetic for polynomials over Q.

The field description consisting of the degree and coefficients of f does not
include information needed to distinguish between « and the other roots of f.

[

While it identifies Q[«] uniquely up to field isomorphism (since Q[a] = Q[d] if «

10

(iii)

and & are both roots of an irreducible polynomial f € Q[z]), it does not identify
Q[a] uniquely in C. Following the approach used by Collins et al ([24], [4]), we
make this identification unique by adding information which isolates « from its
conjugates: We add representations of four complex numbers (each of the form
a + by/—1 for a, b € Q) forming a rectangle in the complex plane with edges
parallel to the real and imaginary axes, so that this rectangle encloses «, and
includes no other roots of f. (We use these isolating rectangles instead of the
isolating intervals in the real line used by Collins, since we allow « to be an
arbitrary algebraic number.) Pinkert [96] shows that such standard rectangles,
which isolate each of the roots of f, can be computed from the coefficients of f
in polynomial time. Such a rectangle can be refined (again, using the coefficients
of f, in polynomial time) to produce decimal approximations of the roots of f
to arbitrarily high accuracy. Hence we can use a standard rectangle for «,
and the rational numbers gg, g1, ..., gn_1 described above, to compute decimal
approximations of an element v € Q[a] of arbitrarily high precision.

Sequential algorithms for arithmetic over algebraic number fields are discussed
by Loos [87]. Parallel algorithms for arithmetic can be obtained from parallel
algorithms for polynomial arithmetic over Q. We will discuss these further when
we consider arithmetic over field extensions. Pinkert’s results, and other results
for complex root isolation, are discussed by Collins [25].

F =R and F = C. It is easy to show that we cannot represent “arbitrary”
elements of these (uncountable) fields using finite sequences of bits. If we are to
perform computations over these fields, we must either settle for the computation
of numerical approximations, or restrict attention to a relatively small set of
instances of our computational problem, in order to guarantee that all values
computed have exact representations. We take the latter approach, considering
only real and complex numbers which are algebraic over Q — that is, which are
roots of integer polynomials. Further, we assume that inputs for algorithms are
represented as elements of some number field Q[a], as described above. This
will be sufficient for the computations to be considered. In particular, we will
see in Chapter 3 that every linear representation of a finite group over R or C
is isomorphic to a matrix representation, where all matrix entries are elements
of such a number field.

For algorithms using only field arithmetic (+, —, x, and =), it will follow that
intermediate values and outputs will also lie in the number field Q[«]. However,
several of the algorithms we present include factorisation of polynomials over R
and C. This operation generally produces real (or complex) values lying outside
the number field Q[«]|. The outputs will be algebraic — they will belong to some
larger number field Q[]. Unfortunately, the degree of the extension Q[f3] over Q
(and the size of a “field description” for this number field) will generally be expo-
nential in the size of the input. We produce a representation which identifies the

11

(iv)

outputs of our algorithms exactly, which can be computed efficiently, and which
can still be used to produce arbitrarily close decimal approximations of the out-
puts, by representing these values as elements of an extension Q[aq, ao, ..., axl,
where each of the generators aq, as, ..., aj is an algebraic number represented
by its minimal polynomial and an isolating rectangle in the complex plane. This
scheme has an undesirable property: Algorithms for arithmetic over extensions
of Q of this form are more complicated (and generally more expensive) than algo-
rithms for the same computations in simple extensions of Q. Note, for example,
that the problem of deciding whether an arbitrary element of Q[ay, aq, ..., ak]
is zero is nontrivial. Fortunately, the problems we consider generally decompose
algebras into several components — and our algorithms embed each component
in a different “simple” extension of the ground field. Thus, we can examine
(and process) each of these components separately, without using arithmetic
over more “general” (and complicated) algebraic extensions.

This is not the most general method of representing elements of R and C. An
approach which is closer to the standard use of floating point approximations
is to represent a real number « (respectively, complex number) by a sequence
a1, ag, ... of elements of Q (respectively, of Q[v/—1]) such that |a—a, | < 27"
for all n > 0. This representation by sequences is discussed in detail by Bishop
and Bridges [12]. The complexity theory of this representation has been devel-
oped by a number of authors, including Ko and Friedman [75], and Hoover [63].
This representation has the advantage of admitting (some) real and complex
numbers which are not algebraic over) — such as m and e. Unfortunately,
several basic problems (such as testing equality of real numbers) become in-
tractable, or even undecidable, when this method of representation is used. We
sacrifice some generality by considering only algebraic numbers. However, these
will be sufficient for our purposes — and we will obtain efficient algorithms for
problems in representation theory by doing so.

Finite fields. Elements of the prime field F,, (for prime p > 0) can be represented
as integers between 0 and p — 1. Elements of the field F,; can be represented in
several ways. In general, we use the isomorphism F,: = F,[z]/(f) (for f € Fp[z]
irreducible with degree), and represent elements of F},; by polynomials of degree
less than [with coefficients in Fj,.

Sequential algorithms for arithmetic over finite fields are discussed by Collins,
Mignotte, and Winkler [27]. Applying the results for integer arithmetic discussed
in Aho, Hopcroft, and Ullman [3], we see that for the above representation, we
can perform addition in a finite prime field F, using O(/N) Boolean operations,
for input size N; multiplication can be performed using O(N log N log log N)
Boolean operations; and division over this finite field can be performed using
O(N log? N loglog N) Boolean operations. No efficient (polylogarithmic depth)

12

parallel algorithm is known for inversion of elements of F, using this represen-
tation of field elements; we obtain efficient parallel algorithms by using a more
general representation of elements of I, by numerator-denominator pairs. Now
basic arithmetic over [F,, is similar to arithmetic over Q. We need only find an
efficient algorithm for integer division with remainder (by the characteristic p)
to obtain efficient parallel algorithms for arithmetic. Reif [100] presents such an
algorithm; this can be used to obtain L-uniform families of Boolean circuits of
size N and depth O(log N loglog N) (for input size N) for addition, multi-
plication, and division over F,. An algorithm for integer division with remainder
presented by Beame, Cook, and Hoover [7] can be used to obtain P-uniform fam-
ilies of Boolean circuits of size N1 and depth O(log N) for these problems.
Parallel algorithms for arithmetic over F; (for [> 1) will be discussed after we
consider arithmetic over field extensions (see also Eberly [38]).

We now consider the cost of arithmetic over a primitive algebraic extension of a field
— that is, an extension which is generated over the ground field by a single element.
We consider only the “symbolic” part of computations. The task of maintaining
numerical estimates of values being computed, in order to embed these elements
in R and C, is considered in Sections 1.3-1.6.

Suppose now that E and F are fields, with E = F'[t]/(f), for some irreducible poly-
nomial of degree n in F[t]. We represent elements of F by polynomials in F'[t]
with degree less than n: an element 7 of E is represented by the coefficients
In—1, Gn—2, ---» g1, 9o € F' of a polynomial

9=gn-1t""" + gnot" 2+ -+ g1t + go € F[t]

such that v = g(«), where « is some (fixed) root of f in E.

We implement arithmetic over E using polynomial arithmetic in F[t]. We first
consider arithmetic computations over the ground field F. Addition over F can be
implemented using addition of polynomials in F[t] with degree less than n. Clearly,
n additions in F' (in parallel, using an arithmetic-Boolean circuit of linear size and
constant depth) are sufficient. Multiplication is slightly more complicated: if we
multiply two polynomials in F'[t] with degree less than n, the product could have
degree as large as 2(n — 1). Hence we must divide the result by f and use the
remainder as the representation of our product (in F[t]/(f)). To divide an element
v1 by an element v, of E/, we compute the reciprocal v, 1 of 75 in E, then perform
multiplication (by 1) in E. If 45 = g(«) for a polynomial g € F[t] with degree less
than n, then 7, ' = h(«), for some polynomial h € F[t] with degree less than n
such that gh =1 (mod f) in F[t]. Thus the extended Euclidean algorithm can
be applied (using inputs g and f) to compute the polynomial h, and to invert the
element v, of E.

13

If we use the standard (simple) algorithm for multiplication of polynomials, then
we can conclude that the product of two polynomials in F'[t] with degree less than n
can be computed using O(n?) arithmetic operations in F. It can be shown that the
number of arithmetic operations required for division with remainder of polynomials
of degree n is the same, to within a constant factor, as the number required for
multiplication of degree n polynomials (see Chapter 8 of [3]). The number required
to compute the output of the extended Euclidean algorithm given polynomials f, g €
F[t] of degree n (that is, to compute ged(f, g) and polynomials u, v € F'[t] such that
uf+vg = ged(f,g)) is at most O(logn) times the number of operations required for
multiplication of polynomials of degree n (again, see Chapter 8 of [3]). Thus we can
conclude that we can implement multiplication and division in E using O(n? logn)
operations over F'. In fact, we can do better than this: a simple recursive algorithm,
using 3 multiplications of polynomials of degree n/2 to compute the product of
two polynomials of degree n, can be used to multiply polynomials of degree n
using O(n'°823) arithmetic operations in F' — hence multiplications and divisions
in E can be performed using O(n'°%23logn) operations in F. If F contains an
nt" primitive root of unity, so that a fast Fourier transform can be applied, then
the cost of arithmetic over E can be reduced to O(nlog®n) arithmetic operations
in F'; Schonhage [109] and Cantor and Kaltofen [18] show that this can be reduced
to O(nlognloglogn) arithmetic operations over arbitrary fields, and to arbitrary
rings R for multiplication of polynomials.

We now consider parallel algorithms over F’ for arithmetic in E. As noted above, ad-
dition in E can be implemented using arithmetic-Boolean circuits of constant depth
and linear size. The standard algorithm for multiplication of polynomials in F'[t] can
be used to obtain arithmetic-Boolean circuits of polynomial size and depth O(logn);
however, the standard algorithm for division with remainder requires polynomial
size and depth ©(log” n). Combining these, we obtain arithmetic-Boolean circuits
over F' of polynomial size and depth @(log2 n) for multiplication in E. Reif [100] has
improved the result for polynomial division with remainder, presenting arithmetic-
Boolean circuits of depth O(logn) and polynomial size for this problem, assum-
ing the field F' supports a fast Fourier transform. This restriction on F' can be
eliminated, for computations by P-uniform families of arithmetic-Boolean circuits
(see Eberly [38] for details). Borodin, von zur Gathen, and Hopcroft [14] present
arithmetic-Boolean circuits of polynomial size and depth O(log2 n) computing the
output of the extended Euclidean algorithm, for polynomials in F[t| of degree n.
These can be used to obtain arithmetic-Boolean circuits over F' of the same (asymp-
totic) size and depth for division in E.

We obtain efficient sequential Boolean algorithms for arithmetic over number fields
and finite fields IF,; (for [> 1) using the above “arithmetic” algorithms, and imple-
menting arithmetic over the prime field (Q or F,) as discussed by Collins, Mignotte,
and Winkler [27]. We also obtain reasonably efficient parallel Boolean algorithms

14

for arithmetic over Q[t]/(f) and over F,: using a direct simulation. However, we in-
crease the depth of our circuits by a (small) multiplicative factor — we do not obtain
circuits with depth O(log N) (for input size N). We obtain L-uniform families of
circuits of depth O(log N loglog N) and size N°() or P-uniform families of circuits
of depth O(log N) and size NV for addition and multiplication, and circuits of
depth O(log2 N) and size N°W) for division, by adapting efficient Boolean circuits
for polynomial arithmetic over Q[t] or [F,[t]. For example, given «, 8 € Q[t]/(f),
we compute the product a3 by performing computations with elements &, B € QJt]
such that & = (@ mod f) and 3 = (3 mod f). We use efficient Boolean circuits
for multiplication of polynomials to compute the product a3 in Q[t]; we then use
efficient Boolean circuits for division with remainder of polynomials to compute
the desired output, af = (d@ mod f). Note again that we have efficient parallel
algorithms for these problems, provided that we represent a rational number by a
numerator-denominator pair of integers (a, b) with a and b not necessarily relatively
prime, and that we represent an element of I, by a numerator-denominator pair
(a, b) with a,b € {0,1,...,p—1}, b # 0. These methods are discussed in more
detail by Eberly [38]. For a discussion of efficient parallel algorithms for arithmetic
in [F,; without the above “redundant” representation of elements of), when the
characteristic p is small (in particular, when p is polynomial in [), see Fich and
Tompa [41], Litow and Davida [85], and von zur Gathen [57].

15

1.3. Solving Systems of Linear Equations

Many of the algorithms to be discussed in later sections will include the solution of
systems of linear equations. We now consider efficient algorithms for this problem.
These return the unique solution of a nonsingular system. For a singular system,
they either indicate that no solution exists, or produce a single solution together
with a basis for the null space of the coefficient matrix — so that all solutions are
indicated.

We discuss efficient arithmetic algorithms for this problem, as well as the use of these
algorithms to obtain efficient Boolean algorithms for computations over Q and over
finite fields. Since these “rational” problems can be solved over R or C by working
within the ground field containing the inputs, the methods for computations over
number fields can be applied directly to obtain solutions over these larger fields.
We also consider the solution of systems of linear equations over field extensions
in order to obtain arithmetic reductions from problems over field extensions to the
analogous problems over the ground field.

We first consider sequential computations over a field F. Using Gaussian elimi-
nation, we can solve a system of n linear equations in n unknowns using O(n?)
arithmetic operations. Surprisingly, this result is not optimal: Strassen [114] has
presented a recursive algorithm for this problem which used O(n'°827) arithmetic
operations. This bound has been improved repeatedly; the current best bound for
this problem is O(n*) arithmetic operations, for w < 2.376 (Coppersmith and Wino-
grad [29]). Unfortunately, these asymptotically fast algorithms are not practical for
reasonable input sizes: Gaussian elimination (or, perhaps, a recursive algorithm
using Strassen’s method for large n and Gaussian elimination for smaller values)
remains the best known “practical” algorithm. Sequential arithmetic algorithms for
this and for related problems are discussed in more detail in Section 4 of the survey
of von zur Gathen [56].

We now consider parallel arithmetic computations. The first efficient parallel algo-
rithm for solution of a nonsingular system of n linear equations in n unknowns over
a field of characteristic zero was given by Csanky [30]. An algorithm for the solution
of nonsingular systems over arbitrary fields was given by Borodin, von zur Gathen,
and Hopcroft [14]. Simpler algorithms were later given by Berkowitz [9] and Chis-
tov [22]. All of these algorithms use a polynomial number of processors and parallel
time O(log2 n). The first known parallel algorithm for computation of the rank of
a matrix (over a real field) was given by Ibarra, Moran, and Rosier [65]. Borodin,
von zur Gathen, and Hopcroft [14] gave an efficient probabilistic algorithm for this
problem over arbitrary fields, and showed that the solution of arbitrary systems of
linear equations could be reduced to this problem and to the solution of nonsingular
systems. Finally, Mulmuley [91] gave an efficient deterministic algorithm for this
problem which was correct for arbitrary fields, proving that a polynomial number

16

of processors, and parallel time O(log2 n), is sufficient for the solution of arbitrary
systems of n linear equations in n unknowns.

Standard bounds on the size of the determinant of an n x n matrix can be ap-
plied to show that the values computed using the above algorithms are small (see
Mignotte [89]). Thus efficient Boolean algorithms can be obtained from these arith-
metic algorithms in a direct manner. It is easy to see that we can use Boolean
algorithms to solve systems over prime fields using a polynomial number of pro-
cessors and depth O(log® N) (for input size N); systems over finite algebraic ex-
tensions of prime fields can be solved using a polynomial number of processors
and depth O(log4 N). In fact, we can do better than this. Borodin, Cook, and Pip-
penger [13] showed that nonsingular systems of linear equations over Q can be solved
using a polynomial number of processors and depth O(log2 N). We obtain circuits
of polynomial size and depth O(log2 N) for solution of nonsingular systems of linear
equations over IF, by reducing this to the problem of computing determinants of
integer matrices, and applying the results of Borodin, Cook, and Pippenger [14].

The parallel algorithms discussed above require (many) more processors than the
number of steps used by the best sequential algorithms for these problems. Hence it
can be argued that they are impractical. Pan and Reif [94], and Galil and Pan [50],
give efficient parallel algorithms for the solution of nonsingular systems of linear
equations over @, which use slightly more time (O(log® N) instead of O(log® N)),
but fewer processors, than the above algorithms. Their algorithms are provably as
efficient (to within a constant factor) as the best sequential algorithms.

We now consider the cost of solving systems of linear equations over primitive
extensions of fields. We obtain reasonably efficient algorithms for this problem by
a direct simulation of the “arithmetic” algorithms discussed above, implementing
arithmetic over the field extension using operations in the ground field as discussed
in Section 1.2. We obtain parallel arithmetic algorithms using less parallel time by
using a slightly different reduction to computations over the ground field.

Suppose first that F' is an infinite field, and E = F[t]/(f), for some monic ir-
reducible polynomial f € F[t] with degree n. Suppose also that we are given a
nonsingular system of m linear equations in m unknowns over the extension F.
Applying Cramer’s rule, we see that we can solve this system of equations at the
cost of computing determinants of m + 1 matrices of order m over E (in parallel),
then performing a small amount of additional arithmetic in £. Suppose now that
we are given an m X m matrix M with entries in F = F[t]/(f). Since the polyno-
mial f has degree n, we see that there is a unique m X m matrix M whose entries
are polynomials in F[t], each with degree less than n, such that M = (M mod f).
Since the determinant of a matrix is a polynomial in the entries of the matrix, it
follows that
det M = ((det M) mod f).

17

We also note that if the entries of M have degree less than n, then det M is a
polynomial in F[t] with degree at most m(n — 1). Hence the polynomial det M is
uniquely determined by its value at m(n — 1) + 1 distinct points in F. Combining
these facts, we obtain the algorithm given below.

We note that polynomial interpolation in F'[¢] and polynomial division with remain-
der in F'[t] can both be performed by solving nonsingular systems of linear equations
in F', of polynomial size. Hence this algorithm gives us a reduction from compu-
tations of determinants of matrices in F (and for solution of nonsingular systems
of linear equations in E) to computations of determinants in F', provided that F' is
sufficiently large.

Algorithm Determinant via Evaluation-Interpolation.

Input. e Integers n, m > 0.
e The coefficients of a monic polynomial f € F[t] of degree n,
which is irreducible in F'[t].
e The entries a;j, 1 <1, j <n, of a matrix M € M,«m(F[t]/(f)),
with entry a;; given by the coefficients

i, j.n—15 G4, j,n—25 -~ -5 G4, 5.1, Qi 5,0 € F, such that
;5 = @ jn—1t""" + @i jp—2t" "2+ + a5 1t + ag, 5,0 mod f.
Output. e Values d,_1, d,,_o, ..., dy, dg € F' such that

det M = dn_ltn_l -+ dn_Qtn_Q + -+ 4+ dit + do mod f

(1) Perform step 2 for distinct values o, 71, - - -, Ym(n—1) in parallel.

(2) Compute the determinant A, of the m x m matrix M (v,), with
entries @; j(Va) = @i, j,n—17 '+ @i g2V -+ +aijo0 € F.

(3) Compute the coefficients of the (unique) polynomial d € F[t] with
degree at most m(n — 1) such that d(y,) = Ap, for Ay as computed
in step 2. Note that d = det M € F[t].

(4) Use division with remainder of polynomials in F[t] (dividing d by f)
to compute the values d,,_1, d,_2, ..., di, dy € F such that
Ay 1" P+ dy ot" 24+ 4 dy = d mod f. Return these values.

18

We would like to remove the restriction that our system of linear equations in E be
nonsingular. To do this, we consider computations of the rank of m x m matrices
in £. Mulmuley [91] reduces this to the problem of computing determinants of
matrices whose entries are polynomials over F in (new) indeterminates z and v,
with degree at most 1 in x and at most 2n in y. If F' is sufficiently large, then
we can use evaluation-interpolation to reduce this to the problem of computing
determinants of matrices over EXZ. Hence we can reduce computations of the rank
of matrices in E to computations of determinants of matrices in F. We apply
reductions given by Borodin, von zur Gathen, and Hopcroft [14] to conclude that
arbitrary m x m systems of linear equations over E can be solved at the cost of
computing determinants in ' — using arithmetic-Boolean circuits over F' of depth
O(log®(mn)) and size polynomial in mn, if the field F is sufficiently large.

If F'is a small finite field, then we cannot use evaluation-interpolation as described
above, because F' does not include enough evaluation points. Instead, we solve the
problems discussed above using Boolean computations, using Boolean circuits of
polynomial size and depth O(log®(nm)). Since F is so small, we can also trans-
late our “arithmetic” inputs into corresponding Boolean representations, perform
Boolean computations to obtain Boolean representations of the desired outputs,
and then translate these back to “arithmetic” values — using arithmetic-Boolean
circuits of the size and depth stated above. Finally, we note that we can also solve
systems of m linear equations in m unknowns over a number field Q[t]/(f), or over a
finite field IF,,1, using Boolean circuits of size N () and depth O(log® N), for input
size N (see Eberly [37] for details). We summarise these results in the following
theorem.

Theorem 1.3.1.

(i) Let F be an arbitrary field, and let E = F[t]/(f) for some irreducible polyno-
mial f € F[t] with degree n. Systems of m linear equations in m unknowns
over the extension E can be solved using arithmetic-Boolean circuits over F
of size (mn)®M) and depth O(log?(mn)).

(i) If F' = Q[t]/(f) for an irreducible polynomial f € Q[t], or if F' = [, for some
prime p and for [> 0, then systems of linear equations over F' can be solved
using Boolean circuits of depth O(log2 N) and size N O for input size N.

19

1.4. Factoring Polynomials over Number Fields and Finite Fields

We now consider the squarefree decomposition of univariate polynomials, and the
factorisation of squarefree univariate polynomials, over a field F'. Unlike the solution
of systems of linear equations over a field, these are not purely rational problems.
We do not have universal arithmetic algorithms for squarefree decomposition (over
all fields) or for factorisation; instead, we have (Boolean) algorithms for these prob-
lems over several classes of fields. We review these algorithms, for computations
over finite fields and number fields; computations over R and C are discussed in Sec-
tions 1.5 and 1.6. We also present reductions from the computation of squarefree
decompositions of polynomials over primitive extensions of a field F', and for fac-
torisation of squarefree polynomials over primitive extensions, to the corresponding
computations for polynomials over F', for a large class of fields.

There is actually more than one “squarefree decomposition” of a polynomial in F'[z].
We use the definition of monotone squarefree decomposition and distinct power
decomposition stated by von zur Gathen [52]. Henceforth we choose ged(f1, f2) to
be the unique monic polynomial of greatest degree dividing polynomials f; and fs,
for f1, fo € F[z], at least one nonzero.

Definition 1.4.1. Let F be a field and let g € F'[z]|. The polynomial g is squarefree
if there does not exist any polynomial h € F[z] \ F such that h? divides g. Let c
be the leading coefficient of g, and let h = (hq, ho, ..., hs) be a sequence of monic
squarefree polynomials in F[z] with hy # 1. We call h the monotone squarefree
decomposition of g if g = chihe---hs and h;41 divides h; for 1 < i < s. This
decomposition is unique, and h; is called the squarefree part of g. We call h the
distinct power decomposition of g if g = chih3---h% and ged(hy, hj) = 1 for 1 <
1 < 7 < s. This decomposition is also unique.

There is an efficient sequential algorithm for the computation of squarefree decom-
positions of any polynomial f over a field of characteristic zero (namely, the com-
putation of the squarefree part of f as ged(f, f’)). Von zur Gathen [52] presents
a parallel algorithm for computation of the squarefree decompositions of polyno-
mials of degree n, which can be implemented using arithmetic-Boolean circuits of
size n°(1) and depth O(log®n).

No such universal algorithm exists for fields of positive characteristic; the squarefree
part of a polynomial f over such a field can be a proper divisor of ged(f, f’). Von
zur Gathen [52] considers (parallel) algorithms for the squarefree decomposition of a
polynomial in I [z] for any (fixed) finite field IF,;, and shows that the problem can
be reduced to that of computing large powers of elements of I, and of computing
the greatest common divisors of polynomials in Fp;. It is clear that the methods he
describes can be used to obtain an efficient sequential (Boolean) algorithm for the
squarefree decomposition of polynomials over F,,.

20

Efficient parallel algorithms also exist for this problem. Suppose now that f &
F,i[z], and that f has degree n. If p is small (in particular, if p < n), then the
algorithm of Fich and Tompa [41] for exponentiation in F, can be combined with
the reduction given by von zur Gathen [52] to obtain an efficient parallel algorithm
for the computation of the squarefree part of f. Otherwise p > n, the squarefree part
of fis ged(f, f’), and the methods for fields of characteristic zero are applicable.
Again, an efficient parallel algorithm for the problem can be obtained. In particular,
the above methods can be applied to produce arithmetic-Boolean circuits over I,
of size (nl)®M and depth O(log®(nl)) for squarefree decompositions of polynomials
of degree n in [, [z], assuming elements of F,; are represented as polynomials with
degree less than [and with coefficients in F,. No parallel algorithms have been
found which use arithmetic over [F,; (rather than F,), with elements of F,;: treated

atomically, and which yield circuits of depth O(log®(nl)) for a constant k. If we
consider a weaker model of parallel arithmetic computation, arithmetic circuits
(which include operations +, —, X, and =, but not zero tests or selections), then
it can be shown that no such algorithm exists. This negative result is discussed
by von zur Gathen [54], and by von zur Gathen and Seroussi [58]; it provides
evidence that squarefree decomposition is a problem for which the field IF,; must
be considered as a field extension (at least, if we are considering efficient parallel
computations).

