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Abstract.

This thesis is an examination of several problems which arise in the structure theory
of associative algebras and matrix representations of groups, from the standpoint
of computational complexity.

We begin with computational problems corresponding to the Wedderburn decom-
position of matrix algebras over a field — the computation of a basis for the radical,
of bases for the simple components of a semi-simple algebra, and the expression of
a simple algebra as a full matrix ring over a division algebra. Building on the work
of Friedl and Rónyai, we present a simple and efficient probabilistic algorithm for
the computation of simple components of a semi-simple algebra. We also present
probabilistic algorithms for the decomposition of simple algebras over C and R.
If the inputs for these problems are algebraic numbers, and are represented as el-
ements of a single number field, then the decompositions can be performed using
exact (symbolic, rather than numerical) computations, in polynomial time and with
small probability of failure. We also note that these computational problems cannot
be solved reliably by strictly numerical methods, when numerical approximations of
arbitrary real or complex numbers are allowed as input: the corresponding decision
problems are undecidable.

It is well known that the problems of decomposing matrix algebras and of decom-
posing matrix representations of finitely generated groups are closely related. We
state formal reductions between these computational problems in order to obtain
efficient algorithms for the problem of deciding whether a matrix representation is
completely reducible, for the computation of isotypic components of a completely
reducible matrix representation (Serre’s “canonical decomposition”), and for com-
putation of a set of irreducible components of a completely reducible representation
over C and over R (Serre’s “explicit decomposition”). Again, we obtain efficient
probabilistic algorithms for exact solutions of problems, where previous algorithms
have computed numerical estimates.

We continue by considering the computation of character tables (and single entries of
these tables) for various classes of groups. We provide analysis of (slightly modified)
algorithms which have been observed to perform well in practice. In particular,
we analyse Burnside’s method, to conclude that a character table over C can be
computed from a Cayley table for G, using time polynomial in the number n of
elements of G. Examining a generalisation of Dixon’s method, we show that a
character table for G over C can also be computed using space polylogarithmic in n
and time polynomial in n — or, in parallel, using time polylogarithmic in n, with
a polynomial number of processors. We analyse a combinatorial method for the
computation of an entry of the character table of the symmetric group Sn over C
to show that this problem is in PSPACE. We also note that, in the worst case, this
algorithm requires time in Ω(22b

√
nc/b
√
nc).
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Introduction.

This thesis is an examination of several problems in the structure theory of associa-
tive algebras and matrix representations of groups from the standpoint of compu-
tational complexity. The algebraic theory suggests numerous computational prob-
lems; we find applications for these problems in areas including crystallography and
atomic and nuclear spectroscopy. No provably correct and efficient algorithms are
known for some of these problems. In other cases, we have algorithms which have
been observed to perform well in practice, but whose worst case (or average case)
performance have not been analysed — at least, not by the standards of complexity
theory. Our goals, then, include the discovery of new, provably efficient algorithms
for these problems, or the analysis and (where possible) improvement of existing
algorithms. We also look for reductions between problems, allowing us, in some
cases, to conclude that problems are intractable — that no efficient algorithms for
them exist.

We examine algorithms which perform exact computations — which accept “sym-
bolic” representations of inputs such as integers, rational numbers, or (more gen-
erally) algebraic numbers, and which return symbolic representations of outputs.
Such algorithms are of use if we have available “symbolic” representations of our
inputs — and this is the case for problems such as the analysis of the regular ma-
trix representation, or the computation of the character table over C, of a finite
group (such as the symmetry group for a physical system), and for a number of
problems concerning the computation of characters of linear and other continuous
groups. The symbolic outputs returned by these algorithms can be used to obtain
numerical estimates of the real or complex numbers being represented of arbitrarily
high accuracy. Unlike fixed precision numerical estimates, these symbolic represen-
tations can also be used reliably to determine the sign of small real numbers, and
to decide whether such a number is nonzero.

We should note that our condition that exact representations of inputs be available
(so that these symbolic methods are applicable) will be unrealistic in many cases.
Clearly, we should also look for algorithms which accept numerical estimates of
inputs (preferably, with a bound on the error in these estimates also stated), and
which either return accurate estimates of the outputs (again, with a bound on error
provided) or indicate that such estimates cannot be determined from the inputs,
as is the case, for example, when we attempt to solve a system of linear equations
which is numerically singular. Such algorithms would be applicable to problems for
which exact representations of inputs are not easily obtained; we suspect that these
algorithms would also be more efficient than corresponding symbolic methods. A
variety of numerical algorithms for the problems we discuss have been proposed; we
leave the job of proving that these algorithms are correct and efficient (as described
above), or of finding better numerical algorithms, for further work.
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The first problem we face, when considering symbolic computations for these alge-
braic problems, is that of choosing a model of computation in which we can consider
exact computations for problems (and, in particular, which allows us to solve de-
cision problems involving “zero tests” correctly) while considering computations
for matrix algebras and representations of groups over R and C — those problems
which arise most often in physical applications. As we note in Section 1, strictly
numerical computations are not sufficient for the correct solution of some intuitively
simple problems. For example, we cannot decide reliably whether the polynomial
x2 + ε is squarefree or irreducible in R[x], given only a numerical estimate for a
(small) real number ε. On the other hand, we cannot represent an arbitrary real
or complex number uniquely using a finite string of 0’s and 1’s. We deal with this
problem by assuming that our inputs are algebraic numbers (whose minimal poly-
nomials over Q are known). We note again that this is a nontrivial restriction: it
implies that transcendental numbers such as π and e cannot be included in the
input for the problems considered. However, we can still consider (and solve) the
problems associated with finite and continuous groups mentioned above. Again, we
cannot guarantee reliable solutions for the associated problems using arbitrary real
or complex numbers as inputs, by strictly numerical methods.

The model of computation is discussed in detail in Section 1. We also note that
several problems with efficient solutions over number fields (in particular, the solu-
tion of systems of linear equations, and the factorisation of univariate polynomials)
can also be solved efficiently under this model. The results require very minor mod-
ifications of proofs which have appeared elsewhere; we include them here because
we make repeated use of these operations (in our nonstandard model) later in the
thesis.

Section 2 of the thesis is concerned with the decomposition of matrix algebras —
specifically, the computation of a basis for the radical of a matrix algebra; the com-
putation of bases for the simple components of a semi-simple matrix algebra; and
the decomposition of a simple algebra (that is, the expression of the algebra as a full
matrix ring over a division algebra). We consider both Boolean computations over
“concrete” fields, such as finite fields, number fields, and (for the model described
in Section 1) over C and R, and arithmetic (or “algebraic”) computations over a
more general class of fields (namely, over perfect fields).

We build on the work of Friedl and Rónyai [43], and of Rónyai [102]–[104]. After re-
viewing their algorithms for the computation of the radical, and for the computation
of simple components of semi-simple matrix algebras over finite fields and number
fields, we present an alternative (deterministic) algorithm for the computation of
simple components of semi-simple algebras over number fields (and a corresponding
probabilistic algorithm over finite fields), eliminating the computations over field
extensions required by Friedl and Rónyai’s algorithm. We also present a probabilis-
tic algorithm for this problem, which minimises the use of factorisation (the most

2



expensive part of the algorithm). In particular, we show that with high probability,
it is sufficient to factor a single squarefree polynomial, and solve small systems of
linear equations, in order to solve this problem. Since the problem of factoring
squarefree polynomials is easily shown to be (NC2) reducible to this problem, this
is in some sense the best we can do. We then show how these algorithms can be
applied to decompose algebras over R and C.

We also consider the decomposition of simple algebras. Rónyai has presented an
efficient algorithm for this problem for algebras over finite fields, as well as evi-
dence that the problem is intractable, for decompositions of algebras over Q (see
[103], [104]). In contrast, we present efficient probabilistic algorithms (again, using
exact, rather than numerical computations, assuming inputs are algebraic) for the
decomposition of simple algebras over C and R. Previous iterative (numerical) al-
gorithms for these problems may compute values whose “symbolic” representations
have length exponential in the input size, when used to decompose algebras over R
or C.

In Section 3 we examine computations for matrix representations and characters of
groups over fields. We begin with problems for which little or no information about
the underlying group is available, and move on to problems for which we have more
information about the structure of the group — and to problems for special classes
of groups.

We begin by considering computations for matrix representations of arbitrary
finitely generated groups. As in Section 2, we consider the decomposition of struc-
tures — in this case, of matrix representations, given the matrix representing each
one of a set of generators for the underlying group. As in Section 2, there are three
stages in the decomposition of these structures: the problem of deciding whether a
matrix representation is completely reducible; of computing the “isotypic” compo-
nents of a completely reducible representation (Serre’s “canonical decomposition” of
the representation); and of computing a set of irreducible components of an isotypic
representation (Serre’s “explicit decomposition”). These problems are known to be
closely related to the computational problems (for matrix algebras) of Section 2 —
Gabriel ([45]–[49]) decomposes matrix representations by examining related matrix
algebras. While we cannot use the algorithm he presents for (polynomial-time)
symbolic computations, we use his ideas to obtain formal reductions between the
problems of Sections 2 and 3, in order to apply the results and algorithms of Sec-
tion 2 to the problems for matrix representations of groups. In addition, these
reductions can be used to conclude that Rónyai’s negative results, for the decom-
position of simple algebras over Q, are applicable to the problem of computing
irreducible components over Q of a matrix representation for a finitely generated
group. (That is, assuming the extended Riemann Hypothesis, and allowing proba-
bilistic polynomial time reductions, we can conclude that this problem is as difficult
as that of factoring squarefree integers.)
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Having seen that these computational problems for matrix representations are as
difficult as the corresponding problems for matrix algebras, we show that a related
problem — deciding whether two matrix representations over Q for a group G
are equivalent — is provably easier than the corresponding problem for matrix
algebras (again, assuming the extended Riemann hypothesis, and that factorisation
of squarefree integers is difficult).

We next examine computations for matrix representations and characters of fi-
nite groups. We provide analysis for standard algorithms for the computations of
character tables over C — Burnside’s algorithm, and Dixon’s modification of this
method. We also present a third (new) algorithm, which we obtain by making a fur-
ther modification to Dixon’s algorithm. Part of this job is very easy: the standard
methods generate character tables by factoring polynomials (over number fields and
over finite fields, respectively), and solving systems of linear equations. We need
only apply subsequent results about the complexity of these operations in order to
conclude that Burnside’s algorithm can be used to compute a character table using
time polynomial in the size of the of the group. The analysis of Dixon’s method
is slightly more challenging; we apply results concerning the size of the smallest
prime in an arithmetic progression in order to prove that Dixon’s algorithm uses
time polynomial in the input size in the worst case. Unfortunately, it appears to be
necessary to apply results which assume the extended Riemann hypothesis if we are
to prove that Dixon’s algorithm has running time bounded by a polynomial function
of the input size with small degree. While the new algorithm we present may con-
ceivably be slightly less efficient than Dixon’s original algorithm in the worst case,
we note that it can be proved to be practical, in that its running time is bounded
by a small degree polynomial function of the input size, as well as asymptotically
efficient, without recourse to any unproved number theoretic hypotheses. We also
note that Dixon’s algorithm (and our new algorithm) can be implemented using a
uniform family of Boolean circuits of size polynomial, and depth polylogarithmic,
in the number of elements of the input group G. Thus, the problem of computing
a character table over C from a Cayley table of a finite group is in NC.

We conclude by examining computations of characters for two special classes of
groups: the symmetric groups, and the general linear groups. The additional in-
formation we have about the structure of these groups, and the nature of their
representations and characters, has been used to design more efficient algorithms
for the computations discussed above. However, it also allows us to pose new, much
more difficult problems. The literature on computations for these problems is vast;
in Section 3.4, we scratch the surface by giving a brief introduction to some of
these problems and the algorithms commonly used to solve them. A straightfor-
ward analysis of one such algorithm is used to show that one of these problems is in
PSPACE. Similar analyses can be used to prove that related problems are also in
this complexity class. We also give a lower bound for the worst case running time
for one of these algorithms: we show that a commonly used combinatorial method
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for the computation of entries of the character table of the symmetric group Sn
computes Ω(22b

√
nc/b
√
nc) intermediate values in order to generate a specific entry

in this table; in contrast, the input for this problem has size O(n log n).

We should acknowledge a number of sources. The texts of Curtis and Reiner [31],
Serre [112], Jacobson [67], [68], and van der Waerden [117], [118] present the math-
ematical foundations on which our computational problems are based — and oc-
casionally provide constructive proofs which are easily converted to algorithms for
these problems. Friedl and Rónyai [43], and Rónyai [102]–[104] have previously
considered some of the problems we discuss from the point of view of computa-
tional complexity; we make use of their techniques and build on their algorithms.
Much of the literature on computational group theory deals with these problems,
presenting algorithms which have been observed to perform well in practice, and,
less frequently, with formal proofs of correctness and efficiency. In particular, we
have made use of the work of Dixon [34], [35] and Gabriel [45]–[49] when consid-
ering computations for matrix representations and character tables of groups. The
surveys of Butler [16], Cannon [17], and Neubüser [93] include discussions of al-
gorithms for the computations of character tables; the bibliography of Felsch [40]
of papers in computational group theory has also been useful. Finally, we should
note that discussions of the physical applications of group theory often discuss the
computations of characters, and the decomposition of matrix representations, for
finite and continuous groups. We have made use of the very readable discussions
of the representation theory of the symmetric groups and of the linear groups, of
Hamermesh [61] and Wybourne [119]. Leech and Newman [79] also discuss the
physical applications of the algebraic problems we consider.
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1. Symbolic Computations

In this section, we provide those details about the model of computation and the
representation and manipulation of elements of various fields which are to be dis-
cussed in later sections. The model of computation is discussed in Section 1.1. In
Section 1.2, we describe the representation of elements of various domains to be
used for Boolean computations. We also discuss “arithmetic” representations of
elements of field extensions. Sections 1.3–1.6 deal with computations which arise
frequently in the rest of the thesis: the solution of a system of linear equations over
a field, and the factorisation of a univariate polynomial over a field.

Most of this material is standard and is included for the sake of completeness. There
are a few minor exceptions: We note in Section 1.4 that Landau’s algorithm for the
factorisation of polynomials over number fields can be adapted to produce an “arith-
metic” reduction from the factorisation of polynomials whose coefficients lie in an
algebraic extension of a perfect field F to factorisation of polynomials in F [x], and
that a similar reduction can be obtained for the squarefree decomposition of polyno-
mials (see [76] for Landau’s algorithm). In Section 1.5, we show that algorithms for
the isolation of complex roots of integer polynomials can be applied to isolate the
complex roots of a polynomial whose coefficients lie in an arbitrary number field.
These extensions of results are routine (and are of little interest on their own). The
method of representing algebraic numbers within R or C (introduced in Section 1.2
and used in Section 1.6) may be of more interest. It is based on the method used by
Collins and his collaborators for quantifier elimination over real closed fields (in [24],
[4]), but permits the representation of nonreal algebraic numbers. We show in later
sections that it is more useful for the problems we discuss than numerical methods
for representing members of R or C.
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1.1. Models of Computation

We begin by specifying the (standard) models of computation and measures of costs
which we have in mind when describing algorithms for algebraic problems. When
specifying algorithms in the rest of the thesis, we will generally use a high level
(“Pascal-like”) language, leaving out the details of implementing these algorithms
in the models described below.

Many of the problems we examine use elements of some (arbitrary) field F as
input, and produce elements of this field as output. The arithmetic complexity of
an algorithm for such a problem is independent of both the representation of field
elements and the implementation of field arithmetic. Field operations (+, −, ×,
and ÷), “zero tests” (taking a single element α ∈ F as input and producing the
Boolean value true if α = 0, and false otherwise), and “selections” (between two
field elements on the basis of a third, Boolean, input) are all considered to have unit
cost. Hence, we count the number of these steps which are performed in order to
measure the (sequential) time used by an algorithm. When measuring (sequential)
space, we count the number of field elements stored. Time and space are measured
as functions of the number of (field) inputs for the algorithm.

We also consider the sequential Boolean complexity of algorithms for problems over
specific fields (such as finite fields, Q, algebraic number fields, R, and C). We as-
sume that field elements are processed as strings of Boolean values (“bits”). We
count the number of Boolean operations (∧, ∨, and ¬) performed when measuring
(sequential) time, and count the number of bits which must be stored when mea-
suring (sequential) space. Time and space are measured as functions of the length
of the input — that is, the number of bits used to represent the input. The Boolean
complexity clearly depends on the method of representation of field elements, and
the implementation of field arithmetic — and hence on the field over which we are
computing. It provides a more realistic measure of complexity for algorithms over
specific fields.

We use a random access machine (RAM) as our model of complexity when consider-
ing the sequential complexity of algorithms and problems. Random access machines
(for integer and Boolean computations) are discussed in detail by Aho, Hopcroft,
and Ullman [3]. For the reader unfamiliar with this concept, imagine an abstraction
of a general purpose computer, with an unbounded random access memory and a
finite set of data and address registers. When discussing Boolean computations, we
assume that each data register and each memory location can contain a single bit,
each address register can contain a memory address, and that the instruction set
includes instructions for input and output of bits, storage and retrieval of values
between the registers and memory, and the Boolean operations discussed above.
When discussing arithmetic complexity over some field F , we add a second set of
registers and memory locations which can contain elements of the field F , as well as
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instructions for input, output, and storage of field elements and for the arithmetic
operations described above.

We are interested in the parallel complexity of algorithms and problems as well.
That is, we wish to consider the cost of implementing an algorithm when a large
number of processors can work together. It is customary to consider the parallel
time and the number of processors used when measuring parallel complexity (rather
than time and space, as for sequential computations). Again, we take an “algebraic”
or “structured” approach, assuming that a single processor can perform any field
operation in a single time step, in order to measure the parallel arithmetic complex-
ity of an algorithm; or we can take an “unstructured” approach by measuring the
parallel Boolean complexity of a computation over a specific field, assuming that
each processor can perform a Boolean operation in constant time. As in the sequen-
tial case, the (parallel) Boolean complexity will provide a more realistic measure of
complexity for algorithms over specific fields.

We use families of circuits as our model of parallel computation. An algorithm is
represented by a family of circuits, with one circuit for each possible input size.
Each circuit is an acyclic directed graph, with operations labeling nodes, and with
edges between nodes representing flow of data. The depth of the circuit — the
length of the longest directed path in the circuit — is a measure of the parallel
time required by the algorithm, while the width of the circuit measures the number
of processors used. We use families of arithmetic-Boolean circuits as our model
of parallel arithmetic computation; these are discussed in more detail by von zur
Gathen [54]. We use families of Boolean circuits for our model of parallel Boolean
computation; these are discussed by Cook [28].

One difficulty with the circuit model of computation is that it is a nonuniform
model. Different circuits are required for different input sizes; if we make no re-
strictions on the type of circuits allowed, then we can find families of circuits which
solve unreasonably hard (in some cases, undecidable) problems. We overcome this
problem by considering uniformity conditions — restrictions on the resources which
can be used to construct the nth circuit of a circuit family. Unless stated otherwise,
families of circuits discussed in this thesis are log-space uniform, or L-uniform: a
description of the circuit for input size n can be constructed using space O(log n).
We will also consider families of circuits which are polynomial-time uniform, or
P-uniform: families for which a description of the circuit for input size n can be
constructed using time nO(1). Uniformity criteria are discussed in more detail by
von zur Gathen [54] (for families of arithmetic-Boolean circuits), and by Cook [28],
and Ruzzo [106] (for families of Boolean circuits).

In some cases we will not obtain an efficient algorithm for a problem P1. Instead,
we will show that it could be solved efficiently, if we had an efficient algorithm for a
second problem, P2. Formally, we exhibit a reduction from P1 to P2, by producing
an algorithm for P1 which requires the solution of one or more instances of P2, and
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which is efficient — assuming that these instances of P2 can be solved quickly. We
use families of oracle circuits — families of arithmetic-Boolean or Boolean circuits
which include oracle nodes solving instances of the problem P2 — as a model for
these reductions. Again, these are discussed in more detail by von zur Gathen [54]
and by Cook [28].

We should also note that some of the algorithms to be discussed are probabilistic,
rather than deterministic. A positive “error tolerance”, ε, is included as part of
the input. Probabilistic Boolean algorithms use a source of random bits (charging
unit cost for each bit used), while probabilistic arithmetic algorithms make ran-
dom choices from a finite subset of the ground field (whose size may depend on the
error tolerance). Probabilistic algorithms associate to any input a probability dis-
tribution of possible outputs; a probabilistic algorithm is considered to be correct
if it computes a valid output (rather than returning an invalid one, or reporting
failure) with probability at least 1− ε. (In fact, the probabilistic algorithms to be
discussed here will report failure, rather than returning an invalid answer.) Clearly,
efficient deterministic algorithms are preferable to probabilistic algorithms; how-
ever, we will consider some problem for which the only efficient algorithms known
are probabilistic.

In general, we consider “exact”, or “symbolic” solutions of algebraic problems,
rather than “numeric” solutions. We assume that inputs specify unique field values
(unlike floating point approximations of real numbers). For example, the ratio-
nal number 1

3 is represented by the ordered pair of integers (1, 3), rather than an
approximation such as 0.3333333. Arithmetic is exact. This approach has sev-
eral advantages: We can avoid numerical considerations such as the possibility of
overflow or underflow of values, or the effect of rounding error on the accuracy of
calculations. Because arithmetic is exact, the task of proving correctness of our
algorithms is simplified. When we perform computations over R or C, we produce
“symbolic” output which can be used to generate decimal approximations of ar-
bitrarily high accuracy. The disadvantage of this approach is the high overhead
required for exact computations. We discuss representations and algorithms for
exact arithmetic over fields in Section 1.2.
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1.2. Symbolic Computations Over Fields

We consider the “exact” representation of field elements, and the cost of arithmetic,
for several fields. With the exception of our representation of (algebraic) complex
numbers, all the representations discussed here are standard.

We first consider Boolean computations.

(i) F = Q. The rational number a
b (a, b ∈ Z, b > 0) is represented by the ordered

pair (a, b). For sequential computation, it is usually assumed that integers a
and b be relatively prime, since the computation of the greatest common divisor
of a numerator and denominator, and division of each by this divisor, can be
performed efficiently. We do not make this restriction when considering parallel
computations, because no efficient parallel algorithm for the computation of this
greatest common divisor is known.

Sequential algorithms for arithmetic (+, −, ×, ÷) over Q are discussed by
Collins, Mignotte, and Winkler [27]. Aho, Hopcroft, and Ullman [3] discuss the
time required for integer arithmetic. They state results which imply that ad-
dition, multiplication, and division of rational numbers having representations
of length N can be performed using O(N log2N log logN) Boolean operations;
see also Knuth [74]. If we drop the requirement that the numerator a and the
denominator b of a rational number a/b be relatively prime, then this can be
reduced to O(N logN log logN) Boolean operations. Savage [107] gives algo-
rithms for addition and multiplication of N -bit integers which can be used to
obtain arithmetic-Boolean circuits of size NO(1) and depth O(logN) for addi-
tion, multiplication, and division of rational numbers.

(ii) Algebraic Number Fields. These are fields F = Q[α], where α is a root of some
monic integer polynomial. Suppose f = f0 + f1x + · · · + fn−1x

n−1 + xn is
the minimal polynomial of α (that is, the integer polynomial of lowest degree
having α as a root); if α is the root of any monic integer polynomial, then its
minimal polynomial will also be monic. The field Q[α] is isomorphic to the field
Q[x]/(f), and has a basis

1, α, α2, . . . , αn−1

over Q. Thus an arbitrary element γ of F can be represented by a set of rational
numbers g0, g1, . . . , gn−1 such that

γ = g0 + g1α+ · · ·+ gn−1α
n−1.

Using this representation, we implement arithmetic over F by implementing
arithmetic for polynomials over Q.

The field description consisting of the degree and coefficients of f does not
include information needed to distinguish between α and the other roots of f .
While it identifies Q[α] uniquely up to field isomorphism (since Q[α] ∼= Q[α̂] if α
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and α̂ are both roots of an irreducible polynomial f ∈ Q[x]), it does not identify
Q[α] uniquely in C. Following the approach used by Collins et al ([24], [4]), we
make this identification unique by adding information which isolates α from its
conjugates: We add representations of four complex numbers (each of the form
a + b

√
−1 for a, b ∈ Q) forming a rectangle in the complex plane with edges

parallel to the real and imaginary axes, so that this rectangle encloses α, and
includes no other roots of f . (We use these isolating rectangles instead of the
isolating intervals in the real line used by Collins, since we allow α to be an
arbitrary algebraic number.) Pinkert [96] shows that such standard rectangles,
which isolate each of the roots of f , can be computed from the coefficients of f
in polynomial time. Such a rectangle can be refined (again, using the coefficients
of f , in polynomial time) to produce decimal approximations of the roots of f
to arbitrarily high accuracy. Hence we can use a standard rectangle for α,
and the rational numbers g0, g1, . . . , gn−1 described above, to compute decimal
approximations of an element γ ∈ Q[α] of arbitrarily high precision.

Sequential algorithms for arithmetic over algebraic number fields are discussed
by Loos [87]. Parallel algorithms for arithmetic can be obtained from parallel
algorithms for polynomial arithmetic over Q. We will discuss these further when
we consider arithmetic over field extensions. Pinkert’s results, and other results
for complex root isolation, are discussed by Collins [25].

(iii) F = R and F = C. It is easy to show that we cannot represent “arbitrary”
elements of these (uncountable) fields using finite sequences of bits. If we are to
perform computations over these fields, we must either settle for the computation
of numerical approximations, or restrict attention to a relatively small set of
instances of our computational problem, in order to guarantee that all values
computed have exact representations. We take the latter approach, considering
only real and complex numbers which are algebraic over Q — that is, which are
roots of integer polynomials. Further, we assume that inputs for algorithms are
represented as elements of some number field Q[α], as described above. This
will be sufficient for the computations to be considered. In particular, we will
see in Chapter 3 that every linear representation of a finite group over R or C
is isomorphic to a matrix representation, where all matrix entries are elements
of such a number field.

For algorithms using only field arithmetic (+, −, ×, and ÷), it will follow that
intermediate values and outputs will also lie in the number field Q[α]. However,
several of the algorithms we present include factorisation of polynomials over R
and C. This operation generally produces real (or complex) values lying outside
the number field Q[α]. The outputs will be algebraic — they will belong to some
larger number field Q[β]. Unfortunately, the degree of the extension Q[β] over Q
(and the size of a “field description” for this number field) will generally be expo-
nential in the size of the input. We produce a representation which identifies the
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outputs of our algorithms exactly, which can be computed efficiently, and which
can still be used to produce arbitrarily close decimal approximations of the out-
puts, by representing these values as elements of an extension Q[α1, α2, . . . , αk],
where each of the generators α1, α2, . . . , αk is an algebraic number represented
by its minimal polynomial and an isolating rectangle in the complex plane. This
scheme has an undesirable property: Algorithms for arithmetic over extensions
of Q of this form are more complicated (and generally more expensive) than algo-
rithms for the same computations in simple extensions of Q. Note, for example,
that the problem of deciding whether an arbitrary element of Q[α1, α2, . . . , αk]
is zero is nontrivial. Fortunately, the problems we consider generally decompose
algebras into several components — and our algorithms embed each component
in a different “simple” extension of the ground field. Thus, we can examine
(and process) each of these components separately, without using arithmetic
over more “general” (and complicated) algebraic extensions.

This is not the most general method of representing elements of R and C. An
approach which is closer to the standard use of floating point approximations
is to represent a real number α (respectively, complex number) by a sequence
α1, α2, . . . of elements of Q (respectively, of Q[

√
−1]) such that |α−αn | < 2−n

for all n ≥ 0. This representation by sequences is discussed in detail by Bishop
and Bridges [12]. The complexity theory of this representation has been devel-
oped by a number of authors, including Ko and Friedman [75], and Hoover [63].
This representation has the advantage of admitting (some) real and complex
numbers which are not algebraic over Q — such as π and e. Unfortunately,
several basic problems (such as testing equality of real numbers) become in-
tractable, or even undecidable, when this method of representation is used. We
sacrifice some generality by considering only algebraic numbers. However, these
will be sufficient for our purposes — and we will obtain efficient algorithms for
problems in representation theory by doing so.

(iv) Finite fields. Elements of the prime field Fp (for prime p > 0) can be represented
as integers between 0 and p− 1. Elements of the field Fpl can be represented in
several ways. In general, we use the isomorphism Fpl

∼= Fp[x]/(f) (for f ∈ Fp[x]
irreducible with degree l), and represent elements of Fpl by polynomials of degree
less than l with coefficients in Fp.

Sequential algorithms for arithmetic over finite fields are discussed by Collins,
Mignotte, and Winkler [27]. Applying the results for integer arithmetic discussed
in Aho, Hopcroft, and Ullman [3], we see that for the above representation, we
can perform addition in a finite prime field Fp using O(N) Boolean operations,
for input size N ; multiplication can be performed using O(N logN log logN)
Boolean operations; and division over this finite field can be performed using
O(N log2N log logN) Boolean operations. No efficient (polylogarithmic depth)
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parallel algorithm is known for inversion of elements of Fp using this represen-
tation of field elements; we obtain efficient parallel algorithms by using a more
general representation of elements of Fp by numerator-denominator pairs. Now
basic arithmetic over Fp is similar to arithmetic over Q. We need only find an
efficient algorithm for integer division with remainder (by the characteristic p)
to obtain efficient parallel algorithms for arithmetic. Reif [100] presents such an
algorithm; this can be used to obtain L-uniform families of Boolean circuits of
size NO(1) and depth O(logN log logN) (for input size N) for addition, multi-
plication, and division over Fp. An algorithm for integer division with remainder
presented by Beame, Cook, and Hoover [7] can be used to obtain P-uniform fam-
ilies of Boolean circuits of size NO(1) and depth O(logN) for these problems.
Parallel algorithms for arithmetic over Fpl (for l > 1) will be discussed after we
consider arithmetic over field extensions (see also Eberly [38]).

We now consider the cost of arithmetic over a primitive algebraic extension of a field
— that is, an extension which is generated over the ground field by a single element.
We consider only the “symbolic” part of computations. The task of maintaining
numerical estimates of values being computed, in order to embed these elements
in R and C, is considered in Sections 1.3–1.6.

Suppose now that E and F are fields, with E ∼= F [t]/(f), for some irreducible poly-
nomial of degree n in F [t]. We represent elements of E by polynomials in F [t]
with degree less than n: an element γ of E is represented by the coefficients
gn−1, gn−2, . . . , g1, g0 ∈ F of a polynomial

g = gn−1t
n−1 + gn−2t

n−2 + · · ·+ g1t+ g0 ∈ F [t]

such that γ = g(α), where α is some (fixed) root of f in E.

We implement arithmetic over E using polynomial arithmetic in F [t]. We first
consider arithmetic computations over the ground field F . Addition over E can be
implemented using addition of polynomials in F [t] with degree less than n. Clearly,
n additions in F (in parallel, using an arithmetic-Boolean circuit of linear size and
constant depth) are sufficient. Multiplication is slightly more complicated: if we
multiply two polynomials in F [t] with degree less than n, the product could have
degree as large as 2(n − 1). Hence we must divide the result by f and use the
remainder as the representation of our product (in F [t]/(f)). To divide an element
γ1 by an element γ2 of E, we compute the reciprocal γ−1

2 of γ2 in E, then perform
multiplication (by γ1) in E. If γ2 = g(α) for a polynomial g ∈ F [t] with degree less
than n, then γ−1

2 = h(α), for some polynomial h ∈ F [t] with degree less than n
such that gh ≡ 1 (mod f) in F [t]. Thus the extended Euclidean algorithm can
be applied (using inputs g and f) to compute the polynomial h, and to invert the
element γ2 of E.
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If we use the standard (simple) algorithm for multiplication of polynomials, then
we can conclude that the product of two polynomials in F [t] with degree less than n
can be computed using O(n2) arithmetic operations in F . It can be shown that the
number of arithmetic operations required for division with remainder of polynomials
of degree n is the same, to within a constant factor, as the number required for
multiplication of degree n polynomials (see Chapter 8 of [3]). The number required
to compute the output of the extended Euclidean algorithm given polynomials f, g ∈
F [t] of degree n (that is, to compute gcd(f, g) and polynomials u, v ∈ F [t] such that
uf+vg = gcd(f, g)) is at most O(log n) times the number of operations required for
multiplication of polynomials of degree n (again, see Chapter 8 of [3]). Thus we can
conclude that we can implement multiplication and division in E using O(n2 log n)
operations over F . In fact, we can do better than this: a simple recursive algorithm,
using 3 multiplications of polynomials of degree n/2 to compute the product of
two polynomials of degree n, can be used to multiply polynomials of degree n
using O(nlog2 3) arithmetic operations in F — hence multiplications and divisions
in E can be performed using O(nlog2 3 log n) operations in F . If F contains an
nth primitive root of unity, so that a fast Fourier transform can be applied, then
the cost of arithmetic over E can be reduced to O(n log2 n) arithmetic operations
in F ; Schönhage [109] and Cantor and Kaltofen [18] show that this can be reduced
to O(n log n log log n) arithmetic operations over arbitrary fields, and to arbitrary
rings R for multiplication of polynomials.

We now consider parallel algorithms over F for arithmetic in E. As noted above, ad-
dition in E can be implemented using arithmetic-Boolean circuits of constant depth
and linear size. The standard algorithm for multiplication of polynomials in F [t] can
be used to obtain arithmetic-Boolean circuits of polynomial size and depth O(log n);
however, the standard algorithm for division with remainder requires polynomial
size and depth Θ(log2 n). Combining these, we obtain arithmetic-Boolean circuits
over F of polynomial size and depth Θ(log2 n) for multiplication in E. Reif [100] has
improved the result for polynomial division with remainder, presenting arithmetic-
Boolean circuits of depth O(log n) and polynomial size for this problem, assum-
ing the field F supports a fast Fourier transform. This restriction on F can be
eliminated, for computations by P-uniform families of arithmetic-Boolean circuits
(see Eberly [38] for details). Borodin, von zur Gathen, and Hopcroft [14] present
arithmetic-Boolean circuits of polynomial size and depth O(log2 n) computing the
output of the extended Euclidean algorithm, for polynomials in F [t] of degree n.
These can be used to obtain arithmetic-Boolean circuits over F of the same (asymp-
totic) size and depth for division in E.

We obtain efficient sequential Boolean algorithms for arithmetic over number fields
and finite fields Fpl (for l > 1) using the above “arithmetic” algorithms, and imple-
menting arithmetic over the prime field (Q or Fp) as discussed by Collins, Mignotte,
and Winkler [27]. We also obtain reasonably efficient parallel Boolean algorithms
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for arithmetic over Q[t]/(f) and over Fpl using a direct simulation. However, we in-
crease the depth of our circuits by a (small) multiplicative factor — we do not obtain
circuits with depth O(logN) (for input size N). We obtain L-uniform families of
circuits of depth O(logN log logN) and size NO(1) or P-uniform families of circuits
of depth O(logN) and size NO(1) for addition and multiplication, and circuits of
depth O(log2N) and size NO(1) for division, by adapting efficient Boolean circuits
for polynomial arithmetic over Q[t] or Fp[t]. For example, given α, β ∈ Q[t]/(f),
we compute the product αβ by performing computations with elements α̂, β̂ ∈ Q[t]
such that α = (α̂ mod f) and β = (β̂ mod f). We use efficient Boolean circuits
for multiplication of polynomials to compute the product α̂β̂ in Q[t]; we then use
efficient Boolean circuits for division with remainder of polynomials to compute
the desired output, αβ = (α̂β̂ mod f). Note again that we have efficient parallel
algorithms for these problems, provided that we represent a rational number by a
numerator-denominator pair of integers (a, b) with a and b not necessarily relatively
prime, and that we represent an element of Fp by a numerator-denominator pair
(a, b) with a, b ∈ { 0, 1, . . . , p − 1 }, b 6= 0. These methods are discussed in more
detail by Eberly [38]. For a discussion of efficient parallel algorithms for arithmetic
in Fpl without the above “redundant” representation of elements of Fp, when the
characteristic p is small (in particular, when p is polynomial in l), see Fich and
Tompa [41], Litow and Davida [85], and von zur Gathen [57].
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1.3. Solving Systems of Linear Equations

Many of the algorithms to be discussed in later sections will include the solution of
systems of linear equations. We now consider efficient algorithms for this problem.
These return the unique solution of a nonsingular system. For a singular system,
they either indicate that no solution exists, or produce a single solution together
with a basis for the null space of the coefficient matrix — so that all solutions are
indicated.

We discuss efficient arithmetic algorithms for this problem, as well as the use of these
algorithms to obtain efficient Boolean algorithms for computations over Q and over
finite fields. Since these “rational” problems can be solved over R or C by working
within the ground field containing the inputs, the methods for computations over
number fields can be applied directly to obtain solutions over these larger fields.
We also consider the solution of systems of linear equations over field extensions
in order to obtain arithmetic reductions from problems over field extensions to the
analogous problems over the ground field.

We first consider sequential computations over a field F . Using Gaussian elimi-
nation, we can solve a system of n linear equations in n unknowns using O(n3)
arithmetic operations. Surprisingly, this result is not optimal: Strassen [114] has
presented a recursive algorithm for this problem which used O(nlog2 7) arithmetic
operations. This bound has been improved repeatedly; the current best bound for
this problem is O(nω) arithmetic operations, for ω < 2.376 (Coppersmith and Wino-
grad [29]). Unfortunately, these asymptotically fast algorithms are not practical for
reasonable input sizes: Gaussian elimination (or, perhaps, a recursive algorithm
using Strassen’s method for large n and Gaussian elimination for smaller values)
remains the best known “practical” algorithm. Sequential arithmetic algorithms for
this and for related problems are discussed in more detail in Section 4 of the survey
of von zur Gathen [56].

We now consider parallel arithmetic computations. The first efficient parallel algo-
rithm for solution of a nonsingular system of n linear equations in n unknowns over
a field of characteristic zero was given by Csanky [30]. An algorithm for the solution
of nonsingular systems over arbitrary fields was given by Borodin, von zur Gathen,
and Hopcroft [14]. Simpler algorithms were later given by Berkowitz [9] and Chis-
tov [22]. All of these algorithms use a polynomial number of processors and parallel
time O(log2 n). The first known parallel algorithm for computation of the rank of
a matrix (over a real field) was given by Ibarra, Moran, and Rosier [65]. Borodin,
von zur Gathen, and Hopcroft [14] gave an efficient probabilistic algorithm for this
problem over arbitrary fields, and showed that the solution of arbitrary systems of
linear equations could be reduced to this problem and to the solution of nonsingular
systems. Finally, Mulmuley [91] gave an efficient deterministic algorithm for this
problem which was correct for arbitrary fields, proving that a polynomial number
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of processors, and parallel time O(log2 n), is sufficient for the solution of arbitrary
systems of n linear equations in n unknowns.

Standard bounds on the size of the determinant of an n × n matrix can be ap-
plied to show that the values computed using the above algorithms are small (see
Mignotte [89]). Thus efficient Boolean algorithms can be obtained from these arith-
metic algorithms in a direct manner. It is easy to see that we can use Boolean
algorithms to solve systems over prime fields using a polynomial number of pro-
cessors and depth O(log3N) (for input size N); systems over finite algebraic ex-
tensions of prime fields can be solved using a polynomial number of processors
and depth O(log4N). In fact, we can do better than this. Borodin, Cook, and Pip-
penger [13] showed that nonsingular systems of linear equations over Q can be solved
using a polynomial number of processors and depth O(log2N). We obtain circuits
of polynomial size and depth O(log2N) for solution of nonsingular systems of linear
equations over Fp by reducing this to the problem of computing determinants of
integer matrices, and applying the results of Borodin, Cook, and Pippenger [14].

The parallel algorithms discussed above require (many) more processors than the
number of steps used by the best sequential algorithms for these problems. Hence it
can be argued that they are impractical. Pan and Reif [94], and Galil and Pan [50],
give efficient parallel algorithms for the solution of nonsingular systems of linear
equations over Q, which use slightly more time (O(log3N) instead of O(log2N)),
but fewer processors, than the above algorithms. Their algorithms are provably as
efficient (to within a constant factor) as the best sequential algorithms.

We now consider the cost of solving systems of linear equations over primitive
extensions of fields. We obtain reasonably efficient algorithms for this problem by
a direct simulation of the “arithmetic” algorithms discussed above, implementing
arithmetic over the field extension using operations in the ground field as discussed
in Section 1.2. We obtain parallel arithmetic algorithms using less parallel time by
using a slightly different reduction to computations over the ground field.

Suppose first that F is an infinite field, and E = F [t]/(f), for some monic ir-
reducible polynomial f ∈ F [t] with degree n. Suppose also that we are given a
nonsingular system of m linear equations in m unknowns over the extension E.
Applying Cramer’s rule, we see that we can solve this system of equations at the
cost of computing determinants of m+ 1 matrices of order m over E (in parallel),
then performing a small amount of additional arithmetic in E. Suppose now that
we are given an m ×m matrix M with entries in E ∼= F [t]/(f). Since the polyno-
mial f has degree n, we see that there is a unique m×m matrix M̂ whose entries
are polynomials in F [t], each with degree less than n, such that M = (M̂ mod f).
Since the determinant of a matrix is a polynomial in the entries of the matrix, it
follows that

det M = ((det M̂) mod f).
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We also note that if the entries of M̂ have degree less than n, then det M̂ is a
polynomial in F [t] with degree at most m(n − 1). Hence the polynomial det M̂ is
uniquely determined by its value at m(n− 1) + 1 distinct points in F . Combining
these facts, we obtain the algorithm given below.

We note that polynomial interpolation in F [t] and polynomial division with remain-
der in F [t] can both be performed by solving nonsingular systems of linear equations
in F , of polynomial size. Hence this algorithm gives us a reduction from compu-
tations of determinants of matrices in E (and for solution of nonsingular systems
of linear equations in E) to computations of determinants in F , provided that F is
sufficiently large.

Algorithm Determinant via Evaluation-Interpolation.

Input. • Integers n, m > 0.
• The coefficients of a monic polynomial f ∈ F [t] of degree n,

which is irreducible in F [t].
• The entries ai j , 1 ≤ i, j ≤ n, of a matrix M ∈Mm×m(F [t]/(f)),

with entry ai j given by the coefficients
ai, j, n−1, ai, j, n−2, . . . , ai, j, 1, ai, j, 0 ∈ F , such that
ai j = ai, j, n−1t

n−1 + ai, j, n−2t
n−2 + · · ·+ ai, j, 1t+ ai, j, 0 mod f .

Output. • Values dn−1, dn−2, . . . , d1, d0 ∈ F such that
det M = dn−1t

n−1 + dn−2t
n−2 + · · ·+ d1t+ d0 mod f.

(1) Perform step 2 for distinct values γ0, γ1, . . . , γm(n−1) in parallel.
(2) Compute the determinant λh of the m×m matrix M̂(γh), with

entries âi j(γh) = ai, j, n−1γ
n−1
h + ai, j, n−2γ

n−2
h + · · ·+ ai, j, 0 ∈ F .

(3) Compute the coefficients of the (unique) polynomial d̂ ∈ F [t] with
degree at most m(n− 1) such that d̂(γh) = λh, for λh as computed
in step 2. Note that d̂ = det M̂ ∈ F [t].

(4) Use division with remainder of polynomials in F [t] (dividing d̂ by f)
to compute the values dn−1, dn−2, . . . , d1, d0 ∈ F such that
dn−1t

n−1 + dn−2t
n−2 + · · ·+ d0 ≡ d̂ mod f . Return these values.
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We would like to remove the restriction that our system of linear equations in E be
nonsingular. To do this, we consider computations of the rank of m ×m matrices
in E. Mulmuley [91] reduces this to the problem of computing determinants of
matrices whose entries are polynomials over E in (new) indeterminates x and y,
with degree at most 1 in x and at most 2n in y. If F is sufficiently large, then
we can use evaluation-interpolation to reduce this to the problem of computing
determinants of matrices over E. Hence we can reduce computations of the rank
of matrices in E to computations of determinants of matrices in F . We apply
reductions given by Borodin, von zur Gathen, and Hopcroft [14] to conclude that
arbitrary m × m systems of linear equations over E can be solved at the cost of
computing determinants in F — using arithmetic-Boolean circuits over F of depth
O(log2(mn)) and size polynomial in mn, if the field F is sufficiently large.

If F is a small finite field, then we cannot use evaluation-interpolation as described
above, because F does not include enough evaluation points. Instead, we solve the
problems discussed above using Boolean computations, using Boolean circuits of
polynomial size and depth O(log2(nm)). Since F is so small, we can also trans-
late our “arithmetic” inputs into corresponding Boolean representations, perform
Boolean computations to obtain Boolean representations of the desired outputs,
and then translate these back to “arithmetic” values — using arithmetic-Boolean
circuits of the size and depth stated above. Finally, we note that we can also solve
systems of m linear equations in m unknowns over a number field Q[t]/(f), or over a
finite field Fpl , using Boolean circuits of size NO(1) and depth O(log2N), for input
size N (see Eberly [37] for details). We summarise these results in the following
theorem.

Theorem 1.3.1.
(i) Let F be an arbitrary field, and let E = F [t]/(f) for some irreducible polyno-

mial f ∈ F [t] with degree n. Systems of m linear equations in m unknowns
over the extension E can be solved using arithmetic-Boolean circuits over F
of size (mn)O(1) and depth O(log2(mn)).

(ii) If F = Q[t]/(f) for an irreducible polynomial f ∈ Q[t], or if F = Fpl for some
prime p and for l > 0, then systems of linear equations over F can be solved
using Boolean circuits of depth O(log2N) and size NO(1), for input size N .
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1.4. Factoring Polynomials over Number Fields and Finite Fields

We now consider the squarefree decomposition of univariate polynomials, and the
factorisation of squarefree univariate polynomials, over a field F . Unlike the solution
of systems of linear equations over a field, these are not purely rational problems.
We do not have universal arithmetic algorithms for squarefree decomposition (over
all fields) or for factorisation; instead, we have (Boolean) algorithms for these prob-
lems over several classes of fields. We review these algorithms, for computations
over finite fields and number fields; computations over R and C are discussed in Sec-
tions 1.5 and 1.6. We also present reductions from the computation of squarefree
decompositions of polynomials over primitive extensions of a field F , and for fac-
torisation of squarefree polynomials over primitive extensions, to the corresponding
computations for polynomials over F , for a large class of fields.

There is actually more than one “squarefree decomposition” of a polynomial in F [x].
We use the definition of monotone squarefree decomposition and distinct power
decomposition stated by von zur Gathen [52]. Henceforth we choose gcd(f1, f2) to
be the unique monic polynomial of greatest degree dividing polynomials f1 and f2,
for f1, f2 ∈ F [x], at least one nonzero.

Definition 1.4.1. Let F be a field and let g ∈ F [x]. The polynomial g is squarefree
if there does not exist any polynomial h ∈ F [x] \ F such that h2 divides g. Let c
be the leading coefficient of g, and let h = (h1, h2, . . . , hs ) be a sequence of monic
squarefree polynomials in F [x] with hs 6= 1. We call h the monotone squarefree
decomposition of g if g = ch1h2 · · ·hs and hi+1 divides hi for 1 ≤ i < s. This
decomposition is unique, and h1 is called the squarefree part of g. We call h the
distinct power decomposition of g if g = ch1h

2
2 · · ·hss and gcd(hi, hj) = 1 for 1 ≤

i < j ≤ s. This decomposition is also unique.

There is an efficient sequential algorithm for the computation of squarefree decom-
positions of any polynomial f over a field of characteristic zero (namely, the com-
putation of the squarefree part of f as gcd(f, f ′)). Von zur Gathen [52] presents
a parallel algorithm for computation of the squarefree decompositions of polyno-
mials of degree n, which can be implemented using arithmetic-Boolean circuits of
size nO(1) and depth O(log2 n).

No such universal algorithm exists for fields of positive characteristic; the squarefree
part of a polynomial f over such a field can be a proper divisor of gcd(f, f ′). Von
zur Gathen [52] considers (parallel) algorithms for the squarefree decomposition of a
polynomial in Fpl [x] for any (fixed) finite field Fpl , and shows that the problem can
be reduced to that of computing large powers of elements of Fpl , and of computing
the greatest common divisors of polynomials in Fpl . It is clear that the methods he
describes can be used to obtain an efficient sequential (Boolean) algorithm for the
squarefree decomposition of polynomials over Fpl .
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Efficient parallel algorithms also exist for this problem. Suppose now that f ∈
Fpl [x], and that f has degree n. If p is small (in particular, if p ≤ n), then the
algorithm of Fich and Tompa [41] for exponentiation in Fpl can be combined with
the reduction given by von zur Gathen [52] to obtain an efficient parallel algorithm
for the computation of the squarefree part of f . Otherwise p > n, the squarefree part
of f is gcd(f, f ′), and the methods for fields of characteristic zero are applicable.
Again, an efficient parallel algorithm for the problem can be obtained. In particular,
the above methods can be applied to produce arithmetic-Boolean circuits over Fp
of size (nl)O(1) and depth O(log3(nl)) for squarefree decompositions of polynomials
of degree n in Fpl [x], assuming elements of Fpl are represented as polynomials with
degree less than l and with coefficients in Fp. No parallel algorithms have been
found which use arithmetic over Fpl (rather than Fp), with elements of Fpl treated
atomically, and which yield circuits of depth O(logk(nl)) for a constant k. If we
consider a weaker model of parallel arithmetic computation, arithmetic circuits
(which include operations +, −, ×, and ÷, but not zero tests or selections), then
it can be shown that no such algorithm exists. This negative result is discussed
by von zur Gathen [54], and by von zur Gathen and Seroussi [58]; it provides
evidence that squarefree decomposition is a problem for which the field Fpl must
be considered as a field extension (at least, if we are considering efficient parallel
computations).

Finally, we should note that the computation of squarefree decompositions of poly-
nomials in a field F , using only arithmetic in F , is actually impossible for some
fields. In particular, Fröhlich and Shepherdson [44] construct a field FS from an
arbitrary recursively enumerable set S ⊆ N such that arithmetic is effective, and
such that any algorithm which can be used to decide whether quadratic polyno-
mials in FS [x] are squarefree in FS [x] can also be used to decide membership of
natural numbers in the set S. If S is recursively enumerable but not recursive, then
it follows that neither of the problems of deciding membership in S, or of deciding
whether quadratic polynomials are squarefree in FS [x], is decidable.

Efficient sequential algorithms have also been developed for factorisation of square-
free polynomials over a large class of fields. Berlekamp [10] presented the first
polynomial time algorithm for factorisation of squarefree polynomials over finite
fields vwith small characteristic. In 1970, he also presented an efficient probabilistic
algorithm for factorisation over arbitrary finite fields (Berlekamp [11]). Rabin [99]
and Cantor and Zassenhaus [19] have each given alternative probabilistic algorithms
for this problem. The first polynomial time algorithm for factorisation of square-
free polynomials with coefficients in Q was presented by Lenstra, Lenstra, and
Lovász [82]. This was later generalised, to produce a polynomial time algorithm
for factorisation of squarefree polynomials with coefficients in algebraic number
fields (Lenstra [81] and Landau [76] give two different generalisations of this re-
sult). Landau [77] gives a more comprehensive survey of results for factorisation of
polynomials.
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If the field F is a finite field, say Fpl , then Berlekamp’s deterministic algorithm
can be used to obtain arithmetic-Boolean circuits over +Fp, or Boolean circuits, of
size (npl)O(1) and depth O(log3(npl)) for factorisation of squarefree polynomials of
degree n in F [x]. Von zur Gathen [52] shows that the probabilistic algorithm of Can-
tor and Zassenhaus [19] can be used to obtain arithmetic-Boolean circuits over Fp
(with extra nodes producing random elements of Fp) or Boolean circuits (with extra
nodes producing random bits), of size (nl log p)O(1) and depth O(log2 n log2 l log p),
which successfully factor a squarefree polynomial of degree n over Fpl with prob-
ability at least 1/2. No efficient parallel algorithms for factorisation of squarefree
polynomials over Q or over number fields are known.

As is the case for squarefree decomposition, there exist fields F for which the fac-
torisation of squarefree polynomials in F [x] using only arithmetic in F is actually
impossible. Given a set S which is recursively enumerable but not recursive, a
field F̂S of characteristic 3 can be constructed, with the property that any “arith-
metic” algorithm deciding whether an arbitrary squarefree polynomial of degree 2
is irreducible in F̂S [x] could also be used to decide membership in S.

Hence we must look for algorithms for squarefree decomposition and for factori-
sation of polynomials, which are correct for (and peculiar to) specific fields — or,
at least, specific classes of fields. Instead of a “universal” arithmetic algorithm
for factorisation over arbitrary fields, we look for relationships between the com-
putational problems of factoring polynomials over two closely related fields. For
example, Landau [76] obtains an efficient algorithm for factorisation of polynomials
over number fields by reducing this to the problem of factoring polynomials with
coefficients in Q. We will show that her method generalises, and obtain a reduction
from factorisation of polynomials in E[x] to factorisation of polynomials in F [x],
where E is a primitive algebraic extension of F , for a large class of fields F . We
will use this reduction in Section 2 to reduce other problems to factorisation of
polynomials.

Landau’s method produces a reduction which is correct for perfect fields, as defined
below.

Definition 1.4.2. A polynomial f ∈ F [x] is separable if its irreducible factors
have distinct roots in an algebraic closure of F . An algebraic extension E of F is a
separable extension of F if the minimal polynomial (over F ) of every element of E
is separable.

Definition 1.4.3. A field F is perfect if every polynomial in F [x] is separable.

Any field F of characteristic zero, and any finite field F , is a perfect field. An
alternative characterisation of perfect fields of positive characteristic can be used
to show that the problem of deciding whether a polynomial f ∈ F [x] is squarefree
has an efficient solution for any perfect field F .
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Proposition 1.4.4. A field of characteristic p > 0 is perfect if and only if each
element of the field has a pth root in the field.

For a proof of Proposition 1.4.4, see van der Waerden [117] (Section 6.9, Theorem II).
It follows from this that for a perfect field F , any polynomial

g = αkx
pk + αk−1x

p(k−1) + · · ·+ α1x
p + α0 ∈ F [x]

(so that g′ = 0) is the pth power of a polynomial h ∈ F [x].

Corollary 1.4.5. If F is perfect and g ∈ F [x] \ F , then g is squarefree in F [x] if
and only if gcd(g, g′) = 1.

We next note that the monotone squarefree decomposition and the distinct power
decomposition of a polynomial g ∈ E[x] = (F [t]/(f))[x] can be computed efficiently
from g and from the squarefree part h1 of g. These two decompositions are closely
related:

Proposition 1.4.6. Let K be a field. If (h1, h2, . . . , hs ) is the monotone square-
free decomposition of a polynomial g ∈ K[x], and ( k1, k2, . . . , kŝ ) is the distinct
power decomposition of g, then s = ŝ, and if li = gcd(g, hi1) for 1 ≤ i ≤ s, then
hi = li/li−1 for 1 < i ≤ s, and ki = hi/hi+1 for 1 ≤ i < s.

In particular, Proposition 1.4.6 is correct for the case K = E = (F [t]/(f)).

The facts stated above are easily checked. Computation of powers of polynomials,
division of polynomials, and computation of the greatest common divisor of poly-
nomials in E can all be reduced to the solution of nonsingular systems of linear
equations in E (see Borodin, von zur Gathen, and Hopcroft [14], Reif [100], and
Eberly [37]). Hence we obtain the following corollary.

Corollary 1.4.7. The monotone squarefree decomposition and the distinct power
decomposition of a polynomial g ∈ E[x] of degree m can each be computed from the
coefficients of g and of the squarefree part of g, using arithmetic-Boolean circuits
of size polynomial in mn and of depth O(log2(mn)), for n = [E : F ].

Thus it is sufficient to consider computation and factorisation of the squarefree part
of a polynomial g ∈ E[x] = (F [t]/(f))[x]. We perform these computations using
the norm of the polynomial g over F , defined below.

Suppose again that E = F [t]/(f), for f monic and irreducible of degree n in F [t],
and for F perfect. Let α1, α2, . . . , αn be the roots of f in an algebraic closure H
of F ; since f is separable, these roots are distinct. Now E = F [t]/(f) is isomorphic
to the field F [α1] ⊆ H. (In fact, if H is an algebraic closure of E = F [t]/(f), then
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we can set α1 = (t mod f) — so the fields E and F [α1] are actually the same.) We
use this isomorphism to embed E in the closure H.

Definition 1.4.8. Let γ = c0 + c1α1 + c2α
2
1 + · · · + cn−1α

n−1
1 ∈ F [α1], for

c0, c1, . . . , cn−1 ∈ F . Since α1 has minimal polynomial f with degree n over F , the
coefficients c0, c1, . . . , cn−1 are unique. The norm of γ in F [α1] over F , NF [α1]/F (γ),
is

NF [α1]/F (γ) =
n∏
i=1

(c0 + c1αi + c2α
2
i + · · ·+ cn−1α

n−1
i ).

If g = γ0 + γ1x+ γ2x
2 + · · ·+ γmx

m ∈ (F [α1])[x], with γj = cj 0 + cj 1α1 + cj 2α
2
1 +

· · ·+ cj, n−1α
n−1
1 ∈ F [α1], and with cj k ∈ F for 0 ≤ j ≤ m and 0 ≤ k < n, then the

norm of the polynomial g, NF [α1]/F (g), is

NF [α1]/F (g) =
n∏
i=1

 m∑
j=0

(
n−1∑
k=0

cj kα
k
i

)
xj

 ∈ (F [α1])[x].

Since NF [α1]/F (γ) and NF [α1]/F (g) are each fixed by the Galois group of the normal
closure of F [α1] over F , it is clear that NF [α1]/F (γ) ∈ F and NF [α1]/F (g) ∈ F [x].
It is also clear from the definition of NF [α1]/F (g) that the polynomial g divides its
norm, for any g ∈ (F [α1])[x].

Landau states a number of results about the norms of polynomials in algebraic
extensions, for the case F = Q. The results, and the proofs given by Landau,
clearly generalise. We state these results as Propositions 1.4.9, 1.4.10, and 1.4.11.

Proposition 1.4.9. Let g ∈ (F [α1])[x] be irreducible, for α1 algebraic over F and
for F perfect. Then NF [α1]/F (g) is a power of an irreducible polynomial in F [x].

Proposition 1.4.10. Let g ∈ (F [α1])[x], for α1 algebraic over F and for F perfect,
with leading coefficient c ∈ F [α1], such that NF [α1]/F (g) is squarefree in F [x]. Then
if NF [α1]/F (g) = h1h2 · · ·hs is a factorisation into irreducible polynomials in F [x],

then g = c
s∏
j=1

gcd(g, hj) is a factorisation into irreducible polynomials in (F [α1])[x].

Proposition 1.4.11. Let g ∈ (F [α1])[x] be squarefree with degree m, for α1

algebraic over F , F perfect, and for [F [α1] : F ] = n. Then there are at most
(nm)2/2 elements s of F such that NF [α1]/F (g(x− sα1)) is not squarefree.

These are stated by Landau [76] for the case F = Q as Theorems 1.4 and 1.5, and
Lemma 1.6, respectively.
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Since the norm is a multiplicative function, we have the following extension.

Proposition 1.4.12. Let F be a perfect field, α1 algebraic over F such that
[F [α1] : F ] = n, and let g ∈ (F [α1])[x] with degree m. Suppose g has squarefree part
h ∈ (F [α1])[x] with degree k. Then there are at most (nk)2/2 ≤ (nm)2/2 elements
s of F such that the squarefree part of NF [α1]/F (g(x− sα1)) in F [x] has degree less
than nk. For all other s ∈ F , this squarefree part has degree nk, and the squarefree
part of g(x− sα1) is the greatest common divisor of g(x− sα1) and the squarefree
part of NF [α1]/F (g(x− sα1)).

Proof. The norm of h(x−sα1) is a divisor of the norm of g(x−sα1), of degree nk. It
is a consequence of Proposition 1.4.11 that NF [α1]/F (h(x−sα1)) is squarefree for all
but at most (nk)2/2 elements s of F . For these “bad” choices of s, the polynomial
NF [α1]/F (h(x − sα1)) has the squarefree part of NF [α1]/F (g(x − sα1)) as a proper
divisor. For all other choices of s, it is easily checked that NF [α1]/F (h(x− sα1)) is
itself the squarefree part of NF [α1]/F (g(x− sα1)).

Clearly, h(x− sα1) is a divisor of gcd(NF [α1]/F (h(x− sα1)), g(x− sα1)). Suppose
the polynomial h(x− sα1) is a proper divisor. Then

gcd(NF [α1]/F (h(x− sα1)), g(x− sα1)) = l · h(x− sα1),

for some l ∈ (F [α1])[x] \ F [α1], and it is clear that l divides both of the polynomi-
als (NF [α1]/F (h(x − sα1)))/(h(x − sα1)) and g(x− sα1)/h(x− sα1). Let l̂ be the
squarefree part of l; then l̂ divides both (NF [α1]/F (h(x − sα1)))/(h(x − sα1)) and
the squarefree part + of g(x− sα1)/h(x− sα1). Since h is the squarefree part of g,
h(x−sα1) is the squarefree part of g(x−sα1), and it is clear that the squarefree part
of g(x−sα1)/h(x−sα1) divides h(x−sα1). Thus l̂ divides h(x−sα1) (since it divides
g(x− sα1)/h(x− sα1)). Since l̂ also divides (NF [α1]/F (h(x− sα1)))/(h(x− sα1)),
l̂2 divides NF [α1]/F (h(x− sα1)). Therefore, NF [α1]/F (h(x− sα1)) is not squarefree.
We conclude from this that h(x− sα1) is the greatest common divisor of g(x− sα1)
and NF [α1]/F (h(x− sα1)) if NF [α1]/F (h(x− sα1)) is squarefree, as required.

We must show that the polynomial NF [α1]/F (g) can be computed efficiently if we
are to use it to factor g. The method given by Landau [76] for the case F = Q can
be used for the general case.
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Definition 1.4.13. Let h = hry
r + hr−1y

r−1 + · · · + h0 ∈ K[y], and let k =
ksy

s+ks−1y
s−1+· · ·+k0 ∈ K[y], for hi, kj ∈ K for 0 ≤ i ≤ r and 0 ≤ j ≤ s, and for

K an integral domain. The resultant of k and h with respect to the indeterminate y,
Resy(k, h), is

det



ks 0 0 · · · 0 hr 0 0 · · · 0
ks−1 ks 0 · · · 0 hr−1 hr 0 · · · 0
ks−2 ks−1 ks · · · 0 hr−2 hr−1 hr · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

ks−r+1 ks−r+2 · · · ks hr−s+1 hr−s+2 · · · hr
ks−r ks−r+1 · · · ks−1 hr−s hr−s+1 · · · hr−1

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · k0 0 0 0 · · · h0


,

where the above matrix has order r + s, with r columns of coefficients of k, and s
columns of coefficients of h.

We compute the norm of g ∈ E[x] = (F [t]/(f))[x], for f monic and irreducible over
a perfect field F , by computing the resultant of polynomials in the indeterminate
t with coefficients in K = F [x]. Given g ∈ (F [t]/(f))[x], let ĝ ∈ F [t, x] such that

ĝ =
m∑
i=1

(
n−1∑
j=0

gi jt
j)xi, with gi j ∈ F for 0 ≤ i ≤ m and 0 ≤ j < n, and such that

g = (ĝ mod f).

Proposition 1.4.14. NE/F (g) = (−1)mnRest(ĝ, f) ∈ F [x].

This is a direct consequence of Theorem 1 of Loos [87].

Our reductions from squarefree decomposition and factorisation of polynomials over
primitive algebraic extensions of a (large) perfect field to the respective problems
for polynomials over the ground field are stated on the following pages.

The two algorithms have the same general form. In each case, an irreducible polyno-
mial f ∈ F [t] of degree n, and a polynomial g ∈ (F [t]/(f))[x] of degree m, are given
as input. The algorithms proceed by checking sufficiently many elements s of F to
ensure that the norm over F of the squarefree part of g(x−st) will be squarefree for
at least one of the values checked. Given such an s, the norm of g(x− st) is used to
obtain the squarefree decomposition of g (by the first algorithm) or the factorisation
of g (by the second) in the manner indicated by Propositions 1.4.12 and 1.4.10, re-
spectively. Correctness of the algorithms follows from these propositions, and from
Proposition 1.4.11, provided that the field F has at least 1 + d (nm)2/2 e distinct
elements.
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Algorithm Squarefree Decompositions over Extensions via the Norm

Input. • Integers n, m > 0.
• The coefficients of a monic irreducible polynomial f ∈ F [t]

of degree n.
• The coefficients c0, c1, . . . , cm−1 ∈ E = F [t]/(f) of a monic

polynomial g = c0 + c1x+ · · ·+ cm−1x
m−1 + xm ∈ E[x], with

coefficient ci given by elements ci, 0, ci, 1, . . . , ci, n−1 of F
such that ci = ci, 0 + ci, 1t+ · · ·+ ci, n−1t

n−1 mod f .
Output. • Integer k ≥ 0.

• Elements di j of F , for 0 ≤ i < k and 0 ≤ j < n, such that
h = d0 + d1x+ · · ·+ dk−1x

k−1 + xk ∈ E[x]
is the squarefree part of g, with
di = di, 0 + di, 1t+ · · · di, n−1t

n−1 mod f , for 0 ≤ i < k.

Let r = 1 + d (nm)2/2 e, and let s1, s2, . . . , sr be any set of distinct
elements of F .

(1) Perform steps 2–3 in parallel, for 1 ≤ i ≤ r.
(2) Compute the coefficients of the polynomial

ḡi = NE/F (g(x− sit)) = (−1)mnRest(ĝ(x− sit), f) ∈ F [x],
for ĝ ∈ F [t, x] with degree less than n in t such that g = (ĝ mod f).

(3) Compute the degree ki and coefficients ḡi, ki−1, . . . , ḡi, 1, ḡi, 0 ∈ F
such that h̄i = xki + ḡi, ki−1x

ki−1 + · · ·+ ḡi, 1x+ ḡi, 0 is the squarefree
part of ḡi in F [x].

(4) Fix j to be any integer between 1 and r such that kj = max
1≤i≤r

(ki).

Set k = kj , and set h = gcd(g, h̄j(x+ sjt)), for the polynomial h̄j
as computed in step 3.

(5) Return the integer k and the coefficients of the polynomial h.
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Algorithm Factorisation over Extensions via the Norm

Input. • Integers n, m > 0.
• The coefficients of a monic irreducible polynomial f ∈ F [t]

of degree n.
• The coefficients c0, c1, . . . , cm−1 ∈ E = F [t]/(f) of a monic

squarefree polynomial g = c0 + c1x+ · · ·+ cm−1x
m−1 + xm ∈ E[x]

with coefficient ci given by elements ci, 0, ci, 1, . . . , ci, n−1 of F
such that ci = ci, 0 + ci, 1t+ · · ·+ ci, n−1t

n−1 mod f .

Output. • Integers k > 0, and m1, m2, . . . , mk > 0, with
k∑
h=0

mh = m.

• Elements dh i j of F , for 1 ≤ h ≤ k, 0 ≤ i < mh, and 0 ≤ j < n,

such that g =
k∏
h=1

dh is an irreducible factorisation in E[x],

for polynomials dh = xmh +
mh−1∑
i=0

n−1∑
j=0

dh i jt
j

xi mod f .

Let r = 1 + d (nm)2/2 e, and let s1, s2, . . . , sr be any set of distinct
elements of F .

(1) Perform step 2 in parallel, for 1 ≤ i ≤ r.
(2) Compute the coefficients of the polynomial

ḡi = NE/F (g(x− sit)) = (−1)mnRest(ĝ(x− sit), f) ∈ F [x],
for ĝ ∈ F [t, x] with degree less than n in t such that g = (ĝ mod f).

(3) Fix l to be any integer between 1 and r such that gcd(ḡl, ḡl′) = 1 in F [x].

(4) Compute a factorisation of ḡl =
k∏
h=1

d̄h into irreducible polynomials

in F [x]. Set k to be the number of irreducible factors of ḡl, and
set mh to be the degree of the factor d̄h (in x), for 1 ≤ h ≤ k.

(5) Return the integers k, m1, m2, . . . , mh, and the coefficients of
dh = gcd(g, d̄h(x+ slt)) ∈ (F [t]/(f))[x], for 1 ≤ h ≤ k.
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If the field F does not have sufficiently many distinct elements for the above al-
gorithms, so that F is Fpl for pl ≤ d (nm)2/2 e, then we have (different) parallel
algorithms for squarefree decomposition and factorisation, which take advantage of
the fact that the ground field is small. Using methods already discussed, we obtain
arithmetic-Boolean circuits over F , or Boolean circuits, of depth O(log3(nm)) and
of size (nm)O(1) for each of these problems, if F is a prime field. These algorithms
are easily modified to produce arithmetic-Boolean circuits over F , or Boolean cir-
cuits, of size (nm)O(1) and of depth O(log3(nm)), for the general case F = Fpl ,
pl ≤ d (nm)2/2 e.
We summarise these results in the following theorem.

Theorem 1.4.15. Let F be a perfect field, and let E = F [t]/(f) be a primitive
algebraic extension of degree n over F .
(i) The squarefree decomposition of a polynomial g ∈ E[x] of degree m can be

computed using arithmetic-Boolean circuits over F (with oracles for squarefree
decomposition in F [x]), with depth O(log3(mn)) and size (mn)O(1), plus the
cost of computing the squarefree parts of (1 + d (nm)2/2 e) polynomials of
degree mn in F [x], in parallel.

(ii) The irreducible factorisation of a squarefree polynomial g ∈ E[x] of degree m
can be computed using arithmetic-Boolean circuits over F (with an oracle for
factorisation in F [x]), with depth O(log3(mn)) and size (mn)O(1), plus the cost
of factoring a squarefree polynomial of degree mn in F [x].
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1.5. Isolation of Roots over Number Fields

As noted in Section 1.2, we are interested in computations over number fields viewed
as subfields of R or C. Our field description of a number field isomorphic to Q[t]/(f)
(for f monic and irreducible in Q[t]) will include a standard rectangle, isolating a
single root α of f . We are performing computations over Q[α].

When performing rational computations (such as arithmetic, or solving systems of
linear equations) over Q[α], we produce values in Q[α], and it is sufficient to ignore
the root α of f and perform computations over Q[t]/(f). We recover the values
we want in Q[α] by replacing t by α in the results. This is also true for squarefree
decomposition and for factorisation in (Q[α])[x]. Given a polynomial g ∈ (Q[α])[x],
we compute its squarefree part (in (Q[α])[x]) or its irreducible factors in (Q[α])[x],
by performing computations for polynomials in (Q[t]/(f))[x], and replacing t by α
in the coefficients of the polynomial(s) we obtain.

