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Abstract

Las Vegas algorithms that are based on Lanczos’s method
for solving symmetric linear systems are presented and ana-
lyzed. These are compared to a similar randomized Lanczos
algorithm that has been used for integer factorization, and
to the (provably reliable) algorithm of Wiedemann. The
analysis suggests that our Lanczos algorithms are prefer-
able to several versions of Wiedemann’s method for com-
putations over large fields, especially for certain symmetric
matrix computations.

1 Introduction

Sparse or structured systems of linear equations over fields
arise in a variety of applications; for example, many methods
for integer factorization require the solutions of large, sparse
systems over finite fields.

Several algorithms have been proposed for this computa-
tion over the years. Until recently, the algorithm of Wiede-
mann [15] was the only such algorithm known to be provably
efficient and reliable for computations for arbitrary fields —
particularly, over small finite fields. However, other algo-
rithms continued to be modified and applied to solve these
problems. For example, LaMacchia and Odlyzko [7] (among
others) have adapted Lanczos’ and conjugate gradient meth-
ods in order to factor integers and compute discrete loga-
rithms, and this motivates the present work.

The algorithms of Lanczos and Wiedemann can each be
used to solve a nonsingular system of n linear equations in
n unknowns over the complex numbers, by performing a
linear number (in n) of multiplications of either the coeffi-
cient matrix or its transpose by a vector and by performing
additional work using Θ(n2) additional operations over the
ground field; the cost of the matrix-vector multiplications
generally dominates the cost of all other work. While these
algorithms have essentially the same asymptotic time com-
plexity, Wiedemann’s algorithm (as originally described) re-
quires either that certain matrix-vector products be stored
for reuse (using quadratic storage space when linear space
suffices for the Lanczos methods) or that these products be
recomputed (so that up to n more matrix-vector products
are performed).
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However, Wiedemann’s algorithm is provably reliable
for computations over arbitrary fields, while problems arise
when one tries to apply Lanczos’ method to solve systems of
linear equations over fields of positive characteristic. In par-
ticular, the existence of vectors that are “self-orthogonal”
introduces the possibility of a division by zero when the
standard Lanczos algorithm is applied. “Lanczos methods
with lookahead” attempt to address this problem, and either
reduce or eliminate the possibility of a division by zero; algo-
rithms of this type have been described by Coppersmith [1],
Montgomery [10], and Teitelbaum [13]. These algorithms
are somewhat more complicated than the standard algo-
rithm, and may require additional storage space, additional
matrix-vector multiplications, or both — so that the ap-
parent advantage of using the Lanczos method over Wiede-
mann’s algorithm may be reduced or eliminated altogether
when lookahead is used.

Recently, Lambert [8] has applied lookahead along with
some additional techniques, to produce a “Lanczos-style”
algorithm that is provably as reliable as the original Wiede-
mann algorithm and requires almost exactly the same
number of matrix-vector multiplications in the worst case
(again, along with Θ(n2) additional field operations), in ei-
ther the case that linear or quadratic storage is required.
Thus this is certainly competitive with the original Wiede-
mann algorithm. Furthermore, it can be shown that ei-
ther a smaller number of matrix-vector multiplications, or
a smaller amount of storage space, is needed by Lambert’s
new algorithm if it does not have to “look ahead” too far (see
also Teitelbaum [13] for a similar argument). Thus, Lam-
bert’s algorithm may be superior to Wiedemann’s (original)
algorithm in some cases. However, this advantage has yet
to be proved unconditionally.

LaMacchia and Odlyzko [7] have used a different ap-
proach in order to improve the reliability of Lanczos’ algo-
rithms over fields of positive characteristic: They randomize
the system to be solved in a simple (and extremely inexpen-
sive) way, rather than adopting any kind of a lookahead
strategy, and their algorithm fails — one hopes, with small
probability — on an attempt to divide by zero. Their ex-
perimental evidence suggests that this approach is effective,
provided that one works over a field with substantially more
than n elements (where, again, n is the order of the system
to be solved).

We remark that “block Wiedemann” algorithms have
been described and analyzed by Coppersmith [2], Kalt-
ofen [4], and Villard [14]. These are now provably as reliable
as Wiedemann’s or Lambert’s algorithms for computations



over finite fields of any size [14], and (with appropriately
chosen parameters) they require fewer matrix-vector mul-
tiplications than either one, while using at the same time
linear storage space. To our knowledge, Kaltofen’s sequen-
tial version of the block Wiedemann algorithm [4, Corollary
to Theorem 7] has the least number of matrix-vector prod-
ucts of any known algorithm. Its full analysis is at this time
restricted to nonsingular matrices; see Section 8 for a more
detailed discussion.

In this paper, we present randomized Lanczos algo-
rithms, that apply the standard Lanczos algorithm (which is
reviewed in Sections 2 and 3) to perturbed systems. These
systems are obtained by randomizing the coefficient ma-
trix (by a method similar to that used by LaMacchia and
Odlyzko) and by randomizing the vector b as well. More
precisely, we present three successively more general and
expensive randomizations of the given system, and we iden-
tify systems that can be solved reliably using each of these,
provided that one can choose elements uniformly and in-
dependently from a sufficiently large subset of the ground
field.

The simplest randomization we consider (in Section 4)
is a randomization of the vector b, through addition by a
random element of the column space of A, that leaves the
coefficient matrix unchanged. Our results imply that if the
coefficient matrix A is square, symmetric, and has a charac-
teristic polynomial that is a product of zn−r and a squarefree
polynomial of degree r that is not divisible by z, where n
and r are the order and rank of A respectively, then this
randomization is sufficient with high probability.

The second randomization we consider (in Section 5) in-
cludes pre- and post-multiplication of the coefficient matrix
by a randomly chosen diagonal matrix, along with the above
randomization of b. If the coefficient matrix A is square,
symmetric, and has “generic rank profile” (or, more gener-
ally, if the rows and columns of A can be permuted in a
symmetric way to achieve this), then this second random-
ization is also sufficient with high probability.

The “randomized Lanczos algorithms” that use these
randomizations have almost the same storage requirements
and use almost the same number of matrix-vector multipli-
cations by the coefficient matrix as the standard Lanczos
algorithm. These randomized algorithms appear to be more
efficient (although, also more limited) than previous algo-
rithms for which proofs of reliability are available.

The third randomization considered (in Section 6) in-
cludes a further randomization of the coefficient matrix;
multiplication of a resulting coefficient matrix by a vector
requires matrix-vector multiplications by both the original
coefficient matrix and its transpose, so that the resulting
randomized algorithm requires approximately twice as many
matrix-vector products (with approximately the same stor-
age requirements) as the standard Lanczos algorithm.

This (final) randomized algorithm can be applied to solve
an arbitrary linear system Ax = b with high probability, pro-
vided that the ground field is sufficiently large and that a
solution for the system does exist. The asymptotic results
for this algorithm are inferior to those that have already been
established for the sequential versions of the block Wiede-
mann algorithm discussed above, when the coefficient ma-
trix is nonsingular. However, they do suggest that the new
algorithm is slightly superior to all other known algorithms,
including Wiedemann’s algorithm (as originally given) and
Lambert’s new algorithm, for sparse and structured matrix
computations over large fields. This is especially so if the

number of field elements that can be stored and reused dur-
ing the computation is restricted to linear in the dimension
of the coefficient matrix.

As mentioned above, this work was motivated by the ex-
perimental results of LaMacchia and Odlyzko. Their work
concerned the use of a “part” of the randomization we de-
scribe. In particular, LaMacchia and Odlyzko employ the
matrix randomization given here in Section 6 without ran-
domizing b (as in Section 4) or employing the additional
matrix randomization given here in Section 5.