Finally, we should note that the computation of squarefree decompositions of poly-
nomials in a field F, using only arithmetic in F', is actually impossible for some
fields. In particular, Frohlich and Shepherdson [44] construct a field Fg from an
arbitrary recursively enumerable set S C N such that arithmetic is effective, and
such that any algorithm which can be used to decide whether quadratic polyno-
mials in Fg[x] are squarefree in Fg[z] can also be used to decide membership of
natural numbers in the set S. If S is recursively enumerable but not recursive, then
it follows that neither of the problems of deciding membership in S, or of deciding
whether quadratic polynomials are squarefree in Fg[z], is decidable.

Efficient sequential algorithms have also been developed for factorisation of square-
free polynomials over a large class of fields. Berlekamp [10] presented the first
polynomial time algorithm for factorisation of squarefree polynomials over finite
fields vwith small characteristic. In 1970, he also presented an efficient probabilistic
algorithm for factorisation over arbitrary finite fields (Berlekamp [11]). Rabin [99]
and Cantor and Zassenhaus [19] have each given alternative probabilistic algorithms
for this problem. The first polynomial time algorithm for factorisation of square-
free polynomials with coefficients in Q was presented by Lenstra, Lenstra, and
Lovéasz [82]. This was later generalised, to produce a polynomial time algorithm
for factorisation of squarefree polynomials with coefficients in algebraic number
fields (Lenstra [81] and Landau [76] give two different generalisations of this re-
sult). Landau [77] gives a more comprehensive survey of results for factorisation of
polynomials.

21

If the field F' is a finite field, say F,, then Berlekamp’s deterministic algorithm
can be used to obtain arithmetic-Boolean circuits over +IF,, or Boolean circuits, of
size (npl)®™M) and depth O(log®(npl)) for factorisation of squarefree polynomials of
degree n in F[z]. Von zur Gathen [52] shows that the probabilistic algorithm of Can-
tor and Zassenhaus [19] can be used to obtain arithmetic-Boolean circuits over F,
(with extra nodes producing random elements of F,) or Boolean circuits (with extra
nodes producing random bits), of size (nllog p)°™") and depth O(log® nlog? I log p),
which successfully factor a squarefree polynomial of degree n over I, with prob-
ability at least 1/2. No efficient parallel algorithms for factorisation of squarefree
polynomials over Q or over number fields are known.

As is the case for squarefree decomposition, there exist fields F' for which the fac-
torisation of squarefree polynomials in F[x] using only arithmetic in F' is actually
impossible. Given a set S which is recursively enumerable but not recursive, a
field Fs of characteristic 3 can be constructed, with the property that any “arith-
metic” algorithm deciding whether an arbitrary squarefree polynomial of degree 2
is irreducible in Fg [x] could also be used to decide membership in S.

Hence we must look for algorithms for squarefree decomposition and for factori-
sation of polynomials, which are correct for (and peculiar to) specific fields — or,
at least, specific classes of fields. Instead of a “universal” arithmetic algorithm
for factorisation over arbitrary fields, we look for relationships between the com-
putational problems of factoring polynomials over two closely related fields. For
example, Landau [76] obtains an efficient algorithm for factorisation of polynomials
over number fields by reducing this to the problem of factoring polynomials with
coefficients in Q. We will show that her method generalises, and obtain a reduction
from factorisation of polynomials in E[z] to factorisation of polynomials in F[z],
where E is a primitive algebraic extension of F', for a large class of fields F. We
will use this reduction in Section 2 to reduce other problems to factorisation of
polynomials.

Landau’s method produces a reduction which is correct for perfect fields, as defined
below.

Definition 1.4.2. A polynomial f € F|[z] is separable if its irreducible factors
have distinct roots in an algebraic closure of F'. An algebraic extension E of F'is a
separable extension of F' if the minimal polynomial (over F') of every element of E
is separable.

Definition 1.4.3. A field F' is perfect if every polynomial in F[z] is separable.

Any field F' of characteristic zero, and any finite field F', is a perfect field. An
alternative characterisation of perfect fields of positive characteristic can be used
to show that the problem of deciding whether a polynomial f € F[x] is squarefree
has an efficient solution for any perfect field F.

22

Proposition 1.4.4. A field of characteristic p > 0 is perfect if and only if each
element of the field has a p' root in the field.

For a proof of Proposition 1.4.4, see van der Waerden [117] (Section 6.9, Theorem II).
It follows from this that for a perfect field F', any polynomial

g = apaPt + o1 2PFY e + o € Flz]
(so that g’ = 0) is the p'"' power of a polynomial h € F[x].

Corollary 1.4.5. If F is perfect and g € Fx] \ F, then g is squarefree in F[z] if
and only if ged(g, ¢') = 1.

We next note that the monotone squarefree decomposition and the distinct power
decomposition of a polynomial g € Efz] = (F[t]/(f))[z] can be computed efficiently
from ¢ and from the squarefree part hy of g. These two decompositions are closely
related:

Proposition 1.4.6. Let K be a field. If (hy, ha, ..., hs) is the monotone square-
free decomposition of a polynomial g € Klz|, and (ki, ks, ..., ks) is the distinct
power decomposition of g, then s = 3, and if I; = ged(g, hi) for 1 < i < s, then
hz' = li/li—l for 1 <34 S S, and k‘z = hi/hz’—i—l for 1 S 1 < 8.

In particular, Proposition 1.4.6 is correct for the case K = E = (F'[t]/(f))-

The facts stated above are easily checked. Computation of powers of polynomials,
division of polynomials, and computation of the greatest common divisor of poly-
nomials in £ can all be reduced to the solution of nonsingular systems of linear
equations in E (see Borodin, von zur Gathen, and Hopcroft [14], Reif [100], and
Eberly [37]). Hence we obtain the following corollary.

Corollary 1.4.7. The monotone squarefree decomposition and the distinct power
decomposition of a polynomial g € E[z] of degree m can each be computed from the
coefficients of g and of the squarefree part of g, using arithmetic-Boolean circuits
of size polynomial in mn and of depth O(log®(mn)), for n = [E : F].

Thus it is sufficient to consider computation and factorisation of the squarefree part
of a polynomial g € Elz|] = (F[t]/(f))[x]. We perform these computations using
the norm of the polynomial g over F', defined below.

Suppose again that E = F[t]/(f), for f monic and irreducible of degree n in F'[t],
and for F' perfect. Let aq, as, ..., o, be the roots of f in an algebraic closure H
of F; since f is separable, these roots are distinct. Now F = F[t]/(f) is isomorphic
to the field Fay] € H. (In fact, if H is an algebraic closure of E = F'[t]/(f), then

23

we can set a3 = (¢t mod f) — so the fields E and F[a;] are actually the same.) We
use this isomorphism to embed F in the closure H.

Definition 1.4.8. Let v = ¢y + ciay + coa? + -+ + cnfla?_l € Flay], for
co, C1, - - -, Cn—1 € F. Since a1 has minimal polynomial f with degree n over F', the
coefficients co, c1, ..., c,—1 are unique. The norm of 7y in Flas] over F', Np(qa,1/r(7),

1S
n

Npa,r(7) = H(Co + 1 + o0l 4+ Cn—la?_l)-
i=1
If g=r0+nmz+ v+ +ymx™ € (Floa])[z], with v = ¢j0 + ¢j101 +¢j205 +
"'+Cj7n_104711_1 € Flai], and with ¢j; € F for 0 < j <mand 0 < k < n, then the
norm of the polynomial g, Ng(,1/r(9), is

NF[al]/F(g) = H Z () Cjk:af> x| € (Flaa])[z].

i=1 \j=0 \k=

Since Np(q,]/r(7) and Np(a,]/r(g) are each fixed by the Galois group of the normal
closure of Flas] over F, it is clear that Nppa,)/r(7) € F' and Npjo,)/r(9) € Flz].
It is also clear from the definition of Np(,,)/r(g) that the polynomial g divides its
norm, for any g € (Flau])[z].

Landau states a number of results about the norms of polynomials in algebraic
extensions, for the case FF = Q. The results, and the proofs given by Landau,
clearly generalise. We state these results as Propositions 1.4.9, 1.4.10, and 1.4.11.

Proposition 1.4.9. Let g € (F|a1])[z] be irreducible, for a; algebraic over F' and
for F' perfect. Then Np(q,)/r(9) is a power of an irreducible polynomial in F'[x].

Proposition 1.4.10. Let g € (F[a1])[x], for a; algebraic over F' and for F perfect,
with leading coefficient ¢ € F'[oy], such that Npjq,)/7(g) is squarefree in F[z]. Then
if Np(a,1/r(g) = hiha---hs is a factorisation into irreducible polynomials in F'[x],

then g = ¢ H ged(g, hj) is a factorisation into irreducible polynomials in (Fa1])[z].
j=1

Proposition 1.4.11. Let g € (F[oa])[z] be squarefree with degree m, for ay
algebraic over F', F' perfect, and for [F|a;] : F|] = n. Then there are at most
(nm)?/2 elements s of F' such that Nppa,)/r(9(x — sa)) is not squarefree.

These are stated by Landau [76] for the case F' = Q as Theorems 1.4 and 1.5, and
Lemma 1.6, respectively.

24

Since the norm is a multiplicative function, we have the following extension.

Proposition 1.4.12. Let F be a perfect field, a; algebraic over F' such that
[Flai] : F] = n, and let g € (F[a1])[x] with degree m. Suppose g has squarefree part
h € (F|a1])[z] with degree k. Then there are at most (nk)?/2 < (nm)?/2 elements
s of I such that the squarefree part of Ng(a,1/r(g(z —sa1)) in Flx] has degree less
than nk. For all other s € F', this squarefree part has degree nk, and the squarefree
part of g(x — saq) is the greatest common divisor of g(z — say) and the squarefree

part of Nr(a,)/r(9(z — sar)).

Proof. The norm of h(x—saq) is a divisor of the norm of g(z—say), of degree nk. It
is a consequence of Proposition 1.4.11 that Np(q,1/r(h(z—sa1)) is squarefree for all
but at most (nk)?/2 elements s of F. For these “bad” choices of s, the polynomial
Np(a,]/r(h(x — sa1)) has the squarefree part of Npjq,)/r(9(x — sa1)) as a proper
divisor. For all other choices of s, it is easily checked that Npjq,)/r(h(z — say1)) is
itself the squarefree part of Npjq,)/r(g9(2 — say)).

Clearly, h(x — saq) is a divisor of ged(Nppqa,1/r(h(z — sa1)), g(x — say)). Suppose
the polynomial h(x — saq) is a proper divisor. Then

ged(Np(a 1/ r (M2 — sa1)), g(x — sa1)) =1 - h(z — saq),

for some [€ (Flaq])[z] \ Faa], and it is clear that I divides both of the polynomi-
als (Npja,/r(h(z — sa1)))/(h(z — sa1)) and g(x — sa1)/h(z — say). Let [be the
squarefree part of I; then [divides both (NF[a,)/F(h(z — sa1)))/(h(z — saq)) and
the squarefree part + of g(x — say)/h(x — saq). Since h is the squarefree part of g,
h(x—saq) is the squarefree part of g(z—say), and it is clear that the squarefree part
of g(z—say)/h(x—saq) divides h(z—soy). Thus [divides h(z—saq) (since it divides
g(z — son)/h(z — saq)). Since [also divides (N[, r(h(z — sa1)))/(h(x — say)),
12 divides Np(a,]/r (M2 — say)). Therefore, Nppo,1/p(h(2 — say)) is not squarefree.
We conclude from this that h(z — saq) is the greatest common divisor of g(z — say)
and Npjq,)/r(h(z — sa1)) if Nppa,1/r(h(x — sa1)) is squarefree, as required. =

We must show that the polynomial Npa,]/r(g) can be computed efficiently if we
are to use it to factor g. The method given by Landau [76] for the case F' = Q can
be used for the general case.

25

Definition 1.4.13. Let h = h.y" + h._1y" "t + -+ + hy € K[y], and let k =
ksy®+ks 19514+ ko € K[y], for hy, kje Kfor0<i<rand0<j<s,and for
K an integral domain. The resultant of k and h with respect to the indeterminate vy,
Resy (k, h), is

r ks 0 0 0 hy 0 0 0 7
ks—1 ks 0 0 hyr—1 hy 0 0
ks—Q ks—l ks 0 hr—Z hr—l hr 0
det ' ‘ :
B I N SR T T o hy
ks—r ks—r—i—l e ks—l hr—s hr—s—i—l T hr—l
L 0 0 0 - ko 0 0 0 -+ ho U

where the above matrix has order r + s, with r columns of coefficients of k, and s
columns of coefficients of h.

We compute the norm of g € E[z] = (F[t]/(f))[z], for f monic and irreducible over
a perfect field F', by computing the resultant of polynomials in the indeterminate
t with coefficients in K = F[z]. Given g € (F[t]/(f))[z], let § € F[t, x] such that

m n—1

Z(Z gijtj)xi, with g;; € F for 0 < i < m and 0 < j < n, and such that

g
i=1 j=0
g = (g mod f).

Proposition 1.4.14. Ng,p(g9) = (—1)™"Res(g, f) € F|x].

This is a direct consequence of Theorem 1 of Loos [87].

Our reductions from squarefree decomposition and factorisation of polynomials over
primitive algebraic extensions of a (large) perfect field to the respective problems
for polynomials over the ground field are stated on the following pages.

The two algorithms have the same general form. In each case, an irreducible polyno-
mial f € F[t] of degree n, and a polynomial g € (F[t]/(f))[x] of degree m, are given
as input. The algorithms proceed by checking sufficiently many elements s of F' to
ensure that the norm over F' of the squarefree part of g(z — st) will be squarefree for
at least one of the values checked. Given such an s, the norm of g(x — st) is used to
obtain the squarefree decomposition of g (by the first algorithm) or the factorisation
of g (by the second) in the manner indicated by Propositions 1.4.12 and 1.4.10, re-
spectively. Correctness of the algorithms follows from these propositions, and from
Proposition 1.4.11, provided that the field F has at least 1 + [(nm)?/27] distinct
elements.

26

Algorithm Squarefree Decompositions over Extensions via the Norm

Input. e Integers n, m > 0.
e The coefficients of a monic irreducible polynomial f € F'[t]
of degree n.
e The coefficients ¢y, ¢1, ..., ¢m—1 € E = Ft]/(f) of a monic
polynomial g = ¢y +c1x + -+ + ¢pp_12™ 1 + 2™ € Elz], with
coefficient ¢; given by elements ¢; o, ¢; 1, ..., ¢i,n—1 of F’
such that ¢; = Ci,0 1 ¢, 1t+-- 4+ Ci’n_ltn_l mod f
Output. e Integer k > 0.
e Elements d;; of I, for 0 <7 < k and 0 < j < n, such that
h = do —|—d11‘—|— cee —|—dk_1fl/’k_1 —f—l’k € E[l’]
is the squarefree part of g, with
d; = di’() + di’lt —+ - di,n_ltn_l mod f, for 0 <i<k.

Let r =1+ [(nm)?/2], and let s1, s, ..., s, be any set of distinct
elements of F.
(1) Perform steps 2-3 in parallel, for 1 < i <.
(2) Compute the coefficients of the polynomial
gi = Ng/r(g(xz — sit)) = (—1)""Resi(g(x — s;t), f) € Flx],
for g € F[t,z] with degree less than n in ¢ such that g = (g mod f).
(3) Compute the degree k; and coefficients g; r,—1, ..., gi,1, Gi,0 € F
such that h; = =% + Gi, ki_lxki_l + -+ i, 12 + Gi, 0 is the squarefree
part of g; in F[x].

(4) Fix j to be any integer between 1 and r such that k; = ax (k;).

Set k = kj, and set h = ged(g, hj(z + s;t)), for the polynomial f;
as computed in step 3.
(5) Return the integer k£ and the coefficients of the polynomial h.

27

Algorithm Factorisation over Extensions via the Norm

Input. e Integers n, m > 0.

e The coefficients of a monic irreducible polynomial f € F[t]
of degree n.

e The coefficients cg, ¢1, ..., ¢m—1 € E = Ft]/(f) of a monic
squarefree polynomial g = co + c17 + -+ + ¢pp_12™ 1 + 2™ € Elx]
with coefficient ¢; given by elements ¢; o, ¢i 1, ..., ¢i, n—1 of I

such that ¢; = Ci,0 1 ¢, 1t+- Ci’n_ltn_l mod f
k

Output. e Integers k > 0, and mq, mo, ..., mi > 0, with Z mp = m.

h=0
e Elements dj,;; of F', for 1 <h <k,0<7<mp,and 0 < j <n,
k
such that g = H dp, is an irreducible factorisation in E[x],
h=1

mp—1 n—1

for polynomials dj, = ™" + Z Z dp it | ' mod f.
i=0 \ j=0

Let r = 1+ [(nm)?/27, and let sy, so, ..., s, be any set of distinct
elements of F.
Perform step 2 in parallel, for 1 <7 < r.
Compute the coefficients of the polynomial
G = Nigyp(g(x — si1)) = (—1)™ Res,(3(z — sit), f) € Flal,
for g € F[t,z] with degree less than n in ¢ such that g = (§ mod f).

Fix [to be any integer between 1 and r such that ged(g;, ;') =1 in F[z].
k

Compute a factorisation of g; = H dy, into irreducible polynomials
h=1

in Fz]. Set k to be the number of irreducible factors of g;, and

set my, to be the degree of the factor d, (in z), for 1 < h < k.

Return the integers k, my, ma, ..., my, and the coefficients of

dp = ged(g, dp(x + sit)) € (F[t]/(f))[x], for 1 < h < k.

28

If the field F' does not have sufficiently many distinct elements for the above al-
gorithms, so that F is F,: for p' < [(nm)?/2], then we have (different) parallel
algorithms for squarefree decomposition and factorisation, which take advantage of
the fact that the ground field is small. Using methods already discussed, we obtain
arithmetic-Boolean circuits over F', or Boolean circuits, of depth O(log®(nm)) and
of size (nm)o(l) for each of these problems, if F'is a prime field. These algorithms
are easily modified to produce arithmetic-Boolean circuits over F', or Boolean cir-
cuits, of size (nm)°M) and of depth O(log®(nm)), for the general case F' = F,,
pl< [(nm)?/2].

We summarise these results in the following theorem.

Theorem 1.4.15. Let F' be a perfect field, and let E = F[t]/(f) be a primitive

algebraic extension of degree n over F'.

(i) The squarefree decomposition of a polynomial g € E[z] of degree m can be
computed using arithmetic-Boolean circuits over F' (with oracles for squarefree
decomposition in F[z]), with depth O(log®(mn)) and size (mn)°™), plus the
cost of computing the squarefree parts of (1 + [(nm)?/2]) polynomials of
degree mn in Fz|, in parallel.

(ii) The irreducible factorisation of a squarefree polynomial g € E[x] of degree m
can be computed using arithmetic-Boolean circuits over F' (with an oracle for
factorisation in F[z]), with depth O(log®(mn)) and size (mn)°M), plus the cost
of factoring a squarefree polynomial of degree mn in Fx].

29

1.5. Isolation of Roots over Number Fields

As noted in Section 1.2, we are interested in computations over number fields viewed
as subfields of R or C. Our field description of a number field isomorphic to Q[t]/(f)
(for f monic and irreducible in Q[t]) will include a standard rectangle, isolating a
single root « of f. We are performing computations over Q[a].

When performing rational computations (such as arithmetic, or solving systems of
linear equations) over Q[a], we produce values in Q[«], and it is sufficient to ignore
the root a of f and perform computations over Q[t]/(f). We recover the values
we want in Q[a] by replacing ¢ by « in the results. This is also true for squarefree
decomposition and for factorisation in (Q[a])[x]. Given a polynomial g € (Q[«])[z],
we compute its squarefree part (in (Q[a])[z]) or its irreducible factors in (Q[«])[z],
by performing computations for polynomials in (Q[t]/(f))[z], and replacing ¢ by «
in the coefficients of the polynomial(s) we obtain.

This is not sufficient if we want to compute isolating rectangles for the complex
roots of a polynomial g € (Q[a])[z] of degree m: These are not generally in the
ground field. In this section, we show that isolating rectangles can be obtained for
these roots in polynomial time.

The problem we consider is a generalisation of one which has been well studied:
the isolation of the complex roots of an integer polynomial. Pinkert’s method
can be used to compute isolating rectangles and numerical estimates of arbitrarily
high precision for the roots of a polynomial in Q[z] in polynomial time. More
recent methods can be used to obtain root approximations very efficiently (see
Schénhage [110]). Using the methods discussed in Section 1.4, we can generate a
polynomial in Q[z] — namely, the norm of g over QQ — whose roots include those of
g € (Q[a])[z]. While the above methods can be used to obtain isolating rectangles
for the roots of the norm of g, we are left with the problem of distinguishing between
the roots of g and the remaining roots of its norm over Q.

Suppose now that ¢ € Q is a lower bound for the separation of distinct roots of
the norm of g over Q. That is, suppose |3 — 3’| > ¢ for all 8, 5’ € C such that
B # (3 and (8 and (3’ are both roots of the norm. Suppose g has leading coefficient
gm € Qo] and roots By, Ba, ..., B (not necessarily distinct). If § is any root of g
then clearly g(3) = 0. If 4’ is a root of the norm of g which is not also a root of g,
then |3 — ;| > ¢ for 1 <i < m; hence

98| = |gm H(ﬁ B)]
=g \H(!ﬁ Bi))
> |gm|c™

30

Using an efficient method for the isolation of roots of integer polynomials to obtain
sufficiently good numerical estimates for the generator « of Q[«] and for a root 3 of
the norm of g over Q, we can decide whether 3 is a root of g by computing |g(3)| to
within precision (|g.,|c™)/3. We complete our description of an algorithm for root
isolation over number fields by deriving lower bounds for |g,,| and ¢, and showing
that g() can be estimated to the required precision in polynomial time.

We first consider the case that g is irreducible. Suppose, then, that

n—1 m m n—1
f=t"+ Z fit' € Z[t], and g= Zgjl’j = Z Z gj,kakxj € (Z[a])[=],
P =0 j=0 k=0

for fi, gj.x € Z, g; € Z[a], such that |f;|, |g;. x| < 2M for some M € Z, and such
that f is irreducible in Q[t] and g is irreducible in (Q[«])[x]. Suppose « is a root
of f. We apply inequalities stated by Mignotte [89] to show that we can distinguish
between roots of g, and other roots of Ngjaj/q(9), in polynomial time.

We first obtain bounds for the absolute value of v and for the absolute value of
a root (8 of the norm of g over Q. Applying Cauchy’s inequality (Mignotte [89],
Theorem 2 and corollary) to the polynomial f, we obtain the bounds

M+ 1) <ol <2M +1.

It follows that

n—1
95| < 2MZ lo?| < on(M+1) ¢ <j<m.
j=0

We will also need a lower bound for nonzero coefficients g;; each is a root of a
monic polynomial Ngja]/q(z — g;j), a polynomial of degree n in Z[z]. Applying
Proposition 1.4.14, we note that

n—1

Nojoj/a(@ — g;) = Resy(z = Y _ g; 1t*, f),
k=0

the determinant of a (2n — 1) x (2n — 1) matrix of polynomials, each with degree at
most 1 in z. Further, the entries of all but n columns of this matrix are integers.
Using this expression, we obtain the upper bound

(2n o 1)' 2n2M(2n—1) < 22n(M+log(2n)—|—1)

for the absolute value of each coefficient of Ngq)/0(2 — g;). Applying the corollary
of Cauchy’s inequality again, we conclude that

95| > 9 2n(M+log(2n)+1)=1 for 511 nonzero 9j,

31

and that
2—3n(M—|—log(2n)—|—1) < |ﬁ| < 23n(M—|—log(2n)—|—1)'

We next compute a lower bound for the root separation, c. Applying Theorem 4 of
Mignotte, we observe that the squarefree part of Ngja)/q(g) has degree at most mn,
and coefficients whose absolute values have sum at most

2 (((mm 1)) 22 (M8 1)) o gnim 20 t3log(mn) +5),

Applying the corollary of Theorem 5 of Mignotte, we conclude that
c> \/g . (mn)—(mn+2)/2 2—n(m—|—2M—i—3 log(mn)45)(mn—1)

> \/g . Q—an(m+2M—|—4 log(mn)+5).

We conclude that if 3 is a root of Ngja]/g(g) Which is not also a root of g, then

g(B)| > 27 2n(MHlog(@n)+1)=1 /3™ 5=m*n®(m+2M +4log(mn)+5)

> \/gm . 2—m2n2(m+3M—&—510g(mn)+7)‘

Hence we can decide whether (3 is a root of g by computing |g(3)| to within accuracy
€, for

€< 1 \/gm . 2—m2n2(m+3M—|—510g(mn)+7)
3

< \/gm—2 . 9—m?n?(m+3M+5log(mn)+7)

It remains only to show that |g(/3)| can be computed to this precision, using “easily
computed” numerical estimates of & and 3. Suppose now that we have computed
estimates & and 3 of a and S, respectively, with |& — a] < § and \B — B <. The
estimates can be used to decide whether ¢g(3) = 0 if

m n—1

9(8) =D giké* | <e.
§=0 k=0
This is clearly the case if
m n—1
DD gkl |ahE —of | <
§=0 k=0

32

Using the upper bounds we obtained for |g, x|, ||, and |3, we see that the estimates
can be used reliably if € is larger than

m
=0

and it can be shown that this is true if

n—

Y

1
oM <<2M+1 n 5)k(23n(M—|—log(2n)+1) Ty (2M—|—1)k(23n(M+log(2n)+1)>j)
k=0

§ < 2—2nm(3M+210g(nm)+4) €

_ \/gm—Q . 9—m*n® (m+6M+7log(mn)+11)

We use these estimates to obtain the following algorithm.