This is not sufficient if we want to compute isolating rectangles for the complex
roots of a polynomial g ∈ (Q[α])[x] of degree m: These are not generally in the
ground field. In this section, we show that isolating rectangles can be obtained for
these roots in polynomial time.

The problem we consider is a generalisation of one which has been well studied:
the isolation of the complex roots of an integer polynomial. Pinkert’s method
can be used to compute isolating rectangles and numerical estimates of arbitrarily
high precision for the roots of a polynomial in Q[x] in polynomial time. More
recent methods can be used to obtain root approximations very efficiently (see
Schönhage [110]). Using the methods discussed in Section 1.4, we can generate a
polynomial in Q[x] — namely, the norm of g over Q — whose roots include those of
g ∈ (Q[α])[x]. While the above methods can be used to obtain isolating rectangles
for the roots of the norm of g, we are left with the problem of distinguishing between
the roots of g and the remaining roots of its norm over Q.

Suppose now that c ∈ Q is a lower bound for the separation of distinct roots of
the norm of g over Q. That is, suppose |β − β′| > c for all β, β′ ∈ C such that
β 6= β′ and β and β′ are both roots of the norm. Suppose g has leading coefficient
gm ∈ Q[α] and roots β1, β2, . . . , βm (not necessarily distinct). If β is any root of g
then clearly g(β) = 0. If β′ is a root of the norm of g which is not also a root of g,
then |β − βi| > c for 1 ≤ i ≤ m; hence

|g(β′)| = |gm
m∏
i=1

(β′ − βi)|

= |gm|
m∏
i=1

(|β′ − βi|)

> |gm|cm.
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Using an efficient method for the isolation of roots of integer polynomials to obtain
sufficiently good numerical estimates for the generator α of Q[α] and for a root β of
the norm of g over Q, we can decide whether β is a root of g by computing |g(β)| to
within precision (|gm|cm)/3. We complete our description of an algorithm for root
isolation over number fields by deriving lower bounds for |gm| and c, and showing
that g(β) can be estimated to the required precision in polynomial time.

We first consider the case that g is irreducible. Suppose, then, that

f = tn +
n−1∑
i=0

fit
i ∈ Z[t], and g =

m∑
j=0

gjx
j =

m∑
j=0

n−1∑
k=0

gj, kα
kxj ∈ (Z[α])[x],

for fi, gj, k ∈ Z, gj ∈ Z[α], such that |fi|, |gj, k| < 2M for some M ∈ Z, and such
that f is irreducible in Q[t] and g is irreducible in (Q[α])[x]. Suppose α is a root
of f . We apply inequalities stated by Mignotte [89] to show that we can distinguish
between roots of g, and other roots of NQ[α]/Q(g), in polynomial time.

We first obtain bounds for the absolute value of α and for the absolute value of
a root β of the norm of g over Q. Applying Cauchy’s inequality (Mignotte [89],
Theorem 2 and corollary) to the polynomial f , we obtain the bounds

(2M + 1)−1 < |α| < 2M + 1.

It follows that

|gj | < 2M
n−1∑
j=0

|αj | < 2n(M+1) for 0 ≤ j ≤ m.

We will also need a lower bound for nonzero coefficients gj ; each is a root of a
monic polynomial NQ[α]/Q(x − gj), a polynomial of degree n in Z[x]. Applying
Proposition 1.4.14, we note that

NQ[α]/Q(x− gj) = Rest(x−
n−1∑
k=0

gj, kt
k, f),

the determinant of a (2n− 1)× (2n− 1) matrix of polynomials, each with degree at
most 1 in x. Further, the entries of all but n columns of this matrix are integers.
Using this expression, we obtain the upper bound

(2n− 1)! 2n2M(2n−1) < 22n(M+log(2n)+1)

for the absolute value of each coefficient of NQ[α]/Q(x− gj). Applying the corollary
of Cauchy’s inequality again, we conclude that

|gj | > 2−2n(M+log(2n)+1)−1 for all nonzero gj ,
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and that
2−3n(M+log(2n)+1) < |β| < 23n(M+log(2n)+1).

We next compute a lower bound for the root separation, c. Applying Theorem 4 of
Mignotte, we observe that the squarefree part of NQ[α]/Q(g) has degree at most mn,
and coefficients whose absolute values have sum at most

2mn(((mn+ 1)
1
2 ) 22n(M+log(2n)+1)) < 2n(m+2M+3 log(mn)+5).

Applying the corollary of Theorem 5 of Mignotte, we conclude that

c >
√

3 · (mn)−(mn+2)/2 2−n(m+2M+3 log(mn)+5)(mn−1)

>
√

3 · 2−mn
2(m+2M+4 log(mn)+5).

We conclude that if β is a root of NQ[α]/Q(g) which is not also a root of g, then

|g(β)| > 2−2n(M+log(2n)+1)−1
√

3
m
· 2−m

2n2(m+2M+4 log(mn)+5)

>
√

3
m
· 2−m

2n2(m+3M+5 log(mn)+7).

Hence we can decide whether β is a root of g by computing |g(β)| to within accuracy
ε, for

ε <
1
3

√
3
m
· 2−m

2n2(m+3M+5 log(mn)+7)

<
√

3
m−2

· 2−m
2n2(m+3M+5 log(mn)+7).

It remains only to show that |g(β)| can be computed to this precision, using “easily
computed” numerical estimates of α and β. Suppose now that we have computed
estimates α̂ and β̂ of α and β, respectively, with |α̂− α| < δ and |β̂ − β| < δ. The
estimates can be used to decide whether g(β) = 0 if

|g(β)−
m∑
j=0

n−1∑
k=0

gj kα̂
kβ̂j | < ε.

This is clearly the case if

m∑
j=0

n−1∑
k=0

|gj k| · |α̂kβ̂j − αkβj | < ε.

32



Using the upper bounds we obtained for |gj k|, |α|, and |β|, we see that the estimates
can be used reliably if ε is larger than

m∑
j=0

n−1∑
k=0

2M
(

(2M+1 + δ)k(23n(M+log(2n)+1) + δ)j − (2M+1)k(23n(M+log(2n)+1))j
)
,

and it can be shown that this is true if

δ < 2−2nm(3M+2 log(nm)+4) ε

<
√

3
m−2

· 2−m
2n2(m+6M+7 log(mn)+11).

We use these estimates to obtain the following algorithm.

Algorithm Isolation of Roots via the Norm

Input. • Integers n, m, M > 0.
• The coefficients of a monic irreducible polynomial f ∈ Z[t]

f = tn + fn−1t
n−1 + · · ·+ f1t+ f0, of degree n,

with |fi| < 2M for 0 ≤ i < n.
• Coordinates of an isolating rectangle for a root α of f .
• The coefficients gm, gm−1, . . . , g1, g0 of an irreducible polynomial

g = gmx
m + gm−1x

m−1 + · · ·+ g1x+ g0 of degree m in (Z[α])[x],
with each coefficient gi given by elements gi, 0, gi, 1, . . . , gi, n−1 of Z
such that |gi, j | < 2M for 0 ≤ j < n and such that
gi = gi, n−1α

n−1 + · · ·+ gi, 1α+ gi, 0.
Output. • The coefficients of the minimal polynomial over Q of the roots of g.

• Coordinates of isolating rectangles for each of these roots.

(1) Compute the squarefree part, h, in Q[x], of
NQ[α]/Q(g) = (−1)mnRest(ĝ, f) ∈ Z[t],

for ĝ ∈ Z[t, x] with degree less than n in t such that ĝ(α, x) = g.
The polynomial h is the minimal polynomial in Q[x] of the roots of g.

(2) Use an asymptotically fast method for the isolation of roots of integer
polynomials to estimate α and each of the roots of h, to precision

δ =
√

3
m−2 · 2−m2n2(m+6M+7 log(nm)+11).

(3) For each root β of h, use the estimates computed in step 2 to compute
an approximation of |g(β)|. Return β as a root of g if and only if
this estimate of |g(β)| is less than ε, for

ε =
√

3
m−2 · 2−m2n2(m+3M+5 log(nm)+7).
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The bounds δ and ε used in this algorithm have been derived using bounds on
the size, and separation, of roots of a squarefree polynomial. These bounds are
not known to be the best possible; any improvement in these bounds will yield a
corresponding improvement in the error bounds required for estimates used by this
algorithm — and hence in the time required by an algorithm using this approach.

We now consider the general case — that g is not necessarily irreducible. We first
note that there exists an integer b > 0 such that bfn, bfn−1, . . . , bf0 ∈ Z, for
fn, fn−1, . . . , f0 the coefficients of the irreducible polynomial

f = fnt
n + fn−1t

n−1 + · · ·+ f1t+ f0 ∈ Q[t].

In particular, we can take b to be the lowest common multiple of the denominators
of these rational coefficients. Let f̂i = bfi, for 0 ≤ i ≤ n. If α is a root of f in some
algebraic closure of Q, then α is also a root of the polynomial

f̂ = f̂nt
n + f̂n−1t

n−1 + · · ·+ f̂1t+ f̂0 ∈ Z[t],

which is also irreducible in Q[t]. Now f̂n ∈ Z and f̂n 6= 0. Setting ᾱ = f̂nα, we see
that Q[α] = Q[ᾱ], and that ᾱ is a root of the monic irreducible polynomial

f̄ = tn + f̄n−1t
n−1 + · · ·+ f̄1t+ f̄0

= tn + f̂nf̂n−1t
n−1 + · · ·+ f̂n−1

n f̂1t+ f̂nn f̂0 ∈ Z[t].

The binary representations of the coefficients of f̄ have length polynomial in the
representations of the coefficients of f .

Given a polynomial g ∈ (Q[α])[x], with g =
m∑
j=0

n−1∑
k=0

gj, kα
kxj , with gj, k ∈ Q for

0 ≤ j ≤ m and 0 ≤ k < n, it is clear that we can compute integers ḡj, k such that
the polynomial

ḡ =
m∑
j=0

n−1∑
k=1

ḡj, kᾱ
kxj ∈ (Z[ᾱ])[x]

is a (nonzero) integer multiple of g, and hence has the same roots as g. Again, the
coefficients of ḡ can be computed in polynomial time.

Finally, we can compute the squarefree decomposition of ḡ, and then compute the
irreducible factors of ḡ (using the method of Landau [76]) in polynomial time. By
doing so, we reduce the general case of our problem to the special case; our algorithm
can be applied to isolate the roots of the polynomial g, using time polynomial in
the size of the (original) input. We summarise this in the following theorem.

Theorem 1.5.1. Given an irreducible polynomial f ∈ Q[t], an isolating rectangle
for a root α of f , and the coefficients of a polynomial g ∈ (Q[α])[x], we can compute
the minimal polynomial over Q and an isolating rectangle for each of the roots of g,
in polynomial time.
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1.6 Factoring Polynomials over R and C

We now consider the factorisation of polynomials over R and over C. As before,
we assume we are given a polynomial g ∈ (Q[α])[x], for α a root of an irreducible
polynomial f ∈ Q[t]. As noted earlier, we can assume without loss of generality
that f is a monic polynomial with integer coefficients (so that α is an algebraic
integer, and that g is a squarefree polynomial with coefficients in the ring Z[α]. If
we are working over R, so that we are assuming g has real coefficients, then we
assume α to be a real root of f . Since C is an algebraically closed field, every monic
irreducible polynomial h ∈ C[x] has the form x+ β, for β ∈ C. Thus an irreducible
factorisation of g over C has the form

g = c(x+ β1)(x+ β2) · · · (x+ βm)

for distinct β1, β2, . . . , βm ∈ C, and for c the leading coefficient of g. Monic
polynomials in R[x] which are irreducible over R have degree either one or two;
thus an irreducible factorisation of g over R has the form

g = c(x+ β1, 0) · · · (x+ βk, 0)(x2 + βk+1, 1x+ βk+1, 0) · · · (x2 + βk+l, 1x+ βk+l, 0)

with all of these polynomials distinct, and with m = k + 2l.

Since the coefficients of g all lie in the number field Q[α], the roots of g — and
the coefficients of the irreducible (real or complex) factors of g — lie in some larger
number field Q[ζ], a splitting field for g. In principle, then, we could factor g (over R
or C) by computing a generator ζ for a splitting field of g (or, for factorisation over R,
for the largest real subfield of a splitting field), and then perform exact computations
in this larger field. Landau [76] includes an algorithm for the computation of such a
generator. However, there exist polynomials of degree n in Q[x] (and for arbitrary
n) whose splitting fields all have degree at least n! over Q; we cannot compute (or
even write down) the minimal polynomial over Q of a generator of such a splitting
field using time polynomial in n.

We obtain a useful factorisation of g over R or C by using a more general represen-
tation of the splitting field. If g has factorisation

g = ch1h2 · · ·hs

over R or C, for c the leading coefficient of g, and for distinct monic irreducible
polynomials h1, h2, . . . , hs, then each irreducible factor hi has coefficients in a
number field Q[ζi] which is a small (that is, polynomial degree) extension of Q[α].
Our “polynomial size” factorisation of g includes the minimal polynomial over Q
and an isolating rectangle over C (for factorisation over C) or isolating interval
over R (for factorisation over R), for each generator ζi. The coefficients of hi will be
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represented as elements of Q[ζi]. We also give a representation of α as an element
of Q[ζi], in order to establish an embedding of Q[α] within Q[ζi].

We give a formal description of the computational problems “Factorisation over R”
and “Factorisation over C” on the next two pages. We will show that each of these
problems can be solved using time polynomial in n, m, and M .

We first consider the conceptually simpler problem, “Factorisation over C”. If g
is irreducible in (Q[α])[x], then the minimal polynomial of each root of g over Q
is the squarefree part of NQ[α]/Q(g). This polynomial, and isolating rectangles of
each of the roots of g, are computed by the algorithm “Isolation of Roots via the
Norm” discussed earlier. In the more general case that g is squarefree, we obtain
these polynomials and isolating rectangles by factoring g in (Q[α])[x] using the
algorithm given by Landau [76], and then considering each irreducible factor of g
(in (Q[α])[x]) separately. Hence we can compute minimal polynomials over Q, and
isolating rectangles in C, for each root of a squarefree polynomial g ∈ (Q[α])[x],
using polynomial time.

It now remains to compute the minimal polynomial over Q, and an isolating rect-
angle in C, for a primitive generator ζi of the number field Q[ζi] = Q[α, βi], and
to express α and βi in terms of ζi, for 1 ≤ i ≤ m. Loos [87] provides an effi-
cient algorithm for this computation (namely, Algorithm 2 (SIMPLE)), for the case
α, βi ∈ R. It is a simple matter to check that the “interval arithmetic” used in this
algorithm can be replaced by computations and refinements of isolating rectangles
in C (Pinkert’s method is sufficient for this), to generalise the algorithm so that it
can be used for arbitrary algebraic numbers α, βi ∈ C. Since the algorithm of Loos
computes the remaining values specified as output for the problem “Factorisation
over C”, we conclude that this problem can be solved using a polynomial number
of operations over Q.

It is easily checked that the values computed all have lengths polynomial in the
input size, and that these computations can also be performed using a polynomial
number of Boolean operations.
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Problem Factorisation over R

Input. • Integers n, m, M > 0.
• The coefficients of a monic irreducible polynomial f ∈ Z[t]

f = tn + fn−1t
n−1 + · · ·+ f1t+ f0, of degree n,

with |fi| < 2M for 0 ≤ i < n.
• Endpoints of an isolating interval of a real root α of f .
• The coefficients gm, gm−1, . . . , g1, g0 of a squarefree polynomial

g = gmx
m + gm−1x

m−1 + · · ·+ g1x+ g0 of degree m in (Z[α])[x],
with each coefficient gi given by elements gi, 0, gi, 1, . . . , gi, n−1 of Z
such that |gi, j | < 2M for 0 ≤ j < n, and such that
gi = gi, n−1α

n−1 + · · ·+ gi, 1α+ gi, 0.
Output. • Integers k, l ≥ 0 such that k + 2l = m, and such that

g = gmh1h2 · · ·hk+l

is an irreducible factorisation of g over R, for monic polynomials
h1, h2, . . . , hk of degree 1, and hk+1, hk+2, . . . , hk+l of degree 2.
• The minimal polynomial over Q (with degree di) and an isolating

interval in R for the algebraic integer ζi ∈ R, such that α and the
coefficients of the polynomial hi lie in Q[ζi], for 1 ≤ i ≤ k + l.
• For 1 ≤ i ≤ k: numbers ai, 0, ai, 1, . . . , ai, di−1 and
bi, 0, bi, 1, . . . , bi, di−1 ∈ Q with

α = ai, 0 + ai, 1ζi + · · ·+ ai, di−1ζ
di−1
i , and

βi, 0 = bi, 0 + bi, 1ζi + · · ·+ bi, di−1ζ
di−1
i ,

for βi, 0 ∈ Q[ζi] such that hi = x+ βi 0 is the ith irreducible
polynomial in our factorisation of g over R.
• For k + 1 ≤ i ≤ k + l: numbers ai, 0, ai, 1, . . . , ai, di−1,
bi, 0, bi, 1, . . . , bi, di−1, and ci, 0, ci, 1, . . . , ci, di−1 ∈ Q such that

α = ai, 0 + ai, 1ζi + · · ·+ ai, di−1ζ
di−1
i ,

βi, 1 = bi, 0 + bi, 1ζi + · · ·+ bi, di−1ζ
di−1
i , and

βi, 0 = ci, 0 + ci, 1ζi + · · ·+ ci, di−1ζ
ki−1
i ,

for βi, 1, βi, 0 ∈ Q[ζi] such that hi = x2 + βi, 1x+ βi, 0 is the ith

irreducible polynomial in our factorisation of g over R.
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Problem Factorisation over C

Input. • Integers n, m, M > 0.
• The coefficients of a monic irreducible polynomial f ∈ Z[t]

f = tn + fn−1t
n−1 + · · ·+ f1t+ f0, of degree n,

with |fi| < 2M for 1 ≤ i < n.
• Coordinates of an isolating rectangle of a root α of f .
• The coefficients gm, gm−1, . . . , g1, g0 of a squarefree polynomial

g = gmx
m + gm−1x

m−1 + · · · g1x+ g0 of degree m in (Z[α])[x]
with each coefficient gi given by elements gi, 0, gi, 1, . . . , gi, n−1 of Z
such that |gi, j | < 2M for 0 ≤ j < n and such that

gi = gi, n−1α
n−1 + · · ·+ gi, 1α+ gi, 0.

Output. • The minimal polynomial over Q (with degree di) and an isolating
rectangle in C for algebraic integers ζ1, ζ2, . . . , ζm ∈ C, such
that α and the algebraic number βi both lie in Q[ζi], for 1 ≤ i ≤ m,
and for βi such that

h = gm(x+ β1)(x+ β2) · · · (x+ βm)
is an irreducible factorisation of g over C.
• Numbers ai, 0, ai, 1, . . . , ai, di−1 and bi, 0, bi, 1, . . . , bi, di−1 ∈ Q

such that
α = ai, 0 + ai, 1ζi + · · ·+ ai, di−1ζ

di−1
i ,

and
βi = bi, 0 + bi, 1ζi + · · ·+ bi, di−1ζ

di−1
i ,

for 1 ≤ i ≤ m.

38



If our polynomial g splits completely into linear factors over R, then the method
sketched above can also be applied to compute the factorisation of g over R. In
general, Sturm sequences can be used to compute the number of real roots of g.
Collins and Loos [26] include a description of this method. Since the polynomial g
has real coefficients, the remaining roots occur in conjugate pairs, γ and γ̄. Using
the methods sketched above (for factorisation over C), we can compute minimal
polynomials over Q and isolating rectangles for each of the nonreal roots of g.
Refining the isolating rectangles (if necessary), we can also match up each of the
conjugate pairs of roots γi and γ̄i, for l + 1 ≤ i ≤ l + h.

Since we are factoring g over R, we are more interested in the (real) coefficients of
the irreducible factor

x2 + βi, 1x+ βi, 0

of g having complex roots γi and γ̄i than we are with the roots themselves. Using
the equation

x2 + βi, 1x+ βi, 0 = (x− γi)(x− γ̄i),

we see that
βi, 1 = −(γi + γ̄i) and βi, 0 = γi · γ̄i.

It is clear that isolating intervals of βi, 1 and βi, 0 can be computed from isolating
rectangles of γi and γ̄i, provided that the minimal polynomials of βi, 1 and βi, 0
can be computed. We compute these polynomials from the minimal polynomials
of γi and γ̄i, by computing several resultants of polynomials, using the following
relationships.

Proposition 1.6.1. (Loos.) Let A = am
∏m
i=1(x − αi) and B = bn

∏n
j=1(x − βj)

be polynomials with positive degree in R[x], for an integral domain R, with roots
α1, α2, . . . , αm and β1, β2, . . . , βn respectively.
(i) The polynomial Resy(A(x− y), B(y)) has roots γi j = αi + βj , for 1 ≤ i ≤ m,

1 ≤ j ≤ n.
(ii) The polynomial Resy(A(x+ y), B(y)) has roots γi j = αi − βj , for 1 ≤ i ≤ m,

1 ≤ j ≤ n.
(iii) The polynomial Resy(ymA(x/y), B(y)) has roots γi j = αi · βj , for 1 ≤ i ≤ m,

1 ≤ j ≤ n.
(iv) The polynomial Resy(A(xy), B(y)) has roots γi j = αi/βj , for 1 ≤ i ≤ m,

1 ≤ j ≤ n.

This is a restatement of Theorem 6 of Loos [87]. It can be used to compute polyno-
mials in Q[x] having βi, 1 and βi, 0 as roots; we obtain the minimal polynomials of
these values over Q using factorisation over Q, and comparisons of isolating rectan-
gles. We then use this information to compute the minimal polynomial over Q, and
an isolating interval in R, of a primitive generator ζi of Q[ζi] = Q[α, βi, 1, βi, 0], and
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express α, βi, 1, and βi, 0 in terms of ζi, as sketched in the discussion of factorisation
over C.

Again, it is straightforward to check that the algorithms of Loos can be used to
compute these values using a polynomial number of Boolean operations.

Theorem 1.6.2. The problems “Factorisation over R” and “Factorisation over C”
can each be solved using a number of Boolean operations polynomial in n, m, and
N .

Thus we can factor polynomials over number fields, and we can factor polynomials
with algebraic numbers as coefficients over R or C, in polynomial time. We will
apply these results in later sections to show that a number of problems involving
decompositions of associative algebras and of linear representations of groups can
be solved in polynomial time, as well.

40



2. Computations for Associative Algebras

In this section we discuss computations for finite-dimensional associative algebras
over a field F . The structure of these algebras is well understood; the goal of this
section is to find algorithms which can be used to decompose algebras in the manner
described by the classical structure theorems for rings (and, in particular, algebras).

Friedl and Rónyai ([43]) and Rónyai ([102]–[104]) have obtained algorithms for the
decomposition of algebras over Q and finite fields, and evidence that one stage of
this decomposition is difficult. We review their algorithms, and use their techniques
to obtain arithmetic reductions from these computational problems for algebras to
problems concerning factorisation of polynomials. We also give some new algorithms
for these computations (in particular, see Sections 2.4.3 and 2.4.4), and apply the
methods of Friedl and Rónyai, and other existing techniques, to decompose algebras
over R and C.

In Section 2.1 we review the classical (“Wedderburn”) structure theorems for asso-
ciative algebras. In Section 2.2, we give additional material needed for us to define
computational problems corresponding to these theorems. We include a standard
representation of an arbitrary finite-dimensional associative algebra over a field F
as a matrix algebra over F , and discuss the cost of obtaining this “concrete” rep-
resentation from more general representations of associative algebras over F . With
this matrix representation in mind, we define computational problems correspond-
ing to the structure theorems, which take as input a basis (of matrices) over F for
a matrix algebra, and return bases for components of this algebra. The structure
theorems describe three distinct phases in the decomposition of a finite-dimensional
associative algebra; algorithms for the three computational problems corresponding
to these phases are discussed in Sections 2.3, 2.4, and 2.5 respectively. We indicate
some directions for further research in Section 2.6.
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2.1. Definitions and Notation: The Structure Theorems

We begin with definitions leading to the statement of the structure theorems for
associative algebras over a field. The material presented here is standard. For
more comprehensive treatments of this see (for example) the texts of Curtis and
Reiner [31], Jacobson [67], [68], or van der Waerden [117], [118]. In general, we
adopt the notation of Curtis and Reiner [31].

Henceforth F denotes a field, and A denotes an associative algebra over F .

Definition 2.1.1. An associative algebra A over a field F is a ring with an identity
element which is at the same time a vector space over F , such that the scalar
multiplication in the vector space and the ring multiplication satisfy the axiom

α(ab) = (αa)b = a(αb) for α ∈ F and a, b ∈ A.

A subring of A which is also an F -subspace of A is called a subalgebra of A.

We will restrict attention to algebras which are finite-dimensional (as vector spaces)
over F . We note some examples of associative algebras (which we will be discussing
further) below.

Example 2.1.2. F is an associative algebra (of dimension 1) over itself. If E ⊇ F
is a finite algebraic extension of F , then E is an associative algebra over F .

Example 2.1.3. Let F = R, and let A = H, the ring of real quaternions. H is a
vector space of dimension 4 over R, with basis { 1, i, j, k } over R, where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j.

H is a (noncommutative) associative algebra over R.

Example 2.1.4. Let n > 0. Any subring of the ring of n × n matrices over F
which includes the ring of homotheties {αIn : α ∈ F } is an algebra over F . In
particular, the ring of upper triangular n × n matrices over F , and the ring of all
n× n matrices over F , are both associative algebras over F .

We will see later that every associative algebra of dimension n over a field F is
isomorphic to a subalgebra of the algebra of n× n matrices over F .

Example 2.1.5. Let f ∈ F [x] be a polynomial with degree n ≥ 0; the ring
A = F [x]/(f) is an associative algebra of dimension n over F .

Example 2.1.6. Let G = { g1, g2, . . . , gn } be a finite group. The group algebra,
FG, is the set of formal linear combinations

{α1g1 + α2g2 + · · ·+ αngn : α1, α2, · · · , αn ∈ F }.
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Two linear combinations are considered to be equal if and only if their coefficients
are the same. Addition is straightforward, and multiplication is defined using the
group operation:

( n∑
i=1

αigi

)
+
( n∑
i=1

βigi

)
=

n∑
i=1

(αi + βi)gi;

( n∑
i=1

αigi

)
·
( n∑
i=1

βigi

)
=

∑
1≤i, j≤n

αiβjgigj =
n∑
i=1

γigi,

where
γi =

∑
1≤j, k≤n
gjgk=gi

αjβk.

FG is an associative algebra of dimension n = |G| over F .

Our definition of associative algebra is not the most general possible; some authors
(including Friedl and Rónyai [43]) drop the condition that A include a multiplicative
identity. Consider, for example, the ring of strictly upper triangular n×n matrices
over a field F :

A = {U = (Ui j)1≤i,j≤n ∈Mn×n(F ) : Ui j = 0 if j ≤ i }.

A is an “associative algebra over F” according to the definition used by Friedl and
Rónyai, but not according to Definition 2.1.1. Most of the results which follow
apply for either definition; we will note instances where the choice of definition is
important. (See, in particular, Example 2.1.7 below, Example 2.2.7 and the remarks
preceding it, and Section 2.3.3.)

Example 2.1.7. Let Â be a vector space of dimension n > 0 over F which satisfies
the conditions of Definition 2.1.1, except that Â does not include a multiplicative
identity (so Â is an associative algebra over F , according to the definition of Friedl
and Rónyai). Consider the set

A = {α1A + a : α ∈ F, a ∈ Â },

with 1A /∈ Â and with addition and multiplication in A defined by

(α1A + a) + (β1A + b) = (α+ β)1A + (a+ b),

(α1A + a) · (β1A + b) = (αβ)1A + (αb+ βa+ ab),

for α, β ∈ F and a, b ∈ Â. Then A is an associative algebra over F (according to
Definition 2.1.1) with multiplicative identity 1A, and of dimension n+ 1 over F .
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Associative algebras can be classified according to the types of ideals they include
(as rings). Suppose I and J are left ideals of A. We denote by I + J , I · J , and Im

the following sets:

(i) I + J = { a+ b : a ∈ I, b ∈ J };
(ii) I · J is the smallest left ideal containing the set { ab : a ∈ I and b ∈ J };
(iii) Im is the smallest left ideal containing the set of products

{ a1a2 · · · am : ai ∈ I for 1 ≤ i ≤ m }.

Inductively, I1 = I, and In+1 = In · I for n > 0. We define right (respectively,
two-sided) ideals I + J , I · J , and Im for right (respectively, two-sided) ideals I
and J in a similar way.

Definition 2.1.8. Let A be an associative algebra over a field F . An element a
of A is nilpotent if an = 0 for some n ≥ 0. An element a of A is strongly nilpotent
if ab is nilpotent for all b ∈ A. An ideal I of A is nilpotent if In = 0 for some n > 0.

Example 2.1.9. Let A be the algebra of 2 × 2 matrices over the field F . The
element

a =
[

0 1
0 0

]
∈ A

is nilpotent, since a2 = 0. However,

a ·
[

0 0
1 0

]
=
[

1 0
0 0

]
, and

[
1 0
0 0

]n
=
[

1 0
0 0

]
6= 0

so a is not strongly nilpotent.

Example 2.1.10. Let A be the algebra of 2× 2 upper triangular matrices over F ,

A =
{[

α β
0 γ

]
: α, β, γ ∈ F

}
,

and let

a =
[

0 1
0 0

]
∈ A.

Then a is strongly nilpotent in A, since(
a ·
[
α β
0 γ

])2

=
[

0 γ
0 0

]2

= 0

44



for all α, β, γ ∈ F . The ideal

I =
{[

0 α
0 0

]
: α ∈ F

}
is a nilpotent ideal in A.

Definition 2.1.11. Let A be a finite-dimensional associative algebra over a field F .
The radical of A, rad(A), is the sum of all nilpotent left ideals of A.

Example 2.1.12. Let f ∈ F [x] be a polynomial with degree n ≥ 0, A = F [x]/(f),
and let g ∈ F [x] be the squarefree part of f . Then the radical of A is

rad(A) = (g)/(f) = {α · (g mod f) : α ∈ A }.

In particular, rad(A) = (0) if and only if f is squarefree.

See Section 2.3 for more examples of the radicals of associative algebras.

Since a left ideal of a finite-dimensional associative algebra A is also an F -subspace
of A, it is clear that the radical of A is a subspace of A, as well as a left ideal of A
(rad(A) = (0) if A has no nilpotent left ideals). In fact, more can be said about the
structure of the radical of A.

Theorem 2.1.13. Let A be a finite-dimensional associative algebra over a field F .
Then rad(A) is a two-sided nilpotent ideal, which contains every nilpotent left ideal
of A, as well as every nilpotent right ideal of A.

See Curtis and Reiner [31], pp. 161–162, for a proof of this result for a class of rings
which includes any finite-dimensional associative algebra over a field.

The definition given here for the radical of a finite-dimensional associative algebra A
is not the only one used. Note, in particular, that Friedl and Rónyai [43] define the
radical of A to be the set of all strongly nilpotent elements. Since we wish to
apply their results, we will show that the definitions are equivalent: Suppose a is a
strongly nilpotent element of A; then every element of the left ideal I generated by a
is nilpotent. In fact, the ideal I is itself nilpotent: Im = (0) for some m > 0 (see
Curtis and Reiner [31], page 160, for a proof). Hence I ⊆ rad(A); thus a ∈ rad(A),
and the radical (as we define it) contains every strongly nilpotent element. On the
other hand, if a is an element of the radical of A, and b ∈ A, then ab is in the radical
(since this is an ideal) and ab is nilpotent (since the radical is a nilpotent ideal, by
Theorem 2.1.13). Thus a is strongly nilpotent. It is clear, then, that the definitions
of rad(A) are equivalent.
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Since the radical of an associative algebra A is a two-sided ideal of A, as well as an
F -subspace, it is clear that the factor algebra

A/rad(A) = { a+ rad(A) : a ∈ A }

is itself a finite-dimensional associative algebra over F . It is also clear that A/rad(A)
has radical (0). That is, A/rad(A) is semi-simple, as defined below.

Definition 2.1.14. A finite-dimensional associative algebra A is semi-simple if
rad(A) = (0).

In Example 2.1.12 we noted that if f ∈ F [x] then the algebra A = F [x]/(f) is
semi-simple if and only if f is squarefree.

It is clear that a finite-dimensional associative algebra A is semi-simple if and only
if it has no nilpotent (left, right, or two-sided) ideals. We define more restrictive
classes of algebras by considering their two-sided, and their one-sided, ideals.

Definition 2.1.15. A finite-dimensional associative algebra A over a field F is
simple if the only two-sided ideals of A are A and (0).

Definition 2.1.16. A finite-dimensional associative algebra A over a field F is a
division algebra over F if the only left ideals of A are A and (0).

Proposition 2.1.17 motivates the choice of name “division algebra”.

Proposition 2.1.17. Let A be a finite-dimensional associative algebra over a
field F ; then the following are equivalent.

(i) A is a division algebra over F .

(ii) The only left ideals of A are A and (0).

(iii) The only right ideals of A are A and (0).

(iv) A is semi-simple, and the only idempotent elements of A are 0 and 1.

(v) If u ∈ A and u 6= 0 then u is a unit: There exists v ∈ A such that uv = vu = 1.

(vi) A is a skew field with F in its centre.

Most of these implications are straightforward; the most difficult is the implication
“(iv) ⇒ (ii)”. For a proof of this, see Curtis and Reiner [31], pp. 160–161.

Example 2.1.18. If f ∈ F [x] is irreducible then A = F [x]/(f) is a simple algebra,
and a division algebra, over F .

Example 2.1.19. The algebra Mn×n(F ) of n × n matrices over F is a simple
algebra for all n > 0. The algebra is a division algebra if and only if n = 1.
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Example 2.1.20. The ring H of quaternions (defined in Example 2.1.3) is a non-
commutative division algebra over R.

Clearly, every division algebra is simple, and every simple algebra is semi-simple.
The structure theorems stated below imply that semi-simple algebras can be decom-
posed into simple algebras, and that simple algebras can also be related to division
algebras.

Suppose now that L1 and L2 are left ideals in a ring R.

Definition 2.1.21. L1 and L2 are isomorphic in R if there is a bijection φ from
L1 to L2 such that φ(l1 + l2) = φ(l1) + φ(l2), and φ(rl) = rφ(l), for all r ∈ R and
l, l1, l2 ∈ L1.

Definition 2.1.22. L is minimal, or irreducible, in R, if l 6= (0) and the only left
ideal strictly contained in L (as a set) is (0).

Isomorphic and irreducible right or two-sided ideals in R are defined in an analogous
way.

Theorem 2.1.23. Let A be a semi-simple algebra over F and let L be a minimal
nonzero left ideal of A. The sum BL of all the minimal left ideals of A which are
isomorphic to L is a simple algebra over F and a two-sided ideal of A. Furthermore,
A is the direct sum of all the two-sided ideals BL obtained by letting L range over
a full set of non-isomorphic minimal left ideals of A.

If A is finite-dimensional and semi-simple over F , the direct sum mentioned in the
above theorem is finite: A = B1 ⊕ B2 ⊕ · · · ⊕ Bm for two-sided ideals (and simple
algebras) B1, B2, . . . , Bm. (Note that Bi is not a subalgebra of A unless m = 1,
since Bi does not include the multiplicative identity of A.)

Definition 2.1.24. The ideals B1, B2, . . . , Bm in the above summation are the
simple components of A.

The decomposition of A into simple components is unique: for if A is a finite-
dimensional semi-simple algebra and

A = B1 ⊕B2 ⊕ · · · ⊕Bm = C1 ⊕ C2 ⊕ · · · ⊕ Cl,

then m = l and (after suitable reordering of the Ci’s) Bi = Ci for 1 ≤ i ≤ m. Every
two-sided ideal of A is the direct sum of a subset of the simple components of A.
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Further, there exist idempotents b1, b2, . . . , bm in A such that

b1 + b2 + · · ·+ bm = 1, bibj = δi jbi for 1 ≤ i, j ≤ m, bi ∈ Bi,

and such that Bi = biA. (Here, δi j is the Kronecker delta: δi j = 1 if i = j, and
δi j = 0 otherwise.) Each bi is in the centre of A; that is, bi is an element of the set

Centre(A) = { c ∈ A : ca = ac for all a ∈ A }.

Finally, bi is the multiplicative identity of the simple algebra Bi.

For a proof of Theorem 2.1.23 and the above remarks, see Section 25 of Curtis and
Reiner [31].

Theorem 2.1.25. (Wedderburn-Artin). Let A be a finite-dimensional simple alge-
bra over a field F . Then for some k > 0, A is isomorphic to Mk×k(D), the ring of
k×k matrices over D, for some finite-dimensional division algebra D over F . There
exist minimal left ideals L1, L2, . . . , Lk of A which are each isomorphic to Dk, such
that A = L1⊕L2⊕· · ·⊕Lk. This decomposition is unique (only) up to isomorphism.

See Section 26 of Curtis and Reiner [31] for a proof of this result.

Taken together, Theorems 2.1.13, 2.1.23, and 2.1.25 comprise a structure theory
for the finite-dimensional associative algebras over a field: Every finite-dimensional
associative algebra A has a unique maximal nilpotent ideal, rad(A); the factor
algebra A/rad(A) is semi-simple. Every finite-dimensional semi-simple algebra can
be expressed as a direct sum of simple algebras. Finally, every finite-dimensional
simple algebra is isomorphic to a ring of k × k matrices over a division algebra D,
for some k > 0. In the following sections we discuss representations of algebras
(as inputs and outputs for computational problems), and consider computational
problems (the “Wedderburn decomposition” of an algebra) which correspond to
these theorems.
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2.2. Representations of Algebras for Computations

In this section we describe the method to be used to specify finite-dimensional asso-
ciative algebras as inputs and outputs for computational problems — in particular,
for problems corresponding to the decomposition of an associative algebra described
in Section 2.1.

The matrix representation for an algebra given below (in Definition 2.2.2) is stan-
dard. One such representation is obtained for each basis for the algebra over the
ground field. We will see in later sections that we can decompose an associative
algebra by choosing a different basis for the algebra — one which isolates the alge-
bra’s components. Accordingly, we consider the problem of converting between the
representations corresponding to two different bases for an algebra.

We also consider the problem of computing our standard representation of a (ma-
trix) algebra A from a set of matrices which generate A under addition and multipli-
cation. We show that there is an efficient (parallel) algorithm for this computation
— see, in particular, Theorem 2.2.10. We will use this in Section 3 to obtain reduc-
tions between problems for matrix algebras and problems for matrix representations
of groups.

Finally, we introduce the (standard) techniques we use to represent associative
algebras over R and C using a set of constants in a number field — so that we can
discuss Boolean algorithms for the decomposition of these algebras.

2.2.1. Regular Matrix Representations

In general, we use regular matrix representations, as defined below, to describe
finite-dimensional associative algebras over a field.

Definition 2.2.1. Suppose A is an associative algebra of dimension n over a field F ,
and let { a1, a2, . . . , an } be a basis for A over F . The structure constants for A
with respect to this basis are the constants γi j k ∈ F such that

ai · aj =
n∑
k=1

γi j k ak for 1 ≤ i, j, k ≤ n.

Definition 2.2.2. Let A, n, F , { a1, a2, . . . , an }, and γi j k be as above. For
1 ≤ i ≤ n, let Mi ∈ Mn×n(F ) such that the (j, k)th entry of Mi is γi k j for
1 ≤ j, k ≤ n. That is,

Mi =


γi 1 1 γi 2 1 · · · γi n 1

γi 1 2 γi 2 2 · · · γi n 2
...

...
. . .

...
γi 1n γi 2n · · · γi n n

 ∈Mn×n(F ).
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Let φ : A→Mn×n(F ) such that

φ(α1a1 + α2a2 + · · ·+ αnan) = α1M1 + α2M2 + · · ·+ αnMn

for α1, α2, . . . , αn ∈ F . The representation φ(A) of A as a set of n × n matrices
over F is called the regular matrix representation for A with respect to the basis
{ a1, a2, . . . , an }.

Proposition 2.2.3. The map φ : A → φ(A) ⊆ Mn×n(F ) is an algebra isomor-
phism.

The proof of Proposition 2.2.3 is straightforward: It is clear that φ(a+ b) = φ(a) +
φ(b) for all a, b ∈ A. Using the fact that multiplication in A is associative (in
particular, that (ai · aj) · ah = ai · (aj · ah)) we check that

∑n
h=1 γi j hγh k l =∑n

h=1 γi h lγj k h for 1 ≤ i, j, k, l ≤ n. It follows directly from this that φ(ai · aj) =
φ(ai) · φ(aj) for 1 ≤ i, j ≤ n; using linearity, we conclude that φ(a · b) = φ(a) · φ(b)
for all a, b ∈ A. It is also clear from the definition of structure constants that φ(0)
and φ(1) are respectively the zero and identity matrices in Mn×n(F ). Finally, we
use the fact that a1, a2, . . . , an is a basis for A over F to verify that the map φ is
injective, as required to complete the proof.

It is clear that the matrices φ(a1), φ(a2), . . . , φ(an) can be computed from the
structure constants for the basis a1, a2, . . . , an for A, using time O(n3), linear in
the size of the set of structure constants, or using arithmetic-Boolean circuits over F
of size O(n3) and constant depth.

We continue with matrix representations of some algebras to be discussed later.

Example 2.2.4. Let F = R, A = H, and consider the basis { 1, i, j, k } discussed
in Example 2.1.3. The regular representation of A with respect to this basis is given
by

φ(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , φ(i) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

φ(j) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , φ(k) =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
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Example 2.2.5. Let G be a finite group { g1, g2, . . . , gn } and consider the group
algebra FG discussed in Example 2.1.6. The elements of G comprise a basis for FG
over F . The regular matrix representation φ : FG→Mn×n(F ) with respect to this
basis is given by

φ(gi)j k =
{ 1 if gi · gk = gj ,

0 otherwise.
for 1 ≤ i, j, k ≤ n.

Thus φ(g) is a permutation matrix for each g ∈ G, and the set

φ(G) = {φ(g) : g ∈ G }

comprises a group of n× n matrices which is isomorphic to G.

Example 2.2.6. Suppose f ∈ F [x] is a monic polynomial of degree n,

f = xn + αn−1x
n−1 + αn−2x

n−2 + · · ·+ α1x+ α0

for αn−1, αn−2, . . . , α1, α0 ∈ F . Consider the algebra A = F [x]/(f) discussed in
Example 2.1.5. The elements

{ 1 + (f), x+ (f), x2 + (f), . . . , xn−1 + (f) }

comprise a basis for A. The regular representation φ : A → Mn×n(F ) of A with
respect to this basis is given by

φ(xi + (f)) = φ(x+ (f))i =



0 0 · · · 0 0 −α0

1 0 · · · 0 0 −α1

0 1 · · · 0 0 −α2
...

...
. . .

...
...

...
0 0 · · · 1 0 −αn−2

0 0 · · · 0 1 −αn−1



i

∈Mn×n(F ).

In particular, φ(x+ (f)) is the companion matrix of f .

Suppose now that Â is an “associative algebra” of dimension n over F , as defined
by Friedl and Rónyai, and that Â does not include a multiplicative identity. As
shown in Example 2.1.7, we can embed Â in an associative algebra A which has
dimension n + 1 over F . We obtain a regular matrix representation for Â with
respect to some basis { a1, a2, . . . , an } by forming the regular matrix representation
φ : A→ M(n+1)×(n+1)(F ) of A with respect to the basis { 1, a1, a2, . . . , an } of A,
then restricting the domain to obtain a map φ̂ : Â → M(n+1)×(n+1)(F ). Thus we
obtain a map taking elements of Â to matrices of order n + 1, one more than the
dimension of Â over F .
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Example 2.2.7. To see that this increase of order is necessary, consider the “as-
sociative algebra”

Â = {αe : α ∈ F }

for e 6= 0, e2 = 0. We obtain a “regular representation” φ̂ : Â→M2×2(F ) given by

φ̂(e) =
[

0 0
1 0

]
.

Since e2 = 0, it is clear that the only “algebra homomorphism” ψ : Â → M1×1(F )
must map e2, and e, to 0. Thus there are no “algebra isomorphisms” from Â to
M1×1(F ).

2.2.2. Conversion Between Representations

We will be considering computational problems for finite-dimensional associative
algebras corresponding to the “structure theorems” (Theorems 2.1.12, 2.1.23, and
2.1.25) of Section 2.1. In general, each problem will take as input the regular
representation of an associative algebra A with respect to a basis { a1, a2, . . . , an }
over F , and will compute as output a second basis { b1, b2, . . . , bn } over F (which
gives more information about the structure of A). Thus it will be useful to study
the relationship between regular representations of an algebra A with respect to
different bases.

Suppose now that A is a finite-dimensional associative algebra of dimension n
over F , with bases { a1, a2, . . . , an } and { b1, b2, . . . , bn } over F , and that

bi =
n∑
j=1

µi j aj for µi j ∈ F, 1 ≤ i, j ≤ n.

Let X ∈Mn×n(F ) with Xi j = µj i; then it is easily verified that if

a = α1a1 + α2a2 + · · ·+ αnan = β1b1 + β2b2 · · ·+ βnbn,

for α1, α2, . . . , αn, β1, β2, . . . , βn ∈ F , then
α1

α2
...
αn

 = X ·


β1

β2
...
βn

 .
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Suppose also that { γi j k } and { ζi j k } are sets of structure constants for A with
respect to the bases { a1, a2, . . . , an } and { b1, b2, . . . , bn }, respectively, so that

ai · aj =
n∑
k=1

γi j k ak and bi · bj =
n∑
k=1

ζi j k bk for 1 ≤ i, j, k ≤ n.

We obtain regular representations φ and ψ for A with respect to these bases:

φ(ai)j k = γi k j and ψ(bi)j k = ζi k j for 1 ≤ i, j, k ≤ n.

We can use the matrix X to convert from one representation to the other.

Proposition 2.2.8. Let A, n, { a1, a2, . . . , an }, { b1, b2, . . . , bn }, X, φ, and ψ be
as described above. Then the matrix X is nonsingular, and

ψ(a) = X−1φ(a)X for all a ∈ A.

Again, this result is both well known and easily proved. Since the matrix X has
full rank, it is clear that we can prove it by verifying that X · ψ(bi) = φ(bi) ·X for
1 ≤ i ≤ n. It is easily checked (using the fact that bi ·bj =

∑n
r=1

∑n
s=1 µi rµj sar ·as)

that
∑n
t=1 ζi j tµt k =

∑n
r=1

∑n
s=1 µi rµj sγr s k for 1 ≤ i, j, k ≤ n. The equality of

(X · ψ(bi))k j and (φ(bi) ·X)k j for 1 ≤ i, j, k ≤ n follows directly from this.

We conclude from Proposition 2.2.8 that we can convert between regular matrix rep-
resentations quite efficiently — in particular, at the cost of computing and inverting
the matrix X, and then performing a small number of matrix multiplications.

We also consider the cost of computing a basis and structure constants for A
from a more general description of A. Suppose we are given a set of matrices
a1, a2, . . . , ak ∈ Mn×n(F ), and that A ⊆ Mn×n(F ) is the smallest associative al-
gebra containing these matrices (where addition and multiplication in A are matrix
addition and multiplication).

For i ≥ 0, we define the subspace Ai of Mn×n(F ) by

(i) A0 = {αIn : α ∈ F };
(ii) Ai is the vector space spanned by the matrices

∏i
h=1 alh , for l1, l2, . . . , li

elements of { 0, 1, . . . , k } and with a0 = In. That is, Ai is spanned by the
set of products of at most i of the matrices a1, a2, . . . , ak.

Lemma 2.2.9 shows how these subspaces can be used to find a basis for the algebra A.
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Lemma 2.2.9. Let a1, a2, . . . , ak ∈Mn×n(F ) and let A, A0, A1, . . . be as above.
(i) a1, a2, . . . , ak ∈ Ai ⊆ A for all i > 0.
(ii) Ai ⊆ Ai+1 for all i ≥ 0.
(iii) If Ai = Ai+1 for some i > 0 then Ai = Aj = A for all j ≥ i.
(iv) For all i > 0, if { b1, b2, . . . , bl } is a basis for Ai over F then A2i is spanned

by the matrices br · bs for 1 ≤ r, s ≤ l.
(v) An2−1 = A.

Proof. Part (i) follows by the definition of Ai and the fact that the algebra A
contains the matrices In, a1, a2, . . . , ak and is closed under addition and multipli-
cation.

Parts (ii) and (iv) are clearly consequences of the definition of Ai.

Suppose Ai = Ai+1 for some i ≥ 0. It is easily shown that Ai+1 = Ai+2; it
follows by induction on j that Ai = Aj for all j ≥ i. Now let a, b ∈ Ai; then
ab ∈ A2i = Ai. Hence Ai includes In, a1, a2, . . . , ak and is closed under addition
and multiplication; hence Ai ⊇ A. Since Ai ⊆ A (by (i)), we have established
part (iii).

Finally, we note that the dimension of Ai+1 is greater than that of Ai if Ai 6= Ai+1.
Since A0 has dimension 1 over F , it follows by (i)–(iii) that either Ai = A or Ai
has dimension at least i + 1 over F for all i ≥ 0. Now Ai ⊆ A ⊆ Mn×n(F ), and
Mn×n(F ) has dimension n2 over F ; part (v) follows.

Theorem 2.2.10. Let a1, a2, . . . , ak ∈ Mn×n(F ). A basis and set of structure
constants for the algebra A generated by these matrices can be computed using a
polynomial number of field operations, or by using Arithmetic-Boolean circuits of
polynomial size and depth O(log3 (nk)).

Proof. By Lemma 2.2.9 (v), A = An2−1 for subspaces A0, A1, . . . as defined above.
We compute a basis for A1 = A20 by finding a maximal linearly independent subset
of { In, a1, a2, . . . , ak }. This selection can be performed by checking whether each
element of this set is a linear combination of the preceding elements — by solving at
most k+1 systems, each of at most n2 linear equations in at most k variables. This
computation can be performed using time polynomial in nk, or using arithmetic-
Boolean circuits over F of size polynomial in nk and with depth O(log2(nk)) (see
Section 1.3 for details).

Suppose now that we have computed a basis { b1, b2, . . . , bl } for the vector space
A2i ; by part (iv) of Lemma 2.2.9 we can compute a basis for A2i+1 by choosing a
maximal linearly independent subset of the matrices { br · bs : 1 ≤ r, s ≤ l }. Let
h = d log2 (n2− 1) e. By Lemma 2.2.9 (iii) and (v), A = A2i for i ≥ h. We compute
a basis for A by computing bases for A20 , A21 , . . . , A2h .
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Selection of a basis of A2i+1 given one for A2i involves multiplication of at most
n4 pairs of n× n matrices, followed by the selection of a maximal linearly indepen-
dent subset of the products. This selection can be performed by solving at most n4

systems, each of at most n2 linear equations in at most n4 variables over F . This
computation can be performed using a polynomial number of field operations, or
using Arithmetic-Boolean circuits over F of polynomial size and depth O(log2 n).
Since h ∈ O(log n), it is clear that a basis for A can be computed at the stated
cost.

Using this basis, structure constants can be computed for A by solving at most
n4 systems of linear equations, each having a coefficient matrix of order n2. Again,
this computation can be performed at the stated cost.

2.2.3. Extension of Scalars

When discussing Boolean computations, we consider finite-dimensional associative
algebras over Q, algebraic number fields, and finite fields. These fields have succinct
(Boolean) descriptions — and elements of these fields have useful representations
(which are discussed in Section 1). Thus we can specify these fields, and finite-
dimensional algebras over them, as inputs for Boolean algorithms.

We will also consider computations for finite-dimensional associative algebras over
R, C, and algebraic closures of finite fields. In order to make representation of these
algebras feasible, we restrict the set of algebras to be considered in the manner
described below.

Definition 2.2.11. Suppose A and B are vector spaces over a field F , and consider
the set S(A,B) of (finite) formal sums

∑n
i=1(ai, bi) of pairs of elements ai ∈ B and

bi ∈ B, 1 ≤ i ≤ n, with addition associative and commutative. Clearly, S(A,B) is
an (additive) Abelian group.

Let H be the subgroup of S(A,B) generated by the formal sums

(i) (a1 + a2, b)− (a1, b)− (a2, b)

(ii) (a, b1 + b2)− (a, b1)− (a, b2)

(iii) (a, αb)− (aα, b)

for all a, a1, a2 ∈ A, b, b1, b2 ∈ B, and α ∈ F . The tensor product of A and B,
A⊗F B, is the factor group S(A,B)/H. For a ∈ A and b ∈ B, we denote by a⊗F b
the element (a, b) +H of A⊗F B. A⊗F B forms a vector space over F , where we
perform multiplication by a scalar using the rule

α · (
n∑
i=1

(ai ⊗F bi)) =
n∑
i=1

((αai)⊗F bi) =
n∑
i=1

(ai ⊗F (αbi)).
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We state without proof some useful facts about tensor products. (See Section 12 of
Curtis and Reiner [31] for more details.)

Proposition 2.2.12. If A is a vector space with dimension n and with a basis
a1, a2, . . . , an over F , and B is a vector space with dimension m and with a basis
b1, b2, . . . , bm over F , then A ⊗F B is a vector space with dimension nm and a
basis ai ⊗F bj (for 1 ≤ i ≤ n, 1 ≤ j ≤ m) over F .

Suppose now that A and B are both algebras over F . We perform “multiplication”
in A⊗F B by multiplying pairs a1⊗F b1 and a2⊗F b2 componentwise (for a1, a2 ∈ A,
b1, b2 ∈ B) and using the distributive law for multiplication over addition to obtain
a (well defined) product of an arbitrary pair of elements of A⊗F B:(

r∑
i=1

(a1 i ⊗F b1 i)

)
·

 s∑
j=1

(a2 j ⊗F b2 j)

 =
r∑
i=1

s∑
j=1

((a1 i ⊗F b1 i) · (a2 j ⊗F b2 j))

=
r∑
i=1

s∑
j=1

((a1 ia2 j)⊗F (b1 ib2 j)).

With this definition of multiplication, we can show that A ⊗F B is an associative
algebra over F if A and B are. Again, A⊗F B is finite-dimensional if both A and B
are.

We use the tensor product construction for a different reason — to obtain an algebra
AE over a field extension E ⊇ F from an algebra A over a field F , by “extension of
scalars”.

Proposition 2.2.13. If A is an associative algebra over F , and E is an extension
field of F , then A⊗FE is an associative algebra over E with multiplication in A⊗FE
as defined above (viewing E as a vector space over F ), and with multiplication by
a scalar (in E) defined as follows.

α ·

(
r∑
i=1

(ci ⊗F ei)

)
=

(
r∑
i=1

(ci ⊗F (αei))

)
,

for c1, c2, . . . , cr ∈ A, e1, e2, . . . , er, α ∈ E. If A has dimension n and basis
a1, a2, . . . , an over F , then A⊗F E has dimension n and a basis

(a1 ⊗F 1E), (a2 ⊗F 1E), . . . , (an ⊗F 1E)

over E (for 1E the multiplicative identity in E).

Furthermore, if the set { γi j k : 1 ≤ i, j, k ≤ n } is a set of structure constants for A
with respect to the basis a1, a2, . . . , an, then { γi j k : 1 ≤ i, j, k ≤ n } is also a set
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of structure constants for the algebra A⊗F E with respect to the basis (a1⊗F 1E),
(a2 ⊗F 1E), . . . , (an ⊗F 1E).

We abbreviate A⊗F E to AE when the ground field F is known.

When considering algebras over R or C, we only consider algebras A⊗F R or A⊗F C,
where F is a number field and A is a finite-dimensional associative algebra over F .
The only algebras over algebraic closures of finite fields we consider are of the form
A ⊗F E, where F is a finite field, E an algebraic closure of F , and A a finite-
dimensional associative algebra over F . By Proposition 2.2.13, these have succinct
(Boolean) descriptions — namely, those given by a set of structure constants in a
finite algebraic extension of a prime field.

As the example below indicates, it is not generally sufficient to consider the alge-
bra A when decomposing A⊗F E.

Example 2.2.14. Let F = Q, and let A be the associative algebra of dimension 4
over F with basis { 1, i, j, k } and regular matrix representation (and structure
constants) shown in Example 2.2.6. If E = R, then AE is an associative algebra
of dimension 4 over R — the algebra of real quaternions. If E = C, then AE is
again an associative algebra of dimension 4 — over C. We will show later that (for
E = C) AE is isomorphic to the matrix ring M2×2(C).

We obtain two sets of problems for decompositions of algebras A over fields F
corresponding to Theorems 2.1.12, 2.1.23, and 2.1.25. We consider the computation
of decompositions of A over the original field F , as well as decompositions of A⊗FE,
for E ⊃ F (We will consider cases E real and algebraically closed). These problems
are discussed further in Sections 2.3–2.5.
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2.3. Computation of the Radical

We consider algorithms for computation of the radical of a finite-dimensional asso-
ciative algebra A over a field F . As stated in Section 2.1, the radical of A is also a
subspace of the vector space A over F — so it can be represented by a basis over F .
We will also produce a basis over F for the factor algebra A/rad (A) when isolating
the radical.

Problem Isolation of the Radical.
Input. • Integers n, m > 0.

• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis
for a finite-dimensional associative algebra A ⊆Mm×m(F )
of dimension n over F .

Output. • Integer r ≥ 0, the dimension of rad(A) over F .
• Elements µi j of F , for 1 ≤ i, j ≤ n, which define elements
b1, b2, . . . , bn ∈ A, with bi =

∑n
j=1 µi j aj for 1 ≤ i ≤ n, so that

(1) b1, b2, . . . , br is a basis for rad(A) over F ;
(2) b1, b2, . . . , bn is a basis for A over F .

• Matrices c1, c2, . . . , cn−r ∈M(n−r)×(n−r)(F ) forming the basis
for a semi-simple associative algebra over F isomorphic
to the factor algebra A/rad(A).

We will see later that the elements br+1, br+2, . . . , bn can be used to obtain a basis
for the factor algebra A/rad(A). We will find a matrix representation for A/rad(A)
by generating the regular representation with respect to this basis.

Friedl and Rónyai [43] show that this problem can be solved efficiently when F is a
finite field or a finite algebraic extension of Q, when using Boolean computations.
We will review their methods. In the process, we show that the computations can
be performed efficiently when using an arithmetic (rather than Boolean) model, and
that the computations can be performed efficiently in parallel. We will also verify
that Friedl and Rónyai’s algorithms can be applied directly to compute the radical
of an algebra A ⊗F E over E, for A a finite-dimensional algebra over a number
field F and for E = R or E = C. Finally, we will reduce the problem of computing
the squarefree decomposition of a polynomial over a field F to the computation
of the radical of a finite-dimensional algebra over F , in order to conclude that we
cannot compute the radical of finite-dimensional associative algebras over arbitrary
fields.
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2.3.1. Computations over Fields of Characteristic Zero

As Friedl and Rónyai note, the problem is relatively simple for fields of characteristic
zero. The radical of a finite-dimensional associative algebra over such a field can be
characterised as the set of solutions of a homogeneous system of linear equations.
We begin by developing this characterisation.

Let a ∈ A, and suppose the matrix φ(a) ∈Mm×m(F ) has characteristic polynomial

χ(a) = tm + λm−1t
m−1 + λm−2x

m−2 + · · ·λ1t+ λ0 = det (tIm − φ(a)),

for coefficients λm−1, λm−2, . . . , λ1, λ0 ∈ F . Suppose also that the matrix φ(a) has
characteristic values ψ1, ψ2, . . . , ψm in some algebraic closure of F . Then

χ(a) =
m∏
i=1

(t− ψi).

The coefficients of the characteristic polynomial are the values of the elementary
symmetric polynomials at the negatives of these characteristic values:

λi =
∑

I⊆{ 1, 2, ...,m }
|I|=i

∏
h∈I

(−ψh).

In particular, the trace of φ(a),
m∑
h=1

ψh, is −λm−1 (as well as the sum of the diagonal

entries of φ(a)), while the norm of φ(a),
m∏
h=1

ψh, is (−1)mλ0 = det φ(a).

Suppose now that a is nilpotent in A — so that ai = 0 for some i ≥ 0. This implies
that the characteristic values ψj (1 ≤ j ≤ m) of a are all zero (since the matrix ai

has characteristic values ψij for 1 ≤ j ≤ m). Thus we have

χ(a) =
m∏
i=1

(t− 0) = tm

if a is nilpotent. In fact it is clear that the converse also holds.

Proposition 2.3.1. An element a of A is nilpotent if and only if a has characteristic
polynomial tm. Hence a is nilpotent if and only if am = 0.

Thus we have an efficient procedure to test whether an element a of A is nilpotent.
Dickson [33] gives a simple criterion for membership in the radical of A.
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Theorem 2.3.2. (Dickson.) Let A be a finite-dimensional associative algebra over
a field F of characteristic zero; then an element a of A is in the radical of A if and
only if the trace of ax is 0 for all x ∈ A.

Proof. Suppose a ∈ A is in the radical of A. Then a is strongly nilpotent, and ax
is nilpotent for any x ∈ A. Thus the characteristic values, and hence the trace, of
ax are all zero.

Suppose now that a ∈ A such that the trace of ax is zero for all x ∈ A. We wish
to prove that ax is nilpotent for all x. Fix x; then it is sufficient to show that
the characteristic values ψ1, ψ2, . . . , ψm of ax are all zero. We know that (ax)i

has trace zero for all i > 0, since (ax)i = az, for z = x(ax)i−1 ∈ A. Since the
characteristic values of (ax)i are the ith powers of the characteristic values of ax,
we see that

m∑
j=1

ψij = 0 for all i > 0.

Thus all of the power sum symmetric functions have value 0 when evaluated at
these characteristic values. The elementary symmetric functions are all Q-linear
combinations of the power sum symmetric functions (see Stanley [113] for details).
Hence these also have value 0 at the characteristic values of ax. Thus the coefficients
λm−1, λm−2, . . . , λ1, λ0 of the characteristic polynomial of ax are 0. It follows that
ax has characteristic polynomial tm, and characteristic values all zero, as required.

Before continuing with our discussion of the case F has characteristic 0, we note that
the proof of Theorem 2.3.2 fails for the case F has positive characteristic p, because
the elementary symmetric functions are not generally Fp-linear combinations of the
power sum symmetric functions; again, see Stanley [113] for details.

Friedl and Rónyai observe that Theorem 2.3.2 gives an efficient test for membership
in the radical, and for computation of the basis of the radical, for algebras over fields
of characteristic zero.

Corollary 2.3.3. (Friedl and Rónyai). Let A ⊆Mm×m(F ) be a finite-dimensional
associative algebra over a field F of characteristic zero, with basis { a1, a2, . . . , an }
over F . Then an element a of A is a member of the radical of A if and only if the
trace of aai is zero for all i, 1 ≤ i ≤ n.

Proof. It is sufficient to note that the trace is a linear function; hence the function

Trace(a · (λ1a1 + λ2a2 + · · ·+ λnan))

is a linear function of the indeterminates λ1, λ2, . . . , λn.
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We compute a basis for the radical of a finite-dimensional associative algebra A with
basis { a1, a2, . . . , an } over a field F of characteristic zero by using Corollary 2.3.3
to obtain a system of linear equations with solution set

{ (λ1, λ2, . . . , λn) ∈ Fn : λ1a1 + λ2a2 + · · ·+ λnan ∈ rad(A) },

and solving this system, as shown in the following algorithm.

Algorithm Isolation of the Radical — Characteristic Zero

Input. • Integers n, m > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis

for a finite-dimensional associative algebra A ⊆Mm×m(F )
of dimension n over a field F of characteristic zero.

Output. • Integer r ≥ 0, the dimension of rad(A) over F .
• Elements µi j of F , for 1 ≤ i, j ≤ n, which define elements
b1, b2, . . . , bn ∈ A, with bi =

∑n
j=1 µi j aj for 1 ≤ i ≤ n, so that

(1) b1, b2, . . . , br is a basis for rad(A) over F ;
(2) b1, b2, . . . , bn is a basis for A over F .

• Matrices c1, c2, . . . , cn−r ∈M(n−r)×(n−r)(F ) forming a basis
for a semi-simple associative algebra over F isomorphic
to the factor algebra A/rad(A).

(1) Compute the dimension r and a basis { b̂1, b̂2, . . . , b̂r } over F
for the space of solutions in Fn of the system of n linear equations

Trace((λ1a1 + λ2a2 + · · ·+ λnan)ai) = 0
for 1 ≤ i ≤ n, and for indeterminates λ1, λ2, . . . , λn.

(2) Extend this basis to obtain a basis { b̂1, b̂2, . . . , b̂n } for Fn over F ,
by adding each element ei ((0, . . . , 0, 1, 0, . . . , 0), with 1 as the
ith coordinate) which is not an F -linear combination of the elements
b̂1, b̂2, . . . , b̂r, e1, e2, . . . , ei−1, for 1 ≤ i ≤ n. Set µi j to be
the jth coordinate of the vector b̂i, for 1 ≤ i, j ≤ n.

(3) Let bi = µi 1a1 + µi 2a2 + · · ·+ µi nan, for 1 ≤ i ≤ n. The algebra
A/rad(A) has a basis br+1 + rad(A), br+2 + rad(A), · · · , bn + rad(A).
Compute a set of structure constants for A/rad(A) with respect
to this basis, and set ci = φ(br+i + rad(A)), for 1 ≤ i ≤ n− r,
and for φ the regular representation for A/rad(A) with respect
to this basis.
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Theorem 2.3.4. Let A ⊆Mm×m(F ) be a finite-dimensional associative algebra of
dimension n over a field F of characteristic zero, for m, n > 0.

(i) A basis for the radical of A, and the remaining output of the problem “Iso-
lation of the Radical”, can be computed from a basis for A over F , using a
polynomial number of field operations, or in parallel using arithmetic-Boolean
circuits of depth O(log2(nm)) and of polynomial size.

(ii) If F is a finite algebraic extension of Q, and A is as above, then the output of
the problem “Isolation of the Radical” can be computed using a polynomial
number of Boolean operations, or in parallel using Boolean circuits of depth
O(log2N) and of polynomial size (for input size N).

Proof. We use the algorithm “Isolation of the Radical — Characteristic Zero” to
solve this problem over fields of characteristic zero, by solving systems of linear
equations of size polynomial in the number of inputs. Hence the cost of computing
the output is dominated by the cost of solving systems of linear equations of poly-
nomial size. The bounds stated in part (i) of the theorem follow immediately (see
Section 1.3 for details).

As shown in Section 1.3, computation of the solutions of systems of linear equations
over finite algebraic extensions of Q can be reduced to the computation of determi-
nants of matrices (of polynomial size) with entries in Q. Hence the bounds stated
in part (ii) of the theorem follow from well known results about the computation of
determinants (which are also discussed in Section 1.3).

As shown in Section 2.2, a matrix representation (with m = n) can be computed
from a set of structure constants for A — so that the above values can also be
computed at the stated cost from a set of structure constants.

Example 2.3.5. Consider the algebra A of 2 × 2 upper triangular matrices over
F = Q. Suppose we are given the basis

a1 =
[

1 1
0 0

]
, a2 =

[
0 1
0 0

]
, a3 =

[
0 0
0 1

]
.

To compute a basis for the radical of A, we form the coefficient matrix for the
system of equations

Trace((λ1a1 + λ2a2 + λ3a3) · ai) = 0, for 1 ≤ i ≤ 3.
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Computing representations, we have

(λ1a1 + λ2a2 + λ3a3) =
[
λ1 λ1 + λ2

0 λ3

]
,

((λ1a1 + λ2a2 + λ3a3) · a1) =
[
λ1 λ1

0 0

]
,

((λ1a1 + λ2a2 + λ3a3) · a2) =
[

0 λ1

0 0

]
,

((λ1a1 + λ2a2 + λ3a3) · a3) =
[

0 λ1 + λ2

0 λ3

]
.

Thus we obtain the system 1 0 0
0 0 0
0 0 1

 ·
λ1

λ2

λ3

 =

 0
0
0

 .
Solving, we find that


 0

1
0

 is a basis for the set of solutions — so that the

radical has dimension 1, and basis { a2 } over Q.

We extend this to obtain a basis for A by considering each element of the original
basis { a1, a2, . . . , an }, adding each element which is not a linear combination of
the elements already added to the new basis. Proceeding in this way, we obtain the
basis {b1, b2, b3 } with b1 = a2, b2 = a1, and b3 = a3. Hence we obtain the elements

µ1 1 = 0 µ1 2 = 1 µ1 3 = 0
µ2 1 = 1 µ2 2 = 0 µ2 3 = 0
µ3 1 = 0 µ3 2 = 0 µ3 3 = 1

It remains only for us to find a basis and matrix representation for the factor algebra
A/rad(A). Clearly we can take

ĉ1 = b2 + rad(A), ĉ2 = b3 + rad(A)

as our new basis. We compute structure constants for the basis { ĉ1, ĉ2 } by checking
the products bi · bj for i, j ∈ { 2, 3 }:

b2 · b2 =
[

1 1
0 0

]
= 1 · b2 + 0 · b3 + 0 · b1,

b2 · b3 =
[

0 1
0 0

]
= 0 · b2 + 0 · b3 + 1 · b1,

b3 · b2 =
[

0 0
0 0

]
= 0 · b2 + 0 · b3 + 0 · b1,

b3 · b3 =
[

0 0
0 1

]
= 0 · b2 + 1 · b3 + 0 · b1.
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Since b1 ∈ rad(A), we ignore the coefficients in this element when forming structure
constants for A/rad(A). Hence we obtain the basis { c1, c2 } for A/rad(A), with

c1 =
[

1 0
0 0

]
, c2 =

[
0 0
0 1

]
.

Example 2.3.6. Consider the algebra A of Example 2.3.5. Suppose we are given as
input a set of structure constants for the basis { a1, a2, a3 } of that example. That is,
we are given a set of 27 structure constants, which yield the regular representation φ,
with

φ(a1) =

 1 0 0
0 1 1
0 0 0

 , φ(a2) =

 0 0 0
0 0 1
0 0 0

 , φ(a3) =

 0 0 0
0 0 0
0 0 1

 .
To compute a basis for the radical of A, we form the coefficient matrix for the
system of equations

Trace((λ1a1 + λ2a2 + λ3a3) · ai) = 0, for 1 ≤ i ≤ 3.

