
Reliable Krylov-Based Algorithms for
Matrix Null Space and Rank

Extended Abstract

Wayne Eberly
∗

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada

eberly@cpsc.ucalgary.ca

ABSTRACT
Krylov-based algorithms have recently been used, in combi-
nation with other methods, to solve systems of linear equa-
tions and to perform related matrix computations over finite
fields. For example, large and sparse systems of linear equa-
tions over F2 are formed during the use of the number field
sieve for integer factorization, and elements of the null space
of these systems are sampled.

Two rather different kinds of block algorithms have re-
cently been considered. Block Wiedemann algorithms have
now been presented and fully analyzed. Block Lanczos algo-
rithms were proposed earlier but are not yet as well under-
stood. In particular, proofs of reliability of block Lanczos
algorithms are not yet available. Nevertheless, an examina-
tion of the computational number theory literature suggests
that block Lanczos algorithms continue to be preferred.

This report presents a block Lanczos algorithm that is
somewhat simpler than block algorithms that are presently
in use and provably reliable for computations over large
fields. To my knowledge, this is the first block Lanczos al-
gorithm for which a proof of reliability is available.

A different Krylov-based approach is considered for com-
putations over small fields: It is shown that if Wiedemann’s
sparse matrix preconditioner is applied to an arbitrary ma-
trix then the number of nontrivial invariant factors of the
result is, with high probability, quite small. A Krylov-based
algorithm to compute a partial Frobenius decomposition can
then be used to sample from the null space of the original
matrix or to compute its rank. This yields a randomized
(Monte Carlo) black box algorithm for matrix rank that is
asymptotically faster, in the small field case, than any other
that is presently known.

∗Research was supported in part by Natural Sciences and
Engineering Research Council of Canada research grant
OGP0089756.

c© ACM, 2004. This is the author’s version of the work.
It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version will be
published in Proceedings, ISSAC ’04, July 4–7, 2004, San-
dander, Spain.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms, analysis of algorithms; F.2.1
[Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—computations in fi-
nite fields, computations on matrices

General Terms
Algorithms, Reliability, Theory

Keywords
Black box matrix, block Lanczos algorithm, Frobenius de-
composition, linear system solution, matrix rank, random-
ized algorithm

1. INTRODUCTION
Consider the problem of selecting a vector uniformly and

randomly from the (right) null space of a given matrix.
As discussed in the report of Buhler, Lenstra, and Pomer-
ance [1], this problem arises for large, sparse matrices over
the finite field F = F2 when the number field sieve is applied.

As reported by LaMacchia and Odlyzko [13] structured
Gaussian Elimination can be used for this computation.
However, storage requirements may be prohibitive for large
problems when this technique is applied. Krylov-based al-
gorithms, such as the algorithm of Lanczos [14], require less
storage and are reliable for computations over the real num-
bers, but require modification if they are applied for com-
putations over small finite fields.

A block Lanczos algorithm was proposed for this purpose
by Coppersmith [3] in the early 1990’s, with the objectives
of improving both reliability and coarse-grain parallelism.
Variants of this algorithm, including a simpler algorithm of
Montgomery [15], have been used (frequently in combination
with elimination-based methods) with considerable success.
Unfortunately, the reliability of these algorithms has not
been adequately analyzed.

Indeed, these algorithms are not reliable in the worst case
for computations over small finite fields: Krylov-based al-
gorithms for singular matrix computations perform poorly
if they are applied to matrices whose minimal polynomials
(in F[z]) are divisible by z2 and that have a large number
of invariant factors. The heuristics currently in use do not

overcome this problem. For example, they are ineffective for
computations over F2 when applied to block-diagonal ma-
trices that include a large number of diagonal blocks�

1 1
1 1 �

along with a large identity matrix as a final block. Heuristics
that use symmetrization to condition the input — replacing
A by AtA or by AAt – are defeated by block diagonal ma-
trices with a form similar to the above, if multiple blocks�

1 1
0 0 � and

�
1 0
1 0 �

are also used.
A related Krylov-based algorithm, namely, that of Wiede-

mann [17], has subsequently been developed and fully ana-
lyzed. Furthermore, a block variant (with improved par-
allelism, once again) has also been proposed by Copper-
smith [4]. Unlike the block Lanczos algorithms, a some-
what modified version of this block Wiedemann algorithm
has been shown to be reliable — see Kaltofen [11] for the
analysis in the large field case and Villard [16] for the anal-
ysis over small finite fields. A subsequent paper of Kaltofen
and Villard [12] includes a summary of this algorithm, the
underlying theory, and some additional results concerning
the behaviour of the algorithm in the large field case.

The block Wiedemann algorithm has at least one other no-
table advantage over any block Lanczos algorithm proposed
to date: As noted by Kaltofen [11], the block Wiedemann
algorithm allows the use of rectangular matrices as blocks.
If block sizes are appropriately chosen, then the resulting
algorithm is considerably faster than any block Lanczos al-
gorithm that is presently known.

Nevertheless, variants of the Lanczos algorithm continue
to be used instead. We are therefore lead to ask whether
algorithms that resemble the currently used heuristics are
provably reliable.