Since LaMacchia and Odlyzko found that this partial
randomization works well in practice, it seems natural to
ask whether the additional randomizations given here are
necessary. In Section 7, we show that they are required if
one wants an algorithm that works as reliably as the one
given in Section 6 in the general case. In particular, we
present a family of linear systems over arbitrarily large fields
for which LaMacchia and Odlyzko’s algorithm must fail. An
alternative (inexpensive) randomization is considered in this
section, and proved to be insufficient, in the same way.

As noted above, this paper concludes with a comparison
of Lanczos- and Wiedemann-style algorithms, in Section 8.

Additional modifications of the Lanczos method remain
to be analyzed. In particular, Coppersmith’s and Mont-
gomery’s algorithms are “block Lanczos algorithms” — they
use multiplication of matrices by blocks of vectors (along
with lookahead strategies), in order to reduce the number
of operations to be performed. We are presently investigat-
ing randomized block Lanczos algorithms, and suspect that
it will be possible to use randomization to replace looka-
head strategies in the block algorithms for computations
over large fields, as is the case for Lanczos algorithms that
do not employ blocking.

While this short version of the paper presents all the
randomizations that are discussed, along with bounds on
the probability that they are sufficient, it omits proofs that
these bounds are correct. A full version of this paper, which
includes these proofs, is available at the URLs for the au-
thors that are listed at the beginning of the paper.

2 The Standard Lanczos Algorithm

Lanczos’ method [9] was developed to solve systems with
real coefficients. However, as described below, it can be
applied over other fields as well.

Consider now the problem of solving a system Ax = b of
n linear equations in n unknowns over a field F, when the
coefficient matrix A is symmetric.

Let K denote the Krylov space generated by b, that is,
the subspace of Fn×1 spanned by the vectors b, Ab,A2b, . . . .
The map from K ×K to F given by

〈x, y〉 = xtAy for x, y ∈ K (2.1)

is F-linear in both inputs x and y. Since A is symmetric, it
is easy to verify that

〈Ax, y〉 = xtA2y = 〈x, Ay〉 for x, y ∈ K. (2.2)

Now, let s be the dimension of K and suppose K has
a basis ω0, ω1, . . . , ωs−1 whose elements are orthogonal with
respect to the above map,

〈ωi, ωj〉 = ωtiAωj = 0 if 0 ≤ i, j < s and i 6= j. (2.3)



Furthermore, suppose that no element of this basis is self-
orthogonal with respect to this map,

〈ωi, ωi〉 = ωtiAωi 6= 0 if 0 ≤ i < s. (2.4)

Then, every element x of K is determined by the values
〈x, ωi〉 for 0 ≤ i < s:

x =

s−1∑
i=0

〈x, ωi〉
〈ωi, ωi〉

ωi. (2.5)

This is easily proved using Equations (2.3) and (2.4), and
the condition that ω0, ω1, . . . , ωs−1 is a basis for K.

To solve the system Ax = b by Lanczos’ method, one at-
tempts to construct a basis ω0, ω1, . . . , ωs−1 for K satisfying
equations (2.3) and (2.4) by setting ω0 to be b and, for i ≥ 0,
setting ωi+1 to be the vector obtained by “orthogonalizing”
Aωi with respect to ω0, ω1, . . . , ωi:

ωi+1 = Aωi −
i∑

j=0

〈Aωi, ωj〉
〈ωj , ωj〉

ωj . (2.6)

The method fails if a nonzero vector ωi is encountered
along the way such that 〈ωi, ωi〉 = 0. Provided this
does not occur, it is easily checked by induction on i that
ω0, ω1, . . . , ωi−1 span the same subspace as b, Ab, . . . , Ai−1b,
so that (in particular) if s is the dimension of the Krylov
space K then ω0, ω1, . . . , ωs−1 forms a basis for K.

If it were necessary to orthogonalize Aωi with respect
to ωj explicitly, for all j ≤ i, then it would be necessary
to compute 〈x, y〉 for Θ(s2) pairs of vectors x, y ∈ Fn×1 in
order to construct the above basis for K. Fortunately, this
is not the case.

Lemma 2.1. Let A ∈ Fn×n be symmetric, b ∈ Fn×1, and let
ω1, ω2, . . . , ωs−1 be as given in Equation (2.6). If 0 ≤ i < s
and 0 ≤ j ≤ i− 2 then 〈Aωi, ωj〉 = 0.

It follows that it is sufficient to orthogonalize Aωi with
respect to ωi and ωi−1 in order to ensure that the resulting
vector ωi+1 is orthogonal to each of ω0, ω1, . . . , ωi. Thus we
will set

ωi+1 := Aωi −
〈Aωi, ωi〉
〈ωi, ωi〉

ωi −
〈Aωi, ωi−1〉
〈ωi−1, ωi−1〉

ωi−1

= Aωi −
ωtiA

2ωi
ωtiAωi

ωi −
ωtiA

2ωi−1

ωti−1Aωi−1
ωi−1.

We stop as soon as a vector ωi is found such that 〈ωi, ωi〉 =
0. If ωi = 0 then i = s and ω0, ω1, . . . , ωs−1 is a basis for K.
Otherwise the standard Lanczos algorithm cannot be used
to construct a basis for this space.

Suppose now that A is nonsingular or, slightly more gen-
erally, that there is a unique x in the Krylov space K such
that Ax = b. If the algorithm did not fail on inputs A
and b then, since 〈x, ωi〉 = xtAωi = btωi for 0 ≤ i < s, and
ω0, ω1, . . . , ωs−1 is a basis for K,

x =

s−1∑
j=0

btωj
ωtjAωj

ωj . (2.7)

If we define

xi =

i∑
j=0

btωi
〈ωj , ωj〉

ωj , (2.8)

Input: A ∈ Fn×n, symmetric; b ∈ Fn×1

Output: x ∈ Fn×1 such that Ax = b, or failure

{ ω−1, v0 and t−1 are defined to ensure that ω1 is
correctly computed from ω0 }

ω−1 := 0; v0 := 0; t−1 := 1

{ vi+1 = Aωi and ti = 〈ωi, ωi〉 for i ≥ 0 }
ω0 := b

if ω0 = 0 then x := 0; return x
else

v1 := Aω0; t0 := vt1ω0

if t0 = 0 then return failure
else

x0 :=
btω0

t0
ω0

end if
end if

i := 0

repeat

ωi+1 := vi+1 −
vti+1vi+1

ti
ωi −

vti+1vi
ti−1

ωi−1

if ωi+1 = 0 then

{ The next test is not needed if A is nonsingular
or if this is called by an algorithm that checks
its output }

if Axi 6= b then
return failure

end if

x := xi; return x
else

vi+2 := Aωi+1; ti+1 := ωti+1vi+2

if ti+1 = 0 then return failure
else

xi+1 := xi +
btωi+1

ti+1
ωi+1; i := i+ 1

end if
end if

until false

Figure 1: The Standard Lanczos Algorithm

then (setting x−1 = 0),

xi = xi−1 +
btωi
ωtiAωi

ωi (2.9)

and, clearly, x = xs.
The standard Lanczos algorithm is given in Figure 1.

Since s ≤ min(n, r + 1), if A has rank r, this algorithm
uses at most min(n, r + 1) multiplications of A by a vector
to compute v1, v2, . . . , vs from ω0, ω1, . . . , ωs−1 respectively,
and at most one additional multiplication by A to check
its output if A is singular (and the output is not verified
elsewhere). It also uses O(s) ⊆ O(r) additional computa-
tions of (standard) inner products and sums of vectors, and
O(nr) ⊆ O(n2) additional operations over the field F. Since
it is only necessary to remember ωi−1, ti−1, ωi, ti, and xi



in order to generate ωi+1, ti+1 and xi+1, it is clear that this
algorithm uses linear storage space.