Computing representations, we have

φ(λ1a1 + λ2a2 + λ3a3) =

λ1 0 0
0 λ1 λ1 + λ2

0 0 λ3

 ,
φ((λ1a1 + λ2a2 + λ3a3) · a1) =

λ1 0 0
0 λ1 λ1

0 0 0

 ,
φ((λ1a1 + λ2a2 + λ3a3) · a2) =

 0 0 0
0 0 λ1

0 0 0

 ,
φ((λ1a1 + λ2a2 + λ3a3) · a3) =

 0 0 0
0 0 λ1 + λ2

0 0 λ3

 .
Thus we obtain the system 2 0 1

0 0 0
0 0 1

 ·
λ1

λ2

λ3

 =

 0
0
0

 .
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Note that this is not the system obtained in the previous example. Solving, we

(again) find that


 0

1
0

 is a basis for the set of solutions — so that the radical

has dimension 1, and basis { a2 } over Q.

We extend this to obtain a basis for A as in Example 2.3.5. Again, we obtain the
basis { b1, b2, b3 } with b1 = a2, b2 = a1, and b3 = a3. Hence we obtain the elements

µ1 1 = 0 µ1 2 = 1 µ1 3 = 0
µ2 1 = 1 µ2 2 = 0 µ2 3 = 0
µ3 1 = 0 µ3 2 = 0 µ3 3 = 1

and the matrix

X =

 0 1 0
1 0 0
0 0 1

 .
Finally, we invert this matrix to obtain

X−1 =

 0 1 0
1 0 0
0 0 1

 = X.

We use these matrices as discussed in Section 2.2.2 to obtain the regular represen-
tation ψ for A with respect to the new basis { b1, b2, b3 }.

ψ(b1) = X−1φ(b1)X =

 0 1 0
1 0 0
0 0 1

 0 0 0
0 0 1
0 0 0

 0 1 0
1 0 0
0 0 1

 =

 0 0 1
0 0 0
0 0 0

 ;

ψ(b2) = X−1φ(b2)X =

 0 1 0
1 0 0
0 0 1

 1 0 0
0 1 1
0 0 0

 0 1 0
1 0 0
0 0 1

 =

 1 0 1
0 1 0
0 0 0

 ;

ψ(b3) = X−1φ(b3)X =

 0 1 0
1 0 0
0 0 1

 0 0 0
0 0 0
0 0 1

 0 1 0
1 0 0
0 0 1

 =

 0 0 0
0 0 0
0 0 1

 .
Now since rad(A), with basis { b1, b2, . . . , br }, is a two-sided ideal in A, we see
that the regular representation with respect to basis { b1, b2, . . . , bn } is block upper
triangular, with an r × r upper block and an (n − r) × (n − r) lower block. For
1 ≤ i ≤ r, the lower block of ψ(bi) is zero. We obtain a basis (and a regular
representation with respect to this basis) for A/rad(A) from the lower (n−r)×(n−r)

65



blocks of the matrices ψ(br+1), ψ(br+2), . . . , ψ(bn). In our example, we obtain the
matrices

c1 =
[

1 0
0 0

]
and c2 =

[
0 0
0 1

]
,

the same as those obtained in Example 2.3.5.

As indicated in the above examples, we can work directly with the m×m matrices
given to us as input — or we can generate a regular representation (n×n matrices)
and work with those. Clearly the former approach is (slightly) more efficient for
m < n, while the latter could save time for m > n.

2.3.2. Computations over Finite Fields

We now consider algebras over fields of positive characteristic, and, in particular,
over finite fields. We first note that the algorithm stated for fields of characteristic
zero is not correct when applied to algebras over fields of positive characteristic.

Example 2.3.7. Consider the algebra A of upper triangular 2 × 2 matrices over
F2, and suppose we are given the structure constants for the basis

a1 =
[

1 0
0 0

]
, a2 =

[
0 1
0 0

]
, a3 =

[
0 0
0 1

]
(as in Example 2.3.6). As showed in Example 2.1.10, the radical of A contains the
ideal generated by a2. We note that the radical is spanned by a2: for if

a =
[
α β
0 γ

]
∈ rad(A),

then α = 0, since aa1 = αa1 is nilpotent (while a1 is not), and γ = 0, since
a3a = γa3 is nilpotent (while a3 is not). However, the algorithm for isolation of the
radical of algebras over fields of characteristic zero computes as the radical the set
λ1a1 + λ2a2 + λ3a3 for λ1, λ2, λ3 ∈ F2 such that 0 0 1

0 0 0
0 0 1

 ·
λ1

λ2

λ3

 =

 0
0
0

 ;

in particular, this test incorrectly identifies a1 as an element of the radical of A.

Friedl and Rónyai generalise Dickson’s criterion, to obtain an algorithm for compu-
tation of the radical of a finite-dimensional associative algebra A over a finite field
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Fpl of characteristic p > 0. They reduce the problem to “Isolation of the Radi-
cal” over prime fields, by deriving from A a finite-dimensional associative algebra
Â ⊆ Mml×ml(Fp) of dimension nl over Fp, whose radical can be used to obtain
rad(A). They then present an algorithm for “Isolation of the Radical” of algebras
over Fp. We generalise their algorithm for “Isolation of the Radical” to arbitrary
finite fields, in hopes of improving the efficiency of the algorithm over Fpl , for large l.

Now let A ⊂ Mm×m(F ) be a finite-dimensional associative algebra of dimension n
over Fpl . Let k = b logp m c ∈ N — so that pk ≤ m < pk+1. As is the case for
Friedl and Rónyai’s method, we obtain a basis for the radical of A by finding ideals
I−1, I0, I1, . . . , Ik of A and functions gi : Ii−1 → Fpl for 0 ≤ i < k, so that

(i) I−1 = A and Ik = rad(A);
(ii) gi is an Fp-linear function on Ii−1;
(iii) Ii = { a ∈ Ii−1 : gi(ab) = 0 for all b ∈ A }.

Hence we will compute a basis for the radical of A over Fpl using arithmetic in Fp, to
compute bases for the ideals I0, I1, . . . , Ik over Fp, by solving systems of Fp-linear
equations defined using the function gi. We now define this function.

Recall that the field Fpl is isomorphic to Fp[t]/(f), for some monic irreducible
polynomial f ∈ Fp[t] with degree l. Let f̂ ∈ Z[t] be the monic polynomial with
degree l and with coefficients between 0 and p − 1 whose coefficients mod p are
those of f ; that is, f = (f̂ mod p). Since f is irreducible in Fp[t] it is clear that f̂
is irreducible in Z[t], and hence in Q[t]. Since f̂ is monic, we see that Z[t]/(f̂) is
an integral domain, and a subring of the ring of algebraic integers in the number
field Q[t]/(f̂). We have a natural (ring) homomorphism ρ : Z[t] → Fp[t] taking
integer polynomials to their residues mod p; since the image (under ρ) of the ideal
(f̂) ⊆ Z[t] is the ideal (f) ⊆ Fp[t], we also have an induced (ring) homomorphism

ρ : Z[t]/(f̂)→ Fp[t]/(f) ∼= Fpl ,

with
ρ : (h mod (f̂)) 7→ (ρ(h) mod (f))

for h ∈ Z[t]. We define the map gi (on the subspace Ii−1 of A) by describing a
map ĝi from m × m matrices with entries in Z[t]/(f̂) to Q[t]/(f̂). We show that
if α is an m ×m matrix with entries in Z[t]/(f̂) such that (α mod p) ∈ Ii−1, then
ĝi(α) ∈ Z[t]/(f̂). The map gi will then be defined so that

gi(α mod p) = ĝi(α) mod p

for such a matrix α. We continue by showing that the map gi is well defined, and
then showing that it is Fp-linear on the ideal Ii−1, so that it can be used to generate
a set Ii as in the above algorithm. We then show that Ii is a subspace of A over Fpl .
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For 0 ≤ i ≤ k, we define the map ĝi : Mm×m(Z[t]/(f̂))→ Q[t]/(f̂) by

ĝi(α) =
Trace (αp

i

)
pi

for α ∈Mm×m(Z[t]/(f̂)).

We define the set Îi ⊆Mm×m(Z[t]/(f̂)) inductively for −1 ≤ i ≤ k.
(i) Î−1 = {α ∈Mm×m(Z[t]/(f̂)) : (α mod p) ∈ A };
(ii) Îi+1 = {α ∈ Ii : ĝi+1(αβ) ∈ Z[t]/(f̂) for all β ∈ I−1 } for
−1 ≤ i < k.

Lemma 2.3.8. If α, β ∈Mm×m(Z[t]/(f̂)) and α ≡ β (mod p), then

Trace(αp
i

) ≡ Trace(βp
i

) (mod pi+1) for all i ≥ 0.

Proof. Friedl and Rónyai prove this result for the case l = 1 — so that α and β
are integer matrices (see Friedl and Rónyai [43], Lemma 5.1). We note that their
proof is also correct for matrices with entries in the domain Z[t]/(f̂).

It follows immediately from this lemma that if α, β ∈Mm×m(Z[t]/(f̂))
and α ≡ β (mod p), then

1
pi+1

(Trace(αp
i

)− Trace(βp
i

)) ∈ Z[t]/(f̂).

Lemma 2.3.9. If i ≥ 0 and α ∈ Îi−1 then for all β ∈ Î−1,

Trace((αβ)p
i

)
pi

∈ Z[t]/(f̂).

Proof. If i = 0 then
Trace((αβ)p

i

)
pi

= Trace(αβ),

and the result is obvious.

Suppose now that i > 0, α ∈ Îi−1, and β ∈ Î−1. Since α, β ∈ Mm×m(Z[t]/(f̂)),
piĝi(αβ) = Trace((αβ)p

i

) ∈ Z[t]/(f̂). Since α ∈ Îi−1, ĝi−1(αγ) ∈ Z[t]/(f̂) and
ĝi−1(αγ) ≡ 0 (mod p) for all γ ∈ Î−1. In particular (using γ = β(αβ)p−1),

ĝi−1((αβ)p) ∈ Z[t]/(f̂) and ĝi−1((αβ)p) ≡ 0 (mod p).
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That is,

Trace((αβ)p
i

)
pi−1

∈ Z[t]/(f̂) and
Trace((αβ)p

i

)
pi−1

≡ 0 (mod p).

Hence pi divides Trace((αβ)p
i

) in Z[t]/(f̂), as desired.

Lemmas 2.3.8 and 2.3.9 imply that if −1 ≤ i < k and α ∈ Ii−1, then ĝi(α) ∈
Z[t]/(f̂), and that if α, β ∈ Ii−1 with α ≡ β (mod p), then ĝi(α) ≡ ĝi(β)
(mod p). It is clear from these lemmas that the map gi : Ii−1 → Fpl and the
set

Ii = { a ∈ Ii−1 : gi(ab) = 0 for all b ∈ A }

are both well defined, for i = 1, 2, . . . , k. (Note also that Ii = {α mod p : α ∈ Îi }
for −1 ≤ i ≤ k).

It is clear from the definition of ĝi that the set Îi is closed under multiplication, for
−1 ≤ i ≤ k. Thus the following lemma can be applied to this set.

Lemma 2.3.10. Let H be a multiplicatively closed subset of Mm×m(Z[t]/(f̂)), let
j ≥ 0, and suppose that Trace(αp

i

) is divisible by pi+1 for all α ∈ H and all i,
0 ≤ i < j. Then for every α, β ∈ H,

Trace((α+ β)p
j

) ≡ Trace((α)p
j

) + Trace((β)p
j

) (mod pj+1).

Proof. Friedl and Rónyai prove this result for the case l = 1 (see Friedl and
Rónyai [43], Lemma 5.2). That is, they prove the result for integer matrices α
and β. We note that their proof generalises to the case α, β ∈ Mm×m(Z[t]/(f̂)).

Lemma 2.3.10 implies that if a, b ∈ Ii−1 ⊆ A then gi(a+b) = gi(a)+gi(b). It is also
clear that if a ∈ Ii−1 and γ ∈ Fp, then gi(γa) = γgi(a), since γp

i

= γ for γ ∈ Fp.
Thus gi is an Fp-linear map on Ii−1. It is not generally true that gi is Fpl -linear as
well.

We note that the proofs of Lemma 5.3, Lemma 5.4, Theorem 5.5, and Theorem 5.6
of Friedl and Rónyai (for the case l = 1) are valid for the general case. We state
the more general versions of these lemmas and theorems below.

Lemma 2.3.11. Let H be a multiplicatively closed subset of Mm×m(Z[t]/(f̂)), and
suppose that for every α ∈ H, Trace(αp

k

) is divisible by pk+1, where k = b logpm c.
Then a is nilpotent for all a ∈ A such that a = (α mod p) for some α ∈ H.
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Lemma 2.3.12. Let α ∈ Mm×m(Z[t]/(f̂)) such that (α mod p) is nilpotent in A.
Then for every i ≥ 0,

Trace(αp
i

) ≡ 0 (mod pi+1).

Theorem 2.3.13. Ij is an ideal of A for every j such that −1 ≤ j ≤ k, and
Ik = rad(A).

Theorem 2.3.14.
(i) The functions gi are Fp-linear on Ii−1 for all i, 0 ≤ i ≤ k.
(ii) Ii = { a ∈ Ii−1 : gi(ab) = 0 for all b ∈ A }.

Theorems 2.3.13 and 2.3.14 establish the correctness of this method for computation
of the radical. We add a final result which will be used to make the resulting
algorithm (shown on the next page) more efficient.

Lemma 2.3.15. If a ∈ Ii−1, and if gi(a) = 0, then gi(γa) = 0 for all γ ∈ Fpl .

Proof. Let α ∈ Mm×m(Z[t]/(f̂)) and let γ̂ ∈ Z[t]/(f̂) so that (α mod p) = a and
(γ̂ mod p) = γ. Then

gi(γa) = (ĝi(γ̂α)) (mod p)

=
(

1
pi

Trace((γ̂α)p
i

)
)

(mod p)

=
(
γ̂p

i

mod p
)( 1

pi
Trace(αp

i

) mod p
)

= (γp
i

)gi(a) = 0, if gi(a) = 0.

We assume Fpl is represented as Fp[t]/(f) for an irreducible polynomial f ∈ Fp[t]
in this algorithm. However, the method can be used to isolate the radical of a
finite-dimensional algebra A over Fpl , with elements of Fpl represented as Fp-linear
combinations of elements of any basis γ1, γ2, . . . , γl for Fpl over Fp — provided
that a multiplication table for this basis (which includes the elements ai j k of Fp,
for 1 ≤ i, j, k ≤ l, with γi · γj =

∑l
k=1 ai j kγk) is given with the description of the

algebra A. As stated, the algorithm uses the basis

1 + (f), t+ (f), . . . , tl−1 + (f)

for Fpl over Fp; the coefficients of f replace a multiplication table for this basis, in
the input.
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Algorithm Isolation of the Radical — Positive Characteristic

Input. • Integers n, m, p, l > 0, with p prime.
• Coefficients fl−1, fl−2, . . . , f1, f0 of a monic irreducible polynomial

f = tl + fl−1t
l−1 + · · ·+ f1t+ f0 ∈ Fp[t].

• Matrices a1, a2, . . . , an ∈Mm×m(Fp[t]/(f)), which form the basis
of a finite-dimensional associative algebra A ⊆Mm×m(Fp[t]/(f)),
with each entry (α) of each matrix represented by the
coefficients of a polynomial (α̂) in Fp[t] with degree less than l
(such that α = (α̂ mod f)).

Output. • Integer r ≥ 0, the dimension of rad(A) over Fp[t]/(f).
• Elements µi j of Fp[t]/(f), with bi =

∑n
j=1 µi j aj , so that

(1) b1, b2, . . . , br is a basis for rad(A) over Fp[t]/(f);
(2) b1, b2, . . . , bn is a basis for A over Fp[t]/(f).

• Matrices c1, c2, . . . , cr ∈M(n−r)×(n−r)(Fp[t]/(f)) forming the
basis for a semi-simple associative algebra over Fp[t]/(f) which is
isomorphic to the factor algebra A/rad(A).

(1) Form a basis { c1, c2, . . . , cnl } for I−1 = A over Fp.
for i = 0, 1, . . . , b logpm c

(Suppose { d1, d2, . . . , ds } is a basis for Ii−1 over Fp.)
(2) Compute the coefficient matrix (over Fp) for the system of

equations (in indeterminates λ1, λ2, . . . , λs)
gi((λ1d1 + λ2d2 + · · ·+ λsds) aj) = 0,

for 1 ≤ j ≤ n and for gi as defined on page 67.
(3) Compute a basis (over Fp) for the set of solutions of this system.

Use this to generate a basis for the set Ii over Fp, such that
λ1a1 + λ2a2 + · · ·λnan ∈ Ii if and only if (λ1, λ2, . . . , λn)
is a solution of the system of equations defined in step 2.

end for
(4) Use the basis for Ik = rad(A) over Fp (for k = b logpm c) to generate

a basis b1, b2, . . . , br for rad(A) over Fp[t]/(f).
(5) Extend this basis to obtain a basis { b1, b2, . . . , bn } for A over Fp[t]/(f)

by adding each element ai which is not a linear combination of the
elements b1, b2, . . . , br, a1, a2, . . . , ai−1, for 1 ≤ i ≤ n.

(6) For 1 ≤ i, j ≤ n, define µi j ∈ Fp[t]/(f) such that
bi = µi 1a1 + µi 2a2 + · · ·+ µi nan, for 1 ≤ i ≤ n.

(7) Compute a set of structure constants for the algebra A/rad(A) with
respect to the basis br+1 + rad(A), br+2 + rad(A), . . . , bn + rad(A),
and set ci = φ(br+i + rad(A)), for 1 ≤ i ≤ n− r, and for φ the
regular representation for A/rad(A) with respect to this basis.
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Example 2.3.16. Suppose A is the algebra of 2 × 2 upper triangular matrices
over F4, with basis { a1, a2, a3 } over F4, for

a1 =
[

1 1
0 0

]
, a2 =

[
0 1
0 0

]
, a3 =

[
0 0
0 1

]
.

We will use our method to compute the radical of A. We first note that A ⊆
M2×2(F4) and p = char F4 = 2; hence k = b logpm c = b log2 2 c = 1.

We use the isomorphism F4
∼= F2[t]/(f), for f = t2 + t + 1, when performing

computations over F2. Let α ∈ F4 such that α2 + α + 1 = 0. We have a basis
{ 1, α } for F4 over F2, and a basis

{ a1, αa1, a2, αa2, a3, αa3 }

for I−1 = A over F2.

We now compute a basis for I0 over F2. This ideal is defined as the set of elements

z = t1a1 + t2αa1 + t3a2 + t4αa2 + t5a3 + t5αa3

such that t1, t2, t3, t4, t5, t6 ∈ F2 and

g0(z · ai) = 0 and g0(z · αai) = 0 for 1 ≤ i ≤ 3.

By Lemma 2.3.15, and as indicated in step 2 of the algorithm, it is sufficient to
check conditions

g0(z · ai) = 0, for 1 ≤ i ≤ 3,

since these conditions imply the others.

Since the map g0 is simply the trace, these are equivalent to the conditions

Trace
([

t1 + t2α (t1 + t3) + (t2 + t4)α
0 t5 + t6α

] [
1 1
0 0

])
= 0 + 0α,

Trace
([

t1 + t2α (t1 + t3) + (t2 + t4)α
0 t5 + t6α

] [
0 1
0 0

])
= 0 + 0α,

Trace
([

t1 + t2α (t1 + t3) + (t2 + t4)α
0 t5 + t6α

] [
0 0
0 1

])
= 0 + 0α,

for t1, t2, t3, t4, t5, t6 ∈ F2. These are equivalent to the conditions
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ·

t1
t2
t3
t4
t5
t6

 =


0
0
0
0
0
0

 .
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Solving this system, we see that it is equivalent to the condition t1 = t2 = t5 = t6 =
0. Thus { a2, αa2 } is a basis for I0 over F2.

We next compute a basis for I1 over F2. This is the set of elements t1a2 +t2αa2 ∈ I0
such that t1, t2 ∈ F2, and

(i) g1((t1a2 + t2αa2) · a1) = 0;
(ii) g1((t1a2 + t2αa2) · a2) = 0;
(iii) g1((t1a2 + t2αa2) · a3) = 0.

Now

((t1a2 + t2αa2) · a1) =
[

0 0
0 0

]
,

((t1a2 + t2αa2) · a2) =
[

0 0
0 0

]
,

and

((t1a2 + t2αa2) · a3) =
[

0 t1 + t2α
0 0

]
.

Let α̂ ∈ Z[t]/(f̂) so that (α̂ mod 2) = α, so α̂2 = −α̂− 1. Now

g1((t1a2 + t2αa2) · a3) = ĝ1

([
0 t1 + t2α̂
0 0

])
mod 2

=

[
1
2

Trace

([
0 t1 + t2α̂
0 0

]2
)]

mod 2

= 0 mod 2 = 0.

Similarly, g1((t1a2+t2αa2)·a1) = 0 and g1((t1a2+t2αa2)·a2) = 0. Thus I1 contains
the values t1a2 + t2αa2 such that t1, t2 ∈ F2, and

0 0
0 0
0 0
0 0
0 0
0 0

 ·
[
t1
t2

]
=


0
0
0
0
0
0

 .

We see that { a2, αa2 } is a basis for I1 = rad(A) over F2; thus { a2 } is a basis
for rad(A) over F4.

We extend this to a basis { b1, b2, b3 } for A over F4 with b1 = a2, b2 = a1, and b3 =
a3, and compute a regular matrix representation for A/rad(A), as in Example 2.3.5.

73



We could continue by computing a basis for the radical of the algebra A of Exam-
ple 2.3.16 from structure constants for A (as in Example 2.3.6). We would find that
the function g1 obtained in this computation is F2-linear, but not F4-linear, on the
set I0 — and that the set I0 6= rad(A) for this example.

Theorem 2.3.17. Let A ⊆Mm×m(F ) be a finite-dimensional associative algebra of
dimension n over a field F = Fpl for m > 0, prime p > 0, and for l > 0. Suppose we
are given a basis for A over F , and the coefficients of a monic irreducible polynomial
f ∈ Fp[t], with degree l.

(i) The output of the problem “Isolation of the Radical” can be computed using
arithmetic over F , using a number of arithmetic steps which is polynomial in
nml.

(ii) If elements of F = Fp[t]/(f) ∼= Fpl are represented as vectors of elements of
Fp, with each α ∈ Fp[t]/(f) represented by the coefficients of a polynomial α̂ ∈
Fp[t] with degree less than l such that α = (α̂ mod f), then the output of the
problem “Isolation of the Radical” can be computed using arithmetic over Fp
using a number of steps polynomial in nml, or in parallel using arithmetic-
Boolean circuits over the field Fp of size polynomial in nml and of depth
O(log2(nml) logpm).

(iii) These outputs can be computed using a number of Boolean operations which
is polynomial in nml log p, or using Boolean circuits of size polynomial in
nml log p and of depth O(log2(nml log p) logpm).

Proof. We first note that if p > m then, since b logpm c = 0, Dickson’s criterion
can be used to compute a basis for the radical of A — that is, we can apply the
algorithm (and the timing analysis for “arithmetic” steps) for fields of characteristic
zero.

Suppose now that p ≤ m, so b logpm c ≥ 1. We first consider the arithmetic cost
of computing the output for “Isolation of the Radical” sequentially. As noted by
Lempel, Seroussi, and Ziv [80], we can assume that elements of Fpl are represented
as vectors of elements of Fp, and that we perform arithmetic over this smaller field.
We compute a basis for the radical by forming and solving k = 1+b logpm c systems
of linear equations of polynomial size — and it is clear that this can be done in
polynomial time. It is also clear that the number of Boolean operations used to
compute this output is polynomial in the size of the input.

We next consider the cost of computing the desired output in parallel. We first
consider the case l = 1 — so F = Fpl = Fp. The bounds stated in (ii) and (iii)
follow from well known bounds for the parallel cost of solving systems of linear
equations (and from the fact that p is small: p ≤ m). These bounds can also be
attained for arbitrary l by using an efficient implementation of arithmetic over finite
extensions of Fp (See Section 1.3 for details).
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Thus the restriction of Friedl and Rónyai’s algorithm to computation over prime
fields is not strictly necessary — it can be applied “directly” to compute the radical
of algebras over Fpl . We can prove a slightly better upper bound on running time
than Friedl and Rónyai (note that we use k = 1 + b logpm c, rather than 1 +
b logpml c). Unfortunately, we have been unable to generalise the algorithm beyond
that: it requires the solution of systems of Fp-linear equations which are not linear
over the ground field. Hence it requires arithmetic over Fp, and the assumption
that the ground field be a finite extension of Fp.

2.3.3. Algebras without Identity Elements

We noted in Section 2.1 that Friedl and Rónyai [43] do not require “associative
algebras” to have multiplicative identities. Suppose now that Â is a vector space of
degree n over a field F which satisfies the definition of “associative algebra over F”
given by Friedl and Rónyai, and which does not have a multiplicative identity.

As noted in Example 2.1.7, the set

A = {α1A + a : α ∈ F, a ∈ Â }

is an associative algebra of dimension n+1 over F (with multiplication in Â extended
to A as shown in that example). Suppose now that x = α1A + a is nilpotent in A,
with α ∈ F and a ∈ Â; then, since Â is a two-sided ideal of A, and xk = αk1A + ak
for some ak ∈ Â, it is clear that α = 0 and x ∈ Â. Thus every strongly nilpotent
element of A is in Â, and every nilpotent (left) ideal in A is a nilpotent (left) ideal
contained in Â. Clearly (for our definition of the radical, or for the definition used
by Friedl and Rónyai),

rad(A) = rad(Â).

Thus the algorithms given by Friedl and Rónyai can be used to isolate the radical
of a finite-dimensional associative algebra, using either definition of “associative
algebra”.

Now, since rad(A) is a two-sided ideal contained in Â,

A/rad(A) ∼= {α1A + â : α ∈ F, â ∈ Â/rad(Â) },

so that A/rad(Â) is a semi-simple associative algebra over F with dimension one
greater than the dimension of the F -vector space Â/rad(Â); again, this vector space
is an “associative algebra”, as defined by Friedl and Rónyai.

The structure theorems (Theorems 2.1.21 and 2.1.22) are correct for “associative
algebras” without identity. In fact, they imply that any finite-dimensional semi-
simple “associative algebra” over F , including Â/rad(Â), is isomorphic to a direct
sum of simple algebras over F with identity elements. Either Â = rad(Â), and
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Â/rad(Â) = (0), or Â/rad(Â) is a semi-simple associative algebra over F (with
identity). For a more detailed discussion of these properties of associative algebras
(with or without identity elements), see Chapter 13 of van der Waerden [118].

It follows that we can ignore the distinction between our definition of “associative
algebra” and the definition used by Friedl and Rónyai in Sections 2.4 and 2.5, since
these definitions are equivalent for finite-dimensional semi-simple algebras.

The following example shows that the extreme case “A = rad(A)” can occur if the
definitions of Friedl and Rónyai are used.

Example 2.3.18. Consider the ring of strictly upper triangular matrices over a
field F ,

Â = {U = (Ui j)1≤i, j≤n ∈Mn×n(F ) : Ui j = 0 if j ≤ i }.

It is easily checked that for k > 0,

Âk = {U = (Ui j)1≤i, j≤n ∈Mn×n(F ) : Ui j = 0 if j ≤ i+ k − 1 }.

In particular, Ân+1 = 0. Thus Â is a nilpotent ideal of itself; so rad(Â) = Â, and
Â/rad(Â) = (0).

2.3.4. Algebras over Field Extensions

As stated in Section 2.2, we are also interested in the decomposition of an algebra
AE = A⊗F E over a field E, given an algebra A of dimension n over a field F , and
an extension E of F . We will be interested in the case that F is a finite algebraic
extension of Q or a finite field, and that E is an algebraic extension of F . We begin
with a result about the structure of the radical of AE = A⊗F E, for E a separable
extension of a field F .

Proposition 2.3.19. Let A be a finite-dimensional associative algebra of dimen-
sion n over a field F , and suppose rad(A) has dimension r and basis b1, b2, . . . , br
over F . Let E be a finite separable extension of F . Then the radical of AE has
dimension r and basis b1, b2, . . . , br over E.

For a proof of this, see Section 69 of Curtis and Reiner [31]. We use it to prove the
following theorem.
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Theorem 2.3.20. Let A be a finite-dimensional associative algebra of dimension n
over a field F . Suppose the radical of A has dimension r and basis b1, b2, . . . , br
over F .

(i) If F has characteristic zero and E is any extension of F then the algebra AE
has a radical of dimension r and with basis b1, b2, . . . , br over E.

(ii) If F is a perfect field and E is any algebraic extension of F then the algebra AE
has a radical of dimension r and with basis b1, b2, . . . , br over E.

(iii) There exist fields F and E, with E an algebraic extension of dimension 2
over F , and a finite-dimensional associative algebra A of dimension 2 over F ,
such that rad(A) = (0), but rad(AE) 6= (0).

Proof. Part (i) follows from the fact that Dickson’s criterion for membership in
the radical of A is correct for finite-dimensional algebras over fields of characteristic
zero. Given a basis a1, a2, . . . , an for A over F , we use Dickson’s criterion to
construct a matrix Z with entries in F such that, for λ1, λ2, . . . , λn ∈ F ,

λ1a1 + λ2a2 + · · ·+ λnan ∈ rad(A) if and only if Z ·


λ1

λ2
...
λn

 =


0
0
...
0

 .
Applying Dickson’s criterion to construct a basis for rad(AE) over E, using the
basis a1, a2, . . . , an for AE over E, we obtain the same coefficient matrix Z. Since
the rank of Z is independent of the choice of ground field (between F and E), the
result follows.

We use Proposition 2.3.19 to prove part (ii) of the theorem. Suppose F , E, and A
are as stated above, and b1, b2, . . . , br is a basis for rad(A) over F . Now rad(A)
is a nilpotent ideal spanned (over F ) by b1, b2, . . . , br: (rad(A))k = (0) for some
k ≥ 0. Let I ⊆ AE be the E-vector space spanned by b1, b2, . . . , br. It is easily
checked that I is a two-sided ideal of AE and that Ik = (0). Thus I is a nilpotent
ideal of AE , and it follows by Theorem 2.1.12 that I ⊆ rad(AE).

Suppose rad(AE) * I; then there exists some α ∈ AE such that α ∈ rad(AE) \ I.
However, there exists some finite algebraic extension Ê of F such that F ⊆ Ê ⊆ E
and α ∈ A ⊗F Ê (This follows easily from the fact that AE is isomorphic to a
subring of Mn×n(E) and that E is an algebraic extension of F ). Now it is clear
that α ∈ rad(A ⊗F Ê) — hence (by Proposition 2.3.19), α is in the Ê-subspace
spanned by b1, b2, . . . , br, contradicting the fact that α /∈ I. Thus rad(AE) = I,
proving part (ii).

To prove part (iii), we consider the field F = F2(t) of rational functions in one
indeterminate over F2. Let A be the algebra over F spanned by the matrices

a1 =
[

1 0
0 1

]
, a2 =

[
0 t
1 0

]
.
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Now a2
2 = ta1, so we see that A is a finite-dimensional associative algebra of dimen-

sion 2 over F . To see that rad(A) = (0), let γ1, γ2 ∈ F such that γ1a1 + γ2a2 ∈
rad(A). Then γ1a1 + γ2a2 is nilpotent, so it is clear that the matrix

γ1a1 + γ2a2 =
[
γ1 tγ2

γ2 γ1

]
is singular: det(γ1a1 + γ2a2) = γ2

1 + tγ2
2 = 0. Since γ1, γ2 ∈ F2(t), it is clear that

γ1 = γ2 = 0.

Now let E = F [x]/(x2 + t). E is a finite algebraic extension of dimension 2 over F .
Consider the element xa1 + a2 of AE ; xa1 + a2 6= 0, but

(xa1 + a2)2 =
[
x t
1 x

]2

=
[
x2 + t tx+ tx
x+ x t+ x2

]
=
[

0 0
0 0

]
,

so (xa1 + a2) is nilpotent. Since AE is a commutative algebra, it is clear that this
element is also strongly nilpotent. Hence (xa1 + a2) ∈ rad(AE) 6= (0), proving
part (iii).

We now have an algorithm for the (arithmetic or Boolean) computation of the
radical of a finite-dimensional associative algebra A over any field F which is an
algebraic extension of Q or of a prime field Fp. Given a basis a1, a2, . . . , an and
set of structure constants γi j k (for 1 ≤ i, j, k ≤ n) for A over F , we note that
there exists a field F̂ containing these structure constants, such that F̂ ⊆ F and F̂
is a finite algebraic extension of Q, or of Fp (and in the latter case, F̂ is a finite
field). We compute the minimal polynomial of a generator α of F̂ over Q or Fp
(as well as an isolating rectangle for α, if F̂ is an extension of Q), and compute
a basis over F̂ for the radical of the algebra Â with basis a1, a2, . . . , an over F̂
and structure constants γi j k. By Theorem 2.3.20 (ii), this also gives us a basis
for rad(A) over F .

We also have a means of computing a basis for the radical of A⊗F R or A⊗F C for
any number field F and finite-dimensional associative algebra A over F : We simply
use Dickson’s criterion to compute (and return as output) a basis for the radical
of A over F .

Having considered algebraic extensions of Q and of finite fields, it seems natural
to consider the next simplest set of fields — those of the form G(x1, x2, . . . , xm),
for G a finite algebraic extension of Q or of a finite field, and for indeterminates
x1, x2, . . . , xn over G. If G has characteristic zero, then the algorithm based
on Dickson’s criterion can be used to compute a basis for the radical of a finite-
dimensional associative algebra A over F = G(x1, x2, . . . , xn), using a polynomial
number of field operations over the field F . However, it is not clear that the algo-
rithm for “Isolation of the Radical” of algebras over finite fields can be generalised.
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Question 2.3.21. What is the complexity of the problem “Isolation of the Radi-
cal”, for finite-dimensional associative algebras over fields Fpl(x1, x2, . . . , xm)?

2.3.5. Computation of the Radical and Squarefree Decomposition

We conclude this chapter by considering computations of the radical for finite-
dimensional associative algebras over arbitrary fields. We relate this to a better
known problem — the squarefree decomposition of polynomials, discussed in Sec-
tion 1.4.

Theorem 2.3.22. Suppose a basis for the radical of an arbitrary associative algebra
of dimension n over an field F can be computed from a basis and set of structure
constants, using arithmetic-Boolean circuits over F of depth D(n) and size S(n).
Then the monotone squarefree decomposition and distinct power decomposition of
an arbitrary polynomial f ∈ F [x] of degree n over F can be computed from the
coefficients of f , using arithmetic-Boolean circuits of depth D(n) + O(log2 n) and
size S(n) + nO(1).

Proof. Consider the algebra A = F [x]/(f) of dimension n over F . We have a basis
1 + (f), x + (f), x2 + (f), . . . , xn−1 + (f) for A over F ; the image φ(x + (f)) of
x+ (f) under the regular representation of A for this basis is simply the companion
matrix of f (see Example 2.2.6). The matrices φ(xi + (f)), 0 ≤ i < n, can be
computed from the coefficients of f using circuits of size nO(1) and depth O(log2 n).
Hence the structure constants for A with respect to this basis can be computed at
this cost. Applying the size and depth bounds given for “Isolation of the Radical”,
we conclude that a basis for the radical of A over F can be computed from the
coefficients of f using circuits of depth D(n) +O(log2 n) and size S(n) + nO(1).

As claimed in Example 2.1.12, rad(A) = (g1)/(f), for g1 the greatest squarefree
part of f . To prove this, we note that A is a commutative algebra — hence an
element α = a + (f) (for a ∈ F [x]) is in rad(A) if and only if α is nilpotent in A.
That is, α = a+ (f) ∈ rad(A) if and only if f divides ak in F [x] for some k ≥ 0. It
is clear that this is the case if and only if g1 divides a — that is, if a ∈ (g1), and
α ∈ (g1)/(f). Thus rad(A) = (g1)/(f).

Now suppose b1, b2, . . . , br is a basis for rad(A) over F . We obtain the coefficients
of g1 from this basis by finding the smallest k ≥ 0 such that xk + (f) is an F -linear
combination of b1, b2, . . . , br, 1 + (f), x+ (f), . . . , xk−1 + (f) — that is, such that
there exist γ0, γ1, . . . , γk−1 ∈ F with

xk ≡ γk−1x
k−1 + γk−2x

k−2 + · · ·+ γ1x+ γ0 (mod rad(A))
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in A — and by computing these coefficients γk−1, γk−2, . . . , γ1, γ0. It is clear that

g1 = xk − γk−1x
k−1 − γk−2x

k−2 − · · · − γ1x− γ0.

The degree k and the coefficients of g1 can be computed as described above, by
solving n systems of linear equations (corresponding to the n possible values of k,
1 ≤ k ≤ n) in parallel.

Finally, we note that the remaining polynomials in the monotone squarefree de-
composition and distinct power decomposition of f can be computed from the
coefficients of f and g1 using the relationships stated in Proposition 1.4.6, using
arithmetic-Boolean circuits of depth O(log2 n) and size nO(1). Thus these decom-
positions of f can be computed at the stated cost.

As we noted in Section 1.4, there exist fields F for which the problem of deciding
whether a polynomial f ∈ F [x] is squarefree in F [x] is undecidable. This is sufficient
for us to conclude that no algorithm exists for deciding whether a finite-dimensional
associative algebra is semi-simple, or for the computation of a basis for the radical
of a finite-dimensional associative algebra, over an arbitrary field.

The reduction from the computation of the monotone squarefree decomposition and
distinct power decomposition of polynomials to “Isolation of the Radical” (Theo-
rem 2.3.22) cannot be used to resolve Question 2.3.21 — at least, it cannot be used to
show that “Isolation of the Radical” is a hard problem for fields Fpl(x1, x2, . . . , xm).
There exist efficient algorithms for factorisation of polynomials in the polyno-
mial ring Fpl [x1, x2, . . . , xm], for extraction of the numerator and denominator
f, g ∈ Fpl [x1, x2, . . . , xm] given a representation of a rational function α = f/g ∈
Fpl(x1, x2, . . . , xm), and for determination of the degree in x1 of a polynomial
f ∈ Fpl [x1, x2, . . . , xm], using a very general representation of multivariate polyno-
mials in Fpl [x1, x2, . . . , xm] (see Kaltofen [70], [71] for details). It is clear that these
can be used to compute the monotone squarefree decomposition of a polynomial
of degree n with coefficients in Fpl(x1, x2, . . . , xm) efficiently. Thus a reduction
from “Isolation of the Radical” over a field F to the computation of the monotone
squarefree decomposition of polynomials with coefficients in F of the type stated
in Theorem 2.3.22 would imply that the problem “Isolation of the Radical” has an
efficient solution for fields Fpl(x1, x2, . . . , xm).

Question 2.3.23. Is the problem “Isolation of the Radical” (polynomial time)
reducible to the computation of the monotone squarefree decomposition of polyno-
mials, over arbitrary fields?

In summary, we have efficient algorithms for computation of a basis for the radical
of a finite-dimensional associative algebra over a finite extension of Q, and over a
finite field. While we can also compute the radical of a finite-dimensional associative
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algebra over an arbitrary algebraic extension of Q or over an arbitrary algebraic
extension of a finite field, we know that the decision problem “Is A semi-simple?”
is undecidable for an arbitrary finite-dimensional associative algebra A over an
arbitrary field. The computation of the monotone squarefree decomposition and
distinct power decomposition of polynomials in F [x] can be reduced to the solution
of “Isolation of the Radical”; a reduction from “Isolation of the Radical” to the
computation of monotone squarefree decompositions would yield efficient solutions
for “Isolation of the Radical” over fields where no such solutions are known.
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2.4. Computation of Simple Components

We consider algorithms for the computation of the simple components of a finite-
dimensional semi-simple associative algebra A over a field F . As stated in Theo-
rem 2.1.23,

A = B1 ⊕B2 ⊕ · · · ⊕Bk

for simple algebras B1, B2, . . . , Bk (the simple components of A over F ), for some
k > 0. Given a basis and set of structure constants for A over F , or a set of
matrices forming a basis for the (matrix) algebra A, we compute bases and structure
constants for each of the simple components.

Problem Extraction of Simple Components

Input • Integers n, m > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis for a

finite-dimensional semi-simple associative algebra A ⊆Mm×m(F )
of dimension n over F .

Output • Integer k > 0, the number of simple components of A.
• Integers n1, n2, . . . , nk > 0, with n1 + n2 + · · ·+ nk = n,

such that ni is the dimension of simple component Bi of A.
• Elements µi j l of F , for 1 ≤ i ≤ k, 1 ≤ j ≤ ni, and 1 ≤ l ≤ n,

defining elements bi j =
∑n
l=1 µi j l al of A such that

(1) bi 1, bi 2, . . . , bi ni is a basis for the simple
component Bi over F , and hence

(2) b1 1, . . . , bk nk is a basis for A over F .
• Matrices ci j ∈Mni×ni(F ), such that ci 1, ci 2, . . . , ci ni

is the basis for a matrix algebra isomorphic to Bi, for 1 ≤ i ≤ k.

Friedl and Rónyai [43] show that this problem can be solved efficiently (using
Boolean computations) when F is a finite field or a number field. Following their
example, we begin (in Section 2.4.1) by reducing the above problem to the sim-
pler problem of computing a set of central primitive idempotents for a semi-simple
associative algebra. We show that this reduction is correct for a (slightly) more
general class of fields than that discussed by Friedl and Rónyai, and for parallel
Boolean and arithmetic computations. We continue by reviewing their algorithm
(in Section 2.4.2), and by introducing two new algorithms for this problem (in Sec-
tions 2.4.3 and 2.4.4). The new algorithms eliminate the use of computations over
extensions of the ground field, and reduce the use of factorisation of polynomials.
Hence, we believe that they may be used to compute simple components of a semi-
simple algebra more quickly than Friedl and Rónyai’s algorithm. They also provide
reductions from the computation of the simple components of semi-simple algebras
over F to the factorisation of polynomials over F , for parallel Boolean computations
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(when F is a finite field or a number field) and for parallel arithmetic computations
(when F is a perfect field). Finally, we present polynomial-time algorithms for the
computation of simple components of A⊗F R and A⊗F C, for a finite-dimensional
semi-simple algebra A over a number field F ; these algorithms are presented in
Section 2.4.5.

2.4.1. Computation of Simple Components using Idempotents

Friedl and Rónyai show that the computation of bases for the simple components
of a finite-dimensional, semi-simple associative algebra A over a field F can be
reduced (with respect to polynomial-time computations) to the simpler problem of
computation of the central primitive idempotents of A. In this section we review
this reduction and show that it is also useful for parallel computations.

Definition 2.4.1. The centre of an associative algebra A over a field F , Centre(A),
is the set of all elements of A which commute with all the elements in A:

Centre(A) = {x ∈ A : xy = yx for all y ∈ A }.

Clearly Centre(A) is a commutative subalgebra of A. A basis for the centre of A
over F can be computed by solving the system of linear equations

(λ1a1 + λ2a2 + · · ·+ λnan)ai = ai(λ1a1 + λ2a2 + · · ·+ λnan)

for 1 ≤ i ≤ n, for indeterminates λ1, λ2, . . . , λn over F ; the centre clearly includes
every element λ1a1 + λ2a2 + . . . λnan of A such that (λ1, λ2, . . . , λn) is a solution
of this system. The following facts indicate the usefulness of Centre(A) for the
problem at hand.

Proposition 2.4.2. Let A be a finite-dimensional semi-simple associative alge-
bra over a field F , such that A = B1 ⊕ B2 ⊕ · · · ⊕ Bk for simple components
B1, B2, . . . , Bk and for k ≥ 1.
(i) Centre(A) = Centre(B1)⊕ Centre(B2)⊕ · · · ⊕ Centre(Bk);
(ii) Bi = A · Centre(Bi) = {αβ : α ∈ A and β ∈ Centre(Bi) } for 1 ≤ i ≤ k.

Proof. Let α ∈ A; then α = α1 + α2 + · · · + αk for a unique set α1, α2, . . . , αk
with αi ∈ Bi for 1 ≤ i ≤ k. Suppose now that γ = γ1 + γ2 + · · ·+ γk ∈ Centre(A),
with γi ∈ Bi for 1 ≤ i ≤ k. Since αiγj = γjαi = 0 if 1 ≤ i, j ≤ k and i 6= j, it is
clear that

αγ = α1γ1 + α2γ2 + · · ·+ αkγk,

γα = γ1α1 + γ2α2 + · · ·+ γkαk,
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and, since γ ∈ Centre(A), αγ = γα, and αiγi, γiαi ∈ Bi for 1 ≤ i ≤ k, it follows
that αiγi = γiαi for 1 ≤ i ≤ k. Since α is arbitrarily chosen from A, it is clear
that αi is arbitrarily chosen from Bi, so γi ∈ Centre(Bi). Thus Centre(A) ⊆
Centre(B1)⊕· · ·⊕Centre(Bk). It is also easily checked that if γi is arbitrarily chosen
from Centre(Bi) for 1 ≤ i ≤ k, then α(γ1 + · · ·+γk) = (γ1 + · · ·+γk)α for arbitrary
α ∈ A. Thus it is also true that Centre(A) ⊇ Centre(B1) ⊕ · · · ⊕ Centre(Bk),
proving (i).

Since the multiplicative identity of Bi is in Centre(Bi), and Bi ⊆ Ai, it is clear that
Bi ⊆ Centre(Bi) · A. On the other hand, Centre(Bi) ⊆ Bi, and Bi is a two-sided
ideal of A; thus Centre(Bi) ·A ⊆ Bi as well, as required to prove (ii).

As Friedl and Rónyai note, Proposition 2.4.2 gives a reduction from “Extraction of
Simple Components” in the general case to the problem for commutative, finite-
dimensional semi-simple algebras. As noted above, a basis for the centre of a
finite-dimensional associative algebra can be computed by solving a system of linear
equations. By Proposition 2.4.2 (i) and (ii), the simple components of A are easily
computed from those of Centre(A) as well.

Suppose again that A has simple components B1, B2, . . . , Bk, and that Bi has
multiplicative identity ei, for 1 ≤ i ≤ k. Then the elements e1, e2, . . . , ek comprise
a set of central primitive idempotents for A, as defined below.

Definition 2.4.3. Let A be an associative algebra over a field F . A set of elements
i1, i2, . . . , ik of A is a set of idempotents for A if

(i) i1 + i2 + · · ·+ ik = 1 in A;

(ii) iris = δr sir =
{
ir if r = s,
0 otherwise, for 1 ≤ r, s ≤ k.

It is a set of primitive idempotents if, in addition,

(iii) Any idempotent i of A (with i2 = i) is the sum of some subset of the
idempotents i1, i2, . . . , ik.

It is a set of central idempotents if (i) and (ii) hold and if ir ∈ Centre(A) for
1 ≤ r ≤ k. Finally, it is a set of central primitive idempotents if they comprise a
set of central idempotents and every central idempotent i of A is the sum of some
subset of the idempotents i1, i2, . . . , ik.

Note that a set of central primitive idempotents is not generally a set of primitive
idempotents.

Since eiA = Bi for 1 ≤ i ≤ k, it is clear that we can isolate the simple components
of A if we can compute the central primitive idempotents e1, e2, . . . , ek. We state
this reduction formally on the following page.
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Algorithm Simple Components via Central Primitive Idempotents

Input. • Integers n, m, k > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis for a

finite-dimensional semi-simple associative algebra A ⊆Mm×m(F )
of dimension n over F , and with k simple components over F .

• The central primitive idempotents e1, e2, . . . , ek of A.
Output. • Integers n1, n2, . . . , nk > 0, with n1 + n2 + · · ·+ nk = n,

such that ni is the dimension of the simple component Bi of A
with identity element ei, for 1 ≤ i ≤ k.
• Elements µi j l of F , for 1 ≤ i ≤ k, 1 ≤ j ≤ ni, and 1 ≤ l ≤ n,

defining elements bi j =
∑n
l=1 µi j lal of A such that

(1) bi 1, bi 2, . . . , bi ni is a basis for the simple
component Bi over F , and hence

(2) b1 1, . . . , bk nk is a basis for A over F .
• Matrices ci j ∈Mni×ni(F ) such that ci 1, ci 2, . . . , ci ni

is a basis for a matrix algebra isomorphic to Bi, for 1 ≤ i ≤ k.

(1) For 1 ≤ i ≤ k, compute the integer ni and a basis bi 1, bi 2, . . . , bi ni
over F for B = eiA, by selecting a maximal linearly independent
subset of eia1, eia2, . . . , eian.

(2) Compute elements µi j l of F , for 1 ≤ i ≤ k, 1 ≤ j ≤ ni, and 1 ≤ l ≤ n,
such that bi j = µi j 1a1 + µi j 2a2 + · · ·+ µi j nan (by forming and
solving n nonsingular systems of linear equations, each in
n indeterminates, over F ).

(3) For 1 ≤ i ≤ k, compute a set of structure constants for the simple
algebra Bi with respect to the basis bi 1, bi 2, . . . , bi ni over F (by
forming and solving n2

i nonsingular systems of linear equations, each
in ni indeterminates over F ). Use these to compute the matrix
ci j = φi(bi j) ∈Mni×ni(F ), for 1 ≤ i ≤ k and 1 ≤ j ≤ ni,
and for φi the regular matrix representation of Bi with respect to
the above basis.
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Theorem 2.4.4. Let A ⊆ Mm×m(F ) be a finite-dimensional semi-simple associa-
tive algebra of dimension n over a field F . Given a basis for A over F , and the
central primitive idempotents of A, bases for the simple components of A over F
can be computed using arithmetic-Boolean circuits of depth O(log2(mn)) and size
(mn)O(1).

Proof. The algorithm “Simple Components via Central Primitive Idempotents”
can be used to perform this computation. The algorithm is clearly correct, since
each central primitive idempotent ei is the identity element of a simple component
Bi, which is itself a two-sided ideal of A. The timing analysis follows from the
analysis given for solutions of nonsingular systems of linear equations, in Section 1.3.

We are left with the problem of computing the central primitive idempotents
e1, e2, . . . , ek of a semi-simple algebra A. We first consider the problem of deciding
whether A is simple (and k = 1). As stated in Theorem 2.1.25, a finite-dimensional
simple associative algebra over a field F is isomorphic to a matrix ring Mh×h(D),
for h > 0 and for a division algebra D over F . If A is commutative then it is clear
that h = 1, so A is isomorphic to D, and that D is a commutative division algebra.
Hence A is a field, and a finite algebraic extension of F . Conversely, it is clear that
if A is a field, then A is simple and commutative: If A is not simple then Centre(A)
includes nonzero zero-divisors (for example, the central primitive idempotents).

We will see that for some fields F , the problem of deciding whether a finite-
dimensional semi-simple algebra A over F is a simple algebra is undecidable. How-
ever, the fact that a commutative finite-dimensional simple algebra is also a field
gives us a method for deciding this problem for perfect fields. We make use of the
following fact.

Proposition 2.4.5. If F is a perfect field, and E is an algebraic extension of F
with finite dimension over F , then E is a primitive algebraic extension. That is,
E = F [α] for some α ∈ E.

Proposition 2.4.5 is a consequence of the more general result that every extension
F (α1, α2, . . . , αn) with αi separable and algebraic over F for 1 ≤ i ≤ n is a
primitive algebraic extension (see van der Waerden [117] for a proof of this). If F
is perfect, then every element αi of E which is algebraic over F is also separable,
so Proposition 2.4.5 follows.

Recall that the minimal polynomial f ∈ F [t] of an element a of A is the monic
nonzero polynomial of least degree such that f(a) = 0. (Note that if A is finite-
dimensional over F then some such polynomial exists.) The minimal polynomial
of a is a divisor in F [t] of any polynomial g ∈ F [t] such that g(a) = 0. If A is not
a field, then an element a of A can have a minimal polynomial which is reducible
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in F [t]: In particular, if a is an idempotent in A other than 0 or 1, then a has
minimal polynomial t(t− 1).

Proposition 2.4.6. Let a ∈ A, with minimal polynomial f ∈ F [t]. Then F [a] ⊆ A,
and F [a] is a field if and only if f is irreducible in F [t].

Clearly, F [a] ∼= F [t]/(f). If f is irreducible then every nonzero element of F [t]/(f)
has a multiplicative inverse (which can be computed using the extended Euclidean
algorithm in F [t]). Otherwise, F [t]/(f) contains nonzero zero divisors — including
(f1 mod f) and (f2 mod f) for any polynomials f1 and f2 of positive degree such
that f = f1f2.

Hence we can conclude that a semi-simple algebra A = B1 ⊕ B2 ⊕ · · · ⊕ Bk with
simple components B1, B2, . . . , Bk is a simple algebra (and k = 1) if we can find an
element a of Centre(A) with F [a] = Centre(A), such that the minimal polynomial
of a is irreducible in F [t].

Elements a of Centre(A) whose minimal polynomials are reducible in F [t] are also
useful. Suppose now that

a = β1 + β2 + · · ·+ βk ∈ A,

with βi ∈ Centre(Bi) for 1 ≤ i ≤ k. Suppose f is the minimal polynomial of a
over F , and that hi is the minimal polynomial of βi over F , for 1 ≤ i ≤ k. It follows
by Proposition 2.4.6 that the polynomials h1, h2, . . . , hk are all irreducible in F [t].
It is also clear that f is the least common multiple of h1, h2, . . . , hk. Hence f is
squarefree in F [t], and has factorisation

f = f1f2 · · · fl

for some l > 0 and for distinct polynomials f1, f2, . . . , fl ∈ {h1, h2, . . . , hk } (thus
f1, f2, . . . , fl are distinct, while h1, h2, . . . , hk need not be). Since f1, f2, . . . , fl
are pairwise relatively prime, there exist polynomials g1, g2, . . . , gl in F [t], each
with degree less than the degree of f1f2 · · · fl = f , such that

gi ≡ 1 (mod fi) and gi ≡ 0 (mod fj) for 1 ≤ i, j ≤ l, i 6= j.

Let êi = gi(a) ∈ A; then the elements ê1, ê2, . . . , êl can be used to obtain a partial
decomposition of A, as indicated by the following facts.
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Proposition 2.4.7. Let a = β1 + β2 + · · ·+ βk ∈ Centre(A), with βi ∈ Centre(Bi)
for 1 ≤ i ≤ k, and let ê1, ê2, . . . , êl be as above. Then

(i) The elements ê1, ê2, . . . , êl are central idempotents in A, such that êiêj = êi
if i = j and êiêj = 0 if i 6= j, for 1 ≤ i, j ≤ l.

(ii) ê1 + ê2 + · · ·+ êl = 1.
(iii) If βj1 and βj2 are terms in the sum a = β1 + β2 + · · · + βk with minimal

polynomials hj1 and hj2 , then if hj1 6= hj2 then there exists some i with
1 ≤ i ≤ l such that êiβj1 = βj1 and êiβj2 = 0. If hj1 = hj2 then, for each i
such that 1 ≤ i ≤ l, either êiβj1 = βj1 and êiβj2 = βj2 , or êiβj1 = êiβj2 = 0.

Proof. Let polynomials f, f1, f2, . . . , fl and g1, g2, . . . , gl be as given above.
Clearly êi = gi(a) = gi(β1) + gi(β2) + · · · + gi(βk), for 1 ≤ i ≤ l. Suppose βj
has minimal polynomial hj = fi; then, since gi ≡ 1 (mod fi) and fi(βj) = 0, it
is clear that gi(βj) = ej , the multiplicative identity in Bj (using β0

j = ej ∈ Bj).
Otherwise, βj has minimal polynomial hj = fs for some s such that 1 ≤ s ≤ l and
s 6= i; since gi ≡ 0 (mod fs) and fs(βj) = 0, it is clear that gi(βj) = 0 in this case.
It follows that êi is an idempotent in A. Since fi is the minimal polynomial of at
least one βj , this idempotent is nonzero.

It is also clear that for each j with 1 ≤ j ≤ l, gi(βj) is nonzero for exactly one
polynomial gi, 1 ≤ i ≤ l. Parts (i) and (ii) follow immediately. Part (iii) is also a
straightforward consequence of the definition of the polynomials g1, g2, . . . , gh.

The polynomials g1, g2, . . . , gl can be computed from f1, f2, . . . , fl using the Chi-
nese remainder algorithm. Since f is the minimal polynomial of an element a of A,
and A is isomorphic to a subring of Mn×n(F ) for n the dimension of A over F , it is
clear that f has degree at most n. Hence the polynomials f1, f2, . . . , fl can be com-
puted from a by computing and factoring the minimal polynomial of a. The polyno-
mials g1, g2, . . . , gl, and the idempotents ê1, ê2, . . . , êl can then be computed using
the Chinese remainder algorithm. This last step can be performed using nO(1) op-
erations in F , or using arithmetic-Boolean circuits over F , of depth O(log2(n)) and
size nO(1) (See von zur Gathen [53] for details).

We will use this process of extracting idempotents from a single element of A as a
component in algorithms to be presented later in this section. We state this process
formally in the algorithm on the following page.

Proposition 2.4.8. The algorithm “Extraction of Idempotents” can be used to
compute the central idempotents generated by an element a of the centre of a finite-
dimensional semi-simple associative algebra A ⊆ Mm×m(F ) of dimension n over a
field F , using arithmetic-Boolean circuits over F with oracles for factorisation of
squarefree polynomials in F [t], of depth O(log2(mn)) and size (mn)O(1), plus the
cost of factoring a squarefree polynomial of degree at most n in F [t].
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Note that the central idempotents generated by an element a of Centre(A) are not
necessarily central primitive. In the worst case, a = 1 ∈ A, and the only central
idempotent generated from a (by the above method) is 1 itself. In order to com-
pute a set of simple components for A, by generating a set of central primitive
idempotents, we must either find a single element “a” of Centre(A) which generates
a complete set of central primitive idempotents, or find a way to combine the (gen-
erally imprimitive) idempotents obtained from several elements in order to obtain
primitive idempotents. We discuss several approaches for solving this last part of
the problem in Sections 2.4.2–2.4.4.

Algorithm Extraction of Idempotents

Input. • Integer m > 0.
• Matrix a ∈Mm×m(G), a member of the centre of some

finite-dimensional semi-simple associative algebra A over a field G.
Output. • Integer l > 0.

• Matrices ê1, ê2, . . . , êl ∈ G[a] such that each matrix êi
is a nonzero idempotent in G[a] with êiêj = δi j êi for 1 ≤ i, j ≤ l,
and ê1 + ê2 + · · ·+ êl is the multiplicative identity in G[a].

(1) Compute the minimal polynomial f of a over G.
(2) Compute the factorisation f = f1f2 · · · fl of f in G[t].
(3) For 1 ≤ i ≤ l, use the Chinese remainder algorithm to compute the

polynomial gi ∈ G[t] with degree less than that of f , such that
gi ≡ 1 (mod fi) and gi ≡ 0 (mod fj)

for 1 ≤ j ≤ l, i 6= j.
(4) Return the integer l and the idempotents êi = gi(a), 1 ≤ i ≤ l.
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2.4.2. The Algorithm of Friedl and Rónyai

As we noted at the end of Section 2.4.1, if a ∈ Centre(A), then in general we only
obtain a partial decomposition of A by computing the idempotents ê1, ê2, . . . , êl
obtained from a using the algorithm “Extraction of Idempotents”. In the extreme
case (for example, when a = 1), we do not decompose A at all. We will show later
that for some fields F there exist algebras A such that no single element a of A
can be used to decompose A completely by the above method. Hence, (for some
fields) we must consider several elements of the algebra A in order to decompose A
completely.

As we noted in Section 2.4.1, the simple components of A are easily computed from
the simple components of the commutative subalgebra Centre(A). Henceforth, we
will assume that A is commutative (in order to simplify the presentation, without
weakening the results).

Friedl and Rónyai ([43]) solve this problem by processing each of the elements
a1, a2, . . . , an of a basis for a (commutative) matrix algebra A. They maintain a
list of finite algebraic extensions of F , each of the form F [a] for some a ∈ A, which
are the simple components of the smallest semi-simple algebra over F containing
the elements seen so far. Initially, this list consists of the single field F . After all
the elements of a basis have been processed, it consists of the simple components
of A.

Suppose now that Friedl and Rónyai’s algorithm has been used to process the first
i elements, a1, a2, . . . , ai, of a basis for A, and that the components

C1 = F [b1], C2 = F [b2], · · · Ch = F [bh]

with identity elements ē1, ē2, . . . , ēh respectively, have been obtained. (Then ēj ∈
Cj for 1 ≤ j ≤ h, and ē1 + ē2 + · · · ēh = 1). In order to process the next element ai+1

of the basis, the minimal polynomial of the element ai+1, j = ai+1ēj is computed
over the field extension Cj of F , for 1 ≤ j ≤ h. If the minimal polynomial of
ai+1, j over Cj is irreducible in Cj [t], then the element ai+1, j is adjoined to Cj , to
obtain a larger field Ĉj which replaces Cj in the list of components. A primitive
element b̂j of Ĉj is also computed, so that arithmetic can be performed over the
field extension Ĉj of F in later steps. If the minimal polynomial of ai+1, j over
Cj is reducible in Cj [t], then ai+1, j is used to generate a set of idempotents in
Cj [ai+1, j ] using the algorithm “Extraction of Idempotents”, performing arithmetic
over the field G = Cj . These idempotents are used as the identity elements of a set
of components Ĉj 1, Ĉj 2, . . . , Ĉj r which replace Cj in the list of components.

The algorithm is stated in more detail by Friedl and Rónyai [43]. We use it to
decompose an algebra in the following example.
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Example 2.4.9. Let F = F2, and consider the matrix algebra A ∼= F4⊕F16, which
is contained in M6×6(F ) and generated as a ring over F by the elements (α, 0) and
(0, β) (for α ∈ F4 with minimal polynomial t2 + t + 1 over F2 and β ∈ F16 with
minimal polynomial t4 + t3 + t2 + t+ 1 over F2), with

(α, 0) =


0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (0, β) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

 .

Suppose we are given the following basis for A (with componentwise addition and
multiplication, for ordered pairs).

a1 = (1, 1) a5 = (α, β2)
a2 = (α, 1 + β2 + β3) a6 = (1, β)
a3 = (α, 1) a7 = (1, β2)
a4 = (α, β) a8 = (1, β3).

It is easily checked that this is a basis for an algebra A ∼= F4 ⊕ F16 over F = F2.

We begin by computing and factoring the minimal polynomial (over F ) of

a1 = (1, 1) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Clearly the minimal polynomial, t+ 1, is irreducible in F2[t]. Since it is also linear,
we obtain a single component C1 1 = F [a1] ∼= F2, with identity element e1 1 = a1

and generator b1 1 = a1.

We next consider the element

a2 = (α, 1 + β2 + β3) =


0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1
0 0 1 1 0 0
0 0 1 0 1 1

 .

The minimal polynomial of e1 1a2 over C1 1 is t2 + t+1, an irreducible polynomial in
C1 1[t]. We adjoin this to C1 1 to obtain a single component C2 1

∼= F4, with identity
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element e2 1 = a1 and generator b2 1 = e1 1a2 = a2, for the algebra generated by a1

and a2.

The third element of our basis is

a3 = (α, 1) =


0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The minimal polynomial of e2 1a3 over C2 1 is

t2 + (a2 + 1)t+ a2 = (t+ a2)(t+ 1).

This has factors
f1 = (t+ a2) and f2 = (t+ 1)

in C2 1. We use these to generate idempotents e3 1 and e3 2 in the algebra generated
by a1, a2, and a3 by computing polynomials g1 and g2 in C2 1[t] such that

g1 ≡ 1 (mod f1), g2 ≡ 0 (mod f1),
g1 ≡ 0 (mod f2), g2 ≡ 1 (mod f2).

Using the Chinese remainder algorithm over C2 1[t], we obtain polynomials

g1 = a2t+ a2 = a2(t+ 1) = a2(t+ a2) + 1,
g2 = a2t+ a2 + 1 = a2(t+ 1) + 1 = a2(t+ a2),

which we evaluate at a3 to obtain the idempotents

e3 1 = (1, 0) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , e3 2 = (0, 1) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We use these to split C2 1 into two components, C3 1, with identity element e3 1 and
generator b3 1 = e3 1b2 1 = e3 1a2, and C3 2, with identity element e3 2 and generator
b3 2 = e3 2b2 1 = e3 2a2. The minimal polynomial of e3 ia3 over C3 i is linear, for
i ∈ { 1, 2 }; hence we cannot extend either of these components further using a3.
Thus we have two components C3 1 and C3 2 of the algebra generated by a1, a2, and
a3, with each component isomorphic to F4.
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We next consider the element

a4 = (α, β) =


0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

 .

The matrix e3 1a4 has minimal polynomial t + b3 1 over C3 1. Since this is linear,
we neither split C3 1 nor extend this component to obtain a larger field; we set
C4 1 = C3 1. On the other hand, the matrix e3 2a4 has minimal polynomial

t2 + t+ 1 + b3 2

over C3 2. Since this is irreducible in C3 2[t], we obtain a larger component C4 2 =
C3 2[e3 2a4]. Computing a primitive generator, we see that C4 2 has identity element
e4 2 = e3 2 and generator b4 2 = e3 2a4. Hence the algebra generated by a1, a2, a3,
and a4 over F has two components, C4 1 (isomorphic to F4) and C4 2 (isomorphic
to F16).

We consider the element ai, for 5 ≤ i ≤ 8, by computing the minimal polynomial
of e4 jai over C4 j , for j = 1, 2. In each case, we find that this minimal polynomial
is linear. Hence we do not change the components C4 1 and C4 2. We conclude that

A = B1 ⊕B2,

for simple components

B1 = C4 1
∼= F4 and B2 = C4 2

∼= F16.

Friedl and Rónyai show that this algorithm can be used to extract the simple com-
ponents of a finite-dimensional semi-simple associative algebra over a number field
or over a finite field using a polynomial number of Boolean operations.
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Theorem 2.4.10. (Friedl and Rónyai [43]). Suppose A ⊆ Mm×m(F ) is a finite-
dimensional semi-simple associative algebra of dimension n over a field F .

(i) If F is a number field, then bases for the simple components of A can be
computed from a basis for A using NO(1) Boolean operations, for input
size N .

(ii) If F = Fpl , then bases for the simple components of A can be computed from
a basis for A, using (nmpl)O(1) Boolean operations, or using a probabilistic
Boolean algorithm using (nml log p)O(1) Boolean operations (that is, NO(1)

operations for input size N), which either successfully performs the above
computation, or indicates “failure”, failing with probability at most 1/2.

Applying the results about arithmetic over field extensions discussed in Section 1
(in particular, Theorem 1.3.1(i) and Theorem 1.4.15), we also obtain the following
reduction from Friedl and Rónyai’s algorithm.

Theorem 2.4.11. Suppose A ⊆ Mm×m(F ) is a finite-dimensional semi-simple
associative algebra of dimension n over a perfect field F ; then bases for the simple
components of A can be computed from a basis for A using arithmetic-Boolean
circuits over F (with oracles for factorisation of squarefree polynomials in F [t])
with size (nm)O(1) (that is, size NO(1), for input size N).
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2.4.3. A New Algorithm for Simple Components

We now present an new algorithm for “Extraction of Simple Components” for finite-
dimensional semi-simple algebras, which is correct for arbitrary fields of character-
istic zero, as well as arbitrary finite fields Fpl . Again, we simplify the presentation
by assuming A is commutative (and applying the results of Section 2.4.1 to obtain
an algorithm which is correct for arbitrary finite-dimensional semi-simple algebras).
Instead of considering elements of a basis for an algebra A in sequence, to refine a
single decomposition of A, we use these elements independently, to obtain several
different partial decompositions. We then combine these decompositions to obtain
a single, complete decomposition of A into simple components.

Once again, let A be a commutative, finite-dimensional, semi-simple associative al-
gebra over F with simple components B1, B2, . . . , Bk over F , and let a1, a2, . . . , an
be a basis for A over F . Let a = β1 +β2 + · · ·+βk ∈ A, with βi ∈ Bi for 1 ≤ i ≤ k.
Let 1 ≤ i, j ≤ k, with i 6= j; we say that a splits components Bi and Bj if βi and βj
have distinct minimal polynomials over F — so that the element a can be used to
generate an idempotent e of A (using the algorithm “Extraction of Idempotents”,
with computations over the ground field F ) such that eBi = Bi and eBj = (0). We
will show that Bi and Bj are split by some element ah of our basis for A, for each
pair of components Bi and Bj with i 6= j.

We prove this by considering traces of elements over field extensions. Suppose
now that E = F [t]/(f), for f monic and irreducible of degree l in F [t], and for F
perfect. Let α1, α2, . . . , αl be the roots of f in an algebraic closure H of F ; since
f is separable, these roots are distinct. The field E = F [t]/(f) is isomorphic to
the field F [α1]; we use the isomorphism taking (t mod f) to α1 to embed E in the
closure H.

Definition 2.4.12. Let γ = c0 + c1α1 + c2α
2
1 + · · · + cl−1α

l−1
1 ∈ F [α1], for

c0, c1, . . . , cl−1 ∈ F . Since α1 has minimal polynomial f of degree l over F , the
coefficients c0, c1, . . . , cl−1 are unique (for γ). The trace of γ over F , TF [α1]/F (γ),
is

TF [α1]/F (γ) =
l∑
i=1

(c0 + c1αi + c2α
2
i + · · ·+ cl−1α

l−1
i ).

Since TF [α1]/F (γ) is fixed by the Galois group of H (a splitting field of f) over F ,
it is clear that TF [α1]/F (γ) ∈ F .

Like the norm over F , NF [α1]/F (defined in Section 1.4), TF [α1]/F is a map from
F [α1] to F . Unlike the norm, it is F -linear; if α, β ∈ F [α1] and c ∈ F , then

TF [α1]/F (α+ cβ) = TF [α1]/F (α) + cTF [α1]/F (β).
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Lemma 2.4.13. Let E = F [α] be a finite algebraic extension of a perfect field F ;
then there exists an element λ of E such that TE/F (λ) 6= 0.

Proof. Suppose α has minimal polynomial f ∈ F [t] with degree l, and roots α =
α1, α2, . . . , αl in some algebraic closure of E. Since F is perfect, f is a separable
polynomial, and the roots α1, α2, . . . , αl are distinct. Suppose TE/F (λ) = 0 for all
λ ∈ E; then, in particular,

TE/F (1) = TE/F (α) = TE/F (α2) = · · · = TE/F (αl−1) = 0.

Since TE/F (αi) = αi1 +αi2 + · · ·+αil for 0 ≤ i ≤ l, this is equivalent to the statement


1 1 · · · 1
α1 α2 · · · αl
...

...
. . .