Algorithm Isolation of Roots via the Norm

Input. e Integers n, m, M > 0.
e The coefficients of a monic irreducible polynomial f € Z][t]
f=t"+ fuoat" 4+ fit + fo, of degree n,
with |f;| < 2M for 0 <i < n.
e Coordinates of an isolating rectangle for a root a of f.

e The coefficients ¢, gm—1, ---, 91, go of an irreducible polynomial
9= gmT™ + gm_12™ 1 + -+ + g1 + go of degree m in (Z[a])[x],
with each coefficient g; given by elements g; o, gi 1, .-, Gi,n—1 of Z

such that |g; ;| < 2™ for 0 < j < n and such that
9i = Gin—1@" "+ 4 g 1a+ gi o
Output. e The coefficients of the minimal polynomial over Q of the roots of g.
e Coordinates of isolating rectangles for each of these roots.

(1) Compute the squarefree part, h, in Q[z], of
NQ[O(}/Q(Q) = (_1)mnReSt(ga f) S Z’[t]a
for g € Z[t,] with degree less than n in ¢ such that g(a, z) = g.
The polynomial & is the minimal polynomial in Q[x] of the roots of g.

(2) Use an asymptotically fast method for the isolation of roots of integer

polynomials to estimate a and each of the roots of h, to precision
§ = \/gm—2 i 2—m2n2(m+6M+7log(nm)—i—ll).

(3) For each root (3 of h, use the estimates computed in step 2 to compute
an approximation of |g(3)|. Return 3 as a root of g if and only if
this estimate of |g(3)] is less than e, for

€ = \/gm—Q . 2—m2n2(m+3M—&—5log(nm)+7)‘

33

The bounds ¢ and € used in this algorithm have been derived using bounds on
the size, and separation, of roots of a squarefree polynomial. These bounds are
not known to be the best possible; any improvement in these bounds will yield a
corresponding improvement in the error bounds required for estimates used by this
algorithm — and hence in the time required by an algorithm using this approach.

We now consider the general case — that g is not necessarily irreducible. We first
note that there exists an integer b > 0 such that bf,, bf,—1, ..., bfo € Z, for
frns fn=1, -+, fo the coefficients of the irreducible polynomial

f=fal™ + faoat™ "+ 4 fit + fo € QL.

In particular, we can take b to be the lowest common multiple of the denominators
of these rational coefficients. Let f; = bf;, for 0 < i < n. If a is a root of f in some
algebraic closure of QQ, then « is also a root of the polynomial

F= ot fuit" et fit 4 fo € 2,

which is also irreducible in Q[t]. Now f,, € Z and f,, # 0. Setting @ = f,,a, we see
that Qo] = Q[a], and that @ is a root of the monic irreducible polynomial

F=t"+ foat" P+ fit+ fo
="+ fofort" o+ R it R fo € 2.

The binary representations of the coefficients of f have length polynomial in the
representations of the coefficients of f.
m n—1
Given a polynomial g € (Q[a])[x], with g = ZZgj,kakacJ, with g; , € Q for
j=0 k=0
0<j<mand0 <k <n,itis clear that we can compute integers g; ; such that

the polynomial
ZZ j.ka*e? € (Z[a])[a]
:O :

is a (nonzero) integer multiple of g, and hence has the same roots as g. Again, the
coefficients of g can be computed in polynomial time.

Finally, we can compute the squarefree decomposition of g, and then compute the
irreducible factors of g (using the method of Landau [76]) in polynomial time. By
doing so, we reduce the general case of our problem to the special case; our algorithm
can be applied to isolate the roots of the polynomial g, using time polynomial in
the size of the (original) input. We summarise this in the following theorem.

Theorem 1.5.1. Given an irreducible polynomial f € Q[t], an isolating rectangle
for a root « of f, and the coefficients of a polynomial g € (Q[a])[z], we can compute
the minimal polynomial over Q and an isolating rectangle for each of the roots of g,
in polynomial time.

34

1.6 Factoring Polynomials over R and C

We now consider the factorisation of polynomials over R and over C. As before,
we assume we are given a polynomial g € (Q[a])[z], for a a root of an irreducible
polynomial f € Q[t]. As noted earlier, we can assume without loss of generality
that f is a monic polynomial with integer coefficients (so that « is an algebraic
integer, and that g is a squarefree polynomial with coefficients in the ring Z[a]. If
we are working over R, so that we are assuming g has real coefficients, then we
assume « to be a real root of f. Since C is an algebraically closed field, every monic
irreducible polynomial h € C[z] has the form = + (3, for § € C. Thus an irreducible
factorisation of g over C has the form

g=clx+01)(x+B2) - (z+ Bm)

for distinct 31, B2, ..., Bm € C, and for ¢ the leading coefficient of g. Monic
polynomials in R[z] which are irreducible over R have degree either one or two;
thus an irreducible factorisation of g over R has the form

g=clx+B10) (*+ B o)(®® + Brr1.17 + Brr1.0) - (@ + Brrr. 17 + Brri o)

with all of these polynomials distinct, and with m = k + 21.

Since the coefficients of g all lie in the number field Q[a], the roots of g — and
the coefficients of the irreducible (real or complex) factors of g — lie in some larger
number field Q[(], a splitting field for g. In principle, then, we could factor g (over R
or C) by computing a generator ¢ for a splitting field of g (or, for factorisation over R,
for the largest real subfield of a splitting field), and then perform exact computations
in this larger field. Landau [76] includes an algorithm for the computation of such a
generator. However, there exist polynomials of degree n in Q[z] (and for arbitrary
n) whose splitting fields all have degree at least n! over Q; we cannot compute (or
even write down) the minimal polynomial over Q of a generator of such a splitting
field using time polynomial in n.

We obtain a useful factorisation of g over R or C by using a more general represen-
tation of the splitting field. If g has factorisation

g = chihy - hg

over R or C, for ¢ the leading coefficient of g, and for distinct monic irreducible
polynomials hy, hs, ..., hg, then each irreducible factor h; has coefficients in a
number field Q[¢;] which is a small (that is, polynomial degree) extension of Q[a].
Our “polynomial size” factorisation of g includes the minimal polynomial over Q
and an isolating rectangle over C (for factorisation over C) or isolating interval
over R (for factorisation over R), for each generator ;. The coefficients of h; will be

35

represented as elements of Q[(;]. We also give a representation of o as an element
of Q[¢;], in order to establish an embedding of Q[a] within Q[(;].

We give a formal description of the computational problems “Factorisation over R”
and “Factorisation over C” on the next two pages. We will show that each of these
problems can be solved using time polynomial in n, m, and M.

We first consider the conceptually simpler problem, “Factorisation over C”. If g
is irreducible in (Q[a])[z], then the minimal polynomial of each root of g over Q
is the squarefree part of Ngjaj/g(g). This polynomial, and isolating rectangles of
each of the roots of g, are computed by the algorithm “Isolation of Roots via the
Norm” discussed earlier. In the more general case that g is squarefree, we obtain
these polynomials and isolating rectangles by factoring ¢ in (Q[a])[x] using the
algorithm given by Landau [76], and then considering each irreducible factor of g
(in (Q[a])[z]) separately. Hence we can compute minimal polynomials over Q, and
isolating rectangles in C, for each root of a squarefree polynomial g € (Q[a])[z],
using polynomial time.

It now remains to compute the minimal polynomial over Q, and an isolating rect-
angle in C, for a primitive generator (; of the number field Q[(;] = Ql«, ;], and
to express o and f3; in terms of (;, for 1 < i < m. Loos [87] provides an effi-
cient algorithm for this computation (namely, Algorithm 2 (SIMPLE)), for the case
a, B; € R. It is a simple matter to check that the “interval arithmetic” used in this
algorithm can be replaced by computations and refinements of isolating rectangles
in C (Pinkert’s method is sufficient for this), to generalise the algorithm so that it
can be used for arbitrary algebraic numbers «, 3; € C. Since the algorithm of Loos
computes the remaining values specified as output for the problem “Factorisation
over C”, we conclude that this problem can be solved using a polynomial number
of operations over Q.

It is easily checked that the values computed all have lengths polynomial in the
input size, and that these computations can also be performed using a polynomial
number of Boolean operations.

36

Problem Factorisation over R

Input. e Integers n, m, M > 0.
e The coefficients of a monic irreducible polynomial f € Z[t]
f=t"+ fot" L+ -+ fit + fo, of degree n,
with |f;] < 2M for 0 <i < n.
e Endpoints of an isolating interval of a real root « of f.

e The coefficients ¢,y gm—1, ---, 91, go of a squarefree polynomial
9= gm=™ + gm-12™ " 4+ g12 + go of degree m in (Z[a])[x],
with each coefficient g; given by elements ¢; o, i1, .-+, Gi,n—1 of Z

such that |g; ;| < 2™ for 0 < j < n, and such that
gi = Gi,n—10"" 14+ g 1a+ gio.
Output. e Integers k, [> 0 such that k£ 4 2] = m, and such that
g = gmhiho - hpy
is an irreducible factorisation of g over R, for monic polynomials
hi, ho, ..., hg of degree 1, and hyy1, hgta, ..., hiy; of degree 2.
e The minimal polynomial over Q (with degree d;) and an isolating
interval in R for the algebraic integer (; € R, such that a and the
coefficients of the polynomial h; lie in Q[(;], for 1 < i <k + 1.
e For 1 <7 < k: numbers a; o, a;,1, ..., @; 4,—1 and
bi’o, bi,l» ceey bi,di—l € Q with
a=aio+a;,1G+ - +a,q-1¢" ", and
Bijo = bio+bi1Gi+ - +bi g, aGE
for ;o € Q[¢;] such that h; = x + ;¢ is the i irreducible
polynomial in our factorisation of g over R.
e For k41 <¢ <k +[: numbers a; o, a; 1, ..., @i, d,—1,
bi.o, bi 1, ..., bi a;—1, and ¢;,0, € 1, - ., €i,q,—1 € Q such that
a=ai0+a;i1G+ o +ai a1
Bi,1 =bi0+bi 1G4+ bi,di—lCidFl, and
Bi,o = Ci,o+ ¢i,1Gi+ -+ ¢ a -G,
for Bi, 1, 57;70 S @[Cz] such that hz = .1,‘2 + ﬂi’ 12 + ﬂ@o is the ith
irreducible polynomial in our factorisation of g over R.

37

Problem

Input.

Output.

Factorisation over C

Integers n, m, M > 0.

The coefficients of a monic irreducible polynomial f € Z[t]
f=t"4 fo1t" L4+ fit + fo, of degree n,

with |f;] < 2M for 1 <i < n.

Coordinates of an isolating rectangle of a root « of f.

e The coefficients ¢, gm—1, ---, 91, go of a squarefree polynomial

9= gmT™ + Gm_12™ L+ g12 + go of degree m in (Z[a])[x]
with each coefficient g; given by elements g¢; o, i1, .-, Gi,n—1 of Z
such that |g; ;| < 2™ for 0 < j < n and such that

gi = Gi,n—1a"" 4+ g 1a+ g o
The minimal polynomial over Q (with degree d;) and an isolating
rectangle in C for algebraic integers (1, (o, ..., (;n € C, such
that o and the algebraic number (3; both lie in Q[(;], for 1 < i < m,
and for (; such that
h = gm(x +ﬁl)(w +ﬁ2) T (.I + Bm)
is an irreducible factorisation of g over C.

Numbers Qi 05 Qi 1y -« G d;—1 and bi,O, bi,l, ceey bz’,di—l eQ
such that
d;—1
a=a;0+a; 16+ - +a;,q,-16" ",
and

Bi=bio+bi1C+ 4 bi g, 1CE
for 1 <3 <m.

38

If our polynomial g splits completely into linear factors over R, then the method
sketched above can also be applied to compute the factorisation of g over R. In
general, Sturm sequences can be used to compute the number of real roots of g.
Collins and Loos [26] include a description of this method. Since the polynomial g
has real coefficients, the remaining roots occur in conjugate pairs, v and 4. Using
the methods sketched above (for factorisation over C), we can compute minimal
polynomials over Q and isolating rectangles for each of the nonreal roots of g.
Refining the isolating rectangles (if necessary), we can also match up each of the
conjugate pairs of roots ; and 7;, for [+1 <¢ <[+ h.

Since we are factoring g over R, we are more interested in the (real) coefficients of
the irreducible factor

2%+ B; 17 + Bilo

of g having complex roots v; and 7; than we are with the roots themselves. Using
the equation

z® + Bi, 1+ Bio = (x — i) (x — Vi),
we see that
Bi,1 = —(vi + %) and Bi,o = Vi * Vi-
It is clear that isolating intervals of 3; 1 and 3; ¢ can be computed from isolating
rectangles of v; and 7;, provided that the minimal polynomials of 3; 1 and (; ¢
can be computed. We compute these polynomials from the minimal polynomials

of 7; and #;, by computing several resultants of polynomials, using the following
relationships.

Proposition 1.6.1. (Loos.) Let A = ay, [[[~,(z — ;) and B = b, [[;_,(z — 5;)
be polynomials with positive degree in R[x], for an integral domain R, with roots

a1, Ao, ..., @y and By, Bo, ..., B, respectively.
(i) The polynomial Res,(A(z — y), B(y)) has roots v;; = o; + 3, for 1 <i < m,
1<j<n
(ii) The polynomial Res,(A(x + y), B(y)) has roots v;; = o; — 3;, for 1 <i < m,
I<j<n
(iii) The polynomial Res,(y"A(z/y), B(y)) has roots v;; = o - B, for 1 <1i <m,
1<j<n
(iv) The polynomial Res,(A(zy), B(y)) has roots v,; = «;/3;, for 1 < i < m,
1<j<n.

This is a restatement of Theorem 6 of Loos [87]. It can be used to compute polyno-
mials in Q[z] having 3; 1 and ; ¢ as roots; we obtain the minimal polynomials of
these values over Q using factorisation over QQ, and comparisons of isolating rectan-
gles. We then use this information to compute the minimal polynomial over Q, and
an isolating interval in R, of a primitive generator ¢; of Q[(;] = Q|ev, Bi.1, Bi,0], and

39

express o, 3 1, and 3; o in terms of (;, as sketched in the discussion of factorisation
over C.

Again, it is straightforward to check that the algorithms of Loos can be used to
compute these values using a polynomial number of Boolean operations.

Theorem 1.6.2. The problems “Factorisation over R” and “Factorisation over C”

can each be solved using a number of Boolean operations polynomial in n, m, and
N.

Thus we can factor polynomials over number fields, and we can factor polynomials
with algebraic numbers as coefficients over R or C, in polynomial time. We will
apply these results in later sections to show that a number of problems involving
decompositions of associative algebras and of linear representations of groups can
be solved in polynomial time, as well.

40

2. Computations for Associative Algebras

In this section we discuss computations for finite-dimensional associative algebras
over a field F. The structure of these algebras is well understood; the goal of this
section is to find algorithms which can be used to decompose algebras in the manner
described by the classical structure theorems for rings (and, in particular, algebras).

Friedl and Rényai ([43]) and Rényai ([102]-[104]) have obtained algorithms for the
decomposition of algebras over Q and finite fields, and evidence that one stage of
this decomposition is difficult. We review their algorithms, and use their techniques
to obtain arithmetic reductions from these computational problems for algebras to
problems concerning factorisation of polynomials. We also give some new algorithms
for these computations (in particular, see Sections 2.4.3 and 2.4.4), and apply the

methods of Friedl and Rényai, and other existing techniques, to decompose algebras
over R and C.

In Section 2.1 we review the classical (“Wedderburn”) structure theorems for asso-
ciative algebras. In Section 2.2, we give additional material needed for us to define
computational problems corresponding to these theorems. We include a standard
representation of an arbitrary finite-dimensional associative algebra over a field F'
as a matrix algebra over F', and discuss the cost of obtaining this “concrete” rep-
resentation from more general representations of associative algebras over F'. With
this matrix representation in mind, we define computational problems correspond-
ing to the structure theorems, which take as input a basis (of matrices) over F for
a matrix algebra, and return bases for components of this algebra. The structure
theorems describe three distinct phases in the decomposition of a finite-dimensional
associative algebra; algorithms for the three computational problems corresponding
to these phases are discussed in Sections 2.3, 2.4, and 2.5 respectively. We indicate
some directions for further research in Section 2.6.

41

2.1. Definitions and Notation: The Structure Theorems

We begin with definitions leading to the statement of the structure theorems for
associative algebras over a field. The material presented here is standard. For
more comprehensive treatments of this see (for example) the texts of Curtis and
Reiner [31], Jacobson [67], [68], or van der Waerden [117], [118]. In general, we
adopt the notation of Curtis and Reiner [31].

Henceforth F' denotes a field, and A denotes an associative algebra over F'.

Definition 2.1.1. An associative algebra A over a field F is a ring with an identity
element which is at the same time a vector space over F, such that the scalar
multiplication in the vector space and the ring multiplication satisfy the axiom

a(ab) = (aa)b = a(abd) for « € F and a,b € A.
A subring of A which is also an F-subspace of A is called a subalgebra of A.

We will restrict attention to algebras which are finite-dimensional (as vector spaces)
over F'. We note some examples of associative algebras (which we will be discussing
further) below.

Example 2.1.2. F' is an associative algebra (of dimension 1) over itself. If £ D F
is a finite algebraic extension of F', then E is an associative algebra over F.

Example 2.1.3. Let F' = R, and let A = H], the ring of real quaternions. H is a
vector space of dimension 4 over R, with basis {1, i, j, k } over R, where

P=2=k*=—-1, ij=—ji=k, jk=—-kj=i, and ki=—ik=7j.
H is a (noncommutative) associative algebra over R.

Example 2.1.4. Let n > 0. Any subring of the ring of n x n matrices over F
which includes the ring of homotheties { al,, : o € F} is an algebra over F. In
particular, the ring of upper triangular n x n matrices over F', and the ring of all
n X n matrices over F, are both associative algebras over F.

We will see later that every associative algebra of dimension n over a field F is
isomorphic to a subalgebra of the algebra of n x n matrices over F.

Example 2.1.5. Let f € F[z] be a polynomial with degree n > 0; the ring
A = Flz]/(f) is an associative algebra of dimension n over F.

Example 2.1.6. Let G = { g1, g2, ..., gn } be a finite group. The group algebra,
F@, is the set of formal linear combinations

{a191 +asga+ -+ angn : a1, ag, -+, ap € F }.

42

Two linear combinations are considered to be equal if and only if their coefficients
are the same. Addition is straightforward, and multiplication is defined using the
group operation:

n

(i aigi) + (i ﬁigi> = Z(ai + 5i)gi;

=1

<z”: om'gz'> : (i: ﬁz’gi> = Z iB;9:9; = zn:%gi’
i=1 i=1 i=1

1<i,5<n

where

Yi = Z a; B

1<j,k<n
9igdk=4gi

FG is an associative algebra of dimension n = |G| over F.
Our definition of associative algebra is not the most general possible; some authors
(including Friedl and Rényai [43]) drop the condition that A include a multiplicative

identity. Consider, for example, the ring of strictly upper triangular n x n matrices
over a field F":

A:{U: (Uij)lgi,jgn GMan(F) : Uij =0if 5 SZ}

A is an “associative algebra over F” according to the definition used by Friedl and
Ronyai, but not according to Definition 2.1.1. Most of the results which follow
apply for either definition; we will note instances where the choice of definition is
important. (See, in particular, Example 2.1.7 below, Example 2.2.7 and the remarks
preceding it, and Section 2.3.3.)

Example 2.1.7. Let A be a vector space of dimension n > 0 over F' which satisfies
the conditions of Definition 2.1.1, except that A does not include a multiplicative
identity (so A is an associative algebra over F', according to the definition of Friedl
and Roényai). Consider the set

A={als4+a:acF acA},
with 14 ¢ A and with addition and multiplication in A defined by
(alg+a)+ (Bla+b) = (a+B)1s+ (a+b),

(ala+a)- (Bla+b) = (aB)la + (ab+ fa+ ab),

for a, 0 € F and a,b € A. Then A is an associative algebra over F' (according to
Definition 2.1.1) with multiplicative identity 14, and of dimension n + 1 over F.

43

Associative algebras can be classified according to the types of ideals they include
(as rings). Suppose I and J are left ideals of A. We denote by I + J, I -J, and I"™
the following sets:

i) I+J={a+b:acl beJ};
(ii) I -J is the smallest left ideal containing the set {ab : a € I and b € J };

(iii) I™ is the smallest left ideal containing the set of products
{ajas---ay 1 a; €l for1 <i<m}.

Inductively, I' = I, and I = [" . T for n > 0. We define right (respectively,
two-sided) ideals I + J, I - J, and I™ for right (respectively, two-sided) ideals I
and J in a similar way.

Definition 2.1.8. Let A be an associative algebra over a field F. An element a
of A is nilpotent if a™ = 0 for some n > 0. An element a of A is strongly nilpotent
if ab is nilpotent for all b € A. An ideal I of A is nilpotent if I™ = 0 for some n > 0.

Example 2.1.9. Let A be the algebra of 2 x 2 matrices over the field F. The

element
0 1
a= [0 O} cA

is nilpotent, since a? = 0. However,

0 0 10 1 ol" 1 o0
L A E N I PR
so a is not strongly nilpotent.

Example 2.1.10. Let A be the algebra of 2 x 2 upper triangular matrices over F,

A={[3‘ f] :a,ﬁ,veF},

a:[o 1]6,4.

and let

0 0

Then a is strongly nilpotent in A, since
a-|% p i _ |07 : =0
0 « |0 0o

44

for all o, 8, v € F. The ideal

is a nilpotent ideal in A.

Definition 2.1.11. Let A be a finite-dimensional associative algebra over a field F'.
The radical of A, rad(A), is the sum of all nilpotent left ideals of A.

Example 2.1.12. Let f € F[z] be a polynomial with degree n > 0, A = F[z]/(f),
and let g € F[z] be the squarefree part of f. Then the radical of A is

rad(4) = (9)/(f) = {a-(gmod f) : acA}.
In particular, rad(A) = (0) if and only if f is squarefree.

See Section 2.3 for more examples of the radicals of associative algebras.

Since a left ideal of a finite-dimensional associative algebra A is also an F-subspace
of A, it is clear that the radical of A is a subspace of A, as well as a left ideal of A
(rad(A) = (0) if A has no nilpotent left ideals). In fact, more can be said about the
structure of the radical of A.

Theorem 2.1.13. Let A be a finite-dimensional associative algebra over a field F.
Then rad(A) is a two-sided nilpotent ideal, which contains every nilpotent left ideal
of A, as well as every nilpotent right ideal of A.

See Curtis and Reiner [31], pp. 161-162, for a proof of this result for a class of rings
which includes any finite-dimensional associative algebra over a field.

The definition given here for the radical of a finite-dimensional associative algebra A
is not the only one used. Note, in particular, that Friedl and Rényai [43] define the
radical of A to be the set of all strongly nilpotent elements. Since we wish to
apply their results, we will show that the definitions are equivalent: Suppose a is a
strongly nilpotent element of A; then every element of the left ideal I generated by a
is nilpotent. In fact, the ideal I is itself nilpotent: I™ = (0) for some m > 0 (see
Curtis and Reiner [31], page 160, for a proof). Hence I C rad(A); thus a € rad(A),
and the radical (as we define it) contains every strongly nilpotent element. On the
other hand, if a is an element of the radical of A, and b € A, then ab is in the radical
(since this is an ideal) and ab is nilpotent (since the radical is a nilpotent ideal, by
Theorem 2.1.13). Thus a is strongly nilpotent. It is clear, then, that the definitions
of rad(A) are equivalent.

45

Since the radical of an associative algebra A is a two-sided ideal of A, as well as an
F-subspace, it is clear that the factor algebra

A/rad(A) ={a+rad(A) : a€ A}

is itself a finite-dimensional associative algebra over F'. It is also clear that A/rad(A)
has radical (0). That is, A/rad(A) is semi-simple, as defined below.

Definition 2.1.14. A finite-dimensional associative algebra A is semi-simple if
rad(A4) = (0).

In Example 2.1.12 we noted that if f € F[z] then the algebra A = F[z]/(f) is
semi-simple if and only if f is squarefree.

It is clear that a finite-dimensional associative algebra A is semi-simple if and only
if it has no nilpotent (left, right, or two-sided) ideals. We define more restrictive
classes of algebras by considering their two-sided, and their one-sided, ideals.

Definition 2.1.15. A finite-dimensional associative algebra A over a field F' is
simple if the only two-sided ideals of A are A and (0).

Definition 2.1.16. A finite-dimensional associative algebra A over a field F' is a
division algebra over F' if the only left ideals of A are A and (0).

Proposition 2.1.17 motivates the choice of name “division algebra”.

Proposition 2.1.17. Let A be a finite-dimensional associative algebra over a
field F'; then the following are equivalent.