3 Correctness of the Standard Algorithm

Definition 3.1. A matrix A ∈ Fn×n has generic rank profile
if the leading i × i submatrix of A is nonsingular for every
integer i such that 1 ≤ i ≤ n.

Suppose as above that b ∈ Fn×1 and s is the dimension
of the Krylov space K for A and b, and let

H(A, b) =


btAb btA2b · · · btAsb
btA2b btA3b · · · btAs+1b

...
...

. . .
...

btAsb btAs+1b · · · btA2s−1b

 , (3.1)

so that the (i, j)th entry is btAi+j−1b for 1 ≤ i, j ≤ s.
Lemma 3.2. Suppose that A ∈ Fn×n is symmetric and
that b ∈ Fn×1 is in the column space of A. Then the
standard Lanczos algorithm can be used to find a basis
ω0, ω1, . . . , ωs−1 for K consisting of vectors satisfying Equa-
tions (2.3) and (2.4), and a vector x ∈ K such that Ax = b,
if and only if H(A, b) has generic rank profile.

4 Randomization of b

We now describe a condition on a symmetric matrix A ∈
Fn×n that ensures that the set of vectors b ∈ Fn×1, such
that the system Ax = b can be solved successfully using the
standard Lanczos algorithm, is a dense subset of the column
space of A — provided that the ground field F is sufficiently
large. If A satisfies this condition and b ∈ Fn×1 is in the
column space of A, and if a vector d is chosen uniformly
and randomly from Fn×1 (or from Sn×1 for a sufficiently
large finite subset S of F), then there is a reasonably high
probability that the standard Lanczos algorithm can be used
successfully to solve the system Ax̂ = (b+Ad). In this case
it is clear that x = x̂− d.

Let

Hi(A, b) =


btAb btA2b · · · btAib
btA2b btA3b · · · btAi+1b

...
...

. . .
...

btAib btAi+1b · · · btA2i−1b

 ∈ Fi×i

be a Hankel matrix with (j, k)th entry btAj+k−1b for 1 ≤
j, k ≤ i, for 1 ≤ i ≤ s, so that Hi(A, b) is the leading i × i
minor of the matrix H(A, b) given in equation (3.1).

Lemma 4.1. Suppose that A ∈ Fn×n is symmetric with
rank r ≤ n and that b ∈ Fn×1 is in the column space of A.
Let y1, y2, . . . , yn be indeterminates over F and let

b̂ = b+A


y1

y2

...
yn

 ∈ F[y1, y2, . . . , yn]n×1.

If the characteristic polynomial f ∈ F[z] of A is the product
of zn−r and a squarefree polynomial of degree r that is not

divisible by z, then detHi(A, b̂) is a nonzero polynomial in
F[y1, y2, . . . , yn] with total degree at most 2i in the indeter-
minates y1, y2, . . . , yn, for 1 ≤ i ≤ r.

Input: A ∈ Fn×n, symmetric; b ∈ Fn×1

Output: x ∈ Fn×1 such that Ax = b, or failure

Select elements γ1, γ2, . . . , γn uniformly and
independently from a finite subset S of F

b̂ := b+A~γ, for ~γ =
[
γ1 γ2 · · · γn

]t
Apply the standard Lanczos algorithm to try to find

a vector x̂ such that Ax̂ = b̂

if this attempt succeeds then

x := x̂− ~γ; return x

else

return failure

end if

Figure 2: Randomization of b

The next theorem is a consequence of Lemma 4.1 and
the “Schwartz-Zippel lemma” ([12], [16]).

Theorem 4.2. Let A ∈ Fn×n be symmetric with rank r ≤ n
such that the characteristic polynomial of A (in F[z]) is the
product of zn−r and a squarefree polynomial of degree r that
is not divisible by z. Let b ∈ Fn×1 be in the column space
of A, and let S be a finite subset of F.

If γ1, γ2, . . . , γn are chosen uniformly and independently
from S, and

b̂ = b+A


γ1

γ2

...
γn

 ∈ Fn×1,

then the standard Lanczos algorithm can be used successfully

to find a vector x̂ ∈ Fn×1 such that Ax̂ = b̂ with probability

at least 1− n(n+1)
|S| .

An algorithm that “randomizes the right side” à la
Kaltofen and Saunders [6] is given in Figure 2. Theorem 4.2
implies that this algorithm can be used to solve a system
Ax = b with high probability if the characteristic polyno-
mial of A satisfies the given condition and if the ground field
is sufficiently large. It is clear by inspection of this algorithm
that it uses only one more multiplication of A by a vector
than the standard Lanczos algorithm, and only O(n) other
additional field operations.

5 An Efficient but Limited Matrix Randomization

The condition on the symmetric matrix A that is given in
Lemma 4.1 and Theorem 4.2 can be relaxed slightly, by in-
troducing a simple randomization of the input matrix.

The next lemma is a slight generalization of a lemma
given by Wiedemann [15].

Lemma 5.1. Suppose A ∈ Fn×n is symmetric with posi-
tive rank r ≤ n and that there exists a permutation matrix
P ∈ Fn×n such that the leading i× i submatrix of P tAP is
nonsingular for 1 ≤ i ≤ r. Let y1, y2, . . . , yr be indetermi-



Input: A ∈ Fn×n, symmetric; b ∈ Fn×1

Output: x ∈ Fn×1 such that Ax = b, or failure

Select nonzero elements α1, α2, . . . , αn uniformly and
independently from a finite subset S of F \ {0}

Dα =


α1 0

α2

. . .
0 αn


Apply the algorithm given in Figure 2 to try to find a

vector x̃ such that Ãx̃ = b̃, for Ã = DαADα and b̃ =
Dαb, without using matrix multiplication to compute

the entries of Ã — so that the matrix-vector products
v1 = Dαv, v2 = Av1, and v3 = Dαv2 are computed in

order to obtain Ãv for any given vector v

if this attempt succeeds then

x := Dαx̃; return x

else

return failure

end if

Figure 3: An Efficient but Limited Randomization

nates over F, let

Ã =


y1 0

y2

. . .
0 yn

 ·A ·

y1 0

y2

. . .
0 yn

 ,
and let f = det(zIn − Ã) ∈ F[y1, y2, . . . , yn, z] (so that f

is the characteristic polynomial of Ã). Then f is divis-
ible by zn−r, but not by zn−r+1, and, if g = 1

zn−r f ∈
F[y1, y2, . . . , yn, z], then the discriminant of g with respect
to z is a nonzero polynomial in F[y1, y2, . . . , yn] with total
degree at most 4nr−2n in the indeterminates y1, y2, . . . , yn.

An algorithm employing this modification of A is given
in Figure 3. This uses the same number of multiplications
of A by a vector in the worst case as the algorithm given in
Figure 2 (hence, at most one more than the standard Lanc-
zos algorithm) and uses only O(nr) additional operations
over F if r is the rank of A.

Theorem 4.2, Lemma 5.1, and the Schwartz-Zippel
lemma imply that this algorithm has a high probability of
success if A is as described in the above lemma, the system
Ax = b has a solution, and the ground field is sufficiently
large.

Theorem 5.2. If A is as described in Lemma 5.1, b is in
the column space of A, and the algorithm given in Figure 3
is used to try to solve the system Ax = b, then the algorithm

succeeds with probability at least 1− 5n2−n
|S| .

6 A General Randomization

Now we are ready to consider the general case.