...
αl−1

1 αl−1
2 · · · αl−1

l

 ·


1
1
...
1

 =


0
0
...
0

 .
The coefficient matrix of this system is the Vandermonde matrix for α1, α2, . . . , αl.
The formula for the determinant of this matrix is well known; the determinant is

l∏
i=2

i−1∏
j=1

(αi − αj) 6= 0,

contradicting the fact that we have a nonzero element of the nullspace of this matrix.
We conclude that there exists some λ ∈ E (in particular, λ ∈ { 1, α, α2, . . . , αl−1 })
such that TE/F (λ) 6= 0.

Lemma 2.4.14. Let β1, β2 ∈ E, for E a finite algebraic extension of a perfect
field F , such that β1 and β2 have the same minimal polynomial over F . Then
TE/F (β1) = TE/F (β2).

Proof. If β1 = β2 then the claim is trivial; we now suppose β1 6= β2.

Let F1 = F [β1], F2 = F [β2], and let β1, β2, . . . , βl be the conjugates of β over F .
Then the trace of β1 in F1 (over F ) and the trace of β2 in F2 (over F ) both equal
β1 + β2 + · · ·+ βl.

Now F ⊆ F1 ⊆ E, F ⊆ F2 ⊆ E, and F1 and F2 are isomorphic (as field extensions
of F ). Thus [E : F1] = [E : F2] = k, for some k > 0. It follows that the trace of β1

in E (over F ) is k times the trace of β1 in F1 (over F ), while the trace of β2 in E
(over F ) is k times the trace of β2 in F2 (again, over F ) (see van der Waerden [117],
Section 6.11 for a proof). Thus TE/F (β1) = k ·TF [β1]/F (β1) = k ·(β1+β2+· · ·+βl) =
k · TF [β2]/F (β2) = TE/F (β2), as claimed.
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Theorem 2.4.15. Let a1, a2, . . . , an be a basis over F for a commutative
finite-dimensional semi-simple associative algebra A over F , with simple compo-
nents B1, B2, . . . , Bk. Suppose the field F satisfies one or more of the following
properties.

(i) F has characteristic zero;
(ii) F is a finite field;
(iii) F is algebraically closed.

Then if 1 ≤ i, j ≤ k and i 6= j then there exists some element ah of the above basis
for A such that ah splits Bi and Bj (as defined on page 95).

Proof. Suppose, to the contrary, that no element of the basis splits the components
Bi and Bj . We write

a1 = β1 1 + β1 2 + · · ·+ β1 k

a2 = β2 1 + β2 2 + · · ·+ β2 k
...

an = βn 1 + βn 2 + · · ·+ βnk

with ar s ∈ Bs for 1 ≤ r ≤ n and 1 ≤ s ≤ k. Since ar does not split Bi and Bj , βr i
and βr j must have the same minimal polynomial over F , for 1 ≤ r ≤ n. (Clearly βr i
and βr j are algebraic over F , since they belong to a finite-dimensional semi-simple
associative algebra over F .) We consider fields F satisfying the conditions (i), (ii),
and (iii) stated in the theorem separately.

(i) Since a1, a2, . . . , an is a basis for A over F , there exist elements γ1, γ2, . . . , γn
of F such that

γ1a1 + γ2a2 + · · ·+ γnan = ei,

for ei the identity element of Bi. It follows that

γ1βi 1 + γ2βi 2 + · · ·+ γnβi n = 1,
and

γ1βj 1 + γ2βj 2 + · · ·+ γnβj n = 0.

Let E be a finite extension of F which contains the elements βi r and βj r
for 1 ≤ r ≤ n. (That is, let E be an extension field of F with subfields
isomorphic, as extensions of F , to B1 and B2, respectively.) We consider the
trace (in E over F ) of elements of E. Since βi r and βj r are conjugates over F ,
TE/F (βi r) = TE/F (βj r), for 1 ≤ r ≤ n, by Lemma 2.4.14.
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Since the trace is an F -linear map, it follows that

[E : F ] = TE/F (1)
= TE/F (γ1βi 1 + γ2βi 2 + · · ·+ γnβi n)
= γ1TE/F (βi 1) + γ2TE/F (βi 2) + · · ·+ γnTE/F (βi n)
= γ1TE/F (βj 1) + γ2TE/F (βj 2) + · · ·+ γnTE/F (βj n)
= TE/F (γ1βj 1 + γ2βj 2 + · · ·+ γnβj n)
= TE/F (0) = 0,

contradicting that fact that the field F has characteristic zero, and [E : F ] ≥ 1.

(ii) Suppose F = Fpl . Now the components Bi and Bj are both fields, with Bi =
Fpl [β1 i, β2 i, . . . , βn i], and Bj = Fpl [β1 j , β2 j , . . . , βn j ]. We consider both
Bi and Bj to be embedded in some larger extension of Fpl . Now Bi and Bj
are both normal fields: if γ is an element of Bi, E is an extension of Bi (so
Fpl ⊆ Bi ⊆ E), and γ̂ ∈ E such that γ and γ̂ have the same minimal polynomial
over Fpl , then γ̂ ∈ Bi as well. In particular, taking as E the smallest field
containing both Bi and Bj , we see that βr j ∈ Bi for 1 ≤ r ≤ n, since βr i ∈ Bi
and βr j and βr i have the same minimal polynomial over F . Since Bi and Bj
are both fields, and Bj is generated over Fpl by the elements βr j , it follows that
Bj ⊆ Bi. Clearly, Bi ⊆ Bj as well, so Bi = Bj (in this embedding). It follows
that the components Bi and Bj of A are isomorphic (as extensions of F ), and
that the trace of βr i in Bi (over F ), TBi/F (βr i), equals the trace of βr j in Bj
(again, over F ), TBj/F (βr j , for 1 ≤ r ≤ n.

By Lemma 2.4.13, there exists some element λ of Bi such that the trace of λ
over F is nonzero. Since a1, a2, . . . , an is a basis for A over F , it is clear that
there exist elements γ1, γ2, . . . , γn of F such that

γ1β1 i + γ2β2 i + · · ·+ γnβn i = λ,

and
γ1β1 j + γ2β2 j + · · ·+ γnβn j = 0.

Now, since TBi/F (βr i) = TBj/F (βr j) for 1 ≤ r ≤ n, we conclude (as in (i))
that TBi/F (λ) = TBj/F (λ) = 0, contradicting the choice of λ.

(iii) If F is algebraically closed then, since βr i and βr j are conjugates over F ,
βr i = βr j for 1 ≤ r ≤ n, again contradicting the fact that there must exist
constants γ1, γ2, . . . , γn ∈ F such that

λ1β1 i + λ2β2 i + · · ·+ λnβn i = 1,
and

λ1β1 j + λ2β2 j + · · ·+ λnβn j = 0.
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Now suppose we have two sets of central idempotents in the algebra A,
e1 1, e1 2, . . . , e1 k1 and e2 1, e2 2, . . . , e2 k2 , for k1, k2 > 0, with

e1 1 + e1 2 + · · ·+ e1 k1 = 1 = e2 1 + e2 2 + · · ·+ e2 k2 ,

and with e1 ie1 j = δi je1 i for 1 ≤ i, j ≤ k1, and e2 ie2 j = δi je2 i for 1 ≤ i, j ≤ k2.
We obtain a third set of central idempotents, e3 1, e3 2, . . . , e3 k3 , which forms a
refinement of the above sets of idempotents, by forming the set of products

e1 ie2 j , for 1 ≤ i ≤ k1, and 1 ≤ j ≤ k2,

and discarding all products which equal 0. Now if Bi and Bj are simple components
which are separated by some idempotent e1 r, so e1 rBi = Bi and e1 rBj = (0), then
there is an idempotent e3 s which also separates Bi and Bj in this way. Similarly, if
Bi and Bj are separated by some idempotent e2 r, then there is an idempotent e3 s

separating Bi and Bj as well. If F is a field of characteristic zero, a finite field, or
algebraically closed, then it follows that we can compute the primitive idempotents
of a finite-dimensional semi-simple associative algebra A over F by computing a set
of idempotents for each element of a basis for the centre of A, and then computing
a common refinement of these sets of idempotents.

It is clear that the idempotents e3 1, e3 2, . . . , e3 k3 which refine the sets of idempo-
tents e1 1, e1 2, . . . , e1 k1 and e2 1, e2 2, . . . , e2 k2 can be computed using a polynomial
number of operations over the ground field, F . We now consider the cost of comput-
ing these idempotents in parallel. If A ⊆Mm×m(F ) then it is clear that each prod-
uct e1 ie2 j can be computed using arithmetic-Boolean circuits of depth O(logm)
and size mO(1); we can also decide whether each result is nonzero at this cost. Since
we can count the number of nonzero results, and select the ith nonzero result from
the list

e1 1e2 1, e1 1e2 2, . . . , e1 1e2 k2 , e1 2e2 1, . . . , e1 k1e2 k2 ,

(for i ≤ m2) at this cost as well, it follows that we can compute the new set of
idempotents e3 1, e3 2, . . . , e3 k3 using arithmetic-Boolean circuits of depth O(logm)
and size polynomial in m.

If we are given l sets of idempotents ei 1, ei 2, . . . , ei ki , for 1 ≤ i ≤ l, then we can
compute a common refinement e1, e2, . . . , ek of these idempotents by treating sets
in pairs. The algorithm “Refinement of Idempotents” on the following page uses a
divide-and-conquer approach to solve this problem. This is used in the algorithm
“Simple Components via Idempotents of Basis”, on the next page.
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Algorithm Refinement of Idempotents

Input. • Integers m, n > 0.
• Integer ki > 0, and idempotents ei 1, ei 2, . . . , ei ki

in Mm×m(F ), for 1 ≤ i ≤ n, such that ei 1 + ei 2 + · · ·+ ei ki = 1
and ei rei s = δr sei r for 1 ≤ r, s ≤ ki.

Output. • Integer k > 0 and idempotents e1, e2, . . . , ek of Mm×m(F )
such that e1 + e2 + · · ·+ ek = 1, eres = δr ser, for 1 ≤ r, s ≤ k,
such that each idempotent ei r is the sum of some subset of the
idempotents e1, e2, . . . , ek, for 1 ≤ i ≤ n and 1 ≤ r ≤ ki, and
such that each idempotent ei is the product of some subset
of the idempotents given as input.

(1) If n = 1 then return the integer k = k1 and the idempotents
e1 1, e1 2, . . . , e1 k1 . Otherwise, perform steps 2 and 3.

(2) Let n̂ = d n2 e; perform steps 2a and 2b.
(2a) Use algorithm “Refinement of Idempotents” recursively, with inputs

m and n̂, and integer ki and idempotents ei 1, ei 2, . . . , ei ki
for 1 ≤ i ≤ n̂, to compute an integer k̂1 and a set of idempotents
ê1 1, ê1 2, . . . , ê1 k̂1

refining these idempotents.
(2b) Use algorithm “Refinement of Idempotents” recursively, with inputs

m, n− n̂, and integer ki and idempotents ei 1, ei 2, . . . , ei ki
for n̂+ 1 ≤ i ≤ n, to compute an integer k̂2 and a set of idempotents
ê2 1, ê2 2, . . . , ê2 k̂2

refining these idempotents.
(3) Compute the products ê1 r ê2 s for 1 ≤ r ≤ k̂1 and 1 ≤ s ≤ k̂2.

Set k to be the number of nonzero products obtained, and set
e1, e2, . . . , ek to be these nonzero idempotents. Return these values.
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Algorithm Simple Components via Idempotents of Basis

Input. • Integers n, m > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis for a

finite-dimensional semi-simple associative algebra A ⊆Mm×m(F )
of dimension n over F .

Output. • Integer k > 0, the number of simple components of A.
• Integers n1, n2, . . . , nk > 0, with n1 + n2 + · · ·+ nk = n,

such that ni is the dimension of simple component Bi of A.
• Elements µi j l of F , for 1 ≤ i ≤ k, 1 ≤ j ≤ ni, and 1 ≤ l ≤ n,

defining elements bi j =
∑n
l=1 µi j lal of A such that

(1) bi 1, bi 2, . . . , bi ni is a basis for the simple
component Bi over F , and hence

(2) b1 1, . . . , bk nk is a basis for A over F .
• Matrices ci j ∈Mni×ni(F ) such that ci 1, ci 2, . . . , ci ni

is the basis for a matrix algebra isomorphic to Bi, for 1 ≤ i ≤ k.

(1) Compute a basis â1, â2, . . . , âl for Centre(A) over F .
(2) For 1 ≤ i ≤ l, use the algorithm “Extraction of Idempotents” with

input âi to compute integer ki > 0 and idempotents ei 1, ei 2, . . . , ei ki .
(3) Use the algorithm “Refinement of Idempotents” with inputs m, l > 0

and integer ki and idempotents ei 1, ei 2, . . . , ei ki , for 1 ≤ i ≤ l, to
generate an integer k > 0 and idempotents e1, e2, . . . , ek which are
common refinements of the idempotents computed in step 2.

(4) Use the algorithm “Simple Components via Central Primitive Idempotents”
to compute the remaining values to be produced as output.
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Theorem 2.4.16. Suppose A ⊆ Mm×m(F ) is a finite-dimensional semi-simple
associative algebra of dimension n over a field F .

(i) If F has characteristic zero, is a finite field, or is algebraically closed, then given
a basis for A, bases for the simple components of A can be computed using
arithmetic-Boolean circuits over F (with oracles for factorisation of squarefree
polynomials in F [t]), with depth O(log2(mn)) and size (mn)O(1), plus the cost
of factoring n squarefree polynomials, each with degree at most m, in parallel.

(ii) If F = Fpl , then bases for the simple components of A can be computed
from a basis for A, using Boolean circuits of size (nmpl)O(1) and of depth
O(log3(nmpl)), or using a probabilistic algorithm for factorisation of polyno-
mials over finite fields, using Boolean circuits (with extra nodes producing
random bits) of size (nml log p)O(1) and depth O(log2(nm) log2 l log p), which
either successfully perform the above computation, or indicate “failure”, fail-
ing with probability at most 1/2.

Proof. We use the algorithm “Simple Components via Idempotents of Basis” to
perform this computation. It follows from Theorem 2.4.15 that the algorithm is cor-
rect for the fields mentioned in the statement of the theorem. The upper bounds on
circuit size and depth stated in (i), and for deterministic computations in (ii), follow
from bounds stated for factorisation of polynomials over number fields and finite
fields in Section 1.4, for linear algebra in Section 1.3, and for parallel algorithms for
the “Chinese remainder” problem for polynomials, as stated by von zur Gathen [53].

As stated in Section 1.4, von zur Gathen [52] shows that the probabilistic algo-
rithm of Cantor and Zassenhaus [19] can be used to produce Boolean circuits of
size (ml log p)O(1) and depth O(log2m log2 l log p), which either successfully factor
a squarefree polynomial of degree m over Fpl (with probability at least 1/2), or re-
port “failure”. It is clear that the probability of success can be improved to 1−1/k,
for arbitrarily large k, by executing this algorithm d log k e times, independently
and in parallel, and then using the output of any of these trials which does not
report failure, reporting failure only if all of the trials fail. In particular, we obtain
circuits of depth O(log2m log2 l log p+log logm) and size (ml log p log n)O(1) for this
problem, which return “failure” with probability at most 1/(2n). Since the algo-
rithm “Simple Components via Idempotents of Basis” requires the factorisation of
exactly n polynomials, it is clear that all factorisations will succeed, with probabil-
ity at least 1/2, if these circuits are used for factorisation (with random bits chosen
independently). The rest of the timing analysis stated in (ii) is straightforward.
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Example 2.4.17. Consider the field F = F2, the algebra A ∼= F4⊕F16, and the ba-
sis a1, a2, . . . , a8 for A over F given in Example 2.4.9. The elements a1, a2, . . . , a8

have minimal polynomials f1, f2, . . . , f8 over F respectively, for

f1 = t+ 1, f5 = (t2 + t+ 1)(t4 + t3 + t2 + t+ 1),
f2 = t2 + t+ 1, f6 = (t+ 1)(t4 + t3 + t2 + t+ 1),
f3 = (t+ 1)(t2 + t+ 1), f7 = (t+ 1)(t4 + t3 + t2 + t+ 1),
f4 = (t2 + t+ 1)(t4 + t3 + t2 + t+ 1), f8 = (t+ 1)(t4 + t3 + t2 + t+ 1).

Since polynomials f1 and f2 are irreducible in F [t], a1 and a2 each generate the (sin-
gle) central idempotent 1 = (1, 1), the identity element in A. Each of f3, f4, . . . , f8

are reducible in F [t], so each of a3, a4, . . . , a8 can be used (independently) to gen-
erate the central primitive idempotents (1, 0) and (0, 1) for A. Computation of
bases for the simple components of A from these idempotents proceeds as in Exam-
ple 2.4.9.

We should note again that Friedl and Rónyai’s algorithm (discussed in the last
section) can also be used to compute simple components of finite-dimensional semi-
simple algebras over number fields in polynomial time, and over finite fields in
polynomial time using a probabilistic algorithm, with small probability of failure,
for factorisation of polynomials. With some difficulty, Friedl and Rónyai’s method
can be adapted (to consider elements of a basis for A by a divide-and-conquer ap-
proach, rather than sequentially) to obtain a parallel algorithm for the computation
of simple components of semi-simple algebras over finite fields. The time bounds
obtained by this method are slightly worse than those stated in Theorem 2.4.16
— if F = Fpl then we obtain Boolean circuits of depth O(log n log3(nmpl)), or
of depth O(log n log2(nm) log2 l log p) for probabilistic methods, rather than the
bounds stated in Theorem 2.4.16(ii). It is probably more important that our al-
gorithm is somewhat simpler than Friedl and Rónyai’s. In particular, it eliminates
the use of computations over extensions of the ground field, required by the earlier
algorithm. We continue the process of simplifying the method in the next section.
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2.4.4. Minimising the Use of Factorisation

Since factorisation is (apparently) the most expensive part of this computation, it
is in our interest to reduce the use of factorisation in our algorithm as much as
possible. With this in mind, we return to the question of whether a single element
a of the algebra A can be used to generate the primitive idempotents of A (hence, to
decompose A completely into simple components), using the algorithm “Extraction
of Idempotents”. We first note a negative result.

Theorem 2.4.18. Let F = Fpl , and let n ∈ Z with n > pl. Then there exists a
commutative, semi-simple associative algebra A of dimension n over F , such that
no single element a of A can be used to generate the primitive idempotents of A
using “Extraction of Idempotents”.

Proof. Let A = Fn; then an arbitrary element a of A has the form (a1, a2, . . . , an),
for ai ∈ F . Suppose a can be used to generate the n primitive idempotents,
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of A using “Extraction of Idempotents”;
then it is clear (on examination of the algorithm) that the minimal polynomial of
a over F must have n irreducible factors in F [t], and degree at least n. It is also
clear that g(a) = 0 for all a ∈ A, for

g =
∏
α∈F

(t− α) = tp
l

− t,

since g(a) = (g(a1), g(a2), . . . , g(an)). Since |F | = pl < n, g is nonzero and has
degree less than n in F [t], giving us a contradiction.

We next show that suitable elements exist in all other cases (for perfect fields).

Lemma 2.4.19. Let F be a field, and let n ∈ Z such that |F | ≥ n > 0. Let k > 0;
then if F [t] includes an irreducible polynomial f of degree k, then it includes at
least d (n(n − 1))/k e distinct monic irreducible polynomials f̂ of degree k, which
have roots in F [t]/(f).

Proof. Suppose f is a monic irreducible polynomial of degree k in F [t] (the result
is trivial if no such polynomial exists). Let E = F [t]/(f), and let α be a root of f
in E (in particular, let α = t+ (f)). Now let a, b ∈ F with b 6= 0, and consider the
element αa b = a+αb ∈ E. Since α = b−1(αa b−a) ∈ F [αa b] ⊆ F [α], it is clear that
F [αa b] = E for all αa b. It follows that the minimal polynomial fa b of αa b over F
is a monic, irreducible polynomial of degree k in F [t] with a root in E.

Now since we have (at least) n(n− 1) choices of a and b in F , and each polynomial
fa b has at most k roots in E, it follows that there are at least d (n(n−1))/k e monic
irreducible polynomials of degree k in F [t] with roots in E, as claimed.
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Theorem 2.4.20. Let F be a perfect field which contains at least n distinct ele-
ments, and let A be a semi-simple associative algebra of dimension n over F . Then
there exists some element a in the centre of A, such that the primitive idempotents
of A can be generated using the algorithm “Extraction of Idempotents” with input
a.

Proof. Suppose the commutative algebra Centre(A) has dimension m ≤ n, and has
simple components B1, B2, . . . , Bk, with dimensions m1, m2, . . . , mk, respectively,
and with primitive idempotents e1, e2, . . . , ek. It is clearly sufficient to prove the
existence of an element a = α1 + α2 + · · · + αk, with αi ∈ Bi for 1 ≤ i ≤ k, such
that the minimal polynomials f1, f2, . . . , fk over F of the elements α1, α2, . . . , αk
respectively, are distinct.

If k = 1, so m1 = m, then the result is trivial: We can set a = 1, the identity
element of A. Suppose now that k > 1; then, since each mi is positive and since
m1 + m2 + · · · + mk = m ≤ n, it is clear that mi < n for all i. Since F is perfect
and Bi is a finite algebraic extension (field) of F , there exists an element βi of Bi
with minimal polynomial gi ∈ F [t], such that Bi = F [βi], and gi is irreducible with
degree mi in F [t]. Now Bi ∼= F [t]/(gi), and by Lemma 2.4.19, there exist at least
d (n(n− 1))/mi e ≥ n distinct monic irreducible polynomials in F [t] with degree mi

which have roots in Bi. Let gi 1, gi 2, . . . , gi n ∈ F [t] be n such polynomials. We
now set f1 to be g1, and set fi to be any one of the polynomials gi 1, gi 2, . . . , gi n
which is not in the set { f1, f2, . . . , fi−1 }, for 2 ≤ i ≤ k. Clearly fi is monic and
irreducible with degree mi in F [t], fi has a root αi in Bi, and the polynomials
f1, f2, . . . , fk are distinct. Thus the element a = α1 + α2 + · · · + αk ∈ Centre(A)
has the desired properties.

We extend Theorem 2.4.20 to obtain an efficient algorithm for “Extraction of Simple
Components” by showing that a randomly selected element of the centre of A can be
used to generate the primitive idempotents of A, with arbitrarily high probability,
if the ground field F is infinite.

Suppose now that â1, â2, . . . , âl is a basis over F for the centre of A, and consider
the element

â1x1 + â2x2 + · · ·+ âlxl

of A[x1, x2, . . . , xl] for indeterminates x1, x2, . . . , xl over F . Applying Theo-
rem 2.4.20 (to the algebra Centre(A)), we see that if |F | ≥ l then there exist
elements λ1, λ2, . . . , λl of F such that the element â1λ1 + â2λ2 + · · · + âlλl of A
can be used to generate the primitive idempotents of Centre(A), and of A. Now
let φ(a) denote the regular matrix representation of a in Centre(A), with respect
to the basis â1, â2, . . . , âl. Extending φ to (Centre(A))[x1, x2, . . . , xl], we obtain
a matrix

φ(â1x1 + â2x2 + · · ·+ âlxl) ∈Ml×l(F [x1, x2, . . . , xl]),
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such that each entry of this matrix is linear in the indeterminates x1, x2, . . . , xl.
The characteristic polynomial of this matrix is a polynomial with degree l in a
“new” indeterminate, t, whose coefficients in t each have total degree at most l in
the indeterminates x1, x2, . . . , xl; we will call this polynomial χ(x1, x2, . . . , xl, t).
We obtain the characteristic polynomial of the matrix φ(â1λ1 + â2λ2 + · · ·+ âlλl) by
using λi as the value for xi in χ(x1, x2, . . . , xl, t), for 1 ≤ i ≤ l. For an element a =
â1λ1 + â2λ2 + · · · âlλl with the property described in Theorem 2.4.20, the minimal
polynomial of a has degree l in t, and is squarefree. Since this is also a divisor
of the characteristic polynomial χ(λ1, λ2, . . . , λl, t), which also has degree l in t,
we conclude that these polynomials are the same, and that χ(λ1, λ2, . . . , λl, t) is
squarefree in F [t]. Further, we note that for any choice of values η1, η2, . . . , ηl ∈ F ,
the polynomial χ(η1, η2, . . . , ηl, t) is squarefree in F [t] only if this is the minimal
polynomial of an element ā = â1η1 + â2η2 + · · · + âlηl of Centre(A) which can be
used (alone) to generate the central primitive idempotents of A by “Extraction of
Idempotents”.

We recall that, since F is perfect, the polynomial χ(η1, η2, . . . , ηl, t) is square-
free in F [t] if and only if the greatest common divisor of χ(η1, η2, . . . , ηl, t) and
d
dt
χ(η1, η2, . . . , ηl, t) is 1 in F [t]. If

ψ(x1, x2, . . . , xl, t) =
d
dt
χ(x1, x2, . . . , xl, t),

then ψ is a polynomial with total degree at most l in x1, x2, . . . , xl, and with degree
less than l in t, such that

gcd(χ(λ1, λ2, . . . , λl, t), ψ(λ1, λ2, . . . , λl, t)) = 1,

for λ1, λ2, . . . , λl ∈ F as chosen above. We now use the following fact, which is
proved by Loos [87] (Theorem 5).

Proposition 2.4.21. Let A, B ∈ R[t], with A, B 6= 0, for an integral domain R and
an indeterminate t over R. Then Rest(A, B) = 0 if and only if deg(gcd(A, B)) > 0.

Now we write

h(x1, x2, . . . , xl) = Rest(χ(x1, x2, . . . , xl, t), ψ(x1, x2, . . . , xl, t)).

The polynomial h is a polynomial in F [x1, x2, . . . , xl] with total degree at most
l(2l − 1) in the indeterminates x1, x2, . . . , xl. Using Proposition 2.4.21, and the
previous remarks about χ and ψ, we obtain the following lemma.

Lemma 2.4.22. Let η1, η2, . . . , ηl ∈ F ; then the element a = â1η1+â2η2+· · ·+âlηl
of Centre(A) can be used as input for the algorithm “Extraction of Idempotents” to
generate the central primitive idempotents of A, if and only if h(η1, η2, . . . , ηl) 6= 0.
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We also use the following fact, which is proved by Schwartz [111] (Corollary 1).

Proposition 2.4.23. Let I ⊆ F and let |I| ≥ ck. If f ∈ F [x1, x2, . . . , xl], with
total degree at most k, and f is not identically zero, then the number of zeros of f
in I × I × · · · × I is at most c−1|I|l.

Theorem 2.4.24. Let â1, â2, . . . , âl be a basis over F for the centre of a finite-
dimensional semi-simple associative algebra A over a perfect field F , and let c > 0,
such that F contains at least l(2l − 1)c distinct elements. Let I ⊆ F such that
|I| = l(2l − 1)c. If η1, η2, . . . , ηl are chosen randomly and independently from the
set I, then the probability that the element a = â1η1 + â2η2 + · · · + âlηl cannot
be used to generate the central primitive idempotents of A, using the algorithm
“Extraction of Idempotents”, is at most 1/c.

Proof. This follows immediately from Theorem 2.4.20, Lemma 2.4.22, and from
Proposition 2.4.23.

We use this result to obtain the algorithm on the following page.

Theorem 2.4.25. Let F be an infinite perfect field, and let ε > 0, and suppose A ⊆
Mm×m(F ) is a finite-dimensional semi-simple associative algebra of dimension n
over F . Let I be a subset of F of size dn(2n−1)ε−1 e. Then the algorithm “Simple
Components via Primitive Elements” can be used to compute bases for the simple
components of A, or to report failure, using arithmetic-Boolean circuits over F
(with oracle nodes for factorisation of squarefree polynomials in F [t], and for the
selection of random elements of I), of depth O(log2(nm)) and size (nm)O(1), plus
the cost of selecting at most n random elements from I in parallel, and the cost
of factoring a single squarefree polynomial, with degree at most n, in F [t]. The
probability of failure is less than ε.

Proof. The correctness of the algorithm, and the upper bound on the probability of
failure, are consequences of Theorem 2.4.24. The timing analysis is straightforward.
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Algorithm Simple Components via Primitive Elements

Input. • Integers n, m > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis for a

finite-dimensional semi-simple associative algebra A ⊆Mm×m(F )
of dimension n over F .
• Error tolerance ε > 0.

Output. EITHER:
• Integer k > 0, the number of simple components of A.
• Integers n1, n2, . . . , nk > 0, with n1 + n2 + · · ·+ nk = n,

such that ni is the dimension of simple components Bi of A.
• Elements µi j l of F , for 1 ≤ i ≤ k, 1 ≤ j ≤ ni, and 1 ≤ l ≤ n,

defining elements bi j =
∑n
l=1 µi j lal of A such that

(1) bi 1, bi 2, . . . , bi ni is a basis for the simple
component Bi over F , and hence

(2) b1 1, . . . , bk nk is a basis for A over F .
• Matrices ci j ∈Mni×ni(F ), such that ci 1, ci 2, . . . , ci ni

is the basis for a matrix algebra isomorphic to Bi, for 1 ≤ i ≤ k.
OR: failure, with probability less than ε.

(1) Compute a basis â1, â2, . . . , âl for Centre(A) over F .
(2) Choose elements λ1, λ2, . . . , λl randomly and independently from

a subset I of F , of size d l(2l − 1)ε−1 e.
(3) Compute the minimal polynomial in F [t] of the element

a = λ1â1 + λ2â2 + · · ·+ λlâl of Centre(A).
If this polynomial has degree less than l, report failure.
Otherwise, perform steps 4–5.

(4) Use the algorithm “Extraction of Idempotents” with input a to compute
integer k > 0 and the primitive idempotents e1, e2, . . . , ek.

(5) Use the algorithm “Simple Components via Central Primitive Idempotents”
to compute the remaining values to be generated as output.
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Thus we can reduce the use of factorisation in computation of simple components
over infinite perfect fields to the factorisation of a single squarefree polynomial. (In
comparison, each of the algorithms discussed in Sections 2.4.2 and 2.4.3 require the
factorisation of Ω(n) polynomials, each of degree at most m, in order to compute the
simple components of a semi-simple algebra A ⊆Mm×m(F ) of dimension n.) This
is the best we can do: We cannot decompose semi-simple associative algebras over F
using time (significantly) less than that required for factorisation, as indicated by
the following theorem.

Theorem 2.4.26. Let F be a field, and suppose the problem “Extraction of
Simple Components” can be solved for an arbitrary finite-dimensional semi-simple
associative algebra A ⊆Mm×m(F ) of dimension n over F , using arithmetic-Boolean
circuits over F of depth D(m,n) and size S(m,n). Then given the coefficients of
a squarefree polynomial f ∈ F [t] of degree n, the irreducible factors of f can be
computed using arithmetic-Boolean circuits over F , of depth D(n, n) + O(log2 n),
and size S(n, n) + nO(1).

Proof. We assume without loss of generality that f is monic; for if F has lead-
ing coefficient c 6= 0, then the coefficients of the monic polynomial c−1f can be
computed using constant depth and size linear in n, while the factors of f can be
recovered from those of c−1f at a similar cost. We factor f in F [t] by considering
the matrix algebra A ⊆Mn×n(F ), with basis 1, t̂, t̂2, . . . , t̂n−1, where t̂ ∈Mn×n(F )
is the companion matrix of f . A is isomorphic to F [t]/(f); since f is squarefree in
F [t], A is semi-simple (see Examples 2.1.5 and 2.2.6, and Theorem 2.3.22).

Now suppose f = g1g2 · · · gk, for irreducible monic polynomials g1, g2, . . . , gk ∈
F [t]. Since A ∼= F [t]/(f), and

F [t]/(f) ∼= F [t]/(g1)⊕ F [t]/(g2)⊕ · · · ⊕ F [t]/(gk),

by the Chinese remainder theorem, and since F [t]/(gi) is an extension field of F ,
and hence a simple algebra over F , it is clear that A has simple components
B1, B2, . . . , Bk, with Bi ∼= F [t]/(gi) for 1 ≤ i ≤ k. Using the bounds given in
the statement of the theorem, we see that we can compute bases over F for each of
the simple components Bi of A, from the coefficients of f , using arithmetic-Boolean
circuits over F of depth D(n, n) +O(log2 n) and size S(n, n) +nO(1). The primitive
idempotents e1, e2, . . . , ek can be computed from these bases by solving systems of
linear equations, using depth O(log2 n) and size nO(1). Finally, it is easily checked
that the element t̂ei of Bi has minimal polynomial gi, for 1 ≤ i ≤ k; the coefficients
of this polynomial can also be computed (from ei) at the stated cost, as required.

As noted in Section 1.4, there exist fields F̂ such that the problem of deciding
whether a squarefree polynomial f ∈ F̂ [t] of degree two is irreducible in F̂ [t] is an

109



undecidable problem. We conclude from Theorem 2.4.26 that the problem “Extrac-
tion of Simple Components” is also undecidable over these fields (even for semi-
simple algebras of dimension two over the ground field).

2.4.5. Extraction of Simple Components over R and C

We now consider the cost of “Extraction of Simple Components” of semi-simple
algebras over R and C. As explained in Section 2.2.3, we assume that we are given
an algebra A over a number field F as input; we wish to compute bases for the
simple components of A⊗F C over C, or of A⊗F R over R (if F ⊆ R).

Suppose now that A ⊆ Mm×m(F ) is a finite-dimensional semi-simple associative
algebra of dimension n over a number field F . We begin by considering the simple
components of A ⊗F C over C. We will show that it is sufficient to perform com-
putations over a number field E ⊇ F in order to compute bases (over C) for these
components.

We first consider the case that A is a simple algebra over F . Now the centre of A is
a finite algebraic extension field of F : Centre(A) = F [α], for some α ∈ Centre(A)
with minimal polynomial f ∈ F [t], with f monic and irreducible in F [t]. Since f is
irreducible, and F is perfect, the roots of f are distinct in C:

f =
h∏
i=1

(t− αi)

for distinct α1, α2, . . . , αh in C. In fact, these roots all lie in some number field
E ⊇ F , a splitting field for the polynomial f over F .

Since the polynomials t−α1, t−α2, . . . , t−αh are pairwise relatively prime in E[t],
there exist polynomials g1, g2, . . . , gh ∈ E[t], each with degree less than that of f ,
such that

gi ≡ 1 (mod (t− αi)) and gi ≡ 0 (mod (t− αj))

for 1 ≤ i, j ≤ h, i 6= j; or, equivalently,

gi(αi) = 1 and gi(αj) = 0.

Fortunately, the coefficients of gi lie in a smaller number field than E ([E : F ] may
be as large as n!): The above conditions are equivalent to the conditions that each
polynomial gi has degree less than that of f , and that

gi ≡ 1 (mod (t− αi)) and gi ≡ 0 (mod
(

f

(t− αi)

)
).
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Since f and (t − αi) are both in (F [αi])[t], and (t − αi) divides f , it is clear that
gi can also be chosen from (F [αi])[t]. Now it is easily checked that the idempotent
ei = gi(α) is in Mm×m(F [αi]), for 1 ≤ i ≤ h, and that

e1 + e2 + · · ·+ eh = 1 and eiej = δi jei for 1 ≤ i, j ≤ h,

in A ⊗F C. Furthermore, it is easily checked that (Centre(A ⊗F C))ei ∼= C for
1 ≤ i ≤ h, so that in fact ei is a central primitive idempotent of A ⊗F C. Now
let B1, B2, . . . , Bh be the simple components of A ⊗F C with identity elements
e1, e2, . . . , eh respectively. Since Bi = (A ⊗F C)ei, it is clear that Bi is spanned
(over C) by the matrices a1ei, a2ei, . . . , anei, if a1, a2, . . . , an is a basis for A
over F . Since these matrices all have entries in F [αi], it is clear that the simple
component Bi of (A⊗F C) over C has a basis and set of structure constants in the
number field F [αi] ∼= F [t]/(f), for 1 ≤ i ≤ h.

We now consider the more general case, that A is semi-simple over F . Suppose
again that A has simple components B1, B2, . . . , Bk over F ; then it is clear that
B1 ⊗F C, B2 ⊗F C, . . . , Bk ⊗F C are two-sided ideals in A⊗F C, and that the set
of simple components of A⊗F C includes all of the simple components of Bi ⊗F C,
for 1 ≤ i ≤ k. We generate bases for the simple components of A ⊗F C by first
generating bases over F for the simple components B1, B2, . . . , Bk of A over F , and
then computing bases (over C) for the simple components of Bi⊗F C, for 1 ≤ i ≤ k.

The process of computing the simple components of A ⊗F R, for a semi-simple
algebra A ⊆Mm×m(F ) of dimension n over F , and for a real number field F ⊆ R,
is similar to that of computing the simple components of A ⊗F C. As above, we
consider the simple components Bi of A over F separately; we express the centre of
Bi as F [αi], for αi ∈ Bi, with minimal polynomial fi ∈ F [t] monic and irreducible
in F [t]. Computing the factorisation of f in R[t], we obtain the expression

fi = fi 1fi 2 · · · fi hi

for fi j ∈ R[t] monic and irreducible — hence either of the form t−αi j , for αi j some
(real) algebraic number, or of the form t2 + αi j 1t + αi j 0, again for real algebraic
numbers αi j 1, αi j 0, in some number field F [αi j ] = F [αi j 1, αi j 0]. Again, we
compute polynomials gi 1, gi 2, . . . , gi hi , with the coefficients of gi j in F [αi j ] ⊆ R,
and such that gi j ≡ 1 (mod fi j) and gi j ≡ 0 (mod fi l) for 1 ≤ j, l ≤ hi and
for j 6= l. The matrix gi j(αi) = ei j is a central primitive idempotent in A ⊗F R,
for 1 ≤ i ≤ k and 1 ≤ j ≤ hi. If fi j has degree 1 in R[t] then the centre of the
simple component Bi j = (A⊗F R)ei j is isomorphic to R; otherwise, fi j has degree
two, and the centre of the simple component Bi j = (A ⊗F R)ei j is isomorphic to
C. Computation of bases for the simple components of A ⊗F R from the central
primitive idempotents proceeds as in the case for computations over C.
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We will require primitive generators of field extensions of number fields. We use the
(well known) fact that if F is a number field, E is an extension of degree at most n
over F , and α, β ∈ E, then there is some integer c between 0 and n2 such that
F [α + cβ] = F [α, β] ⊆ E (see, for example, van der Waerden [117], Section 6.10).
As we explain below, Friedl and Rónyai apply this to obtain a primitive generator
of E = F [a1, a2, . . . , an] of the form a1 + c2a2 + · · · + cnan, where c2, c3, . . . , cn
are small integers, in polynomial time. We apply this in a slightly different way to
obtain an efficient parallel algorithm for this computation — but requiring the use
of larger multipliers c2, c3, . . . , cn.

Proposition 2.4.27. Let E be an extension field of a number field F , and let
a1, a2, . . . , an be a basis for E over F .

(i) (Friedl and Rónyai [43]). There exists an element a = a1 + c2a2 + · · ·+ cnan ∈
E, with ci ∈ Z and 0 ≤ ci ≤ n2 for 2 ≤ i ≤ n, such that E = F [a], and such
that the element a can be computed using arithmetic-Boolean circuits over F
of size polynomial in n, or using Boolean circuits of size polynomial in the
input size N .

(ii) There exists an element â = a1 + ĉ2a2 + · · · + ĉnan ∈ E, with ĉi ∈ Z and
0 ≤ ĉi ≤ n2 log2 n (so that ĉi has a binary representation of length O(log2 n)),
such that E = F [â], and which can be computed using arithmetic-Boolean
circuits over F of size nO(1) and depth O(log3 n), or using Boolean circuits of
size NO(1) and of depth O(log3N), for input size N .

Proof. Given α and β in E, we check whether α, β ∈ F [α+cβ] for c ∈ Z by solving
systems of linear equations over F , using arithmetic-Boolean circuits of size nO(1)

and depth O(log2 n). A generator a with the properties described in (i) can be
obtained by computing elements b1, b2, . . . , bn ∈ E, in sequence, with b1 = a1,
and bi+1 = bi + ci+1ai+1, with 0 ≤ ci+1 ≤ n2 chosen such that bi, ai+1 ∈ F [bi+1]
(see the procedures SPLIT1 and PRIMELEM and Proposition 7.5 of Friedl and
Rónyai [43]). It is easily checked (by induction on n) that the element a = bn has
the desired properties.

We obtain a generator â with the properties described in (ii) by using a divide-
and-conquer approach: Elements â1, â2 of E are generated so that a1, a2, . . . , an̂ ∈
F [â1] and an̂+1, an̂+2, . . . , an ∈ F [â2], for n̂ = dn/2 e, and so that

â1 = a1 + ĉ2a2 + · · ·+ ĉn̂an̂,

and
â2 = an̂+1 + ĉn̂+1an̂+2 + · · ·+ ĉnan,

with coefficients ĉi ∈ Z such that 0 ≤ ĉi ≤ n2((log2 n)−1). An element â = â1 + câ2,
with 0 ≤ c ≤ n2, is then computed so that â1, â2 ∈ F [â]. Again, it is easily checked
that â has the desired properties, and can be computed at the stated cost.
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We can now state our algorithm for computation of simple components of A⊗F R
or of A⊗F C. Since the computations are similar for the two cases, we give a single
algorithm, “Extraction of Simple Components over an Extension”, for computations
over an extension E. The algorithm uses factorisation of squarefree polynomials
over E, and isolation of roots in E; we assume the use of algorithms in Sections 1.5
and 1.6 for these problems, for the cases E = R and E = C. The algorithm performs
computations over several number fields; for each field F , a single generator α (with
F = Q[α]) is either provided as input or is computed. We assume elements of
a number field F are represented by polynomials in Q[t], with the element h(α)
represented by the polynomial h ∈ Q[t] of smallest possible degree. Thus all the
inputs and outputs are represented as (vectors of) elements of Q.

Theorem 2.4.28. Let A ⊆ Mm×m(F ) be a finite-dimensional semi-simple asso-
ciative algebra of dimension n over a number field F = Q[α], for some algebraic
integer α with minimal polynomial f ∈ Z[t]. Suppose we are given a description of
A and F consisting of a basis for A over F , as well as the minimal polynomial f of
α, and an isolating region for α in C.
(i) There exists an integer k ≤ n, and number fields E1, E2, . . . , Ek ⊆ C, each

an extension of degree at most n over F , and a simple algebra Ci over the
number field Ei, for 1 ≤ i ≤ k, such that A ⊗F C has simple components
B1, B2, . . . , Bk over C, with Bi ∼= Ci ⊗Ei C, for 1 ≤ i ≤ k. A description of
the number field Ei (including the minimal polynomial over C and an isolating
region in C for an algebraic integer αi, with Ei = Q[αi] ⊇ F ), and a basis
over Ei for the simple algebra Ci, can be computed, for 1 ≤ i ≤ k, from the
description of A and F , using Boolean circuits of polynomial size.

(ii) If F ⊆ R then there exists an integer k ≤ n and number fields E1, E2, . . . , Ek ⊆
R, each an extension of degree at most n over F , and a simple algebra Ci over
Ei, for 1 ≤ i ≤ k, such that A ⊗F R has simple components B1, B2, . . . , Bk
over R, with Bi ≡ Ci ⊗Ei R, for 1 ≤ i ≤ k. A description of the number
field Ei (as described above) and a basis over Ei for the simple algebra Ci, can
be computed for 1 ≤ i ≤ k from the description of A over F , using Boolean
circuits of polynomial size.

Proof. The algorithm “Extraction of Simple Components over an Extension” is
used in both (i) and (ii) — for the extension E = C in the first case, and for E = R

in the second. The methods used in the algorithm are the same as those used in
the algorithms “Extraction of Idempotents” and “Simple Components via Central
Primitive Idempotents”, stated earlier. The correctness of “Extraction of Simple
Components over an Extension” follows from the correctness of these methods.

The timing analysis follows from the time bounds given for the algorithms for linear
algebra over extensions in Section 1.3, and for factorisation over number fields, and
over R and C, in Sections 1.4–1.6.
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Algorithm Extraction of Simple Components over an Extension

Input. • Integers l, n, m > 0.
• The coefficients of a monic irreducible polynomial f ∈ Q[t]

f = tl + λl−1t
l−1 + · · ·+ λ1t+ λ0 of degree l.

• Coordinates of an isolating region in an extension E of Q for a
root α ∈ E of f .
• Matrices a1, a2, . . . , an ∈Mm×m(F ), for F = Q[α], which form

the basis for a finite-dimensional semi-simple associative algebra
A ⊆Mm×m(F ) of dimension n over F .

Output. • Integer k > 0, the number of simple components of Â = A⊗F E.
• Integers n1, n2, . . . , nk > 0, with n1 + n2 + · · ·+ nk = n,

such that ni is the dimension of the simple component Bi of Â.
• For each integer i, such that 1 ≤ i ≤ k:

— Integer li > 0, the coefficients of a monic irreducible
polynomial fi = tli + λi, li−1t

li−1 + · · ·λi, 1t+ λi, 0 ∈ Z[t]
of degree li, and the coordinates of an isolating region
in E for a root αi of fi, such that F ⊆ Ei = Q[αi] ⊆ E.

— Coefficients of a polynomial
gi = ζi, li−1t

li−1 + · · ·+ ζi, 1t+ ζi, 0 ∈ Q[t]
such that α = gi(αi).

— Elements µi j h of Ei, for 1 ≤ j ≤ ni and 1 ≤ h ≤ n, defining
elements bi j =

∑n
l=1 µi j hah of Â such that

(i) bi 1, bi 2, . . . , bi ni is a basis for the simple component
Bi over E, and hence

(ii) b1 1, . . . , bk nk is a basis for Â over E.
— Matrices ci j ∈Mni×ni(Ei), such that ci 1, ci 2, . . . , ci ni is

a basis for a matrix algebra Ci ⊆Mni×ni(Ei), such that
Ci ⊗Ei E is isomorphic to Bi.

(1) Use the algorithm “Simple Components via Idempotents of Basis” to
compute the number k̂ of simple components of A over F , as well as
positive integers n̂1, n̂2, . . . , n̂k̂, with n̂1 + n̂2 + · · ·+ n̂k̂ = n, and
a basis b̂i 1, b̂i 2, . . . , b̂i n̂i for the simple components B̂i of A over F ,
for 1 ≤ i ≤ k̂.

(2) Perform steps 3–5 for each integer i such that 1 ≤ i ≤ k̂.
(3) Compute an element α̂i of Centre(B̂i), with minimal polynomial

hi ∈ F [t], such that Centre(B̂i) = F [α̂i].
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(4) Use factorisation over E to compute the following values.
• An integer mi > 0, and an element ci of F , such that there exist

monic irreducible polynomials hi 1, hi 2, . . . , himi ∈ E[t], such
that hi = cihi 1hi 2 · · ·himi ;
• The minimal polynomial f̂i j ∈ Z[t], with degree l̂i j , and an

isolating region in E, for an algebraic integer α̂i j ∈ E such
that α and the coefficients of the polynomial hi j lie in the
number field Êi j = Q[α̂i j ] (so F ⊆ Êi j ⊆ E), for 1 ≤ j ≤ mi;
• A polynomial ĝi j ∈ Q[t] with degree less than l̂i j such that
α = ĝi j(α̂i j) represents α as an element of Êi j , and embeds F
in Êi j ;
• Polynomials in Q[t] representing each of the coefficients of hi j

as elements of Êi j , (as α is represented by the polynomial ĝi j),
for 1 ≤ j ≤ mi.

(5) Compute polynomials ḡi j ∈ Êi j [t], for 1 ≤ j ≤ mi, such that
ḡi j ≡ 1 (mod hi j) and ḡi j ≡ 0 (mod (hi/hi j)).

Let êi j = ḡi j(α̂i) ∈ B̂i ⊗F E; êi j is a primitive idempotent of A⊗F E.
(6) Let k = m1 +m2 + · · ·+mk̂. Set e1, e2, . . . , ek to be the primitive

idempotents êi j (for 1 ≤ i ≤ k̂, and 1 ≤ j ≤ mi) computed in step 5,
and set fh, lh, αh, and gh to be the values f̂i j , l̂i j , α̂i j , and ĝi j ,
respectively, which correspond to the idempotent eh = êi j , for 1 ≤ h ≤ k.
Let Eh = Q[αh], so F ⊆ Eh ⊆ E, for 1 ≤ h ≤ k.

(7) Perform steps 8–10 for each integer i, such that 1 ≤ i ≤ k.
(8) Compute the integer ni and a basis bi 1, bi 2, . . . , bi ni over Ei for

Ĉi = eiA ⊆ A⊗F Ei, by selecting a maximal linearly independent
subset of eia1, eia2, . . . , eian. (Note that Bi ∼= Ci ⊗Ei E.)

(9) Compute elements µi j l of Ei, for 1 ≤ j ≤ ni and 1 ≤ l ≤ n, such
that bi j = µi j 1a1 + µi j 2a2 + · · ·+ µi j nan.

(10) Compute a set of structure constants for the simple algebra Ĉi with
respect to the basis bi 1, bi 2, . . . , bi ni over Ei; these are also structure
constants for Bi over E, with respect to the same basis. Use these
structure constants to compute the matrix

ci j = φi(bi j) ∈ Ci ⊆Mni×ni(Ei), for 1 ≤ j ≤ ni,
and for φi the regular matrix representation of Ĉi with respect to
the above basis.
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2.5. Decompositions of Simple Algebras

We now consider algorithms for the decomposition of finite-dimensional simple al-
gebras over fields. Suppose A is a simple algebra of dimension n over a field F ; then,
as stated in Theorem 2.1.25, A is isomorphic to Mk×k(D), the ring of k×k matrices
over some division algebra D over F , for some integer k > 0; the division algebra D
is unique (up to isomorphism). A then has a division algebra isomorphic to D as a
subalgebra; henceforth, we consider D to be embedded in A. If the division algebra
D has dimension l over F , then it is clear that n = lk2. Furthermore, if ei j ∈ A
(for 1 ≤ i, j ≤ k) are elements of a standard basis for Mk×k(D) over D, so that

e1 1 + e2 2 + · · ·+ ek k = 1, ei j 6= 0, and er set u = δs ter u,

for 1 ≤ i, j, r, s, t, u ≤ k and for δr s the Kronecker delta (1 if s = t, 0 other-
wise), and if d1, d2, . . . , dl is a basis for D ⊆ A over F , then the set of elements
{ dhei j : 1 ≤ h ≤ l, 1 ≤ i, j ≤ k } form a basis for A over F . Further, the elements
of these two bases commute: dhei j = ei jdh. (This is made clear by thinking of
elements of A as k× k matrices with entries in D. The matrices “ei j” have entries
in the field F ⊆ Centre(D), while the elements dh ∈ D correspond to diagonal
matrices.) We “decompose” the simple algebra A, isolating the division algebra D
(and exhibiting the isomorphism A ∼= Mk×k(D) ∼= D⊗FMk×k(F )), ∗ by computing
bases for Mk×k(D) over D, and D over F , with the above properties. We state the
problem “Decomposition of a Simple Algebra” formally on the following page.

As is the case for the problem “Extraction of Simple Components” of Section 2.4,
the above problem can be reduced to the computation of a set of idempotents
in A. We show that this reduction is useful, both for sequential and for parallel
computations, in Section 2.5.1. However, the decomposition of simple algebras
differs from the extraction of simple components of semi-simple algebras in other
respects. It is not sufficient to consider commutative algebras when decomposing
simple algebras, and the problem of deciding whether a simple algebra is a division
algebra is not straightforward. We consider this problem for several classes of fields.
In Section 2.5.2 we review the positive result of Rónyai [102], [103], that there is
an efficient (probabilistic) algorithm for this problem over finite fields. We then
consider computations for simple algebras over C and R, in Sections 2.5.3 and 2.5.4
respectively; we obtain efficient (new) probabilistic algorithms for these cases. To
our knowledge, these are the first (probabilistic) algorithms for the decomposition
of simple algebras over these fields, which perform exact computations (rather than
computing numerical estimates) using a polynomial number of Boolean operations.
Finally, we review the negative results of Rónyai ([103], [104]) for decompositions
of simple algebras over Q, and discuss the problem of decomposing simple algebras
over number fields, in Section 2.5.5.

∗ The tensor product “⊗F ” is discussed in Section 2.2.3.
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Problem Decomposition of a Simple Algebra

Input. • Integers n, m > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis for a

finite-dimensional simple associative algebra A ⊆Mm×m(F ) of
dimension n over F .

Output. • Integers k, l > 0, such that A ∼= Mk×k(D), for a division algebra
D ⊆ A of dimension l over F .
• Elements µh g ∈ F and νi j g ∈ F , for 1 ≤ h ≤ l, 1 ≤ i, j ≤ k,

and 1 ≤ g ≤ n, defining elements dh =
∑n
g=1 µh gag and

ei j =
∑n
g=1 νi j gag of A, such that

(1) d1, d2, . . . , dl is a basis for a division algebra D ⊆ A
over F ;

(2) the elements ei j form a basis for A ∼= Mk×k(D) over D,
such that
e1 1 + e2 2 + · · ·+ ek k = 1, and er set u = δs ter u

for 1 ≤ r, s, t, u ≤ k;
(3) dhei j = ei jdh for 1 ≤ h ≤ l and 1 ≤ i, j ≤ k; and,
(4) the elements dhei j (for 1 ≤ h ≤ l and 1 ≤ i, j ≤ k),

which form a basis for A over F .
• Matrices ch ∈Ml×l(F ), such that c1, c2, . . . , cl is a basis for

a matrix algebra isomorphic to D over F .
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2.5.1. Simple Algebras and Idempotents

We begin by reducing the decomposition of a simple algebra A over F to the com-
putation of a set of primitive idempotents in A. We will show that this reduction
is useful for both sequential and parallel computations (see, in particular, Theo-
rem 2.5.3).

We will use the properties of sets of idempotents stated below.

Proposition 2.5.1. Suppose A ∼= Mk×k(D) for D a division algebra of dimension l
over a field F , and suppose e1, e2, . . . , eh is a set of idempotents (so that eiej = δi jei
for 1 ≤ i ≤ h and e1 +e2 + · · · eh = 1). Then h ≤ k, and there exist positive integers
m1, m2, . . . , mh > 0 such that m1+m2+· · ·+mh = k, and so that, for 1 ≤ i, j ≤ h,

(i)’ eiA is a right ideal of A, with dimension milk over F ;
(ii)’ Aei is a left ideal of A, with dimension milk over F ;
(iii)’ eiAej is an F -vector space with dimension mimjk over F ;
(iv)’ eiAei is a simple algebra, isomorphic to Mmi×mi(D) over F .

If, in addition, { e1, e2, . . . , eh } is a set of primitive idempotents in A, then h = k,
mi = 1 for 1 ≤ i ≤ k, and

(v)’ eiA is an minimal nonzero right ideal of A;
(vi)’ Aei is an minimal nonzero left ideal of A;
(vii)’ eiAei ∼= D.

Proof. Since e1, e2, . . . , eh is a set of (nonzero) idempotents of A, it is easily
verified that

• eiA is a right ideal of A;
• Aei is a left ideal of A;
• eiAej is an F -vector space; and,
• eiAei is a simple algebra over F .

Further, if ei is a primitive idempotent in A, then it is clear that eiA and Aei
are, respectively, irreducible (that is, minimal nonzero) right and left ideals of A
(so they contain no proper right or left ideals, respectively), and that eiAei is a
division algebra over F .

We now make use of the isomorphism A ∼= Mk×k(D). If e is an idempotent in
Mk×k(D), b ∈ Mk×k(D) such that eb = e, and d ∈ D, then e(bd) = (eb)d = bd. It
is easily checked that any right ideal of A is isomorphic∗ to Mr×k(D), for r ≤ k;
any left ideal of A is isomorphic to Mk×r(D), for r ≤ k; and any simple algebra
over F of the form eAe for an idempotent e of D is isomorphic to Mr×r(D) (again,

∗ We refer here to isomorphism of vector spaces over F , as well as isomorphism of mod-
ules over D. For a discussion of modules over rings (generalisations of vector spaces
over fields), see (for example) Curtis and Reiner [31], or van der Waerden [117].

118



for r ≤ k). Further, any irreducible right ideal of A is isomorphic to M1×k(D), any
irreducible left ideal of A is isomorphic to Mk×1(D), and any division algebra of
the form eAe, for a primitive idempotent e of A, is isomorphic to D. In the general
case that e1, e2, . . . , eh is a set of (not necessarily primitive) idempotents in A, we
set mi to be the positive integer such that ei can be expressed as the sum of exactly
mi primitive idempotents; then properties (i)’ through (iv)’ follow; properties (v)’
to (vii)’ also hold, if the idempotents e1, e2, . . . , eh are primitive.

There are several properties of the central idempotents of Section 2.4 which the
idempotents discussed here lack. With the exception of the idempotents 0 and 1,
the idempotents of a simple algebra A do not belong to the centre of A. They are
not unique. Furthermore, a set of primitive idempotents e1 1, e2 2, . . . , ek k does not
uniquely determine the remaining elements of a standard basis { ei j : 1 ≤ i, j ≤ k }
for A ∼= Mk×k(D) over D.

Example 2.5.2. Consider the simple algebra A = Mn×n(F ) over F . Clearly we
can use as our “standard basis” the canonical basis ei j , for 1 ≤ i, j ≤ n, with ei j
the matrix in Mn×n(F ) whose (i, j)th entry is 1, and whose remaining entries are 0.
Then e1 1 +e2 2 + · · · enn = 1, ei i is a primitive idempotent, and er set u = δs ter u for
1 ≤ i, r, s, t, u ≤ n, as required. However, if X is any nonsingular matrix then it is
clear that the matrices êi j = X−1ei jX, for 1 ≤ i, j ≤ n, also comprise a standard
basis. Hence this basis is not unique. In particular, suppose X is a nonsingular
diagonal matrix with nonzero diagonal entries d1, d2, . . . , dn ∈ F . Then êi i = ei i
for 1 ≤ i ≤ n, but êi j = X−1ei jX = d−1

i djei j ; so êi j is not generally equal to ei j
in Mn×n(F ), even when ei i = êi i for all i.

In general, if i 6= j then the element “ei j” of a standard basis for A ∼= Mk×k(D)
is an element of the algebra (ei i + ej j)A(ei i + ej j) (of dimension 4 over D, and
isomorphic to M2×2(D)) such that ei iei j = ei jej j = ei j , and ei jei i = ej jei j = 0.
It is evident that ei j is determined only to within a multiplicative factor (by an
element of D). On the other hand, if the corresponding element ej i has been
determined, then the element ei j is completely determined by the above identities,
as well as the conditions ei jej i = ei i, and ej iei j = ej j . It is also evident that, given
the primitive idempotents e1 1, e2 2, . . . , ek k, the elements e1 2, e1 3, . . . , e1 k can be
chosen independently. The elements e2 1, e3 1, . . . , ek 1 will then be fixed. The
remaining elements ei j will then be uniquely determined, as well, by the relation
ei j = ei 1e1 j . It is then easily verified that er set u = δs ter u, as required.

We must also generate a basis for D over F . We have noted that e1 1Ae1 1
∼= D;

we can obtain a basis d̂1, d̂2, . . . , d̂l of e1 1Ae1 1 over F by solving systems of linear
equations over F . Now we must find elements d1, d2, . . . , dl ∈ D ⊆ A which form
a basis for the division algebra D over F , so that each d ∈ D commutes with each
element ei j , and which have the further properties that e1 1die1 1 = d̂i for 1 ≤ i ≤ l,
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and that the elements ej jd1ej j , ej jd2ej j , . . . , ej jdlej j form a basis for the division
algebra ej jAej j ∼= D, for 1 ≤ j ≤ k (so that, in particular, there is an isomorphism
of division algebras over F , φi : D → ei iAei i, such that φi(dj) = ei idjei i for
1 ≤ j ≤ l, and for 1 ≤ i ≤ k). In fact, the element di is easily computed from the
element d̂i of e1 1Ae1 1, for 1 ≤ i ≤ l. We simply note that di commutes with er s
for 1 ≤ r, s ≤ k, and so

di = (e1 1 + e2 2 + · · · ek k)di(e1 1 + e2 2 + · · · ek k)
= e1 1die1 1 + e2 2die2 2 + · · ·+ ek kdiek k

= e1 1die1 1 + e2 1(e1 1die1 1)e1 2 + e3 1(e1 1die1 1)e1 3 + · · ·+ ek 1(e1 1die1 1)e1 k

= d̂i + e2 1d̂ie1 2 + e3 1d̂ie1 3 + · · ·+ ek 1d̂ie1 k,

and so di is the sum of k terms, each the product of d̂i and at most two of the
elements er s, for 1 ≤ r, s ≤ k.

We use these facts to decompose a simple algebra A using a set of primitive idem-
potents, as shown in the algorithm given below.

Algorithm Decomposition from Primitive Idempotents

Input. • Integers n, m, k > 0.
• Matrices a1, a2, . . . , an ∈Mm×m(F ), which form the basis for a

finite-dimensional simple associative algebra A ⊆Mm×m(F ) of
dimension n over F .
• Matrices e1, e2, . . . , ek ∈ A, which are primitive idempotents in A,

such that eiej = δi jei and e1 + e2 + · · ·+ ek = 1.
Output. • Integer l > 0, such that A ≡Mk×k(D), for a division algebra

D ⊆ A of dimension l over F .
• Elements µh g ∈ F and νi j g ∈ F , for 1 ≤ h ≤ l, 1 ≤ i, j ≤ k,

and 1 ≤ g ≤ n, defining elements dh =
∑n
g=1 µh gag and

ei j =
∑n
g=1 νi j gag of A, such that

(1) d1, d2, . . . , dl is a basis for a division algebra D ⊆ A
over F ;

(2) the elements ei j form a basis for A ∼= Mk×k(D) over D,
such that
e1 1 + e2 2 + · · ·+ ek k = 1, and er set u = δs ter u

for 1 ≤ r, s, t, u ≤ k;
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(3) dhei j = ei jdh for 1 ≤ h ≤ l and 1 ≤ i, j ≤ k; and,
(4) the elements dhei j (for 1 ≤ h ≤ l and 1 ≤ i, j ≤ k)

form a basis for A over F .
• Matrices ch ∈Ml×l(F ), such that c1, c2, . . . , cl is a basis for

a matrix algebra isomorphic to D over F .

Computation of a Standard Basis

(1) Set ei i = ei, for 1 ≤ i ≤ k. Perform steps 2–4 for all i such that 2 ≤ i ≤ k.
(2) Compute a basis over F for the subspace (e1 1 + ei i)A(e1 1 + ei i) of A.

Note that this is a simple algebra isomorphic to M2×2(D) over F , with
identity element e1 1 + ei i.

(3) Use the above basis to form and solve a system of linear equations over F ,
computing as e1 i any nonzero element x of (e1 1 + ei i)A(e1 1 + ei i)
such that

e1 1x = x, ei ix = 0, xe1 1 = 0, and xei i = x.
(4) Form and solve a system of linear equations over F , computing as ei 1

the unique element y of (e1 1 + ei i)A(e1 1 + ei i) satisfying the equations
e1 1y = 0, ei iy = y, ye1 1 = y, yei i = 0,

ye1 i = ei i, and e1 iy = e1 1.
(5) For 2 ≤ i, j ≤ k, and i 6= j, set ei j = ei 1e1 j .
(6) For 1 ≤ i, j ≤ k and 1 ≤ g ≤ n, form and solve a nonsingular system of

linear equations, to compute the elements νi j g of F such that
ei j =

∑n
g=1 νi j gag.

Computation of a Basis for D

(7) Set l = n/k2.
(8) Compute a basis d̂1, d̂2, . . . , d̂l over F for the subspace e1 1Ae1 1 of A.

Note that e1 1Ae1 1 is a division algebra isomorphic to D over F .
(9) For all h such that 1 ≤ h ≤ l, set dh = d̂h +

∑k
i=2 ei 1d̂he1 i.

(10) For 1 ≤ h ≤ l, compute the elements µh g of F such that dh =
∑n
g=1 µh gag,

by forming and solving a nonsingular system of linear equations over F .
(11) Solving systems of linear equations over F , compute a set of structure

constants for the division algebra D, with respect to the basis
d1, d2, . . . , dl over F . Use these constants to compute matrices
c1, c2, . . . , cl ∈Ml×l(F ), with ci = φ(di), for 1 ≤ i ≤ l,
for φ the regular matrix representation of D with respect to this basis.
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Theorem 2.5.3. Suppose A ∼= Mk×k(D), for k > 0 and for D a division algebra
of dimension l > 0 over a field F . Then given a basis for the simple algebra A over
F , and given a set of primitive idempotents e1, e2, . . . , ek of A, the output of the
problem “Decomposition of a Simple Algebra” (which would be obtained using the
basis for A as input) can be computed using arithmetic-Boolean circuits over F of
size (mn)O(1) and depth O(log2(mn)).

Proof. We use the procedure on the preceding pages to compute the desired output.
We first show that this procedure is correct. The first six steps of the procedure
compute elements ei i = ei, which are given as primitive idempotents, and elements
e1 i and ei 1 such that e1 1e1 i = e1 iei i = e1 i, ei 1e1 1 = ei iei 1 = ei 1, ei ie1 i =
e1 ie1 1 = e1 1ei 1 = ei 1ei i = 0, ei 1e1 i = ei i, and e1 iei 1 = e1 1, for 2 ≤ i ≤ n. Now
suppose 2 ≤ j ≤ n and i 6= j; then ej je1 i = ej j(e1 1e1 i) = (ej je1 1)e1 i = 0. It
follows by a similar argument that e1 iej j = ej jei 1 = ei 1ej j = 0.

Now for 2 ≤ i, j ≤ n, with i 6= j, the element ei j is set to be ei 1e1 j ; checking
er set u, we see that

er set u = er 1e1 set 1e1u

= er 1(e1 ses s)et 1e1u

= er 1e1 s(es set 1)e1u

= δs ter 1e1 ses 1e1u

= δs ter u, as desired.

Thus the elements ei j computed in the first six steps have the desired properties.

We now consider the rest of the procedure. We must show that the elements
d1, d2, . . . , dl computed here satisfy the following properties.

• d1, d2, . . . , dl is a basis over F for a division algebra (isomorphic to D);

• dhei j = ei jdh for 1 ≤ h ≤ l and 1 ≤ i, j ≤ k;

• the elements dhei j (for 1 ≤ h ≤ l and 1 ≤ i, j ≤ k) form a basis over F for A.

Consider the elements d̂1, d̂2, . . . , d̂l of e1 1Ae1 1 computed in step 8 of the proce-
dure. It is a consequence of Proposition 2.5.1 that these form a basis for a division
algebra isomorphic to D over F . We show that d1, d2, . . . , dl also form a basis
for a division algebra isomorphic to D, by showing that these elements are linearly
independent over F , and by exhibiting an isomorphism of algebras over F , from
e1 1Ae1 1 to the F -vector space with basis d1, d2, . . . , dl, which takes d̂i to di, for
1 ≤ i ≤ l.
Suppose first that d1, d2, . . . , dl are linearly dependent over F ; then there exist
elements γ1, γ2, . . . , γl of F , not all zero, such that

γ1d1 + γ2d2 + · · ·+ γldl = 0.
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It follows, then, that

e1 1(γ1d1 + γ2d2 + · · ·+ γldl)e1 1 = 0,

and so
γ1(e1 1d1e1 1) + γ2(e1 1d2e1 1) + · · ·+ γl(e1 1dle1 1) = 0.

Now

e1 1die1 1 = e1 1(d̂i + e2 1d̂ie1 2 + e3 1d̂ie1 3 + · · ·+ ek 1d̂ie1 k)e1 1

= e1 1d̂ie1 1 = e1 1e2 1d̂ie1 2e1 1 + · · · e1 1ek 1d̂ie1 ke1 1

= e1 1d̂ie1 1 = d̂i,

for 1 ≤ i ≤ k, since d̂i ∈ e1 1Ae1 1 and e2
1 1 = e1 1. It follows that

γ1d̂1 + γ2d̂2 + · · ·+ γld̂l = 0,

contradicting the fact that d̂1, d̂2, . . . , d̂l are linearly independent (over F ) in
e1 1Ae1 1. Now suppose

d̂id̂j =
l∑

h=1

γi j hd̂h, for γi j h ∈ F, 1 ≤ i, j ≤ n,

so that the elements γi j h form a set of structure constants for e1 1Ae1 1 with respect
to the basis d̂1, d̂2, . . . , d̂l. Then

didj =

(
k∑
r=1

er 1d̂ie1 r

)(
k∑
s=1

es 1d̂je1 s

)

=
k∑
r=1

k∑
s=1

(
er 1d̂i(e1 res 1)d̂je1 s

)
=

k∑
r=1

er 1d̂ie1 1d̂je1 r

=
k∑
r=1

er 1d̂id̂je1 r (since d̂j ∈ e1 1Ae1 1)

=
k∑
r=1

l∑
h=1

er 1γi j hd̂he1 r

=
l∑

h=1

γi j h

(
k∑
r=1

er 1d̂he1 r

)

=
l∑

h=1

γi j hdh,
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so that d1, d2, . . . , dh form the basis for an algebra over F , with the same set of
structure constants as e1 1Ae1 1 with respect to d̂1, d̂2, . . . , d̂l. It follows, then, that
there is an algebra isomorphism from e1 1Ae1 1 to this algebra, taking d̂i to di, for
1 ≤ i ≤ l, and that this algebra is isomorphic to D.

Now let h, i, j ∈ Z such that 1 ≤ h ≤ l and 1 ≤ i, j ≤ k; clearly

dhei j =

(
k∑
r=1

er 1d̂he1 r

)
ei j

=
k∑
r=1

er 1d̂h(e1 rei j)

= ei 1d̂he1 j

= (ei jej 1)d̂he1 j

=
k∑
s=1

(ei jes 1)d̂he1 s

= ei j

k∑
s=1

(es 1d̂he1 s)

= ei jdh;

so ei j and dh commute.

It follows that dhei j = dhei 1e1 j = ei 1dhe1 j ∈ ei 1Ae1 j . Further, we can use an
argument similar to the one used above to show that d1, d2, . . . , dl are linearly in-
dependent, to show that the elements ei 1d1e1 j , ei 1d2e1 j , . . . , ei 1dle1 j (that is, the
elements d1ei j , d2ei j , . . . , dlei j) are linearly independent over F . Now if αi j h ∈ F
for 1 ≤ i, j ≤ k and 1 ≤ h ≤ l, and

k∑
i=1

k∑
j=1

l∑
h=1

αi j hdhei j = 0,

then for 1 ≤ r, s ≤ k, we have

er r

 k∑
i=1

k∑
j=1

l∑
h=1

αi j hdhei j

 es s = 0,

so
l∑

h=1

αr s hdher s = 0,
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and hence αr s h = 0 for 1 ≤ h ≤ l. We conclude that the elements dhei j are linearly
independent over F , and form a basis for A, as required.