(i) A is a division algebra over F.
(ii) The only left ideals of A are A and (0).
(iii) The only right ideals of A are A and (0).
(iv) A is semi-simple, and the only idempotent elements of A are 0 and 1.
(v) If u € Aand u # 0 then u is a unit: There exists v € A such that uv = vu = 1.
(vi) A is a skew field with F' in its centre.

Most of these implications are straightforward; the most difficult is the implication
“(iv) = (ii)”. For a proof of this, see Curtis and Reiner [31], pp. 160-161.

Example 2.1.18. If f € F[z] is irreducible then A = F[z]/(f) is a simple algebra,
and a division algebra, over F'.

Example 2.1.19. The algebra M, «,(F) of n x n matrices over F' is a simple
algebra for all n > 0. The algebra is a division algebra if and only if n = 1.

46

Example 2.1.20. The ring H of quaternions (defined in Example 2.1.3) is a non-
commutative division algebra over R.

Clearly, every division algebra is simple, and every simple algebra is semi-simple.
The structure theorems stated below imply that semi-simple algebras can be decom-
posed into simple algebras, and that simple algebras can also be related to division
algebras.

Suppose now that L; and Ly are left ideals in a ring R.

Definition 2.1.21. L; and L, are isomorphic in R if there is a bijection ¢ from
Ly to Ly such that ¢(l1 + l2) = ¢(l1) + ¢(l2), and ¢(rl) = r¢(l), for all » € R and
l7 ll, l2 € L.

Definition 2.1.22. L is minimal, or irreducible, in R, if [# (0) and the only left
ideal strictly contained in L (as a set) is (0).

Isomorphic and irreducible right or two-sided ideals in R are defined in an analogous
way.

Theorem 2.1.23. Let A be a semi-simple algebra over F' and let L be a minimal
nonzero left ideal of A. The sum By, of all the minimal left ideals of A which are
isomorphic to L is a simple algebra over F' and a two-sided ideal of A. Furthermore,
A is the direct sum of all the two-sided ideals By, obtained by letting L range over
a full set of non-isomorphic minimal left ideals of A.

If A is finite-dimensional and semi-simple over F', the direct sum mentioned in the
above theorem is finite: A = By ® Bo @ - -+ ® B,, for two-sided ideals (and simple
algebras) By, Ba, ..., B,,. (Note that B; is not a subalgebra of A unless m = 1,
since B; does not include the multiplicative identity of A.)

Definition 2.1.24. The ideals Bi, Bs, ..., B,, in the above summation are the
simple components of A.

The decomposition of A into simple components is unique: for if A is a finite-
dimensional semi-simple algebra and

A=B1®By®---@&B,,=C1&C,®---& (],

then m = [and (after suitable reordering of the C;’s) B; = C; for 1 < i < m. Every
two-sided ideal of A is the direct sum of a subset of the simple components of A.

47

Further, there exist idempotents by, bs, ..., b, in A such that
b1+b2+"‘+bm:1, bzb]:d”bz for 1§Z,j§m, biEBi,

and such that B; = b;A. (Here, 0;; is the Kronecker delta: §;; = 1 if ¢ = j, and
i j = 0 otherwise.) Each b; is in the centre of A; that is, b; is an element of the set

Centre(A) ={c€ A : ca=acforallac A}.

Finally, b; is the multiplicative identity of the simple algebra B;.

For a proof of Theorem 2.1.23 and the above remarks, see Section 25 of Curtis and
Reiner [31].

Theorem 2.1.25. (Wedderburn-Artin). Let A be a finite-dimensional simple alge-
bra over a field F. Then for some k > 0, A is isomorphic to My (D), the ring of
k x k matrices over D, for some finite-dimensional division algebra D over F'. There
exist minimal left ideals L1, Lo, ..., Lj, of A which are each isomorphic to D, such
that A = L1 ®Lo®- - -® Lg. This decomposition is unique (only) up to isomorphism.

See Section 26 of Curtis and Reiner [31] for a proof of this result.

Taken together, Theorems 2.1.13, 2.1.23, and 2.1.25 comprise a structure theory
for the finite-dimensional associative algebras over a field: Every finite-dimensional
associative algebra A has a unique maximal nilpotent ideal, rad(A); the factor
algebra A/rad(A) is semi-simple. Every finite-dimensional semi-simple algebra can
be expressed as a direct sum of simple algebras. Finally, every finite-dimensional
simple algebra is isomorphic to a ring of k x k matrices over a division algebra D,
for some k > 0. In the following sections we discuss representations of algebras
(as inputs and outputs for computational problems), and consider computational
problems (the “Wedderburn decomposition” of an algebra) which correspond to
these theorems.

48

2.2. Representations of Algebras for Computations

In this section we describe the method to be used to specify finite-dimensional asso-
ciative algebras as inputs and outputs for computational problems — in particular,
for problems corresponding to the decomposition of an associative algebra described
in Section 2.1.

The matrix representation for an algebra given below (in Definition 2.2.2) is stan-
dard. One such representation is obtained for each basis for the algebra over the
ground field. We will see in later sections that we can decompose an associative
algebra by choosing a different basis for the algebra — one which isolates the alge-
bra’s components. Accordingly, we consider the problem of converting between the
representations corresponding to two different bases for an algebra.

We also consider the problem of computing our standard representation of a (ma-
trix) algebra A from a set of matrices which generate A under addition and multipli-
cation. We show that there is an efficient (parallel) algorithm for this computation
— see, in particular, Theorem 2.2.10. We will use this in Section 3 to obtain reduc-
tions between problems for matrix algebras and problems for matrix representations
of groups.

Finally, we introduce the (standard) techniques we use to represent associative
algebras over R and C using a set of constants in a number field — so that we can
discuss Boolean algorithms for the decomposition of these algebras.

2.2.1. Regular Matrix Representations

In general, we use regular matrix representations, as defined below, to describe
finite-dimensional associative algebras over a field.

Definition 2.2.1. Suppose A is an associative algebra of dimension n over a field F',
and let { a1, ag, ..., a, } be a basis for A over F. The structure constants for A
with respect to this basis are the constants v; ;, € F' such that

n
ai-aj=Z’yijkak for 1 <1, 7, k<n.
k=1

Definition 2.2.2. Let A, n, F, {a1, az, ..., an }, and 7, be as above. For
1 <i<mn,let M; € Myx,(F) such that the (j, k)'" entry of M; is Yik; for
1 <4,k <n. That is,

Yi1t1 Yi21 cc Yinl
Yi1t2 Yi22 o Yin2

M, = . . . EMan(F).
Yiln Yi2n " Yinn

49

Let ¢ : A — M, x,(F) such that
¢(a1a1 + agao + -+ anan) = Olel + OéQMg + -+ OénMn

for a1, ag, ..., a, € F. The representation ¢(A) of A as a set of n X n matrices
over F' is called the regular matrix representation for A with respect to the basis

{(11,(12, ...,an}.

Proposition 2.2.3. The map ¢ : A — ¢(A) C M, x,(F) is an algebra isomor-
phism.

The proof of Proposition 2.2.3 is straightforward: It is clear that ¢(a +b) = ¢(a) +
¢(b) for all a,b € A. Using the fact that multiplication in A is associative (in
particular, that (a; - a;) - an = a; - (aj - ap)) we check that > »_ Vijnvnet =
Son_1YinitVikn for 1 <4,4,k, 1 <n. It follows directly from this that ¢(a; - a;) =
#(a;) - ¢(aj) for 1 < i, 5 < n; using linearity, we conclude that ¢(a-b) = ¢(a) - ¢(b)
for all a,b € A. It is also clear from the definition of structure constants that ¢(0)
and ¢(1) are respectively the zero and identity matrices in M, ., (F'). Finally, we
use the fact that aq, as, ..., a, is a basis for A over F' to verify that the map ¢ is
injective, as required to complete the proof.

It is clear that the matrices ¢(aq1), ¢(az), ..., ¢(a,) can be computed from the
structure constants for the basis a1, as, ..., a, for A, using time O(n?), linear in
the size of the set of structure constants, or using arithmetic-Boolean circuits over F'
of size O(n3) and constant depth.

We continue with matrix representations of some algebras to be discussed later.

Example 2.2.4. Let F' =R, A = H, and consider the basis {1, ¢, j, k } discussed
in Example 2.1.3. The regular representation of A with respect to this basis is given

1 0 0 O 0O -1 0 O
0O 1 0 O . 1 0 0 O
0 0 0 1 0O 0 1 0

0O 0 -1 0 0O 0 0 -1

. 0 O 0 1 00 -1 0

0O -1 0 O 1 0 O 0

50

Example 2.2.5. Let G be a finite group { g1, g2, ..., g» } and consider the group
algebra F'G discussed in Example 2.1.6. The elements of G comprise a basis for F'G
over F'. The regular matrix representation ¢ : FG — M, «,,(F') with respect to this
basis is given by

5 1 if g; - gy = g; f w
(gl)j K { 0 otherwise. or b s n

Thus ¢(g) is a permutation matrix for each g € G, and the set
(G)={o(g9):9€G}
comprises a group of n X n matrices which is isomorphic to G.
Example 2.2.6. Suppose f € F[x] is a monic polynomial of degree n,
f=2"4+an 12" Pt an 02" 2+ Farz 4 o

for av—1, p—2, ..., a1, ag € F. Consider the algebra A = Fz|/(f) discussed in
Example 2.1.5. The elements

{14+ z+(f), 2>+ (f),...,z" "+ ()}

comprise a basis for A. The regular representation ¢ : A — M, «,,(F') of A with
respect to this basis is given by

0 0 --- 0 O —ap 1°
1 0 --- 0 0 —on
. . o1 --- 0 0 —g
o+ () =d@+ ()=, | € MuxalB).
00 -1 0 —ap_9
0 0 -+ 0 1 —ay_1l

In particular, ¢(z + (f)) is the companion matrix of f.

Suppose now that A is an “associative algebra” of dimension n over F', as defined
by Friedl and Rényai, and that A does not include a multiplicative identity. As
shown in Example 2.1.7, we can embed A in an associative algebra A which has
dimension n + 1 over F. We obtain a regular matrix representation for A with
respect to some basis { a1, ag, ..., a, } by forming the regular matrix representation
¢ A — Mi1)x(n+1)(F) of A with respect to the basis {1, a1, as, ..., ay } of A,
then restricting the domain to obtain a map ¢ : A — My 41y (n+1) (F). Thus we

obtain a map taking elements of A to matrices of order n + 1, one more than the
dimension of A over F.

51

Example 2.2.7. To see that this increase of order is necessary, consider the “as-

sociative algebra”)
A={ae:acF}

for e # 0, €2 = 0. We obtain a “regular representation” ¢ : A — Msyo(F) given by
“ 0 0
TRt

Since €2 = 0, it is clear that the only “algebra homomorphism” ¢ : A — M1 (F)

must map e?, and e, to 0. Thus there are no “algebra isomorphisms” from A to
M1 (F).

2.2.2. Conversion Between Representations

We will be considering computational problems for finite-dimensional associative
algebras corresponding to the “structure theorems” (Theorems 2.1.12; 2.1.23, and
2.1.25) of Section 2.1. In general, each problem will take as input the regular
representation of an associative algebra A with respect to a basis { a1, ag, ..., an }
over F', and will compute as output a second basis { by, bo, ..., b, } over F (which
gives more information about the structure of A). Thus it will be useful to study
the relationship between regular representations of an algebra A with respect to
different bases.

Suppose now that A is a finite-dimensional associative algebra of dimension n
over I, with bases { a1, ag, ..., ap } and { b1, ba, ..., b, } over F, and that

n
bi=> pija; forp;; €F, 1<i, j<n.
j=1

Let X € My xn(F) with X;; = p;; then it is easily verified that if

a = a1a1 + agag + - -+ apan = B1by + Boba -+ Bpby,

for a1, ag, ..., an, B1, B2, ..., Bn € F, then
aq b1
a2 B2
=X
Cn Bn

52

Suppose also that {7, } and {(;x } are sets of structure constants for A with
respect to the bases { a1, ag, ..., a, } and { b1, ba, ..., b, }, respectively, so that

n n
ai-aj:Z’yijkak and bz“bj:chijkbk for1 <1, 7, k<n.
k=1 k=1

We obtain regular representations ¢ and v for A with respect to these bases:
Plai)jr =vik; and P(by)jr = CGr; for1<i, 5, k<n.
We can use the matrix X to convert from one representation to the other.

Proposition 2.2.8. Let A, n, { a1, ag, ..., an }, {b1, ba, ..., by }, X, ¢, and ¢ be
as described above. Then the matrix X is nonsingular, and

Y(a) = X"1p(a)X forallac A

Again, this result is both well known and easily proved. Since the matrix X has
full rank, it is clear that we can prove it by verifying that X - ¢(b;) = ¢(b;) - X for
1 <i < n. Itis easily checked (using the fact that b;-b; = >""_ | D" | pirft) s@r-as)
that >0 Gijtper = Doy Donq Mirfhjs¥rsk for 1 < i,j,k < n. The equality of
(X -9(bi))k; and (¢(b;) - X)i; for 1 <4, 4,k <n follows directly from this.

We conclude from Proposition 2.2.8 that we can convert between regular matrix rep-
resentations quite efficiently — in particular, at the cost of computing and inverting
the matrix X, and then performing a small number of matrix multiplications.

We also consider the cost of computing a basis and structure constants for A
from a more general description of A. Suppose we are given a set of matrices
ai, g, ..., ax € Myx,(F), and that A C M,,«,(F) is the smallest associative al-
gebra containing these matrices (where addition and multiplication in A are matrix
addition and multiplication).

For ¢ > 0, we define the subspace A; of M, x,(F") by
(i) Ap={al, : a € F};

(ii) A; is the vector space spanned by the matrices H2:1 ap,, for Iy, lo, ..., [;
elements of {0, 1, ..., k} and with ap = I,,. That is, A; is spanned by the
set of products of at most 7 of the matrices aq, as, ..., ai.

Lemma 2.2.9 shows how these subspaces can be used to find a basis for the algebra A.

53

Lemma 2.2.9. Let ay, ag, ..., axy € M« (F) and let A, Ay, Ay, ... be as above.
(1) ai, ag, ..., Qg € A; C Aforall i >0.

(11 AZ g Ai—l—l for all ¢ 2 0.

i

)
(ug If A; = A, for some ¢ > 0 then 4; = A; = A for all j > 4.

(iv) For all i > 0, if { by, ba, ..., b } is a basis for A; over F' then A,; is spanned
by the matrices b, - bs for 1 < r, s <.
(V) An2,1 = A
Proof. Part (i) follows by the definition of A; and the fact that the algebra A
contains the matrices I,,, a1, as, ..., ai and is closed under addition and multipli-
cation.

Parts (ii) and (iv) are clearly consequences of the definition of A;.

Suppose A; = A;;1 for some ¢ > 0. It is easily shown that A;11 = A;yq; it
follows by induction on j that A; = A; for all j > i. Now let a, b € A;; then
ab € Ay; = A;. Hence A; includes I,,, aq, as, ..., ar and is closed under addition
and multiplication; hence A; O A. Since A; C A (by (i)), we have established
part (iii).

Finally, we note that the dimension of A;,1 is greater than that of A; if A; # A;11.
Since Ap has dimension 1 over F, it follows by (i)—(iii) that either 4; = A or A;
has dimension at least i + 1 over F' for all i > 0. Now A; C A C M, «,(F), and
My, (F) has dimension n? over F; part (v) follows. =

Theorem 2.2.10. Let ay, ag, ..., ax € M,xn(F). A basis and set of structure
constants for the algebra A generated by these matrices can be computed using a
polynomial number of field operations, or by using Arithmetic-Boolean circuits of
polynomial size and depth O(log® (nk)).

Proof. By Lemma 2.2.9 (v), A = A,,2_; for subspaces Ay, A1, ... as defined above.
We compute a basis for A; = Ao by finding a maximal linearly independent subset
of { I, a1, ag, ..., ax }. This selection can be performed by checking whether each
element of this set is a linear combination of the preceding elements — by solving at
most k + 1 systems, each of at most n? linear equations in at most k variables. This
computation can be performed using time polynomial in nk, or using arithmetic-
Boolean circuits over F of size polynomial in nk and with depth O(log®(nk)) (see
Section 1.3 for details).

Suppose now that we have computed a basis { b1, bo, ..., b; } for the vector space
Agi; by part (iv) of Lemma 2.2.9 we can compute a basis for Agi+1 by choosing a
maximal linearly independent subset of the matrices {b,-bs : 1 < r, s <1}. Let
h = [logy (n? —1)]. By Lemma 2.2.9 (iii) and (v), A = Ay: for i > h. We compute
a basis for A by computing bases for Aso, Ao, ..., Agn.

54

Selection of a basis of Agi+1 given one for Ay involves multiplication of at most
n* pairs of n x n matrices, followed by the selection of a maximal linearly indepen-
dent subset of the products. This selection can be performed by solving at most n*
systems, each of at most n? linear equations in at most n* variables over F. This
computation can be performed using a polynomial number of field operations, or
using Arithmetic-Boolean circuits over F of polynomial size and depth O(log®n).
Since h € O(log n), it is clear that a basis for A can be computed at the stated
cost.

Using this basis, structure constants can be computed for A by solving at most
n* systems of linear equations, each having a coefficient matrix of order n?. Again,
this computation can be performed at the stated cost. =

2.2.3. Extension of Scalars

When discussing Boolean computations, we consider finite-dimensional associative
algebras over QQ, algebraic number fields, and finite fields. These fields have succinct
(Boolean) descriptions — and elements of these fields have useful representations
(which are discussed in Section 1). Thus we can specify these fields, and finite-
dimensional algebras over them, as inputs for Boolean algorithms.

We will also consider computations for finite-dimensional associative algebras over
R, C, and algebraic closures of finite fields. In order to make representation of these
algebras feasible, we restrict the set of algebras to be considered in the manner
described below.

Definition 2.2.11. Suppose A and B are vector spaces over a field F', and consider
the set S(A, B) of (finite) formal sums >, (a;, b;) of pairs of elements a; € B and
b, € B, 1 <i < mn, with addition associative and commutative. Clearly, S(A, B) is
an (additive) Abelian group.
Let H be the subgroup of S(A, B) generated by the formal sums
(i) (a1 + az,b) — (a1,b) — (az,b)

(11) ((I, by + b2) - (CL, bl) - (a7 b2)

(iii) (a,ab) — (ac,b)
for all a,a1,a2 € A, b,b1,bs € B, and a € F. The tensor product of A and B,
A®p B, is the factor group S(A, B)/H. For a € A and b € B, we denote by a @ b

the element (a,b) + H of A®p B. A®p B forms a vector space over F', where we
perform multiplication by a scalar using the rule

n n n

a- () (ai@rb) =) ((ea) @pb) =Y (a; ®p (ab;)).

=1 i=1 i=1

55

We state without proof some useful facts about tensor products. (See Section 12 of
Curtis and Reiner [31] for more details.)

Proposition 2.2.12. If A is a vector space with dimension n and with a basis
ai, as, ..., a, over I, and B is a vector space with dimension m and with a basis
by, by, ..., b, over ', then A ®pr B is a vector space with dimension nm and a
basis a; ®p b; (for 1 <i<n,1<j <m)over F.

Suppose now that A and B are both algebras over F'. We perform “multiplication”
in A®p B by multiplying pairs a1 ® by and as ® p by componentwise (for ay,as € A,
b1, by € B) and using the distributive law for multiplication over addition to obtain
a (well defined) product of an arbitrary pair of elements of A ®p B:

(Z(au QF bu)) . Z(a2j QFbaj) | = Z Z ((a1; ®F b1i) - (a2 @F b2 j))

i=1 j=1 i=1 j=1

=3 ((a1:a2,) ®F (bribay)).

i=1 j=1

With this definition of multiplication, we can show that A @ B is an associative
algebra over F'if A and B are. Again, A®p B is finite-dimensional if both A and B
are.

We use the tensor product construction for a different reason — to obtain an algebra
Apg over a field extension E O F' from an algebra A over a field F, by “extension of
scalars”.

Proposition 2.2.13. If A is an associative algebra over F', and FE is an extension
field of F', then A®p F is an associative algebra over E' with multiplication in AQp E
as defined above (viewing E as a vector space over F'), and with multiplication by
a scalar (in F) defined as follows.

o (Z(Cl QF €i)> = <Z(Cz QF (aei))> 5

i=1 i=1
for c1,co, ..., ¢, € A, e1,e9,...,¢e.,a € E. If A has dimension n and basis
ai, as, ..., a, over I', then A ® p E' has dimension n and a basis
(a1 ®F 1g), (a2 ®F 1g), ..., (an ®F 1E)

over F (for 1 the multiplicative identity in F).

Furthermore, if the set {v; ;% :1 <14,j,k <n} is a set of structure constants for A
with respect to the basis a1, ag, ..., an, then {~v;;, : 1 <4,j,k <n} is also a set

56

of structure constants for the algebra A ®p E with respect to the basis (a1 ®p 1g),
<a2 F 1E)7) (an F 1E>

We abbreviate A ® p ' to Ag when the ground field F' is known.

When considering algebras over R or C, we only consider algebras AQpR or A®rC,
where F' is a number field and A is a finite-dimensional associative algebra over F.
The only algebras over algebraic closures of finite fields we consider are of the form
A ®p E, where F is a finite field, E' an algebraic closure of F', and A a finite-
dimensional associative algebra over F. By Proposition 2.2.13, these have succinct
(Boolean) descriptions — namely, those given by a set of structure constants in a
finite algebraic extension of a prime field.

As the example below indicates, it is not generally sufficient to consider the alge-
bra A when decomposing A @ FE.

Example 2.2.14. Let F' = Q, and let A be the associative algebra of dimension 4
over F' with basis {1, 4, j, k} and regular matrix representation (and structure
constants) shown in Example 2.2.6. If E = R, then Ag is an associative algebra
of dimension 4 over R — the algebra of real quaternions. If £ = C, then Ag is
again an associative algebra of dimension 4 — over C. We will show later that (for
E = C) Ag is isomorphic to the matrix ring Ms2(C).

We obtain two sets of problems for decompositions of algebras A over fields F'
corresponding to Theorems 2.1.12; 2.1.23, and 2.1.25. We consider the computation
of decompositions of A over the original field F', as well as decompositions of AQp F,
for E D F (We will consider cases F real and algebraically closed). These problems
are discussed further in Sections 2.3-2.5.

57

2.3. Computation of the Radical

We consider algorithms for computation of the radical of a finite-dimensional asso-
ciative algebra A over a field F'. As stated in Section 2.1, the radical of A is also a
subspace of the vector space A over F' — so it can be represented by a basis over F.
We will also produce a basis over F' for the factor algebra A/rad (A) when isolating
the radical.

Problem Isolation of the Radical.

Input. e Integers n, m > 0.
e Matrices ay, ag, ..., Gy € My xm(F'), which form the basis
for a finite-dimensional associative algebra A C M, xpm (F)
of dimension n over F.
Output. e Integer r > 0, the dimension of rad(A) over F.
e Elements p; ; of F', for 1 <4, j < n, which define elements
bi, bz, ..., by € A, with by = 377 | pija; for 1 <i <n, so that
(1) by, ba, ..., b, is a basis for rad(A) over F;
(2) by, ba, ..., b, is a basis for A over F.
e Matrices ¢y, Ca, ..., Cnor € M(y_y)x (n—r)(F) forming the basis
for a semi-simple associative algebra over F' isomorphic
to the factor algebra A/rad(A).

We will see later that the elements b,.4.1, b,12, ..., b, can be used to obtain a basis
for the factor algebra A/rad(A). We will find a matrix representation for A/rad(A)
by generating the regular representation with respect to this basis.

Friedl and Roényai [43] show that this problem can be solved efficiently when F' is a
finite field or a finite algebraic extension of QQ, when using Boolean computations.
We will review their methods. In the process, we show that the computations can
be performed efficiently when using an arithmetic (rather than Boolean) model, and
that the computations can be performed efficiently in parallel. We will also verify
that Friedl and Roényai’s algorithms can be applied directly to compute the radical
of an algebra A ®pr F over E, for A a finite-dimensional algebra over a number
field F' and for E = R or £ = C. Finally, we will reduce the problem of computing
the squarefree decomposition of a polynomial over a field F' to the computation
of the radical of a finite-dimensional algebra over F', in order to conclude that we
cannot compute the radical of finite-dimensional associative algebras over arbitrary

fields.

58

2.3.1. Computations over Fields of Characteristic Zero

As Friedl and Rényai note, the problem is relatively simple for fields of characteristic
zero. The radical of a finite-dimensional associative algebra over such a field can be
characterised as the set of solutions of a homogeneous system of linear equations.
We begin by developing this characterisation.

Let a € A, and suppose the matrix ¢(a) € M,,xm (F') has characteristic polynomial

x(@) =t™ + A1 t™ T Appox™ T2 4 - At + Ao = det (t],, — $(a)),

for coefficients A\j,—1, Am—2, ..., A1, Ag € F. Suppose also that the matrix ¢(a) has
characteristic values 11, ¥s, ..., 1, in some algebraic closure of F'. Then
m
x(a) = [=)
i=1

The coefficients of the characteristic polynomial are the values of the elementary
symmetric polynomials at the negatives of these characteristic values:

Ai = > [T(=¢n).