A partial answer is provided in this report: A block Lanc-
zos algorithm that is provably reliable for computations over
large fields is described in Section 2. I am not aware of any
interesting application for which this algorithm is superior
to the block Wiedemann algorithms that are already avail-
able. This material is presented, instead, in the hope that
it will help to improve our understanding of Krylov-based
algorithms and, perhaps, facilitate future improvements.

A rather different algorithm is described in Section 3 for
computations over small fields. It is shown that if Wiede-
mann’s sparse preconditioner is applied to an arbitrary ma-
trix then the number of nontrivial invariant factors of the
result is, with high probability, at most logarithmic in the
rank of the input matrix. A Krylov-based algorithm to com-
pute a partial Frobenius decomposition can then be applied,
either to sample from the null space of the original matrix
or to compute its rank.

This new algorithm has a few advantages over existing
block Wiedemann algorithms, together with at least one no-
table disadvantage. While it is possible that the new algo-
rithm might have practical application, I consider it to be at
least as likely that this will lead to modifications of the anal-
ysis and implementation of block Wiedemann algorithms, to
obtain the advantages of both approaches.

Several proofs are omitted from this abstract. These can
be found in the more complete version of this paper [8].

2. COMPUTATIONS IN LARGE FIELDS
Eberly and Kaltofen [9] present a simple scalar Lanczos

algorithm and show that it is reliable over arbitrary large
fields. In this section, this algorithm is modified to produce
a simple block algorithm that can be used to sample from the
null space of a given matrix A with entries in a sufficiently
large field or to compute its rank.

2.1 A Matrix Preconditioner
We begin with a diagonal matrix preconditioner described

in the above paper. Additional information about this pre-
conditioner can be found in the report of Chen et. al. [2].

Lemma 1 (Eberly and Kaltofen [9]). Suppose F is
a field and let A ∈ Fm×n be a matrix with rank r. Let S be
a finite subset of F \ {0}, and suppose

α1, α2, . . . , αn, β1, β2, . . . , βm

are chosen uniformly and independently from S. Let

D~α = ����� α1

α2

. . .

αn

� ���� ∈ F
n×n

and let

D~β = ����� βm

β2

. . .

βm

� ���� ∈ F
m×m.

Then, with probability at most 11n2−n
2|S|

, the matrix�
A = D~αAT D~βAD~α ∈ F

n×n

is a matrix with rank r, whose characteristic polynomial is
zn−rf for some squarefree polynomial f ∈ F[z] with degree r
such that f(0) 6= 0.

A consideration of the rank of A confirms that if the
above-mentioned matrix

�
A has the properties described in

the lemma, then the minimal polynomial of
�
A is zf and

�
A

is similar to a diagonal matrix over a suitable extension of F

(namely, a splitting field of f).

Eberly and Kaltofen observe that if
�
A is as described

above, and if a system of linear equations
�
Ax = b is con-

sistent, then a solution for the system can be found within
the Krylov space of b. That is, there exists a linear combi-

nation x of the vectors b,
�
Ab,

�
A2b, . . . that satisfies the above

system of equations. If F is a finite field then we may select

an element uniformly from the null space of
�
A by uniformly

selecting a vector z, choosing a vector x such that
�
Ax = b,

for b =
�
Az, and returning the vector z − x.

Since A and
�
A have the same rank,

�
A = D~αAT D~βAD~α,

and the diagonal matrix D~α is nonsingular, a vector y is in

the null space of
�
A if and only if D~αy is in the null space

of A. We may also return the vector D~α(z−x) as a uniformly
selected element of the null space of A.

Suppose now that k ≥ 1, and that k vectors z1, z2, . . . , zk

have been uniformly and independently selected from Fn×1.
Let ~z be the matrix in Fn×k whose ith column is zi, for
1 ≤ i ≤ k. It follows by a straightforward generalization

Input: A symmetric matrix 	A ∈ Fn×n and a matrix
~b ∈ Fn×k

Output: A matrix ~x ∈ Fn×k such that 	A~x = ~b, or
failure

1. ~w−1 := 0n×k; ~v0 := 0n×k; ~x−1 := 0n×k; ~t−1 := Ik

2. ~w0 := ~b; ~v1 := 	A~w0; ~t0 := ~v t
1 ~w0

3. i := 0

4. while det~ti 6= 0 do

5. ~xi := ~xi−1 + ~wi~t
−1
i ~w t

i
~b

6. ~wi+1 := ~vi+1 − ~wi~t
−1
i ~v t

i ~vi+1 − ~wi−1~t
−1
i−1~v

t
i−1~vi+1

7. ~vi+2 := 	A~wi+1

8. ~ti+1 := ~v t
i+2 ~wi+1

9. i := i + 1

end while

10. if ~wi 6= 0n×k then

11. Set h to the the largest integer such that the
leftmost h columns of ~wi are linearly indepen-
dent.

12. Set ~wi to be the matrix in Fn×h that includes
the leftmost h columns of the current ~wi.

13. Set ~ti to be the top left h × h submatrix of the
current ~ti, so that ~ti ∈ Fh×h.

14. if h = 0 or det~ti = 0 then

15. report failure

else

16. ~x := ~xi−1 + ~wi~t
−1
i ~w t

i
~b

end if

else

17. ~x := ~xi−1

end if

18. if 	A~x = ~b then

19. return ~x

else

20. return failure

end if

Figure 1: A Block Lanczos Algorithm

of the above process that a sequence of k vectors can be
uniformly and independently sampled from the null space

of 	A by finding a solution ~x ∈ Fn×k for the system	A~x = ~b for ~b = 	A~z,

and returning the columns of the matrix D~α(~z − ~x).