Since each step of the procedure requires either the solution of a small system
of linear equations over F , or matrix multiplication over F , it is clear that the
algorithms can both be implemented using arithmetic-Boolean circuits over F of
the size and depth stated in the theorem, as required.

We have now reduced the problem of decomposing simple algebras over fields to
the computation of a set of primitive idempotents in these algebras. In the next
sections we consider the computations of these idempotents in simple algebras over
“computable” fields — finite fields, C, R, and Q, as well as the decision problem of
whether nontrivial idempotents exist in these algebras.

2.5.2. Simple Algebras over Finite Fields

In this section we review the algorithm of Rónyai ([102], [103]) for the decomposition
of simple algebras over finite fields. Rónyai shows that this problem can be solved
using a probabilistic algorithm, in polynomial time.

The decision problem, deciding whether a simple algebra over a field F = Fpc = Fq

is a division algebra, has a straightforward solution.

Theorem 2.5.4. (Wedderburn). A finite division ring is a commutative field.

Corollary 2.5.5. A finite-dimensional simple algebra A over a finite field Fq is a
division algebra if and only if A is commutative.

A proof of Theorem 2.5.4 can be found (for example) in Herstein’s monograph on
noncommutative rings ([62]). Since any finite-dimensional division algebra over a
finite field is a finite division ring, Theorem 2.5.4 implies that any finite-dimensional
division algebra over Fq is commutative. Conversely, since any finite-dimensional
simple algebra over Fq which is not a division algebra is isomorphic to Mk×k(D), for
a division algebra D over Fq and for k > 1, and includes noncentral idempotents,
it is clear that any finite-dimensional simple algebra over Fq is commutative if and
only if it is a division algebra.

In order to decompose a simple algebra A over Fq, we must also exhibit an iso-
morphism between A and Mk×k(E), for E = Fr a finite algebraic extension of Fq,
as described at the beginning of Section 2.5. Rónyai adapts the “almost construc-
tive” proof of Wedderburn’s Theorem given by Herstein, to obtain a probabilistic
Boolean algorithm which performs this computation in polynomial time. We now
sketch this algorithm.
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Henceforth we consider algebras, and perform computations, over the field E =
Centre(A) ∼= Fr. (Note that A is a simple algebra over E, as well as over F .) We
can compute an element α ∈ Centre(A) such that E = F [α] efficiently using a
probabilistic algorithm (by choosing α randomly in E, then verifying that the min-
imal polynomial of α over E has sufficiently large degree). We can then implement
arithmetic over E = F [α] using operations in F , as discussed in Section 1.

As we noted in Section 2.5.1, it is sufficient to generate a set of primitive idempotents
e1, e2, . . . , ek in A in order to decompose the simple algebra A. In fact, it suffices
to find an efficient algorithm for the computation of any idempotent e /∈ { 0, 1 } in
A: for e and 1 − e are respectively the identity elements of simple algebras eAe
and (1 − e)A(1 − e) over Fq. If ē1, ē2, . . . , ēk1 are primitive idempotents in eAe,
so that ēiēj = δi j ēi and ē1 + ē2 + · · · + ēk1 = e, and ê1, ê2, . . . , êk2 are primitive
idempotents in (1− e)A(1− e), so that êiêj = δi j êi and ê1 + ê2 + · · ·+ êk2 = 1− e,
then k = k1 +k2 and we can use ē1, ē2, . . . , ēk1 , ê1, ê2, . . . , êk2 as a set of primitive
idempotents in A, with the algorithms of Section 2.5.1, to decompose A. (Note that
ēiêj ∈ (eAe)((1− e)A(1− e)) = eA(e(1− e))A(1− e) = (0), so ēiêj = 0. Similarly,
êiēj = 0.)

Thus, it is sufficient to compute an idempotent other than 0 or 1 in A, or to deter-
mine that no such idempotents exist (by verifying that A is simple and commuta-
tive). We reduce the problem further by showing that we can compute a suitable
idempotent from any element a of A such that the minimal polynomial of a over
E ∼= Fr is reducible in E[t]. In particular, any nonzero zero divisor a ∈ A has a
reducible minimal polynomial over E, and can be used.

Suppose now that a ∈ A has minimal polynomial f over E, which is reducible in
E[t]. Suppose first that f is not squarefree, and let g be the squarefree part of f .
Then g(a) is nonzero and nilpotent, and a nonzero zero divisor in A. Now g(a)A
is a proper right ideal of A. Since A ∼= Mk×k(E), there exists some element e of
g(a)A such that ex = x for all x ∈ g(a)A. In particular, e2 = e. This idempotent
can be computed by solving a system of linear equations over F .

Suppose now that f is squarefree; then E[a] ∼= E[t]/(f) is a commutative, semi-
simple subalgebra of A, and the algorithm “Extraction of Idempotents” of Sec-
tion 2.4 can be used to compute a set of central primitive idempotents ẽ1, ẽ2, . . . , ẽh
in E[a], with ẽi /∈ { 0, 1 } and h > 1 (since f is reducible in E[t]). While these idem-
potents are generally neither central nor primitive in A, they are suitable for our
purposes.

Wedderburn’s Theorem is proved (in Herstein) by a proof of the existence of a
nonzero zero divisor in an arbitrary noncommutative finite-dimensional simple al-
gebra over Fq. Rónyai adapts this proof, to obtain a procedure “CUT”, which takes
such an algebra A as input, and either produces a nontrivial zero divisor in A, or
returns a basis over Fq for a noncommutative proper subalgebra Â of A, which is
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also a noncommutative algebra over E. If a zero divisor is produced, then an idem-
potent can be obtained as indicated above. If a subalgebra Â is returned, then this
subalgebra is examined. Using the methods of Section 2.3, a basis for the radical
of Â is computed. If this is nonzero, then an element y of rad(Â), nilpotent in A,
is obtained; a suitable idempotent is obtained from the proper right ideal yA of
A. Otherwise, Â is semi-simple, and the algorithms of Section 2.4 can be applied;
either a suitable idempotent is obtained, or it is determined that Â is simple. In the
latter case, the procedure CUT can be applied recursively to the algebra Â. Now
we note that if A and Â are both simple noncommutative algebras over Centre(A),
and Â is a proper subalgebra of A, then A ∼= Mk×k(Fr) and Â ∼= Mh×h(Fr), for
n ≥ k > h ≥ 2. It is clear that procedure CUT cannot return proper subalgebras
A0 = A ⊃ A1 = Â ⊃ A2 ⊃ · · · indefinitely. In particular, this procedure will
generated a nontrivial zero divisor of A after at most k iterations.

Let F = Fq, A, and E = Centre(A) ∼= Fr be as above. Rónyai adapts a lemma
stated by Herstein, to prove the following facts.

Proposition 2.5.6. Let a ∈ A \ Centre(A), such that the minimal polynomial of
a over E is irreducible, with degree s > 0. Then there exists c ∈ A such that

(i) c−1ac = ar;

(ii) if Alg(a, c) denotes the E-subalgebra of A generated by a and c then Alg(a, c)
is a noncommutative algebra over E (and, hence, a noncommutative algebra
over F );

(iii) Alg(a, c) = E[a] + cE[a] + c2E[a] + · · ·+ cnE[a] + · · ·, where + stands for the
(not necessarily direct) sum of E-subspaces.

Proposition 2.5.6 is proved by Rónyai, (Lemma 2.1 in [102], Lemma 5.1 in [103]).

Suppose now that an element a has been selected from A\Centre(A). If the minimal
polynomial of a over E is reducible in E[t], then “Extraction of Idempotents” can
be used to compute an idempotent in E[a]. Otherwise, Proposition 2.5.6 can be
applied, and we can solve a system of linear equations to obtain a nonzero element
c of A such that ac = car. If c is not a unit then c is a zero divisor in A; if the
minimal polynomial of c over E is reducible in E[t], then, again, c can be used to
produce a nontrivial idempotent in A. Otherwise, c is a unit in A with an irreducible
minimal polynomial over E, such that property (i) of Proposition 2.5.6 holds. Since
properties (ii) and (iii) are both implied by this first property, we have computed
elements a and c with (all of) the properties stated in Proposition 2.5.6, if we have
not already found a suitable idempotent in A.

Now a basis for Alg(a, c) over Fq is easily computed. Either Alg(a, c) 6= A, and
Alg(a, c) can be returned by the procedure CUT as a noncommutative simple proper
subalgebra of A over Centre(A), or Alg(a, c) = A, and we can use the following facts.
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Proposition 2.5.7. (Rónyai). If Alg(a, c) = A ∼= Mk×k(E) then the minimal
polynomial of a over E has degree s = k in E[t], E[c] has dimension k over E,
ck ∈ E, and

A = Alg(a, c) = E[a]⊕ cE[a]⊕ c2E[a]⊕ · · · ⊕ ck−1E[a].

Proposition 2.5.7 is proved by Rónyai (see Lemma 2.2 in [102], and Lemma 5.2
in [103]). It follows from Proposition 2.5.7 that if Alg(a, c) = A, then ck = λ for
some λ ∈ E. Now if the procedure CUT has not already generated a zero divisor
or subalgebra of A, then c has an irreducible minimal polynomial over E. By
Proposition 2.5.7, this polynomial has degree k, so that E[c] ∼= E[a] ∼= Frk , and c
has minimal polynomial tk − λ in E[t].

At this point, we recall the notion of norms of elements of field extensions (defined
formally in Definition 1.4.8). We consider the norms of elements of E[c] over E.
Since c has minimal polynomial tk − λ in E[t], it is clear that the norm of c (in
E[c], over E) is λ. Since the norm is a multiplicative function, the norm of c−1 is
λ−1. Finally, since the extensions E[c] and E[a] are isomorphic (as extensions of
E), we conclude that there also exists an element d of E[a] such that the norm of
d (in E[a], over E) is λ−1, as well.

Proposition 2.5.8. Let A, a, c, and d be as above. Then the element 1− cd of A
is a nonzero zero divisor in A.

Proposition 2.5.8 is presented in Herstein [62], and in Rónyai ([102], [103]). It
reduces the computation of a nonzero zero divisor in A to the solution of certain
“norm equations” in finite fields. Rónyai presents a polynomial time algorithm for
the solution of the equation NE[a]/E(t) = λ, for λ ∈ E, over an extension E[a] of
dimension k over E, for the case k = 2 and for the case k is odd. The general case
can be reduced to these special cases: an arbitrary k ∈ Z is either a power of two,
or has an odd factor greater than one. Given a ∈ A with (field) E[a] an extension
of dimension k > 1 over E, it suffices to choose a factor k̂ of k which is either 2 or
odd. An element â of E[a], with E[â] a field of dimension k̂ over E, is obtained by
choosing a polynomial f̂ in E[t] which is irreducible in E[t] (randomly, with small
probability of failure), and then factoring f̂ in (E[a])[t]. The element â can then
be used (in place of the element a) in the procedure CUT; if k̂ 6= k, then a proper
noncommutative subalgebra of A will be returned.

The procedure CUT, and the main algorithm, “ZERODIV”, which uses it to gener-
ate a zero divisor in A, are stated in more detail by Rónyai ([102], and in a slightly
altered form in [103]). Rónyai also shows that the algorithm can be used to compute
a nonzero zero divisor of a simple algebra A over Fq in polynomial time (using a
probabilistic algorithm for factorisation of polynomials over Fq). As noted above

128



(and by Rónyai), the decomposition of simple algebras over Fq can be reduced to
this computation.

Theorem 2.5.9. (Rónyai). A simple algebra A ⊆Mm×m(Fq) of dimension n over
a finite field Fq can be decomposed using a probabilistic Boolean algorithm, which
either successfully decomposes the algebra or returns failure (with probability less
than one half), in time (nm log q)O(1).

Clearly the probability of failure can be made arbitrarily small by repeating the
algorithm, with independent choices of random field elements.

Unfortunately, Wedderburn’s Theorem, and Propositions 2.5.6, 2.5.7, and 2.5.8 do
not generalise well to more general classes of fields; we cannot expect to use Rónyai’s
algorithm to decompose simple algebras over infinite fields. On the other hand, the
use of zero divisors (and arbitrary elements with reducible minimal polynomials)
do not require the assumption that the ground field is finite; we will use these
techniques when decomposing simple algebras over C and R.

2.5.3. Simple Algebras over C

We now consider the cost of decomposing simple algebras over C. We assume we
are given a simple algebra A over a number field F as input, with the property
that A ⊗F C is simple over C; we wish to decompose the simple algebra A ⊗F C.
We show that if A has dimension k2 over F (so that A ⊗F C ∼= Mk×k(C)) then a
standard basis for A⊗F C can be computed using a probabilistic Boolean algorithm,
in polynomial time (see, in particular, Theorem 2.5.11).

As is the case for algebras over finite fields, the problem of deciding whether a
simple algebra over C is a division algebra is trivial.

Proposition 2.5.10. Let E be an algebraically closed field; then the only finite-
dimensional division algebra over E is E itself.

The proof of Proposition 2.5.10 is straightforward. Let d be any element of a finite-
dimensional division algebra D over E, and let f be the minimal polynomial of
d over E. Since D is a division algebra, f is irreducible in E[t] and, since E is
algebraically closed, f is linear. Consequently d ∈ E, as required.

Thus, if we are given a simple algebra A of dimension n over an algebraically closed
field (in particular, over C), we can conclude from Proposition 2.5.10 that A is a
division algebra if and only if n = 1.

Again, we are left with the less trivial problem of exhibiting an algebra isomorphism
between a simple algebra A⊗FC of dimension n = k2 over C, and the matrix algebra
Mk×k(C). In Section 2.5.2 we noted that the corresponding problem for algebras
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over finite fields could be reduced to the computation of an idempotent other than
0 or 1 in the algebra. This computation is easy over an algebra A ⊗F C over C:
We note that since A ⊗F C ∼= Mk×k(C), Centre(A ⊗F C) ∼= C, and we need only
consider an arbitrary noncentral element a of A. This element will have a minimal
polynomial (over C) with degree at least 2, which will be reducible in C[t]. Thus, an
idempotent can be generated from a using the methods discussed in Section 2.5.2.
Unfortunately, the reduction used for finite fields is not applicable here: If we use
the computation of idempotents as the basis for an iterative decomposition of an
algebra A⊗F C, then we will generally require the computation of a field extension
at each iteration. In the worst case, this simple iterative scheme will produce output
with size exponential in the size of the input. We avoid this problem by replacing
the iterative algorithm for computation of primitive idempotents by a probabilistic
algorithm, which either computes a complete set of primitive idempotents in a single
step, or fails.

Suppose again that A⊗F C is simple, with dimension n = k2 over C, so A⊗F C ∼=
Mk×k(C). Let φ be an isomorphism from A⊗F C to Mk×k(C). If a1, a2, . . . , an is a
basis for A over F , then this is also a basis for A⊗F C over C. For λ1, λ2, . . . , λn ∈
C, we consider the matrix φ(λ1a1 +λ2a2 + · · ·+λnan) ∈Mk×k(C) (as a function of
λ1, λ2, . . . , λn). We denote by χ(λ1, λ2, . . . , λn) the characteristic polynomial of
this matrix; χ(λ1, λ2, . . . , λn) is a polynomial of degree k in C[t]. Now there exist
elements λ1, λ2, . . . , λn of C such that

φ(λ1, λ2, . . . , λn) = Diag(1, 2, . . . , n) =


1 0

2
. . .

0 n

 ,
and so χ(λ1, λ2, . . . , λn) is squarefree. Setting

h(x1, x2, . . . , xn) = Rest(χ(x1, x2, . . . , xn),
d
dt
χ(x1, x2, . . . , xn)),

we note that h has total degree at most k(2k − 1) in x1, x2, . . . , xn, that h is not
identically 0, and, for arbitrary λ1, λ2, . . . , λn ∈ C, that h(λ1, λ2, . . . , λn) 6= 0
if and only if the minimal polynomial of the matrix χ(λ1a1 + λ2a2 + · · · + λnan)
has degree k and is squarefree in C[t]. We argue, as in Section 2.4.4, that for
randomly chosen λ1, λ2, . . . , λn ∈ F (chosen from a finite subset of F ), the matrix
χ(λ1a1 + λ2a2 + λnan) has these properties, and can be used to generate a full set
of primitive idempotents in A, with high probability. We use this as the basis for
the algorithm stated on the following pages.

Note that we have simplified the definition of the problem for this special case,
identifying the division algebra D with the only possible such algebra, C (and
dispensing with the trivial basis d1 = 1 for D over C, in the output).
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Algorithm Decomposition of a Simple Algebra over C

Input. • Integers h, n, m > 0.
• The coefficients of a monic irreducible polynomial f ∈ Z[t]

f = th + λh−1t
h−1 + · · ·+ λ1t+ λ0 of degree h.

• Coordinates of an isolating rectangle in C for a root α of f .
• Matrices a1, a2, . . . , an ∈Mm×m(F ), for F = Q[α], which form

the basis for a finite-dimensional simple associative algebra
A ⊆Mm×m(F ) of dimension n over F , such that A⊗F C
is simple over C.
• Error tolerance ε > 0.

Output. EITHER:
• Integer k > 0, such that A⊗F C ∼= Mk×k(C).
• For integers i and j, such that 1 ≤ i, j ≤ k:

— Integer hi j > 0, the coefficients of a monic irreducible
polynomial
fi j = thi j + λi, j, hi j−1t

hi j−1 + · · ·+ λi, j, 1t+ λi, j, 0 ∈ Z[t]
of degree hi j , and the coordinates of an isolating rectangle
in C, for a root αi j of fi j , such that F ⊆ Ei j = Q[αi j ] ⊆ C.

— Coefficients of a polynomial
gi j = ζi, j, hi j−1t

hi j−1 + · · ·+ ζi, j, 1t+ ζi, j, 0 ∈ Q[t]
such that α = gi j(αi j).

— Elements νi j g of Ei j , for 1 ≤ g ≤ n, defining an element
ei j =

∑n
g=1 νi j gag of A⊗F C, such that the elements

ei j form a basis for A⊗F C over C, with
e1 1 + e2 2 + · · ·+ ek k = 1, and er set u = δs ter u

for 1 ≤ r, s, t, u ≤ k.

OR: failure, with probability less than ε.

(1) Set k =
√
n ∈ Z.

(2) Choose elements λ1, λ2, . . . , λn randomly and independently
from a subset I of F , of size d k(2k − 1)ε−1 e.

(3) Compute the (monic) minimal polynomial f̂ in F [t] of the element
a = λ1a1 + λ2a2 + · · ·+ λnan of A.

If this polynomial has degree less than k, or has degree k and is not
squarefree, report failure. Otherwise, perform steps 4–13.
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Extraction of Idempotents.
(4) Use factorisation over C to compute the following values, for 1 ≤ i ≤ k.

• The minimal polynomial over Q (with degree hi i) and an
isolating rectangle in C for an algebraic integer αi i ∈ C, such
that α and the algebraic number βi both lie in Ei i = Q[αi i],
where βi is a root of f̂ — in particular,
so that
f̂ = (t+ β1)(t+ β2) · · · (t+ βk)

is an irreducible factorisation for f̂ over C.
• Elements ai, 0, ai, 1, . . . , ai, hi i−1 and bi, 0, bi, 1, . . . , bi, hi i−1

of Q such that
α = ai, 0 + ai, 1αi i + · · ·+ ai, hi i−1α

hi i−1
i i ,

and
βi = bi, 0 + bi, 1αi i + · · ·+ bi, hi i−1α

hi i−1
i i .

Set gi i = ai, hi i−1t
hi i−1 + · · ·+ ai, 1t+ ai, 0 ∈ Q[t]; then α = gi i(αi i).

(5) Compute the polynomial ĝi ∈ Ei i[t] with degree less than k,
for 1 ≤ i ≤ k, such that
ĝi ≡ 1 (mod (t+ βi)) and ĝi ≡ 0 (mod (f̂/(t+ βi))).

Set ei i to be the idempotent ĝi(a) ∈ A⊗F Ei ⊆ A⊗F C.

Computation of a Standard Basis.
(6) Perform steps 7–10 for all i such that 2 ≤ i ≤ k.
(7) Compute the minimal polynomial f1 i over Q, with degree h1 i,

of an algebraic integer α1 i such that Q[α1 i] = Q[α1 1, αi i], as
well as the coordinates for an isolating rectangle for α1 i in C.
Compute polynomials si, ti ∈ E1 i[t] = (Q[α1 i])[t] each with degree
less than h1 i, such that α1 1 = si(α1 i) and αi i = ti(α1 i).
Set g1 i = ((g1 1 ◦ si) mod f1 i); then α = g1 i(α1 i).
Set fi 1 = f1 i, gi 1 = g1 i, and αi 1 = α1 i (so Ei 1 = E1 i = Q[α1 i]).

(8) Compute a basis over E1 i for the subspace
(e1 1 + ei i)(A⊗F E1 i)(e1 1 + ei i) of A⊗F E1 i, by choosing a maximal
linearly independent subset (over E1 i) of (e1 1 + ei i)a1(e1 1 + ei i),
(e1 1 + ei i)a2(e1 1 + ei i), . . . , (e1 1 + ei i)an(e1 1 + ei i).
Note that this is subspace a simple algebra isomorphic to M2×2(E1 i)
over E1 i with identity element e1 1 + ei i.

(9) Use the basis computed in (8) to form and solve a system of linear equations
over E1 i, to compute as e1 i any nonzero element x of the algebra
(e1 1 + ei i)(A⊗F E1 i)(e1 1 + ei i) such that

e1 1x = x, ei ix = 0, xe1 1 = 0, and xei i = x.
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(10) Form and solve a system of linear equations over E1 i, to compute as ei 1

the unique element y of (e1 1 + ei i)(A⊗F E1 i)(e1 1 + ei i) satisfying
the equations

e1 1y = 0, ei iy = y, ye1 1 = y, yei i = 0,
ye1 i = ei i, and e1 iy = e1 1.

(11) For 2 ≤ i < j ≤ k, compute the minimal polynomial fi j over Q, with
degree hi j , of an algebraic integer αi j such that Q[αi j ] = Q[α1 i, α1 j ],
as well as the coordinates of an isolating rectangle for αi j in C.
Compute polynomials si j , ti j ∈ Ei j [t] = (Q[αi j ])[t] with degree
less than hi j such that α1 i = si j(αi j) and α1 j = ti j(αi j).
Set gi j = ((g1 i ◦ si j) mod fi j); then α = gi j(αi j).
Set fj i = fi j , gj i = gi j , and αj i = αi j (so Ej i = Ei j = Q[αi j ]).

(12) For 2 ≤ i, j ≤ k, with i 6= j, set ei j = ei 1e1 j ∈ A⊗F Ei j ⊆ A⊗F C.
(13) For 1 ≤ i, j ≤ k, form and solve a nonsingular system of linear

equations, to compute the elements νi j g of Ei j for 1 ≤ g ≤ n,
such that ei j =

∑n
g=1 νi j gag in A⊗F Ei j ⊆ A⊗F C.

We are interested in Boolean algorithms for this problem. We assume the error
tolerance ε is of the form N−1 for some integer N > 0, so that ε can be represented
using Θ(log2(ε−1)) = Θ(log2N) bits; then the following theorem states that the
algorithm requires time polynomial in its input size.

Theorem 2.5.11. Suppose A ⊆Mm×m(F ) is a simple algebra of dimension n = k2

over a number field F = Q[α] of degree h overQ, for an algebraic integer α, such that
A⊗F C is simple over C. Then there exists a standard basis { ei j : 1 ≤ i, j ≤ k }
for A ⊗F C over C such that e1 1 + e2 2 + · · · + ek k = 1 and er set u = δs ter u
for 1 ≤ r, s, t, u ≤ k, and such that each element ei j lies in a number field Ei j
whose dimension over Q is polynomial in k and in the dimension of F over Q.
Given the minimal polynomial over Q and an isolating rectangle in C for α, a basis
a1, a2, . . . , an for A over F , and an integer N > 0 (in binary notation) as input, a
probabilistic Boolean algorithm can be used to compute a generator αi j of a field
Ei j = Q[αi j ] and the element ei j of A ⊗F Ei j such that { ei j : 1 ≤ i, j ≤ k }
forms a standard basis for A⊗F C as described above, using time polynomial in the
input size, with probability of failure less than ε = N−1.

Proof. We use the algorithm “Decomposition of a Simple Algebra over C” to
perform this computation. The techniques used here to generate a set of primitive
idempotents from an element of A whose minimal polynomial is squarefree and has
(full) degree k (in steps 4–5), and to obtain a standard basis from these idempotents
(in steps 6–13), have been discussed before, and have been shown to be correct. We
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will show that the bound on the probability of error is correct. We will then show
that the number fields Ei j used by the algorithm have small dimension over F ,
and conclude (citing results from Section 1 and in the article of Loos [87]) that the
algorithm computes the desired values in polynomial time.

We have already noted that an arbitrary element of A has a minimal polynomial
(over F ) with degree at most k, and that there exists an element whose minimal
polynomial is squarefree and has degree k. We note, as in Section 2.4, that there
exists a polynomial h(x1, x2, . . . , xn) with total degree at most k(2k − 1), such
that for λ1, λ2, . . . , λn ∈ F , h(λ1, λ2, . . . , λn) 6= 0 if and only if the element
λ1a1 +λ2a2 + · · ·+λnan of A has a minimal polynomial over F which is squarefree
and of degree k, so that this element can be used to generate a set of primitive
idempotents which can serve as the elements e1 1, e2 2, . . . , ek k of a standard basis.
Applying the result of Schwartz [111](which we stated as Proposition 2.4.23), we
conclude that if λ1, λ2, . . . , λn are chosen randomly from a finite subset I of F
with size d k(2k − 1)ε−1 e in step 2 of the algorithm, then the algorithm will fail in
step 3 with probability at most ε, as desired.

We now note that the number fields Ei j have small dimension over F . Since Ei i
is obtained from F by adjoining a single root of a polynomial f̂ ∈ F [t] with degree
k, it is clear that [Ei i : F ] ≤ k for 1 ≤ i ≤ k. The field E1 i is obtained from E1 1

by adjoining an element (αi i) of Ei i; since E1 1 and Ei i each have dimension at
most k over F , it follows that E1 i has dimension at most k2 over F . Finally, Ei j
is obtained from E1 1 by adjoining elements from Ei i and from Ej j ; so Ei j has
dimension at most k3 over F , for arbitrary i and j. Thus these fields each have
dimension at most k3l over Q; generators of these fields over Q can be obtained (by
the algorithm of Loos) in polynomial time, and arithmetic can also be performed
efficiently over these fields (by the methods of Section 1). The remaining analysis
is straightforward. We conclude that the algorithm can be implemented to run in
time polynomial in the input size, as claimed.

As indicated above, we obtain a polynomial-size standard basis for the algebra
A ⊗F C using the algorithm “Decomposition of a Simple Algebra over C” — but
only by choosing each entry ei j from an algebra A⊗F Ei j , where Ei j is an extension
of F particular to that entry of the basis. Note that the algorithm is complicated
by the need to form and keep track of all of these field extensions. A standard basis
{ ei j : 1 ≤ i, j ≤ n } with ei j ∈ A⊗F E, for a single extension E with small degree
over F , would be preferable to the one we obtain.

Babai and Rónyai [5] have subsequently improved the results presented here, by
showing that such a single extension E can be found. In particular, their results can
be used to show that if steps 1–4 of “Decomposition of a Simple Algebra over C”
are performed, and if the method described in step 5 is used to obtain a single
idempotent e1 1 in A ⊗F E, so that (A ⊗F E)e1 1 is an irreducible left ideal in
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A⊗F E, then in fact A⊗F E is isomorphic to a full matrix ring over E, and the rest
of a standard basis for A⊗F E over E can be computed in polynomial time. (Note
that the centre of A is isomorphic to F , so that Lemma 2.5 of [5] applies.) Now
a1, a2, . . . , an spans A over F , and hence also spans A⊗F E over E. For 1 ≤ i ≤ n,
let L̂i be the left ideal of A⊗F E generated by the elements e1 1a1, e1 1a2, . . . , e1 1ai.
It is clear that

L̂1 ⊆ L̂2 ⊆ · · · ⊆ L̂n,

and that this set of ideals includes an ideal of dimension ik over n, for 1 ≤ i ≤ k.
Set êi to be a maximal idempotent in L̂i, for 1 ≤ i ≤ n, and set ẽ1 = ê1, ẽi+1 =
(1−êi)êi+1 for 1 ≤ i < n. Eliminating the idempotents equal to zero, we obtain from
the ẽi’s a set of primitive idempotents in A⊗F E. The algorithm “Decomposition
from Primitive Idempotents” of Section 2.5.1 can then be used (over the field E) to
compute a standard basis for A⊗F E over E from these idempotents.

We have seen that the problem of identifying a division algebra over E is trivial
when E is algebraically closed (in particular, when E = C). We used a probabilistic
method in order to avoid the use of iteration (and a large increase in the size of the
values being computed) when producing an isomorphism between a simple algebra
over C and a matrix ring Mk×k(C). By doing so, we have shown that a “small”
(i.e., polynomial size) standard basis exists for a simple algebra A ⊗F C, for a
simple algebra A over a number field F . The question of whether such a basis can
be computed deterministically in polynomial time remains open.

Question 2.5.12. Given a basis for an algebra A ⊆Mm×m(F ) over a number field
F , with A⊗F C simple over C, can an isomorphism between A⊗F C and Mk×k(C)
be exhibited (by computing a standard basis for A ⊗F C) using a deterministic
Boolean algorithm, in time polynomial in the input size?

Babai and Rónyai have answered this question for an important special case: They
obtain such a decomposition for a group algebra over a splitting field for that algebra
(in particular, over any extension of Q containing an eth primitive root of unity, for
e the exponent of the associated group).
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2.5.4. Simple Algebras over R

The decomposition of simple algebras over R is a more complicated process than
the decomposition of simple algebras over C. In particular, the decision problem of
deciding whether a simple algebra over R is a division algebra over R is nontrivial;
for we have seen that a noncommutative finite-dimensional division algebra over
R exists (namely, H, the ring of real quaternions, of Examples 2.1.3 and 2.2.4).
Fortunately, the number of distinct finite-dimensional division algebras over R is
small.

Proposition 2.5.12. The only finite-dimensional division algebras over R are R
itself, C = R[

√
−1], and H, the ring of real quaternions.

Proposition 2.5.12 is well known; for a proof see van der Waerden ([118], Sec-
tion 14.9). We will use Proposition 2.5.12 to decompose simple algebras, by pro-
ducing a probabilistic Boolean algorithm which identifies, and decomposes, algebras
isomorphic to Mk×k(D), for each of the three cases D = R, D = C, and D = H.
Given an algebra Â = A ⊗F R, for F = Q[α] ⊆ R a number field, such that Â
is simple over R, the algorithm computes a standard basis { ei j : 1 ≤ i, j ≤ k }
for Â ∼= Mk×k(D) over D, with each element ei j ∈ A ⊗F Ei j , for F ⊆ Ei j ⊆ R,
with Ei j a finite algebraic extension with dimension kO(1) over F , as well as the
dimension l of D over F , and elements d1ei j , d2ei j , . . . , dlei j ∈ A ⊗F Ei j , where
d1, d2, . . . , dl ∈ A ⊗F R form a basis for a division algebra isomorphic to D over
R. To our knowledge, this is the first (probabilistic) polynomial-time algorithm for
this problem. We discuss a subsequent improvement of our algorithm at the end of
this section.

We first note that simple algebras isomorphic to Mk×k(C) over R are easily distin-
guished from other simple algebras over R.

Proposition 2.5.13. Let Â be a simple algebra over R; then Â ∼= Mk×k(C) for
some k ≥ 1 if and only if Centre(Â) has dimension two over R (and is isomorphic to
C). Otherwise, Â ∼= Mk×k(R) or Â ∼= Mk×k(H) for some k > 0, and Centre(Â) ∼= R.

Proposition 2.5.13 follows easily from the fact that Centre(Mk×k(D)) ∼= Centre(D)
over R, and that Centre(C) ∼= C, while Centre(H) ∼= Centre(R) ∼= R.

Suppose now that Â = A ⊗F R and Centre(Â) ∼= C; consider a basis {α1 =
1, α2 } for Centre(Â) over R. We first note that α2 must have a quadratic minimal
polynomial t2+γ1t+γ0 over R. Since this polynomial is irreducible over R, γ2

1−4γ0 <
0; hence

√
4γ0 − γ2

1 ∈ R and
√

4γ0 − γ2
1 6= 0. Let I = (4γ0 − γ2

1)−(1/2)(2α2 + γ1);
then it is easily checked that I ∈ Centre(A ⊗F E) and that I is a root of the
polynomial t2 +1, for E = F [

√
4γ0 − γ2

1 ]. Now { 1, I } is a basis for Centre(A⊗F E)
over E, with I2 + 1 = 0. We decompose A ⊗F R = (A ⊗F E) ⊗E R by computing
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a basis, β1, β2, . . . , βn̂, for A ⊗F E over Centre(A ⊗F E) ∼= E[
√
−1]. (Note that

β1, β1I, β2, β2I, . . . , βn̂, βn̂I is then a basis for A ⊗F E over E.) We use the
basis β1, β2, . . . , βn̂ (of size n̂ = n/2 = k2 for k ∈ Z) to compute a set of structure
constants for A⊗FE (now viewed as an associative algebra Ā over Centre(A⊗FE) ∼=
E[
√
−1]), which we use as input for the algorithm “Decomposition of a Simple

Algebra over C” of Section 2.5.3.

The above algorithm will return a set of number fields Ei j ⊆ C and a standard
basis { ei j : 1 ≤ i, j ≤ k } for the algebra Ā⊗E[

√
−1] C over C. Each element ei j

will be given by a set of elements νi j g ∈ Ei j , for 1 ≤ g ≤ n̂, such that

ei j =
n̂∑
g=1

νi j gβg ∈ Ā⊗E[
√
−1] Ei j .

Now the field Ei j is given as Q[αi j ], for some algebraic integer αi j ; using the
algorithms of Loos [87], we can compute a generator α̂i j for the number field Êi j =
Q[α̂i j ] = Q[Re(αi j), Im(αi j)] ⊆ R. It is clear that Êi j = (Ei j [

√
−1]) ∩ R; since

νi j g ∈ Ei j , Re(νi j g), Im(νi j g) ∈ Êi j for 1 ≤ g ≤ n̂. Now let

êi j =
n̂∑
g=1

(Re(νi j g)βg + Im(νi j g)βgI) ∈ A⊗F Êi j ⊆ A⊗F R.

It is clear that the elements êi j form a standard basis for A ⊗F R over the field
Centre(A⊗F R) ∼= C, and that d1 = 1 and d2 = I form a basis for this field over R,
yielding a decomposition of A⊗F R over R. It is also easily checked that these values
can be recovered from the values returned by the algorithm “Decomposition of a
Simple Algebra over C” in polynomial time. As we note at the end of Section 2.5.3,
we can use the methods of Babai and Rónyai [5] to improve this result: We can
choose all the elements êi j and Iêi j from A⊗F E, where E ⊆ R and E is a single
extension of F , of small degree over F .

Henceforth we assume Centre(Â) ∼= R, so either Â ∼= Mk×k(R) or Â ∼= Mk×k(H) for
some k > 0. If Â has dimension n over R and Â ∼= Mk×k(R), then n = k2; otherwise,
Â ∼= Mk×k(H), and n = 4k2. We can conclude immediately that Â ∼= Mk×k(R) if n
is odd. However, we are still left with the problem of decomposing the algebra by
computing a standard basis, as well as the problem of classifying and decomposing
simple algebras of even dimension over R. In the rest of this section we develop a
procedure which solves these problems by reducing them to the special case that Â
has dimension 4 over R, and either Â ∼= H or Â ∼= M2×2(R) — that is, to the case
that Â is a quaternion algebra over R. We also give a procedure which solves these
problems for quaternion algebras over R in polynomial time.
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Suppose now that Â = A ⊗F R has dimension n = k̂2 over R, for k̂ a positive
integer. Suppose Â ∼= Mk̂×k̂(R); then it is clear that an arbitrary element a of Â has
a minimal polynomial over R with degree at most k̂. Suppose φ is an isomorphism
from Â to Mk̂×k̂(R); then there exists some element a of Â such that

φ(a) = Diag(1, 2, . . . , k̂) =


1 0

2
. . .

0 k̂

 ,
and whose minimal polynomial over R is squarefree and has degree (exactly) k̂.
We now note that these facts about the minimal polynomial over R also hold for
elements of Mk×k(H), for k̂ = 2k.

Lemma 2.5.14. Suppose Â ∼= Mk×k(H) over R, for k > 0.

(i) Every element a of Â has a minimal polynomial (in R[t]) over R with degree
at most 2k.

(ii) There exists an element a of Â whose minimal polynomial over R is squarefree
and has degree 2k.

Proof. To prove (i), we recall that the division algebra H has a basis { 1, i, j, k }
over R, with multiplicative identity 1, and such that i2 = j2 = k2 = −1, ij =
−ji = k, jk = −kj = i, and ki = −ik = j. Now there is a well known injective
homomorphism φ : H→M2×2(C) with

φ(1) =
[

1 0
0 1

]
, φ(i) =

[√
−1 0
0 −

√
−1

]
,

φ(j) =
[

0 1
−1 0

]
, φ(k) =

[
0

√
−1√

−1 0

]
.

(See, for example, the discussion of quaternions in [67]). This can be extended to
obtain an injective homomorphism φ̂ : Â→M2k×2k(C), with

φ̂(er s)t u =

{ 1, if t = 2r − 1 and u = 2s− 1,
1, if t = 2r and u = 2s,
0, otherwise,

for 1 ≤ r, s ≤ k and 1 ≤ t, u ≤ 2k (and for { er s : 1 ≤ r, s ≤ k } a “standard
basis” for Â ∼= Mk×k(H) over H), and such that φ̂(1), φ̂(i), φ̂(j), and φ̂(k) are all
block diagonal matrices, with 2× 2 blocks, and with

φ̂(1) =


φ(1) 0

φ(1)
. . .

0 φ(1)

 , φ̂(i) =


φ(i) 0

φ(i)
. . .

0 φ(i)

 ,
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φ̂(j) =


φ(j) 0

φ(j)
. . .

0 φ(j)

 , φ̂(k) =


φ(k) 0

φ(k)
. . .

0 φ(k)

 .
We state without proof that φ̂ is an injective homomorphism of associative algebras
over R.

Now it follows that, for arbitrary a ∈Mk×k(H), φ̂(a) is a 2k × 2k matrix over C of
the form

φ̂(a) =


A1 1 A1 2 · · · A1 k

A2 1 A2 2 · · · A2 k
...

...
. . .

...
Ak 1 Ak 2 · · · Ak k

 ,
where each Ai j is a 2× 2 matrix over C of the form

Ai j =
[
ai j + bi j

√
−1 ci j + di j

√
−1

−ci j + di j
√
−1 ai j − bi j

√
−1

]
, for ai j , bi j , ci j , di j ∈ R,

and for 1 ≤ i, j ≤ k. Let χa be the characteristic polynomial of the (complex) ma-
trix φ̂(a); then χa has degree 2k over C and, since φ̂ is an injective homomorphism,
χa(a) = 0 in A ⊗F C. We prove part (i) by showing that χa has real coefficients,
so that the minimal polynomial of a over R is a divisor of χa, and has degree at
most 2k.

Now χa = det T ∈ C[t] for

T =


t−A1 1 −A1 2 · · · −A1 k

−A2 1 t−A2 2 · · · −A2 k
...

...
. . .

...
−Ak 1 −Ak 2 · · · t−Ak k

 ∈M2k×2k(C[t]);

let

U =
[

0 −1
1 0

]
, V =

[
0 1
−1 0

]
,

so det U = det V = 1, and UV = 1, and let Û , V̂ ∈M2k×2k(C) with

Û =


U 0

U
. . .

0 U

 , V̂ =


V 0

V
. . .

0 V

 .
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Again, det Û = det V̂ = 1, so

χa = det

Û

t−A1 1 −A1 2 · · · −A1 k

−A2 1 t−A2 2 · · · −A2 k
...

...
. . .

...
−Ak 1 −Ak 2 · · · t−Ak k

 V̂


= det


t− Ā1 1 −Ā1 2 · · · −Ā1 k

−Ā2 1 t− Ā2 2 · · · −Ā2 k
...

...
. . .

...
−Āk 1 −Āk 2 · · · t− Āk k

 ,
for

Āi j = U

[
ai j + bi j

√
−1 ci j + di j

√
−1

−ci j + di j
√
−1 ai j − bi j

√
−1

]
V

=
[
ai j − bi j

√
−1 ci j − di j

√
−1

−ci j − di j
√
−1 ai j + bi j

√
−1

]
.

Thus χa = det T = det T̄ , for T̄ the matrix whose entries are the complex conjugates
of the entries of T . It follows that the coefficients of χa are their own complex
conjugates. Thus χa ∈ R[t], as required to prove part (i).

To prove part (ii), it suffices to note that there exists an element a of Â such that

φ̂(a) =



0 1 0
−1 0

0 2
−2 0

. . .
0 k

0 −k 0


,

and such that χa = (t2+12)(t2+22) · · · (t2+k2), so that this polynomial is squarefree
in R[t]. It follows that the minimal polynomial of a over R is χa, and is squarefree
of degree 2k, as desired.

Suppose a1, a2, . . . , an is a basis for A over F , for n = 4k2, and with the algebra
A ⊗F R isomorphic to one of the matrix algebras M2k×2k(R) or Mk×k(H). Then
we can use Lemma 2.5.14 and the preceding remarks about M2k×2k(R), and argue
as in Section 2.5.3, to show that there exists a polynomial h in indeterminates
x1, x2, . . . , xn over F , with total degree at most 2k(4k−1), such that for arbitrary
λ1, λ2, . . . , λn ∈ F , the element

a = λ1a1 + λ2a2 + · · ·+ λnan ∈ A ⊆ A⊗F R

140



has a minimal polynomial (over R) which has degree 2k and which is squarefree,
if and only if h(λ1, λ2, . . . , λn) 6= 0. Applying the result of Schwartz (Proposi-
tion 2.4.23), we conclude that if ε > 0 and I is a finite subset of F such that
|I| ≥ d 2k(4k − 1)ε−1 e, and if λ1, λ2, . . . , λn are chosen randomly and indepen-
dently from I, then the above element a will have a minimal polynomial f̂ (over R)
which is squarefree and of degree 2k, with probability at least 1− ε.
If Â ∼= Mk×k(H), then, since the minimal polynomial f̂ can have at most k irre-
ducible factors in R[t], it will follow that

f̂ = f̂1f̂2 · · · f̂k,

for distinct, monic, irreducible quadratic polynomials f̂1, f̂2, . . . , f̂k ∈ R[t]. The
element a can then be used to generate a complete set of primitive idempo-
tents e1, e2, . . . , ek in Â, in this case. Unfortunately, this is not the case if
Â ∼= M2k×2k(R); while f̂ will (probably) be squarefree and have degree 2k, we
have no guarantee that f̂ will split into linear factors over R. In the worst case, f̂
will split into k irreducible factors, each of degree two. In general, f̂ will have h fac-
tors, for k ≤ h ≤ 2k, with some factors linear and some quadratic. The polynomial
f̂ and the element a can then be used to generate a set of idempotents e1, e2, . . . , eh
such that e1 + e2 + · · ·+ eh = 1 and eres = δr ser for 1 ≤ r, s ≤ h, and such that for
1 ≤ i ≤ h, either eiÂei ∼= R or eiÂei ∼= M2×2(R) (by Proposition 2.5.1). We are left
with the problem of distinguishing between (and decomposing) algebras isomorphic
to H and algebras isomorphic to M2×2(R).

We now consider the problem of decomposing these “leftover” algebras. We will
decompose an algebra Â isomorphic to one of H or M2×2(R) by generating one
of two bases for Â: a standard basis { e1 1, e1 2, e2 1, e2 2, } if Â ∼= M2×2(R), or a
basis { 1, i, j, k } (with the multiplication table given earlier) if A ∼= H. We assume
we start with a basis { a1, a2, a3, a4 } for Â. Since we can find the multiplicative
identity of Â by solving a system of linear equations in 4 unknowns, we assume
without loss of generality that a1 = 1.

We decompose Â by assuming Â ∼= H, and attempting to find a basis of the form
given above until we either succeed, or find a nonzero zero divisor in Â (which
we can use to generate idempotents, and a standard basis for Â ∼= M2×2(R)).
Suppose now that a2 has minimal polynomial t2 +γ1t+γ0 over R (a2 is not a scalar
multiple of 1 = a1, so the minimal polynomial of a2 must be quadratic). If the
discriminant γ2

1−4γ0 is nonnegative, then the minimal polynomial is reducible over
R, so that Â ∼= M2×2(R) and the element a2 can be used to generate a standard
basis. Otherwise, t2 + γ1t+ γ0 is irreducible, 4γ0 − γ2

1 > 0, and we can compute an
element I = (4γ0 − γ2

1)−(1/2)(2a2 + γ1) in Â such that I2 + 1 = 0. We next verify
that the element I can be used as “i” in the basis to be generated if Â ∼= H.
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Lemma 2.5.15. Let I be any element of H such that I2 + 1 = 0. Then there exist
elements J and K of H such that 1, I, J, K is a basis for H over R, and such that
I2 = J2 = K2 = −1, IJ = −JI = K, JK = −KJ = I, and KI = −IK = J .

Proof. We know that there exists a basis 1, i, j, k for H over R with the multipli-
cation table indicated above. Let α0, α1, α2, α3 ∈ R such that

I = α01 + α1i+ α2j + α3k.

Using the condition (α01 + α1i + α2j + α3k)2 = −1, we conclude that α0 = 0
and that α2

1 + α2
2 + α2

3 = 1. Now there exist elements β1, β2, β3 ∈ R such that
β2

1 + β2
2 + β2

3 = 1 and α1β1 +α2β2 +α3β3 = 0. (This is equivalent to the condition
that the vectors (α1, α2, α3) and (β1, β2, β3) be orthogonal and of unit length with
respect to the standard inner product for R3.) Setting

J = β1i+ β2j + β3k,

we see that J2 + 1 = 0 (since β2
1 + β2

2 + β2
3 = 1). Setting K = IJ , we see that

K = −(α1β1 + α2β2 + α3β3) + (α2β3 − α3β2)i
+ (α3β1 − α1β3)j + (α1β2 − α2β1)k

= (α2β3 − α3β2)i+ (α3β1 − α1β3)j
+ (α1β2 − α2β1)k,

since α1β1 + α2β2 + α3β3 = 0. Now we note that for an arbitrary element of H of
the form γ1i+ γ2j + γ3k, for γ1, γ2, γ3 ∈ R, we have

(γ1i+ γ2j + γ3k)2 = −(γ2
1 + γ2

2 + γ2
3)

+ (γ2γ3 − γ3γ2)i
+ (γ3γ1 − γ1γ3)j
+ (γ1γ2 − γ2γ1)k

= −(γ2
1 + γ2

2 + γ2
3),

so (γ1i+ γ2j + γ3k)2 ∈ R and (γ1i+ γ2j + γ3k)2 < 0. In particular, K2 < 0, and

K2 = −[(−α2β3)2 + (α3β1)2 + (α1β2 − α2β1)2]
= −α2

1(β2
2 + β2

3)− α2
2(β2

1 + β2
3)− α2

3(β2
1 + β2

2)
+ 2α1α2β1β2 + 2α1α3β1β3 + 2α2α3β2β3

= −(α2
1 + α2

2 + α2
3)(β2

1 + β2
2 + β2

3) + (α1β1 + α2β2 + α3β3)2

= −1 · 1 + 02 = 1, as required.
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The remaining properties JI = −IJ = K, KI = −KJ = J , and JK = −KJ = I,
all follow from the relations I2 = J2 = K2 = −1, IJ = K, and the fact that
multiplication is associative in H.

By inspection, we note that if α0, α1, α2, α3 ∈ R and I, J , and K are as above,
and

(α01 + α1I + α2J + α3K)I = −I(α01 + α1I + α2J + α3K),

then α0 = −α0 and α1 = −α1, so α0 = α1 = 0, while α2 and α3 can be arbitrary
real numbers. It follows, then, that

(α01 + α1I + α2J + α3K)2 = (α2J + α3K)2 = −(α2
2 + α2

3)1,

so (α01 + α1I + α2J + α3K)2 is a negative real number, or is 0 if and only if
α0 = α1 = α2 = α3 = 0. Thus, if we have found elements 1 and I in H as above,
then an element “J” can be found by choosing any nonzero element x of H such
that xI = −Ix; then x2 will be a negative real number, and we can set

J =
1

−
√
−x2

· x.

As we showed in the proof of the above theorem, K can be set to be IJ ; the elements
1, I, J , and K will then have the desired properties.

Since there exists an element I of M2×2(R), such that I2 + 1 = 0, namely,

I =
[

0 1
−1 0

]
,

finding such an element I in Â does not eliminate the possibility that Â ∼= M2×2(R).
However, finding a corresponding element J does guarantee that A ∼= H.

Lemma 2.5.16. Let I ∈ M2×2(R) such that I2 = −1; then there exists a nonsin-
gular matrix X ∈M2×2(R) such that

I = X

[
0 1
−1 0

]
X−1.

Proof. Let

I =
[
α β
γ δ

]
for α, β, γ, δ ∈ R.

Then

I2 =
[
α β
γ δ

]2

=
[
α2 + βγ β(α+ δ)
γ(α+ δ) δ2 + βγ

]
=
[
−1 0
0 −1

]
.

143



If β = 0 then α2 = α2 + βγ = −1, contradicting the fact that α ∈ R. Thus β 6= 0,
α = δ, and γ = −(α2 + 1)β−1. Thus

I =
[

α β
−(α2 + 1)β−1 −α

]
, and β 6= 0.

Now if β > 0, we can set

X =

√ β
1+α2 −α

√
β

1+α2

0
√

1+α2

β

 ;

then

X−1 =

√ 1+α2

β α
√

β
1+α2

0
√

β
1+α2

 ,
and

X

[
0 1
−1 0

]
X−1 = X

 0
√

β
1+α2

−
√

1+α2

β −α
√

β
1+α2


=
[

α β

− (1+α2)
β −α

]
= I.

Otherwise β < 0; set

X =

√ −β
1+α2 −α

√
−β

1+α2

0 −
√

(1+α2)
−β

 ;

then

X−1 =

√ 1+α2

−β −α
√
−β

1+α2

0 −
√
−β

1+α2

 ,
and again it is easily checked that

X

[
0 1
−1 0

]
X−1 = I, as desired.
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Lemma 2.5.17. Suppose Â ∼= M2×2(R).

(i) There do not exist elements I, J ∈ Â such that I2 = J2 = −1 and IJ = −JI.

(ii) If J ∈ Â such that J 6= 0 and IJ = −JI, then J has minimal polynomial
t2 − ζ2 = (t+ ζ)(t− ζ), for some nonzero ζ ∈ R.

Proof. Suppose 1, I ∈ Â with I2 + 1 = 0 and with 1 the multiplicative identity of
Â. We first note that there exists an isomorphism φ : Â→M2×2(R) with

φ(1) =
[

1 0
0 1

]
, φ(I) =

[
0 1
−1 0

]
.

To see this, note that some isomorphism ψ : Â→M2×2(R) exists; now ψ(1) = φ(1)
as given above, since ψ is an isomorphism of algebras over R. Since (ψ(I)2 +1) = 0,
we conclude (by the previous lemma) that there exists a nonsingular matrix X ∈
M2×2(R) such that [

0 1
−1 0

]
= Xψ(I)X−1;

the isomorphism φ : Â→ M2×2(R) such that φ(a) = X−1ψ(a)X, for all a ∈ Â has
the desired properties.

Suppose an element J exists with the properties stated in part (i). Let α, β, γ, δ ∈ R
such that

φ(J) =
[
α β
γ δ

]
.

Now since φ(I)φ(J) = −φ(J)φ(I),[
0 1
−1 0

] [
α β
γ δ

]
= −

[
α β
γ δ

] [
0 1
−1 0

]
,

so [
γ δ
−α −β

]
=
[
β −α
δ −γ

]
.

Hence α = −δ, β = γ, and

φ(J2) = (φ(J))2

=
[
α β
β −α

]2

=
[
α2 + β2 0

0 α2 + β2

]
6= φ(−1),
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since α2 + β2 ≥ 0. Further, α2 + β2 = 0 only if J = 0. Thus no element J exists
with all the properties stated in (i); if J 6= 0 and IJ = −JI then we have seen that
the minimal polynomial of J divides t2 − ζ2 = (t + ζ)(t − ζ) for ζ ∈ R such that
ζ2 = α2 + β2 (for α, β as above). Clearly J is not a scalar multiple of 1, so the
minimal polynomial of J is not a proper divisor of t2 − ζ2, proving (ii).

We now have a test which can be used to distinguish between H and M2×2(R).
Given an algebra Â which is isomorphic to one of these two algebras over R, we
compute the identity 1 ∈ Â and an element I of Â such that I2 + 1 = 0. We then
examine a nonzero element Ĵ of Â such that IĴ = −ĴI, and compute Ĵ2. If Â ∼= H

then (by Lemma 2.5.15) Ĵ can be used with I to generate a basis with the usual
multiplication table for H. Otherwise, Â ∼= M2×2(R), and (by Lemma 2.5.17), I
and Ĵ can be used to compute a pair of nonzero idempotents E1 1 and E2 2 (with
E1 1 + E2 2 = 1 and E1 1E2 2 = E2 2E1 1 = 0) in Â. We implement this test in the
algorithm on the following pages.

We now have the methods necessary to decompose simple algebras over R. Given
a basis for a simple algebra A ⊆Mm×m(F ) for a number field F ⊆ R, with A⊗F R
simple over R, we use a probabilistic Boolean algorithm to compute integers k, l > 0
such that A ⊗F R ∼= Mk×k(D), for a division algebra D of dimension l over R (so
l = 1, 2, or 4). We also compute elements of a standard basis ei j and elements
d1ei j , d2ei j , . . . , dlei j , where d1, d2, . . . , dl ∈ A⊗F R form a basis for a subalgebra
of A⊗F R isomorphic to the division algebra D, with drei j = ei jdr, for 1 ≤ r ≤ l
and 1 ≤ i, j ≤ k. The elements ei j and drei j will all lie in A⊗F Ei j , for Ei j ⊆ R
an algebraic extension with dimension kO(1) over F .

Unfortunately, we cannot guarantee that the elements

dr = dre1 1 + dre2 2 + · · ·+ drek k

(for 1 ≤ r ≤ l) lie in A ⊗F Er for a number field Er of small dimension over F .
While numerical estimates of the entries of the matrices dr can be computed (to
arbitrarily high precision) using the output generated by our algorithm, this does
not establish that “symbolic” representations (including the minimal polynomials
over Q for these algebraic numbers) can be computed (for any standard basis ei j ,
1 ≤ i, j ≤ k) in polynomial time.

For the sake of brevity (and readability), we merely sketch our algorithm. Input and
output are stated in detail; we claim (without further proof) that the output can
be computed using the methods sketched for “Decomposition of a Simple Algebra
over R”.
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Algorithm Decomposition of Quaternion Algebras over R

Input. • Integers h, m > 0.
• The coefficients of a monic irreducible polynomial f ∈ Z[t]

f = th + λh−1t
h−1 + · · ·+ λ1t+ λ1 of degree h.

• Endpoints of an isolating interval in R for a real root α of f .
• Matrices a1, a2, a3, a4 ∈Mm×m(F ), for F = Q[α] ⊆ R, which

form the basis of a finite-dimensional simple associative
algebra A ⊆Mm×m(F ) of dimension 4 over F , whose centre
has dimension 1 over F , such that A⊗F R is simple over R.

Output. • Integer ĥ > 0, the coefficients of a monic irreducible polynomial
f̂ = tĥ + λ̂ĥ−1t

ĥ−1 + · · ·+ λ̂1 + λ̂0 ∈ Z[t] of degree ĥ, and
endpoints of an isolating interval in R for a real root α̂ of f̂ .
• A polynomial g ∈ Q[t] with degree less than ĥ such that g(α̂) = α.
• Integer l > 0, with value 1 if A⊗F R ∼= M2×2(R), and

with value 4 if A⊗F R ∼= H.
— If l = 1:

Matrices E1 1, E1 2, E2 1, E2 2 ∈ A⊗F F̂ , forming a basis
for A⊗F F̂ , such that E1 1 + E2 2 = 1, and Er sEt u = δs tEr u,
for 1 ≤ r, s, t, u ≤ 2.

— If l = 4:
Matrices 1, I, J, K ∈ A⊗F F̂ , forming a basis for A⊗F F̂ ,
such that α1 = 1α = α for all α ∈ A⊗F F̂ ,
I2 = J2 = K2 = −1, IJ = −JI = K, JK = −KJ = I,
and KI = −IK = J .

(1) Solving a system of linear equations, compute the identity 1
(as a linear combination of a1, a2, a3, a4) in A. Set ι ∈ A
to be any element which is not a scalar multiple of 1.

(2) Compute the minimal polynomial, t2 + γ1t+ γ0, of ι over F .
(3) If γ2

1 − 4γ0 ≥ 0 then the minimal polynomial of ι is reducible,
and A⊗F R ∼= M2×2(R). Set κ = ι+ (γ1/2), so κ has
minimal polynomial t2 + γ̄ = t2 − (γ2

1 − 4γ0)/4 (and γ̄ < 0).
Set β = α, E = F , and go to step 6.
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(4) Use the algorithms of Loos [87] to compute the minimal polynomial
and an isolating interval for an algebraic number β ∈ R such that
F ⊆ E = Q[β] = Q[α, γ̂], where γ̂ is a real algebraic number
such that γ̂2 = 4γ0 − γ2

1 ∈ F , and to compute a polynomial
ĝ ∈ Q[t] with small degree such that ĝ(β) = α.
Set I = γ̂−1(2ι+ γ1) ∈ A⊗F E; then I2 + 1 = 0.

(5) Solve a system of linear equations over E to compute a nonzero
element κ of A⊗F E such that Iκ = −κI. Compute the minimal
polynomial, t2 + γ̄, of κ (see Lemmas 2.5.15–2.5.17).
If γ̄ < 0, then A⊗F R ∼= M2×2(R); go to step 6.
Otherwise, γ̄ > 0 and A⊗F R ∼= H; go to step 9.

Case 1: A⊗F R ∼= M2×2(R).
(6) Set l = 1. Use the algorithms of Loos [87] to compute the minimal

polynomial f̂ (with degree ĥ over Q), and an isolating interval in R,
for an algebraic number α̂ ∈ R such that F ⊆ E ⊆ F̂ = Q[α̂] = Q[β, γ̃],
where γ̃ is a real algebraic number such that γ̃2 = −γ̄ 6= 0,
and to compute a polynomial g ∈ Q[t] with degree less than ĥ
such that g(α̂) = α. Then κ has minimal polynomial
(t+ γ̃)(t− γ̃) in F̂ [t].

(7) Set E1 1 = (κ+ γ̃)/(2γ̃) and set E2 2 = (κ− γ̃)/(−2γ̃).
Then E2

1 1 = E1 1, E2
2 2 = E2 2, E1 1 + E2 2 = 1, and

E1 1E2 2 = E2 2E1 1 = 0.
(8) Compute as E1 2 any nonzero element x of A⊗F F̂ such that

E1 1x = xE2 2 = x and xE1 1 = E2 2x = 0.
Compute as E2 1 the unique element y of A⊗F F̂ such that
E1 1y = yE2 2 = 0, yE1 1 = E2 2y = y, yE1,2 = E2 2,
and E1 2y = E1 1. Return these values, and stop.

Case 2: A⊗F R ∼= H.
(9) Set l = 4. Use the algorithms of Loos [87] to compute the minimal

polynomial f̂ (with degree ĥ) over Q, and an isolating interval in R,
for an algebraic number α̂ ∈ R such that F ⊆ E ⊆ F̂ = Q[α̂] = Q[β, γ̃]
where γ̃ is a real algebraic number such that γ̃2 = γ̄ > 0, and to compute
a polynomial g ∈ Q[t] with degree less than ĥ such that g(α̂) = α.

(10) Now κ has minimal polynomial t2 + γ̃2 in F̂ [t]. Set J = κ/γ̃;
then IJ = −JI and J2 + 1 = 0.

(11) Set K = IJ ∈ A⊗F F̂ . Return the desired values, and stop.
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Algorithm Decomposition of a Simple Algebra over R

Input. • Integers h, n, m > 0.
• The coefficients of a monic irreducible polynomial f ∈ Z[t]

f = th + λh−1t
h−1 + · · ·+ λ1t+ λ0 of degree h.

• Endpoints of an isolating interval in R for a real root α of f .
• Matrices a1, a2, . . . , an ∈Mm×m(F ), for F = Q[α] ⊆ R, which

form the basis for a finite-dimensional simple associative
algebra A ⊆Mm×m(F ) of dimension n over F , such that
A⊗F R is simple over R.
• Error tolerance ε > 0.

Output. EITHER:
• Integers k, l > 0, such that A⊗F R ∼= Mk×k(D), for a

division algebra D ⊆ A⊗F R of dimension l over R.
• For integers i and j, such that 1 ≤ i, j ≤ k:

— Integer hi j > 0, the coefficients of a monic irreducible
polynomial
fi j = thi j + λi, j, hi j−1t

hi j−1 + · · ·+ λi, j, 1t+ λi, j, 0 ∈ Z[t]
of degree hi j , and the endpoints of an isolating interval
in R, for a real root αi j of fi j , such that F ⊆ Ei j ⊆ R,
for Ei j = Q[αi j ].

— Coefficients of a polynomial
gi j = ζi, j, hi j−1t

hi j−1 + · · ·+ ζi, j, 1t+ ζi, j, 0 ∈ Q[t]
such that α = gi j(αi j).

— Elements νi j s and µi j r s of Ei j , for 1 ≤ r ≤ l and 1 ≤ s ≤ n,
defining elements ei j =

∑n
s=1 νi j sas and dr i j =

∑n
s=1 µi j r sas

of A⊗F Ei j so that, for dr =
∑k
i=1 dr i i ∈ A⊗F R,

dr i j = drei j , and these elements have the
following properties.

(1) d1, d2, . . . , dl is a basis for the division algebra D ⊆ A⊗F R
over R;

(2) the elements ei j form a basis for A⊗F R ∼= Mk×k(D) over D,
with e1 1 + e2 2 + · · ·+ ek k = 1 and er set u = δs ter u
for 1 ≤ r, s, t, u ≤ k;

(3) drei j = ei jdr for 1 ≤ r ≤ l and 1 ≤ i, j ≤ k; and
(4) the elements dr i j = drei j (for 1 ≤ r ≤ l, 1 ≤ i, j ≤ k) form

form a basis for A⊗F R over R.
OR: failure, with probability less than ε.
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(1) If n = 2k2 for some k ∈ Z then D ∼= C; go to step 2.
Otherwise, D ∼= R or D ∼= H; go to step 6.

Case 1. Centre(A⊗F R) ∼= C; D ∼= C.
(2) Compute a basis for Centre(A) over F ; this will have dimension 2 over F .

Set ι to be an element of Centre(A) which is not a scalar multiple of 1.
Use ι to compute an element I of Centre(A⊗F E), for E an extension of
dimension at most 2 over F , such that I2 + 1 = 0. (See steps 2–4
of algorithm “Decomposition of Quaternion Algebras over R”).

(3) Compute a basis â1, â2, . . . , âk2 (with n/2 = k2 elements) for A⊗F E[I]
over the field E[I] (isomorphic to E[

√
−1], a number field of dimension 2

over E, with I =
√
−1 a square root of −1); â1, Iâ1, â2, Iâ2, . . . , âk2 , Iâk2

is then a basis for A⊗F E over E. Compute a set of structure constants
(in E[

√
−1], replacing I by

√
−1) for A⊗F E[

√
−1] with respect to

the basis â1, â2, . . . , âk2 .
(4) Use the regular matrix representation for A⊗F E[

√
−1] over E[

√
−1],

with respect to the basis computed in step 3, as input for the algorithm
“Decomposition of a Simple Algebra over C”, to compute a standard
basis for (A⊗F E[

√
−1])⊗E[

√
−1] C

∼= A⊗F C over C.
(5) Use the standard basis (and number fields) computed for A⊗F C in

step 4 to recover the desired basis for A⊗F R:
• For each number field G = Q[β] returned in step 4, compute a

generator β̂ for the number field Ĝ = Q[β̂] = Q[Re(β), Im(β)] ⊆ R.
• For each element λ of G included in the output, compute the

elements Re(λ) and Im(λ) of Ĝ. (Now each element∑k2

j=1 λj âj of (A⊗F E[
√
−1])⊗e[√−1] G

∼= A⊗F G can be

replaced by the element
∑k2

j=1 Re(λj)âj +
∑k2

j=1 Im(λj)Iâj of
A⊗F Ĝ ⊆ A⊗F R.)

This is sufficient to produce a basis d1 = 1, d2 = I ∈ A⊗F E for
D ⊆ A⊗F R, as well as the elements of a standard basis for
A⊗F R over D, as required. Return the desired values, and stop.
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Case 2. Centre(A⊗F R) ∼= R; D ∼= R or D ∼= H.
(6) Set k̂ =

√
n ∈ Z. Choose elements λ1, λ2, . . . , λn randomly and

independently from a subset I of F , of size d k̂(2k̂ − 1)ε−1 e.
(7) Compute the (monic) minimal polynomial f̂ in F [t] of the element

a = λ1a1 + λ2a2 + · · ·+ λnan of A.
If this polynomial has degree less than k̂, or has degree k̂ and is not
squarefree, report failure, and stop. Otherwise, continue.

(8) Use factorisation (of f̂) over R to compute a set of number fields
E1, E2, . . . , Et ⊆ R, each a (small) algebraic extension of F , such that
each polynomial ring Ei[t] contains an irreducible factor of f̂ over R.

(9) Use the factorisation of f̂ computed in step 8 to generate a set of
idempotents e1, e2, . . . , et ∈ A⊗F R (with ei ∈ A⊗F Ei for 1 ≤ i ≤ t;
cf. algorithm “Extraction of Idempotents and steps 4–5 of
“Extraction of Simple Components over an Extension” of Section 2.4).
Now for each i, either ei(A⊗F R)ei ∼= R, ei(A⊗F R)ei ∼= M2×2(R),
or ei(A⊗F R)ei ∼= H.

(10) For each i, with 1 ≤ i ≤ t, such that ei(A⊗F Ei)ei has dimension 4 over
Ei, use the algorithm “Decomposition of Quaternion Algebras over R” to
decide whether ei(A⊗F R)ei ∼= H or ei(A⊗F R)ei ∼= M2×2(R), and to
compute an appropriate basis for ei(A⊗F R)ei (with entries in a small
extension of Ei).

(11) The values computed in steps 10 and 11 include the values of the integers
k and l, a complete set of idempotents e1 1, e2 2, . . . , ek k in A⊗F R,
and the elements drei i of A⊗F R, for 1 ≤ r ≤ l (and d1, d2, . . . , dl
a basis for D over R) and 1 ≤ i ≤ k. Solve systems of equations
(over small extensions of F ) to compute the remaining elements ei j
of a standard basis for A⊗F R over D, and for the elements dr i j =
drei j = (drei i) · ei j for 1 ≤ i, j ≤ k and 1 ≤ r ≤ l.
Return the desired values, and stop.
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Theorem 2.5.18. Suppose A ⊆ Mm×m(F ) is a simple associative algebra over
a number field F = Q[α] ⊆ R, such that A ⊗F R is simple over R, with A ∼=
Mk×k(D) for k > 0 and for a division algebra D over R. Then there exist bases
d1 = 1, d2, . . . , dl for D ⊆ A ⊗F R over R, and ei j (for 1 ≤ i, j ≤ k) for A ⊗F R
over D, such that ei j = d1ei j , d2ei j , . . . , dlei j ∈ A ⊗F Ei j , with F ⊆ Ei j =
Q[αi j ] ⊆ R and Ei j a finite algebraic extension, with dimension at most 4k over
F . Given the minimal polynomial over Q and an isolating interval in R for α, a
basis a1, a2, . . . , an for A over F , and an integer N > 0 (in binary notation) as
input, a probabilistic Boolean algorithm can be used to compute a generator αi j
of a field Ei j as above, as well as the elements d1ei j , d2ei j , . . . , dlei j of A⊗F Ei j ,
using time polynomial in the input size, and with probability of failure less than
ε = N−1.

Proof. We first note that the correctness of the algorithm “Decomposition of
Quaternion Algebras over R”, for the decomposition of simple algebras of dimen-
sion 4 with centre isomorphic to R, is implied by Lemmas 2.5.15–2.5.17. It is clear
that this algorithm can be implemented as a Boolean algorithm which uses time
polynomial in the size of its input.

Now correctness of the algorithm “Decomposition of a Simple Algebra over R” for
algebras with centre of dimension one over R, and the bound on the probability of
failure, follow from Lemma 2.5.14 and the result of Schwartz (Proposition 2.4.23).
Correctness for the only other algebras which can occur as input, those with centre
of dimension two over R (isomorphic to C), follows from the correctness of the
algorithm “Decomposition of a Simple Algebra over C” (see Theorem 2.5.11).

Timing analysis for the algorithms, and the proof of the upper bound stated in the
theorem for the dimension of the number fields Ei j over F , are straightforward.

Again, the methods of Babai and Rónyai [5] can be used to improve the results
stated here. Instead of computing a set of field extensions {Ei j} and using all of
these to represent a standard basis, we can use the probabilistic methods already
discussed to obtain a left ideal in A⊗FE, for E ⊆ R such that the degree of E over F
is small, which is either an irreducible left ideal or the direct sum of two irreducible
left ideals. In the latter case the techniques used in the algorithm “Decomposition
of Quaternion Algebras over R” can be employed to extract a single irreducible left
ideal over A⊗F Ê, where Ê is an extension with degree at most two over E (and,
again, Ê ⊆ R). The methods discussed in [5] (and, here, at the end of Section 2.5.3)
can then be used with this ideal to obtain a complete basis for A⊗F E over E (or
for A⊗F Ê over Ê), of the desired form, in probabilistic polynomial time.
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2.5.5. Simple Algebras over Number Fields

Finally, we consider the problem of decomposing simple algebras over algebraic
number fields. Unlike the problems discussed in previous sections, no efficient de-
terministic or probabilistic algorithm is known for this problem. Ronyai [103] con-
siders the simplest nontrivial case — simple algebras of dimension 4 over Q — and
provides strong evidence that no efficient (i.e., polynomial time) algorithm exists
for decomposition, even for this simple case. We (briefly) consider the question of
whether deterministic algorithms exist for the more general problem.