IC{1,2,...,m} hel
|I|=i

In particular, the trace of ¢(a), Z p, is —Apm—1 (as well as the sum of the diagonal
h=1

entries of ¢(a)), while the norm of ¢(a), H Yp, is (—1)™Ag = det ¢(a).
h=1

Suppose now that a is nilpotent in A — so that a* = 0 for some i > 0. This implies
that the characteristic values 9; (1 < j < m) of a are all zero (since the matrix a’
has characteristic values Q/J;- for 1 < j <m). Thus we have

x(a)=[J¢-0) ="
i=1
if a is nilpotent. In fact it is clear that the converse also holds.

Proposition 2.3.1. An element a of A is nilpotent if and only if a has characteristic
polynomial ¢t". Hence a is nilpotent if and only if a™ = 0.

Thus we have an efficient procedure to test whether an element a of A is nilpotent.
Dickson [33] gives a simple criterion for membership in the radical of A.

59

Theorem 2.3.2. (Dickson.) Let A be a finite-dimensional associative algebra over
a field F' of characteristic zero; then an element a of A is in the radical of A if and
only if the trace of ax is 0 for all z € A.

Proof. Suppose a € A is in the radical of A. Then a is strongly nilpotent, and ax
is nilpotent for any z € A. Thus the characteristic values, and hence the trace, of
ax are all zero.

Suppose now that a € A such that the trace of az is zero for all x € A. We wish
to prove that ax is nilpotent for all z. Fix x; then it is sufficient to show that
the characteristic values 1, Vs, ..., ¥y, of ax are all zero. We know that (az)
has trace zero for all i > 0, since (ax)’ = az, for 2 = z(az)""! € A. Since the
characteristic values of (ax)’ are the i*® powers of the characteristic values of az,

we see that
m

» =0 foralli>0.

Jj=1

Thus all of the power sum symmetric functions have value 0 when evaluated at
these characteristic values. The elementary symmetric functions are all Q-linear
combinations of the power sum symmetric functions (see Stanley [113] for details).
Hence these also have value 0 at the characteristic values of ax. Thus the coefficients

Am—1, Am—2, - -+, A1, Ag of the characteristic polynomial of ax are 0. It follows that
ax has characteristic polynomial t"*, and characteristic values all zero, as required.
]

Before continuing with our discussion of the case F' has characteristic 0, we note that
the proof of Theorem 2.3.2 fails for the case F' has positive characteristic p, because
the elementary symmetric functions are not generally [F),-linear combinations of the
power sum symmetric functions; again, see Stanley [113] for details.

Friedl and Rényai observe that Theorem 2.3.2 gives an efficient test for membership
in the radical, and for computation of the basis of the radical, for algebras over fields
of characteristic zero.

Corollary 2.3.3. (Friedl and Rényai). Let A C M, »m (F') be a finite-dimensional
associative algebra over a field F' of characteristic zero, with basis { a1, ag, ..., a, }
over F'. Then an element a of A is a member of the radical of A if and only if the
trace of aa; is zero for all 7, 1 < i < n.

Proof. It is sufficient to note that the trace is a linear function; hence the function
Trace(a - (A1a1 + Agag + -+ + Apay))

is a linear function of the indeterminates A1, Ao, ..., A\;,. =

60

We compute a basis for the radical of a finite-dimensional associative algebra A with
basis { a1, ag, ..., a, } over a field F of characteristic zero by using Corollary 2.3.3
to obtain a system of linear equations with solution set

{()\1,)\2, ey)\n) eI /\1a1+/\2a2+---+)\nan Grad(A)},

and solving this system, as shown in the following algorithm.

Algorithm Isolation of the Radical — Characteristic Zero

Input. e Integers n, m > 0.
e Matrices ay, ag, ..., Gy € Myxm(F'), which form the basis
for a finite-dimensional associative algebra A C M, xpm (F)
of dimension n over a field F' of characteristic zero.
Output. e Integer r > 0, the dimension of rad(A) over F.
e Elements p; ; of I, for 1 <, j < n, which define elements
bi, by, ..., b, € A, with b; = 2721 pija; for 1 <i <mn, so that
(1) by, ba, ..., b, is a basis for rad(A) over F
(2) b1, ba, ..., b, is a basis for A over F.
e Matrices c1, ca, ..., Cnr € M(y_y)x (n—r)(F) forming a basis
for a semi-simple associative algebra over F' isomorphic
to the factor algebra A/rad(A).

(1) Compute the dimension r and a basis { b1, by, ..., b, } over F

for the space of solutions in F™ of the system of n linear equations
Trace((A1ay + Agag + -+ -+ A\pap)a;) =0
for 1 <17 <n, and for indeterminates A1, Ao, ..., A,.

(2) Extend this basis to obtain a basis { b1, b, ..., b, } for F™ over F,
by adding each element e; ((0,...,0,1,0,...,0), with 1 as the
i'" coordinate) which is not an F-linear combination of the elements
61, 62, ey IA)T, €1, €2, ..., €1, for 1 <1< n. Set Hi 5 to be
the jth coordinate of the vector l;i, for 1 <i, 5 <n.

(3) Let b; = pi1a1 + pioas + - -+ + finay, for 1 < i < n. The algebra
A/rad(A) has a basis b,41 + rad(A), b,42 +rad(A), ---, b, + rad(A).
Compute a set of structure constants for A/rad(A) with respect
to this basis, and set ¢; = ¢(b,; +rad(A)), for 1 <i<n—r,
and for ¢ the regular representation for A/rad(A) with respect
to this basis.

61

Theorem 2.3.4. Let A C M, «m (F) be a finite-dimensional associative algebra of
dimension n over a field F' of characteristic zero, for m, n > 0.

(i) A basis for the radical of A, and the remaining output of the problem “Iso-
lation of the Radical”, can be computed from a basis for A over F', using a
polynomial number of field operations, or in parallel using arithmetic-Boolean
circuits of depth O(log®(nm)) and of polynomial size.

(ii) If F is a finite algebraic extension of Q, and A is as above, then the output of
the problem “Isolation of the Radical” can be computed using a polynomial
number of Boolean operations, or in parallel using Boolean circuits of depth
O(log® N) and of polynomial size (for input size N).

Proof. We use the algorithm “Isolation of the Radical — Characteristic Zero” to
solve this problem over fields of characteristic zero, by solving systems of linear
equations of size polynomial in the number of inputs. Hence the cost of computing
the output is dominated by the cost of solving systems of linear equations of poly-
nomial size. The bounds stated in part (i) of the theorem follow immediately (see
Section 1.3 for details).

As shown in Section 1.3, computation of the solutions of systems of linear equations
over finite algebraic extensions of Q can be reduced to the computation of determi-
nants of matrices (of polynomial size) with entries in Q. Hence the bounds stated
in part (ii) of the theorem follow from well known results about the computation of
determinants (which are also discussed in Section 1.3). m

As shown in Section 2.2, a matrix representation (with m = n) can be computed
from a set of structure constants for A — so that the above values can also be
computed at the stated cost from a set of structure constants.

Example 2.3.5. Consider the algebra A of 2 x 2 upper triangular matrices over
F = Q. Suppose we are given the basis

11 o 1 Jo o
“=1o o]0 T o o]0 BT o 1|

To compute a basis for the radical of A, we form the coefficient matrix for the
system of equations

Trace(()\lal +)\2@2 -+)\3&3) : ai) = 0, for 1 < 1 < 3.

62

Computing representations, we have

Al AT+ A
(Ara1 + Aza2 + Azas) = LA A ;
0 A3
A1 A
(()\1(11 + Aogag +)\3(13) . al) = [01 01 ,
0 A
((Ma1 + Aeag + Azaz) -a2) = [0 01})
0 A +A
(()\1@1 +)\2(12 +)\3(13) : a3) = ! 2 .
0 A3
Thus we obtain the system
1 0 0 A1 0
0 0 0 X | =10
0 0 1 A3 0
0
Solving, we find that 1 is a basis for the set of solutions — so that the
0

radical has dimension 1, and basis { as } over Q.

We extend this to obtain a basis for A by considering each element of the original
basis { a1, ag, ..., a, }, adding each element which is not a linear combination of
the elements already added to the new basis. Proceeding in this way, we obtain the
basis {b1, b2, bg } with by = ag, bs = a1, and b3 = a3. Hence we obtain the elements

p11 =10 12 =1 p13 =0
p21 =1 p22 =10 p23 =10
p31 =0 p32 =0 p33 =1

It remains only for us to find a basis and matrix representation for the factor algebra
A/rad(A). Clearly we can take

¢1 = ba +rad(A), ¢y = by +rad(A)

as our new basis. We compute structure constants for the basis { ¢1, ¢; } by checking
the products b; - b; for i, j € {2, 3 }:

by - by = (1) (1)-:1-62+0-b3+0-bl,
by - by = 8 (1) —0-by+0-by+1-bi,
b3'b2=-8 8-:O-bz+0-b3+0-bl,
b3-b3:-8 (1)-:0'b2+1'b3+0'b1.

63

Since b; € rad(A), we ignore the coefficients in this element when forming structure
constants for A/rad(A). Hence we obtain the basis { ¢1, ¢o } for A/rad(A), with

10 o o
=10 ol 2700 1|

Example 2.3.6. Consider the algebra A of Example 2.3.5. Suppose we are given as
input a set of structure constants for the basis { a1, as, as } of that example. That is,
we are given a set of 27 structure constants, which yield the regular representation ¢,
with

1 00 00 0 00 0
dla)=10 1 1|, ¢la)=1]0 0 1|, éa)=1]0 0 0
000 000 00 1

To compute a basis for the radical of A, we form the coefficient matrix for the
system of equations

Trace((A1a1 + A2az + Azas) - a;) =0, for 1 <q¢<3.

Computing representations, we have

A0 0
¢()\1a1 +)\2612 +)\3&3) = 0)\1)\1 +)\2 s
0 0 A3
A 0 O
d((Mar + Agag + Aga3) -a1) = [0 M A,
0O 0 0
0 0 O
d((A1a1 + Aaaz + Azaz) -az) = [0 0 M|,
0 0 O
0 0 0
Qﬁ(()\lal + Agao +)\3&3) . CL3) = 0 0 A+ A
0 0 A3
Thus we obtain the system
2 0 1 A1 0
0 0 O | =10
0 0 1 A3 0

64

Note that this is not the system obtained in the previous example. Solving, we
0
(again) find that 1

0
has dimension 1, and basis { as } over Q.

is a basis for the set of solutions — so that the radical

We extend this to obtain a basis for A as in Example 2.3.5. Again, we obtain the
basis { b1, ba, bs } with by = as, bo = a1, and b3 = a3. Hence we obtain the elements

p11 =20 12 =1 p13 =0
po1 =1 p22 =0 p23 =0
pz1 =0 p32 =0 pzz =1
and the matrix
01 0
X=1(1 0 O
0 0 1

Finally, we invert this matrix to obtain

Xt =

S = O

O O =

_ o O
I

We use these matrices as discussed in Section 2.2.2 to obtain the regular represen-
tation ¢ for A with respect to the new basis { b1, ba, b3 }.

[0 1 070 0 o]0 1 0] [0 0 1]
P(b)=X"1p(b)X=1]1 0 0|0 0 1| |1 0 0|=]|0 0 O};
0 0 1[]0 0 0] |0 O 1 0 0 0]
[0 1 0] [1 o o]0 1 O] (1 0 1]
Pbe) =X"tpb)X =1 0 0| |0 1 1||1 0 O|=|0 1 0];
00 1][0 0 0[O0 0 1 0 0 0]
[0 1 0][o o o]0 1 O] [0 0 0]
Ybs) =X "tp(b3)X =1 0 0|0 O O |1 0 O 00 0
00 1][0 0 1|][0 0 1 0 0 1]

Now since rad(A), with basis { b1, ba, ..., b, }, is a two-sided ideal in A, we see
that the regular representation with respect to basis { by, be, ..., b, } is block upper
triangular, with an r x r upper block and an (n —r) x (n — r) lower block. For
1 < i < r, the lower block of 1(b;) is zero. We obtain a basis (and a regular
representation with respect to this basis) for A/rad(A) from the lower (n—r)x(n—r)

65

blocks of the matrices ¥(b,41), ¥(byy2), .., ¥(by). In our example, we obtain the

matrices
cL = 10 and Co = 00
™10 o 2710 1]

the same as those obtained in Example 2.3.5.

As indicated in the above examples, we can work directly with the m x m matrices
given to us as input — or we can generate a regular representation (n X n matrices)
and work with those. Clearly the former approach is (slightly) more efficient for
m < n, while the latter could save time for m > n.

2.3.2. Computations over Finite Fields

We now consider algebras over fields of positive characteristic, and, in particular,
over finite fields. We first note that the algorithm stated for fields of characteristic
zero is not correct when applied to algebras over fields of positive characteristic.

Example 2.3.7. Consider the algebra A of upper triangular 2 x 2 matrices over
F5, and suppose we are given the structure constants for the basis

10 o 1 To o
=10 ol T lo ol BT o 1

(as in Example 2.3.6). As showed in Example 2.1.10, the radical of A contains the
ideal generated by as. We note that the radical is spanned by ao: for if

o= l‘g ﬂ € rad(A),

then o = 0, since aa; = «a; is nilpotent (while a; is not), and v = 0, since
aza = ~yag is nilpotent (while a3 is not). However, the algorithm for isolation of the
radical of algebras over fields of characteristic zero computes as the radical the set
A1a1 + Asas + Azas for)\1,)\2, A3 € Fy such that

0 0 1 A1 0

0 0 Of-[{X]|=10];

0 0 1 A3 0
in particular, this test incorrectly identifies a; as an element of the radical of A.
Friedl and Roényai generalise Dickson’s criterion, to obtain an algorithm for compu-

tation of the radical of a finite-dimensional associative algebra A over a finite field

66

[F,. of characteristic p > 0. They reduce the problem to “Isolation of the Radi-
cal” over prime fields, by deriving from A a finite-dimensional associative algebra
A C M, jsmi (F,) of dimension nl over F,, whose radical can be used to obtain
rad(A). They then present an algorithm for “Isolation of the Radical” of algebras
over [F,. We generalise their algorithm for “Isolation of the Radical” to arbitrary
finite fields, in hopes of improving the efficiency of the algorithm over I, for large [.

Now let A C M,,,xm(F') be a finite-dimensional associative algebra of dimension n
over F,;. Let k = [log, m] € N — so that pF < m < pF*tl. As is the case for
Friedl and Rényai’s method, we obtain a basis for the radical of A by finding ideals
Iy, Ip, I, ..., Iy of A and functions g; : I;_1 — Fj for 0 <14 <k, so that

(i) 1.1 = A and I, = rad(A);

(ii) g; is an F,-linear function on I;_q;

(iii) I; ={a€l—1 : gi(ab) =0forallbe A}.

Hence we will compute a basis for the radical of A over IF,; using arithmetic in I, to
compute bases for the ideals Iy, I1, ..., I} over F,, by solving systems of FF,-linear
equations defined using the function g;. We now define this function.

Recall that the field F,: is isomorphic to Fp[t]/(f), for some monic irreducible

polynomial f € F,[t] with degree [. Let fe Z[t] be the monic polynomial with
degree | and with coefficients between 0 and p — 1 whose coefficients mod p are
those of f; that is, f = (f mod p). Since f is irreducible in F,[t] it is clear that f
is irreducible in Z[t], and hence in Q[¢]. Since f is monic, we see that Z[t]/(f) is
an integral domain, and a subring of the ring of algebraic integers in the number
field Q[t]/(f). We have a natural (ring) homomorphism p : Z[t] — F,[t] taking
integer polynomials to their residues mod p; since the image (under p) of the ideal

A

(f) € Z]t] is the ideal (f) C F,[t], we also have an induced (ring) homomorphism

p: ZIt)/(f) = Fpltl/(f) = Fp,
with

p: (hmod (f)) = (p(h) mod (f))

for h € Z[t]. We define the map g¢; (on the subspace I;_; of A) by describing a
map §; from m x m matrices with entries in Z[t]/(f) to Q[t]/(f). We show that
if @ is an m x m matrix with entries in Z[t]/(f) such that (o mod p) € I;_;, then

~

gi(a) € Z[t]/(f). The map g; will then be defined so that
gi(a mod p) = g;(a) mod p
for such a matrix a. We continue by showing that the map g; is well defined, and

then showing that it is IF,,-linear on the ideal I; 1, so that it can be used to generate
a set I; as in the above algorithm. We then show that I; is a subspace of A over F,.

67

For 0 < i < k, we define the map §; : My, »m (Z[t]/(f)) — Q[t]/(f) by

i) = T for o € My @),

We define the set I; C mem(ZA[t]/(A)) inductively for —1 <1 < k.
(i) 11 ={ o € Mpxm(Z[t]/(f)) : (¢ modp) € A};
(11) Ii—l—l = {Oé eI, : gH_l(Oéﬁ) S Z[t]/(f) for all ﬂ c I_l} for
—-1<i<k.

Lemma 2.3.8. If o, 3 € My,um(Z[t]/(f)) and a = 3 (mod p), then
Trace(api) = Trace(ﬁpi) (mod p**1) for all i > 0.

Proof. Friedl and Rényai prove this result for the case [= 1 — so that o and
are integer matrices (see Friedl and Rényai [43], Lemma 5.1). We note that their
proof is also correct for matrices with entries in the domain Z[t]/(f). =

It follows immediately from this lemma that if o, 8 € M xm (Z[t]/(f))
and a = (mod p), then

i (Trace(api) - Trace(ﬁpi)) e Z[t]/(f).

Lemma 2.3.9. If i > 0 and « € I;_; then for all GRS f_l,

Trace((a 8)P") c7
i

[11/(f).

Proof. If i =0 then

and the result is obvious.
Suppose now that i > 0, a € I;_1,and 8 € I_;. Since a, 3 € mem(Z[t]/(f)),
p'gi(afB) = Trace((aB)P') € Z[t]/(f). Since a € I_1, Gi—1(avy) € Z[t]/(f) and

A

Gi—1(ay) =0 (mod p) for all v € I_;. In particular (using v = B(a 8)P~1),

gi((@BP) € 2[]/(f) and Gia((@B)P) =0 (mod p).

68

That is,

e Z[t/(f) and Tracji(_alﬁ)p) =0 (mod p).

Trace((« ﬁ)pi)
pi-1

Hence p* divides Trace((« ﬁ)pi) in Z[t]/(f), as desired. m

Lemmas 2.3.8 and 2.3.9 imply that if —1 < i < k and a € [;_1, then §;(a) €
Z[t]/(f), and that if a, f € [,_1 with @« = [(mod p), then g;(a) = §:(B)
(mod p). It is clear from these lemmas that the map ¢; : I,_1 — F, and the
set

Ii={aecl_q: giab)=0foralbe A}

are both well defined, for i =1, 2, ..., k. (Note also that [, = {amodp : o € I; }
for -1 <i <k).

It is clear from the definition of §; that the set I; is closed under multiplication, for
—1 <% < k. Thus the following lemma can be applied to this set.

A

Lemma 2.3.10. Let H be a multiplicatively closed subset of M, . (Z[t]/(f)), let

j > 0, and suppose that Trace(api) is divisible by p**! for all & € H and all 1,
0 <i < j. Then for every o, g € H,

Trace((a + B)pj) = Trace((a)pj) + Trace((ﬁ)pj) (mod p/*1).

Proof. Friedl and Rényai prove this result for the case I = 1 (see Friedl and
Roényai [43], Lemma 5.2). That is, they prove the result for integer matrices «
and 5. We note that their proof generalises to the case a, 8 € My, xm(Z[t]/(f)).
]

Lemma 2.3.10 implies that if a, b € I;_1 C A then g;(a+b) = gi(a)+g:(b). It is also
clear that if @ € I;_; and v € F, then g;(va) = vgi(a), since 47 = v for v € F,,.
Thus g; is an [F)-linear map on ;1. It is not generally true that g; is F,-linear as

well.

We note that the proofs of Lemma 5.3, Lemma 5.4, Theorem 5.5, and Theorem 5.6
of Friedl and Rényai (for the case [= 1) are valid for the general case. We state
the more general versions of these lemmas and theorems below.

Lemma 2.3.11. Let H be a multiplicatively closed subset of M, xm(Z[t]/(f)), and

suppose that for every o € H, Trace(ozpk) is divisible by p**!, where k = | log,, m |.
Then a is nilpotent for all a € A such that a = (o mod p) for some o € H.

69

Lemma 2.3.12. Let oo € My, (Z[t]/(f)) such that (o mod p) is nilpotent in A.
Then for every i > 0,

Trace(api) =0 (mod p*t).

Theorem 2.3.13. ; is an ideal of A for every j such that —1 < j < k, and
I = rad(A).

Theorem 2.3.14.
(i) The functions g; are Fp-linear on I;,_; for all 4, 0 <1i < k.
(ii) ; ={a€ 1 : gi(ab)=0forallbe A}.

Theorems 2.3.13 and 2.3.14 establish the correctness of this method for computation
of the radical. We add a final result which will be used to make the resulting
algorithm (shown on the next page) more efficient.

Lemma 2.3.15. If a € I;_, and if g;(a) = 0, then g;(ya) = 0 for all v € F,,..

Proof. Let a € Mp,xm(Z[t]/(f)) and let 4 € Z[t]/(f) so that (o mod p) = a and
(% mod p) = . Then

gi(va) = (9:(Ya)) (mod p)

We assume F; is represented as F,[t]/(f) for an irreducible polynomial f € IF,]
in this algorithm. However, the method can be used to isolate the radical of a
finite-dimensional algebra A over I, with elements of IF,; represented as F-linear
combinations of elements of any basis v1, 72, ..., 7 for F, over F, — provided
that a multiplication table for this basis (which includes the elements a; ;5 of F,,
for 1 <4, j, k <, with v; - v; = 22:1 a; j k7Yk) is given with the description of the
algebra A. As stated, the algorithm uses the basis

L+ (), t+(f), ..., 7L+ ()

for IF,. over F); the coefficients of f replace a multiplication table for this basis, in
the input.

70

Algorithm Isolation of the Radical — Positive Characteristic

Input. e Integers n, m, p, [> 0, with p prime.

o Coefficients f;_1, fi_2, ..., f1, fo of a monic irreducible polynomial

f=t"+ fitt T4 fit+ fo € Fp[t].

e Matrices aq, ag, ..., an € My xm(Fp[t]/(f)), which form the basis
of a finite-dimensional associative algebra A C M, .m (F,[t]/(f)),

with each entry («) of each matrix represented by the
coefficients of a polynomial (&) in F,[t] with degree less than [
(such that a = (& mod f)).

Output. o Integer r > 0, the dimension of rad(A) over F,[t]/(f).

o Elements f1;; of Fp[t]/(f), with b; = 377, pij aj, so that
(1) b1, b, ..., by is a basis for rad(A) over F,[t]/(f);
(2) b1, b, ..., by is a basis for A over Fp[t]/(f).
e Matrices c1, ¢z, ..., ¢, € Mn_r)x(n—r)(Fp[t]/(f)) forming the

basis for a semi-simple associative algebra over F,[t]/(f) which is

isomorphic to the factor algebra A/rad(A).

Form a basis { ¢, c2, ..., ¢ } for I_; = A over F,,.
fori=0,1,..., |log,m]

(Suppose {di, da, ..., ds } is a basis for I;_; over F),.)

Compute the coefficient matrix (over F,) for the system of

equations (in indeterminates A1, Ag, ..., As)

gi((Mdy + Aeda + - - + Asds) aj) =0,

for 1 < j < n and for g; as defined on page 67.

Compute a basis (over F,,) for the set of solutions of this system.

Use this to generate a basis for the set I; over), such that

a1 + Asas + - - Apa, € I; if and only if ()\1, /\2, ceey)\n)

is a solution of the system of equations defined in step 2.
end for
Use the basis for I}, = rad(A) over F,, (for k = | log,m |) to generate
a basis by, be, ..., b, for rad(A) over F,[t]/(f).
Extend this basis to obtain a basis { by, ba, ..., by } for A over F,[t]/(f)
by adding each element a; which is not a linear combination of the
elements by, b, ..., b., a1, as, ..., a;_1, for 1 <i < n.
For 1 <, j <n, define u;; € F,[t]/(f) such that

bi = pi1a1 + piz2az + -+ pinay, for 1 <i <n.
Compute a set of structure constants for the algebra A/rad(A) with
respect to the basis b1 + rad(A), b,42 +rad(A), ..., b, +rad(A4),
and set ¢; = ¢(by4; +rad(A)), for 1 < < n —r, and for ¢ the
regular representation for A/rad(A) with respect to this basis.

71

Example 2.3.16. Suppose A is the algebra of 2 x 2 upper triangular matrices
over Fy, with basis { a1, as, ag } over Fy, for

|11 |0 1 100
“=1o o]0 T o ol BT o 1|
We will use our method to compute the radical of A. We first note that A C

M3x2(F4) and p = char Fy = 2; hence k = |log,m | = [logy, 2| = 1.

We use the isomorphism Fy = Fy[t]/(f), for f = t?> + ¢t + 1, when performing
computations over Fo. Let o € F4 such that o> + o +1 = 0. We have a basis
{1, a} for F4 over [Fy, and a basis

{a1, aay, as, aag, az, aag }
for I_; = A over Fs.
We now compute a basis for I over F5. This ideal is defined as the set of elements
z =tia1 + taay + tzag + taas + tsa3 + tsaas
such that t1, to, t3, t4, t5, tg € Fo and
go(z-a;)) =0 and go(z - aa;) =0 for 1 <i <3.

By Lemma 2.3.15, and as indicated in step 2 of the algorithm, it is sufficient to
check conditions

go(z - a;) =0, for 1 <i<3,
since these conditions imply the others.