Lemma 6.1. Suppose A ∈ Fm×n has rank r, and let
P ∈ Fn×n be a permutation matrix such that the leftmost

Input: A ∈ Fm×n, b ∈ Fm×1

Output: x ∈ Fn×1 such that Ax = b, or failure

Select nonzero elements β1, β2, . . . , βm uniformly and
independently from a finite subset S of F \ {0}

Dβ =


β1 0

β2

. . .
0 βm


Apply the algorithm given in Figure 3 to try to find
a vector x such that A∗x = b∗, for A∗ = AtDβA and
b∗ = AtDβb, without using matrix multiplication to
compute the entries of A∗ — so that the matrix-
vector products v1 = Av, v2 = Dβv1, and v3 = Atv2

are computed in order to obtain A∗v for any given
vector v

if this attempt succeeds then

{ The next test is not needed if m = n and
A is nonsingular }

if Ax = b then

return x

else

return failure

end if

else

return failure

end if

Figure 4: A General Randomization

r columns of the matrix AP are linearly independent. Let
x1, x2, . . . , xm be indeterminates over F, and let

A∗ = At ·


x1 0

x2

. . .
0 xm

 ·A.
Then, for 1 ≤ i ≤ r, the determinant of the i×i leading sub-
matrix of P tA∗P is a nonzero polynomial with total degree
at most i in the indeterminates x1, x2, . . . , xm.

Suppose now that β1, β2, . . . , βm ∈ F are nonzero, that
A∗ = AtDβA, for

Dβ =


β1 0

β2

. . .
0 βm

 ,
and that A and A∗ have the same rank; then they also have
the same row spaces, there exists a matrix B ∈ Fm×n such
that A = BA∗, and A and A∗ have the same right nullspaces
as well. In this case, if x ∈ Fn×1 and b ∈ Fm×1 such that
Ax = b, then A∗x = b∗ for b∗ = AtDβb ∈ Fn×1. Conversely,
if b is in the column space of A, so that Ax = b for some
x ∈ Fn×1, and if A∗x∗ = b∗ for some vector x∗ ∈ Fn×1, then
A∗(x − x∗) = b∗ − b∗ = 0, so that A(x − x∗) = 0 as well,



and Ax∗ = Ax = b. That is, if A∗ is defined as above and
A and A∗ have the same rank, then it suffices to solve the
system A∗x = b∗ in order to find a vector x ∈ Fn×1 such
that Ax = b.

An algorithm that is based on this observation is given in
Figure 4. This algorithm requires at most one multiplication
of At by a vector and one multiplication of A by a vector,
for each multiplication of A by a vector that is used by
the algorithm given in Figure 3 (when the output is not
checked), as well as one more multiplication of At by a vector
in order to compute b∗, and one more multiplication of A
by a vector to validate the output. Thus, it uses at most
min(n + 2, r + 3) multiplications of A by a vector and the
same number of multiplications of At by a vector, if r ≤
min(n,m) is the rank of A.

Theorem 5.2, Lemma 6.1, and the Schwartz-Zippel
lemma now imply the following.

Theorem 6.2. Let S be a finite subset of F that does not
include 0, let A ∈ Fm×n have rank r, and let b ∈ Fm×1.
Given A and b as input, the algorithm shown in Figure 4
will either report failure or return a vector x ∈ Fn×1 such
that Ax = b. If b is in the column space of A (so that the
system has a solution) then the probability of failure is at

most 11n2−n
2|S| .

The algorithm requires at most min(n + 2, r + 3) mul-
tiplications of At by a vector, at most the same number of
multiplications of A by a vector, and O(nr) additional oper-
ations over F.

If in the algorithm shown in Figure 4 the matrix A is
given by a black box function for performing the matrix
times vector product, the problem of computing the prod-
uct of At with a vector arises. There is the transposition
principle, known in the control theory literature as Telle-
gen’s theorem [11], which states that a linear algorithm for
A times a vector can be converted to one for At times a
vector at no loss of efficiency in time. Space efficiency may
be lost somewhat [3].

7 Inadequacy of Simpler Randomizations

An inspection of the algorithms given above will confirm
that these attempt to solve a system Ax = b in the general
case by applying the standard Lanczos method to a system
A∗x∗ = b∗, where

A∗ = DαA
tDβADα

and where Dα and Dβ are nonsingular diagonal matrices
whose diagonal entries are chosen uniformly and indepen-
dently from a finite subset of the ground field.

LaMacchia and Odlyzko [7] report that a similar (but
slightly simpler) randomization works well in practice. To
solve a system Ax = b for A ∈ Fm×n and b ∈ Fm×1, they

form and solve the system Âx = b̂, where

Â = AtDαA

and where b̂ = AtDαb. As they note, if nonzero values
α1, α2, . . . , αn are chosen uniformly and independently from
a sufficiently large finite subset S of F \ {0}, then the prob-

ability is high that Â has the same rank as A, so that if

x ∈ Fn×1 such that Âx = b̂ then Ax = b as well. Their ex-
periments suggest that self-orthogonal vectors are not gen-

erally encountered when solving the system Âx = b̂, so that
the standard Lanczos algorithm can be used.

However, this will not be true in all cases. In particular,
suppose F has positive characteristic p, let m = n = p, and
let

A =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ∈ Fp×p,

so that the (i, j)th entry of A is 1 for 1 ≤ i, j ≤ p. In this
case,

Â = AtDαA =


α α · · · α
α α · · · α
...

...
. . .

...
α α · · · α

 = αA ∈ Fp×p

for α = α1 +α2 + · · ·+αp. Now, if b is in the column space
of A then

b =


β
β
...
β


for some element β of F, and btb = btÂb = 0 for every
choice of α1, α2, . . . , αp and β. Thus it will not be possible to
use LaMacchia and Odlyzko’s randomization of the Lanczos
method to solve the system Ax = b in this case — and
a different randomization (such as our own) is needed to
establish results as general as Theorem 6.2.

If m = n and A is symmetric, as in the above example,
then it would generally be preferable to try to solve a system
A?x = b? (with the standard Lanczos method) where

A? = XtAX (7.1)

for some sparse or structured matrix X ∈ Fn×n — so that
one needs only to multiply A by a vector and perform a
small number of additional operations over F in order to
perform a matrix-vector multiplication involving A?, rather
than having to multiply both A and At by vectors, as is the
case for the randomization given in Section 6. Lemma 5.1
implies that the more efficient randomization (7.1) can be
used if A has rank r and the leading i × i submatrix of
P tAP is nonsingular for 1 ≤ i ≤ r, for any integer r and
some permutation matrix P . It would certainly be desirable
to strengthen this lemma, by eliminating or weakening the
extra conditions on A that it requires. However, these con-
ditions cannot be eliminated completely, if the ground field
has characteristic two: Suppose, in particular, that F has
characteristic two, n is even, that

A =



0 1 0
1 0

0 1
1 0

. . .
0 1

0 1 0


∈ Fn×n,



and observe that ztAz = 0 for every vector z ∈ Fn×1. Then,
ytA?y = yt(XtAX)y = 0 for every matrix X ∈ Fn×n and
every vector y ∈ Fn×1 as well, so that the standard Krylov
method cannot be applied to solve any system A?x = b? suc-
cessfully, for A as above, A? as in (7.1), and for nonzero b?.

At present, we do not know whether symmetric random-
izations of the form given in (7.1) can be used reliably to
solve systems over fields of larger characteristic.

8 A Comparison with the Wiedemann Approach

Suppose now that A is nonsingular, and that Wiedemann’s
original algorithm is applied to try to solve the system Ax =
b. The algorithm begins with a random selection of a row
vector u ∈ F1×n and computation of the minimal polynomial
of the sequence

ub, uAb, uA2b, . . . (8.1)

The algorithm succeeds, using a single row vector u, if this
is the same as the minimal polynomial of the sequence of
vectors

b, Ab,A2b, . . .