We consider several “decision problems” (problems with yes/no answers) related to
the decomposition of simple algebras.

Problem 1. Given a simple algebra A over a finite algebraic extension F of Q, decide
whether A is a division algebra.

Problem 2. Given a simple algebra A over a finite algebraic extension F of Q, decide
whether A ∼= Mk×k(F ), for some integer k > 0.

Problem 3. Given two simple algebras A1 and A2 over a finite algebraic extension
F of Q, decide whether A1

∼= A2.

We first note (as does Rónyai) that if we are considering algorithms which are correct
over arbitrary number fields F , with a description of F = Q[α] as part of the input
for the problem (rather than algorithms correct only for a specific, fixed, number
field F ), then we can assume without loss of generality that Centre(A) ∼= F . For if A
is a simple algebra over F whose centre has dimension greater than one over F , then
Centre(A) ∼= E, a finite algebraic extension field of F . Computing a basis and set of
structure constants for A over Centre(A) ∼= E, we obtain a description of a simple
algebra Ā over E whose centre is isomorphic to E. If A ∼= Mk×k(D) for k > 0 and for
a division algebra D over F , then Centre(D) ∼= E, and Ā ∼= Mk×k(D̄) for the same
integer k > 0, and for a division algebra D̄ over E. Further, if d̄1, d̄2, . . . , d̄h is a
basis for D̄ over E, and c1, c2, . . . , cl is a basis for E over F , then D is isomorphic to
a division algebra over F with basis { d̄icj : 1 ≤ i ≤ h and 1 ≤ j ≤ l }, of dimension
hl over F . That is, D ∼= E ⊗F D̄, regarded as an algebra over F . We decompose A
over F by computing a description of the simple algebra Ā over E, decomposing Ā,
and then using the idempotents in Ā and the basis for D̄ generated by this process
to recover a set of primitive idempotents for A over F and a basis for D over F .
(This method was used in Section 2.4, to decompose simple algebras over R whose
centres were isomorphic to C.) Henceforth, we assume that the simple algebra A
is central over F : that is, the centre has dimension one over, and is isomorphic to,
the ground field F .

We first note that a division algebra A over F cannot be distinguished from a matrix
ring Mk×k(F ) over F by comparison of dimension over F .
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Proposition 2.5.19. Let A be a finite-dimensional central simple algebra over a
number field F ; then A has dimension k2 over F , for some integer k > 0.

If k = 1, then A ∼= F , and A is a division algebra over F . Hence the first case
for which the problem of deciding whether a central simple algebra A is a division
algebra is nontrivial, is the case k = 2 and the dimension of A over F is n = k2 = 4
(for there exist division algebras of dimension 4 over Q, as well as the simple algebra
M2×2(R), which is clearly not a division algebra). Rónyai [103] gives evidence that
this simplest case is difficult, as explained below.

Definition 2.5.20. Let n > 1 be a positive integer, and let m > 0 be an integer
such that m < n and gcd(m,n) = 1. The integer m is a quadratic residue modulo
n if there exists an integer r ∈ Z such that 0 < r < n and r2 ≡ m mod n; otherwise,
m is a quadratic nonresidue modulo n. The quadratic residuosity problem is the
problem of deciding, given binary representations of integers m and n, whether m
is a quadratic residue modulo n.

Related to this decision problem is the computational problem of computing an
integer r such that r2 ≡ m mod n, given binary representations of an integer n > 0
and a quadratic residue m modulo n. There is a Las Vegas algorithm (that is, a
probabilistic algorithm which either returns a correct answer, or signals failure, the
latter with arbitrarily small positive probability) which takes as input a positive in-
teger n (in binary) and returns positive integers n1, n2 > 1 such that n1n2 = n, if n
is not prime, and which uses time polynomial in its input size (O(log n)+O(log ε−1),
for error tolerance ε > 0), plus the time required to compute a square root (modulo
n) for a quadratic residue modulo n. Dixon [36] uses this approach to obtain a prob-
abilistic algorithm which splits a composite integer into two nontrivial factors, with
arbitrarily high probability of success, using time sublinear in n. Now the problem
of factoring an arbitrary positive integer n (given its binary representation) is con-
jectured to be hard: It is believed that no (deterministic or probabilistic) Boolean
algorithm can be used to factor n using time polynomial in its input size O(log n).
A number of cryptographic protocols have been based on this belief (see, for exam-
ple, Rabin [98], and Goldwasser and Micali [59]). If this belief is correct, then the
problem of computing square roots of quadratic residues modulo n for an arbitrary
integer n must be hard as well. Rónyai reduces the problem of deciding whether an
integer m is a quadratic residue modulo n, for n an arbitrary squarefree integer, to
the problem of deciding whether a central simple algebra of dimension 4 over Q is
a division algebra. He also reduces the problem of finding square roots of quadratic
residues modulo n (for n squarefree), and hence the problem of factoring squarefree
integers, to the problem of computing zero divisors in central simple algebras of
dimension 4 over Q.
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Proposition 2.5.21 (Rónyai [103], [104]). Assuming the Generalised Riemann
Hypothesis (GRH), there exists a Las Vegas polynomial time reduction from the
problem of deciding whether a positive integer m is a quadratic residue modulo
a squarefree integer n, to deciding whether a central simple division algebra of
dimension 4 over Q is isomorphic to M2×2(Q).

Proposition 2.5.22 (Rónyai [103], [104]). Assuming GRH, there exists a ran-
domised polynomial time reduction from the problem of factoring squarefree inte-
gers to the problem of finding zero divisors in central simple algebras of dimension 4
over Q.

Propositions 2.5.21 and 2.5.22 are proved in [103] (as Theorem 4.5 and Corol-
lary 4.6). As noted above, the reductions are conditional on the Generalised
Riemann Hypothesis; further information about this hypothesis can be found in
Bach [6].

These facts provide evidence that no efficient (that is, polynomial time) algorithms
for decomposition of simple algebras over number fields exist. Fortunately, there is
some good news.

Proposition 2.5.23 (Rónyai [103], [104]). The problem of deciding whether a
central simple algebra A of dimension 4 over Q is isomorphic to M2×2(Q) is in
NP ∩ co−NP.

Among other things, Proposition 2.5.23 implies that we can decide whether a central
simple algebra of dimension 4 over Q is a division algebra, using a deterministic
algorithm in polynomial time, provided we are also given some extra information
(of polynomial size) — so that there exists a polynomial-size certificate (or proof )
for a division algebra of dimension 4 over Q, as well as for an algebra isomorphic
to M2×2(Q). It also implies that there is a deterministic algorithm for this decision
problem (again, for central simple algebras of dimension 4 over Q) which uses time
exponential in the size of the input. For a more detailed discussion of the complexity
classes NP and co−NP, and the implications of membership of a decision problem
in NP ∩ co−NP, see Garey and Johnson [51].

We have seen that there is reason to believe that no efficient (polynomial time)
algorithms exist for the computational problem “Decomposition of a Simple Al-
gebra” over a number field F = Q[α], or for the decision problems stated at the
beginning of this section. It seems natural to ask whether any algorithms exist for
these problems at all.

Question 2.5.24. Does there exist an algorithm for the decomposition of finite-
dimensional simple associative algebras over algebraic number fields? Are the deci-
sion problems of deciding whether such an algebra is a division algebra, of deciding
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whether a simple associative algebra A over a number field F is isomorphic to
Mk×k(F ) for some k > 0, and of deciding whether two such algebras are isomor-
phic, decidable problems?

We will not answer this question. As a partial solution, we state some relationships
between the decision problems given above.

Clearly decision problem 2 is a special case of problem 3 — so that if we have an
efficient solution for the latter problem, then we have one for the former, as well.
We will show that the converse of this is true as well.

Definition 2.5.25. Let A be a finite-dimensional associative algebra of dimension
n over F . The opposite algebra of A, A∗, is the algebra having the same structure
as A as a vector space over F (so that x, y ∈ A∗ if x, y ∈ A, and addition and
multiplication by elements of F are the same in A∗ as they are in A), with the
product of two elements x and y in A∗ defined as

x ◦ y = yx,

where xy denotes the product of x and y in A.

In Section 2.2.3, we (briefly) discussed the tensor product of algebras over F . As
we note there, if A and B are both associative algebras over a field F then A⊗F B
is also an associative algebra over F , with multiplication defined “componentwise”
(see Section 2.2.3 for details).

We now note some additional properties of tensor products of associative algebras.

Proposition 2.5.26. Suppose A, B, and C are finite-dimensional associative al-
gebras over F , D is a finite-dimensional division algebra over F , A has dimension
n > 0, and that k, l > 0.

(i) A⊗F F ∼= A.
(ii) A⊗F (B ⊗F C) ∼= (A⊗F B)⊗F C.
(iii) A⊗F B ∼= B ⊗F A.
(iv) Mk×k(F )⊗F Ml×l(D) ∼= Mkl×kl(D).
(v) If A and B are simple then A⊗F B is simple.
(vi) If A and B are central simple then A⊗F B is central simple.
(vii) If A is central simple then A⊗F A∗ ∼= Mn×n(F );
(viii) If A and B are central simple then A ⊗F B∗ ∼= Mm×m(F ) for some m > 0

if and only if there exists a central division algebra D over F and integers
r, s > 0 such that A ∼= Mr×r(D) and B ∼= Ms×s(D).

These facts are well known; for a proof see, for example, Pierce [95] (see Sections
12.4 and 12.5). They establish the fact that the central simple algebras over F are
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closed with respect to the formation of tensor products. Now we say that finite-
dimensional central simple algebras A and B are equivalent, and write A ∼ B, if
there exist positive integers r and s such that A ⊗F Mr×r(F ) ∼= B ⊗F Ms×s(F ).
Propositions 2.5.26 (i)–(iv) prove that “∼” is an equivalence relation. If we write
[A] as the class of central simple algebras over F equivalent to A, then we con-
clude (using Proposition 2.5.26 (vii) and (viii)) that each equivalence class [A]
contains a finite-dimensional division algebra D ∼ A, which is unique up to iso-
morphism of associative algebras over F . It is also clear that if A1 ∼ A2 and
B1 ∼ B2 then A1 ⊗F B1 ∼ A2 ⊗F B2, for arbitrary central simple associative al-
gebras A1, A2, B1, B2 over F . Thus ⊗F defines a binary operation on equivalence
classes. By Proposition 2.5.26, this operation has the following properties.

(i) ([A]⊗F [B])⊗F [C] = [A]⊗F ([B]⊗F [C]).

(ii) [A]⊗F [F ] = [F ]⊗F [A] = [A].

(iii) [A]⊗F [A∗] = [A∗]⊗F [A] = [F ].

(iv) [A]⊗F [B] = [B]⊗F [A].

Thus the set of equivalence classes of central simple algebras over F forms an Abelian
group with respect to the operation ⊗F , with identity [F ], and such that [A]−1 =
[A∗]. For a further discussion of this group, called the Brauer group of the field F ,
see Pierce [95]. If A and B are arbitrary finite-dimensional central simple algebras,
then A ∼= B if and only if A and B have the same dimension over F and [A] = [B].
The latter condition is equivalent to the condition that A ⊗F B∗ be isomorphic
to Mr×r(F ) for some r > 0 (that is, that [A]−1 = [B]−1 = [B∗], and hence that
[A] ⊗F [B∗] = [F ]). Given bases and sets of structure constants for central simple
algebras A and B, we obtain a basis and set of structure constants for B∗ by
using the same basis as for B and reordering the structure constants (specifically, if
{ γi j k } are structure constants for B, and { γ̂i j k } are structure constants for B∗

with respect to the same basis, then γ̂i j k = γj i k). A basis and set of structure
constants for A⊗FB∗ are then easily obtained. Since we have already noted that it is
sufficient to consider central simple algebras when discussing the decision problems
stated at the beginning of this section, we have proved the following result.

Theorem 2.5.27. The decision problems of deciding whether a finite-dimensional
simple algebra A of dimension n = k2 over a number field F = Q[α] is isomorphic to
Mk×k(F ), and of deciding whether two finite-dimensional simple algebras A1 and
A2 of dimension n over F are isomorphic, are polynomial-time equivalent.

Now we consider the decision problem of deciding whether a simple algebra A
over a number field F is a division algebra. We first note that the set of finite-
dimensional simple algebras over F is enumerable; that is, there is a program which
takes as input a description of the number field F = Q[α] and produces a list of
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(structure constants for) finite-dimensional simple associative algebras over F , with
the property that for each finite-dimensional simple algebra A over F , an algebra
isomorphic to A is eventually listed. If the decision problem of recognizing division
algebras were decidable, we would have a similar program which enumerated all
division algebras over F , by considering all finite-dimensional simple algebras and
listing only those which were recognized as division algebras.

We also have an algorithm which takes as input a description of a simple algebra
A over a number field F and either halts, returning a nonzero zero divisor in A
(and hence a proof that A is not a division algebra), or fails to halt. (Consider
an algorithm which uses the description of F and basis for A to enumerate the
elements of A, until a zero divisor is found.) Now if the decision problem of rec-
ognizing division algebras were decidable, we could combine this program with the
one described above, using a dovetailing process, to produce a program which al-
ways halts, and which either halts after finding a nonzero zero divisor in A, or after
finding a division algebra D with the same dimension (n) over F as A such that
A ⊗F D∗ ∼= Mn×n(F ), and proving that A is a division algebra. Thus there is
an algorithm for the computational problem of decomposing simple algebras over
number fields, and all three of the decision problems we listed are decidable, if and
only if the problem of recognizing division algebras over number fields is decidable.
To our knowledge, this problem remains open.

We close this section with an even harder problem.

Question 2.5.28. Does there exist an efficiently computable function U : Z→ Z,
such that, if a number field F = Q[α] and a simple algebra A over F have a
description (including minimal polynomial for α and structure constants for A) of
(binary) length n, then either A is a division algebra over F , or there exists a
description of a nonzero zero divisor in A of (binary) length U(n)?

An affirmative answer for this question (and the function U) would yield an al-
gorithm for decomposing simple algebras over number fields, as well as an upper
bound on the running time of the algorithm. Proof that a function U(n) = nO(1)

exists would also yield a proof that the problem of recognizing division algebras
over number fields is in co−NP.

For a further discussion of the problem of decomposing simple algebras over number
fields, and related problems, see Section 7 of [5].
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2.6. Related Problems

In this section we mention two sets of problems which are related to the problems
(of decomposing associative algebras) of Sections 2.3–2.5. These are proposed as
areas for further work.

We first note an alternative decomposition of finite-dimensional associative algebras
over a field F . When decomposing an associative algebra A as described in Sec-
tions 2.3–2.5, we begin by computing and factoring out the radical of A; we then
examine the semi-simple algebra A/rad(A). While suitable for the problems to be
discussed in Section 3, this is inappropriate if we wish to determine whether two as-
sociative algebras A and B are isomorphic; it is possible that A/rad(A) ∼= B/rad(B)
while A 6∼= B. In fact, there exist structure theorems for finite-dimensional associa-
tive algebras over a field F analogous to the structure theorems (2.1.23 and 2.1.25)
for semi-simple algebras, which may be more useful for determining isomorphism
of arbitrary associative algebras. Proofs of Theorems 2.6.2 and 2.6.3, and further
information about the structure of associative algebras which are not necessarily
semi-simple, can be found, for example, in Chapter VIII of Curtis and Reiner [31].

Definition 2.6.1. Let A be a finite-dimensional associative algebra over a field
F . A two-sided (respectively, left, or right) ideal B of A is indecomposable if it is
impossible to express B as a direct sum of two nonzero two-sided (respectively, left,
or right) ideals.

Note that the condition that an ideal be indecomposable is weaker than the con-
dition that an ideal be irreducible (or minimal): an indecomposable ideal I may
contain (as a proper subset) an ideal I1; however, there will not exist a second ideal
I2 such that I = I1 ⊕ I2. On the other hand, it is clear that any irreducible ideal is
also indecomposable.

Theorem 2.6.2. Let A be a finite-dimensional associative algebra over a field
F . There exists an integer s > 0 and a set of indecomposable two-sided ideals
A1, A2, . . . , As (the blocks of A) such that

A = A1 ⊕A2 ⊕ · · · ⊕As.

If A = B1⊕B2⊕· · ·⊕Bt is any decomposition of A as a direct sum of indecomposable
two-sided ideals of A then s = t and (after reordering) Ai = Bi for 1 ≤ i ≤ s.

Thus we have a computational problem analogous to the problem of computing
bases for the simple components of a semi-simple algebra — specifically, the problem
of computing bases for the blocks of an arbitrary finite-dimensional associative
algebra. It is clear that if A and B are finite-dimensional associative algebras with
the same dimension over a field F , then A ∼= B if and only if these algebras have
the same number of blocks, and Ai ∼= Bi for 1 ≤ i ≤ s (for A = A1 ⊕ · · · ⊕ As and
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B = B1 ⊕ · · · ⊕ Bs the decompositions of A and B into blocks, and after suitable
reordering of B1, . . . , Bs).

There is also a theorem analogous to Theorem 2.1.25.

Theorem 2.6.3. Suppose A is a finite-dimensional associative algebra over a field
F ; then there exists an integer l > 0 and indecomposable left ideals L1, L2, . . . , Ll
such that

A = L1 ⊕ L2 ⊕ · · · ⊕ Ll;

the ideals L1, L2, . . . , Ll are unique up to isomorphism and order of occurrence.

Again, we have an associated computational problem: computing the number l of
left ideals in this summation, and computing bases for a set of indecomposable left
ideals L1, L2, . . . , Ll whose direct sum is A.

It can be shown that if A is semi-simple then the blocks of A are the same as the
simple components of A, and that the indecomposable left ideals of A are also the
irreducible left ideals. Thus these computational problems really are generalisations
of the problems “Extraction of Simple Components” and (part of) “Decomposition
of a Simple Algebra”, of Sections 2.4 and 2.5. Thus we have obvious polynomial-time
reductions from these computational problems for semi-simple associative algebras
to the corresponding computational problems for arbitrary associative algebras.
Given the similarities between the structure theorems for semi-simple associative
algebras over F , and Theorems 2.6.2 and 2.6.4, it seems natural to ask whether
there are (polynomial-time) reductions in the other direction as well.

Question 2.6.4. Can the problem of computing the blocks (respectively, a set of
indecomposable left ideals) of a finite-dimensional associative algebra A over a field
F be reduced to the problem of computing the simple components (respectively, a
set of irreducible left ideals) of a finite-dimensional semi-simple associative algebra
Â (in particular, of Â = A/rad(A))?

We also ask a more general question: How can the decomposition of algebras A
and B into blocks, and of blocks into direct sums of indecomposable left ideals, be
used to decide whether A is isomorphic to B? Clearly, we gain some information,
simply by comparing the dimensions of the blocks and of the indecomposable left
ideals of both algebras (just as we gain some information by comparing A/rad(A)
and B/rad(B)); can the decompositions be used to prove that the algebras are
isomorphic? In comparison, note that we can decide whether semi-simple algebras
over finite fields, R, or C are isomorphic, by decomposing these algebras using the
methods of Sections 2.4–2.5; we can also reduce the problem of deciding whether
semi-simple algebras over a number field are isomorphic, to the problem of deciding
whether a simple algebra over a number field F is isomorphic to Mk×k(F ).
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We obtain another important set of algebraic structures over fields F , with a similar
set of structure theorems and corresponding computational problems, if we weaken
the definition of “algebra”.

Definition 2.6.5. A non-associative algebra A (that is, “not necessarily associative
algebra”) over a field F is a vector space over F in which a bilinear composition is
defined. For every pair x, y ∈ A we associate a product x ◦ y ∈ A which satisfies
the bilinearity conditions

(i) (x1 + x2) ◦ y = x1 ◦ y + x2 ◦ y, and x ◦ (y1 + y2) = x ◦ y1 + x ◦ y2;

(ii) α(x ◦ y) = (αx) ◦ y = x ◦ (αy), for α ∈ F .

A non-associative algebra A is said to be a Lie algebra if its multiplication (◦) also
satisfies the Lie conditions

(iii) x ◦ x = 0, and (x ◦ y) ◦ z + (y ◦ z) ◦ x+ (z ◦ x) ◦ y = 0.

Example 2.6.6. Let A = Mn×n(F ), with addition defined in the usual way, and
with the product x ◦ y defined by

x ◦ y = xy − yx,

where xy is the product of x and y using (the usual definition of) matrix multi-
plication. Then it is easily checked that A is a Lie algebra of dimension n2 over
F .

Definition 2.6.7. A linear Lie algebra over F is a subspace A of Mn×n(F ), with
addition and the product x ◦ y defined as above.

The structure theory of finite-dimensional Lie algebras is rich; it includes concepts
analogous to radicals, semi-simple and simple algebras, and computational problems
(for linear Lie algebras) which resemble those discussed in Sections 2.3–2.5, for
associative algebras. The structure theory of Lie algebras is discussed in detail
by Jacobson [66]; computational problems for Lie algebras (which are beyond the
scope of this thesis) are considered in the conference proceedings edited by Beck
and Kolman [8], and by Friedl and Rónyai [43].

As was the case for associative algebras over R or C, Lie algebras over R and C
(and the problem of decomposing them) have applications in physics and chemistry.
Again, the problem of decomposing finite-dimensional Lie algebras over arbitrary
fields appears to be difficult (or, at least, is not well understood). Can the methods
used here to decompose finite-dimensional associative algebras over R and C be
applied to the analogous problems for Lie algebras over these fields?

The structure theories of associative algebras, and of Lie algebras, are closely related
to the theory of linear representations of groups. The computational aspects of this
theory is the subject of Section 3.
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3. Computations for Representations of Groups

We now consider algorithms for the construction and decomposition of linear and
matrix representations of groups.

We begin, in Section 3.1, by reviewing the definitions of linear and matrix represen-
tations of groups over fields. We also recall results about the structure of completely
reducible representations of groups, and introduce the problems to be discussed in
later sections. The material here is standard; a reader who is familiar with these
concepts can skip to later sections.

In the remaining sections, we discuss the problem of decomposing representations
of groups over various classes of fields. We start, in Section 3.2, by considering
matrix representations of finitely generated groups; we consider problems whose
input and output include matrices representing generators of some such group G.
It is well known that these problems are closely related to the problems concerning
decompositions of finite-dimensional associative algebras which were discussed in
Section 2; we use these relationships to obtain polynomial-time (and NC) reduc-
tions between problems. Applying the results of Section 2, we obtain polynomial
time algorithms for decompositions of matrix representations, and (NC) reductions
from these problems to problems concerning factorisation of polynomials. (See,
in particular, Theorem 3.2.8 and Corollaries 3.2.9–3.2.11, and Theorem 3.2.17 and
Corollary 3.2.18.)

In Section 3.3 we consider the computation of characters of matrix representations,
and of character tables for finite groups. We consider a method due to Burnside
for the computation of character tables over C, and show that this can be used to
computed these tables using polynomial time. We also consider a modification of
the basic method, given by Dixon, and show that this can be proved to be asymp-
totically efficient (and “practical”, assuming the extended Riemann hypothesis).
We introduce a further modification to obtain an algorithm whose running time
can be shown to be bounded by a polynomial function (of the input size) with small
degree, without assuming any unproved number theoretic hypotheses. We also use
these algorithms to show that the problem of computing the character table (over
C) for a finite group is in NC (see Theorem 3.3.27).

Finally, we discuss (in Section 3.4) computational problems related to the represen-
tation theory of the symmetric groups, of the general linear group (of nonsingular
n×n matrices over a field F ), and of (other) Lie groups. The (few) results we men-
tion here are preliminary. While most of the problems previously discussed have
had polynomial-time solutions, the problems mentioned here appear to be much
harder. We will see that analysis of the best currently known algorithms prove only
that these problems are in PSPACE; that is, they can be solved using deterministic
algorithms using only space (memory) which is polynomial in the size of the input.
Proving that these problems are hard, or even that the currently used algorithms
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use superpolynomial time in the worst case, appear to be difficult. We make a mod-
est start here, by showing that a combinatorial method for evaluating characters of
the symmetric group computes a superpolynomial number of intermediate values,
for infinitely many inputs (see Theorem 3.4.7).

3.1. Linear and Matrix Representations of Groups

We begin with the definitions leading to a structure theory (and associated com-
putational problems) for linear and matrix representations of groups. The material
presented here is standard; for a more detailed presentation see, for example, Curtis
and Reiner [31]. The reader who is already familiar with this basic material can skip
to Section 3.2 (perhaps after noting Definitions 3.1.10–3.1.12, 3.1.14, 3.1.17–3.1.19,
and Example 3.1.20).

We will represent elements of a group G by linear transformations, or by nonsingular
matrices, over a field F . We begin by reviewing these.

Let M, N be vector spaces over F ; then the map φ : M → N is an F -linear
transformation if φ(αx + y) = αφ(x) + φ(y) for all α ∈ F and all x, y ∈ M . We
denote by HomF (M,N) the set of F -linear transformations from M to N . It is
clear that if we define the sum φ + ψ of linear transformations φ and ψ so that
(φ + ψ)(x) = φ(x) + ψ(x) for all x ∈ M , then this sum is also an element of
HomF (M,N), and that HomF (M,N) is a commutative group with respect to this
addition.

If M = N then the set HomF (M,N) = HomF (M,M) = EndF (M) is a ring (as
well as a commutative group), provided that we define the product ψ ◦ φ of trans-
formations ψ and φ according to the rule

(ψ ◦ φ)(x) = ψ(φ(x)) for all x ∈M

(that is, using composition of operators). The identity element of this ring is clearly
the transformation 1M , mapping each element ofM to itself; the units are the invert-
ible linear transformations φ (those for which there exists a linear transformation
φ−1 such that φ−1 ◦ φ = φ ◦ φ−1 = 1M ). We denote the multiplicative group of
invertible linear transformations from M to itself by GL(M,F ).

Suppose now that the dimensions of M and N are m and n, respectively. We obtain
(group and ring) homomorphisms from HomF (M,N), EndF (M), and GL(M,F ) to
the additive group Mn×m(F ), the ring Mm×m(F ), and the multiplicative group
GL(m,F ) (of nonsingular m × m matrices with entries in F ), respectively, by
fixing bases for M and N over F and by mapping each F -linear transformation
φ to its coefficient matrix with respect to these bases. In particular, suppose
x1, x2, . . . , xm and y1, y2, . . . , yn are bases over F for M and N respectively, and
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let φ ∈ HomF (M,N); then there exist constants φi j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
such that, for 1 ≤ j ≤ m,

φ(xj) =
n∑
i=1

φi jyi.

We map the linear transformation φ to the coefficient matrix Mφ ∈Mn×m(F ) whose
(i, j)th entry is φi j .

Suppose M = N ; then if we fix the same basis x1, x2, . . . , xm for both the domain
and range of the linear transformations, we obtain a map from each endomorphism
φ : M → M to Mm×m(F ) which preserves both addition and multiplication: If
λ, µ, ν ∈ EndFM such that λ = µ ◦ ν, then it is easily checked that λ(xj) =∑m
i=1 λi jxi, µ(xj) =

∑m
i=1 µi jxi, and ν(xj) =

∑m
i=1 νi j for λi j , µi j , νi j ∈ F such

that λi j =
∑m
h=1 µi hνh j for 1 ≤ i, j ≤ m — so that Mλ = MµMν , as claimed.

It is easily checked that the identity homomorphism 1M is mapped to the identity
matrix, that these maps are one-to-one and onto, and that the latter map sends
invertible linear transformations (only) to nonsingular matrices; we obtain isomor-
phisms between commutative groups HomF (M,N) and Mn×m(F ), between rings
EndF (M) and Mm×m(F ), and between groups GL(M,F ) and GL(m,F ).

We next note that if x1, x2, . . . , xm and y1, y2, . . . , ym are two bases for M , and
φ ∈ EndF (M), then we obtain two matrices, Mφ (with (i, j)th entry φi j) and M̂φ

(with (i, j)th entry φ̂i j) corresponding to φ with respect to bases x1, x2, . . . , xm
and y1, y2, . . . , ym respectively. There exists a linear transformation χ ∈ EndF (M)
such that χ(xi) = yi for 1 ≤ i ≤ m. Since x1, x2, . . . , xm and y1, y2, . . . , ym are
both bases for M it is clear that χ is invertible: χ ∈ GL(M,F ). Suppose the matrix
X ∈ GL(m,F ) (with (i, j)th entry Xi j) corresponds to χ with respect to the basis
x1, x2, . . . , xm; that is,

yj = χ(xj) =
m∑
i=1

Xi jxi.

It is easily checked that MφX = XM̂φ — and, since X is invertible, M̂φ =
X−1MφX. Thus, matrices representing the same F -linear transformation with
respect to different bases are similar matrices. Changing perspective, we note also
that if two linear transformations φ and ψ are represented (with respect to different
bases for M) by the same matrix Mφ, then the linear transformations are equivalent
in the sense that there exists an invertible linear transformation χ ∈ GL(M,F ) such
that ψ = χ−1 ◦ φ ◦ χ.

The “concrete” groups GL(M,F ) and GL(m,F ) were studied before abstract
groups were defined. Since these concrete groups are well understood, and have
representations (as groups of matrices) allowing easy implementation of the group
operation (via matrix multiplication), it seems natural that these concrete groups
have been used to represent more general groups.
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Definition 3.1.1. Let G be a group and let M be a finite-dimensional vector space
over a field F . A linear representation of G over F with representation space M is
a (group) homomorphism T : G → GL(M,F ). Two linear representations T and
T ′ with representation spaces M and M ′ respectively are said to be equivalent if
there exists an F -vector space isomorphism S : M →M ′ such that

T ′(g)S = ST (g) for all g ∈ G.

That is,

(T ′(g) ◦ S)(x) = (S ◦ T (g))(x) for all g ∈ G and x ∈M.

The dimension of the vector space M over F is called the degree of the linear
representation T : G→ GL(M,F ).

We will discuss linear representations, and provide examples, later. We first present
the type of representation to be used more frequently for computation.

Definition 3.1.2. A matrix representation of degree m of a group G over a field
F is a (group) homomorphism T : G → GL(m,F ). Two matrix representations T
and T ′ of G over F are equivalent if they have the same degree, m, and there exists
a matrix S ∈ GL(m,F ) such that T ′(g) = ST (g)S−1 for all g ∈ G.

Note that representations are required (only) to be homomorphisms: they are gen-
erally neither one-to-one nor onto.

Example 3.1.3. Let G = { g1, g2, . . . , gn } be a finite group of order n > 0. We
obtain a matrix representation T̂ : G→ GL(n, F ), the regular matrix representation
of { g1, g2, . . . , gn }, as follows. Denote by e1, e2, . . . , en ∈ Mn×1(F ) the column
vectors such that e1 has ith entry 1 and jth entry 0, for j 6= i and 1 ≤ i, j ≤ n. We
set T̂ (gi) to be the matrix such that

T̂ (gi)ej = ek for k such that gi · gj = gk,

and for 1 ≤ i, j ≤ n. It follows that for 1 ≤ i, j, k ≤ n, the (k, j)th entry of T̂ (gi) is
1 if gi ·gj = gk, and is 0 otherwise. It is easily checked that T̂ (gi) · T̂ (gj) = T̂ (gi ·gj),
and that the identity element of G is mapped to the identity matrix in GL(n, F ).
It is also clear that T (gi) is a permutation matrix for 1 ≤ i ≤ n, so that the regular
matrix representation is also a permutation representation of G.

Consider, for example, the cyclic group of order 3, G = { 1, a, a2 }, with a3 = 1.
The regular matrix representation T̂ : G→M3×3(F ) is as follows:

T̂ (1) =

 1 0 0
0 1 0
0 0 1

 , T̂ (a) =

 0 0 1
1 0 0
0 1 0

 , T̂ (a2) =

 0 1 0
0 0 1
1 0 0

 .
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Recall that we have also defined a “regular matrix representation”, φ(A), for an asso-
ciative algebra A with respect to a basis a1, a2, . . . , an for A over the ground field F
(see Definition 2.2.2), and a “group algebra” FG of a finite group { g1, g2, . . . , gn }
with elements of a basis over F in correspondence with the elements of G (see Exam-
ples 2.1.6 and 2.2.5). It is easily checked that these “regular matrix representations”
coincide: That is, the matrices T̂ (gi) and φ(gi) are identical, for 1 ≤ i ≤ n.

Example 3.1.4. Any group G has a trivial representation T : G→ GL(n, F ), with

T (g) =


1 0

1
. . .

0 1

 , for all g ∈ G.

We again consider a cyclic group, Cn = { 1, a, a2, . . . , an−1 } of order n, with
an = 1.

Example 3.1.5. Suppose F has an nth root of unity, ω; then we have a matrix
representation T : Cn → GL(1, F ) with

T (ai) =
[
ωi
]

for 0 ≤ i < n.

If ω is an nth primitive root of unity, then this representation is one-to-one. In
particular, if p− 1 divides n, and F = Fp, then we can choose any nonzero element
of F as an nth root of unity, ω (not necessarily primitive). If F = C, then we can
choose ω = e(2π

√
−1)/k for any positive integer k dividing n.

If T : G → GL(M,F ) is a linear representation of a group G, with representation
space M of dimension m over F , then we obtain a matrix representation T̂ : G →
GL(m,F ) by fixing a basis x1, x2, . . . , xm for M over F , and setting the matrix
T̂ (g) to be the coefficient matrix for the linear transformation T (g) with respect
to this basis. It is clear that this mapping from linear representations of G with
representation space M to matrix representations of G of degree m is one-to-one
and onto. The relationship between linear representations of G with representation
space M and matrix representations of G of degree m is similar to the relationship
between invertible linear transformations on M and nonsingular m × m matrices
(discussed at the beginning of this section): We obtain a matrix representation
from a linear representation by fixing a basis for M ; we obtain equivalent matrix
representations (as per Definition 3.1.2) from the same linear representation by
choosing different bases for M ; and linear representations which correspond to the
same matrix representation (with respect to different bases) are equivalent (as per
Definition 3.1.1).
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The notion of a representation space, and of a linear representation of a group,
is important; it is useful in applying representation theory to other domains, and
simplifies some of the definitions which follow. On the other hand, we are interested
in computational problems, which require “concrete” (matrix) representations as
input and output. Hence we will use both notions of “representation” of a group,
stressing matrix representations when discussing computational problems.

We next note several ways of generating new matrix representations from given
representations.

Example 3.1.6. Suppose T1 : G → GL(N1, F ) and T2 : G → GL(N2, F ) are two
linear representations of a group G, of degrees n1 and n2 respectively. We obtain
a new linear representation T = T1 ⊕ T2, the direct sum of T1 and T2, by defining
the map

T : G→ GL(N1 ⊕N2, F )

so that

T (g)(x+ y) = T1(g)(x) + T2(g)(y) for all g ∈ G, x ∈ N1, and y ∈ N2.

It is easily checked that T maps the identity element of G to the identity map on
N1 ⊕N2 and that T (g1 · g2) = T (g1) ◦ T (g2) for all g1, g2 ∈ G.

Now if we fix bases x1, x2, . . . , xn1 and y1, y2, . . . , yn2 for spaces N1 and N2 re-
spectively, we obtain matrix representations T̂1 : G→ GL(n1, F ) corresponding to
T1, and T̂2 : G → GL(n2, F ) corresponding to T2, with respect to these bases. If
we set x1, x2, . . . , xn1 , y1, y2, . . . , yn2 as our basis for N1 ⊕ N2 then the matrix
representation T̂ = T̂1 ⊕ T̂2 with respect to this basis sends each element of G to a
block diagonal matrix,

T̂ (g) =
[
T̂1(g) 0

0 T̂2(g)

]
for all g ∈ G.

This is easily verified, using the relation T1(g)(xi) =
∑n1
j=1(T̂1(g))j ixj , the relation

T2(g)(yk) =
∑n2
l=1(T̂2(g))l kyl, and the above definition of T1 ⊕ T2.
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Example 3.1.7. Suppose again that T1 : G→ GL(N1, F ) and T2 : G→ GL(N2, F )
are two linear representations of a group G, of degrees n1 and n2 respectively. By
Proposition 2.2.12, the tensor product N1⊗FN2 is a vector space of dimension n1n2

over F . We obtain a “tensor representation of G”,

T1 ⊗F T2 : G→ GL(N1 ⊗F N2, F ),

by defining the action of a group element g on elements of the form x ⊗F y (for
x ∈ N1 and y ∈ N2) componentwise, and using linearity to extend this to arbitrary
elements of N1 ⊗F N2. That is, for all g ∈ G, x ∈ N1, and y ∈ N2,

(T1 ⊗F T2)(g)(x⊗F y) = ((T1(g)(x))⊗F (T2(g)(y))) ,

and for r > 0, x1, x2, . . . , xr ∈ N1, y1, y2, . . . , yr ∈ N2, and g ∈ G,

(T1 ⊗F T2)(g)

(
r∑
i=1

(xi ⊗F yi)

)
=

r∑
i=1

((T1 ⊗F T2)(g)(xi ⊗F yi)).

This defines a (unique) group homomorphism from G to GL(N1⊗F N2, F ) — and,
hence, a linear representation of G. (See, for example, Section 12A of [31] for a
proof that this map is unique and well defined.)

Suppose now that T̂1 : G → GL(n1, F ) and T̂2 : G → GL(n2, F ) are matrix repre-
sentations corresponding to the the linear representations T1 and T2 with respect
to bases x1, x2, . . . , xn1 and y1, y2, . . . , yn2 for N1 and N2 respectively. We ob-
tain a matrix representation T̂ = T̂1 ⊗F T̂2 : G → GL(n1n2, F ) from the linear
representation T = T1 ⊗F T2, using the basis

x1y1, x2y1, . . . , xn1y1, x1y2, . . . , xn1yn2−1, x1yn2 , x2yn2 , . . . , xn1yn2

for N1⊗F N2 over F . Suppose the matrix T̂2(g) has (i, j)th entry βi j , for 1 ≤ i, j ≤
n2; then the matrix T̂ (g) = (T̂1 ⊗F T̂2)(g) has the form

(T̂1 ⊗F T̂2)(g) =


β1 1T̂1(g) β1 2T̂1(g) · · · β1n2 T̂1(g)
β2 1T̂1(g) β2 2T̂1(g) · · · β2n2 T̂1(g)

...
...

. . .
...

βn2 1T̂1(g) βn2 2T̂1(g) · · · βn2 n2 T̂1(g)

 .
That is, the matrix (T̂1 ⊗F T̂2)(g) is obtained from T̂2(g) by replacing each entry
βi j by the block matrix βi j T̂1(g).

In the next example we note that the tensor product construction can be used to
change the ground field for a representation — that is, to perform “extension of
scalars”.
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Example 3.1.8. Let T : G→ GL(N,F ) be a linear representation of a group G of
degree n over a field F . Let E be an extension field of F ; then we can view E as a
vector space over F . Let 1E : G → GL(E,F ) be the “trivial” representation of G
— so that

1E(g)(x) = x for all g ∈ G and x ∈ E

(cf. Example 3.1.4, for matrix representations). As in Example 3.1.7 we form a
“product” representation

T ⊗F 1E : G→ GL(N ⊗F E,F ).

It is easily checked that for each g ∈ G, the linear transformation T ⊗F 1E(g) is an
E-linear transformation, as well as F -linear. That is, T⊗F 1E(g) ∈ GL(N⊗F E,E).
We thus obtain a linear transformation of G of degree n over E,

TE : G→ GL(N ⊗F E,E),

by setting TE(g) to be T ⊗F 1E(g), viewed now as an element of GL(N ⊗F E,E).

If T̂ : G → GL(n, F ) is a matrix representation of G of degree n over F then we
obtain a matrix representation T̂E : G→ GL(n,E) by the same method. It is easily
checked that the matrices T̂E(g) and T̂ (g) are actually identical for all g ∈ G: We
have simply used the obvious embedding of Mn×n(F ) in Mn×n(E).

We can use this process to obtain from a linear representation T over F (or a matrix
representation T̂ ) a linear representation TE over E (or matrix representation T̂E),
even when E is infinite-dimensional over F . In later sections we will consider linear
representations TR and TC (and matrix representations T̂C and T̂R) obtained from
representations T (or T̂ ) over number fields.

We are interested in representations which cannot be expressed as direct sums of
smaller representations, and in expressing “general” representations as direct sums
of these “irreducible” representations.

Definition 3.1.9. Let T : G→ GL(M,F ) be a linear representation of a group G
over a field F . A subspace N of M is a G-subspace of M if

T (g)x ∈ N for all g ∈ G and x ∈ N.

That is, N is invariant with respect to each linear transformation T (g) for g ∈ G.

If T , N , and M are as above and we define

T1(g) = T (g)|N for g ∈ G,

where T (g)|N denotes the restriction of T (g) to N , then T1 is a linear representation
of G over F with representation space N .
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Definition 3.1.10. A linear representation T : G → GL(M,F ) with nonzero
representation space M is an irreducible linear representation of G if the only G-
subspaces of M are (0) and M ; otherwise, T is a reducible linear representation.

We also have a weaker condition than irreducibility.

Definition 3.1.11. A linear representation T : G → GL(M,F ) with nonzero
representation space M is an indecomposable linear representation if there do not
exist proper G-subspaces M1 and M2 such that M = M1 ⊕M2; otherwise, T is a
decomposable linear representation.

Definition 3.1.12. A matrix representation T̂ : G → GL(m,F ) is irreducible
(respectively, indecomposable) if there exists a linear representation T : G →
GL(M,F ) such that T̂ corresponds to T (with respect to some basis for M), and
T is an irreducible (respectively, indecomposable) linear representation. Otherwise,
T is reducible (respectively, decomposable).

Example 3.1.13. Let G = Cp = { 1, a, a2, . . . , ap−1 } (with ap = 1) for prime p >
0. Let F = Fp, and suppose M is an F -vector space of dimension 2, with basis
m1, m2 over F . We define a map T : G→ GL(M,F ) by setting

T (a)(m1) = m1 and T (a)(m2) = m1 +m2,

and using additivity to extend this map to arbitrary elements of M . Then,

T (ai)(m1) = m1 and T (ai)(m2) = im1 +m2,

and T (ai)(λ1m1 + λ2m2) = (λ1 + iλ2)m1 + λ2m2 for i ≥ 0 and λ1, λ2 ∈ F . Since
T (ap)(m1) = T (a0)(m1) = m1 and T (ap)(m2) = T (a0)(m2) = m2, it is clear that
T is a linear representation of G over F , with representation space M .

It is also clear that the one-dimensional subspace M1 = {λ1m1 : λ1 ∈ F } of M
is a G-subspace of M . The restriction of T to M1, T1 : G→ GL(M1, F ), is a linear
representation of G (a trivial representation, as per Example 3.1.4).

Fixing the basis {m1, m2 } for M over F , we obtain from T the matrix representa-
tion T̂ : G→ GL(2, F ) with

T̂ (a) =
[

1 1
0 1

]
, and T̂ (ai) =

[
1 i
0 1

]
for i ≥ 0.

Fixing the basis {m1 } for M1 over F , we obtain from T1 the matrix representation
T̂1 : G→ GL(1, F ) with

T̂ (a) = T̂ (ai) = [1] for i ≥ 0.
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We have showed that T is reducible. T is also indecomposable — for if there existed
G-subspaces N1 and N2 such that M = N1 ⊕N2, then it would follow that N1 and
N2 were both invariant with respect to T (a). Since M has dimension 2, it would also
follow that N1 and N2 have dimension 1, so that each would contain an eigenvalue
for T (a) — contradicting the fact that T̂ (a) is not similar to a diagonal matrix.
Thus T is indecomposable, but not irreducible.

As noted in the above example, there exist linear representations which are inde-
composable, but not irreducible; on the other hand, it is clear from the definitions
that every irreducible representation is indecomposable.

The example also illustrates a general property of reducible linear and matrix rep-
resentations: Suppose T : G→ GL(N,F ) is a linear representation and that N1 is
a proper G-subspace of N . Then there exists a subspace N2 of N (not necessarily
a G-subspace) such that N = N1 ⊕ N2. Now, for all x ∈ N1 and y ∈ N2, and for
all g ∈ G,

T (g)(x) ∈ N1 and T (g)(y) ∈ N1 ⊕N2 = N.

If x1, x2, . . . , xn1 is a basis for N1 over F , and y1, y2, . . . , yn2 is a basis for N2

over F , then we have a basis x1, x2, . . . , xn1 , y1, y2, . . . , yn2 for N , and a matrix
representation T̂ : G→ GL(n, F ) corresponding to this basis, so that for all g ∈ G,

T̂ (g) =
[
T̂1(g) U(g)

0 T̂2(g)

]
.

Here, T̂1 is the matrix representation corresponding to the restriction T1 of T to N1;
T̂2 is multiplicative, and maps the identity element of G to the identity matrix of
order n2, so T̂2 is also a matrix representation (which does not generally correspond
to the restriction of T to a G-subspace of N). The off-diagonal matrix, U(g), is
not generally multiplicative (as a function of g ∈ G); U(g) = 0 for all g ∈ G, so
that T̂ (g) is block diagonal, if and only if N2 is also a G-subspace; then T̂2(g) is
the matrix representation corresponding to the basis y1, y2, . . . , yn2 for N2 and the
restriction of the linear representation T to this subspace.

We are interested in the special case that U(g) = 0 for all g ∈ G, so that T is
decomposable as well as reducible.

Definition 3.1.14. A linear representation T : G → GL(N,F ) is completely
reducible if, for every G-subspace N1 of N , there exists another G-subspace N2 of
N such that N = N1 ⊕N2 (as vector spaces over F ). A matrix representation T̂ is
completely reducible if it corresponds to a completely reducible linear representation
with respect to some basis for the representation space.

Any irreducible (linear or matrix) representation is (trivially) completely reducible.
If a representation T is completely reducible, then T is indecomposable if and only
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if T is irreducible. Hence the representation T of Example 3.1.13 is not completely
reducible.

Completely reducible representations have a useful characterisation, in terms of
irreducible representations.

Theorem 3.1.15. Let T : G → GL(M,F ) be a completely reducible represen-
tation; then M is a direct sum of G-subspaces M1, M2, . . . , Mk for some k > 0,
such that the restriction Ti : G → GL(Mi, F ) of T to Mi is an irreducible linear
representation of G, for 1 ≤ i ≤ k.

Corollary 3.1.16. Let T̂ : G → GL(m,F ) be a completely reducible matrix
representation of G over F ; then T̂ is equivalent to a direct sum of irreducible
matrix representations T̂i : G→ GL(mi, F ) for 1 ≤ i ≤ k, for some integer k > 0.

For a proof of Theorem 3.1.15 see, for example, Curtis and Reiner [31] (stated
there as Theorem 10.7). It is clear that the converses of the above theorem and
corollary are also true: Every direct sum of irreducible representations is completely
reducible.

We will consider the decision problem of identifying completely reducible repre-
sentations, and the computational problem of expressing them as direct sums of
irreducible representations, for classes of groups for which representations can be
specified easily. We will also consider an intermediate type of representation (be-
tween “completely reducible” and “irreducible”).

Definition 3.1.17. A linear (respectively, matrix) representation of a group G
over a field F is isotypic if it is equivalent to a direct sum of equivalent irreducible
linear (respectively, matrix) representations of G over F .

Clearly, every irreducible representation is isotypic, and every isotypic represen-
tation is completely reducible. We will consider the decomposition of completely
reducible representations in two stages, as described below.

Definition 3.1.18. A linear representation T1 : G → GL(M1, F ) is a component
of a linear representation T : G → GL(M,F ) if M1 is a G-subspace, T1 is the
restriction of T to M1, and there exists a G-subspace M2 of M such that M =
M1 ⊕M2 (so that T1 is a direct summand of T ).

A matrix representation T̂1 of G is a component of a matrix representation T̂ if T̂
is equivalent to T̂1 ⊕ T̂2 for some matrix representation T̂2.

Definition 3.1.19. Let T : G→ GL(M,F ) be a linear representation of G. A set
of linear representations Ti : G → GL(Mi, F ), for 1 ≤ i ≤ k, is a set of isotypic
components of T if M = M1⊕M2⊕· · ·⊕Mk, Ti is the restriction of T to the nonzero
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G-subspace Mi, and Ti is isotypic, for 1 ≤ i ≤ k, and if no nonzero component of
Ti is equivalent to a component of Tj for 1 ≤ i, j ≤ k with i 6= j (that is, if Ti ⊕ Tj
is not isotypic).

A set of matrix representations T̂1, T̂2, . . . , T̂k of G over F is a set of isotypic
components of a matrix representation T̂ if each has positive degree, T̂ is equivalent
to the direct sum T̂1 ⊕ T̂2 ⊕ · · · ⊕ T̂k, T̂i is isotypic for 1 ≤ i ≤ k, and T̂i ⊕ T̂j is not
isotypic for 1 ≤ i, j ≤ k with i 6= j.

As a first stage of the decomposition of a completely reducible (linear or matrix)
representation T of G, we will compute a set of isotypic components for T . As a
second (final) stage, we compute a set of irreducible components for each of these
isotypic representations.

Example 3.1.20. Let F = C, G = D3, the dihedral group of order 6 (with
generators a and b, such that a3 = b2 = 1 and ab = ba2), and let T̂ : G→ GL(6, F )
be the regular matrix representation for G = { 1, a, a2, b, ab, a2b }. Then

T̂ (a) =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 , T̂ (b) =


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 ,

and T̂ (g) can be computed for all other elements g of G using the multiplicativity
of T̂ .

Let ω be a 3rd primitive root of unity in C, so ω2 +ω+ 1 = 0. Consider the matrix
X ∈ GL(6, F ),

X =


1 1 1 1 1 −1
1 1 ω ω2 ω −ω2

1 1 ω2 ω ω2 −ω
1 −1 1 1 −1 1
1 −1 ω ω2 −ω ω2

1 −1 ω2 ω −ω2 ω

 .

X is nonsingular, with inverse

X−1 =
1
6


1 1 1 1 1 1
1 1 1 −1 −1 −1
1 ω2 ω 1 ω2 ω
1 ω ω2 1 ω ω2

1 ω2 ω −1 −ω2 −ω
−1 −ω −ω2 1 ω ω2

 .
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T̂ is equivalent to the matrix representation Û : G → GL(6, F ) with Û(g) =
X−1T̂ (g)X for all g ∈ G; now it is easily checked that

Û(a) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 ω2 0 0 0
0 0 0 ω 0 0
0 0 0 0 ω2 0
0 0 0 0 0 ω

 , Û(b) =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .

Since a and b generate G, it follows that Û(g) is block diagonal, with two (upper)
1× 1 blocks and two (lower) 2× 2 blocks, for all g ∈ G. Thus Û (and hence T̂ ) has
components Û1, Û2, Û3, and Û4 such that

Û = Û1 ⊕ Û2 ⊕ Û3 ⊕ Û4,

with Û1, Û2 : G→ GL(1, F ), Û3, Û4 : G→ GL(2, F ),

Û1(a) = [1], Û1(b) = [1], Û2(a) = [1], Û2(b) = [−1],

and

Û3(a) = Û4(a) =
[
ω2 0
0 ω

]
, Û3(b) = Û4(b) =

[
0 1
1 0

]
.

Now we note that Û3 and Û4 are each irreducible; for if λ1, λ2 ∈ F with at least one

nonzero, then it is easily checked that
[

1
0

]
and

[
0
1

]
both belong to the subspace of

M2×1(F ) spanned by the vectors
[
λ1

λ2

]
, Û3(a)

[
λ1

λ2

]
, and Û3(b)

[
λ1

λ2

]
; since Û3 =

Û4, this is also true when Û3 is replaced by Û4. Since Û3 and Û4 are equal, they
are (trivially) equivalent. Û1 and Û2 are clearly not equivalent, since matrices Û1(b)
and Û2(b) are not similar.

Thus the matrix representation T̂ has a set of isotypic components T̂1, T̂2, T̂3, such
that T̂1, T̂2 : G→ GL(1, F ), T̂3 : G→ GL(4, F ), and

T̂1(a) = [1], T̂1(b) = [1],
T̂2(a) = [1], T̂2(b) = [−1],

T̂3(a) =


ω2 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω

 , T̂3(b) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

.
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Representations T̂1 and T̂2 are irreducible, while T̂3 = T̂3 1 ⊕ T̂3 2 for equivalent (in
fact, identical) irreducible representations T̂3 1, T̂3 2 : G→ GL(2, F ) with

T̂3 1(a) = T̂3 2(a) =
[
ω2 0
0 ω

]
, T̂3 1(b) = T̂3 2(b) =

[
0 1
1 0

]
.

In the next three sections we consider the above computational problems, and the
problem of deciding whether two representations of a group are equivalent, for var-
ious classes of groups. While we have a natural “description” of a matrix represen-
tation of a finitely generated group over a field — namely, the matrices representing
generators for the group — we will see that different (and often more concise) de-
scriptions are used when providing input and output for problems. Consequently,
we will give more detailed definitions of these problems in later sections.
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3.2. Matrix Representations of Finitely Generated Groups

In this section we restrict attention to representations of finitely generated groups.
We specify a matrix representation T̂ : G→ GL(m,F ) for such a group G by giving
the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn), for a set of generators g1, g2, . . . , gn of G.
Hence, we consider problems for which the only source of information about the
group G is its image, T̂ (G).

We start with formal definitions of the problems introduced at the end of Section 3.1.

Problem Identification of a Completely Reducible Representation

Input. • Integers n, m > 0.
• Matrices τ1, τ2, . . . , τn ∈ GL(m,F ) such that τj = T̂ (gj)

for 1 ≤ j ≤ n, for a finitely generated group G with generators
g1, g2, . . . , gn, and such that T̂ : G→ GL(m,F ) is a matrix
representation of G over the field F .

Output. true if T̂ is a completely reducible matrix representation of G;
false otherwise.

Problem Isotypic Components of a Completely Reducible
Representation

Input. • Integers n, m > 0.
• Matrices τ1, τ2, . . . , τn ∈ GL(m,F ) such that τj = T̂ (gj)

for 1 ≤ j ≤ n, for a finitely generated group G with generators
g1, g2, . . . , gn, and such that T̂ : G→ GL(m,F ) is a completely
reducible matrix representation of G over the field F .

Output. • Integers k, m1,m2, . . . ,mk > 0, such that m1 +m2 + · · ·+mk = m.
• Matrices τi 1, τi 2, . . . , τi n ∈ GL(mi, F ), for 1 ≤ i ≤ k, such that
τi j = T̂i(gj) for 1 ≤ j ≤ n, and the isotypic matrix representations
T̂1, T̂2, . . . , T̂k form a set of isotypic components for T̂ .
• Matrices X and X−1 in GL(m,F ) such that
T̂ (gj) = X−1Diag(T̂1(gj), T̂2(gj), . . . , T̂k(gj))X for 1 ≤ j ≤ n.
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Problem Irreducible Components of an Isotypic Representation

Input. • Integers n, m > 0.
• Matrices τ1, τ2, . . . , τn ∈ GL(m,F ) such that τj = T̂ (gj)

for 1 ≤ j ≤ n, for a finitely generated group G with generators
g1, g2, . . . , gn, and such that T̂ : G→ GL(m,F ) is an isotypic
matrix representation of G over the field F .

Output. • Integers k, l > 0 such that k · l = m.
• Matrices τi 1, τi 2, . . . , τi n ∈ GL(l, F ), for 1 ≤ i ≤ k, such that
τi j = T̂i(gj) for 1 ≤ j ≤ n, and the equivalent irreducible
matrix representations T̂1, T̂2, . . . , T̂k form a set of irreducible
components for T̂ .
• Matrices X and X−1 in GL(m,F ) such that
T̂ (gj) = X−1Diag(T̂1(gj), T̂2(gj), . . . , T̂k(gj))X for 1 ≤ j ≤ n.

Problem Equivalence of Representations

Input. • Integers n,m > 0.
• Matrices τ1 1, τ1 2, . . . , τ1n and τ2 1, τ2 2, . . . , τ2n ∈ GL(m,F )

such that τ1 j = T̂1(gj) and τ2 j = T̂2(gj) for 1 ≤ j ≤ n, for a
finitely generated group G with generators g1, g2, . . . , gn, and
such that T̂1 : G→ GL(m,F ) and T̂2 : G→ GL(m,F )
are matrix representations of the group G over the field F .

Output. Matrix X ∈Mm×m(F ) such that
• X is nonsingular, and T̂2(gj) = X−1T̂1(gj)X for 1 ≤ j ≤ n,

if the representations T̂1 and T̂2 are equivalent;
• X = 0, if the representations are not equivalent.

We do not insist that a set of generators for G be minimal. In particular, we allow
g1, g2, . . . , gn as a set of generators for a finite group G = { g1, g2, . . . , gn } with n
elements.

As in Section 2, we are interested both in arithmetic algorithms for problems over
arbitrary fields F , and in Boolean algorithms for problems over concrete fields (finite
fields, number fields, R, and C). For representations over R or C we assume when
considering Boolean algorithms that our inputs, the entries of the matrices T̂ (gj)
for 1 ≤ j ≤ n, all lie in some number field F (see Example 3.1.8). As in Section 2,
we will be able to compute a decomposition over R or C by working in some finite
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algebraic extension E over F , so that we can use exact representations of all the
values to be computed.

The main results of this section are reductions between each of the first three of
the above problems and the problems discussed in Sections 2.3–2.5. These reduc-
tions, and some of their consequences, are presented in Section 3.2.1. We obtain
quite different results when we consider the fourth problem given above (and the
corresponding problem for associative algebras), in Section 3.2.2.

3.2.1. Reductions Between Problems

We now present the main results of Section 3.2 — reductions between each of the
first three problems defined above, and the problems for associative algebras. The
reductions are useful for either sequential or parallel computations. We state them
in two parts: Reductions from problems for representations of groups to problems
for associative algebras are given in Theorem 3.2.8, while reductions in the other
direction are given in Theorem 3.2.17. Some consequences of these reductions are
noted in Corollaries 3.2.9–3.2.11 and 3.2.18.

We begin with some well known relationships between representations of groups and
associative algebras. These will be used to prove that our reductions are correct.

Suppose now that M is a finite-dimensional vector space over a field F ; then
HomF (M,M) is also a finite-dimensional vector space over F , and forms an associa-
tive algebra A over F , using composition of linear transformations as multiplication
in A. If, in addition, T : G→ GL(M,F ) is a linear representation of a group G, then
the set of all finite F -linear combinations of linear transformations T (g) for g ∈ G
(that is, the F -space spanned by the set {T (g) : g ∈ G }) forms an F -subspace
of A = HomF (M,M) which contains the multiplicative identity of A and is closed
under multiplication. Thus, this set forms an F -subalgebra of HomF (M,M). Sim-
ilarly, if T̂ : G → GL(m,F ) is a matrix representation of F , then we obtain a
matrix algebra (which is an F -subalgebra of Mm×m(F )) by considering finite linear
combinations of the images T̂ (g) of elements g of G.

Definition 3.2.1. Let T : G → GL(M,F ) be a linear representation of a group
G over a field F . The enveloping algebra of T , env(T ), is the smallest (linear)
F -subalgebra of HomF (M,M) containing every F -linear transformation T (g) for
g ∈ G.

Let T̂ : G → GL(m,F ) be a matrix representation of G over F . The enveloping
algebra of T̂ , env(T̂ ), is the smallest (matrix) F -subalgebra of Mm×m(F ) containing
every matrix T̂ (g) for g ∈ G.

Suppose again that T : G→ GL(M,F ) is a linear representation of a group G over
F , and let a ∈ F and φ, ψ ∈ HomF (M,M) such that φ and ψ commute with T (g)
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for all g ∈ G: φ ◦ T (g) = T (g) ◦ φ and ψ ◦ T (g) = T (g) ◦ ψ for all g ∈ G. It is clear
that aφ+ψ also commutes with each transformation T (g), as does φ◦ψ: The set of
linear transformations in HomF (M,M) commuting with every transformation T (g)
forms an F -subalgebra of HomF (M,M). Similarly, the set of matrices in Mm×m(F )
commuting with every matrix T̂ (g) for g ∈ G, for a matrix representation T̂ of G,
forms an F -subalgebra of Mm×m(F ).

Definition 3.2.2. Let T : G → GL(M,F ) be a linear representation of a group
G over a field F . The commutator algebra of T , com(T ), is the algebra over F
consisting of all linear transformations in HomF (M,M) which commute with every
transformation T (g) for g ∈ G.

Let T̂ : G→ GL(m,F ) be a matrix representation of a group G over a field F . The
commutator algebra of T̂ , com(T̂ ), is the (matrix) algebra over F consisting of all
matrices in Mm×m(F ) which commute with every matrix T̂ (g) for g ∈ G.

We will relate the decomposition of the linear representation T : G → GL(M,F )
(respectively, the matrix representation T̂ : G→ GL(m,F )) to the decomposition of
the associative algebras env(T ) and com(T ) (respectively, of the associative matrix
algebras env(T̂ ) and com(T̂ )).

Proposition 3.2.3. Let T : G → GL(M,F ) be a linear representation of a group
G.
(a) T is completely reducible if and only if env(T ) is semi-simple.
(b) If T is completely reducible then com(T ) is semi-simple.

The converse of Theorem 3.2.3(b) is not generally true (see Example 3.2.14 for a
counterexample).

Proposition 3.2.4. Let T : G → GL(M,F ) be a completely reducible linear
representation of a group G.
(a) T is isotypic if and only if env(T ) is simple.
(b) T is isotypic if and only if com(T ) is simple.
(c) If the semi-simple algebra env(T ) has a set of central primitive idempotents

e1, e2, . . . , ek (so e1 + e2 + · · ·+ ek = 1 and eiej = δi jei for 1 ≤ i, j ≤ k), then
T has isotypic components T1, T2, . . . , Tk, for Ti = T |Mi : G → GL(Mi, F )
and for Mi = ei(M), for 1 ≤ i ≤ k.
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Proposition 3.2.5. Let T : G→ GL(M,F ) be an isotypic linear representation of
a group G.
(a) T is irreducible if and only if com(T ) is a division algebra.
(b) If the simple algebra com(T ) has a set of primitive idempotents e1, e2, . . . , ek

(with e1 + e2 + · · · + ek = 1 and eiej = δi jei for 1 ≤ i, j ≤ k), then T has a
set of irreducible components T1, T2, . . . , Tk, for Ti = T |Mi : G→ GL(Mi, F )
and for Mi = ei(M), for 1 ≤ i ≤ k.

Propositions 3.2.3, 3.2.4(a), and 3.2.5(a) imply the analogous results for a matrix
representation T̂ : G → GL(M,F ). Thus, T̂ is completely reducible if and only
if env(T̂ ) is semi-simple, and T̂ completely reducible implies that com(T̂ ) is semi-
simple, that T̂ is isotypic if and only if env(T̂ ) is simple, and that T̂ is isotypic if
and only if com(T̂ ) is simple. Finally, if T̂ is isotypic, then T̂ is irreducible if and
only if com(T̂ ) is a division algebra.

Propositions 3.2.3–3.2.5 follow directly from well known results concerning modules
of associative algebras. Further information can be found (for example) in Section 25
of Curtis and Reiner [31].

We next consider the complexity of the problem of obtaining a basis and set of
structure constants for the enveloping algebra, or for the commutator algebra, from
a description of a matrix representation of a finitely generated group.

Lemma 3.2.6. Let T̂ : G → GL(m,F ) be a matrix representation of a group G
with generators g1, g2, . . . , gn.

(a) Given the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn), a basis and set of structure con-
stants for the matrix algebra env(T̂ ) can be computed using a polynomial
number of field operations, or using arithmetic-Boolean circuits over F of poly-
nomial size and of depth O(log3(nm)).

(b) Given the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn), a basis and set of structure con-
stants for the matrix algebra com(T̂ ) can be computed using a polynomial
number of field operations, or using arithmetic-Boolean circuits over F of poly-
nomial size and of depth O(log2(nm)).

Proof. Part (a) is an immediate consequence of Theorem 2.2.10; for the algebra
env(T̂ ) is generated by the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn). A basis for the algebra
com(T̂ ) is obtained by computing a basis for the set of solutions of a system of
homogeneous linear equations (namely, the equations T̂ (gi)X = XT̂ (gi), with the
entries of X as indeterminates, for 1 ≤ i ≤ n). Hence, by the results of Section 1, a
basis for this algebra can be computed at the cost stated above. Structure constants
for the algebra can then be computed by solving a further system of linear equations
— again, at the stated cost.
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We will also need to generate a description of the isotypic (respectively, irreducible)
components of a matrix representation T̂ from a set of central primitive (or, respec-
tively, primitive) idempotents of env(T̂ ) (respectively, of com(T̂ )). We next show
that these computations can be performed efficiently.

Lemma 3.2.7. Let T̂ : G → GL(m,F ) be a matrix representation of a finitely
generated group G.

(a) If T̂ is completely reducible then, given a set of central primitive idempo-
tents for env(T̂ ), a set of isotypic components T̂1, T̂2, . . . , T̂k and a ma-
trix X ∈ GL(m,F ) with T̂ (g) = X−1Diag(T̂1(g), T̂2(g), . . . , T̂k(g))X for all
g ∈ G can be computed, using arithmetic-Boolean circuits of size mO(1) and of
depth O(log2m).

(b) If T̂ is isotypic then, given a set of primitive idempotents for com(T̂ ), a set
of irreducible components T̂1, T̂2, . . . , T̂k and a matrix X ∈ GL(m,F ) with
T̂ (g) = X−1Diag(T̂1(g), T̂2(g), . . . , T̂k(g))X for all g ∈ G can be computed,
using arithmetic-Boolean circuits of size mO(1) and of depth O(log2m).

Proof. We first consider (a). Suppose now that T̂ is completely reducible and that
we are given a set of central primitive idempotents e1, e2, . . . , ek for env(T̂ ). For
convenience, we will fix M = Mm×1(F ) as an F -vector space, with basis

ε1 =


1
0
...
0
0

 , ε2 =


0
1
...
0
0

 , · · · , εm−1 =


0
0
...
1
0

 , εm =


0
0
...
0
1

 .

We obtain a linear representation T : G → GL(M,F ) from T̂ by choosing as
T (g) the linear representation whose coefficient matrix (with respect to the basis
ε1, ε2, . . . , εm) is T̂ (g), for all g ∈ G. Now T is clearly a completely reducible
linear transformation. Applying Proposition 3.2.4(a), we find that T has isotypic
components T1, T2, . . . , Tk, where Ti = T |Mi

, for Mi = êi(M) and for êi the linear
transformation whose coefficient matrix with respect to the basis ε1, ε2, . . . , εm is
ei.

We obtain a basis for the carrier space Mi by choosing a maximal linearly indepen-
dent subset of the set of vectors

eiε1, eiε2, · · · eiεm.

This operation can be performed sequentially in polynomial time, or in parallel
using arithmetic-Boolean circuits of the size and depth stated in the lemma (see
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Section 1.3, and note the reductions given in [14]). We set mi to be the number of
vectors in this basis, and denote these vectors by

xi 1, xi 2, . . . , ximi ∈Mm×1(F ).

Now since e1 + e2 + · · · + ek = 1 in env(T̂ ), and M = M1 ⊕M2 ⊕ · · · ⊕Mk, the
column vectors

x1 1, x1 2, . . . , x1m1 , x2 1, x2 2, . . . , xk−1mk−1 , xk 1, xk 2, . . . , xkmk

form a basis (of size m) for M over F . We define X to be the matrix in Mm×m(F )
whose ith column is the ith element of this basis, for 1 ≤ i ≤ m. Clearly X is
nonsingular. Since each subspace Mi of M is a G-subspace, it is also clear that the
matrix

XT (g)X−1

is block diagonal, with k blocks of sizes m1, m2, . . . , mk, and that the ith block
specifies the action of g on the elements of Mi. That is,

T̂ (g) = X−1Diag(T̂1(g), T̂2(g), . . . , T̂k(g))X

for all g ∈ G, where the matrix representations T̂1, T̂2, . . . , T̂k are the isotypic com-
ponents of T̂ . The matrix X, and the matrices τi j = T̂i(gj) (for a set g1, g2, . . . , gn
of generators of G) can all be computed at the cost stated in the lemma, as required
to prove (a).

The proof of (b) is similar: We apply Proposition 3.2.5(c) instead of Proposi-
tion 3.2.4(c), and argue as above.

Theorem 3.2.8.

(a) “Identification of a Completely Reducible Representation”
�3 “Isolation of the Radical”;

(b) “Isotypic Components of a Completely Reducible Representation”
�3 “Extraction of Simple Components”;

(c) “Irreducible Components of an Isotypic Representation”
�3 “Decomposition of a Simple Algebra”;

. . . where we denote by “Problem 1 �k Problem 2” the fact that “Problem 1” can
be solved by solving an instance of “Problem 2” whose size is polynomial in the
size of the original instance of “Problem 1”, and that the initial conversion of the
instance of Problem 1 into an instance of Problem 2, and the computation of the
solution of the original instance from the solution of the derived instance, can be
performed using arithmetic-Boolean circuits of size NO(1) and depth O(logkN), for
N the size of the original problem.
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Proof. Suppose we are given the images (under a matrix representation T̂ of
degree m over F ) of a set of generators g1, g2, . . . , gn for a group G — that is, the
input for any of the computational problems defined at the beginning of Section 3.2.
Then, by Lemma 3.2.6, we can compute a basis and set of structure constants for
each of the algebras env(T̂ ) and com(T̂ ) using arithmetic-Boolean circuits of depth
O(log3(nm)) and size polynomial in nm.

Part (a) of the theorem now follows immediately from Proposition 3.2.3(a) (or, to
be more precise, from the analogous result for matrix representations). We prove
part (b) by applying Proposition 3.2.4(c) and Lemma 3.2.7(a). We prove part (c)
by applying Proposition 3.2.5(c) and Lemma 3.2.7(b).

We obtain the same “NC3-reductions” for Boolean computations for matrix repre-
sentations of finitely generated groups over finite fields and number fields, provided
that we represent field elements as discussed in Section 1.2, so that arithmetic
(including division of nonzero field elements) can be performed using arithmetic-
Boolean circuits of polynomial size and polylogarithmic depth.

Applying these reductions, and the results for associative algebras discussed in
Section 2, we obtain the following results.

Corollary 3.2.9. Let G be a finitely generated group with generators g1, g2, . . . , gn,
and let T̂ : G→ GL(m,F ) be a matrix representation of G over a field F . Suppose
we are given the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn).

(a) If F has characteristic zero, then we can decide whether T̂ is completely
reducible using arithmetic-Boolean circuits over F of depth O(log3(mn)) and
size polynomial in mn.

(b) If F = Fp[t]/(f) ∼= Fpl and elements of F are represented (in a description
of T̂ ) as vectors of elements of Fp, with each α ∈ Fp[t]/(f) represented by
the coefficients of a polynomial α̂ ∈ Fp[t] with degree less than l such that
α = (α̂ mod f), then we can decide whether T̂ is completely reducible using
arithmetic-Boolean circuits over Fp of depthO(log3(mnl)) and size polynomial
in mnl.