Since the map gg is simply the trace, these are equivalent to the conditions

[t +taa (i +1t3)+ (o +ta)a] [T 1] _
Trace(_ 0 Is + o |lo o =0+ Oq,
-tl +t20¢ (tl +t3)—|—(t2+t4)a_ -O 1_ .
Trace(_ 0 b+ oo |lo o] = 0+ O,
[t +taa (t1+1t3)+ (o +ta)a] [O O] _

Trace < 0 b+t 0 1 =0+ Oq,

for t1, to, t3, t4, ts5, tg € Fo. These are equivalent to the conditions

1 0 0 0 0 07 T[] (07
01 0 0 0O 12 0
0 00 0 00 ts| |0
0 00 0 00 ta| |0
0 000 1O is 0

L0 0 0 0 0 11 Ltsd L0

72

Solving this system, we see that it is equivalent to the condition t; =ty = t5 = tg =
0. Thus { a2, aas } is a basis for Iy over Fs.

We next compute a basis for I; over 5. This is the set of elements t1as +tsaas € Iy
such that t1, to € Fy, and

(i) gl((tlag + tQOéCLQ) . al) =0
(ii) gl((tlaz + tgozaz) . (1/2) = 0;
(111) gl((tlag + tQOéCLQ) . CL3) = 0.

Now
[0 0
((traz + teaas) - ay) = o O] ,
[0 0
((tras + taaas) - az) = o 0} ’
and
[0 ¢+t
((tras + taaas) - az) = 0 1 0 204} ‘

Let & € Z[t]/(f) so that (& mod 2) = @, so 42 = —& — 1. Now

N 0 t1+ts0
91((t1a2+t2aa2)’a3)291<{0 ! 02a1)m0d2

)
l Trace 0 11+ trax mod 2
2 0 0

=0mod 2 =0.

Similarly, g1 ((t1a2+taaaz)-a1) = 0 and g1 ((t1az+taaas)-az) = 0. Thus I; contains
the values tias + toaas such that t1, to € Fo, and

O O OO OO
O O O O OO

We see that {as, aas } is a basis for Iy = rad(A) over Fy; thus {as } is a basis
for rad(A) over Fy.

We extend this to a basis { b1, ba, b3 } for A over Fy with by = ag, be = ay, and by =
as, and compute a regular matrix representation for A/rad(A), as in Example 2.3.5.

73

We could continue by computing a basis for the radical of the algebra A of Exam-
ple 2.3.16 from structure constants for A (as in Example 2.3.6). We would find that
the function g; obtained in this computation is Fy-linear, but not F,-linear, on the
set Ip — and that the set Iy # rad(A) for this example.

Theorem 2.3.17. Let A C M, (F") be a finite-dimensional associative algebra of
dimension n over a field F' = F,; for m > 0, prime p > 0, and for [> 0. Suppose we
are given a basis for A over F', and the coefficients of a monic irreducible polynomial
f € F,t], with degree .

(i) The output of the problem “Isolation of the Radical” can be computed using
arithmetic over F', using a number of arithmetic steps which is polynomial in
nml.

(i) If elements of F' = F,[t]/(f) = F,; are represented as vectors of elements of
[F,, with each o € F,[t]/(f) represented by the coefficients of a polynomial & €
[Fp[t] with degree less than [such that a = (& mod f), then the output of the
problem “Isolation of the Radical” can be computed using arithmetic over F,
using a number of steps polynomial in nml, or in parallel using arithmetic-
Boolean circuits over the field I, of size polynomial in nml and of depth
O(log?(nml) log, m).

(iii) These outputs can be computed using a number of Boolean operations which
is polynomial in nmllogp, or using Boolean circuits of size polynomial in
nmllog p and of depth O(log?(nmllog p) log, m).

Proof. We first note that if p > m then, since | log, m | = 0, Dickson’s criterion
can be used to compute a basis for the radical of A — that is, we can apply the
algorithm (and the timing analysis for “arithmetic” steps) for fields of characteristic
Zero.

Suppose now that p < m, so Llogpmj > 1. We first consider the arithmetic cost
of computing the output for “Isolation of the Radical” sequentially. As noted by
Lempel, Seroussi, and Ziv [80], we can assume that elements of I, are represented
as vectors of elements of I, and that we perform arithmetic over this smaller field.
We compute a basis for the radical by forming and solving k¥ = 1+ | log,, m | systems
of linear equations of polynomial size — and it is clear that this can be done in
polynomial time. It is also clear that the number of Boolean operations used to
compute this output is polynomial in the size of the input.

We next consider the cost of computing the desired output in parallel. We first
consider the case [= 1 — so F' = F,; = F,. The bounds stated in (ii) and (iii)
follow from well known bounds for the parallel cost of solving systems of linear
equations (and from the fact that p is small: p < m). These bounds can also be
attained for arbitrary [by using an efficient implementation of arithmetic over finite
extensions of F,, (See Section 1.3 for details). m

74

Thus the restriction of Friedl and Roényai’s algorithm to computation over prime
fields is not strictly necessary — it can be applied “directly” to compute the radical
of algebras over [F,.. We can prove a slightly better upper bound on running time
than Friedl and Rényai (note that we use k = 1 + |log,m |, rather than 1 +
| log,, ml |). Unfortunately, we have been unable to generalise the algorithm beyond
that: it requires the solution of systems of [F-linear equations which are not linear
over the ground field. Hence it requires arithmetic over [F),, and the assumption
that the ground field be a finite extension of F,,.

2.3.3. Algebras without Identity Elements

We noted in Section 2.1 that Friedl and Rényai [43] do not require “associative
algebras” to have multiplicative identities. Suppose now that A is a vector space of
degree n over a field F' which satisfies the definition of “associative algebra over F”
given by Friedl and Rényai, and which does not have a multiplicative identity.

As noted in Example 2.1.7, the set
A={algs+a : acFacAl

is an associative algebra of dimension n+1 over F' (with multiplication in A extended
to A as shown in that example). Suppose now that © = al4 + a is nilpotent in A,
with o € F' and a € /Al; then, since A is a two-sided ideal of A, and zF = oF14 + a;,
for some ay, € A, it is clear that « = 0 and z € A. Thus every strongly nilpotent
element of A is in A, and every nilpotent (left) ideal in A is a nilpotent (left) ideal
contained in A. Clearly (for our definition of the radical, or for the definition used
by Friedl and Rényai),
rad(A) = rad(A).

Thus the algorithms given by Friedl and Rényai can be used to isolate the radical
of a finite-dimensional associative algebra, using either definition of “associative
algebra”.

Now, since rad(A) is a two-sided ideal contained in A,
Ajrad(A) = {als+a : e Fae A/rad(A)},

so that A/rad(/l) is a semi-simple associative algebra over I’ with dimension one
greater than the dimension of the F-vector space A/rad(A); again, this vector space
is an “associative algebra”, as defined by Friedl and Rényai.

The structure theorems (Theorems 2.1.21 and 2.1.22) are correct for “associative
algebras” without identity. In fact, they imply that any finite-dimensional semi-
simple “associative algebra” over F', including A/ rad(fl), is isomorphic to a direct
sum of simple algebras over F with identity elements. Either A = rad(A), and

75

Ajrad(A) = (0), or A/rad(A) is a semi-simple associative algebra over F (with
identity). For a more detailed discussion of these properties of associative algebras
(with or without identity elements), see Chapter 13 of van der Waerden [118].

It follows that we can ignore the distinction between our definition of “associative
algebra” and the definition used by Friedl and Rényai in Sections 2.4 and 2.5, since
these definitions are equivalent for finite-dimensional semi-simple algebras.

The following example shows that the extreme case “A = rad(A)” can occur if the
definitions of Friedl and Rényai are used.

Example 2.3.18. Consider the ring of strictly upper triangular matrices over a
field F, R
A= {U = (Uij)lgi,jgn € Myxn(F) : Uij=0if j < Z}

It is easily checked that for k& > 0,
Ak = {U: (Uij)lgi,jgn EMan(F) : Uz'j ZOifj ﬁ'i-i-k?—l}.

In particular, A"+l = 0. Thus A is a nilpotent ideal of itself; so rad(A) = A, and
A/rad(A) = (0).

2.3.4. Algebras over Field Extensions

As stated in Section 2.2, we are also interested in the decomposition of an algebra
Arp = A®p FE over a field E, given an algebra A of dimension n over a field F', and
an extension E of F. We will be interested in the case that F' is a finite algebraic
extension of Q or a finite field, and that F is an algebraic extension of F'. We begin
with a result about the structure of the radical of Ap = A®p F, for E a separable
extension of a field F'.

Proposition 2.3.19. Let A be a finite-dimensional associative algebra of dimen-

sion n over a field F', and suppose rad(A) has dimension r and basis by, by, ..., b,
over F. Let E be a finite separable extension of F'. Then the radical of Ar has
dimension r and basis by, bo, ..., b, over E.

For a proof of this, see Section 69 of Curtis and Reiner [31]. We use it to prove the
following theorem.

76

Theorem 2.3.20. Let A be a finite-dimensional associative algebra of dimension n

over a field F'. Suppose the radical of A has dimension r and basis by, bo, ..., b,
over F'.
(i) If F has characteristic zero and E is any extension of F' then the algebra Ag
has a radical of dimension r and with basis by, bs, ..., b, over E.
(ii) If F is a perfect field and E is any algebraic extension of F' then the algebra Ag
has a radical of dimension r and with basis by, bs, ..., b, over E.

(iii) There exist fields F' and E, with E an algebraic extension of dimension 2

over F', and a finite-dimensional associative algebra A of dimension 2 over F',
such that rad(A4) = (0), but rad(Ag) # (0).

Proof. Part (i) follows from the fact that Dickson’s criterion for membership in
the radical of A is correct for finite-dimensional algebras over fields of characteristic

zero. Given a basis aq, ag, ..., a, for A over F, we use Dickson’s criterion to
construct a matrix Z with entries in F' such that, for Ay, Ao, ..., A\, € F,
A1 0

A2 0

A1aq + Xsas + -+ + A\pa, € rad(A) if and only if Z -

An 0
Applying Dickson’s criterion to construct a basis for rad(Ag) over E, using the
basis aq, asg, ..., a, for Ag over E, we obtain the same coefficient matrix Z. Since

the rank of Z is independent of the choice of ground field (between F' and F), the
result follows.

We use Proposition 2.3.19 to prove part (ii) of the theorem. Suppose F, E, and A

are as stated above, and by, b, ..., b, is a basis for rad(A) over F'. Now rad(A)
is a nilpotent ideal spanned (over F) by by, ba, ..., b.: (rad(A))* = (0) for some
k > 0. Let I C Ag be the E-vector space spanned by by, bo, ..., b.. It is easily

checked that I is a two-sided ideal of Ag and that I* = (0). Thus I is a nilpotent
ideal of Ap, and it follows by Theorem 2.1.12 that I C rad(Ag).

Suppose rad(Ag) € I; then there exists some a € Ag such that a € rad(Ag) \ I.
However, there exists some finite algebraic extension F of Fsuchthat FCECE
and o € A ®p E (This follows easily from the fact that Ag is isomorphic to a
subring of M,,«,(F) and that F is an algebraic extension of F'). Now it is clear
that o € rad(A ®p E) — hence (by Proposition 2.3.19), « is in the E-subspace
spanned by by, ba, ..., b., contradicting the fact that o ¢ I. Thus rad(Ag) = I,
proving part (ii).

To prove part (iii), we consider the field F' = Fa(t) of rational functions in one
indeterminate over F. Let A be the algebra over F' spanned by the matrices

10 o ¢
“=1g 100 271 ol

7

Now a3 = taj, so we see that A is a finite-dimensional associative algebra of dimen-
sion 2 over F. To see that rad(A) = (0), let 1, 72 € F such that y1a1 + Y202 €
rad(A). Then ~1a1 + y2a4 is nilpotent, so it is clear that the matrix

71 Wz]

a] + Y909 =
Y1a1 T+ Y202 {72 -

is singular: det(yia; + Y2a2) = 72 +ty2 = 0. Since 71, 72 € Fo(?), it is clear that
7 =7 =0.

Now let E = F|x]/(x% +t). E is a finite algebraic extension of dimension 2 over F.
Consider the element xa; + as of Ag; xa; 4+ as # 0, but

2 2
2 |z t| _|x*+t txt+tx| |0 O
(war + az) _[1 a:] _[x-l-x t+l’2:|_[0 0]’

so (zaj + az) is nilpotent. Since Ap is a commutative algebra, it is clear that this
element is also strongly nilpotent. Hence (za; + as) € rad(Ag) # (0), proving
part (iii). m

We now have an algorithm for the (arithmetic or Boolean) computation of the
radical of a finite-dimensional associative algebra A over any field F' which is an
algebraic extension of Q or of a prime field IF,. Given a basis a1, as, ..., a, and
set of structure constants ~;;, (for 1 < i, j, k < n) for A over F, we note that
there exists a field F containing these structure constants, such that FCFandF
is a finite algebraic extension of Q, or of IF, (and in the latter case, F is a finite
field). We compute the minimal polynomial of a generator « of F over Q or F,
(as well as an isolating rectangle for a, if F is an extension of Q), and compute
a basis over I for the radical of the algebra A with basis a, as, ..., G, OVer F

and structure constants 7; ;. By Theorem 2.3.20 (ii), this also gives us a basis
for rad(A) over F.

We also have a means of computing a basis for the radical of A®r R or A®p C for
any number field F' and finite-dimensional associative algebra A over F: We simply
use Dickson’s criterion to compute (and return as output) a basis for the radical
of A over F.

Having considered algebraic extensions of Q and of finite fields, it seems natural
to consider the next simplest set of fields — those of the form G(x1, xa, ..., Tm),
for G a finite algebraic extension of Q or of a finite field, and for indeterminates
i, Ta, ..., x, over G. If G has characteristic zero, then the algorithm based
on Dickson’s criterion can be used to compute a basis for the radical of a finite-
dimensional associative algebra A over F' = G(x1, x2, ..., x,), using a polynomial
number of field operations over the field F'. However, it is not clear that the algo-
rithm for “Isolation of the Radical” of algebras over finite fields can be generalised.

78

Question 2.3.21. What is the complexity of the problem “Isolation of the Radi-
cal”, for finite-dimensional associative algebras over fields F: (z1, 2, ..., Tm)?

2.3.5. Computation of the Radical and Squarefree Decomposition

We conclude this chapter by considering computations of the radical for finite-
dimensional associative algebras over arbitrary fields. We relate this to a better
known problem — the squarefree decomposition of polynomials, discussed in Sec-
tion 1.4.

Theorem 2.3.22. Suppose a basis for the radical of an arbitrary associative algebra
of dimension n over an field F' can be computed from a basis and set of structure
constants, using arithmetic-Boolean circuits over F' of depth D(n) and size S(n).
Then the monotone squarefree decomposition and distinct power decomposition of
an arbitrary polynomial f € F[x] of degree n over F' can be computed from the
coefficients of f, using arithmetic-Boolean circuits of depth D(n) + O(log® n) and
size S(n) +n°W.

Proof. Consider the algebra A = F[z]/(f) of dimension n over F'. We have a basis
L+ (f),z+(f), 22+ (f), ..., 2" 1 + (f) for A over F; the image ¢(x + (f)) of
x+ (f) under the regular representation of A for this basis is simply the companion
matrix of f (see Example 2.2.6). The matrices ¢(z° + (f)), 0 < i < n, can be
computed from the coefficients of f using circuits of size n°1) and depth O(log2 n).
Hence the structure constants for A with respect to this basis can be computed at
this cost. Applying the size and depth bounds given for “Isolation of the Radical”,
we conclude that a basis for the radical of A over F' can be computed from the
coefficients of f using circuits of depth D(n) + O(log®n) and size S(n) + n°™.

As claimed in Example 2.1.12, rad(A4) = (g1)/(f), for g1 the greatest squarefree
part of f. To prove this, we note that A is a commutative algebra — hence an
element o« = a + (f) (for a € F[z]) is in rad(A) if and only if « is nilpotent in A.
That is, o = a + (f) € rad(A) if and only if f divides a* in F[z] for some k > 0. It
is clear that this is the case if and only if g; divides a — that is, if a € (g1), and

a € (91)/(f). Thus rad(A) = (91)/(f)-

Now suppose by, ba, ..., b, is a basis for rad(A) over F'. We obtain the coefficients
of g1 from this basis by finding the smallest & > 0 such that z* 4+ (f) is an F-linear
combination of by, by, ..., by, 14+ (f), 2+ (f), ..., 21 + (f) — that is, such that
there exist vo, v1, ..., Yk—1 € F with

a* =y 12" by 0t 2+ iz 40 (mod rad(A))

79

in A — and by computing these coefficients vx_1, Yx_2, ..., 71, Y0- It is clear that

k k—1 k—2
g1 =T — Vk-1T — Vk—2T — = 71T — Yo

The degree k and the coefficients of g; can be computed as described above, by
solving n systems of linear equations (corresponding to the n possible values of k,
1 <k <n) in parallel.

Finally, we note that the remaining polynomials in the monotone squarefree de-
composition and distinct power decomposition of f can be computed from the
coefficients of f and g; using the relationships stated in Proposition 1.4.6, using
arithmetic-Boolean circuits of depth O(log® n) and size n®1). Thus these decom-
positions of f can be computed at the stated cost. m

As we noted in Section 1.4, there exist fields F' for which the problem of deciding
whether a polynomial f € F[z] is squarefree in F'[z] is undecidable. This is sufficient
for us to conclude that no algorithm exists for deciding whether a finite-dimensional
associative algebra is semi-simple, or for the computation of a basis for the radical
of a finite-dimensional associative algebra, over an arbitrary field.

The reduction from the computation of the monotone squarefree decomposition and
distinct power decomposition of polynomials to “Isolation of the Radical” (Theo-
rem 2.3.22) cannot be used to resolve Question 2.3.21 — at least, it cannot be used to
show that “Isolation of the Radical” is a hard problem for fields F i (z1, 2, ..., Tm).
There exist efficient algorithms for factorisation of polynomials in the polyno-
mial ring F:[z1, 22, ..., o), for extraction of the numerator and denominator
fr g € Fplxr, xa, ..., 2] given a representation of a rational function o = f/g €
Foi(z1, 22, ..., Tp), and for determination of the degree in x; of a polynomial
f €F, [z, x2, ...,), using a very general representation of multivariate polyno-
mials in Fp:[z1, 22, ..., o] (see Kaltofen [70], [71] for details). It is clear that these
can be used to compute the monotone squarefree decomposition of a polynomial
of degree n with coefficients in F,i(x1, 22, ..., 2,,) efficiently. Thus a reduction
from “Isolation of the Radical” over a field F' to the computation of the monotone
squarefree decomposition of polynomials with coefficients in F' of the type stated
in Theorem 2.3.22 would imply that the problem “Isolation of the Radical” has an
efficient solution for fields F,:(z1, 2, ..., Tm).

Question 2.3.23. Is the problem “Isolation of the Radical” (polynomial time)
reducible to the computation of the monotone squarefree decomposition of polyno-
mials, over arbitrary fields?

In summary, we have efficient algorithms for computation of a basis for the radical
of a finite-dimensional associative algebra over a finite extension of QQ, and over a
finite field. While we can also compute the radical of a finite-dimensional associative

80

algebra over an arbitrary algebraic extension of Q or over an arbitrary algebraic
extension of a finite field, we know that the decision problem “Is A semi-simple?”
is undecidable for an arbitrary finite-dimensional associative algebra A over an
arbitrary field. The computation of the monotone squarefree decomposition and
distinct power decomposition of polynomials in F[x] can be reduced to the solution
of “Isolation of the Radical”; a reduction from “Isolation of the Radical” to the
computation of monotone squarefree decompositions would yield efficient solutions
for “Isolation of the Radical” over fields where no such solutions are known.

81

2.4. Computation of Simple Components

We consider algorithms for the computation of the simple components of a finite-
dimensional semi-simple associative algebra A over a field F'. As stated in Theo-
rem 2.1.23,

A=B 1 ®By®---® By

for simple algebras By, B, ..., By (the simple components of A over F'), for some
k > 0. Given a basis and set of structure constants for A over F', or a set of
matrices forming a basis for the (matrix) algebra A, we compute bases and structure
constants for each of the simple components.

Problem Extraction of Simple Components

Input e Integers n, m > 0.
e Matrices ay, ag, ..., Gy € My xm(F'), which form the basis for a
finite-dimensional semi-simple associative algebra A C M., xm (F)
of dimension n over F.
Output e Integer k > 0, the number of simple components of A.
e Integers ni, no, ..., ng > 0, with ny +ng + -+ - +ng = n,
such that n; is the dimension of simple component B; of A.
e Elements p;j; of F',for 1 <¢ <k, 1<j<m,and1<1<n,
defining elements b; ; = >, p; j1 a; of A such that

(1) b1, bia, ..., bin, is a basis for the simple
component B; over F', and hence
(2) bi1, ..., bgn, is a basis for A over F.
e Matrices ¢;; € My, xn,; (F'), such that ¢;1, ¢i2, ..., Cin,

is the basis for a matrix algebra isomorphic to B;, for 1 <1 < k.

Friedl and Rényai [43] show that this problem can be solved efficiently (using
Boolean computations) when F is a finite field or a number field. Following their
example, we begin (in Section 2.4.1) by reducing the above problem to the sim-
pler problem of computing a set of central primitive idempotents for a semi-simple
associative algebra. We show that this reduction is correct for a (slightly) more
general class of fields than that discussed by Friedl and Roényai, and for parallel
Boolean and arithmetic computations. We continue by reviewing their algorithm
(in Section 2.4.2), and by introducing two new algorithms for this problem (in Sec-
tions 2.4.3 and 2.4.4). The new algorithms eliminate the use of computations over
extensions of the ground field, and reduce the use of factorisation of polynomials.
Hence, we believe that they may be used to compute simple components of a semi-
simple algebra more quickly than Friedl and Rényai’s algorithm. They also provide
reductions from the computation of the simple components of semi-simple algebras
over F' to the factorisation of polynomials over F', for parallel Boolean computations

82

(when F' is a finite field or a number field) and for parallel arithmetic computations
(when F'is a perfect field). Finally, we present polynomial-time algorithms for the
computation of simple components of A ®r R and A ®p C, for a finite-dimensional
semi-simple algebra A over a number field F'; these algorithms are presented in
Section 2.4.5.

2.4.1. Computation of Simple Components using Idempotents

Friedl and Roényai show that the computation of bases for the simple components
of a finite-dimensional, semi-simple associative algebra A over a field F' can be
reduced (with respect to polynomial-time computations) to the simpler problem of
computation of the central primitive idempotents of A. In this section we review
this reduction and show that it is also useful for parallel computations.

Definition 2.4.1. The centre of an associative algebra A over a field F', Centre(A),
is the set of all elements of A which commute with all the elements in A:

Centre(A) ={x € A:ay=yzx forallye A}.

Clearly Centre(A) is a commutative subalgebra of A. A basis for the centre of A
over F' can be computed by solving the system of linear equations

(AMa1 + Agag + -+ Apan)a; = a;(A1ag + Agag + -+ + Apay)

for 1 < ¢ < n, for indeterminates A1, Ao, ..., A, over F; the centre clearly includes
every element A\ja; + Asas + ... A\pa, of A such that (Aq, Ag, ..., \,) is a solution
of this system. The following facts indicate the usefulness of Centre(A) for the
problem at hand.

Proposition 2.4.2. Let A be a finite-dimensional semi-simple associative alge-
bra over a field F, such that A = By & By @ --- & By for simple components
Bi, By, ..., B and for k > 1.

(i) Centre(A) = Centre(B;) @ Centre(Bz) @ - - - @ Centre(By);

(ii) B; = A-Centre(B;) ={af : a€ A and € Centre(B;) } for 1 <i <k.

Proof. Let a € A; then o = a1 + as + -+ + aj for a unique set aq, as, ..., ag
with «; € B; for 1 <14 < k. Suppose now that v =~ +v2 + -+ + 7% € Centre(A),
with v; € B; for 1 <4 < k. Since o;y; = vja; = 0if 1 <4, j < k and @ # j, it is
clear that

oy = o171 + ey + -0+ OV,
Yo = 7101 + Yo + -+ YO,

83

and, since v € Centre(A), ay = va, and ay;, v, € B; for 1 < i < k, it follows
that «a;v; = via; for 1 < i < k. Since « is arbitrarily chosen from A, it is clear
that «; is arbitrarily chosen from B;, so v; € Centre(B;). Thus Centre(A) C
Centre(B;)@®- - -@Centre(By). It is also easily checked that if 7; is arbitrarily chosen
from Centre(B;) for 1 <i <k, then a(y1+---+7%) = (71 + - - - + &)« for arbitrary
a € A. Thus it is also true that Centre(A4) O Centre(By) @ --- @ Centre(By),
proving (i).

Since the multiplicative identity of B; is in Centre(B;), and B; C A;, it is clear that
B; C Centre(B;) - A. On the other hand, Centre(B;) C B;, and B; is a two-sided
ideal of A; thus Centre(B;) - A C B; as well, as required to prove (ii). m

As Friedl and Rényai note, Proposition 2.4.2 gives a reduction from “Extraction of
Simple Components” in the general case to the problem for commutative, finite-
dimensional semi-simple algebras. As noted above, a basis for the centre of a
finite-dimensional associative algebra can be computed by solving a system of linear
equations. By Proposition 2.4.2 (i) and (ii), the simple components of A are easily
computed from those of Centre(A) as well.