Now, suppose the dimension of the Krylov space for A and b
is s (as in previous sections); in the nonsingular case, the
minimal polynomial of the sequence shown in (8.1) is the
same as the minimal polynomial of the sequence

uAb, uA2b, uA3b, . . .

and this is the same as the minimal polynomial of the above
sequence of vectors if and only if the Hankel matrix

H(u, b) =


uAb uA2b · · · uAsb
uA2b uA3b · · · uAs+1b

...
...

. . .
...

uAsb uAs+1b · · · uA2s−1b


is nonsingular (see [15], [6], and [5]). This minimal poly-
nomial must be computed and, if matrix multiplication is
not to be used, so that the matrix powers A2, A3, . . . are
unavailable, then the number of matrix-vector products (in-
volving A or At) that are used to determine this differs by a
small constant from the number of matrix-vector products
needed to solve this system with the algorithm in Figure 4.

However, it is either necessary to recompute the products

b, Ab,A2b, . . . (8.2)

or to store them in order to complete this application of
Wiedemann’s algorithm. Thus, it appears that one must ei-
ther use approximately s more matrix-vector products than
one needs with the randomized Lanczos algorithm, or one
must use quadratic storage space, if Wiedemann’s algorithm
is to be used.

If A is symmetric and P tAP has generic rank profile for
some permutation P , then the algorithm given in Figure 3
can be used to solve the system Ax = b instead of the algo-
rithm in Figure 4, reducing by approximately s the number
of matrix-vector multiplications needed to solve the system.
While this would seem to increase the advantage of Lanczos’
method over Wiedemann’s algorithm in this case, the com-
parison is unfair — because the same improvement can be
made for Wiedemann’s algorithm as well. In particular, we
can “randomize the right side” vector b when Wiedemann’s

algorithm is used, as was done here in Section 4. Now, if
we choose the row vector u deterministically as u = bt in-
stead of choosing it randomly, then the above matrix H(u, b)
equals the matrix H(A, b) given in equation (3.1). Since A is
symmetric, this matrix (and its minimal polynomial) can be
computed using approximately s fewer matrix-vector multi-
plications than are required in the general case. Moreover,
since the application of the Lanczos method only succeeds
if H(A, b) has generic rank profile, the probability that this
modified version of Wiedemann’s algorithm succeeds is at
least as high as the probability that the Lanczos method
does. Thus, the apparent advantage of the Lanczos method
over Wiedemann’s method can be overcome, leaving the re-
computation of the Krylov vectors (8.2) as the remaining
disadvantage for Wiedemann’s approach.

Of course, Wiedemann’s method has one advantage over
the Lanczos method: It is provably efficient and reliable for
sparse matrix computations over small fields. To the best of
our knowledge, Wiedemann’s algorithm, the new algorithm
of Lambert [8], and Villard’s version of the block Wiede-
mann algorithm [14], are at this time the only algorithms
for which this is the case.

Comparison with the block Wiedemann method [2, 4, 14]
further complicates the situation. The first goal of block-
ing is to parallelize the algorithm. In addition, Kaltofen
[4, Corollary to Theorem 7] shows that it is possible to
solve an n×n nonsingular linear system with no more than
(1 + ε)n + O(1) sequential matrix times vector products,
where ε is an arbitrarily small positive constant, and si-
multaneously O(n2+o(1)) additional arithmetic operations
and O(n) auxiliary storage, where the constants implied
by the big-O estimates grow as ε approaches 0. Hence for
coefficient matrices that have a relatively expensive ma-
trix times vector product, blocking can be used to opti-
mize the overall sequential cost and possibly out-perform the
non-blocked Wiedemann and Lanczos algorithms. Copper-
smith’s heuristics and Villard’s analysis suggest that block-
ing is a means to diminish failure probabilities in the small
field case. Whether any of these two advantages (fewer ma-
trix times vector products, smaller failure probability) of the
block Wiedemann algorithm in its sequential setting carry
over to the block Lanczos approach [1, 10] is unknown to
us.
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A Proofs of Results in the Body of the Paper

These appendices would not appear in conference proceed-
ings if this paper were accepted, but are provided as an aid
to reviewers.

A.1 Proofs of Results in Section 2

Proof of Lemma 2.1. If 0 ≤ i < s and 0 ≤ j ≤ i− 2, then

〈Aωi, ωj〉 = 〈ωi, Aωj〉 by equation (2.2)

=

〈
ωi, ωj+1 +

j∑
h=0

〈Aωj , ωh〉
〈ωh, ωh〉

ωh

〉
by equation (2.6)

= 〈ωi, ωj+1〉+

j∑
h=0

〈Aωj , ωh〉
〈ωh, ωh〉

〈ωi, ωh〉

by linearity

= 0

by equation (2.3), since j + 1 < i.

A.2 Proof of Results in Section 3

The next lemma will be used to prove Lemma 3.2.

Lemma A.1. Suppose A ∈ Fn×n is symmetric with rank
r ≤ n, and let b ∈ Fn×1.

1. If the minimal polynomial h ∈ F[z] of the sequence
b, Ab,A2b, . . . is not divisible by z, then b is in the col-
umn space of A, and there exists a unique vector x in
the Krylov space K such that Ax = b.

2. If the minimal polynomial h ∈ F[z] of the sequence
b, Ab,A2b, . . . is divisible by z, then there exists a
nonzero element c of the Krylov space K such that
Ac = 0.

Proof. Let h = zs + hs−1z
s−1 + · · ·+ h1z + h0 be the min-

imal polynomial of the above sequence, for s ≥ 0 and for
hs−1, . . . , h1, h0 ∈ F.

If s = 0 then h = 1 (so that h is not divisible by z), b = 0,
and, taking x = 0 ∈ K, both parts 1 and 2 of the lemma
are trivially satisfied. Thus we will assume that s > 0 and,
therefore, that b 6= 0.

If h is not divisible by z then h0 6= 0; set

x = − 1

h0

(
As−1b+ hs−1A

s−2b+ · · ·+ h2Ab+ h1b
)
∈ K;

then Ax − b = − 1
h0
h(A)b = 0, so that the Krylov space

does include a solution (x) for the system of linear equations
Ax = b.

Now let g1, g2 ∈ F[z] and let x1 = g1(A)b ∈ K and
x2 = g2(A)b ∈ K such that Ax1 = b = Ax2. Then clearly
A(g1(A) − g2(A))b = 0, so that the polynomial z(g1 − g2)
is divisible by the minimal polynomial h of the sequence
b, Ab,A2b, . . . . Since z does not divide h and is irreducible in
the unique factorization domain F[z], z and h are relatively
prime, and hmust divide g1−g2, so that (g1(A)−g2(A))b = 0
and x1 = x2. Thus there is only element x in K such that
Ax = b, and part 1 of the lemma is correct.

Now suppose instead that z divides h. Then ĥ = 1
z
h ∈

F[z], and c = ĥ(A)b belongs to K. Clearly, ĥ does not
divide h, so c 6= 0. Finally, Ac = h(A)b = 0, establishing
part 2.

Proof of Lemma 3.2. Recall that the standard Lanczos al-
gorithm attempts to form linearly independent vectors
ω0, ω1, . . . , ωs−1 in the Krylov space K such that

ωtiAωi 6= 0 = ωtiAωj



for 0 ≤ i < s and for 0 ≤ j < s such that j 6= i. It is clear,
by inspection of the algorithm, that if these vectors exist
then there exist elements γi,j of F, for 0 ≤ j < i, such that

ωi = Aib+ γi,i−1A
i−1b+ γi,i−2A

i−2b+ · · ·+ γi,0b (A.1)

for 0 ≤ i < s.
We now show that the above values ω0, ω1, . . . , ωs−1 can

be found (and that 〈ωi, ωi〉 is nonzero for all i) if and only
if the Hankel matrix H(A, b) has generic rank profile. For

0 ≤ i < s, let Wi ∈ Fn×(i+1) be the matrix with columns
ω0, ω1, . . . , ωi and let Bi ∈ Fn×(i+1) be the matrix with
columns b, Ab,A2b, . . . , Aib (in order from left to right in
each case). Then

Wi = BiXi

for the upper triangular matrix

Xi =


1 γ1,0 γ2,0 · · · γi,0

1 γ2,1 · · · γi,1
1 · · · γi,2

. . .
...