(c) If F is a finite field, or a number field, then given a description of T̂ (as
described above) of size N we can decide whether T̂ is completely reducible
using time polynomial in N , or using Boolean circuits of size polynomial in N
and depth O(log3N).

Corollary 3.2.9 is a consequence of Theorem 3.2.8(a) (and the analogous reduction
for Boolean computations over finite fields and number fields), as well as Theo-
rem 2.3.4 and Theorem 2.3.17.
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Corollary 3.2.10. LetG be a finitely generated group with generators g1, g2, . . . , gn
and let T̂ : G → GL(m,F ) be a completely reducible matrix representation of G
over a field F . Suppose we are given the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn).

(a) If F is perfect then we can decide whether T̂ is isotypic, and generate the
isotypic components of T̂ (by solving an instance of the problem “Isotypic
Components of a Completely Reducible Representation”) using arithmetic-
Boolean circuits over F , with oracles for factorisation of squarefree polynomi-
als in F [t], of size (nm)O(1).

(b) If F is a number field then we can decide whether T̂ is isotypic, and gener-
ate the isotypic components of T̂ , using NO(1) Boolean operations (for input
size N).

(c) If F = Fpl then we can decide whether T̂ is isotypic, and generate the isotypic
components of T̂ , using (nmpl)O(1) Boolean operations, or using a probabilis-
tic Boolean algorithm using (nml log p)O(1) Boolean operations (that is, in
polynomial time), which either successfully performs the above computation,
or indicates “failure”, failing with probability at most 1/2.

(d) If F is a number field then the matrix representation T̂C : G → GL(m,C)
is also completely reducible. Furthermore, we can compute integers k > 0,
and m1, m2, . . . , mk > 0 (with m1 + m2 + · · ·mk = m), finite extensions
E1, E2, . . . , Ek of F , a nonsingular matrix X ∈ Mm×m(C) (such that each
entry of X lies in one of the number fields E1, E2, . . . , Ek), and isotypic
representations T̂i : G → GL(mi, Ei) (presented by the set of matrices
T̂i(g1), T̂i(g2), . . . , T̂i(gn)), for 1 ≤ i ≤ k, such that (T̂1)C, (T̂2)C, . . . , (T̂k)C
are the isotypic components of T̂C, and so that

T̂C(g) = X−1Diag((T̂1)C(g), (T̂2)C(g), . . . , (T̂k)C(g))X

for all g ∈ G. This computation can be performed using NO(1) Boolean
operations, for input size N .

If, in addition, F ⊆ R, then T̂R : G→ GL(m,R) is also completely reducible,
and the isotypic components of T̂R can be computed (in the form described
above for the components of T̂C) using NO(1) Boolean operations, for input
size N .

Corollary 3.2.10 is a consequence of Theorem 3.2.8(b), as well as Theorems 2.4.10,
2.4.11, and 2.4.28. We have also noted here that (for F a number field) if T̂ is
a completely reducible matrix representation of G over F then T̂C is completely
reducible over C and, if in addition F ⊆ R, T̂R is completely reducible over R.
These facts follow directly from Proposition 3.2.3(a), Theorem 2.3.20(i), and the

184



observation that the algebras (env(T̂ ))C and (env(T̂C)) are isomorphic over C (and
that the algebras (env(T̂ ))R and (env(T̂R)) are isomorphic over R, if F ⊆ R).

Corollary 3.2.11. LetG be a finitely generated group with generators g1, g2, . . . , gn
and let T̂ : G→ GL(m,F ) be an isotypic matrix representation of G over a field F .
Suppose we are given the matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn).

(a) If F = Fpl then we can decide whether T̂ is irreducible, and generate a set of ir-
reducible components of T̂ (by solving an instance of the problem “Irreducible
Components of an Isotypic Representation”), using a probabilistic Boolean al-
gorithm which either successfully computes the desired components or returns
“failure” (with probability at most 1/2), in time (nml log p)O(1) (that is, in
polynomial time).

(b) If F is a number field then the matrix representation T̂C : G → GL(m,C) is
also isotypic. Furthermore, we can compute integers k and l such that kl = m,
finite extensions E1, E2, . . . , Ek of F , a nonsingular matrix X ∈ Mm×M (C)
(such that each entry of X lies in one of the number fields E1, E2, . . . , Ek),
and irreducible representations T̂i : G→ GL(l, Ei) (presented by the matrices
T̂i(g1), T̂i(g2), . . . , T̂i(gn)), such that (T̂1)C, (T̂2)C, . . . , (T̂k)C form a set of
irreducible components of T̂C, and

T̂C(g) = X−1Diag((T̂1)C(g), (T̂2)C(g), . . . , (T̂k)C(g))X

for all g ∈ G. This computation can be performed using a probabilistic
Boolean algorithm using NO(1) operations (for input size N), which either
returns the desired components or reports “failure” (the latter with probability
at most 1/2).

If, in addition, F ⊆ R, then T̂R : G→ GL(m,R) is also isotypic, and a set of
irreducible components of T̂R can be computed (in the form described above
for components of T̂C) using a probabilistic Boolean algorithm using NO(1)

operations (for input size N), which either returns the desired components or
reports “failure” (the latter with probability at most 1/2).

Corollary 3.2.11 is a consequence of Theorem 3.2.8(c), as well as Theorems 2.5.9,
2.5.11, and 2.5.18.

As we note in Section 2, Babai and Rónyai have improved the results stated in The-
orems 2.5.11 and 2.5.8 (see [5]). Their methods can be used to improve on Corol-
lary 3.2.11(b): The field extensions E1, E2, . . . , Ek described here can be replaced
by a single extension E ⊇ F whose degree over F is polynomial in m. Consequently,
all the irreducible components of T̂C (or of T̂R, if F ⊆ R) can be presented as matrix
representations over a single extension E, in probabilistic polynomial time. (Note
in particular Theorem 1.3 of [5].)
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We would like to have reductions in the other direction as well (in particular, for
the third of these three sets of problems: cf. Propositions 2.5.21 and 2.5.22). We
will provide these reductions for infinite fields.

Henceforth, we assume that the field F is infinite. We first note that any finite
dimensional associative algebra A ⊆ Mm×m(F ) of dimension n over F can be
expressed as the enveloping algebra of a matrix representation T̂ : G→ GL(m,F ),
where G is a free group with n generators g1, g2, . . . , gn.

Lemma 3.2.12. Let A ⊆ Mm×m(F ) be an associative algebra over an infinite
field F with dimension n and basis a1, a2, . . . , an over F . Then there exist matrices
τ1, τ2, . . . , τn ∈ Mm×m(F ) such that τi = T̂ (gi), for a matrix representation T̂ :
G → GL(m,F ) of the free group G with generators g1, g2, . . . , gn, such that A =
env(T̂ ). The matrices τ1, τ2, . . . , τn can be computed from the basis a1, a2, . . . , an
using arithmetic-Boolean circuits over F of depth O(log2(nm)) and size polynomial
in nm.

Proof. Suppose first that the matrices a1, a2, . . . , an are all nonsingular. Then it
is sufficient to set τi = T̂ (gi) = ai for 1 ≤ i ≤ n. Clearly, T̂ : G → GL(m,F ) is
a matrix representation of the free group G. Since each ai = T̂ (gi) ∈ env(T̂ ), and
a1, a2, . . . , an is a basis for A over F , A ⊆ env(T̂ ). Conversely, if g ∈ G then

g = h1h2 · · ·hr

for some integer r > 0, such that gi ∈ { g1, g2, . . . , gn, g
−1
1 , g−1

2 , . . . , g−1
n } (note

that 1G = g1g
−1
1 ). Clearly, since T̂ (gi) = ai ∈ A and T̂ (g−1

i ) = a−1
i ∈ F [ai] ⊆ A,

for 1 ≤ i ≤ n, T̂ (hi) ∈ A for 1 ≤ i ≤ r, and T̂ (g) ∈ A. Thus env(T̂ ) ⊆ A (since A
is an F -subalgebra of Mm×m(F )). Then A = env(T̂ ) as desired, and the matrices
τ1, τ2, . . . , τn can clearly be computed (in this case) at the desired cost. It is also
clear that we can find a matrix representation T̂ with the desired properties from
an arbitrary basis for A, if this basis can be used to generate a second basis for A
which consists of nonsingular matrices.

We now consider the general case. Given an arbitrary basis a1, a2, . . . , an, we
obtain a second basis b1, b2, . . . , bn for A such that b1 is the identity matrix in
Mm×m(F ), by setting b1 to be this matrix, setting bi+1 to be ai for all i less than n
such that the matrices b1, a1, a2, . . . , ai are linearly independent, and by setting
bi+1 = ai+1 for all other i. Then the new basis has the form

1A, a1, a2, . . . , ai−2, ai−1, ai+1, ai+2, . . . , an

for some integer i such that ai is an F -linear combination of the first i matrices in
this basis — so that b1, b2, . . . , bn is a basis for A.
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Note that the integer i can be computed in polynomial time, or in parallel at the
cost stated in the lemma, by solving n (singular) systems of linear equations in
parallel (see Section 1.3 for more information).

We now obtain a third basis c1, c2, . . . , cn for A over F , consisting of nonsingular
matrices, by setting c1 = b1 = 1A and by setting ci = bi + λi1A, for λi ∈ F such
that det(bi + λi1A) 6= 0, for 2 ≤ i ≤ n. Since A ⊆ Mm×m(F ), it is clear that there
are at most m elements γ of F such that bi + γ1A is singular. Hence we can find
an appropriate field element λi, and the basis element ci, by considering any set
of m + 1 elements of F as candidates for λi. Since F is infinite, some such set of
elements exists. The condition “det(bi+γ1A) = 0?” can be tested at the cost stated
in the lemma, and the basis elements c2, c3, . . . , cn can be generated independently
(in parallel). Thus the basis c1, c2, . . . , cn can be computed at the cost stated in
the lemma — as required to complete the proof.

We will also need to represent an arbitrary finite dimensional semi-simple associative
matrix algebra A as com(T̂ ), for some completely reducible matrix representation
T̂ of a finitely generated free group. To show that this is possible, we use a concept
(for algebras) similar to that of the commutator algebra of a representation.

Definition 3.2.13. Let A ⊆ Mm×m(F ) be an associative matrix algebra. The
centralizer of A, cent(A), is the algebra of matrices in Mm×m(F ) which commute
with every element of A. That is, b ∈ cent(A) if and only if ab = ba for all
a ∈ A, for b ∈ Mm×m(F ). A is said to have the double centralizer property if
cent(cent(A)) = A.

Note that if T̂ : G → GL(m,F ) is a matrix representation of a group G, then
com(T̂ ) = cent(env(T̂ )).

Example 3.2.14. Consider the algebra A ⊆ M2×2(F ) of 2 × 2 upper triangular
matrices, with basis

a1 =
[

1 0
0 0

]
, a2 =

[
0 1
0 0

]
, a3 =

[
0 0
0 1

]
over F . Let α, β, γ, δ ∈ F ; then

x =
[
α β
γ δ

]
∈ cent(A)

if and only if xai = aix for 1 ≤ i ≤ 3. It is easily checked that this is the case if and
only if β = γ = 0 and α = δ, so that x is a scalar multiple of the identity matrix.
Thus

cent(A) = {αI2 : α ∈ F }, and cent(cent(A)) = M2×2(F ) 6= A.
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Thus A does not have the double centralizer property.

Note also that we have already shown that there exists a matrix representation
T̂ : G → GL(2, F ), for G the free group with 3 generators, such that env(T̂ ) = A.
Clearly T̂ is not completely reducible (by Proposition 3.2.3), but com(T̂ ) ∼= F
is semi-simple — so, in general, com(T̂ ) semi-simple does not imply that T̂ is
completely reducible.

Proposition 3.2.15. Let A ⊆Mm×m(F ) be a semi-simple associative algebra over
F ; then A has the double centralizer property.

For a proof of this see, for example, Jacobson [68] (Theorem 4.10).

We use this proposition to prove the following lemma.

Lemma 3.2.16. Let A ⊆ Mm×m(F ) be a semi-simple associative algebra over F ,
with dimension n and basis a1, a2, . . . , an over F . Then there exists an integer k
with 0 ≤ k ≤ m2, a free group G with generators g1, g2, . . . , gk, and a completely
reducible matrix representation T̂ : G → GL(m,F ), such that A = com(T̂ ). Fur-
thermore, the integer k and matrices T̂ (g1), T̂ (g2), . . . , T̂ (gk) can be computed from
the basis a1, a2, . . . , an for A using arithmetic-Boolean circuits of size polynomial
in m and depth O(log2m).

Proof. Let A be as stated in the lemma; then Lemma 3.2.12 implies that A =
env(Û) for some matrix representation Û of a finitely generated (free) group G1

over F . By Proposition 3.2.3(a), the representation Û is completely reducible — and
hence com(T̂ ) = cent(env(Û)) = cent(A) is semi-simple, by Proposition 3.2.3(b).

Let k be the dimension of cent(A) over F , and let b1, b2, . . . , bk be a basis for
cent(A) over F . These can be computed from the basis a1, a2, . . . , an for A by
solving systems of linear equations over F , using arithmetic-Boolean circuits of
size polynomial in m and depth O(log2m). Solving further linear systems, we
compute a set of structure constants for this basis, also at this cost. We now apply
Lemma 3.2.12 again, to conclude that there exists a finite-dimensional matrix repre-
sentation T̂ : G→ GL(m,F ), for a free group G with generators g1, g2, . . . , gk, such
that env(T̂ ) = cent(A). Now T̂ is completely reducible (by Proposition 3.2.3(a)),
and com(T̂ ) = cent(env(T̂ )) = cent(cent(A)) = A (by Proposition 3.2.15, since A is
semi-simple), as required to complete the proof.

We are now ready to state and prove our second set of reductions.
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Theorem 3.2.17

(i) “Extraction of Simple Components”

�2 “Isotypic Components of a Completely Reducible Representation”;

(ii) “Decomposition of a Simple Algebra”

�2 “Irreducible Components of an Isotypic Representation”;

. . . where we use �k as described in the statement of Theorem 3.2.8, and we consider
computations over infinite fields F .

Proof. We first consider (a). Assume now that A ⊆ Mm×m(F ) is a semi-simple
associative algebra of dimension n over an infinite field F , and that we are given
a basis a1, a2, . . . , an for A over F . It follows by Lemma 3.2.12 that we can com-
pute a completely reducible matrix representation T̂ : G → GL(m,F ) of a finitely
generated group G, such that A = env(T̂ ), using arithmetic-Boolean circuits of
size polynomial in mn and depth O(log3(mn)). Solving an instance of the problem
“Isotypic Components of a Completely Reducible Representation” (with input T̂ ),
we obtain a matrix X ∈ GL(m,F ) such that for all g ∈ G,

T̂ (g) = X−1Diag(T̂1(g), T̂2(g), . . . , T̂k(g))X,

where T̂1, T̂2, . . . , T̂k are the isotypic components of T̂ . We also obtain the number
of components, k, and the degree mi of the component T̂i, for 1 ≤ i ≤ k.

For 1 ≤ i ≤ k, set

ei = X−1Diag(0m1 , 0m2 , . . . , 0mi−1 , 1mi , 0mi+1 , . . . , 0mk)X,

where we denote by 0s the zero matrix in Ms×s(F ), and by 1s the identity matrix in
GL(s, F ). It is clear that each idempotent ei commutes with T̂ (g) for all g ∈ G, so
that ei ∈ com(T̂ ), and that e1, e2, . . . , ek are the only idempotents in com(T̂ ) with
the properties described as holding for the central primitive idempotents of env(T̂ )
in Proposition 3.2.4(b). It follows, by that proposition, that e1, e2, . . . , ek form a
set of central primitive idempotents of env(T̂ ). Clearly, these idempotents can be
computed from the matrices X and X−1 and the integers k and m1, m2, . . . , mk,
using arithmetic-Boolean circuits over F of size polynomial and depth logarithmic
in m. By Theorem 2.4.4, bases for the simple components of A = env(T̂ ) can then
be computed using arithmetic-Boolean circuits of size polynomial in m and depth
O(log2m), as required to complete the proof of part (a).

The proof of (b) is similar. Suppose now that A ⊆ Mm×m(F ) is a simple alge-
bra, and that we are given a basis a1, a2, . . . , an for A over F . By Lemma 3.2.16,
we can compute a completely reducible matrix representation T̂ : G → GL(m,F ),
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for a finitely generated group G, such that A = com(T̂ ), using arithmetic-Boolean
circuits over F of size polynomial in m and depth O(log2m). It follows by Propo-
sition 3.2.4(b) that T̂ is an isotypic representation.

Solving an instance of the problem “Irreducible Components of an Isotypic Rep-
resentation” (with input T̂ ) we obtain a matrix X ∈ GL(m,F ) such that for all
g ∈ G,

T̂ (g) = X−1Diag(T̂1(g), T̂2(g), . . . , T̂k(g))X,

where T̂1, T̂2, . . . , T̂k form a set of irreducible components of T̂ . We also obtain the
number of components k, and the degree l of each of these components.

We now set
ei = X−1Diag(0l, 0l, . . . , 0l, 1l, 0l, . . . , 0l)X,

with the identity matrix 1l in the ith block of the diagonal matrix shown here, and
use Proposition 3.2.5(b) (instead of Proposition 3.2.4(c)) to show that e1, e2, . . . , el
is a set of primitive idempotents in com(T̂ ). (The argument is similar to the one
given in the proof of part (a).) Finally, we use Theorem 2.5.3 to complete the proof
of (b).

Again, the reductions are also correct for Boolean computations over number fields
(and large finite fields).

Corollary 3.2.18.

(a) Assuming the Generalised Riemann Hypothesis (GRH), there exists a Las
Vegas polynomial time reduction from the problem of deciding whether a
positive integer m is a quadratic residue modulo a squarefree integer n, to
deciding whether an isotypic matrix representation T̂ : G → GL(4,Q) of a
finitely generated group G over Q is an irreducible representation.

(b) Assuming GRH, there exists a randomised polynomial time reduction from the
problem of factoring squarefree integers to the problem of computing a set of
irreducible components of an isotypic matrix representation T̂ : G→ GL(4,Q)
of a finitely generated group G over Q.

These facts follow from Theorem 3.2.17 and the results of Rónyai ([103], [104]),
stated here as Propositions 2.5.21 and 2.5.22.

The computational problems of decomposing matrix representations of finitely gen-
erated groups and finite groups over a field F have previously been studied for
the cases F = R and F = C. In particular, Gabriel developed methods for the
decomposition of a completely reducible matrix representation T̂ : G → GL(m,R)
or T̂ : G → GL(m,C), given as input matrices T̂ (g1), T̂ (g2), . . . , T̂ (gn), where
g1, g2, . . . , gn is a set of generators of G (see [45]–[49]). Like the methods discussed
in this section, Gabriel’s methods are correct only if the input is exact (rather than
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a numerical estimate), and if exact arithmetic is used. Hence we cannot imple-
ment Gabriel’s method correctly, using exact computations, without dealing with
the problems of representing elements of R and C discussed in Section 1. Further,
since Gabriel’s methods are iterative, it is not clear that we could obtain asymptot-
ically fast algorithms from his methods by representing real and complex numbers
as described in that section. Note, however, that Gabriel does use the commutator
algebra of a completely reducible matrix representation to decompose the repre-
sentation in the manner described in this section (in particular, as indicated by
Proposition 3.2.5 and in the proofs of Theorems 3.2.8 and 3.2.17). To some extent,
the reductions given in this section are extensions (and adaptations) of reductions
which are implicit in Gabriel’s work.

Dixon considers related problems involving matrix representations of finite groups,
to which numerical techniques can be applied more successfully (see [35]). We will
discuss his work further in Section 3.3.5.

3.2.2. Equivalence of Matrix Representations

To this point we have noted similarities between computational problems for de-
compositions of finite dimensional associative matrix algebras, and for decomposi-
tions of matrix representations of finitely generated groups. We now note a pair
of corresponding problems (one for algebras, the other for representations) whose
complexities appear to differ.

The problems we consider are those of deciding whether two associative algebras
are isomorphic, and of deciding whether two matrix representations of the same
group are equivalent (the problem “Equivalence of Representations” defined at the
beginning of Section 3.2). We first consider the latter problem. For an infinite field
F , and a finitely generated group G with generators g1, g2, . . . , gn, we are given as
inputs the matrices

T̂1(g1), T̂1(g2), . . . , T̂1(gn), and T̂2(g1), T̂2(g2), . . . , T̂2(gn),

for matrix representations T̂1, T̂2 : G → GL(m,F ). Now T̂1 and T̂2 are equivalent
if and only if there exists a nonsingular matrix S ∈ GL(m,F ) such that

T̂1(gi)S = ST̂2(gi) for 1 ≤ i ≤ n.

If we consider a matrix X = (xi j)1≤i, j≤n, whose entries are indeterminates, we see
that a basis for the space of solutions of the homogeneous system of linear equations
(in the xi j ’s)

T̂1(gi)X = XT̂2(gi) for 1 ≤ i ≤ n
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can be computed using arithmetic-Boolean circuits of size (nm)O(1) and of depth
O(log2(nm)). Suppose the basis (over F )

S1, S2, . . . , Sk

of matrices in Mm×m(F ) is generated. Then T̂1 and T̂2 are equivalent if and only
if there exist elements λ1, λ2, . . . , λk of F such that

λ1S1 + λ2S2 + · · ·+ λkSk

is nonsingular; the original problem reduces to the problem of deciding whether
such a set of λi’s exists.

We will not give the details of the solution of this problem, since it is discussed
elsewhere. Kaltofen, Krishnamoorthy, and Saunders [72] solve the above problem,
using the lemma of Schwartz [111] (Proposition 2.4.23), and thereby obtain a fast
parallel algorithm for deciding whether two matrices are similar.* We note the
results for our problem below.

Theorem 3.2.19. Let F and G be as above, and suppose we are given matrices
T̂1(gi) and T̂2(gi) for 1 ≤ i ≤ n, for generators g1, g2, . . . , gn of G. Suppose also
that we are given an error tolerance ε, with 1 > ε > 0. Then we can decide whether
T̂1 and T̂2 are equivalent using a family of probabilistic arithmetic-Boolean circuits
over F of size polynomial, and depth polylogarithmic, in nm (with “oracle” nodes in
the circuit choosing elements randomly from a finite subset of F of size polynomial
in dnmε−1 e) and with probability of error less than ε.

If F is a number field then the computation can be performed using probabilistic
Boolean circuits of size polynomial and depth polylogarithmic in the input size (and,
again, with arbitrarily small probability of error).

In contrast, the problem of deciding whether matrix algebras are isomorphic has
as a special case the problem of deciding whether a simple algebra of dimension 4
over Q is isomorphic to M2×2(Q). As we noted in Corollary 3.2.18, Rónyai’s results
can be applied with our reductions of Section 3.2.1 to show that this problem is as
hard as the problem of deciding quadratic residuosity for squarefree integers (us-
ing probabilistic polynomial-time Boolean computations, assuming the Extended
Riemann Hypothesis). Apparently, the extra information given for matrix repre-
sentations (associating each element of g to a pair T̂1(g) and T̂2(g), and requiring

* In fact, this is used to prove that the matrices are similar, or to conclude that they
are probably not singular; Kaltofen, Krishnamoorthy, and Saunders use different
means, which do not apply to our problem, to prove that matrices are not singular.
Their algorithm gives a correct answer with arbitrarily high probability, or detects
failure.
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that T̂1(g) be mapped to T̂2(g), rather than to an arbitrary element of env(T̂2)),
and the differences in the definitions of isomorphism (equivalence) for matrix alge-
bras and for matrix representations, are sufficient to cause the complexity of the
problems to differ.
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3.3. Matrix Representations and Characters of Finite Groups

In this section we consider matrix representations and characters of (small) finite
groups: We assume (initially) that we are given a multiplication table of a group G
as part of our input — so that the input size of our problems is at least n2, for n
the number of elements in the group.

We will consider both the problems involving matrix representations introduced
(for finitely generated groups) in Section 3.2, and the computation of a character
table for a finite group. The main result of this section is that a character table of
a finite group can be computed efficiently both sequentially (in polynomial time),
and in parallel — in particular, using Boolean circuits of size polynomial, and depth
polylogarithmic, in the size of a multiplication table for the input group (see in par-
ticular Theorems 3.3.24 and 3.3.27). We obtain these by providing (new) analyses
of existing algorithms. Using these facts, we show that the isotypic components of
a matrix representation of a finite group can also be computed at this cost (again,
if we are given a multiplication table for the group; see Theorem 3.3.31).

We begin with a section of standard material, leading to the definition of a charac-
ter table for a group; a reader who is familiar with the definitions of character and
character table can safely skip Section 3.3.1. We continue, in Section 3.3.2, by pre-
senting and analysing Burnside’s algorithm; we note that this is a polynomial time
algorithm for the computation of character tables (see Theorem 3.3.24). Modifica-
tions of Burnside’s algorithm are discussed in Sections 3.3.3 and 3.3.4. We discuss
Dixon’s algorithm, and show that it has an efficient parallel implementation, in Sec-
tion 3.3.3. In Section 3.3.4, we present a new modification of this method. While
our new algorithm may actually be slightly less efficient than Dixon’s, it is possible
to prove that ours is efficient without recourse to any unproved number theoretic
hypotheses. We apply these results to problems for matrix representations of finite
groups in Section 3.3.5.

3.3.1. Basic Definitions

We begin with definitions and examples of characters and character tables. The
material discussed here is standard; for other treatments, see (for example) [31] or
[112].

Definition 3.3.1. Let T : G→ GL(n, F ) be a matrix representation of a group G;
the character of the representation T is the function χT : G→ F such that

χT (g) = Trace(T (g)) =
n∑
i=1

T (g)i i for g ∈ G,

where Trace(X) denotes the sum of the diagonal entries of the matrix X =
(Xi j)1≤i, j≤n.
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Example 3.3.2. Consider the group G = D3 and the matrix representation T̂ :
G → GL(6,C) of Example 3.1.20. The character χT̂ of this representation is as
follows.

χT̂ (1) = 6; χT̂ (a) = 0; χT̂ (a2) = 0;
χT̂ (b) = 0; χT̂ (ab) = 0; χT̂ (a2b) = 0.

We showed in that example that T̂ = T1 ⊕ T2 ⊕ T3 1 ⊕ T3 2 for irreducible represen-
tations T1, T2 : G→ GL(1,C) and for equivalent irreducible representations
T3 1, T3 2 : G → GL(2,C). The characters χ1 = χT1 , χ2 = χT2 , and χ3 = χT3 1 =
χT3 2 of these representations are as follows.

g: 1 a a2 b ab a2b

χ1(g) : 1 1 1 1 1 1
χ2(g) : 1 1 1 −1 −1 −1
χ3(g) : 2 −1 −1 0 0 0

These are obtained by computing the trace of each matrix Ti(g) (with T3(g) =
T3 1(g) = T3 2(g)) and using the identity 1 + ω + ω2 = 0, for ω a primitive 3rd root
of unity.

Note that characters are not generally multiplicative over G. In particular, in the
above example, 1 = (χ3(a))2 6= χ3(a2) = −1.

We now note some useful facts about characters of representations of (arbitrary)
groups.

Let T̂1 and T̂2 be two matrix representations of degree m for a group G over a
field F , and suppose T̂1 and T̂2 are equivalent. Then there exists a nonsingular
matrix X ∈ GL(m,F ) such that

T̂1(g) = X−1 · T̂2(g) ·X for all g ∈ G.

It is easily checked (using the definition of the trace of a matrix as the sum of
its diagonal entries) that if A, B ∈ Mm×m(F ) then Trace(AB) = Trace(BA). It
follows that

χT̂1
(g) = Trace(X−1 · T̂2(g) ·X)

= Trace(X−1 ·X · T̂2(g))
= Trace(T̂2(g)) = χT̂2

(g).

We have proved the following fact.

Proposition 3.3.3. The characters of equivalent matrix representations of a group
G over a field F are equal.
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This allows us to define the character of a linear representation in terms of characters
of matrix representations.

Definition 3.3.4. Let T : G→ GL(M,F ) be a linear representation of a group G,
with M an F -vector space of dimension m over F . The character of the linear rep-
resentation T is the character χT̂ of any matrix representation T̂ : G→ GL(m,F )
for G over F obtained from T , with respect to a basis for M over F .

Consider again a matrix representation T̂ : G→ GL(m,F ). Suppose g1 and g2 are
conjugates in G, so that there exists an element x of G with g2 = x−1gx. Then

χT̂ (g2) = χT̂ (x−1g1x)

= Trace(T̂ (x−1g1x))
= Trace(T̂ (x−1) · T̂ (g1x))
= Trace(T̂ (g1x) · T (x−1))
= Trace(T̂ (g1xx

−1))
= Trace(T̂ (g1)) = χT̂ (g1).

Proposition 3.3.5. The characters of G are class functions for G. That is, they
induce well defined functions from the set of conjugacy classes of G to the field F .

Example 3.3.6. Consider again the dihedral group D3. The group has three
conjugacy classes, (1), (a), and (b), with

(1) = { 1 },
(a) = { a, a2 }, (a2 = b · a · b−1)
(b) = { b, ab, ab2 }. (ab = (a2b) · b · (a2b)−1; a2b = (ab) · b · (ab)−1)

The characters χ1, χ2, and χ3 of G listed in Example 3.3.2 induce functions χ̄1, χ̄2,
and χ̄3 respectively, for χi : C → F , C = { (1), (a), (b) }, as follows.

(g): (1) (a) (b)
χ̄1((g)): 1 1 1
χ̄2((g)): 1 1 −1
χ̄3((g)): 2 −1 0

Example 3.3.7. Let T̂1 : G → GL(m1, F ) and T̂2 : G → GL(m2, F ) be matrix
representations, with respective characters χT̂1

, χT̂2
: G → F . We have discussed

matrix representations

(T1 ⊕ T2) : G→ GL(m1 +m2, F ) and (T1 ⊗ T2) : G→ GL(m1 ·m2, F )
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in Section 3.1 (see, in particular, Examples 3.1.7 and 3.1.8). The matrices
(T1 ⊕ T2)(g) and (T1 ⊗ T2)(g) are as follows, for g ∈ G.

(T1 ⊕ T2)(g) =
[
T1(g) 0

0 T2(g)

]
,

and

(T1 ⊗ T2)(g) =


β1 1T1(g) β1 2T1(g) · · · β1m2T1(g)
β2 1T1(g) β2 2T1(g) · · · β2m2T1(g)

...
...

. . .
...

βm2 1T1(g) βm2 2T1(g) · · · βm2 m2T1(g)

 ,
such that βi j = T2(g)i j for 1 ≤ i, j ≤ m2. It is evident that

χ(T1⊕T2)(g) = Trace((T1 ⊕ T2)(g))
= Trace(T1(g)) + Trace(T2(g))
= χT1(g) + χT2(g),

and
χ(T1⊗T2)(g) = Trace((T1 ⊗ T2)(g))

=
m2∑
i=1

(βi i · Trace(T1(g)))

= (Trace(T1(g))) ·
m2∑
i=1

(βi i)

= (Trace(T1(g))) · (Trace(T2(g)))
= χT1(g)× χT2(g).

Thus the characters of the direct sum and tensor product of the representations T1

and T2 are, respectively, the sum and product of the characters of T1 and T2.

We carry our notation for representations over to characters.

Definition 3.3.8. A character χ : G→ F of a group G is an irreducible character
(respectively, an isotypic character, or a completely reducible character) if it is the
character χT corresponding to some irreducible (respectively, isotypic, or completely
reducible) matrix representation T of G over F .

Clearly every character of an irreducible (respectively, isotypic, or completely re-
ducible) matrix representation is, by definition, itself irreducible (respectively, iso-
typic, or completely reducible). We note that the converse is not generally true,
since a character χ can correspond to several inequivalent representations.
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Example 3.3.9. Suppose G = {xi : i ∈ N } is an infinite cyclic group with
generator x, and consider the function χ : G→ Q such that χ(xi) = 2 for all i ∈ N.
Then χ = χT1 = χT2 , for matrix representations T1, T2 : G→ GL(2,Q), such that,
for all i ∈ N,

T1(xi) =
[

1 0
0 1

]
, and T2(xi) =

[
1 i
0 1

]
.

Clearly T1 is completely reducible, and isotypic; hence so is χ = χT1 = χT2 . How-
ever, T2 is neither completely reducible nor isotypic.

Our remarks about the characters of direct sums of two representations generalise
to direct sums of an arbitrary (finite) number of representations. That is, suppose

T = T1 ⊕ T2 ⊕ · · · ⊕ Tk

for matrix representations T : G → GL(m,F ) and Ti : G → GL(mi, F ), for k ≥ 0
and 1 ≤ i ≤ k, with m = m1 +m2 + · · ·+mk. Then it is easily shown that

χT = χT1 + χT2 + · · ·+ χTk .

We have the following facts as consequences of this observation, and Proposi-
tion 3.3.3.

Proposition 3.3.10. Suppose χ : G→ F is a character of a group G.

(i) χ is completely reducible if and only if χ is a sum of isotypic characters.

(ii) χ is isotypic if and only if χ = m · ψ for some integer m > 0 and some
irreducible character ψ of G over F .

It is clear that we obtain partial information about a representation T from its char-
acter χT . We have noted that χT is irreducible (respectively, isotypic, or completely
reducible), if T is irreducible (respectively, isotypic, or completely reducible). We
have also noted that this information about the character of a representation is
not generally sufficient to prove that the representation is isotypic, or completely
reducible. We are interested in classes of representations T of groups G with the
property that a representation is uniquely determined by its character, so that the
representation T is completely reducible, isotypic, or irreducible if and only if its
character is. With this in mind, we consider representations and characters of finite
groups.

We first note that the problem of deciding whether a representation of a finite group
G over a field F is completely reducible is trivial, for a large class of fields F .
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Proposition 3.3.11. (Maschke’s Theorem). Let T : G → GL(M,F ) be a linear
representation of a finite group G of size n, over a field F whose characteristic is
either 0 or is positive and does not divide n; then T is completely reducible.

Proposition 3.3.11 is proved in Curtis and Reiner [31], or, assuming F = C, in
Serre [112] (see Theorem 1). The proof is constructive: it includes a (polynomial
time) algorithm which takes as input a basis for aG-subspaceN1 ofM , and produces
a basis for a G-subspace N2 of M , such that M = N1⊕N2. It is clear that Maschke’s
Theorem implies the analogous result for matrix representations; that is, that if
G and F are above, then every matrix representation of G over F is completely
reducible.

Applying Proposition 3.3.11 and Proposition 3.2.3, we obtain the following corollary.

Proposition 3.3.12. If G is a finite group with n elements, F is a field whose
characteristic does not divide n, and T is a linear (or matrix) representation of G
over F , then the associative algebras env(T ) and com(T ) are both semi-simple
over F .

Note that Example 3.1.13 includes a matrix representation of the cyclic group of
order n over Fp, for p a prime divisor of n, which is not completely reducible (and
whose enveloping algebra is not semi-simple) — demonstrating that the condition
that the characteristic of F not divide n = |G| is necessary for Maschke’s Theorem.

We next show that there are only finitely many inequivalent irreducible represen-
tations of G over a field F whose characteristic does not divide |G|, and derive
a (well known) upper bound for the number of inequivalent irreducible represen-
tations. Let G = {g1, g2, . . . , gn} and recall the regular matrix representation
TG : G → GL(n, F ) introduced in Example 3.1.3. We obtain a correspond-
ing regular linear representation T̃G : G → GL(MG, F ), for MG an F -vector
space of dimension n over F , with basis {m1, m2, . . . , mn } over F , by defining
T̃G(gi) ∈ GL(MG, F ) such that

T̃G(gi)(mj) = (mk) for k such that gi · gj = gk in G,

for 1 ≤ i, j ≤ n. Then the matrix representation TG : G → GL(n, F ) corresponds
to the linear representation T̃G and the basis {m1, m2, . . . , mn } for MG over F .
It is clear that the maps TG and T̃G are both injective (group) homomorphisms,
so the finite groups G, TG(G), and T̃G(G) are isomorphic. By Proposition 3.3.12,
the enveloping algebras env(TG) and env(T̃G) are semi-simple. It is easily checked
that these algebras are isomorphic to each other, and to the group algebra FG of
Example 2.1.6. These observations are of use in proving the following fact.
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Proposition 3.3.13. Let G and F be as above, and let T be an irreducible linear
representation of G over F ; then T is equivalent to an irreducible component of the
regular linear representation T̃G of G over F .

Proposition 3.3.13 is a consequence of a more general result, stated (and proved) as
Theorem 25.10 in [31].

Now since FG is semi-simple, the number of nonisomorphic left ideals of FG ∼=
env(T̃G), and hence the number of inequivalent irreducible components of T̃G, is
also the number of simple components of the semi-simple algebra FG. Thus we
obtain the following corollary.

Proposition 3.3.14. Let G and F be as above; then the number of inequivalent
irreducible linear (or matrix) representations of G over F is at most the number of
simple components of the semi-simple algebra FG.

Since FG has dimension n over F , we can conclude immediately that there are
at most n inequivalent irreducible representations. We obtain a tight bound for
the number of inequivalent irreducible representations, for all groups over a general
class of fields, by examining the structure of the algebra FG.

We noted in Section 2.4 that every simple component of a semi-simple algebra A
(in particular, of FG) has an identity element which is a central idempotent in A.
These central idempotents are clearly linearly independent in A over F (note that
they annihilate each other). Hence, the number of simple components of A is at
most the dimension over F of the centre of A.

Now we consider the centre of FG. Suppose c1g1 + c2g2 + · · ·+ cngn ∈ centre(FG),
for c1, c2, . . . , cn ∈ F . Then clearly

(c1g1 + c2g2 + · · ·+ cngn)g = g(c1g1 + c2g2 + · · ·+ cngn)

and

c1(g−1g1g) + c2(g−1g2g) + · · ·+ cn(g−1gng) = c1g1 + c2g2 + · · ·+ cngn

for all g ∈ G. Since g1, g2, . . . , gn are linearly independent in FG, it follows that
ci = cj if gi and gj are conjugates in G. Conversely, if C1, C2, . . . , Ck are the
conjugacy classes of G, then

Ci =
∑
g∈Ci

g ∈ centre(FG)

for 1 ≤ i ≤ k. Clearly, C1, C2, . . . , Ck are linearly independent and span centre(FG)
over F . We have proved the following.
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Proposition 3.3.15. Let F and G be as above; then the number of simple com-
ponents of FG over F is at most k, the number of conjugacy classes in G. Conse-
quently, there are at most k inequivalent irreducible linear (or matrix) representa-
tions of G over F .

We saw in Section 2.4 that if A is semi-simple over F , with l simple components, then
centre(A) ∼= E1 ⊕E2 ⊕ · · · ⊕El, for finite algebraic extension fields E1, E2, . . . , El
over F , so that the dimension of centre(A) is the sum of the dimensions of the
fields Ei over F , for 1 ≤ i ≤ l. If F is algebraically closed, then Ei = F for all i,
and it follows that k = l.

Proposition 3.3.16. Let F and G be as above, and suppose F is algebraically
closed; then G has k inequivalent irreducible matrix (or linear) representations
over F , where k is the number of conjugacy classes in G.

Thus there are at most k inequivalent irreducible matrix representations, and at
most k distinct characters for G over F , if G is a finite group with n elements
and k conjugacy classes, and n does not divide the characteristic of F . Since each
character ofG is a class function, so that it is specified by its value at the k conjugacy
classes of G, we can specify all these values using a table with l ≤ k rows and
k columns, with rows indexed by the l distinct characters of G over F , columns
indexed by the conjugacy classes, and with the (i, j)th entry of the table equal
to the value of the character indexing row i at an element of the conjugacy class
indexing column j. We call such a table of values a character table for G over F .

Example 3.3.17. A character table for the dihedral group D3 over the field C is
included in Example 3.3.6.

We consider the problem stated on the following page. It is clear that we can solve
this problem in polynomial time if we can form, and then decompose, a regular
matrix representation of G at this cost. Given the input for this problem, the
formation of a regular matrix representation of G is straightforward. Thus it follows
from the results of Rónyai [102], [103] that we can compute a character table of a
finite group G over a finite field Fpl from a multiplication table for G, using a
probabilistic algorithm, in polynomial time. We can also compute a character table
for G over C or R, with entries in a number field which is an extension with small
degree over Q, in (Boolean) probabilistic polynomial time (cf. Corollaries 3.2.10
and 3.2.11, and the remarks following Corollary 3.2.11).

In Sections 3.3.2–3.3.4 we discuss deterministic polynomial time algorithms for the
computation of character tables over C.
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Problem Computation of a Character Table

Input. • Integer n > 0, which does not divide the characteristic of F .
• A multiplication table for a finite group G = { g1, g2, . . . , gn }

with n elements.
Output. • The number k of conjugacy classes in G.

• The number l of distinct irreducible characters of G
over the ground field F .

• A character table (with l rows and k columns) for G over F .

3.3.2. Burnside’s Algorithm for Character Tables

We now assume G is a finite group with n elements, and that F is an algebraically
closed field whose characteristic does not divide n — so that Maschke’s Theorem
is applicable, and G has exactly k inequivalent irreducible representations (and
characters) over F , for k the number of conjugacy classes of G. (We will soon
relax the restriction that F be algebraically closed: see Proposition 3.3.23 and the
remarks which follow it.) We make the further assumption that if the characteristic
of F is a positive prime p, then p > 2n. There is a well known algorithm, due to
Burnside, which can be used under these conditions to compute the character table
of G over F efficiently. We present and analyse Burnside’s algorithm in this section.

We begin with a number of (well known) orthogonality relations for the irreducible
characters of G, which are required to show that Burnside’s algorithm is correct.
These are stated as Proposition 3.3.18, below.

We will use the following notation. Once again, we let k be the number of conjugacy
classes of G. We denote these conjugacy classes by C1, C2, . . . , Ck. For convenience,
we assume C1 = { 1G } (for 1G the identity element in G). For 1 ≤ i ≤ k, we denote
by i∗ the integer between 1 and k such that

Ci∗ = { g−1 : g ∈ Ci }.

We denote by hi the number of elements of the conjugacy class Ci, for 1 ≤ i ≤ k,
and we denote by ζ(1), ζ(2), . . . , ζ(k) the distinct irreducible characters of G over F ,
in some (arbitrarily chosen) order. Finally, we denote by zi the dimension of an
irreducible matrix representation of G over F with character ζ(i). Since 1G ∈ C1, it
is clear that zi = ζ

(i)
1 if F has characteristic 0, and that ζ(i)

1 = (zi mod p) if F has
positive characteristic p.
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Proposition 3.3.18. Suppose G is a finite field with n elements, and that F is an
algebraically closed field whose characteristic does not divide n. Let k, hi, i∗, ζ(i),
zi, and ζ

(i)
j be as defined above. Then

(i)
∑
g∈G

ζ(i)(hg)ζ(j)(g−1) =
ζ(i)(h) · n

zi
· δi j ;

(ii)
∑
g∈G

ζ(i)(g)ζ(j)(g−1) = n · δi j ;

(iii)
k∑
l=1

hlζ
(i)
l ζ

(j)
l∗ = n · δi j ;

(iv)
k∑
l=1

ζ
(l)
i ζ

(l)
j∗ =

n

hi
· δi j ;

for h ∈ G, 1 ≤ i, j ≤ k (and for δi j the Kronecker delta).

These relations are standard. For a proof of their correctness, see (for example)
Section 31 of Curtis and Reiner [31]. They can be used to generate the character
tables of some (very) small groups. For example, they are used to compute the
character tables of the groups S3, A4, and S4 (the symmetric group on 3 letters,
and the alternating and symmetric groups on 4 letters) in Section 32 of Curtis and
Reiner. In general, however, we must use some additional facts in order to compute
character tables.

Definition 3.3.19. For 1 ≤ r, s, t ≤ k, set cr s t to be the number of solutions
(x, y) for the equation x · y = z with x ∈ Cr, y ∈ Cs, for some fixed z ∈ Ct. It is
easily checked that cr s t is independent of the choice of z, and that

Cr · Cs =
k∑
t=1

cr s tCt (3.3.1)

in FG (with cr s t viewed as an element of the prime field of F ). We call the values
cr s t (for 1 ≤ r, s, t ≤ k) a set of structure constants for the group G.

Let Z(j) : G → GL(zj , F ) be an irreducible matrix representation over F with
character ζ(j), for 1 ≤ j ≤ k. We have noted that Ci ∈ Centre(FG), for 1 ≤
j ≤ k; consequently, Z(j)(Ci) commutes with Z(j)(g) for all g ∈ G, and hence
Z(j)(Ci) ∈ com(Z(j)). Since Z(j) is irreducible, com(Z(j)) is a finite-dimensional
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division algebra over F , by Proposition 3.2.5(a). Since F is an algebraically closed
field, it follows that com(Z(j)) ∼= F , so

Z(j)(Ci) = ω
(j)
i Izj for some ω(j)

i ∈ F ; (3.3.2)

that is, Z(j)(Ci) is a scalar multiple of the identity matrix in GL(zj , F ). Since the
representation Z(j) has character ζ(j) and ζ(j)(g) = ζ

(j)
i for all g ∈ Ci, and since

Ci =
∑
g∈Ci g in FG, and (finally) since |Ci| = hi, it follows that

zjω
(j)
i = Trace(Z(j)(Ci)) = ζ(j)(Ci) = hi · ζ(j)

i ;

thus

ω
(j)
i =

hi · ζ(j)
i

zj
, for 1 ≤ i, j ≤ k. (3.3.3)

Now we apply the map Z(j) to Equation 3.3.1:

Z(j)(Cr) · Z(j)(Cs) =
k∑
t=1

cr s tZ
(j)(Ct),

or, using Equation 3.3.2,

ω(j)
r Izj · ω(j)

s Izj =
k∑
t=1

cr s tω
(j)
t · Izj .

Thus,

ω(j)
r · ω(j)

s =
k∑
t=1

ω
(j)
t , for 1 ≤ r, s ≤ k. (3.3.4)

Now if we denote by Vs the matrix in Mk×k(F ) whose (r, s)th entry is cr s t for
1 ≤ r, t ≤ k, then the above equation implies that

ω(j)
s ·


ω

(j)
1

ω
(j)
2
...

ω
(j)
k

 = Vs ·


ω

(j)
1

ω
(j)
2
...

ω
(j)
k

 , (3.3.5)

so that the values of the characters ζ(1), ζ(2), . . . , ζ(k) at any element of the conju-
gacy class Cs are eigenvalues of the matrix Vs, while the vectors

w1 =


ω

(1)
1

ω
(1)
2
...

ω
(1)
k

 , w2 =


ω

(2)
1

ω
(2)
2
...

ω
(2)
k

 , · · · , wk =


ω

(k)
1

ω
(k)
2
...

ω
(k)
k


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are common eigenvalues of the matrices V1, V2, . . . , Vk.

Burnside’s algorithm is based on the above facts. The structure constants cr s t (for
1 ≤ r, s, t ≤ k) for G are easily computed from the multiplication table for G; they
are used (as entries of the matrices V1, V2, . . . , Vk, whose eigenspaces are computed)
to generate the vectors w1, w2, . . . , wk. Before stating the algorithm in detail, we
show that w1, w2, . . . , wk can be uniquely determined as common eigenvectors of
V1, V2, . . . , Vk.

We have defined h1, h2, . . . , hk to be the sizes of the classes C1, C2, . . . , Ck of G.
Suppose x ∈ Ci, and consider the set

Hx = { y ∈ G : x · y = y · x }.

It is easily checked that Hx is a subgroup of G, and that for any elements α, β of G,
αxα−1 = βxβ−1 if and only if α ∈ βHx = {βy : y ∈ Hx }. Now if x, y ∈ Ci then
it is easily checked that |Hx| = |Hy| (if y = αxα−1, then the map φ : g 7→ αgα−1

defines a bijection from Hx to Hy). It follows that, if we denote by ci the number
of elements in Hx for any x ∈ Ci, then

n = |G| = |Ci| · |Hx| = hi · ci,

and, in particular, that hi is a divisor of n. Since the characteristic of F does
not divide n, it does not divide hi either. Jacobson [68] notes that this is also
the case for the integers z1, z2, . . . , zk; that is, if F is algebraically closed and has
characteristic p > 0 such that p does not divide n, then p does not divide any zi
(see Section 5.5, Theorem 5.10, of Jacobson [68]). These facts are used to prove the
following lemma.

Lemma 3.3.20. Let G, n, F , and the values cr s t, Vs, and ws be as defined above,
for 1 ≤ r, s, t ≤ k. For every pair of vectors wi and wj , with 1 ≤ i < j ≤ k, there
exists an integer l such that 1 ≤ l ≤ k and such that wi and wj are vectors in
distinct eigenspaces of the matrix Vl.

Proof. We begin by showing that the vectors w1, w2, . . . , wk are linearly indepen-
dent over F . Let W ∈ Mk×k(F ) be the matrix with ith column wi, for 1 ≤ i ≤ k.
Then

W =


ω

(1)
1 ω

(1)
2 · · · ω

(1)
k

ω
(2)
1 ω

(2)
2 · · · ω

(2)
k

...
...

. . .
...

ω
(k)
1 ω

(k)
2 · · · ω

(k)
k

 ,
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and it is clear that the vectors w1, w2, . . . , wk are linearly independent over F if
and only if the matrix W is nonsingular. Now, since

ω
(j)
i =

hi · ζ(j)
i

zj
for 1 ≤ i, j ≤ k,

it is clear that

W =


z1 0

z2

. . .
0 zk


−1

·


ζ

(1)
1 ζ

(1)
2 · · · ζ

(1)
k

ζ
(2)
1 ζ

(2)
2 · · · ζ

(2)
k

...
...

. . .
...

ζ
(k)
1 ζ

(k)
2 · · · ζ

(k)
k

 ·

h1 0

h2

. . .
0 hk

 .
Since all of the integers z1, z2, . . . , zk and h1, h2, . . . , hk are positive, and none
of them divide the characteristic of F , it is clear that the first and third of the
matrices on the right side of this equation are nonsingular. It is a consequence
of the orthogonality relations (stated in Proposition 3.3.18) that the rows of the
second matrix are linearly independent, so that this matrix is nonsingular, as well.
Thus W is nonsingular, and w1, w2, . . . , wk are linearly independent over F .

Now suppose the lemma is false — so there exist vectors wi and wj , for i and j such
that 1 ≤ i < j ≤ k, such that wi and wj are in the same eigenspace of the matrix Vs,
for all s between 1 and k. It follows, by Equation 3.3.5, that ω(i)

s = ω
(j)
s for all s,

since these are the eigenvalues for the eigenvectors wi and wj for Vs. Thus the ith

and jth columns of the matrix W are the same, contradicting the fact that W is
nonsingular, as is required to prove the lemma.

It follows that we can compute the vectors w1, w2, . . . , wk to within constant fac-
tors, by computing bases of eigenspaces of the matrices V1, V2, . . . , Vk, then using a
divide and conquer approach, computing intersections of these subspaces (discarding
empty subspaces, and subspaces for which proper subspaces have been generated);
we will obtain k one-dimensional subspaces of Mk×1(F ). Choosing nonzero entries
of these subspaces, we obtain vectors

ŵ1 = α1w1, ŵ2 = α2w2, . . . , ŵk = αkwk,

for nonzero values α1, α2, . . . , αk in F . Since the ordering in which the characters
ζ(1), ζ(2), . . . , ζ(k) are listed is arbitrary, we can choose the ordering at this point
(by ordering the vectors ŵ1, ŵ2, . . . , ŵk).

Now it remains only to eliminate the constants αi, and compute the vectors
z1, z2, . . . , zk, in order to obtain the values

ζ
(j)
i =

zj · ω(j)
i

hi
for 1 ≤ i, j ≤ k.

206



We eliminate α1, α2, . . . , αk by noting that, since C1 = { 1 },

ζ
(i)
1 = ζ(i)(1) = Trace(Z(i)(1)) = zi.

Thus

zi = ζ
(i)
1 =

zi · ω(i)
1

h1
,

and, since zi > 0, and h1 = 1, it follows that ω(i)
i = 1 for 1 ≤ i ≤ k; αi is the first

entry of the vector

ŵi = αi ·


ω

(i)
1

ω
(i)
2
...

ω
(i)
k

 = αi ·


1
ω

(i)
2
...

ω
(i)
k

 .

Now it remains only to compute z1, z2, . . . , zk in order to recover the value ζ(j)
i ,

for 1 ≤ i, j ≤ k. At this point we use the third of the orthogonality relations stated
in Proposition 3.3.18. Using the values hi, i∗, and ω(i)

j , which we have obtained, we
compute the values Si, for 1 ≤ i ≤ k, given below.

Si =
k∑
l=1

1
hl
· ω(i)

l · ω
(i)
l∗

=
k∑
l=1

hl
(
zi·ω(i)

l

hl

)
·
(
zi·ω(i)

l∗
hl∗

)
z2
i

 since hl = hl∗

=
1
z2
i

k∑
l=1

(
hlζ

(i)
l ζ

(i)
l∗

)
=

n

z2
i

, by Proposition 3.3.18(iii).

Now (n/Si) = z2
i ∈ F . Since zi is the dimension of an irreducible matrix represen-

tation of G, which is a component of the regular matrix representation of G over F ,
0 < zi < n. We now use our assumption that p > 2n (if p = char(F ) > 0) to
conclude that the integer zi can be determined from the value (n/Si) ∈ F .

We state the resulting algorithm on the following page.
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Algorithm Character Table I (Burnside)

Input. • Integer n > 0.
• A multiplication table for a finite group G = { g1, g2, . . . , gn }

with n elements.
Output. • The number k of conjugacy classes of G.

• The number l of distinct irreducible characters of G, over the
ground field F , an algebraically closed field of characteristic 0
or of characteristic p, for p > 2n such that gcd(p, n) = 1.
• A character table (with l rows and k columns) for G over F .

(1) Use the multiplication table for G to compute the number k of
conjugacy classes, and the sizes h1, h2, . . . , hk of these classes,
C1, C2, . . . , Ck (listed in some order), and to compute the
number cr s t of solutions (x, y) of the equation x · y = z for fixed z ∈ Ct,
such that x ∈ Cr and y ∈ Cs, for 1 ≤ r, s, t ≤ k. Set l = k.
For 1 ≤ i ≤ k, compute the integer i∗ such that g−1 ∈ Ci if g ∈ Ci,
for g ∈ G.

(2) For 1 ≤ s ≤ k, let Vs ∈Mk×k(F ) such that (Vs)r t = cr s t for 1 ≤ r, t ≤ k.
Compute the eigenvalues, and bases for the eigenspaces, of the matrices
V1, V2, . . . , Vk. Compute bases for intersections of these eigenspaces
(using a divide and conquer approach) to obtain vectors

w1 =


ω

(1)
1

ω
(1)
2
...

ω
(1)
k

 , w2 =


ω

(2)
1

ω
(2)
2
...

ω
(2)
k

 , . . . , wk =


ω

(k)
1

ω
(k)
2
...

ω
(k)
k


in Mk×1(F ), such that these are common eigenvectors of V1, V2, . . . , Vk,
span Mk×1(F ) over F , and such that ω(i)

1 = 1 for 1 ≤ i ≤ k.

(3) For 1 ≤ i ≤ k, compute Si =
k∑
l=1

1
hl
ω

(i)
l ω

(i)
l∗ . Set zi to be the unique

integer such that zi > 0 (if F has characteristic 0) or 0 < zi < (p/2)
(if F has positive characteristic p) and such that Si · z2

i = n (in F ).
(4) For 1 ≤ r, s ≤ k, set the (r, s)th entry of the character table to be

ζ(r)
s =

zr · ω(r)
s

hs
∈ F .

Return the desired values.
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In order to prove that we can implement this algorithm efficiently using Boolean
circuits, we note that all values computed lie in a single small algebraic extension
of the prime field of F (that is, of Q if F has characteristic 0, or of Fp, if F has
characteristic p, for p > 0). We define the exponent of G, exp(G), to be the lowest
common multiple of the orders of the elements of G. In general, exp(G) divides n.
If G is cyclic then exp(G) = n; however, exp(G) can be much smaller than n.

Example 3.3.21. The additive group Fk2 = F2⊕F2⊕ · · · ⊕Fk (with k summands)
has order n = 2k and exponent 2, for all k > 0.

Definition 3.3.22. Let G be a finite group. A field F is a splitting field for G if, for
every irreducible matrix representation T̂ for G over F and every field extension E
of F , the representation T̂E is irreducible over E.

Proposition 3.3.23. Let G be a finite group with order n and exponent m.

(i) If F is a field whose characteristic is zero or is positive and does not divide n,
and if F contains an mth primitive root of unity, then F is a splitting field
for G.

(ii) If F is as in (i) and E is an algebraic closure of F then a character table for
G over F is also a character table for G over E. Furthermore, the entries of a
character table for G over F all lie in F ∩K[ω], for K the prime field of F and
for ω an mth primitive root of unity in E. If F has characteristic zero, so that
K = Q, then the entries of a character table for G over F are all algebraic
integers.

Part of Proposition 3.3.23 follows from the fact that gm = 1 for all g ∈ G. Thus, if
T is a matrix representation for G over F , then (T (g))m = 1, so the characteristic
values of the matrix T (g) are all mth roots of unity in E. Hence the entries of a
character table for G over F are all members of the subfield K[ω] of E, as well as
of F , and are algebraic integers if K = Q.

It is more difficult to show that any matrix representation of G over E is equivalent
to some matrix representation of G over F — and also to some matrix representation
of G over K[ω]. (Note that this is also implied by the above proposition.) This was
conjectured by Maschke, and first proved by Brauer; for a proof of this result, and
additional references, see Sections 41 and 70 of [31] (see in particular Theorems 41.1
and 70.23).

We can now relax our earlier restriction that F be algebraically closed: It is sufficient
to assume instead that F is a splitting field for G, which contains an mth primitive
root of unity. We will continue to assume also that the characteristic of F is either
zero or greater than 2n.
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Now the structure constants cr s t are integers between 0 and n, for 1 ≤ r, s, t ≤ k;
they each have a binary representation of length O(log n). It is easily checked
that the intermediate values generated by Burnside’s algorithm each have Boolean
representations with length polynomial in n. Applying the results for factorisation
and linear algebra summarised in Section 1, it is easily checked that Burnside’s
algorithm can be implemented to compute character tables of finite groups over C
efficiently. Thus, we have proved the following result.

Theorem 3.3.24. Let G be a finite group of order n, and let F be a splitting field
for G of characteristic 0. Then the character table of G over C can be computed from
a multiplication table for G, using a family of Boolean circuits of size polynomial
in n.

Note that, if the splitting field F (of the above theorem) does not include an mth

primitive root of unity, then since m does not divide the characteristic of F , some
algebraic extension of small degree over F includes such a root; we can compute a
character table for G over F by working in a (small) extension, and then recovering
(binary) representations of the entries of the table as elements of the ground field F .

Example 3.3.25. We will use Burnside’s method to compute the character table
of D3 over C. We use as input the following multiplication table for D3.

g: 1 a a2 b ab a2b

1 · g: 1 a a2 b ab a2b
a · g: a a2 1 ab a2b b
a2 · g: a2 1 a a2b b ab
b · g: b a2b ab 1 a2 a
ab · g: ab b a2b a 1 a2

a2b · g: a2b ab b a2 a 1

Checking values h−1gh for g, h ∈ G, we group the elements ofG into three conjugacy
classes C1, C2, and C3, with orders h1, h2, and h3 respectively, and compute integers
1∗, 2∗, and 3∗:

C1 = { 1 }, C2 = { a, a2 }, C3 = { b, ab, ab2 };
h1 = 1, h2 = 2, h3 = 3;
1∗= 1, 2∗= 2, 3∗= 3.

Elements of the classes C1, C2, and C3 have orders 1, 3, and 2 respectively; hence the
exponent of G is m = lcm(1, 3, 2) = 6. We will express the entries of the character
table as elements of the algebraic extension Q[ω] of Q, for ω a 6th primitive root
of unity. As indicated in Section 1, we identify ω (and the field Q[ω]) by stating
the minimal polynomial of ω over Q, as well as an isolating region for ω in C. The
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minimal polynomial for an mth primitive root of unity over Q is the mth cyclotomic
polynomial, Ψm; the coefficients of this polynomial are easily computed using the
formula

Ψm =
∏

d divides m

(xd − 1)µ(m/d),

where µ(n) is the Möbius function, given for positive integers n by the rules µ(1) = 1,
µ(p1p2 · · · pr) = (−1)r if p1, p2, . . . , pr are distinct primes, and µ(n) = 0 if n > 0 is
not squarefree. For this example, ω has minimal polynomial

Ψ6 = (x6 − 1)(x3 − 1)−1(x2 − 1)−1(x− 1) = x2 − x+ 1.

In general, we can choose as ω any root of Ψm — including the root

e
2π
√
−1

m = cos
(

2π
m

)
+
√
−1 · sin

(
2π
m

)
.

We can compute an isolating region for this root using standard (Taylor series)
approximations for the trigonometric functions, sine and cosine. For our example,
we can use

ω = cos
(π

3

)
+
√
−1 · sin

(π
3

)
=

1
2

+
√
−1 ·

√
3

2
;

we can use the isolating region given by the inequalities

0.4 < Re(ω) < 0.6, and 0.8 < Im(ω) < 0.9.

Each entry ζ(i)
j of the character table will be specified by values ζ(i)

j, 0, ζ
(i)
j, 1 ∈ Q such

that
ζ

(i)
j = ζ

(i)
j 0 + ζ

(i)
j 1 · ω.

Now since G has 3 conjugacy classes, the character table to be computed will have
3 rows and 3 columns. By inspection of the multiplication table (and evaluation
of products x · y for x ∈ Cr and y ∈ Cs, for 1 ≤ r, s ≤ 3), we obtain the following
structure constants for the group G (and for the conjugacy classes C1, C2, and C3
indicated above).

r: 1 2 3
cr 1 1: 1 0 0
cr 1 2: 0 1 0
cr 1 3: 0 0 1

r: 1 2 3
cr 2 1: 0 2 0
cr 2 2: 1 1 0
cr 2 3: 0 0 2

r: 1 2 3
cr 3 1: 0 0 3
cr 3 2: 0 0 3
cr 3 3: 1 2 0
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Thus we obtain vectors w1, w2, w3 ∈M3×1(Q[ω]) ⊆M3×1(C) as common eigenvec-
tors (with first entry 1) of the matrices

V1 =

 1 0 0
0 1 0
0 0 1

 , V2 =

 0 1 0
2 1 0
0 0 2

 , V3 =

 0 0 1
0 0 2
3 3 0

 .
Computing and factoring the characteristic polynomials (over Q[ω]), we find that
the characteristic polynomials of V1, V2, and V3 are, respectively,

φ1 = t3 − 3t2 + 3t− 1 = (t− 1)3,

φ2 = t3 − 3t2 + 4 = (t− 2)2(t+ 1), and
φ3 = t3 − 6t2 − 3t = t(t+ 3)(t− 3).

Since φ3 is squarefree, we can use V3 alone to compute the vectors w1, w2, and w3,
as eigenvalues for the characteristic values 0, 3, and −3 respectively.

Solving systems of linear equations over Q[ω], we see that, for w ∈M3×1(Q[ω]),

V3 · w = 0 if and only if w = α ·

 1
−1
0

 for some α ∈ Q[ω];

V3 · w = 3w if and only if w = α ·

 1
2
3

 for some α ∈ Q[ω]; and

V3 · w = −3w if and only if w = α ·

 1
2
−3

 for some α ∈ Q[ω].

Thus (since w(i)
1 = 1 for all i), we have

w1 =

 1
−1
0

 , w2 =

 1
2
3

 , w3 =

 1
2
−3

 , and

ω
(1)
1 = 1 ω

(2)
1 = 1 ω

(3)
1 = 1

ω
(1)
2 =−1 ω

(2)
2 = 2 ω

(3)
2 = 2

ω
(1)
3 = 0 ω

(2)
3 = 3 ω

(3)
3 =−3.
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We next compute the values S1, S2, and S3:

S1 =
1
h1
ω

(1)
1 ω

(1)
1∗ +

1
h2
ω

(1)
2 ω

(1)
2∗ +

1
h3
ω

(1)
3 ω

(1)
3∗

=
1
1
· 1 · 1 +

1
2
· (−1) · (−1) +

1
3
· 0 · 0 =

3
2

;

S2 =
1
h1
ω

(2)
1 ω

(2)
1∗ +

1
h2
ω

(2)
2 ω

(2)
2∗ +

1
h3
ω

(2)
3 ω

(2)
3∗

=
1
1
· 1 · 1 +

1
2
· 2 · 2 +

1
3
· 3 · 3 = 6;

S3 =
1
h1
ω

(3)
1 ω

(3)
1∗ +

1
h2
ω

(3)
2 ω

(3)
2∗ +

1
h3
ω

(3)
3 ω

(3)
3∗

=
1
1
· 1 · 1 +

1
2
· 2 · 2 +

1
3
· (−3) · (−3) = 6.

Thus

z2
1 =

n

S1
=

6
(3/2)

= 4, and z1 = 2;

z2
2 =

n

S2
=

6
6

= 1, and z2 = 1; and

z2
3 =

n

S3
=

6
6

= 1, and z3 = 1.

Finally, we compute and return the entries

ζ
(1)
1 = z1ω

(1)
1

h1
= 2; ζ

(1)
2 = z1ω

(1)
2

h2
=−1; ζ

(1)
3 = z1ω

(1)
3

h3
= 0;

ζ
(2)
1 = z2ω

(2)
1

h1
= 1; ζ

(2)
2 = z2ω

(2)
2

h2
= 1; ζ

(2)
3 = z2ω

(2)
3

h3
= 1;

ζ
(3)
1 = z3ω

(3)
1

h1
= 1; ζ

(3)
2 = z3ω

(3)
2

h2
= 1; ζ

(3)
3 = z3ω

(3)
3

h3
=−1.

Note that this agrees with the set of values shown in Example 3.3.6, to within the
ordering of the rows, as required.

Note that the entries of this character table are all integers — so the smallest field
containing all entries of this table (namely, Q) is a proper subfield of Q[ω] in this
case.
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3.3.3. Dixon’s Algorithm for Character Tables

It would appear that factorisation over Q or a number field is necessary, if we are
to compute character tables over C — or, at least, that computations of character
tables for finite groups with k conjugacy classes would not be less expensive than
factorisation of polynomials of degree k over Q. Surprisingly, this is not the case: In
this section we present and analyse a modification of Burnside’s algorithm suggested
by Dixon [34], which allows us to replace factorisation of polynomials over Q in the
algorithm by factorisation of polynomials over small finite fields.

Once again, suppose the finite group G has n elements, k conjugacy classes, and
exponent m. Let p be a prime greater than 2n, and let F = Fp[ω̂], for ω̂ an mth prim-
itive root of unity in an algebraic closure of Fp. Suppose ω is an mth primitive root
of unity in C; then there is a ring homomorphism

φ : Z[ω]→ Fp[ω̂]

such that φ(ω) = ω̂. We have seen that every entry ζ(i)
j of a character table for G

over C has the form

ζ
(i)
j = ζ

(i)
j, 0 + ζ

(i)
j, 1ω + · · ·+ ζ

(i)
j,m−1ω

m−1,

for integers ζ
(i)
j, 0, ζ

(i)
j, 1, . . . , ζ

(i)
j,m−1. Clearly, then,

φ(ζ(i)
j ) = φ(ζ(i)

j, 0 + ζ
(i)
j, 1ω + · · ·+ ζ

(i)
j,m−1ω

m−1)

= φ(ζ(i)
j, 0) + φ(ζ(i)

j, 1)ω̂ + · · ·+ φ(ζ(i)
j,m−1)ω̂m−1.

Dixon argues, for the special case ω̂ ∈ Fp = F , that the values φ(ζ(i)
j ) are entries

of a character table for G over an algebraic closure of Fp, so that these are the
values computed by using Burnside’s algorithm over such a field. We generalise his
argument by removing the assumption that ω̂ belongs to the prime field Fp. The
details are given below.

Let cr s t ∈ Z and let V1, V2, . . . , Vk ∈Mk×k(Z) be as defined in Section 3.3.2, and
consider the vectors

w1 =


ω

(1)
1

ω
(1)
2
...

ω
(1)
k

 , w2 =


ω

(2)
1

ω
(2)
2
...

ω
(2)
k

 , · · · , wk =


ω

(k)
1

ω
(k)
2
...

ω
(k)
k

 .

214



These are eigenvectors of V1, V2, . . . , Vk; hence, so are the vectors

z1w1 =


h1ζ

(1)
1

h2ζ
(1)
2

...
hkζ

(1)
k

 , z2w2 =


h1ζ

(2)
1

h2ζ
(2)
2

...
hkζ

(2)
k

 , · · · , zkwk =


h1ζ

(k)
1

h2ζ
(k)
2
...

hkζ
(k)
k

 .
The entries of these vectors are in Z[ω]; they are determined, to within order of ap-
pearance and constant factors (in C), as eigenvectors of the matrices V1, V2, . . . , Vk
— and also as eigenvectors of zV1, zV2, . . . , zVk, for z =

∏k
i=1 zi. The eigenvalues

of the latter set of matrices are elements of Z[ω]; specifically, zVs has eigenvalues

zω(j)
s = hsζ

(j)
s

k∏
l=1
l 6=j

zl, for 1 ≤ j ≤ k.

Now consider the application of Burnside’s algorithm, for the group G, over an
algebraic closure of Fp containing ω̂. If we denote by ζ̂(i)

j the entries of a character

table for G over this field (to distinguish them from the entries ζ(i)
j of a character

table for G over C), then we can argue as above that these are determined, to within
constant factors and order of appearance, by the fact that the vectors

z̃1ŵ1 =


h1ζ̂

(1)
1

h2ζ̂
(1)
2

...
hk ζ̂

(1)
k

 , z̃2ŵ2 =


h1ζ̂

(2)
1

h2ζ̂
(2)
2

...
hk ζ̂

(2)
k

 , · · · , z̃kŵk =


h1ζ̂

(k)
1

h2ζ̂
(k)
2
...

hk ζ̂
(k)
k


are simultaneous eigenvectors of the matrices z̃V̂1, z̃V̂2, . . . , z̃V̂k, and by the fact
that h1ζ̂

(i)
1 = z̃i, for 1 ≤ i ≤ k, where z̃i is the dimension of the character ζ̂(i),

and for z̃ =
∏k
i=1 z̃i (extending φ to be a homomorphism from vectors and matrices

with entries in Z[ω] to vectors and matrices in Fp[ω̂], and setting V̂s = φ(Vs) for
1 ≤ s ≤ k).