2.2 A Block Lanczos Algorithm
Consider the algorithm that is shown in Figure 1. This

is a straightforward generalization of the “standard Lanczos
algorithm” shown in Figure 1 of the paper of Eberly and
Kaltofen [9].

Suppose 	A ∈ Fn×n is symmetric with rank r. Once again,
we are interested in the behaviour of the given algorithm

when 	A has a minimal polynomial zf for some squarefree
polynomial f ∈ F[z] with degree r such that f(0) 6= 0, so

that 	A is similar to a diagonal matrix over an extension of F.

Let ` = dr/ke − 1, where k is the block size used in the
algorithm.

If failure is not reported, then the algorithm generates a
sequence of matrices

~w0, ~w1, ~w2, . . . , ~w`

such that ~wi ∈ Fn×k for 0 ≤ i ≤ ` − 1 and ~w` ∈ Fn×h

for some integer h such that 1 ≤ h ≤ k. As noted in the
next section, it will frequently be the case that h = k if r is
divisible by k, and that h = r−k` if m is not divisible by k.

The columns of the matrices ~w0, ~w1, ~w2, . . . , ~wi are linearly
independent and form a basis for the vector space spanned
by the columns of the matrices

~b, 	A~b, 	A2~b, . . . , 	Ai~b

for each integer i such that 0 ≤ i ≤ `. Consequently, if h
has its usual value (as given above), then the columns of
the matrices ~w0, ~w1, ~w2, . . . , ~w` form a basis for the column

space of 	A, and the number of these columns is equal to the

rank of 	A.
A useful orthogonality condition is achieved:

~w t
i 	A~wj = 0 (1)

for all integers i and j such that 0 ≤ i, j ≤ ` and i 6= j, and

det ~w t
i 	A~wi 6= 0 (2)

for 0 ≤ i ≤ `.
Two other sequences of matrices are computed along the

way, in order to minimize the number of multiplications by 	A
that are used: ~v0, ~v1, ~v2, . . . , ~v` are matrices such that

~vi+1 = 	A~wi for 0 ≤ i ≤ `− 1, (3)

and ~t0,~t1, . . . ,~t` are square matrices such that

~ti = ~w t
i 	A~wi for 0 ≤ i ≤ `. (4)

The algorithm maintains one more sequence of matrices,
in order to produce a solution for the given system:

~x0, ~x1, . . . , ~x`−1

are matrices in Fn×k such that

~w t
j (A~xi − b) = 0 (5)

for all integers i and j such that 0 ≤ j ≤ i ≤ ` − 1; this
is used at the end of the algorithm to generate a matrix ~x
such that

~w t
j (A~x− b) = 0 (6)

for all j such that 0 ≤ j ≤ `.
A comparison of this algorithm with the scalar algorithm

will confirm that this is, indeed, a straightforward general-
ization: The two algorithms maintain the same sequences of
matrices when k = 1, using virtually the same sets of opera-
tions. It is somewhat simpler than block Lanczos algorithms
of Coppersmith [3] or Montgomery [15], due to the omission
of any kind of lookahead mechanism. There is good rea-
son to include such mechanisms for computations over small
fields. However, as argued in the next section, these are not
required for computations over large fields, when the coeffi-

cient matrix 	A has the properties that have been described

here and the columns of ~b are randomly chosen from the

column space of 	A.

2.3 Analysis of Reliability
The following proof of reliability of the block Lanczos al-

gorithm is, again, a modification of that of the reliability
of the algorithm of Eberly and Kaltofen [9]. Suppose, once

again, that
A ∈ Fn×n is a symmetric matrix with rank r,

and that ~b ∈ Fn×k for an integer k ≥ 1. Let us consider the
following block-Hankel matrices. For 1 ≤ i ≤ br/kc, let

Hi(
A,~b) =

����� ~bt
A~b ~bt
A2~b · · · ~bt
Ai~b
~bt
A2~b ~bt
A3~b · · · ~bt
Ai+1~b

...
...

. . .
...

~bt
Ai~b ~bt
Ai+1~b · · · ~bt
A2i−1~b

� ����� . (7)

Let H(
A,~b) ∈ Fr×r be the matrix Hr/k(
A,~b) if r is divis-

ible by k, and let H(
A,~b) be the top left r× r submatrix of

Hdr/ke(
A,~b), otherwise.
The following result can be proved using a reasonably

straightforward generalization of the proof of Lemma 3.2
in Eberly and Kaltofen [9].

Lemma 2. Suppose that
A ∈ Fn×n is a symmetric matrix
with rank r, whose minimal polynomial has the form zf ,
where f ∈ F[z] is a squarefree polynomial with degree r such

that f(0) 6= 0. Let ~b ∈ Fn×k be a matrix such that the

system
A~x = ~b is consistent — that is, each of the columns

of ~b belongs to the column space of
A. Finally, suppose that

det Hi(
A,~b) 6= 0 for 1 ≤ i ≤ br/kc and that detH(
A,~b) 6= 0
as well.