0 1

 ∈ F(i+1)×(i+1)

with ones on the diagonal and with (j, k)th entry γk−1,j−1

for 1 ≤ j < k ≤ i+ 1. It is clear that Xi is nonsingular (and
has determinant 1).

Let ti = 〈ωi, ωi〉 = ωtiAωi, for 0 ≤ i < s. If the Lanczos
algorithm succeeds then ti 6= 0 for all such i. Therefore, by
orthogonality of the ωi’s (see equation (2.3)),

W t
iAWi =


t0 0

t1
. . .

0 ti


is a nonsingular diagonal matrix of order i+ 1. Since Xi is
nonsingular, (X−1

i )t(W t
iAWi)X

−1
i exists and is nonsingular.

However,

(X−1
i )t(W t

iAWi)X
−1
i

= (WiX
−1
i )tA(WiX

−1
i ) = BtiABi

=


btAb btA2b · · · btAib
btA2b btA3b · · · btAi+1b

...
...

. . .
...

btAib btAi+1b · · · btA2i−1b


is the leading (i+1)×(i+1) minor of H(A, b). Thus H(A, b)
has generic rank profile if the standard Lanczos method can
be used to construct a basis ω0, ω1, . . . , ωs−1 satisfying Equa-
tions (2.3) and (2.4).

The converse is also true and can be established by using
induction on i to show that if the leading j × j submatrix
of H(A, b) is nonsingular, for all j between 1 and i, then
ω0, ω1, . . . , ωi−1 exist and none of these is self-orthogonal.
Indeed, if ω0 = b as usual, then the top left entry of H(A, b)
is 〈ω0, ω0〉 so that ω0 is not self-orthogonal if the leading
1 × 1 minor of H(A, b) is nonsingular. It follows by the
relationship between W t

iAWi and the leading (i+1)×(i+1)
minor that if ωj is not self-orthogonal for 0 ≤ j < i, then
ωi is also not self-orthogonal if the leading (i+ 1)× (i+ 1)
minor is nonsingular.

Now, an inspection of the standard Lanczos algorithm
establishes that it always returns failure (without finding a
proposed solution x) if H(A, b) does not have generic rank
profile. On the other hand, if H(A, b) does have generic rank
profile than a “proposed solution” x is always found. This is
returned if and only if it is verified that Ax = b (and failure
is reported otherwise). Thus, in order to complete the proof,
it suffices to show that if a proposed solution is found at all,
when b is in the column space of A, then Ax = b.

Suppose, then, that a proposed solution x is returned
by the algorithm. Then H(A, b) has generic rank profile,
there exists a basis ω0, ω1, . . . , ωs−1 for the Krylov space K
satisfying Equations (2.3) and (2.4) (and, such a basis has
been found by the algorithm before finding x). For 0 ≤
i < s, let ti = 〈ωi, ωi〉; then ti 6= 0. If W ∈ Fn×s is the
matrix with columns ω0, ω1, . . . , ωs−1 then W = Ws−1 and,
as noted above,

W tAW =


t0 0

t1
. . .

0 ts−1


is a nonsingular matrix in Fs×s.

Now consider the minimal polynomial h ∈ F[z] for the
sequence b, Ab,A2b, . . . . If h(0) = 0 then, by part 2 of
Lemma A.1, there exists a nonzero member c of the Krylov
space K such that Ac = 0. Since ω0, ω1, . . . , ωs−1 is a basis
for K there would exist elements γ0, γ1, . . . , γs−1 of F, not
all zero, such that

c = γ0ω0 + γ1ω1 + · · ·+ γs−1ωs−1.

However, this could imply that

(W tAW )


γ0

γ1

...
γs−1

 = (W tA)

W

γ0

γ1

...
γs−1


 = W tAc = 0,

contradicting the fact that W tAW is nonsingular. Thus,
h(0) 6= 0.

Now, part 1 of Lemma A.1 also implies that K includes
a (unique) vector x̂ such that Ax̂ = b. For 0 ≤ i < s,

〈ωi, x̂〉 = ωtiAx̂ = ωtib.

It is clear by inspection of the standard Lanczos algorithm
that if x is the proposed solution found by the algorithm,
then

x =

s−1∑
j=0

btωj
〈ωj , ωj〉

ωj ∈ K.

Equation (2.3) therefore implies that

〈ωi, x〉 =

〈
ωi,

btωi
〈ωi, ωi〉

ωi

〉
= ωtib = 〈ωi, x̂〉 ,

for 0 ≤ i < s. Since x and x̂ both belong to K, and the
vectors ω0, ω1, . . . , ωs−1 are not self-orthogonal, it follows
that x = x̂, so that Ax = b as required.



A.3 Proofs of Results in Section 4

The first lemma, given below, will be needed to prove
Lemma 4.1 in the nonsingular case.

Lemma A.2. Suppose A ∈ Fn×n is nonsingular, symmet-
ric, and has a squarefree characteristic polynomial. Then
there exists an extension field E of F and a nonsingular ma-
trix Y ∈ En×n such that Y t = Y −1 and such that Y tAY is
a diagonal matrix.

Proof of Lemma A.2. Let f ∈ F[x] be the characteristic

polynomial and let Ê ⊇ F be a splitting field for f . Since A is

nonsingular and f is squarefree, Ê contains distinct nonzero
elements ζ1, ζ2, . . . , ζn such that

f =

n∏
j=1

(x− ζj) ∈ Ê[x]. (A.2)

For 1 ≤ i ≤ n, the matrix A − ζiIn is clearly singular in

Ên×n, so there exists a nonzero vector x̂i ∈ Ên×1 such that
(A − ζiIn)x̂i = 0, and so that x̂i is an eigenvector for the
matrix A and eigenvalue ζi.

The vectors x̂1, x̂2, . . . , x̂n are linearly independent; for,
otherwise (since x̂1 is nonzero) there must exist an integer i
between two and n such that x̂i is a linear combination of
x̂1, x̂2, . . . , x̂i−1, so that

x̂i = λ1x̂1 + λ2x̂2 + · · ·+ λi−1x̂i−1

for elements λ1, λ2, . . . , λi−1 of Ê, and such that the vectors
x̂1, x̂2, . . . , x̂i−1 are themselves linearly independent. How-
ever this would imply that

(λ1ζi)x̂1 + (λ2ζi)x̂2 + · · ·+ (λi−1ζi)x̂i−1

= ζix̂i = Ax̂i

= A(λ1x̂1 + λ2x̂2 + · · ·+ λi−1x̂i−1)

= (λ1ζ1)x̂1 + (λ2ζ2)x̂2 + · · ·+ (λi−1ζi−1)x̂i−1.

Since x̂1, x̂2, . . . , x̂i−1 are linearly independent, it would fol-
low that the coefficient of x̂j in the first and last of these
expressions are equal, so that λj(ζi − ζj) = 0. Since
ζ1, ζ2, . . . , ζi are distinct, this would imply that λ1 = λ2 =
· · · = λi−1 = 0, contradicting the fact that x̂i is a nonzero
vector.

It is clear that x̂1, x̂2, . . . , x̂n is a basis for Ên×1. The
elements of this basis are pairwise orthogonal with respect
to the standard inner product; for, otherwise, there would
exist i and j such that 1 ≤ i, j ≤ n, i 6= j, and such that

0 6= x̂tix̂j = (A−1x̂i)
t(Ax̂j)

= (ζ−1
i x̂i)

t(ζj x̂j)

= (ζj/ζi)x̂
t
ix̂j ,

contradicting the fact that the eigenvalues ζi and ζj of A are
distinct.