Now since (zVs)·(ziwi) = (zω(i)
s )·(ziwi) and the entries of these vectors and matrices

are all in Z[ω],
φ(zVs) · φ(ziwi) = φ(zω(i)

s ) · φ(ziwi),

so that φ(ziwi) is an eigenvector of the matrix φ(zVs), and of φ(Vs) (since φ(z) 6= 0).
We again use the fact that our ordering of the characters ζ(1), ζ(2), . . . , ζ(k) is
completely arbitrary, as well as the fact that Burnside’s algorithm is correct both
over (algebraic closures of) Fp[ω̂] and Q[ω], to conclude that

φ(ziwi) = ciz̃iŵi,
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for some nonzero constants c1, c2, . . . , ck ∈ Fp[ω̂] and for 1 ≤ i ≤ k. Thus,
φ(hjζ

(i)
j ) = cihj ζ̂

(i)
j , and

φ(ζ(i)
j ) = ciζ̂

(i)
j for 1 ≤ i, j ≤ k.

Applying Proposition 3.3.18(ii), we see that

φ(n) = φ

∑
g∈G

ζ(i)(g)ζ(i)(g−1)


=
∑
g∈G

φ(ζ(i)(g))φ(ζ(i)(g−1))

= c2i
∑
g∈G

ζ̂(i)(g)ζ̂(i)(g−1)

= c2iφ(n),

so that ci = ±1 in Fp for all i. However,

φ(zi) = φ(ζ(i)
1 ) = ciζ̂

(i)
1 = ciz̃i;

since z̃i is the dimension of a component of the regular matrix representation of G,
z̃i must be one of 1, 2, . . . , n. Now we use that assumption that p > 2n to conclude
that z̃i and ciz̃i can both be in this range, for ci = ±1, only if ci = 1. We have
proved the following lemma.

Lemma 3.3.26. Let G, n, k, and m be as above. Let p be a prime greater
than 2n, and let F be an algebraically closed field of characteristic p. Let ω be an
mth primitive root of unity in C, and let ω̂ be an mth primitive root of unity in F .
Suppose values ζ(i)

j (for 1 ≤ i, j ≤ k) are the entries of a character table for G

over C; then ζ(i)
j ∈ Z[ω], and the values φ(ζ(i)

j ) are entries of a character table for G
over F , for φ : Z[ω]→ Fp[ω̂] the homomorphism of rings taking ω to ω̂ (and taking
each integer i to (i mod p)).

Since character tables are unique, up to the ordering of rows and columns, this
lemma implies that every character table for G over F is the image under φ of
a character table for G over C. Dixon [34] includes a method for recovering a
character table for C from its image under φ, for the case ω̂ ∈ Fp (that is, for the
case k divides p − 1, and the elements φ(ζ(i)

j ) all lie in the prime field of F ). We
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present his method below, noting that it generalises directly to the more general
case that the characteristic of F is any prime greater than 2n.∗

Once again, we recall that the entries of a character table for G over C all lie in Z[ω],
for ω an mth primitive root of unity in C:

ζ
(i)
j = ζ

(i)
j, 0 + ζ

(i)
j, 1ω + · · ·+ ζ

(i)
j,m−1ω

m−1,

for integers ζ(i)
j, 0, ζ

(i)
j, 1, . . . , ζ

(i)
j,m−1 between 0 and n — because each entry ζ(i)

j is the

trace of a matrix of order at most n, whose entries are all mth roots of unity; ζ(i)
j, l

is the multiplicity of the root ωl as a characteristic value of this matrix. Let s be
an integer between 0 and m− 1; since the characteristic values of the sth power of
a matrix are the sth powers of the characteristic values of the original matrix,

ζ
(i)
〈 j, s 〉 = ζ

(i)
j, 0 + ζ

(i)
j, 1ω

s + ζ
(i)
j, 2ω

2s + · · ·+ ζ
(i)
j,m−1ω

(m−1)s,

for 〈 j, s 〉 the integer between 1 and k such that gs ∈ C〈 j, s 〉 if g ∈ Cj (note that
〈 j, s 〉 is independent of the choice of g in Cj).
Now we use the fact that for any integer s such that −m < s < m and s 6= 0,
1+ωs+ω2s+· · ·+ω(m−1)s = 0 (since ωs is a root of the polynomial (tm−1)/(t−1) =
tm−1 + tm−2 + · · ·+ t+ 1), while 1 + ωs + ω2s + · · ·+ ω(m−1)s = m if m divides s.
Thus, if s is between 0 and m− 1, and 1 ≤ i, j ≤ k,

m−1∑
t=0

ζ
(i)
〈 j, t 〉ω

−st

=
m−1∑
t=0

(
ζ

(i)
j, 0 + ζ

(i)
j, 1ω

t + · · ·+ ζ
(i)
j,m−1ω

t(m−1)
)
ω−st

=
m−1∑
t=0

(
ζ

(i)
j, 0ω

−st + ζ
(i)
j, 1ω

(1−s)t + · · ·+ ζ
(i)
j,m−1ω

(m−1−s)t
)

=
s−1∑
r=0

ζ
(i)
j, r

(
m−1∑
t=0

ω(r−s)t

)
+ ζ

(i)
j, s

(
m−1∑
t=0

ω0·t

)
+

m−1∑
r=s+1

ζ
(i)
j, r

(
m−1∑
t=0

ω(r−s)t

)

=
s−1∑
r=0

ζ
(i)
j, r · 0 + ζ

(i)
j, s ·m+

m−1∑
r=s+1

ζ
(i)
j, r · 0

= m · ζ(i)
j, s.

∗ In fact, Dixon includes smaller primes p; he assumes only that p > 2
√
n. We give a

slightly weaker result, which is more easily proved.
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Clearly, then,

m−1∑
t=0

φ(ζ(i)
〈 j, t 〉)ω̂

−st =
m−1∑
t=0

φ(ζ(i)
〈 j, t 〉)ω̂

(m−s)t

= φ

(
m−1∑
t=0

ζ
(i)
〈 j, t 〉ω

(m−s)t

)
= φ(m · ζ(i)

j, s)

= φ(m) · φ(ζ(i)
j, s), as well.

Since p > 2n, and ζ
(i)
j, s is an integer between 0 and n, it is clear that ζ(i)

j, s can

be recovered from its image, φ(ζ(i)
j, s); this image can be obtained using Burnside’s

algorithm over a field F of characteristic p, to compute the entries of the character
table (mod p), then using sums of the above form to recover the images ζ(i)

j, s ∈ Fp,
for 1 ≤ i, j ≤ k and 0 ≤ s < m.

Dixon’s original algorithm, and the new algorithm to be presented in Section 3.3.4,
compute character tables for finite groups over C by choosing a suitable finite field,
computing a character table over an algebraic closure of that finite field, and then
recovering a character table over C as described above. The algorithms differ in the
type of finite field which is used.

We first consider Dixon’s algorithm. The finite field used in this version presented
here is a prime field Fp, with characteristic greater than 2n, and which includes
an mth primitive root of unity. (We note again that Dixon uses the lower bound
2
√
n, instead of 2n, for the characteristic.) Since the multiplicative subgroup of Fp

is cyclic, it is clear that Fp is a suitable finite field for any prime p such that

p > 2n and p ≡ 1 (mod m).

It is sufficient, then, to choose any prime greater than 2n from the arithmetic
progression

m+ 1, 2m+ 1, 3m+ 1, 4m+ 1, . . .

Alternatively, we can choose any prime from the progression

M + 1, 2M + 1, 3M + 1, 4M + 1, . . .

where M = 2n; then m divides M . It is clear that we must show that such pro-
gressions include small primes, if we are to prove that Dixon’s algorithm, which we
state on the following pages, is efficient.
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Algorithm Character Table II (Dixon)

Input. • Integer n > 0.
• A multiplication table for a finite group G = { g1, g2, . . . , gn }

with n elements.
Output. • The number k of conjugacy classes of G. (Note that k is also

the number of distinct irreducible characters of G over C.)
• An integer m > 0, such that the entries of a character table for G

over C all lie in Q[ω], for ω an mth primitive root of unity.
• A character table for G over C, with k rows and columns, and with

each entry ζ(i)
j given by integers ζ(i)

j, 0, ζ
(i)
j, 1, . . . , ζ

(i)
j,m−1 such that

ζ
(i)
j = ζ

(i)
j, 0 + ζ

(i)
j, 1ω + · · ·+ ζ

(i)
j,m−1ω

m−1 for 1 ≤ i, j ≤ k.

Initialisation: Computation of Structure Constants

(1) Use the multiplication table for G to compute
• the number k of conjugacy classes of G;
• the exponent m of G;
• the sizes h1, h2, . . . , hk of the classes C1, C2, . . . , Ck (listed in

some order);
• the number cr s t of solutions (x, y) of the equation x · y = z

for fixed z ∈ Ct, such that x ∈ Cr and y ∈ Cs, for 1 ≤ r, s, t ≤ k;
• integers 〈 i, s 〉 such that gs ∈ C〈 i, s 〉 if g ∈ Ci, for
−1 ≤ s ≤ m− 1 and 1 ≤ i ≤ k; set i∗ = 〈 i, −1 〉.

Construction of the Fields Q[ω] and Fp
(2) Compute the minimal polynomial Ψm and an isolating region for an

mth primitive root of unity, ω, using the formulas

ω = cos
(

2π
m

)
+
√
−1 · sin

(
2π
m

)
and Ψm =

∏
d divides m

(td − 1)µ(m/d).

(3) Set p to be the smallest prime such that p > 2n and p ≡ 1 (mod m).
Set F = Fp.

(4) Compute and factor Ψm in F [t]. Set ω̂ to be any root of Ψm in F [t].
(Note that Ψm splits into linear factors in this ring.)
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Computation of a character table over F

(5) For 1 ≤ s ≤ k, let V̂s ∈Mk×k(F ) such that (V̂s)r t = (cr s t mod p) for
1 ≤ r, s ≤ k. Compute the eigenvalues, and bases for the eigenspaces,
of the matrices V̂1, V̂2, . . . , V̂k. Compute bases for intersections of these
eigenspaces (using a divide and conquer approach) to obtain vectors

ŵ1 =


ω̂

(1)
1

ω̂
(1)
2
...

ω̂
(1)
k

 , ŵ2 =


ω̂

(2)
1

ω̂
(2)
2
...

ω̂
(2)
k

 , · · · ŵk =


ω̂

(k)
1

ω̂
(k)
2
...

ω̂
(k)
k


in Mk×1(F ), such that these are common eigenvectors of V̂1, V̂2, . . . , V̂k,
span Mk×1(F ), and such that ω̂(i)

1 = 1 for 1 ≤ i ≤ k.
(6) For 1 ≤ i ≤ k, compute Ŝi = h−1

i

∑k
l=1 ω̂

(i)
l ω̂

(i)
l∗ . Set z̃i to be the unique

element of Fp = F such that z̃i ∈ { 1, 2, . . . , n } and Ŝi · z̃2
i = n.

(7) For 1 ≤ i, j ≤ k, compute

ζ̂
(i)
j =

z̃i · ω̂(i)
j

hj
∈ F .

Recovery of a character table for G over C

(8) For 1 ≤ i, j ≤ k and 0 ≤ s ≤ m, compute

ζ̂
(i)
j,s = m−1 ·

m−1∑
t=0

ζ̂
(i)
〈 j, t 〉ω̂

−st;

ζ̂
(i)
j,s is an element of Fp in the range { 0, 1, . . . , n }. Set ζ(i)

j,s ∈ Z to be

the (unique) integer between 0 and n such that ζ̂(i)
j,s = (ζ(i)

j,s mod p).
(9) For 1 ≤ i, j ≤ k, compute the (i, j)th entry of the character table

for G over C,

ζ
(i)
j =

m−1∑
s=0

ζ
(i)
j,sω

s.

Return the desired values.
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In fact, small primes do exist in these progressions. In 1930, Titchmarsch showed
that the extended Riemann hypothesis implies the existence of a prime p < k2+ε

congruent to l modulo k, for any ε > 0, l ∈ Z, and for sufficiently large k (see [115],
[23]). Linnik proved the existence of a prime p < kc congruent to l modulo k, for
some constant c > 0 (“Linnik’s constant”), for all l ∈ Z relatively prime with k,
and (again) for sufficiently large k (see [83], [84]), without recourse to any unproved
number theoretic assumptions. Subsequent research has included attempts to give
concrete upper bounds for Linnik’s constant; it has been shown recently that c ≤ 17
([20]; see also [60]). For an attempt to give a lower bound on the maximum size of
a least prime in an arithmetic progression, see [97]; for more information about the
distribution of primes in progressions and intervals, see Davenport [32].

These results imply that Dixon’s algorithm has polynomial running time, if we
choose the prime p by checking the leading terms in the arithmetic progression
corresponding to the order n and exponent m of the input group G (as indicated
above). We also have a guarantee that the algorithm is “practical” — that the
algorithm has running time in O(N c) for input size N and for a small constant c > 0
— assuming the extended Riemann hypothesis. The results which do not depend
on this hypothesis are less convincing; however, they are sufficient to show that this
is a polynomial time algorithm.

Note also that, since the finite field Fp constructed by this algorithm has size (num-
ber of elements) which is polynomial in n, we can factor polynomials in Fp[t], and
perform the other computations required by this algorithm, using Boolean circuits
with polynomial size and with depth polynomial in the logarithm of the input size.
In fact, we can implement the entire algorithm — including the construction of the
finite field Fp — using Boolean circuits of this size, provided that we use a prime p
which is slightly larger than that indicated in step 3 of the algorithm: If we choose p
to be the smallest prime congruent to 1 modulo n (the order, rather than the expo-
nent, of the group) which is larger than 2n, then p can be treated as a “hardwired
constant”. That is, p is then a constant, dependent only on n, which does not have
to be computed during the execution of the algorithm, but can be precomputed
instead. (Now the fact that p is bounded by a polynomial function of n is of use
in showing that our circuits can be constructed efficiently — and that we have a
log space uniform family of Boolean circuits of small depth and size for character
tables over C — rather than in showing that the resulting circuits are small.)

Thus, Dixon’s algorithm can be used to prove the following fact.

Theorem 3.3.27. Given a multiplication table for a finite group G of order n, a
character table for G over C can be computed using a uniform family of Boolean
circuits of depth polynomial in log n and of size polynomial in n. That is, for
computations over C, “Computation of a Character Table” ∈ NC.
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3.3.4. A New Algorithm for Character Tables

In this section we suggest two improvements of Dixon’s algorithm. We incorporate
these to obtain a new probabilistic algorithm for the computation of character
tables.

We first reduce the use of factorisation of polynomials, at the cost of introducing
the possibility of failure. Recall that we compute vectors w1, w2, . . . , wk, and
obtain the values ω(i)

j , for 1 ≤ i, j ≤ k, by computing eigenvalues and bases for
eigenspaces for a set of matrices, V1, V2, . . . , Vk. In Example 3.3.25 we reduced the
amount of work to be done by noting that one of the matrices (V3) had a squarefree
characteristic polynomial, and hence could be used alone to compute these values.
We are not this lucky in general; there is no guarantee that some Vi will have the
above property. However, we note that the vectors w1, w2, . . . , wk (containing the
ω

(i)
j ’s as entries) are eigenvalues of any matrix

V = c1V1 + c2V2 + · · ·+ ckVk for c1, c2, . . . , ck ∈ F.

We will present a third, probabilistic version of Burnside’s algorithm which makes
a random choice of these constants c1, c2, . . . , ck from F . If the resulting matrix V
has a squarefree characteristic polynomial, then the vectors w1, w2, . . . , wk can be
computed by considering V alone. Otherwise, the algorithm fails∗ — though, with
arbitrarily small positive probability, as indicated below.

Lemma 3.3.28. Let G be a finite group with n elements, and k conjugacy classes.
Let F be a splitting field for G whose characteristic does not divide n, and let F̂
be a subfield of F containing all entries of the character table for G over F . Let
V1, V2, . . . , Vk ∈Mk×k(F ) be the matrices used in Burnside’s algorithm to generate
a character table for G over F .

(i) If |F̂ | ≥ k then there exist constants c1, c2, . . . , ck ∈ F̂ such that the matrix
V = c1V1 + c2V2 + · · ·+ ckVk has k distinct eigenvalues.

(ii) Let d ≥ 1 and suppose |F̂ | ≥ dk(2k − 1). Then if c1, c2, . . . , ck are cho-
sen randomly and independently from a finite subset of F̂ whose size is at
least dk(2k − 1), then the probability that the resulting matrix V does not
have k distinct eigenvalues is at most 1/d.

Proof. We have noted that

ω(i)
s · wi = Vs · wi for 1 ≤ i, s ≤ k,

∗ This is clearly unnecessary, since Dixon’s algorithm can be used if the character-
istic polynomial of V is not squarefree; however, it simplifies presentation of the
algorithm.
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so that, for c1, c2, . . . , ck ∈ F ,

(c1ω
(i)
1 + c2ω

(i)
2 + · · ·+ ckω

(i)
k ) · wi = (c1V1 + c2V2 + · · ·+ ckVk) · wi

for 1 ≤ i ≤ k; the eigenvalues of c1V1 + c2V2 + · · · ckVk are the entries of the vector

w =


ω

(1)
1 ω

(1)
2 · · · ω

(1)
k

ω
(2)
1 ω

(2)
2 · · · ω

(2)
k

...
...

. . .
...

ω
(k)
1 ω

(k)
2 · · · ω

(k)
k

 ·

c1
c2
...
ck

 .
We noted in proving Lemma 3.3.20 that the k×k matrix W in the above expression
is nonsingular; since F̂ contains all entries of a character table for G, it also includes
all the entries ω(i)

j of this matrix. That is, W ∈ GL(k, F̂ ). It follows that we can
set w to be any vector in Mk×1(F̂ ), by using an appropriate choice of the constants
c1, c2, . . . , ck. In particular, if |F̂ | ≥ k, we can choose these constants so that the
entries of the corresponding vector w (and the eigenvalues of V ) are distinct —
proving part (i) of the lemma.

To prove (ii), we note that if V = y1V1 + y2V2 + · · · + ykVk, for indeterminates
y1, y2, . . . , yk over F̂ , then the characteristic polynomial φ of the matrix V has co-
efficients (in a new indeterminate, t) with total degree at most k in y1, y2, . . . , yk.

The resultant, ψ = rest(φ,
d
dt
φ), has total degree at most k(2k − 1) in these in-

determinates, is not identically zero if |F̂ | ≥ dk(2k − 1) ≥ k (by part (i)), and
is nonzero when evaluated at (c1, c2, . . . , ck) ∈ F̂ k if and only if the matrix
c1V1 + c2V2 + · · · + ckVk has k distinct eigenvalues. We now apply the result of
Schwartz (which we state as Proposition 2.4.23) to the polynomial ψ; part (ii) of
the lemma follows immediately.

We also give a second modification of Dixon’s algorithm, which allows us to prove an
upper bound for running time of O(N c), for input size N and for a small constant c,
without recourse to the extended Riemann hypothesis (see the end of Section 3.3.3
for a discussion of this hypothesis and its use in analysing Dixon’s algorithm).
In contrast with Dixon’s algorithm, this algorithm performs computations over a
“general” finite field Fq = Fpk , for p > 2n, such that Fpk includes an mth primitive
root of unity. We no longer require that Fq be a prime field — and we are no longer
required to choose the characteristic p from an arithmetic progression.

We next consider the problem of finding a suitable finite field Fpk . We begin with
the problem of choosing the characteristic, p. As noted above, we want p to be
greater than 2n; however, we don’t want p to be much larger than this — it should
be the case that computations over Fp are inexpensive. The next lemma indicates

223



that a suitable prime can be chosen inexpensively — using time (asymptotically)
less than n1+ε for any positive ε (using the methods of Adleman, Pomerance, and
Rumley [2] for certifying primes) if a deterministic method is required, or polynomial
in logn, using probabilistic methods (with a small, positive probability of failure).

We use the standard notation of π(i) for the number of primes less than or equal
to the positive integer i.

Lemma 3.3.29. Suppose i ∈ N and i ≥ 17.

(i) π(5i)− π(i) >
i

ln i
.

(ii) Let δ ∈ R such that δ > 0, and let m = d 2(ln i)(ln (1/δ)) e. If we choose m
odd integers randomly and independently from the set of odd integers greater
than i and less than or equal to 5i, then the probability that we fail to choose
at least one prime is less than δ.

Proof. We use the inequality

i

ln i
< π(i) < 1.25506 · i

ln i
if i ≥ 17

stated by Rosser and Schoenfeld [105] (see their equations 3.5 and 3.6). Applying
this, we have

π(5i)− π(i) >
5i

ln (5i)
− 1.25506 · i

ln i

=
5i

ln i+ ln 5
− 1.25506 · i

ln i

>
5i

2ln i
− 1.25506 · i

ln i
(since i > 5)

= (2.5− 1.25506) · i

ln i

>
i

ln i
,

as required to prove part (i).

To prove (ii), we note that there are 2i odd integers between i and 5i; thus, if
we choose a single odd integer from this set, then (by (i)) the probability that it is
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prime is at least 1/(2ln i). If we choose m odd integers randomly and independently
from this set, then the probability that all are composite is at most

(
1− 1

2ln i

)m
=

(
1−

(
m

2ln m

)
m

)m
< e−(m/(2ln i))

≤ e−(2(ln i)(ln (1/δ)))/(2ln i)

= e−ln (1/δ)

= δ, as required to prove part (ii).

We state our new algorithm on the following pages. The algorithm accepts a multi-
plication table for a finite group G as input, as well as a positive error tolerance, ε.
The algorithm then either computes a character table for G over C, or reports
failure — failing with probability less than ε.

The probabilistic algorithm replaces the factorisation of k polynomials of degree k
inQ[ω] by factorisation of two polynomials over finite fields (one of degree at mostm,
over Fp, and another of degree k over Fp[ω̂]) and by some extra linear algebra —
reducing the time used for the computation.

We can obtain a fourth, deterministic version of the algorithm by replacing the
probabilistic search for the prime p by an exhaustive search — and by using the
matrices V̂1, V̂2, . . . , V̂k to compute the vectors ŵ1, ŵ2, . . . , ŵk (as in Burnside’s
algorithm), instead of a single matrix, V̂ . While we increase the sequential time,
and the size of Boolean circuits required to compute character tables over C, these
remain polynomial in n; the depths of Boolean circuits required for this computation
(using either the probabilistic version, or the new deterministic one) are polynomial
in logn.

With the exception of step 1, Burnside’s algorithm and the new probabilistic algo-
rithm both use time polynomial in the output size, k2m log n. Thus they efficiently
solve the problem of computing a character table from the structure constants of
a group and the additional values m, k, h1, h2, . . . , hk, and 〈 i, s 〉 (for 1 ≤ i ≤ k
and 0 ≤ s ≤ m − 1). These constants have a (Boolean) representation of length
O(k2m log n), matching the size of the character table to be generated; hence this
size may be a more realistic measure of the “size” of a group (for this problem)
than the number n of elements in G (provided, of course, that a set of structure
constants for G is available).
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Algorithm Character Table III

Input. • Integer n > 0.
• A multiplication table for a finite group G = { g1, g2, . . . , gn }

with n elements.
• An error tolerance ε > 0.

Output. EITHER:
• The number k of conjugacy classes of G. (Note that k is also

the number of distinct irreducible characters of G over C.)
• An integer m > 0, such that the entries of a character table for G

over C all lie in Q[ω], for ω an mth primitive root of unity.
• The minimal polynomial over Q and an isolating region in C for an
mth primitive root of unity, ω.
• A character table for G over C, with k rows and columns, and with
entry ζ

(i)
j given by integers ζ(i)

j, 0, ζ
(i)
j, 1, . . . , ζ

(i)
j,m−1 such that

ζ
(i)
j = ζ

(i)
j, 0 + ζ

(i)
j, 1ω + · · ·+ ζ

(i)
k,m−1ω

m−1, for 1 ≤ i, j ≤ k.

OR: failure, with probability less than ε.

Initialisation: Computation of Structure Constants.

(1) Use the multiplication table for G to compute
• the number k of conjugacy classes of G;
• the exponent m of G;
• the sizes h1, h2, . . . , hk of the classes C1, C2, . . . , Ck (listed in

some order);
• the number cr s t of solutions (x, y) of the equation x · y = z

for fixed z ∈ Ct, such that x ∈ Cr and y ∈ Cs, for 1 ≤ r, s, t ≤ k;
• integers 〈 i, s 〉 such that gs ∈ C〈 i, s, 〉 if g ∈ Ci, for

−1 ≤ s ≤ m− 1 and 1 ≤ i ≤ k; set i∗ = 〈 i, −1 〉.
Construction of the fields Q[ω] and Fp[ω̂]

(2) Compute the minimal polynomial Ψm and an isolating region for an
mth primitive root of unity, ω, using the formulas

ω = cos
(

2π
m

)
+
√
−1 · sin

(
2π
m

)
and Ψm =

∏
d divides m

(td − 1)µ(m/d).

(3) Set N = max(2n, d 4k(2k − 1)ε−1 e) and set M = d 2(log2N)(log2(4ε−1)) e.
Choose M odd integers randomly and independently from the set
{ i : N < i ≤ 5N }.
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(4) Use a probabilistic method to attempt to certify each integer as prime (so
that any prime in this set is certified with probability at least 1− (ε/4M)).
If none of the M integers chosen in step 3 are certified as prime, then
report failure. Otherwise, set p to be the smallest of these integers
certified as prime, and go to step 5.

(5) Compute and factor Ψm in Fp[t]. Set f ∈ Fp[t] to be an irreducible factor
of Ψm. In following steps we will perform computations over F = Fp[ω̂] =
Fp[t]/(f), for ω̂ = (t mod f).

Computation of a character table over F

(6) For 1 ≤ s ≤ k, let V̂s ∈Mk×k(F ) such that (V̂s)r t = (cr s t mod p) for
1 ≤ r, s ≤ k. Let I be a subset of F with size d 4k(2k − 1)ε−1 e. Choose
values c1, c2, . . . , ck randomly and independently from I, and set
V̂ = c1V̂1 + c2V̂2 + · · ·+ ckV̂k. Compute the characteristic polynomial
of V̂ . If this polynomial is not squarefree in F [t], then report failure.
Otherwise, go to step 7.

(7) Since the eigenvalues of V̂ are elements of Fp[ω̂] = F , and the characteristic
polynomial of V̂ is squarefree, V has k distinct eigenvalues
in F . Compute vectors

ŵ1 =


ω̂

(1)
1

ω̂
(1)
2
...

ω̂
(1)
k

 , ŵ2 =


ω̂

(2)
1

ω̂
(2)
2
...

ω̂
(2)
k

 , · · · ŵk =


ω̂

(k)
1

ω̂
(k)
2
...

ω̂
(k)
k


in Mk×1(F ) so that these eigenvalues of V̂ , span Mk×1(F ), and so that
ω̂

(i)
1 = 1 for 1 ≤ i ≤ k.

(8) For 1 ≤ i ≤ k, compute Ŝi = h−1
i

∑k
l=1 ω̂

(i)
l ω̂

(i)
l∗ . Set z̃i to be the unique

element of Fp ⊆ F such that z̃i ∈ { 1, 2, . . . , n } and Ŝi · z̃2
i = n.

(9) For 1 ≤ i, j ≤ k, compute

ζ̂
(i)
j =

z̃i · ω̂(i)
j

hj
∈ F .

Recovery of a character table for G over C

(10) For 1 ≤ i, j ≤ k and 0 ≤ s < m, compute

ζ̂
(i)
j,s = m−1 ·

m−1∑
t=0

ζ̂
(i)
〈 j, t 〉ω̂

−st;

ζ̂
(i)
j,s is an element of Fp in the range { 0, 1, . . . , n }. Set ζ(i)

j,s ∈ Z to be

the (unique) integer between 0 and n such that ζ̂(i)
j,s = (ζ(i)

j,s mod p).

227



(11) For 1 ≤ i, j ≤ k, compute the (i, j)th entry of the character table
for G over C,

ζ
(i)
j =

m−1∑
s=0

ζ
(i)
j,sω

s.

Return the desired values.

The preceding remarks about sequential time remain true if the exponent m of G
is replaced in the algorithm by an integer m̂ ≤ m, such that the entries of the
character table for G over C all lie in Q[ω], for ω an m̂th primitive root of unity.
The difference between m and m̂ can be important: for example, the exponent of
the symmetric group Sn is lcm(2, 3, . . . , n), but it can be shown that the entries
of the character table for Sn over C are all integers — so that we can set m̂ = 1.
A set of structure constants for Sn, and a character table for Sn over C, both have
size polynomial in the number of conjugacy classes of Sn and hence in 2

√
n (see

Hua [64], Theorem 6.2), rather than in |Sn|, or in 2n logn.

To conclude, we consider the question of whether the result “Computation of a
Character Table over C” ∈ NC remains true when we consider computations using
structure constants as inputs (and with the corresponding smaller input size). The
answer depends on the efficiency of our choice of a prime p > 2n — and, for the
fourth, deterministic algorithm mentioned above, on the size of gaps between primes
greater than 2n. We will consider the probabilistic version of the new algorithm. It
is clear that this requires circuits of size polynomial in km log(nε−1), and of depth
polynomial in log(n log ε−1). (Note that we require certification of O(log(n log ε−1))-
bit primes.) This motivates the following question.

Question 3.3.30. Does there exist a constant c > 0 such that, for every finite
group G, if n is the number of elements of G and k is the number of conjugacy
classes of G, then

log2 n ≤ (log2 k)c ?

It is clear from inspection of the symmetric groups that if such a constant c exists,
then c > 2. If such a constant exists, then our results imply that the problem
“Computation of a Character Table over C from Structure Constants” is in the
complexity class RNC — our probabilistic version of Burnside’s algorithm can be
implemented using Boolean circuits of depth polynomial in the logarithm of the
input size, and of size polynomial in the input size. (Note also that it is not clear
that this is also the case for Dixon’s algorithm.) If no such constant c exists, then
we must look for more efficient (parallel) methods for the certification of primes if
we are to obtain this result using a version of Burnside’s algorithm.
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We also note a different variation on Dixon’s algorithm, suggested by Schnei-
der [108], who considers the problem of computing a character table for G given
a more concise representation of the group than its multiplication table: Schnei-
der considers the cost of computing a character table from a set of generators of
a permutation group, and of computing a character table for a finitely presented
p-group. In these cases, it is apparent that the cost of computing a set of struc-
ture constants for the group dominates the cost of computing the character table;
Schneider’s variation allows the character table to be computed without construct-
ing a full set of structure constants in many cases. Schneider reports a significant
decrease in the running time required to compute character tables for an impressive
set of examples; further details can be found in [108].

3.3.5. Matrix Representations of Finite Groups

We now consider the problem of decomposing a matrix representation of a finite
group, given both the image of each element of the group and a multiplication table
for the group. Henceforth, we assume that G = { g1, g2, . . . , gn } is a finite group
with n elements and with exponent m, and that a number field F is a splitting field
for F (of characteristic zero), which includes an mth primitive root of unity, ω.

We have already noted that it is trivial to decide whether a representation of a finite
group over a field of characteristic zero is a completely reducible representation (see
Proposition 3.3.11). It is also easy to decide whether two matrix representations of
the same finite group are equivalent: It is a consequence of Proposition 3.3.18 that
the irreducible characters of G over F are linearly independent functions over F .
Thus, two matrix representations T̂1 and T̂2 are equivalent if and only if the trace
of the matrices T̂1(g) and T̂2(g) are equal, for all g ∈ G. This condition is easily
checked, given these matrices: We can solve this problem using Boolean circuits of
size polynomial, and depth polylogarithmic, in the input size.

We next consider the problem of computing the isotypic components of a matrix
representation T̂ : G → GL(k, F ) (given the inputs described above). By Theo-
rem 3.3.27, we can compute a character table for G over F efficiently in parallel.
Suppose now that χ : G → F is an irreducible character with degree d (so that
χ(1G) = d); then the matrix

pχ =
d

n

∑
g∈G

χ(g)∗T̂ (g)

is a projection onto the “carrier space” (a subspace of Mk×1(F )) for the isotypic
component of T̂ corresponding to the character χ. (Here, x∗ denotes the complex
conjugate of x ∈ F . Note that, since χ(g) ∈ Q[ω], χ(g)∗ ∈ Q[ω] ⊆ F as well.) For
a proof of this, see Serre [112] (Chapter 2, Theorem 8).
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Now the matrix pχ can be computed efficiently (in parallel), for each irreducible
character χ, from a character table for G over F . Given each projection pχ, the
isotypic components of T̂ are easily computed as well — proving the following.

Theorem 3.3.31. Let G = { g1, g2, . . . , gn } be a finite group with n elements
and exponent m, and let F be a number field which includes an mth primitive
root of unity. Then, if we are given a multiplication table for G and the matrices
T̂ (gi) for 1 ≤ i ≤ n, for a matrix representation T̂ of G over F , then the isotypic
components of T̂ can be computed using a uniform family of Boolean circuits with
size polynomial, and depth polylogarithmic, in the input size.

We have seen that irreducible components of an isotypic matrix representation for G
over C (or over F ) can be computed, over a small extension of F , in probabilistic
polynomial time (see Corollary 3.2.11). Babai and Rónyai have made a substantial
improvement of this.

Theorem 3.3.32. (Babai and Rónyai [5]). Let G and F be as above. Then, if
we are given a matrix representation T̂ for G over F (by the matrices T̂ (gi) for
1 ≤ i ≤ n), then a set of irreducible components for T̂ over F can be computed
(in F ) by a deterministic Boolean algorithm, in polynomial time.

As Babai and Rónyai note, they also obtain a polynomial time algorithm for the
computation of a character table for G over F which does not use Burnside’s ap-
proach.

We conclude by noting an earlier, numerical algorithm for the decomposition of uni-
tary matrix representations of finite groups: Dixon [35] presents an iterative method
for the decomposition of a unitary matrix representation U : G→ GL(k,C), given
the matrices U(g1), U(g2), . . . , U(gl) for a set of generators g1, g2, . . . , gl of G.
While Dixon shows that his method always (eventually) produces a decomposition,
he does not discuss the asymptotic performance of his algorithm. Several questions
remain to be answered: What is the order of convergence of the sequence Dixon
uses to obtain a decomposition? What is the asymptotic running time of the al-
gorithm? What is the effect of numerical error in the input on the performance of
this method? We leave these questions for further work.
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3.4. Computations for the Symmetric and Full Linear Groups

As in Section 3.3, we consider representations and characters for specific classes of
groups. Again, we are chiefly interested in representations over fields of character-
istic zero (and, in particular, over R and C).

The literature concerning the representation theory of the symmetric groups and
the linear groups is vast. In this section, we intend only to mention a few of the
problems which have received attention, and to discuss some of the more commonly
used algorithms for them. While we include a preliminary result here (Theorem
3.4.7), we consider the problems discussed here as subjects for further research.
The reader interested in a more detailed presentation should refer to James and
Kerber [69]. Hamermesh [61] and Wybourne [119] discuss applications of this theory
to physical problems.

We consider computations for characters of the symmetric groups in Section 3.4.1;
computations for the linear groups (and some of their subgroups) are considered in
Section 3.4.2.

3.4.1. Computations for Characters of the Symmetric Groups

Since the symmetric group Sn of permutations of 1, 2, . . . , n is a finite group, with
n! elements, the results of Section 3.3 apply: we can compute character tables
of Sn over C using polynomial time, or using Boolean circuits of size polynomial,
and depth polylogarithmic, in the number of elements of Sn. However, we will see
that the more interesting computational problems regarding characters of Sn (for
physical applications) are more difficult — for most of this section, we consider
problems which can be solved using a polynomial amount of space, but which are
not known to be solvable in polynomial time.

A permutation π ∈ Sn (viewed as a one-to-one, onto function from the set of integers
{ 1, 2, . . . , n } to itself) can be specified completely by listing the image π(i) of each
integer i, for 1 ≤ i ≤ n. For example, it is standard to write

π =
(

1 2 3 4 5
5 3 4 2 1

)
to specify the permutation π such that π(1) = 5, π(2) = 3, π(3) = 4, π(4) = 2,
and π(5) = 1; two rows are used, with the image π(i) written below each integer i.
Alternatively, we can specify the permutation π using cycle notation — with the
points which are cyclically permuted grouped together in round brackets; using this
notation, the above permutation can be written as

π = (2, 3, 4)(1, 5),
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(with the image π(i) following i, or with i at the end of the listing of a cycle
and π(i) at the beginning). The order in which the cycles appear in the listing,
and the element beginning each cycle, can be arbitrarily chosen; we will list the
cycles in decreasing order of length, and associate to a permutation π the list of
integers (l1, l2, . . . , ln) such that lj is the length of the jth cycle in this listing. We
associate the list (3, 2, 0, 0, 0) (or, leaving away the trailing zeros, (3, 2)) with the
permutation π shown above.

It is clear that the list λ = (l1, l2, . . . , ln) has the properties l1, l2, . . . , ln ∈ Z,
l1 ≥ l2 ≥ · · · ≥ ln ≥ 0, and l1 + l2 + · · · + ln = n. That is, λ is a partition of the
integer n. Henceforth, we write this as “λ ` n”.

It is easy to show that permutations π1 and π2 are conjugates in Sn if and only if
π1 and π2 are associated with the same partition λ = (l1, l2, . . . , ln). Conversely,
for every partition of n there is a permutation π associated with λ. For example,
we can set

π = (1, 2, . . . , l1)(l1 + 1, l1 + 2, . . . , l1 + l2) · · · (l1 + l2 + · · ·+ lk−1 + 1, . . . , n)

where k is the maximum integer such that lk 6= 0.

Thus the number of conjugacy classes of Sn is the same as the number of partitions
of n, and we have a natural association of each conjugacy class to a specific partition.

We estimate the number of entries in a character table for Sn by estimating (and
squaring) p(n), the number of partitions of n. The following estimates are proved
(for example) in Hua [64] (see Section 8.6).

Proposition 3.4.1. If n > 1, then

2b
√
n c < p(n) < n3b

√
n c.

Proposition 3.4.2.

lim
n→∞

loge p(n)√
n

= π ·
√

2
3
∼= 2.56510;

thus, for any positive ε ∈ R,

p(n) < e(π·
√

(2/3)+ε)
√
n = 2(π·

√
(2/3)+ε)(log2 e)

√
n for sufficiently large n.

Thus a character table for Sn has fewer than 22(π·
√

(2/3)+ε)(log2 e)
√
n entries (for

ε > 0 and sufficiently large n). We will see later that these entries are all integers;
since they are traces of matrices with order at most n! and with roots of unity as
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characteristic values, each entry has absolute value at most n!, and has a Boolean
representation with length O(n log n). One computational problem, then, is to
construct a character table for Sn using a Boolean circuit with size as close as
possible to the (Boolean) size of the table — that is, O(22(π·

√
(2/3)+ε)(log2 e)

√
n); the

methods of Section 3.3 could be applied here.

Frobenius has provided an alternative method for computation of entries of this
table. We now let F be an algebraically closed or real closed field of characteristic
zero, and let x1, x2, . . . , xn be indeterminates over F . To each partition λ =
(l1, l2, . . . , ln) of n we associate a symmetric polynomial sλ:

sλ = sµ1
1 sµ2

2 · · · sµnn , (3.4.1)

where sr = (xr1 + xr2 + · · ·+ xrn) for 1 ≤ r ≤ n, and

µr = | { li : 1 ≤ i ≤ n and li = r } |.

For example, for n = 7 and λ = (3, 3, 1),

sλ = (x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x3
7)2(x1 + x2 + x3 + x4 + x5 + x6 + x7).

We set the polynomialD(x1, x2, . . . , xn) to be the determinant of the Vandermonde
matrix V (x1, x2, . . . , xn) ∈ Mn×n(F [x1, x2, . . . , xn]), whose (i, j)th entry is xi−1

j

for 1 ≤ i, j ≤ n; then

D(x1, x2, . . . , xn) =
n∏
i=1

i−1∏
j=1

(xi − xj).

We associate to each partition λ = (l1, l2, . . . , ln) a second polynomial,

tλ =
∏
π∈Sn

(sgn(π))xl1+n−1
π(1) xl2+n−2

π(2) · · ·xlnπ(n)

=
∑
π∈Sn

[
(sgn(π))

n∏
i=1

xli+n−iπ(i)

]
,

(3.4.2)

for sgn(π) the sign of the permutation π (1 if π is an even permutation, −1 other-
wise). For example, for n = 4 and λ = (2, 1, 1),

tλ =
∑
π∈S4

sgn(π)(x2+4−1
π(1) x1+4−2

π(2) x1+4−3
π(3) x0+4−4

π(4) )

=
∑
π∈S4

sgn(π)x5
π(1)x

3
π(2)x

2
π(3)

= x5
1x

3
2x

2
3 − x5

1x
3
2x

2
4 − x5

1x
3
3x

2
2 + x5

1x
3
3x

2
4 + x5

1x
3
4x

2
2 − x5

1x
3
4x

2
3 − x5

2x
3
1x

2
3 + x5

2x
3
1x

2
4

+ x5
2x

3
3x

2
1 − x5

2x
3
3x

2
4 − x5

2x
3
4x

2
1 + x5

2x
3
4x

2
3 + x5

3x
3
1x

2
2 − x5

3x
3
1x

2
4 − x5

3x
3
2x

2
1 + x5

3x
3
2x

2
4

+ x5
3x

3
4x

2
1 − x5

3x
3
4x

2
2 − x5

4x
3
1x

2
2 + x5

4x
3
1x

2
3 + x5

4x
3
2x

2
1 − x5

4x
3
2x

2
3 − x5

4x
3
3x

2
1 + x5

4x
3
3x

2
2.

233



The polynomials D and tλ are clearly antisymmetric: we change the sign of the
values of these polynomials by transposing the values of two indeterminates xi
and xj (for i 6= j).

Note that for each term

xl1+n−1
π(1) xl2+n−2

π(2) · · ·xln+n−n
π(n)

of each tλ, the indeterminates x1, x2, . . . , xn occur with distinct degrees — and
that the degree sequence l1 + n− 1, l2 + n− 2, . . . , ln + n− n is strictly decreasing
and determines the partition λ = (l1, l2, . . . , ln) (since l1 ≥ l2 ≥ · · · ≥ ln). Clearly,
then, the polynomials tλ (for all partitions λ of n) are linearly independent in
F [x1, x2, . . . , xn] — and the following formula can be used to compute entries of
the character table of Sn.

Proposition 3.4.3. (Frobenius) Let F be an algebraically closed, or real closed,
field of characteristic 0, and let n ∈ Z with n > 0. Then, for each partition λ of n,
there exists an irreducible character ζ(λ) of Sn, whose value ζ(λ)

µ at any permutation
π ∈ Sn in the conjugacy class corresponding to a partition µ of n, is determined by
the expression

sµD =
∑
ν`n

ζ(ν)
µ tν .

If λ1 and λ2 are distinct partitions of n, then the corresponding characters ζ(λ1)

and ζ(λ2) are also distinct.

Proposition 3.4.3 is well known; a derivation of the above formula is given by Hamer-
mesh [61] (Sections 7.1–7.2). It gives us a means of computing all the entries in a
column of a character table for Sn, by computing the coefficients of the polynomial
sµD, and expressing sµD as a linear combination of the tν ’s. It also establishes that
each entry ζ(ν)

µ ∈ Q — and, since ζ(ν)
µ is known to be an algebraic integer, ζ(ν)

µ ∈ Z.
Finally, it allows us to specify a particular irreducible character ζν of Sn by listing
the corresponding partition ν, and to pose the following problem.

Problem Entry of a Character Table for Sn

Input. • Integer n > 0.
• Partitions λ, µ of n.

Output. • The integer ζ(λ)
µ .

We have not discussed a corresponding problem for arbitrary finite groups, even
though the number of irreducible characters (over C) of such a group, G, is known
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to be the number of conjugacy classes of G, because we generally have no useful way
to indicate a specific character of G — or to define a problem “Entry of a Character
Table for G”.

Now our methods for computing character tables are still applicable (in principle).
However, the input and output for our problem are no longer a multiplication table
(or a set of structure constants) and a character table for Sn — with size Ω(2

√
n);

instead, we use as input a pair of partitions of n, and compute a single entry
of the character table — each with Boolean representations of length O(n log n),
polynomial in the logarithm of the old input and output size. Consequently, while
we showed in Section 3.3 that the computation of character tables (over C) for finite
groups could be performed using time polynomial and space polylogarithmic (or in
parallel, using time polylogarithmic and a polynomial number of processors) in the
input size, we will analyse a commonly used algorithm for “Entry of a Character
Table for Sn” in order to show that the problem can be solved using polynomial
space. The question of whether it can be solved using polynomial time remains
open.

The method we consider uses the formula of Frobenius, stated in Proposition 3.4.3,
to compute the integer ζ(ν)

µ . Suppose µ = (m1, m2, . . . , mk, mk+1, . . . , mn), with
mk > mk+1 = mk+2 + · · ·+mn = 0. Then

sµ =
k∏
i=1

(xmi1 + xmi2 + · · ·+ xmin ),

and the algorithm proceeds by computing the polynomial[
l∏
i=1

(xmi1 + xmi2 + · · ·+ xmin )

]
D

for l = 1, 2, . . . , k, and expressing each product as a linear combination of polyno-
mials “tφ” (for φ a partition of an integer less than or equal to n∗ — specifically,
for m = m1 +m2 + · · ·+ml at the lth stage of the computation).

The method is generally presented as a “graphical” or “combinatorial” method,
with conjugacy classes of Sn, irreducible characters of Sn, partitions of n, and the
polynomials tφ all represented by Young diagrams for the associated partitions: the
partition λ = (l1, l2, . . . , ln) is represented by a diagram of dots (or ×’s, or boxes)

∗ Here we use as tφ, for φ a partition of m ≤ n, a polynomial with total degree
(n(n−1))/2+m in the indeterminates x1, x2, . . . , xn. If φ = (l1, l2, . . . , lm) then we
define sφ and tφ as in Formulas 3.4.1 and 3.4.2, using lm+1 = lm+2 = · · · = ln = 0.

235



placed in m rows (for m = max{ i : li 6= 0 }) and with li entries left-adjusted in
row i. Using this representation, the product

(xk1 + xk2 + · · ·+ xkn)tφ

is computed (and represented as a linear combination of tψ’s for partitions ψ) by a
“regular application of k dots” to the Young diagram representing tφ. The method
also includes a “pruning” operation which discards all intermediate Young diagrams
(and corresponding polynomials tφ) which cannot possibly contribute to the coef-
ficient being computed. The method is described in detail (with a derivation from
Frobenius’ formula) by Hamermesh [61] (Section 7.4); Hamermesh also provides
examples of its use. A straightforward analysis of the method, using the bounds
on the number of partitions of n stated as Propositions 3.4.1 and 3.4.2, yields the
bounds stated below.

Theorem 3.4.4. Given an integer n > 0 and partitions λ and µ of n, a binary
representation of the integer ζ(λ)

µ can be computed using a (log space) uniform family
of Boolean circuits of size O(2(π·

√
(2/3)+ε)(log2 e)

√
n) and depth nO(1), for ε > 0 and

sufficiently large n.

Corollary 3.4.5. For n, λ, and µ as above, a binary representation of the integer
ζ

(λ)
µ can be computed by a sequential deterministic (Boolean) algorithm, using time

and space O(2(π·
√

(2/3)+ε)(log2 e)
√
n), for constant ε > 0 and sufficiently large n.

Corollary 3.4.6. For n, λ, and µ as above, the integer ζ(λ)
µ can be computed by a

sequential deterministic (Boolean) algorithm, using time O(nn+c) and space nO(1),
for a constant c > 0. Thus, “Entry of a Character Table for Sn” ∈ PSPACE.

The bound stated in Corollary 3.4.6 is obtained by noting that at most n polynomi-
als tφ arise by the multiplication of a fixed tλ by (xk1 + xk2 + · · ·+ xkn) at each stage
of the algorithm (or, alternatively, that at most n Young diagrams are obtained
from a single one by the “regular application of k dots”) — and by noting that the
algorithm has at most n stages.

It seems natural to ask how much we save by the “pruning” performed by the al-
gorithm: Is the algorithm much faster than our (easily obtained) upper bounds
indicate? We note that for some inputs, the combinatorial algorithm requires se-
quential time Ω(2c

√
n) for a constant c > 0.
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Theorem 3.4.7. For any integer n > 1, let µ = (1, 1, . . . , 1) be a partition of n,
and let λ = (l1, l2, . . . , ln) be the partition of n such that

• li = b
√
n c, for 1 ≤ i ≤ b

(
n

b
√
n c

)
c;

• li = n− b
(

n
b
√
n c

)
c · b
√
n c, for i = 1 + b

(
n

b
√
n c

)
c;

• li = 0 for i > 1 + b
(

n
b
√
n c

)
c.

Then the graphical algorithm discussed above must examine Ω
(

22b
√
n c/
√
n
)

par-

titions of integers less than or equal to n in order to compute ζ(λ)
µ .

We have chosen λ and µ as above to guarantee that all the partitions (l1, l2, . . . , lk)
of integers less than n, such that l1 ≤ b

√
n c, and with at most b

√
n c parts (that is,

so that li = 0 for i > b
√
n c) must be examined — that is, so that each contributes

a positive value to the coefficient being computed. Since there are as many of these
partitions as there are nondecreasing functions from the set { 1, 2, . . . , b

√
n c } to

itself (in particular, Ω(22b
√
n c/b

√
n c) of them), the bound follows immediately.

We view this result as preliminary. Since several other algorithms for this computa-
tion exist, and some compute entries of particular rows or columns of the character
table very quickly, Theorem 3.4.7 can only be viewed as evidence that a specific
algorithm for this problem is asymptotically inefficient when applied to a specific
(relatively small) set of instances of this problem. Results showing that all known
algorithms perform badly for a nontrivial fraction of all inputs, or (better yet) show-
ing that the problem is actually hard, would be more interesting. Unfortunately,
we do are not aware of any such results.

We next define two problems concerning the decomposition of “products” of char-
acters of Sn. While the corresponding problems for matrix representations are
straightforward (and can be solved in expected polynomial time, by the methods
of Sections 2 and 3), we are given only the characters for these representations as
input for the problems to be discussed.

Suppose first that T1 : Sn → GL(m1, F ) and T2 : Sn → GL(m2, F ) are matrix
representations of Sn. The inner product of T1 and T2 is the tensor product T1⊗F T2,
of dimension m1m2 over F , which we discussed in Example 3.1.7. A natural problem
(for matrix representations of Sn) would be to form, and decompose, the inner
product of two given representations. Instead of posing this, we note that if φ1 and
φ2 are two characters of Sn, then we can also generate a third character, φ1×φ2,
as the character of the representation T1 ⊗F T2 obtained from representations T1

and T2, with characters φ1 and φ2 respectively. The inner product φ1×φ2 of φ1

and φ2 will, in fact, be well defined: it will be independent of the choice of the
representations T1 and T2 (each chosen from those representations with the desired
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character). In general, the problem of decomposing the inner product φ1×φ2 of two
irreducible characters is considered. Again, we consider characters over algebraically
closed or real closed fields of characteristic zero — and, in particular, over C and R.

Problem Decomposition of Inner Product

Input. • Integer n > 0.
• Partitions λ1, λ2, and µ of Sn.

Output. • The coefficient cµ of ζ(µ) in the decomposition
ζ(λ1)×ζ(λ2) =

∑
φ`n cφζ

(φ).

Again, we have a problem with input of size O(n log n) which concerns characters
of Sn. As noted in Section 3.3, the value of the character ζ(λ1)×ζ(λ2) at an element
g of Sn is the product of ζ(λ1)(g) and ζ(λ2)(g), as our notation suggests. It is a con-
sequence of the orthogonality relations for characters of finite groups (in particular,
Proposition 3.3.18(ii)), that

cµ = n−1
∑
g∈Sn

ζ(λ1)(g)ζ(λ2)(g)ζ(µ)(g−1).

Applying the upper bounds of Section 3.4.1, we conclude that the problem “Decom-
position of Inner Product” is in PSPACE. While we can use a slightly more efficient
process to compute cµ (namely, by computing the sizes of conjugacy classes of Sn
and using Proposition 3.3.18(iii), so that we sum over partitions of n instead of over
all elements of Sn), no efficient (polynomial-time) method for this computation is
known.

We will describe, rather than formally define, an outer product of characters. Given
matrix representations T1 : Sn1 → GL(m1, F ) and T2 : Sn2 → GL(m2, F ), there is
a natural matrix representation T1 + T2 of Sn1 ⊕ Sn2 , of dimension m1 + m2 over
F : For each element g1 of Sn1 and g2 of Sn2 , we set

(T1 + T2)((g1, g2)) =
[
T1(g1) 0

0 T2(g2)

]
∈ GL(m1 +m2, F ).

Now we view Sn1 ⊕ Sn2 as a subgroup of Sn1+n2 (namely, the set of permutations
mapping the sets { 1, 2, . . . , n1 } and {n1 + 1, n1 + 2, . . . , n1 +n2 } to themselves):
given (g1, g2) ∈ Sn1⊕Sn2 , we use the element g1 of Sn1 to define the action of (g1, g2)
on 1, 2, . . . , n1, and we use g2 ∈ Sn2 to define the action on n1 +1, n1 +2, . . . , n1 +
n2. The outer product of T1 and T2 is the matrix representation of Sn1+n2 induced
by the representation T1 +T2 of this subgroup (isomorphic to Sn1 ⊕Sn2) of Sn1+n2 .
(Representations of groups induced by representations of subgroups are discussed
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in most treatments of basic representation theory. In particular, Serre’s treatment
of this subject is short and readable; see [112], Section 3.3.)

Again, we have a corresponding, well defined, operation on characters of the sym-
metric group. We will denote by φ1�φ2 the character (of Sn1+n2) obtained as the
outer product of characters φ1 and φ2 of Sn1 and Sn2 , respectively.∗

Problem Decomposition of Outer Product

Input. • Integers n1, n2 > 0.
• Partitions λ1, λ2, and µ of n1, n2, and n1 + n2 respectively.

Output. • The coefficient cµ of ζ(µ) in the decomposition
ζ(λ1)�ζ(λ2) =

∑
φ`n1+n2

cφζ
(φ).

Again, there is a well known graphical method commonly used to solve this prob-
lem, (based on) the Littlewood-Richardson rule. The method was introduced by
Littlewood and Richardson in 1934 ([86]); the first complete proof of correctness of
the method has appeared more recently (See the monograph of Macdonald [88] for
a combinatorial proof). The method is often presented in treatments of the repre-
sentation theory of the symmetric group (for example, see James and Kerber [69],
and Hamermesh [61]). Remmel and Whitney [101] have recently presented an alter-
native method, which they claim to be more efficient for a number of applications
than the Littlewood-Richardson rule. An analysis of either method can be used
to show that the problem “Decomposition of Outer Product” is in PSPACE; to
our knowledge, no analysis of the worst case running time for either method has
appeared.

∗ Our notation is nonstandard. Unfortunately, several symbols are in use to denote
this operation (and to denote operations defined in Section 3.4.2) — and different
authors use the same symbol to denote different operations. We choose our notation
with the intention of avoiding symbols which have been used for other operations
— and, in particular, to avoid the tensor symbol, ⊗, which is overused.
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3.4.2. Computations for Characters of the Full Linear Groups

We now consider some problems concerning representations and characters of the
full linear group, GL(n, F ), of nonsingular matrices of order n over a field F . Again,
we are chiefly concerned with the case that F is an algebraically closed or real closed
field of characteristic zero — and we will consider representations of GL(n, F ) over
the (same) field F .

We first note that if F = R or F = C then not all representations of GL(n, F ) are
completely reducible.

Example 3.4.8. Let F = R (or F = C), n > 1, and let T : GL(n, F )→ GL(2, F )
such that, for A ∈ GL(n, F ),

T (A) =
[

1 log2 |det(A) |
0 1

]
.

Then T is a matrix representation of GL(n, F ) over F which is not completely
reducible.

We restrict attention to a subset of the matrix representations of GL(n, F ), all of
which are completely reducible (for F a field of characteristic 0) — namely, the
tensor representations of GL(n, F ) over F . The irreducible representations in this
set are the irreducible components of the matrix representations T (i), for i ∈ N,
where T (0) : GL(n, F ) → GL(1, F ) (with T (0)(A) = [1] for all A ∈ GL(n, F )),
T (1) : GL(n, F ) → GL(n, F ) (with T (1)(A) = A for all A ∈ GL(n, F )), and with
T (i+1) = T (i)⊗FT (1), the ith tensor power of T (1), for i > 0. Thus T (i) : GL(n, F )→
GL(ni, F ).

The decomposition of these tensor powers is discussed by Hamermesh [61] (See
Chapter 10). As is noted there, there are as many (inequivalent) irreducible compo-
nents of T (m) as there are partitions of m with at most n nonzero parts (that is, par-
titions (l1, l2, . . . , ln) with l1 ≥ l2 ≥ · · · ≥ ln ≥ ln+1 = 0 and l1 + l2 + · · ·+ ln = m).
These irreducible components have distinct characters; there is a natural correspon-
dence between these irreducible characters and partitions with at most n parts. For
example, if n = 3 then there are inequivalent irreducible components of T (5) corre-
sponding to the partitions

(5), (4, 1), (3, 1, 1), and (2, 2, 1).

We denote the corresponding characters by {5}, {4, 1}, {3, 1, 1}, and {2, 2, 1}, re-
spectively.
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Problem Evaluation of a Tensor Character of GL(n, F )

Input. • Integers n, m > 0.
• A partition λ of m with at most n parts.
• A matrix A ∈ GL(n, F ).

Output. • The value {λ}(A) of the character {λ} at the matrix A.

In fact, the characters {λ} induce well defined functions from the characteristic
values of the matrices in GL(n, F ) to F : the value {λ}(A) is eλ(c1, c2, . . . , cn),
where eλ : Fn → F is the Schur function (of n indeterminates) corresponding
to the partition λ of m, and c1, c2, . . . , cn are the characteristic values of A. In
general, if λ is a partition of m with at most n parts, then eλ is a symmetric
polynomial with total degree m. (If λ is as above, but li 6= 0 for i > n, then
eλ = 0.) The value {λ}(A) depends only on the characteristic values of the matrix A
(and the partition λ); in principle, we could compute this value by factoring the
characteristic polynomial of A to generate the characteristic values c1, c2, . . . , cn,
and then evaluate eλ(c1, c2, . . . , cn). In fact, we can do better than this. Since the
characteristic polynomial of A is

∏n
i=1(t−ci), the coefficient of tk for this polynomial

is
(−1)n−kan−k(c1, c2, . . . , cn),

for an−k the elementary symmetric polynomial of degree n−k in n indeterminates.
For 0 ≤ i ≤ n, the value ai(c1, c2, . . . , cn) can be computed directly from the
entries of A (simply by computing A’s characteristic polynomial). Now we apply
the following identity, stated by Stanley [113] (as Corollary 11.2).

Proposition 3.4.9. Let λ = (l1, l2, . . . , ln) be a partition with largest part l1 = q.
Then eλ(c1, c2, . . . cn) is the determinant of the matrix

am1(c1, c2, . . . , cn) am1+1(c1, c2, . . . , cn) · · · am1+q−1(c1, c2, . . . , cn)
am2−1(c1, c2, . . . , cn) am2(c1, c2, . . . , cn) · · · am2+q−2(c1, c2, . . . , cn)

...
...

. . .
...

amq−q+1(c1, c2, . . . , cn) amq−q+2(c1, c2, . . . , cn) · · · amq (c1, c2, . . . , cn)

 ,
where ai(c1, c2, . . . , cn) = 0 if i < 0 and µ = (m1, m2, . . . , mq) is the conjugate
partition of λ: that is, mi = |{ j : lj ≥ i }|, for 1 ≤ i ≤ q.

It follows immediately that the problem “Evaluation of a Tensor Character of
GL(n, F )” can be solved using arithmetic-Boolean circuits over F , of size poly-
nomial in nm and depth polylogarithmic in nm. It the entries of A are represented
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as elements of a number field, then the corresponding statement holds for compu-
tation by Boolean circuits. If we consider the integers n and m to be represented
(as inputs for this problem) in unary, rather than binary notation, so that the input
size matches the output size, then we can conclude that this version of the problem
is in NC.

We next consider the problem of decomposing tensor products. We denote † by
{λ1}�{λ2} the “inner tensor product” of the characters {λ1} and {λ2} of GL(n, F )
— that is, the character of a representation T1 ⊗ T2 of GL(n, F ) obtained from
representations T1 and T2 of GL(n, F ) with characters {λ1} and {λ2} respectively.

Recall that if {λi} is a partition of mi with at most n parts, for i = 1, 2, then
the Schur function eλi corresponding to λi has total degree mi. It is clear, then,
that the symmetric function (of characteristic values) corresponding to the product
{λ1}�{λ2} has total degree m1 + m2, and that the irreducible components of the
character {λ1}�{λ2} will correspond to partitions of m1 +m2.

Problem Decomposition of a Tensor Product of Representations
of GL(n, F )

Input. • Integers n, m1, m2 > 0.
• Partitions λ1 of m1, λ2 of m2, and µ of m1 +m2,

each with at most n parts.
Output. • The coefficient cµ of {µ} in the decomposition

{λ1}�{λ2} =
∑
µ`m1+m2

cµ{µ}.

This problem is closely related to one which we have already discussed.

Proposition 3.4.10. Let F be an algebraically closed or real closed field of char-
acteristic 0. Let λ1 and λ2 be partitions of integers m1 and m2 respectively, each
with at most n parts. Then if integers cµ are given (for µ ` m1 +m2, with at most
n parts) by the relation

ζ(λ1)�ζ(λ2) =
∑

µ`m1+m2

cµζ
(µ),

for characters ζ(λ1) and ζ(λ2) of Sm1 and Sm2 respectively, then

{λ1}�{λ2} =
∑

µ`m1+m2

cµ{µ},

for the same constants cµ and for the characters {λ1} and {λ2} of GL(n, F ).

† Again, this notation is nonstandard.
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We set {µ} = 0 if µ is a partition with more than n nonzero parts.

This correspondence between problems is well known (see, for example, [119]
or [78]). As a consequence of this, we can decompose a tensor product of irre-
ducible characters of GL(n, F ) using methods for the decomposition of outer prod-
ucts of characters of the symmetric groups — in particular, using the Littlewood-
Richardson rule and the method of Remmel and Whitney — and so we can conclude
that the problem of decomposing tensor products of characters of GL(n, F ) is in
PSPACE.

For a discussion of a further problem (from algebraic geometry) which is equivalent
to the decomposition of outer products of representations of the symmetric groups
in this way, refer to [78] (and, for a more general discussion of the background for
the problem, to [73]).

Having discussed representations of GL(n, F ), we can introduce the notion of a
plethysm of representations. Suppose φ : G → GL(n, F ) is a representation of a
group G, and ψ : GL(n, F )→ GL(m,F ) is a representation of GL(n, F ). It is easily
checked that the plethysm ψ}φ of ψ and φ, defined‡ by

ψ}φ(g) = ψ(φ(g)) for g ∈ G,

is also a representation of G. Viewed as an operator on (matrix) representations,
then plethysm is simply a composition of functions. As is the case for the other
operators we have discussed in this section, “plethysm” is more often considered as
a (well defined) operator on characters.∗

Again, we consider the problems of evaluation and decomposition. If the dimension,
n, of the representation φ is small (and, in particular, if it is feasible to compute
the values φ(1), φ(g), . . . , φ(gn−1) for an element g of G) then we can evaluate
ψ(φ(g)) using the fact that (if F has characteristic 0) ψ can be considered not
only as a function of the characteristic values of the matrix T̂ (g), for T̂ a matrix
representation with character φ, but also as a function of the “power sum” sym-
metric functions of these characteristic values — that is, as a function of the values
φ(1), φ(g), φ(g2), . . . , φ(gn−1). Given φ(1), φ(g), . . . , φ(gn−1), the value ψ}φ can
be computed using arithmetic-Boolean circuits of size polynomial in nm and depth

‡ Once again, we are using a nonstandard symbol to replace ⊗
∗ In fact, our definition in terms of matrix representations is nonstandard. While

our definition is occasionally mentioned as an equivalent, alternative definition (see
[42], [116], and [119]), “plethysm” is more often defined as an operator for charac-
ters — or, using the relationship between characters of GL(n, F ) and symmetric
polynomials noted above, as an operator on symmetric polynomials (see [21] and
[88]). For a discussion of plethysm as an operator on partitions, and on characters
of the symmetric group, see [69].

243



polylogarithmic in nm, for ψ corresponding to a partition of m, and for n the
dimension of φ.

It is more frequently the case that we are asked to evaluate a plethysm φ}ψ, for ψ a
character of the full linear groupGL(k, F ) (or for a subgroup of GL(k, F ) such as the
group of unitary, orthogonal, or symplectic k × k matrices over F ). In these cases,
the dimension (n) of ψ is generally too large for us to evaluate the plethysm by the
above method. If ψ is an irreducible character of a full matrix group GL(k, F ) then
we can evaluate ψ}φ at a matrix A ∈ GL(k, F ) given either the entries of A, or the
characteristic values of A, or the coefficients of the characteristic polynomial, using
arithmetic-Boolean circuits of size polynomial in m1m2 (where φ ` m1 and ψ ` m2)
by using standard identities for plethysms of Schur functions. (Note formulas 1.5(a)
and 2.7 of Chen, Garsia, and Remmel [21].)

We next examine the problem of decomposing plethysms. If ψ is a character of a
finite group then we can decompose a plethysm φ}ψ by evaluating this at an element
of each conjugacy class of G, and then using the orthogonality relations (Proposition
3.3.18) and a character table for G, to express the plethysm as a sum of irreducible
characters. A similar, more expensive, procedure can be used to decompose a
plethysm {φ}}{ψ}, for {φ} and {ψ} characters (of tensor representations) of full
linear groups, and corresponding to partitions of m1 and m2 respectively (with ψ
a representation of GL(k, F )). Examining the total degrees (m1 and m2) of the
Schur functions eφ and eψ, and noting the effect of a plethysm as an operator on
Schur functions, we find that the irreducible components of φ}ψ are all irreducible
characters corresponding to partitions of m1m2. We can decompose the plethysm by
evaluating it at at least as many matrices as there are irreducible (tensor) characters
corresponding to these partitions; however, the cost of this method is prohibitive
for all but very small values of k. Further algorithms for the decomposition of
plethysms are discussed by Chen, Garsia, and Remmel [21].

Finally, we note that physical applications often involve characters of “restricted”
subgroups of GL(n, F ) — such as the orthogonal group, the unitary group, or the
symplectic group. The irreducible characters of these groups are closely related;
branching rules, expressing an irreducible character of one of these groups in terms of
irreducible characters of another, can be used for the evaluation and decomposition
of characters of these restricted groups. Hamermesh [61] and Wybourne [119] each
discuss these restrictive groups, and their representations and characters. Again,
we can consider the problems of evaluating and decomposing characters of these
groups. We leave the analysis of existing algorithms for these computations, and
the search for new algorithms, for further work.
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Final Remarks.

We have seen that a number of interesting computational problems arise from the
structure theory of associative algebras and the representation theory of both finitely
generated (and finite) groups, and the linear groups. While some (“representa-
tional”) difficulties must be dealt with in order to work with the structures arising
most often in physical applications (namely, algebras and matrix representations
over R and C), we have noted that in many cases the difficulties can be overcome.
While symbolic (exact) computations appear to require more overhead than numer-
ical computations, we have seen that they can be used to produce asymptotically
fast (and, we hope, practical) algorithms for a number of problems which cannot
be solved using strictly numerical techniques. In some cases, we have provided new
algorithms for these problems; in others, it has been sufficient to provide analysis for
the performance of algorithms which have been observed to work well in practice.

As we saw in Section 3, some of these representational problems disappear when
we consider matrix representations and characters of finite groups — or decompose
characters of linear groups obtained by forming products or plethysms of irreducible
characters. It may be possible to provide correct and efficient numerical solutions
for problems in these restricted domains, even though exact computations are nec-
essary for these problems in a more general setting. For example, the problem of
deciding whether a matrix representation over R of an arbitrary finitely generated
group is isotypic cannot be solved reliably using a numerical estimate (of any fixed
precision) for the input. However, if we consider a matrix representation of a (fixed)
finite group G, then a reasonably accurate numerical estimate can be used (with
a character table for G) to solve this problem correctly: The character of any rep-
resentation of G is an (integer) linear combination of irreducible characters (see
Dixon [35]). A study of those problems which can be solved numerically should
prove to be rewarding — and there is certainly a wealth of numerical algorithms in
the literature requiring analysis.

Since our symbolic algorithms are apparently more expensive than corresponding
numerical algorithms, a “hybrid” approach may be worth considering, if symbolic
representations of outputs are not required. In particular, it may be useful to begin
by attempting to solve a problem numerically, simultaneously applying techniques
from interval analysis to obtain a bound on the error in the numerical estimates
computed. If the analysis indicates that the error may be too large, then symbolic
techniques can be applied to obtain more accurate output. Otherwise, it is not
necessary to continue. Again, we do not know whether numerical techniques for
these problems can guarantee sufficiently accurate estimates (inexpensively), or
whether interval analysis can produce sufficiently accurate estimates of error, for this
approach to be more efficient than an immediate application of symbolic techniques.
(For discussions of interval analysis, see [90] and [74].)

245



We have mentioned a number of problems, in Sections 2.6 and 3.4 which merit
further attention. An examination of the references we list for representation theory
(in particular, Curtis and Reiner [31], Hamermesh [61], and James and Kerber [69])
will yield numerous others, providing ample material for further work.
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[111] J. T. Schwartz.
Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 27 (1980), 701–717.

[112] J.-P. Serre. Linear Representations of Finite Groups.
Springer-Verlag, New York, 1977.

[113] R. P. Stanley. Theory and application of plane partitions: part 1.
Studies in Applied Mathematics 50 (1971), 167–188.

[114] V. Strassen. Gaussian elimination is not optimal.
Numer. Mathematik 13 (1969), 354–356.

[115] E. C. Titchmarsch. A divisor problem.
Rendiconti del Circolo Matematico di Palermo 54 (1930), 414–429.

255



[116] J. A. Todd. A note on the algebra of S-functions.
Cambridge Philosophical Society, Proceedings, 45 (1949), 328–334.

[117] B. L. van der Waerden. Algebra, Volume 1.
Ungar, New York, 1970.

[118] B. L. van der Waerden. Algebra, Volume 2.
Ungar, New York, 1970.

[119] B. G. Wybourne. Symmetry Principles and Atomic Spectroscopy.
Wiley, New York, 1970.

256