Then the algorithm shown in Figure 1 succeeds. In par-
ticular, it generates a sequence of matrices

w0, w1, . . . , w`

for ` = dr/ke − 1 whose columns are linearly independent

and form a basis for the column space of
A, and it returns

a matrix ~x ∈ Fn×k such that
A~x = ~b.

It now suffices to bound the probability that the condi-
tions given in the above lemma are satisfied. Suppose that
zi,j are distinct indeterminates over F, for 1 ≤ i ≤ n and
1 ≤ j ≤ k. Let

~ζ =

���� z1,1 z1,2 · · · z1,k

z2,1 z2,2 · · · z2,k

...
...

. . .
...

zn,1 zn,2 · · · zn,k

� ���� ∈ F[z1,1 . . . , zn,k]n×k, (8)

and suppose that

~β =
A~ζ. (9)

The determinants of the corresponding matrices Hi(
A, ~β)

and H(
A, ~β) are polynomials in F[z1,1, . . . , zn,k] with total
degrees at most 2ki and 2r, respectively.

Lemma 3. Suppose once again that
A ∈ Fn×n is a sym-
metric matrix with rank r whose minimal polynomial has the
form zf , where f ∈ F[z] is a squarefree polynomial with de-
gree r such that f(0) 6= 0. Suppose as well that k is odd and
k is not divisible by the characteristic of the field F.

Then if ~ζ and ~β are as given in Equations (8) and (9), then

the polynomials det Hi(
A, β) are nonzero for 1 ≤ i ≤ br/kc,

and the polynomial detH(
A, ~β) is nonzero as well.

Proof (Sketch). If
A and k are as in the lemma then
there exists a matrix B with entries over an extension of F

such that B is similar to a diagonal matrix and
A = Bk.

It follows by results of Eberly and Kaltofen [9] that there
exists a vector u with entries over an extension of F such
that the matrix���� utBu utB2u · · · utBru

utB2u utB3u · · · utBr+1u
...

...
. . .

...
utBru utBr+1u · · · utB2r−1u

� ����
is in generic rank profile. Furthermore, there exists a vec-
tor v with entries in an extension of F such that

B(3k−1)/2v = u.

Now if one sets

~v = � v Bv · · · Bk−1v �
then it can be shown that polynomials mentioned in the

lemma all have nonzero values when ~ζ is replaced with ~v.

The following can be deduced using Lemmas 2 and 3,
along with an application of the Schwartz-Zippel lemma.

Theorem 4. Suppose that
A ∈ Fn×n is a symmetric ma-
trix with rank r, whose minimal polynomial has the form
zf , where f ∈ F[z] is a squarefree polynomial with degree r
such that f(0) 6= 0. Let k ≥ 1 such that k is odd and k is
not divisible by the characteristic of F. Finally, suppose that

the algorithm shown in Figure 1 is applied with inputs
A
and a matrix ~b =
A~z ∈ Fn×k, where the entries of the ma-
trix ~z ∈ Fn×k are chosen uniformly and independently from
a finite subset S of F.

Then the algorithm returns a matrix ~x ∈ Fn×k such that
A~x = ~b with probability at least 1− r(r + 1)/|S|.
Furthermore, if F is a finite field and S = F, then the re-

sulting matrix ~x is uniformly chosen from the set of solutions
for the above system of equations.

It follows that the process described in this section can
be used to produce a set of k elements of the null space
of a given matrix A: It suffices to sample elements uni-
formly and independently from a finite subset S of F with
size in O(n2/ε) in order to bound the probability of failure
by ε, for any given error tolerance ε > 0. Furthermore, if F

is a finite field and once chooses S to be the entire field F,
then the resulting vectors are sampled uniformly and inde-
pendently from the null space of the given matrix.

2.4 Computation of the Rank
If the conditions given in Theorem 4 are satisfied then the

matrix �A has rank k`+h where k is the blocking factor used
and ` and h are as described above. It follows by Lemma 1
and the above theorem that this algorithm can be used to
compute the rank of a given matrix; the likelihood that a
generated value is incorrect is in O(n2/|S|).

2.5 Comparison with Block Wiedemann
The above algorithm is considerably simpler than any

block Wiedemann algorithm that is currently in use. How-
ever, as previously noted, I am not aware of any interesting

application for which the above algorithm is superior to ex-
isting block Wiedemann algorithms.

A superficial examination of the literature might suggest
otherwise: The bound on the number of matrix-vector prod-
ucts given above, for a reliable block Lanczos algorithm, de-
pends on the rank of the input matrix instead of its order.
Bounds that are given in the literature for block Wiede-
mann algorithms are generally stated in terms of the order
of the matrix instead. However, it appears that a block
Wiedemann algorithm that incorporates a reasonable form
of “early termination” could be used for computations over
sufficiently large fields, either to sample from the null space
of a given matrix or compute its rank, using a number of
matrix-vector products that is considerably lower than the
number claimed above. While this is not explicitly stated,
it appears that all of the results needed to establish this can
be found in the work of Kaltofen and Villard [12].

3. COMPUTATIONS IN SMALL FIELDS
In this section, a different approach is used to produce

a Krylov-based algorithm that is reliable for computations
over small fields.