Let τi = x̂tix̂i for 1 ≤ i ≤ n; then τi 6= 0 for all i (oth-
erwise, since x̂1, x̂2, . . . , x̂n is a basis for En×1 and x̂tix̂j = 0
for j 6= i, x̂i would be orthogonal to all of En×1). Let

E be an extension of Ê in which each of the polynomials
z2 − τ1, z2 − τ2, . . . , z2 − τn (in the indeterminate z) has a
root. In particular, let σi ∈ E for 1 ≤ i ≤ n such that
σ2
i = τi. Clearly σi is nonzero, since τi is; let Y ∈ En×n be

the matrix with columns σ−1
1 x̂1, σ

−1
2 x̂2, . . . , σ

−1
n x̂n (from left

to right). Then it is easily checked that Y tY = In and (by
considering the action of Y tAY on each of the unit vectors)
that

Y tAY =


ζ1 0

ζ2
. . .

0 ζn


is a nonsingular diagonal matrix in En×n, as desired.

Lemma A.3. Suppose A ∈ Fn×n is nonsingular and sym-
metric, and that b ∈ Fn×1. Let y1, y2, . . . , yn be indetermi-
nates over F and let

b̂ = b+A


y1

y2

...
yn

 ∈ F[y1, y2, . . . , yn]n×1.

If the characteristic polynomial of A is squarefree (that is,
it splits into distinct linear factors over an extension of the

ground field) then detHi(A, b̂) is a nonzero polynomial in
F[y1, y2, . . . , yn] with total degree at most 2i in the indeter-
minates y1, y2, . . . , yn, for 1 ≤ i ≤ n.

Proof. The stated degree bound is easily proved, since each

entry of Hi(A, b̂) has total degree at most two in the inde-
terminates y1, y2, . . . , yn, and since this matrix has order i.

Thus it is sufficient to show that detHi(A, b̂) is a nonzero
polynomial in y1, y2, . . . , yn for all i ≤ n. Let

hi = detHi(A, b̂) ∈ F[y1, y2, . . . , yn];

it will suffice to find an extension field E of F and elements
γ1, γ2, . . . , γn of E, such that hi(γ1, γ2, . . . , γn) 6= 0 in E.

By Lemma A.2, there exists an extension Ẽ of F and a

nonsingular matrix Y ∈ Ẽn×n such that Y −1 = Y t and such
that

Y tAY =


ζ1 0

ζ2
. . .

0 ζn


is a nonzero diagonal matrix in Ẽn×n. The elements
ζ1, ζ2, . . . , ζn are nonzero and distinct, since A is similar to

the above diagonal matrix (in Ẽn×n), is nonsingular, and
has a characteristic polynomial that is squarefree.

Since Y is nonsingular, there exists a (unique) vector

~µ =


µ1

µ2

...
µn

 ∈ Ẽn×1

for every vector

~λ =


λ1

λ2

...
λn

 ∈ Ẽn×1



such that Y ~µ = ~λ. For 1 ≤ j ≤ n,

~λtAj~λ = ~µtY tAjY ~µ

= ~µt(Y tAY )j~µ

= ζj1µ
2
1 + ζj2µ

2
2 + · · ·+ ζjnµ

2
n.

This is the jth entry of the vector

V ·


ζ1 0

ζ2
. . .

0 ζn

 ·

µ2

1

µ2
2

...
µ2
n

 ,
for

V =


1 1 · · · 1
ζ1 ζ2 · · · ζn
ζ2
1 ζ2

2 · · · ζ2
n

...
...

. . .
...

ζn−1
1 ζn−1

2 · · · ζn−1
n

 ∈ Ẽn×n,

where V is a nonsingular Vandermonde matrix of order n,
since ζ1, ζ2, . . . , ζn are distinct.

For 1 ≤ i ≤ n, let ei ∈ Ẽn×1 be the vector with ith entry
one and with all other entries equal to zero. Since V is

nonsingular there exist elements η1, η2, . . . ηn of Ẽ such that

V ·


η1

η2

...
ηn

 = ei.

Now let E ⊇ Ẽ be a field extension of Ẽ (and hence of F)
which includes elements φ1, φ2, . . . , φn such that φ2

j = ηj/ζj
for 1 ≤ j ≤ n, and let µ1, µ2, . . . , µn ∈ E such that

Y ·


φ1

φ2

...
φn

 =


µ1

µ2

...
µn

 .
Then, for 1 ≤ j ≤ n,

µ1

µ2

...
µn


t

Aj


µ1

µ2

...
µn

 =


φ1

φ2

...
φn


t

(Y tAY )j


φ1

φ2

...
φn


= φ2

1ζ
j
1 + φ2

2ζ
j
2 + · · ·+ φ2

nζ
j
n

= η1ζ
j−1
1 + η2ζ

j−1
2 + · · ·+ ηnζ

j−1
n

=

{
1 if j = i,

0 if j 6= i.

Finally, let γ1, γ2, . . . , γn ∈ E such that b+A~γ = ~µ, for

~γ =


γ1

γ2

...
γn

 and ~µ =


µ1

µ2

...
µn

 ;

such elements γ1, γ2, . . . , γn do exist, since A is nonsingular.
Then the matrix Hi(A, b + A~γ) is a Hankel matrix with
ones on the antidiagonal and zeroes above it — so, clearly,
hi(γ1, γ2, . . . , γn) = detHi(A, ~µ) = ±1 6= 0, as required.

The next two lemmas will be used to establish Lemma 4.1
in the singular case as well.

Lemma A.4. Suppose A ∈ Fn×n is symmetric with rank
r ≤ n and that the minimal polynomial of A (in F[z]) is not
divisible by z2. Then, if b ∈ Fn×1 is in the column space
of A, so that the system of equations Ax = b has a solution,
then the minimal polynomial of the sequence b, Ab,A2b, . . .
is not divisible by z.

Proof. This result is trivial if A is nonsingular, so we will
assume that r < n. Then the minimal polynomial of A is

zĥ for some polynomial ĥ ∈ F[z] such that ĥ(0) 6= 0. Let

V0 = {Au | u ∈ Fn×1} ⊆ Fn×1

and
V1 = {ĥ(A)u | u ∈ Fn×1} ⊆ Fn×1.

Clearly Au ∈ V0 whenever u ∈ V0 and Au ∈ V1 when-
ever u ∈ V1. Let mi ∈ Z be the dimension of Vi and let
xi,1, xi,2, . . . , xi,mi be a basis for Vi, for i = 0 and i = 1.

Since z and ĥ are relatively prime in F[z], there exist poly-

nomials f, g ∈ F[z] such that zf + ĥg = 1. Thus, if

u0 = Af(A)u and u1 = ĥ(A)g(A)u for u ∈ Fn×1 then
u0 ∈ V0, u1 ∈ V1, and u = u1 + u2, so that the vectors

x0,1, x0,2, . . . , x0,m0 , x1,1, x1,2, . . . , x1,m1 (A.3)

span Fn×1. Furthermore, V0 ∩ V1 = {0}: For, if v ∈ V0 ∩ V1

then Av = 0 since v ∈ V1, ĥ(A)v = 0, since v ∈ V0, and

thus v = (f(A)A + g(A)ĥ(A))v = 0 as well. Therefore the
vectors shown in (A.3) are also linearly independent and
form a basis for Fn×1. Since V0 is the image of A, m0 = r
and m1 = n − r. Let X ∈ Fn×n be the nonsingular matrix
whose columns are the vectors in (A.3) in order from left to
right. Since Au0 ∈ V0 for all u0 ∈ V0 and Au1 = 0 for all
u1 ∈ V1,

X−1AX =

[
B 0
0 0

]
(A.4)

for some matrix B ∈ Fr×r. Since A has rank r, B has rank r
as well, so B is nonsingular.