Suppose again that A has simple components By, Bs, ..., By, and that B; has
multiplicative identity e;, for 1 < ¢ < k. Then the elements ey, es, ..., ex comprise
a set of central primitive idempotents for A, as defined below.

Definition 2.4.3. Let A be an associative algebra over a field F'. A set of elements
i1, 19, ..., 1 of A is a set of idempotents for A if

(i) i1 +i2+ - +ix =1 in A;

iy . i, ifr=s,
(i) iris = Or iy = {O otherwise,

It is a set of primitive idempotents if, in addition,

for1 <r, s<k.

(iii) Any idempotent i of A (with i? = i) is the sum of some subset of the
idempotents 1, s, ..., if.

It is a set of central idempotents if (i) and (ii) hold and if i, € Centre(A) for
1 < r < k. Finally, it is a set of central primitive idempotents if they comprise a
set of central idempotents and every central idempotent i of A is the sum of some
subset of the idempotents i1, io, ..., k.

Note that a set of central primitive idempotents is not generally a set of primitive
idempotents.

Since e;A = B; for 1 <4 < k, it is clear that we can isolate the simple components
of A if we can compute the central primitive idempotents e, eo, ..., ex. We state
this reduction formally on the following page.

84

Algorithm Simple Components via Central Primitive Idempotents

Input. e Integers n, m, k > 0.

e Matrices ay, ag, ..., Gy € My xm(F), which form the basis for a
finite-dimensional semi-simple associative algebra A C M,y (F)
of dimension n over F', and with k£ simple components over F.

e The central primitive idempotents ey, es, ..., e of A.

Output. e Integers ny, no, ..., ng >0, with ny + no +--- 4+ ngx =n,

such that n; is the dimension of the simple component B; of A
with identity element e;, for 1 < i < k.

e Elements p; j; of F',for 1 <¢ <k, 1<j<m;,and1<1<n,
defining elements b; j = > ;" p; 5,4, of A such that

(1) bi1, bia, ..., bin, is a basis for the simple
component B; over F', and hence
(2) b11, ..., bgn, is a basis for A over F.
e Matrices ¢; j € My, xn, (F) such that ¢;1, cio, ..., Cin,

is a basis for a matrix algebra isomorphic to B;, for 1 <i < k.

For 1 < i <k, compute the integer n; and a basis b;1, b;2, ..., bin,
over F for B = ¢;A, by selecting a maximal linearly independent
subset of e;aq, e;as, ..., €;an,.

Compute elements p;;; of F,for 1 <i<k,1<j<n;,and 1< <n,
such that b; ; = p;j1a1 + pijoas + -+ - + ;i jnay, (by forming and
solving n nonsingular systems of linear equations, each in

n indeterminates, over F).

For 1 <1 < k, compute a set of structure constants for the simple
algebra B; with respect to the basis b;1, b;2, ..., bin, over F' (by
forming and solving n? nonsingular systems of linear equations, each
in n; indeterminates over F'). Use these to compute the matrix
Cz'j:gbi(bij)GMani(F), forl1<i<kand1<j<ny,

and for ¢; the regular matrix representation of B; with respect to
the above basis.

85

Theorem 2.4.4. Let A C M, (F) be a finite-dimensional semi-simple associa-
tive algebra of dimension n over a field F. Given a basis for A over F', and the
central primitive idempotents of A, bases for the simple components of A over F

can be computed using arithmetic-Boolean circuits of depth O(log®(mn)) and size
(mn)C M),

Proof. The algorithm “Simple Components via Central Primitive Idempotents”
can be used to perform this computation. The algorithm is clearly correct, since
each central primitive idempotent e; is the identity element of a simple component
B;, which is itself a two-sided ideal of A. The timing analysis follows from the
analysis given for solutions of nonsingular systems of linear equations, in Section 1.3.
]

We are left with the problem of computing the central primitive idempotents
e1, €2, ..., €, of a semi-simple algebra A. We first consider the problem of deciding
whether A is simple (and k& = 1). As stated in Theorem 2.1.25, a finite-dimensional
simple associative algebra over a field F' is isomorphic to a matrix ring M «x(D),
for h > 0 and for a division algebra D over F. If A is commutative then it is clear
that h = 1, so A is isomorphic to D, and that D is a commutative division algebra.
Hence A is a field, and a finite algebraic extension of F. Conversely, it is clear that
if A is a field, then A is simple and commutative: If A is not simple then Centre(A)
includes nonzero zero-divisors (for example, the central primitive idempotents).

We will see that for some fields F, the problem of deciding whether a finite-
dimensional semi-simple algebra A over F' is a simple algebra is undecidable. How-
ever, the fact that a commutative finite-dimensional simple algebra is also a field
gives us a method for deciding this problem for perfect fields. We make use of the
following fact.

Proposition 2.4.5. If F' is a perfect field, and F is an algebraic extension of F'
with finite dimension over F', then F is a primitive algebraic extension. That is,
E = Fla] for some a € E.

Proposition 2.4.5 is a consequence of the more general result that every extension
F(ay, ag, ..., o) with «; separable and algebraic over F for 1 < i < n is a
primitive algebraic extension (see van der Waerden [117] for a proof of this). If F’
is perfect, then every element «; of E which is algebraic over F' is also separable,
so Proposition 2.4.5 follows.

Recall that the minimal polynomial f € F[t] of an element a of A is the monic
nonzero polynomial of least degree such that f(a) = 0. (Note that if A is finite-
dimensional over F' then some such polynomial exists.) The minimal polynomial
of a is a divisor in F[t] of any polynomial g € F[t] such that g(a) = 0. If A is not
a field, then an element a of A can have a minimal polynomial which is reducible

86

in F[t|: In particular, if a is an idempotent in A other than 0 or 1, then a has
minimal polynomial ¢(¢ — 1).

Proposition 2.4.6. Let a € A, with minimal polynomial f € F[t]. Then Fla] C A,
and F[a] is a field if and only if f is irreducible in F'[t].

Clearly, F[a] = F[t]/(f). If f is irreducible then every nonzero element of F[t]/(f)
has a multiplicative inverse (which can be computed using the extended Euclidean
algorithm in F'[t]). Otherwise, F[t]/(f) contains nonzero zero divisors — including
(f1 mod f) and (f2 mod f) for any polynomials f; and fo of positive degree such

that f = f1/.

Hence we can conclude that a semi-simple algebra A = By ® By @ --- & By with
simple components By, Ba, ..., By is a simple algebra (and k& = 1) if we can find an
element a of Centre(A) with Fla] = Centre(A), such that the minimal polynomial
of a is irreducible in F[t].

Elements a of Centre(A) whose minimal polynomials are reducible in F[t] are also
useful. Suppose now that

a=01+PB2+-+ Bk €A,

with §; € Centre(B;) for 1 < i < k. Suppose f is the minimal polynomial of a
over F', and that h; is the minimal polynomial of 3; over F, for 1 < i < k. It follows
by Proposition 2.4.6 that the polynomials hy, ho, ..., hi are all irreducible in F[t].
It is also clear that f is the least common multiple of Ay, ho, ..., hy. Hence f is
squarefree in F'[t], and has factorisation

f=hifzfi
for some [> 0 and for distinct polynomials fi, fo, ..., fi € { h1, ha, ..., hx } (thus
fi, fo, ..., fi are distinct, while hq, hs, ..., hx need not be). Since fi, fo, ..., fi
are pairwise relatively prime, there exist polynomials g1, go, ..., g; in Ft], each

with degree less than the degree of fifs--- fi = f, such that
gi=1 (mod f;) and ¢;=0 (mod f;) forl<i, j<I, i#j].

Let é; = g;(a) € A; then the elements é;, é5, ..., é can be used to obtain a partial
decomposition of A, as indicated by the following facts.

87

Proposition 2.4.7. Let a = 1 + B2 + - - - + B € Centre(A), with ; € Centre(B;)
for 1 <i <k, and let &4, és, ..., € be as above. Then
(i) The elements €1, éo, ..., € are central idempotents in A, such that é;é; = ¢é;
ifi=jand ée; =0if 1 # j, for 1 <4, 5 <L
(i) é1+éa+-+¢& =1
(iii) If B;, and B, are terms in the sum a = (1 + f2 + -+ - + [with minimal
polynomials hj;, and hj,, then if h;, # hj, then there exists some ¢ with
1 <4 < such that é;8;, = B;, and é;8;, = 0. If h;, = hj, then, for each i
such that 1 <i <[, either ¢;8;, = 3;, and €;8;, = B,,, or €;3;, = é;3;, = 0.

Proof. Let polynomials f, f1, fo, ..., fi and g1, g2, ..., g; be as given above.
Clearly é; = gi(a) = gi(B1) + gi(B2) + -+ + 9i(Bx), for 1 < i < [. Suppose j3;
has minimal polynomial h; = f;; then, since g; =1 (mod f;) and f;(5;) = 0, it
is clear that g;(8;) = e;, the multiplicative identity in B; (using (3 = e; € Bj).
Otherwise, 3; has minimal polynomial h; = fs for some s such that 1 < s <[and
s #14;since g; =0 (mod f,) and fs(B;) = 0, it is clear that g;(3;) = 0 in this case.
It follows that é; is an idempotent in A. Since f; is the minimal polynomial of at
least one f3;, this idempotent is nonzero.

It is also clear that for each j with 1 < j < [, g;(;) is nonzero for exactly one
polynomial g;, 1 < i < [. Parts (i) and (ii) follow immediately. Part (iii) is also a
straightforward consequence of the definition of the polynomials g1, g2, ..., gr. =

The polynomials g1, g2, ..., g; can be computed from fi, fs, ..., f; using the Chi-
nese remainder algorithm. Since f is the minimal polynomial of an element a of A,
and A is isomorphic to a subring of M,, ., (F) for n the dimension of A over F', it is
clear that f has degree at most n. Hence the polynomials f;, fo, ..., f; can be com-
puted from a by computing and factoring the minimal polynomial of a. The polyno-
mials g1, go, ..., g, and the idempotents é1, és, ..., € can then be computed using
the Chinese remainder algorithm. This last step can be performed using n®™M op-
erations in F, or using arithmetic-Boolean circuits over F, of depth O(log?(n)) and
size n?) (See von zur Gathen [53] for details).

We will use this process of extracting idempotents from a single element of A as a
component in algorithms to be presented later in this section. We state this process
formally in the algorithm on the following page.

Proposition 2.4.8. The algorithm “Extraction of Idempotents” can be used to
compute the central idempotents generated by an element a of the centre of a finite-
dimensional semi-simple associative algebra A C M, «x.(F') of dimension n over a
field F, using arithmetic-Boolean circuits over F' with oracles for factorisation of
squarefree polynomials in F[t], of depth O(log?(mn)) and size (mn)°(M), plus the
cost of factoring a squarefree polynomial of degree at most n in F[t].

88

Note that the central idempotents generated by an element a of Centre(A) are not
necessarily central primitive. In the worst case, a = 1 € A, and the only central
idempotent generated from a (by the above method) is 1 itself. In order to com-
pute a set of simple components for A, by generating a set of central primitive
idempotents, we must either find a single element “a” of Centre(A) which generates
a complete set of central primitive idempotents, or find a way to combine the (gen-
erally imprimitive) idempotents obtained from several elements in order to obtain
primitive idempotents. We discuss several approaches for solving this last part of
the problem in Sections 2.4.2-2.4.4.

Algorithm Extraction of Idempotents

Input. e Integer m > 0.
e Matrix a € My, «m(G), a member of the centre of some
finite-dimensional semi-simple associative algebra A over a field G.
Output. e Integer [> 0.
e Matrices é1, és, ..., €, € G[a] such that each matrix é;
is a nonzero idempotent in G|a] with é;é; = ¢; ;é; for 1 <14, j <,
and é; + é2 + - - - + é; is the multiplicative identity in GJa].

(1) Compute the minimal polynomial f of a over G.
) Compute the factorisation f = fifo--- f; of f in GJt].
(3) For 1 <i <, use the Chinese remainder algorithm to compute the
polynomial g; € G[t] with degree less than that of f, such that
gi=1 (mod f;) and ¢, =0 (mod f;)
for 1 <j<lI,i#j.
(4) Return the integer [and the idempotents é; = g;(a), 1 <i <.

89

2.4.2. The Algorithm of Friedl and Roényai

As we noted at the end of Section 2.4.1, if a € Centre(A), then in general we only
obtain a partial decomposition of A by computing the idempotents é1, éo, ..., &
obtained from a using the algorithm “Extraction of Idempotents”. In the extreme
case (for example, when a = 1), we do not decompose A at all. We will show later
that for some fields F' there exist algebras A such that no single element a of A
can be used to decompose A completely by the above method. Hence, (for some
fields) we must consider several elements of the algebra A in order to decompose A
completely.

As we noted in Section 2.4.1, the simple components of A are easily computed from
the simple components of the commutative subalgebra Centre(A). Henceforth, we
will assume that A is commutative (in order to simplify the presentation, without
weakening the results).

Friedl and Rényai ([43]) solve this problem by processing each of the elements
ai, as, ..., a, of a basis for a (commutative) matrix algebra A. They maintain a
list of finite algebraic extensions of F', each of the form F[a] for some a € A, which
are the simple components of the smallest semi-simple algebra over F' containing
the elements seen so far. Initially, this list consists of the single field F'. After all

the elements of a basis have been processed, it consists of the simple components
of A.

Suppose now that Friedl and Roényai’s algorithm has been used to process the first

1 elements, a1, ao, ..., a;, of a basis for A, and that the components
Cy = Flby], Co=F[by], --- Ch=F[bp]
with identity elements €1, €a, ..., €y, respectively, have been obtained. (Then e; €

Cjfor1 <j<h,and é;+eé2+---€, =1). In order to process the next element a;4
of the basis, the minimal polynomial of the element a;yi ; = a;+1€; is computed
over the field extension C; of F, for 1 < j < h. If the minimal polynomial of
a;+1,j over C; is irreducible in C}[t], then the element a;41,; is adjoined to Cj, to
obtain a larger field C'j which replaces C; in the list of components. A primitive
element Bj of Oj is also computed, so that arithmetic can be performed over the

field extension C'j of F' in later steps. If the minimal polynomial of a;4; ; over
C; is reducible in C}[t], then a;4+1,; is used to generate a set of idempotents in
Cjlait1, ;] using the algorithm “Extraction of Idempotents”, performing arithmetic
over the field G = C;. These idempotents are used as the identity elements of a set
of components C'j 1, C'j 2y e C'jr which replace Cj; in the list of components.

The algorithm is stated in more detail by Friedl and Rényai [43]. We use it to
decompose an algebra in the following example.

90

Example 2.4.9. Let F' = F5, and consider the matrix algebra A = F4 @ F,4, which
is contained in Mgyg(F') and generated as a ring over F' by the elements («,0) and
(0,8) (for a € F4 with minimal polynomial t?> + ¢ + 1 over Fy and 8 € Fig with
minimal polynomial t* + 3 + 2 + ¢ + 1 over Fy), with

S OO O oo
SO OO OO
SO OO oo
S OO O oo
SO OO oo
SO OO o O
OO, OO O
O = OO OO
_ o O O oo
— === OO

OO OO O
(=N elelell -

Suppose we are given the following basis for A (with componentwise addition and
multiplication, for ordered pairs).

a; = (17 1) a5 = (Oé?ﬁQ)
as = (o, 1+ 52+ 33) as = (1,)

az = (a,1) ar = (1, 3?%)
a4 = (aaﬁ) ag = (1753)

It is easily checked that this is a basis for an algebra A = Fy @ F16 over F' = Fs.

We begin by computing and factoring the minimal polynomial (over F') of

Q

—

—~

—_

—_

~—

Il
SO O OO
SO~ O OO
SO O O OO
oo o oo

OO OO+ O
OO O = OO

Clearly the minimal polynomial, ¢+ 1, is irreducible in Fs[t]. Since it is also linear,
we obtain a single component Cy1 = Fla;] = Fo, with identity element e;; = a;
and generator by = a;.

We next consider the element

00100 0 07
110000
001101
ar= (148 +8)= 10 ¢ o ¢ 1 1
001100
00010 1 14

The minimal polynomial of e; jas over C; 1 is t> +t+ 1, an irreducible polynomial in
C11[t]. We adjoin this to C 1 to obtain a single component Cyq = Fy, with identity

91

element eo7 = a; and generator by = e11a2 = as, for the algebra generated by aq
and as.

The third element of our basis is

az = (a, 1) =

SO O OO
SO =R OO OO
_ o oo oo

o OO OO
[l el
SO o+ O O

The minimal polynomial of esiag over Cyq is
t2 4 (ag + Dt +ag = (t + az)(t + 1).

This has factors
fi=@+a2) and fo=(t+1)

in Cy1. We use these to generate idempotents e3; and ez in the algebra generated
by a1, ag, and ag by computing polynomials ¢g; and g in Cs1[t] such that

g =1 (mod f1), g =0 (mod f1),
g1 =0 (mod f2), g2=1 (mod f3).

Using the Chinese remainder algorithm over Cy1[t], we obtain polynomials

g1 :CLQt—f—CLQ :ag(t+1):a2(t+a2)+1,
ggzagt—l—a2+1:a2(t+1)+1:ag(t—l—ag),

which we evaluate at asz to obtain the idempotents

es1 = (1,0) = , eso = (0,1) =

OO OO oo
O O O O OO
O OO O OO
OO OO oo
O OO O oo
O O O O oo
OO R O OO
SR OO OO
_ o O O oo

SO oo~k OO

SO O O O
el eleBall "

We use these to split (51 into two components, C's1, with identity element e3; and
generator b3, = egz1ba1 = e31a2, and C34, with identity element e35 and generator
bso = e32ba1 = e3zoas. The minimal polynomial of e3;as over Cs; is linear, for
i € {1, 2}; hence we cannot extend either of these components further using as.
Thus we have two components C'31 and C35 of the algebra generated by aq, as, and
a3, with each component isomorphic to Fy.

92

We next consider the element

001 0 0 0 07
11000 0
00000 1

w=@0=19 01 9 0 1
00010 1
000 0 1 11

The matrix esjas has minimal polynomial ¢ + b3 over C31. Since this is linear,
we neither split C31 nor extend this component to obtain a larger field; we set
C41 = C31. On the other hand, the matrix e3sas has minimal polynomial

24t + 1+ by

over C3o. Since this is irreducible in C32[t], we obtain a larger component Cyo =
Cs2les2a4]. Computing a primitive generator, we see that Cyo has identity element
e42 = e32 and generator byo = egoay. Hence the algebra generated by aq, as, as,
and a4 over F' has two components, Cy; (isomorphic to Fy) and Cyo (isomorphic
to IF16>.

We consider the element a;, for 5 < ¢ < 8, by computing the minimal polynomial
of eqja; over Cyj, for j =1, 2. In each case, we find that this minimal polynomial
is linear. Hence we do not change the components C4; and Cy5. We conclude that

A= B; ® B,
for simple components
B1 2041 §F4 and BQ 2042 gﬂ?l@
Friedl and Rényai show that this algorithm can be used to extract the simple com-

ponents of a finite-dimensional semi-simple associative algebra over a number field
or over a finite field using a polynomial number of Boolean operations.

93

Theorem 2.4.10. (Friedl and Rényai [43]). Suppose A C M, xm(F) is a finite-
dimensional semi-simple associative algebra of dimension n over a field F'.

(i) If F' is a number field, then bases for the simple components of A can be
computed from a basis for A using N°() Boolean operations, for input
size N.

(ii) If F = F,, then bases for the simple components of A can be computed from
a basis for A, using (nmpl)o(l) Boolean operations, or using a probabilistic
Boolean algorithm using (nmilog p)°(") Boolean operations (that is, NO()
operations for input size N), which either successfully performs the above
computation, or indicates “failure”, failing with probability at most 1/2.

Applying the results about arithmetic over field extensions discussed in Section 1
(in particular, Theorem 1.3.1(i) and Theorem 1.4.15), we also obtain the following
reduction from Friedl and Rényai’s algorithm.

Theorem 2.4.11. Suppose A C M,,xm(F') is a finite-dimensional semi-simple
associative algebra of dimension n over a perfect field F'; then bases for the simple
components of A can be computed from a basis for A using arithmetic-Boolean
circuits over F' (with oracles for factorisation of squarefree polynomials in F'[t])
with size (nm)©) (that is, size NO() | for input size N).

94

2.4.3. A New Algorithm for Simple Components

We now present an new algorithm for “Extraction of Simple Components” for finite-
dimensional semi-simple algebras, which is correct for arbitrary fields of character-
istic zero, as well as arbitrary finite fields F,;. Again, we simplify the presentation
by assuming A is commutative (and applying the results of Section 2.4.1 to obtain
an algorithm which is correct for arbitrary finite-dimensional semi-simple algebras).
Instead of considering elements of a basis for an algebra A in sequence, to refine a
single decomposition of A, we use these elements independently, to obtain several
different partial decompositions. We then combine these decompositions to obtain
a single, complete decomposition of A into simple components.

Once again, let A be a commutative, finite-dimensional, semi-simple associative al-
gebra over F' with simple components By, By, ..., By over F', and let aq, as, ..., a,
be a basis for A over F. Let a =1+ B2+ -+ 0k € A, with §; € B; for 1 <i <k.
Let 1 <14, j <k, with 7 # j; we say that a splits components B; and B; if 3; and 3;
have distinct minimal polynomials over F' — so that the element a can be used to
generate an idempotent e of A (using the algorithm “Extraction of Idempotents”,
with computations over the ground field F') such that eB; = B; and eB; = (0). We
will show that B; and B; are split by some element aj, of our basis for A, for each
pair of components B; and B; with i # j.

We prove this by considering traces of elements over field extensions. Suppose
now that £ = Ft|/(f), for f monic and irreducible of degree [in F[t], and for F’
perfect. Let aq, as, ..., a; be the roots of f in an algebraic closure H of F'; since
f is separable, these roots are distinct. The field £ = Ft|/(f) is isomorphic to
the field F[a]; we use the isomorphism taking (¢ mod f) to a; to embed F in the
closure H.

-1

Definition 2.4.12. Let v = ¢y + 11 + 2af + -+ + ¢_1a] € Flay], for
co, C1, ---, Ci—1 € F. Since a; has minimal polynomial f of degree [over F', the
coefficients cg, c1, ..., ¢;—1 are unique (for). The trace of v over F, TF[al]/F(y),

1S
l

TF{O“]/F(V) - Z(CO taa; + 020412 + -+ 01—1042—1).
i=1

Since Tr[q,)/r(7) is fixed by the Galois group of H (a splitting field of f) over F,
it is clear that Tppa,)/r(7) € F.

Like the norm over F', Np(,,]/p (defined in Section 1.4), Tp(a,)/F is a map from
Flay] to F. Unlike the norm, it is F-linear; if o, § € F|a;] and ¢ € F, then

Tr(a,)/F(a+cB) = Tpia,)/r(a) + a1/ r(B)-

95

Lemma 2.4.13. Let E = F[a] be a finite algebraic extension of a perfect field F’;
then there exists an element A of E such that T/ p()) # 0.

Proof. Suppose a has minimal polynomial f € F[t| with degree [, and roots @ =
a1, Qa, ..., o in some algebraic closure of F. Since F' is perfect, f is a separable
polynomial, and the roots a1, az, ..., oy are distinct. Suppose Tg/r(A) = 0 for all
A € E; then, in particular,

Tr/r(l) =Tg r(a) =Tgp(a®) = =Tgp(a! ") =0.

Since TE/F(o/) =al+ab+-- -+af for 0 < ¢ < I, this is equivalent to the statement

1 1 e 1 1 0
o Qo o 1 0
Oéll_l al2—1 . a;—l 1 0
The coefficient matrix of this system is the Vandermonde matrix for aq, as, ..., a;.

The formula for the determinant of this matrix is well known; the determinant is

I i—1

contradicting the fact that we have a nonzero element of the nullspace of this matrix.
We conclude that there exists some A € E (in particular, A € {1, o, o2, ..., o!71})
such that T, p(A) #0. =

Lemma 2.4.14. Let (1, B2 € E, for E a finite algebraic extension of a perfect
field F', such that (; and (32 have the same minimal polynomial over F. Then

Te/rp(B1) = Te/r(B2)

Proof. If 51 = (5 then the claim is trivial; we now suppose (31 # (.

Let Fy = F[31], F» = F[B2], and let (31, B2, ..., B be the conjugates of 3 over F.
Then the trace of 51 in F} (over F') and the trace of 35 in Fy (over F') both equal
Br+ B2+ + G

Now FC Fy CE, FC F, C E, and F; and F; are isomorphic (as field extensions
of F'). Thus [F : Fy] = [E : Fy] = k, for some k > 0. It follows that the trace of (3
in E (over F) is k times the trace of #1 in Fy (over F'), while the trace of f2 in E
(over F') is k times the trace of B2 in Fy (again, over F') (see van der Waerden [117],
Section 6.11 for a proof). Thus Tg/r(B81) = k-Tri,1/r(B1) = k-(Bi+ B2+ -+51) =
k-Tris)/r(B2) = Tg/rp(B2), as claimed. =

96

Theorem 2.4.15. Let aq, as, ..., a, be a basis over F' for a commutative
finite-dimensional semi-simple associative algebra A over F', with simple compo-
nents By, Bo, ..., Bx. Suppose the field F' satisfies one or more of the following
properties.
(i) F has characteristic zero;
(ii) F is a finite field;
(iii) F is algebraically closed.