3.1 The Frobenius Form
Consider a square matrix �A ∈ F`×` for a positive integer `.

It is well known (see, for example, Gantmacher [10]) that �A
is similar to a unique block diagonal matrix with companion
matrices of monic polynomials f1, f2, . . . , fk on the diagonal,
for some integer k ≤ `, where fi is divisible by fi+1 for
1 ≤ i ≤ k − 1. That is, there exists a nonsingular matrix
V ∈ F`×` such that

V �AV −1 = ����� Cf1
0

Cf2

. . .

0 Cfk

� ���� (10)

and where

Cg = ����� 0 · · · 0 −g0

1 0 −g1

. . .
...

...
0 1 −gd−1

� ���� ∈ F
d×d (11)

is the companion matrix of a monic polynomial

g = xd + gd−1x
d−1 + gd−2x

d−2 + · · · + g1x + g0 ∈ F[x].

The block diagonal matrix shown on the right hand side of

Equation (10) is commonly called the Frobenius form of �A,
and the polynomials f1, f2, . . . , fk are called the invariant

factors of �A.

If the matrix �A is singular then one or more of the in-

variant factors of �A may be equal to the polynomial x; we
will say that an invariant factor fi is a nontrivial invariant
factor if fi 6= x.

3.2 A Sparse Matrix Preconditioner
Suppose, once again, that A ∈ Fn×m. Let q = |F|, let

N = max(n, m), and let h be an integer such that

rank(A) ≤ h ≤ N. (12)

Let

` = h + d2 logq Ne, (13)

and let �c = � 3 if q = 2,

d3 ln qe otherwise.

Consider matrices L ∈ F`×n and R ∈ Fm×` whose entries
are randomly selected according to the following distribu-
tion.

• If 1 ≤ i ≤ h then each entry in row i of L or column i
of R is set to be zero with probability

max � 1 −
�c logq N

i
,
1

q � .

• If 1 ≤ i ≤ h then each entry in row i of L or column i
of R that has not been set to be 0, above, is chosen
uniformly and independently from F \ {0}.

• Finally, if h < i ≤ `, then each entry of row i of L
or column of R is chosen uniformly and independently
from F.

Let �A = LAR ∈ F`×`.
Matrices resembling L and R have been investigated by

Wiedemann [17]; additional useful properties are discussed
in the report of Chen et. al. [2]. The following can be estab-
lished by a generalization of their analysis.

Lemma 5. Suppose that N = max(n, m) ≥ 6 and the
matrices L and R are generated as described above.

(a) The expected number of nonzero entries in each of L
and R is in O(N(logq N)2).

(b) The rank of �A is less than or equal to that of A. The
probability that the ranks of the two matrices are dif-
ferent is at most 1/N .

(c) The expected number of invariant factors of �A that are
divisible by x2 is less than 5.

(d) The expected number of nontrivial invariant factors of

the matrix �A is at most logq r + 10.

Proof (Sketch). Parts (a) and (b) can be established
using generalizations of arguments used by Wiedemann [17],
in Section III of his paper, to prove similar results for a
related sparse matrix preconditioner. Part (c) can be proved
using techniques used by Chen et. al. [2] to establish a similar
result (in Section 7 of their report).

It is sufficient to bound the expected number of invariant

factors of �A that are not powers of x in order to establish
part (d). Suppose there are at least k of these. Then there
must exist a nonzero element λ of an extension of F such that
the rank of the matrix �A− λI` is at most `− k. Techniques
that were used to established part (b) can be applied (with
a bit of care) to bound the probability that this is the case.
This can then be used to bound the expected number of
invariant factors that are not powers of x as required.

3.3 Computing the Frobenius Form
Once again, let us consider a matrix �A ∈ F`×`. Suppose

that we are given �A along with a positive integer uf that
will serve as a conjectured upper bound on the number of

nontrivial invariant factors of �A. Let d be the sum of the
degrees of the nontrivial invariant factors of this matrix.

A black box algorithm for a Frobenius decomposition of
a matrix has been given by Eberly [5, 6]. In this section,
modifications of the algorithm that allow it to be used to
sample from the null space or compute the rank of a suit-
ably conditioned matrix will be described. In particular,
this algorithm will be modified to obtain a Monte Carlo al-

gorithm that accepts �A and uf as inputs and that has the
following properties.

• If the number of nontrivial invariant factors is, indeed,
less than or equal to uf , then the algorithm will return

the nontrivial invariant factors of �A, and a basis for the
intersection of the null space and the column space

of �A, with high probability.

• If the bound uf is incorrect — that is, �A includes more
than uf nontrivial invariant factors — then the algo-
rithm will report failure with high probability, instead.

• If the algorithm is successful then the expected num-
ber of matrix-vector products used by the algorithm
is in O(d). The expected number of additional oper-
ations required over F is in O(`duf), and the amount
of storage space used is in O(`u2

f + ` log `).

The algorithm of Eberly [5] makes repeated use of a pro-
cedure minpolspace that is presented and analyzed in Sec-
tion 3.1 of the above reports.

On its initial application, this procedure uses a sequence
of uniformly and independently selected vectors from F`×1

in order to generate a pair of vectors u1 and v1 in F`×1,
and a monic polynomial f1 ∈ F[x], such that the following
properties hold.

• f1 is the monic polynomial of least degree such that

f1(�A)v1 = 0.

• f1 is also the monic polynomial of least degree such

that f1(�At)u1 = 0.

• Finally, f1 is the minimal polynomial of the linearly
recurrent sequence

ut
1v1, u

t
1 �Av1, u1 �A2v1 . . .

• The expected number of vectors that must be selected
from F`×1 to perform this computation is in O(1). The

expected number of matrix-vector products by �A or �At

that is used is linear in the degree of f1. Finally, the ex-
pected number of additional operations over the field F

that are used by this procedure is linear in the product
of ` and the degree of f1.

• The polynomial f1 is always a divisor of the minimal

polynomial of �A; it is equal to the minimal polynomial

of �A with probability at least one-half.

Suppose the above polynomial f1 has degree d1. If the
above conditions are satisfied then the Hankel matrix� ! ut

1v1 ut
1 �Av1 · · · ut

1 �Ad1−1v1

ut
1 �Av1 ut

1 �A2v1 · · · ut
1 �Ad1v1

...
...

. . .
...

ut
1 �Ad1−1v1 ut

1 �Ad1
v1 · · · ut

1 �A2d1−2v1

" ####$

is nonsingular. However, it is desirable to ensure that lead-
ing submatrices are likely to be nonsingular as well.

A first modification that will be made to the algorithm
will therefore be a randomization: The vector v1 will be
replaced by g1(A)v1, where g1 is a randomly chosen polyno-
mial in F[x] that is relatively prime to f1. Then the above
conditions are still satisfied, and the above Hankel matrix
is still nonsingular. Furthermore, it follows by a straight-
forward modification of a result of Eberly [7] that a scalar
Lanczos algorithm can be used, with u1 and v1, in order to
orthogonalize a pair of sets of k vectors with respect to

u1, �Atu1, . . . , (�At)d1−1v1 and v1, �Av1, . . . , �Ad1−1v1

respectively. In particular, this computation can be per-
formed using the vectors u1, v1, and the vectors to be or-
thogonalized, while using storage space for O(` log `+k) field
elements in the worst case.

As discussed below, vectors ui and vi will be generated
for i ≥ 2 using a similar process. The choice of vectors
v2, v3, . . . will be also be changed as described above.

A second modification can now be made: Rather than
storing all of

ui, �Atui, . . . , (�At)di−1ui (14)

and

vi, �Avi, . . . , �Adi−1vi, (15)

— or a dual basis for the Krylov spaces that are generated
by ui and vi — the algorithm will store ui and vi alone.

The algorithm of Eberly [5] requires a supply of vectors
that have been generated by selecting O(uf) vectors uni-
formly and independently from F`×1, and orthogonalizing
these vectors with respect to Krylov spaces corresponding
to the invariant factors that have currently been generated.

A third modification concerns the way these vectors are
produced: In the original procedure the values shown above
in lines (14) and (15) are used repeatedly to generate them.
Since these values are no longer being stored, the process
must be changed to ensure that they are not recomputed
more than a constant number of times.

The first application of the revised procedure minpolspace

ends with the uniform and independent selection of 2cuf

vectors from F`×1, for a suitable constant c. A scalar Lanc-
zos algorithm is applied to u1 and v1 once again, in order to
orthogonalize these vectors, resulting in vectors

α1,1, . . . , α1,s1
, β1,1, . . . , β1,s1

∈ F
`×1,

where s1 = cuf , such that

αt
1,i �Ajv1 = ut

1 �Ajβ1,i = 0

for 1 ≤ i ≤ s1 and 0 ≤ j ≤ d1 − 1.
The amount of storage space needed to perform this com-

putation is in O(` log ` + `uf). It will be useful to use the
orthogonalized vectors in later steps, so these will be stored.
The total amount of storage space needed for all these vec-
tors is linear in the product of `uf and the total number of
applications of minpolspace that must be used. Since this
number of applications is linear in uf , the amount of stor-
age space required for all of these orthogonalized vectors is
in O(`u2

f).
Each subsequent application of minpolspace will take place

after a sequence of vectors and polynomials

(u1, v1, f1), (u2, v2, f2), . . . , (ui, vifi)

have been generated. A set of 2sj vectors

αj,1, . . . , αj,sj
, βj,1, . . . , βj,sj

∈ F
`×1

will be available as well, for some integer sj such that 1 ≤
sj ≤ cuf and for 1 ≤ j ≤ i. These vectors will have been
orthogonalized with respect to previous Krylov spaces —
that is,

αt
j,k %Aavb = ut

b %Aaβj,k = 0

for all integers j, k, a, and b such that 1 ≤ b ≤ j, 1 ≤ k ≤ sj ,
and 0 ≤ a ≤ db, where db is the degree of fb.