Then if 1 <14, j < k and ¢ # j then there exists some element a;, of the above basis
for A such that aj, splits B; and B; (as defined on page 95).

Proof. Suppose, to the contrary, that no element of the basis splits the components
B; and B;. We write

a; =B+ B+ + ik

ag = o1+ Bao+ -+ Pak

an:ﬁn1+ﬂn2+"'+ﬁnk

with a,, € Bs for 1 <r <nand 1 <s < k. Since a, does not split B; and B, §3,;
and [, ; must have the same minimal polynomial over F', for 1 < r < n. (Clearly 5, ;
and (3, ; are algebraic over F', since they belong to a finite-dimensional semi-simple
associative algebra over F.) We consider fields F' satisfying the conditions (i), (ii),
and (iii) stated in the theorem separately.

(i) Since aq, ag, ..., a, is a basis for A over F, there exist elements v1, 72, ..., Vn
of F' such that
Y101 + Y202 + -+ Ynln = €,

for e; the identity element of B;. It follows that

Y1Bi1+ v2fi2 + -+ VnBin =1,
and

7Bj1+Y2Bi2+ -+ WBin=0.

Let E be a finite extension of F' which contains the elements 3;, and 3;,
for 1 < r < n. (That is, let £ be an extension field of F' with subfields
isomorphic, as extensions of F', to By and By, respectively.) We consider the
trace (in E over F) of elements of E. Since (3;, and (3;, are conjugates over F,
Te/r(Bir) = Tg/r(Bjr), for 1 <r <n, by Lemma 2.4.14.

97

(i)

(iii)

Since the trace is an F'-linear map, it follows that

£ F]=Tg/r(1)
=Tg/r(Bi1 +v2Bi2 + -+ VnbBin)
=1Te/r(Bi1) +72Te/r(Bi2) + -+ ¥ TE/r(Bin)
=nTe/r(Bi1) +2Te/r(Bi2) + - +1TE/r(Bjn)
=Tg/p(nBj1+ 7282+ +¥bBjn)
=Tg,r(0) =0,

contradicting that fact that the field F* has characteristic zero, and [E : F] > 1.

Suppose F' = F,;. Now the components B; and B; are both fields, with B; =
Fpl [61717 ﬂgi, ey ﬁnz’]; and Bj =]Fpl [ﬁlja 52]', ceey 6nj]- We consider both
B; and B; to be embedded in some larger extension of F,. Now B; and B;
are both normal fields: if v is an element of B;, E is an extension of B; (so
F, € B; C), and 4 € E such that v and 4 have the same minimal polynomial
over F., then 4 € B; as well. In particular, taking as E the smallest field
containing both B; and B;, we see that 3, ; € B; for 1 <r <mn, since 3,; € B;
and 3, ; and (3,; have the same minimal polynomial over F'. Since B; and B;
are both fields, and Bj is generated over I, by the elements (3, ;, it follows that
Bj C B;. Clearly, B; C B; as well, so B; = B, (in this embedding). It follows
that the components B; and B; of A are isomorphic (as extensions of F'), and
that the trace of 8,.; in B; (over F'), Tz, /rp(Br4), equals the trace of 3, ; in B;
(again, over F'), Tp /p(Br;, for 1 <r <n.

By Lemma 2.4.13, there exists some element A\ of B; such that the trace of A
over F' is nonzero. Since a1, as, ..., a, is a basis for A over F, it is clear that
there exist elements 71, ¥2, ..., 7, of F' such that

Y1Bri +v2B2i + -+ VnbBni = A,
and

V1B +v2B25 + -+ Bnj = 0.
Now, since T, /r(Bri) = Tp,/r(Br;) for 1 < r < n, we conclude (as in (i))
that T, /r(\) = T, /r(\) = 0, contradicting the choice of .

If F is algebraically closed then, since (3,; and f3,; are conjugates over F,
Bri = Br; for 1 < r < n, again contradicting the fact that there must exist
constants v1, y2, ..., Yn € F such that

MBri+XefBoi+ -+ A Bni =1,
and
MBrj+Af2j+ -+ AfBr;=0. =

98

Now suppose we have two sets of central idempotents in the algebra A,
€11, €12, ---, €1k, and €21, €22, ..., E2k,, for kl, ko > 0, with

er1teret--tek =l=ex1+e22+ -+ e,

and with €1i€15; = (5Z~j61i for 1 S ’i,] S kl, and €2i€2;5 = 5ij62i for 1 S i, j S k?g.
We obtain a third set of central idempotents, e31, e32, ..., e3x,, which forms a
refinement of the above sets of idempotents, by forming the set of products

e1i€2j, for 1 <i<ky, and 1 <j < ko,

and discarding all products which equal 0. Now if B; and B; are simple components
which are separated by some idempotent e; ,, so e1.B; = B; and e;,.B; = (0), then
there is an idempotent e3 s which also separates B; and B; in this way. Similarly, if
B; and Bj; are separated by some idempotent ey, then there is an idempotent ez
separating B; and B; as well. If F' is a field of characteristic zero, a finite field, or
algebraically closed, then it follows that we can compute the primitive idempotents
of a finite-dimensional semi-simple associative algebra A over F' by computing a set
of idempotents for each element of a basis for the centre of A, and then computing
a common refinement of these sets of idempotents.

It is clear that the idempotents e, e32, ..., €3k, which refine the sets of idempo-
tentsej1, €12, ..., €15, and eaq, €29, ..., €2k, can be computed using a polynomial
number of operations over the ground field, F'. We now consider the cost of comput-
ing these idempotents in parallel. If A C M., (F') then it is clear that each prod-
uct ej;ez; can be computed using arithmetic-Boolean circuits of depth O(logm)
and size m@): we can also decide whether each result is nonzero at this cost. Since
we can count the number of nonzero results, and select the i*" nonzero result from
the list
€11€21, €11€22, --., €11€2k,y, €12€21, -+, €1k;€2k,y,

(for i < m?) at this cost as well, it follows that we can compute the new set of
idempotents e31, €39, ..., €3k, using arithmetic-Boolean circuits of depth O(logm)
and size polynomial in m.

If we are given [sets of idempotents e;1, €;2, ..., €;k,, for 1 < <[, then we can
compute a common refinement eq, e, ..., e; of these idempotents by treating sets
in pairs. The algorithm “Refinement of Idempotents” on the following page uses a
divide-and-conquer approach to solve this problem. This is used in the algorithm
“Simple Components via Idempotents of Basis”, on the next page.

99

Algorithm Refinement of Idempotents

Input. e Integers m, n > 0.
e Integer k; > 0, and idempotents e;1, €;2, ..., €k,
in My, xm(F), for 1 <i <mn, such that ;1 +e;0+ - +e;, =1
and €;,.6;s = 0. 5€;, for 1 <r, s <Kk;.
Output. e Integer £ > 0 and idempotents ey, ez, ..., ex of My, xm (F)

such that ey + e+ - 4+ep =1, e,eg = 056, for 1 <r, s <k,
such that each idempotent e;,. is the sum of some subset of the
idempotents eq, eg, ..., e, for 1 <i<mnand1<r <k;, and
such that each idempotent e; is the product of some subset

of the idempotents given as input.

If n =1 then return the integer k = k; and the idempotents

€11, €12, ..., €1k, . Otherwise, perform steps 2 and 3.

Let n = [§ |; perform steps 2a and 2b.

Use algorithm “Refinement of Idempotents” recursively, with inputs

m and 7, and integer k; and idempotents e;1, €;2, ..., €k,

for 1 <1¢ < n, to compute an integer kq and a set of idempotents
€11, €12, -+, € iy refining these idempotents.

Use algorithm “Refinement of Idempotents” recursively, with inputs
m, n — n, and integer k; and idempotents e;1, €;2, ..., €k,

for n + 1 < i < n, to compute an integer ko and a set of idempotents
€21, €22, ..., Eyf, refining these idempotents.

Compute the products é1 .65 for 1 <r < 1%1 and 1 < s <]2:2.
Set k to be the number of nonzero products obtained, and set
e1, €2, ..., €x to be these nonzero idempotents. Return these values.

100

Algorithm Simple Components via Idempotents of Basis

Input. e Integers n, m > 0.

e Matrices ay, ag, ..., Gy € My xm(F), which form the basis for a
finite-dimensional semi-simple associative algebra A C M,y (F)
of dimension n over F.

Output. e Integer k£ > 0, the number of simple components of A.

e Integers ny, no, ..., ng >0, with ny + no +--- 4+ ngx =n,
such that n; is the dimension of simple component B; of A.
e Elements p;j; of F',for 1 <¢ <k, 1<j<m;,and1<1<n,
defining elements b; ; = 27:1 i j1a; of A such that
(1) bi1, bia, ..., bin, is a basis for the simple
component B; over F', and hence
(2) bi1, ..., by, is a basis for A over F.
e Matrices ¢; j € My, xn, (F) such that ¢;1, cio, ..., Cin,
is the basis for a matrix algebra isomorphic to B;, for 1 < < k.

Compute a basis a1, as, ..., a; for Centre(A) over F.

For 1 < <, use the algorithm “Extraction of Idempotents” with

input a; to compute integer k; > 0 and idempotents e;1, €;2, ..., €;k,-

Use the algorithm “Refinement of Idempotents” with inputs m, [> 0

and integer k; and idempotents e;1, €;2, ..., €k, for 1 <i <1, to

generate an integer £ > 0 and idempotents e, ea, ..., ex Which are
common refinements of the idempotents computed in step 2.

Use the algorithm “Simple Components via Central Primitive Idempotents”
to compute the remaining values to be produced as output.

101

Theorem 2.4.16. Suppose A C M,,xm(F') is a finite-dimensional semi-simple
associative algebra of dimension n over a field F'.

(i) If F has characteristic zero, is a finite field, or is algebraically closed, then given
a basis for A, bases for the simple components of A can be computed using
arithmetic-Boolean circuits over F' (with oracles for factorisation of squarefree
polynomials in F[t]), with depth O(log?(mn)) and size (mn)°("), plus the cost
of factoring n squarefree polynomials, each with degree at most m, in parallel.

(ii) If F = F,, then bases for the simple components of A can be computed
from a basis for A, using Boolean circuits of size (nmpl)°™®) and of depth
O(log?(nmpl)), or using a probabilistic algorithm for factorisation of polyno-
mials over finite fields, using Boolean circuits (with extra nodes producing
random bits) of size (nmllogp)®™) and depth O(log®(nm)log® Ilog p), which
either successfully perform the above computation, or indicate “failure”, fail-
ing with probability at most 1/2.

Proof. We use the algorithm “Simple Components via Idempotents of Basis” to
perform this computation. It follows from Theorem 2.4.15 that the algorithm is cor-
rect for the fields mentioned in the statement of the theorem. The upper bounds on
circuit size and depth stated in (i), and for deterministic computations in (ii), follow
from bounds stated for factorisation of polynomials over number fields and finite
fields in Section 1.4, for linear algebra in Section 1.3, and for parallel algorithms for
the “Chinese remainder” problem for polynomials, as stated by von zur Gathen [53].

As stated in Section 1.4, von zur Gathen [52] shows that the probabilistic algo-
rithm of Cantor and Zassenhaus [19] can be used to produce Boolean circuits of
size (mllogp)°® and depth O(log® mlog®llogp), which either successfully factor
a squarefree polynomial of degree m over F,; (with probability at least 1/2), or re-
port “failure”. It is clear that the probability of success can be improved to 1 —1/k,
for arbitrarily large k, by executing this algorithm [logk | times, independently
and in parallel, and then using the output of any of these trials which does not
report failure, reporting failure only if all of the trials fail. In particular, we obtain
circuits of depth O(log? mlog? I log p+loglog m) and size (milog plogn)®™ for this
problem, which return “failure” with probability at most 1/(2n). Since the algo-
rithm “Simple Components via Idempotents of Basis” requires the factorisation of
exactly n polynomials, it is clear that all factorisations will succeed, with probabil-
ity at least 1/2, if these circuits are used for factorisation (with random bits chosen
independently). The rest of the timing analysis stated in (ii) is straightforward. m

102

Example 2.4.17. Consider the field F' = Fy, the algebra A = F,®F4, and the ba-

sis a1, ag, ..., ag for A over F given in Example 2.4.9. The elements aq, as, ..., ag
have minimal polynomials f1, fo, ..., fs over F respectively, for
fi=t+1, fs=@+t+ Dt + 2+ 2+t +1),
fo=t2+t+1, fo=C+DE*++2+t+1),
fa=t+ D)2+t +1), fr=t+D)*+ 3+ 2+t +1),
fi=EP+t+ D)+ 83 +2+t+1), fes=t+D)E*+3+2+t+1).

Since polynomials f; and f are irreducible in F[t], a; and as each generate the (sin-
gle) central idempotent 1 = (1, 1), the identity element in A. Each of f3, f4, ..., fs
are reducible in F'[t], so each of a3, a4, ..., ag can be used (independently) to gen-
erate the central primitive idempotents (1,0) and (0,1) for A. Computation of
bases for the simple components of A from these idempotents proceeds as in Exam-
ple 2.4.9.

We should note again that Friedl and Rényai’s algorithm (discussed in the last
section) can also be used to compute simple components of finite-dimensional semi-
simple algebras over number fields in polynomial time, and over finite fields in
polynomial time using a probabilistic algorithm, with small probability of failure,
for factorisation of polynomials. With some difficulty, Friedl and Rényai’s method
can be adapted (to consider elements of a basis for A by a divide-and-conquer ap-
proach, rather than sequentially) to obtain a parallel algorithm for the computation
of simple components of semi-simple algebras over finite fields. The time bounds
obtained by this method are slightly worse than those stated in Theorem 2.4.16
— if ' = F,; then we obtain Boolean circuits of depth O(log nlog®(nmpl)), or
of depth O(lognlog?(nm)log®llogp) for probabilistic methods, rather than the
bounds stated in Theorem 2.4.16(ii). It is probably more important that our al-
gorithm is somewhat simpler than Friedl and Roényai’s. In particular, it eliminates
the use of computations over extensions of the ground field, required by the earlier
algorithm. We continue the process of simplifying the method in the next section.

103

2.4.4. Minimising the Use of Factorisation

Since factorisation is (apparently) the most expensive part of this computation, it
is in our interest to reduce the use of factorisation in our algorithm as much as
possible. With this in mind, we return to the question of whether a single element
a of the algebra A can be used to generate the primitive idempotents of A (hence, to
decompose A completely into simple components), using the algorithm “Extraction
of Idempotents”. We first note a negative result.

Theorem 2.4.18. Let F' = F;, and let n € Z with n > p'. Then there exists a
commutative, semi-simple associative algebra A of dimension n over F, such that
no single element a of A can be used to generate the primitive idempotents of A
using “Extraction of Idempotents”.

Proof. Let A = F™; then an arbitrary element a of A has the form (ay, as, ..., a,),
for a; € F'. Suppose a can be used to generate the n primitive idempotents,
(1,0,...,0), (0,1,0,...,0), ...,(0,...,0,1) of A using “Extraction of Idempotents”;
then it is clear (on examination of the algorithm) that the minimal polynomial of
a over F' must have n irreducible factors in F[t], and degree at least n. It is also
clear that g(a) =0 for all a € A, for

g=[[t—a)=t" —1,

aEF

since g(a) = (g(a1), g(az), ..., gean)). Since |[F| = p! < n, g is nonzero and has
degree less than n in F'[t], giving us a contradiction. m

We next show that suitable elements exist in all other cases (for perfect fields).

Lemma 2.4.19. Let F be a field, and let n € Z such that |F| > n > 0. Let k > 0;
then if F'[t] includes an irreducible polynomial f of degree k, then it includes at

least [(n(n —1))/k] distinct monic irreducible polynomials f of degree k, which
have roots in F[t]/(f).

Proof. Suppose f is a monic irreducible polynomial of degree k in F'[t] (the result
is trivial if no such polynomial exists). Let E = F[t]/(f), and let a be a root of f
in F (in particular, let « =t + (f)). Now let a, b € F with b # 0, and consider the
element aqp = a+ab € E. Since a = b~ (ayp —a) € Flags] C Fla], it is clear that
Flagp] = E for all ag,p. It follows that the minimal polynomial f,p of agp over F
is a monic, irreducible polynomial of degree k in F[t] with a root in E.

Now since we have (at least) n(n — 1) choices of a and b in F', and each polynomial
fab has at most k roots in E, it follows that there are at least [(n(n—1))/k | monic
irreducible polynomials of degree k in F[t] with roots in F, as claimed. m

104

Theorem 2.4.20. Let F' be a perfect field which contains at least n distinct ele-
ments, and let A be a semi-simple associative algebra of dimension n over F. Then
there exists some element a in the centre of A, such that the primitive idempotents
of A can be generated using the algorithm “Extraction of Idempotents” with input
a.

Proof. Suppose the commutative algebra Centre(A) has dimension m < n, and has

simple components By, Bo, ..., By, with dimensions my, mas, ..., mg, respectively,
and with primitive idempotents ey, es, ..., ex. It is clearly sufficient to prove the
existence of an element a = a1 + as + - -+ 4+ ag, with a; € B; for 1 < i < k, such
that the minimal polynomials fi, fo, ..., fr over F' of the elements oy, s, ..., ai

respectively, are distinct.

If K =1, so m; = m, then the result is trivial: We can set a = 1, the identity
element of A. Suppose now that k > 1; then, since each m; is positive and since
my + mg + - +mp = m < n, it is clear that m; < n for all 7. Since I is perfect
and B; is a finite algebraic extension (field) of F', there exists an element 3; of B;
with minimal polynomial g; € F[t], such that B; = F[3;], and g; is irreducible with
degree m; in F[t]. Now B; = Ft|/(g;), and by Lemma 2.4.19, there exist at least
[(n(n—1))/m; | > n distinct monic irreducible polynomials in F[t] with degree m;
which have roots in B;. Let g;1, gi2, --., gin € F[t] be n such polynomials. We
now set f; to be g1, and set f; to be any one of the polynomials g;1, gi2, .-, gin
which is not in the set { f1, fo, ..., fi—1 }, for 2 <i < k. Clearly f; is monic and
irreducible with degree m; in F[t], f; has a root «; in B;, and the polynomials
f1, fo, ..., fr are distinct. Thus the element a = a3 + ag + -+ + a € Centre(A)
has the desired properties. =

We extend Theorem 2.4.20 to obtain an efficient algorithm for “Extraction of Simple
Components” by showing that a randomly selected element of the centre of A can be
used to generate the primitive idempotents of A, with arbitrarily high probability,
if the ground field F' is infinite.

Suppose now that ai, as, ..., a; is a basis over F' for the centre of A, and consider
the element
121 + Goxo + - -+ + a1y

of Alzq, xa, ..., x;] for indeterminates z1, x3, ..., x; over F. Applying Theo-
rem 2.4.20 (to the algebra Centre(A)), we see that if |F'| > [then there exist
elements A1, Ao, ..., \; of F' such that the element a;\; + agAo + -+ + a;\; of A

can be used to generate the primitive idempotents of Centre(A), and of A. Now
let ¢(a) denote the regular matrix representation of a in Centre(A), with respect
to the basis aq, ao, ..., a;. Extending ¢ to (Centre(A))[x1, x2, ..., x;], we obtain
a matrix

qb(dlllfl + oo + - + dlfl) S Mlxl(F[:cl, To, ..., Il]),

105

such that each entry of this matrix is linear in the indeterminates xq, xo, ..., ;.
The characteristic polynomial of this matrix is a polynomial with degree [in a
“new” indeterminate, t, whose coefficients in ¢ each have total degree at most [in
the indeterminates x1, xs, ..., x;; we will call this polynomial x(x1, x2, ..., z, t).
We obtain the characteristic polynomial of the matrix ¢(a; A1 +ag Ao+ - -+a;A;) by
using \; as the value for z; in x(z1, 22, ..., 2y, t), for 1 < ¢ <. For an element a =
a1A1 + a2As + - - - a;\; with the property described in Theorem 2.4.20, the minimal
polynomial of a has degree [in ¢, and is squarefree. Since this is also a divisor
of the characteristic polynomial x (A1, Az, ..., A, t), which also has degree [in t,
we conclude that these polynomials are the same, and that x (A1, Az, ..., A, t) is
squarefree in F'[t]. Further, we note that for any choice of values 1y, 12, ..., m; € F,
the polynomial x(n1, 72, ..., M, t) is squarefree in F'[t] only if this is the minimal
polynomial of an element a = aym; + asne + - -+ + a;m of Centre(A) which can be
used (alone) to generate the central primitive idempotents of A by “Extraction of
Idempotents”.

We recall that, since F' is perfect, the polynomial x(m, 72, ..., m, t) is square-
free in F[t] if and only if the greatest common divisor of x(m1, 72, ..., m, t) and

X0 M2y s) B 1in P I

d
(xy, Toy ..oy,) = &X(xl, To, ..., Ty, 1),

then 1 is a polynomial with total degree at most [in x1, x9, ..., x;, and with degree
less than [in ¢, such that

ng(X()\17 >\27 ceey)\la t)v d]()\ib)\25))\la t)) = 17

for A\, Ao, ..., \; € F as chosen above. We now use the following fact, which is
proved by Loos [87] (Theorem 5).

Proposition 2.4.21. Let A, B € R[t], with A, B # 0, for an integral domain R and
an indeterminate ¢ over R. Then Res;(A, B) = 0 if and only if deg(ged(A, B)) > 0.

Now we write
h(z1, z2, ..., x1) = Res¢(x(x1, 22, ..., a1, t), ¥(21, T2, ..., XY, t)).

The polynomial h is a polynomial in F[zq, 2, ..., ;] with total degree at most
[(2l — 1) in the indeterminates x1, z2, ..., 2;. Using Proposition 2.4.21, and the
previous remarks about y and 1, we obtain the following lemma.

Lemma 2.4.22. Let ny, 1o, ..., n; € F; then the element a = a1n+agne+- - -+a;m
of Centre(A) can be used as input for the algorithm “Extraction of Idempotents” to
generate the central primitive idempotents of A, if and only if h(n, 12, ..., m) # 0.

106

We also use the following fact, which is proved by Schwartz [111] (Corollary 1).

Proposition 2.4.23. Let I C F and let |I| > ck. If f € F[xq, 22, ..., 7], with
total degree at most k£, and f is not identically zero, then the number of zeros of f
in I x1Ix---x1Iisatmost c!|I]'.

Theorem 2.4.24. Let aq, as, ..., a; be a basis over F for the centre of a finite-
dimensional semi-simple associative algebra A over a perfect field F', and let ¢ > 0,
such that F' contains at least [(2l — 1)c distinct elements. Let I C F such that
|[I| =1(2l — 1)c. If m1, 12, ..., m are chosen randomly and independently from the
set I, then the probability that the element a = a1m1 + asn2 + - -+ + a;m; cannot
be used to generate the central primitive idempotents of A, using the algorithm
“Extraction of Idempotents”, is at most 1/c.

Proof. This follows immediately from Theorem 2.4.20, Lemma 2.4.22, and from
Proposition 2.4.23. =

We use this result to obtain the algorithm on the following page.

Theorem 2.4.25. Let F be an infinite perfect field, and let € > 0, and suppose A C
M xm(F') is a finite-dimensional semi-simple associative algebra of dimension n
over F'. Let I be a subset of F of size [n(2n—1)e~!]. Then the algorithm “Simple
Components via Primitive Elements” can be used to compute bases for the simple
components of A, or to report failure, using arithmetic-Boolean circuits over F'
(with oracle nodes for factorisation of squarefree polynomials in F'[t], and for the
selection of random elements of I), of depth O(log?(nm)) and size (nm)°M), plus
the cost of selecting at most n random elements from [in parallel, and the cost
of factoring a single squarefree polynomial, with degree at most n, in F[t]. The
probability of failure is less than e.

Proof. The correctness of the algorithm, and the upper bound on the probability of
failure, are consequences of Theorem 2.4.24. The timing analysis is straightforward.
]

107

Algorithm Simple Components via Primitive Elements

Input. e Integers n, m > 0.

e Matrices ay, ag, ..., Gy € My, xm(F'), which form the basis for a
finite-dimensional semi-simple associative algebra A C M,y (F)
of dimension n over F.

e Error tolerance ¢ > 0.

Output. EITHER:

e Integer k > 0, the number of simple components of A.

e Integers ni, no, ..., ng > 0, with ny +ngo +--- +ng = n,
such that n; is the dimension of simple components B; of A.

e Elements p;5; of F', for 1 <i¢ <k, 1<j<m;,and1<1<n,
defining elements b; ; = >, p; j1a; of A such that

(1) b1, bia, ..., bin, is a basis for the simple
component B; over F', and hence
(2) b11, ..., bgn, is a basis for A over F.
e Matrices ¢; j € M, xn,; (F), such that ¢;1, ¢i2, ..., Cin,

is the basis for a matrix algebra isomorphic to B;, for 1 <i < k.
OR: failure, with probability less than e.

Compute a basis ay, as, ..., a; for Centre(A) over F.
Choose elements A1, Ao, ..., \; randomly and independently from
a subset I of F, of size [1(2] —1)e~1].
Compute the minimal polynomial in F'[¢] of the element
a = A1G1 + AoGo + - -+ + Nag of Centre(A).
If this polynomial has degree less than [, report failure.
Otherwise, perform steps 4-5.
Use the algorithm “Extrac