In order to ensure that the vectors ui+1 and vi+1 to be
generated during the current application of minpolspace are
orthogonal to the Krylov spaces that have been generated
already, these will be generated using vectors from the se-
quences

αi,1, . . . , αi,si
and βi,1, . . . , βi,si

(16)

instead of randomly selected vectors from F`×1. The vectors
that are used will then be discarded (decreasing the value
of si). A scalar Lanczos algorithm will be applied, using ui+1

and vi+1, to orthogonalize the vectors shown at line (16)
with respect to the i+1st Krylov spaces, in order to produce
the next set of vectors

αi+1,1, . . . , αi+1,si+1
and βi+1,1, . . . , βi,si+1

at the end of this application of minpolspace.
As a result of this modification it will be necessary to

recompute each of the vectors shown at lines (14) and (15)
at most once.

The algorithm will make repeated use of the modified
procedure minpolspace, generating estimates of the invari-
ant factors (and discarding polynomials and Krylov spaces,
when estimates are discovered to incorrect) as in Eberly [5].

A fourth modification will needed to provide a basis for

the intersection of the null space and column space of %A as
part of the output: A set of vectors that is initially empty
will be maintained. As soon as it has been established, with
sufficiently high probability, that the ith polynomial fi being
stored is, indeed, the ith invariant factor, the tuple (ui, vi, fi)
will be used to increase this set. In particular, if fi is di-
visible by x (and is a nontrivial invariant factor) then the

vector (fi/x)(%A)vi will be included in it. The set will not
be changed if x does not divide fi (or if fi = x, so that fi is
not a nontrivial invariant factor at all).

A consideration of the Jordan form of %A is sufficient to
confirm that the resulting set is, indeed, a basis for the inter-
section of the null space and column space, if the algorithm
succeeds in finding all the nontrivial invariant factors.

A fifth modification should also be made: The compu-
tation will halt as soon as it has been established, with high

probability, either that %A includes at most uf invariant fac-
tors, or that the uf +1st invariant factor is different from x.
The algorithm reports failure in the latter case.

Unfortunately, the result is a Monte Carlo algorithm in-
stead of a Las Vegas one: Since a complete set of invariant
factors (including all trivial factors, along with correspond-
ing Krylov spaces) is not generated, it is possible that the
some of polynomials returned by this algorithm are proper

divisors of the corresponding invariant factors of %A.
The analysis of Eberly [5] can now be modified to establish

that the above algorithm computes the desired values at the
costs given at the beginning of this section.

3.4 Sampling from the Null Space
Suppose, now, that the above algorithm has successfully

been used to compute the values identified as its outputs at
the beginning of Section 3.3. Recall that this includes a basis
for the intersection of the null space and the column space

of the matrix %A ∈ F`×` to which the algorithm was applied.
Suppose that κ is the dimension of the above intersection,
and that

w1, w2, . . . , wκ

is the above basis.
Let y be a uniformly chosen vector in F`×1. Using the out-

put of the above algorithm (effectively, applying a Lanczos
process using the generated vectors u1, u2, . . . and v1, v2, . . . ,
and orthogonalizing y along the way), it is possible to ex-
press y as

y = y1 + y2

where y1 belongs to the sum of the Krylov spaces of the
vectors v1, v2, . . . and where y2 is orthogonal to these spaces.

One can see by a consideration of the Jordan form of %A
that if values α1, α2, . . . , ακ are uniformly and independently
selected from F then the vector%y =

κ&
i=1

αiwi + y2

is a uniformly chosen element of the null space of %A.
Once again, consider a matrix A ∈ Fn×m. Let h = m,

so that condition (12) is satisfied, and suppose the positive
integer ` is as chosen in line (13). Suppose the matrices
L ∈ F`×n and R ∈ Fm×` are randomly chosen as described

in Section 3.2, and let %A = LAR ∈ F`×`.

Suppose that rank(%A) = rank(A); as noted in Lemma 5,
this is the case with high probability. Suppose, furthermore,
that rank(R) = m. Then it can be argued that if a vector z
is uniformly selected from Fm×1 then the corresponding vec-
tor Rz is uniformly selected from Fm×1. More importantly,
for this application, if a vector %y is uniformly selected from

the null space of %A, then the corresponding vector R %y is
uniformly selected from the null space of A.

It follows that the above preconditioner and algorithm can
be used to sample randomly from the null space of a given
matrix.

3.5 Computation of the Rank
Let h = min(n, m), so that condition (12) is satisfied, and

suppose the positive integer ` is as chosen in line (13). Once

again, let L, R, and %A be as described in Section 3.2.
Suppose that the nontrivial invariant factors f1, f2, . . . , fk

of the conditioned matrix %A ∈ F`×` have been computed as
described above. Let

ei = ' degfi if fi is not divisible by x,

degfi − 1 otherwise.

Then the rank of %A is e1 + e2 + · · · + ek. Furthermore,

it follows by Lemma 5 that A and %A have the same rank
with high probability. Thus the above preconditioner and
algorithm can be used to compute the rank of a given matrix
as well.

3.6 Summary of Results
The following has now been established. While the results

concerning the cost to sample from the null space are known
(as noted below) those concerning matrix rank are new.

Theorem 6. Let A ∈ Fn×m be a matrix over a finite
field F, with (unknown) rank r. Let N = max(n, m). Then
it is possible to choose an element uniformly from the null
space of A, or to compute the rank of A, by a Monte Carlo
algorithm that uses O(r) matrix-vector products by A or At,
along with O(rN(log N)2) additional operations over F, and
using space to store O(N(log N)2) elements of F.

Proof (Sketch). See the above discussion. The num-
ber of arithmetic operations used to multiply vectors by the
preconditioners, L, and R, dominates the cost of additional
operations (other than the cost of matrix-vector products
by A or At) when the algorithm of Section 3.3 is applied.

3.7 Comparison with Block Wiedemann
Villard [16] has established that a block Wiedemann al-

gorithm can be used, efficiently and reliably, to generate a
single element of the null space of a given matrix. Chen
et. al. [2] have shown that a sparse matrix preconditioner
can be used to sample uniformly and randomly from the
null space of a given matrix, as well. Indeed, the method
that is described in the above paper uses a preconditioner
that is similar to the one being used here.

While the algorithm described in this paper has yet to
be implemented, it seems clear that a single application of
a block Wiedemann algorithm will be less expensive. How-
ever, the results (in Section 7) of Chen at. al. [2] suggest that
multiple trials of a block Wiedemann algorithm might gen-
erally be required to sample uniformly from the null space.
It is therefore unclear which technique might be faster.

The difference is clearer when the problem of computing
the rank of a matrix is considered: The Monte Carlo algo-
rithm described in this paper requires a number of matrix-
vector products that is at most linear in the rank of the
given matrix. Previously available methods either use com-
putations over a field extensions, or use a binary search to
find the rank, increasing the required number of matrix-
vector products by a logarithmic factor in either case. Thus
the new algorithm is asymptotically faster than any previ-
ous one known to be reliable over small fields if, as usual,
the cost of matrix-vector products dominates the cost of the
computation.

On the other hand, the block Wiedemann approach has
an advantage over a new one: It is easily parallelized, and
might therefore be better for a multiprocessor environment.

This leads to the following question: Can the analysis or
applications of block Wiedemann algorithms be modified,
or (if necessary) can the algorithm itself be modified, to
produce a block algorithm that combines the advantages
of existing block Wiedemann algorithms and the new one
discussed above?

4. REFERENCES
[1] J. P. Buhler, H. W. Lenstra, Jr, and C. Pomerance.

Factoring integers with the number field sieve. In The
Development of the Number Field Sieve, volume 1554
of Lecture Notes in Mathematics, pages 50–94.
Springer-Verlag, 1993.

[2] L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders,
W. J. Turner, and G. Villard. Efficient matrix
preconditioners for black box linear algebra. Linear
Algebra and Its Applications, 343–344:119–146, 2002.

[3] D. Coppersmith. Solving linear equations over GF(2):
Block Lanczos algorithm. Linear Algebra and Its
Applications, 192:33–60, 1993.

[4] D. Coppersmith. Solving homogeneous linear
equations over GF(2) via block Wiedemann algorithm.
Mathematics of Computation, 62(205):33–60, 1994.

[5] W. Eberly. Black box Frobenius decompositions over
small fields. In Proceedings, ISSAC ’00, pages
106–113, 2000.

[6] W. Eberly. Asymptotically efficient algorithms for the
Frobenius form. Technical Report 2003-723-26,
Department of Computer Science, University of
Calgary, 2003. Available at
www.cpsc.ucalgary.ca/~eberly/Publications/.

[7] W. Eberly. Early termination over small fields
(extended abstract). In Proceedings, ISSAC ’03, pages
80–87, 2003. Complete version available at
www.cpsc.ucalgary.ca/~eberly/Publications/.

[8] W. Eberly. Reliable Krylov-based algorithms for
matrix null space and rank. Technical Report
2004-749-14, Department of Computer Science,
University of Calgary, 2004. Available at
www.cpsc.ucalgary.ca/~eberly/Publications/.

[9] W. Eberly and E. Kaltofen. On randomized Lanczos
algorithms. In Proceedings, ISSAC ’97, pages 176–183,
1997. A more complete version is available at
www.cpsc.ucalgary.ca/~eberly/Publications/.

[10] F. R. Gantmacher. The Theory of Matrices, volume
one. Chelsea Publishing Company, second edition,
1959.

[11] E. Kaltofen. Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of
sparse linear systems. Mathematics of Computation,
64:777–806, 1995.

[12] E. Kaltofen and G. Villard. On the complexity of
computing determinants. Research Report 36,
Laboratoire de ’Informatique du Parallélisme, Ecole
Normale Supérieure de Lyon, France. Available at
www.ens-lyon.fr/LIP/Pub/rr2003.html, 2003.

[13] B. A. LaMacchia and A. M. Odlyzko. Solving large
sparse linear systems over finite fields. In Advances in
Cryptology — CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 109–133.
Springer-Verlag, 1990.

[14] C. Lanczos. Solution of systems of linear equations by
minimized iterations. J. Res. Nat. Bureau of
Standards, 49:33–53, 1952.

[15] P. Montgomery. A block Lanczos algorithm for finding
dependencies over GF(2). In EUROCRYPT ’95,
volume 921 of Lecture Notes in Computer Science,
pages 106–120. Springer-Verlag, 1995.

[16] G. Villard. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear
systems. In Proceedings, ISSAC ’97, pages 32–39,
1997.

[17] D. Wiedemann. Solving sparse linear systems over
finite fields. IEEE Transactions on Information
Theory, 32:54–62, 1986.