Let b ∈ Fn×1 be in the column space of A, so that there
exists a vector x ∈ Fn×1 such that Ax = b. Then, since
X−1Ax = X−1b, there exists a vector y = X−1x ∈ Fn×1

such that (X−1AX)y = X−1b. Let yU , bU ∈ Fr×1 and let

yL, bL ∈ F(n−r)×1 such that

y =

[
yU
yL

]
and X−1b =

[
bU
bL

]
;

then by Equation (A.4), ByU = bU , and bL = 0. Since B is

nonsingular, A has minimal polynomial zĥ, and ĥ(0) 6= 0,
it can be argued using Equation (A.4) that B has minimal

polynomial ĥ. Now, since bL = 0, ĥ(X−1AX)X−1b = 0.

However, ĥ(X−1AX)X−1b = X−1ĥ(A)b, so (since X−1 is

nonsingular) ĥ(A)b = 0 as well. Thus the minimal poly-
nomial of the sequence b, Ab,A2b, . . . is not divisible by z

(since it must divide ĥ).



Lemma A.2 can now be generalized.

Lemma A.5. Suppose A ∈ Fn×n is symmetric with rank
r ≤ n, and that the characteristic polynomial f ∈ F[z] of A
is the product of zn−r and a squarefree polynomial of degree r
that is not divisible by z. Then the minimal polynomial of A
is not divisible by z2, and there exists an extension field E
of F, a nonsingular matrix Y ∈ En×n, a nonsingular matrix
Z ∈ E(n−r)×(n−r), and a nonsingular diagonal matrix D ∈
Er×r whose diagonal entries are distinct, such that

Y tY =

[
Ir 0
0 Z

]
and

Y tAY =

[
D 0
0 0

]
.

Proof. This is a consequence of Lemma A.2 if A is nonsin-
gular. Therefore, we will assume that r < n.

Suppose the characteristic polynomial of A is zn−rg, so
that g ∈ F[z] is squarefree and g(0) 6= 0. Then the mini-
mal polynomial of A is z1+tg for some integer t ≥ 0, since
the minimal polynomial divides the characteristic polyno-
mial and is divisible by each irreducible factor of the char-
acteristic polynomial. It is clear (by consideration of the
Jordan normal form of A) that the rank of A is at least
deg(g) + t = r+ t. Therefore, since A has rank r, t = 0 and
A has minimal polynomial zg, which is not divisible by z2,
as claimed.

Since g is squarefree and not divisible by z, there ex-

ists an extension Ê of F and distinct nonzero elements
ζ1, ζ2, . . . , ζr of Ê such that

g =

r∏
j=1

(x− ζj) ∈ Ê[x].

This resembles, and will be used in the same way as, the
factorization given in Equation (A.2) for the characteris-
tic polynomial of (a nonsingular matrix) A, in the proof
of Lemma A.2. In particular, there exist nonzero vec-

tors x̂1, x̂2, . . . , x̂r ∈ Ên×1 such that Ax̂i = ζix̂i for 1 ≤
i ≤ r. As argued in the proof of Lemma A.2 (for the
corresponding vectors x̂1, x̂2, . . . , x̂n, immediately following
Equation (A.2)), the vectors x̂1, x̂2, . . . , x̂r are linearly inde-
pendent. If 1 ≤ i, j ≤ r and i 6= j, then x̂tix̂j = 0: For A is
symmetric, and

ζix̂
t
ix̂j = (ζix̂i)

tx̂j = (Ax̂i)
tx̂j

= x̂ti(Ax̂j) = x̂ti(ζj x̂j) = ζj x̂
t
ix̂j .

Since A has rank r, its (column) nullspace has dimen-
sion n−r. Let v1, v2, . . . , vn−r be a basis for this null space.
Then, since the minimal polynomial of A is not divisible
by z2, A is similar to a block diagonal matrix with a non-
singular matrix and a matrix of zeroes as blocks (see Equa-
tion (A.4)), and the vectors

x̂1, x̂2, . . . , x̂r, v1, v2, . . . , vn−r

are linearly independent and form a basis for Fn×1. Now, if
1 ≤ i ≤ r and 1 ≤ j ≤ n− r then

x̂tivj =
1

ζi
(Ax̂i)

tvj =
1

ζi
x̂ti(Avj) =

1

ζi
x̂ti · 0 = 0.

It follows that x̂tix̂i 6= 0 for 1 ≤ i ≤ r: Otherwise,
x̂i would be nonzero but orthogonal to all of Fn×1. Let

τi = x̂tix̂i, let E be an extension of Ê (and of F) con-
taining elements σ1, σ2, . . . , σr such that σ2

i = τi for 1 ≤
i ≤ r, and let Y ∈ En×n be the matrix with columns
σ−1

1 x̂1, σ
−1
2 x̂2, . . . , σ

−1
r x̂r, v1, v2, . . . , vn−r in order from left

to right. Then it easily checked that

Y tY =

[
Ir 0
0 Z

]
for some matrix Z ∈ E(n−r)×(n−r). Since the columns of Y
are linearly independent, Y , Y t, and Y tY are all nonsingular
matrices, so that Z is nonsingular in E(n−r)×(n−r) as well.
Finally, since the columns of Y are all eigenvectors of A it
is also clear that

Y tAY =

[
D 0
0 0

]
for

D =


ζ1 0

ζ2
. . .

0 ζr

 ,
so that D is nonsingular, diagonal, and has distinct diagonal
entries, as required.

Proof of Lemma 4.1. Since this follows from Lemma A.3
when A is nonsingular, we will assume that the rank r of A
is strictly less than n. As was the case for Lemma A.3, the
degree bound claimed for the polynomial

hi = detHi(A, b̂)

is easily verified, so it is sufficient to confirm that this poly-
nomial is not identically zero for 1 ≤ i ≤ r, and this can
be established by showing that there is an extension E of F
and elements γ1, γ2, . . . , γn of E such that hi(γ1, γ2, . . . , γn)
is not equal to zero.

By Lemma A.5, there exists an extension Ẽ of F, a

nonsingular matrix Y ∈ Ẽn×n, a nonsingular matrix Z ∈
Ẽ(n−r)×(n−r), and a nonsingular diagonal matrix D ∈ Ẽr×r

with distinct diagonal entries, such that

Y tY =

[
Ir 0
0 Z

]
and

Y tAY =

[
D 0
0 0

]
.

Clearly, then,

Y −1AY =

[
D 0
0 0

]
as well, and

Y tAjY = Y −1AjY =

[
Dj 0
0 0

]
for j ≥ 1.

As in the proof of Lemma A.5, let ζ1, ζ2, . . . , ζr be the (dis-
tinct) diagonal entries of D; then these are also the nonzero
eigenvalues of A.

If c ∈ Fn×1 is in the column space of A then, since
the minimal polynomial of A is not divisible by z2 (by



Lemma A.5), the minimal polynomial of the sequence
c, Ac,A2c, . . . is not divisible by z (by Lemma A.4) and

Y −1c = Y tc =

[
cU
cL

]
for cU ∈ Ẽr×1 and cL = 0 ∈ Ẽ(n−r)×1.

Consequently,

(Y tAjY ) · Y tc = (Y −1AY ) · Y −1c =

[
DjcU

0

]
for j ≥ 0.

Now, the proof proceeds in much the same way as for
the nonsingular case. That is, for 1 ≤ i ≤ r, we choose

η1, η2, . . . , ηr ∈ Ẽ such that

V ·


η1

η2

...
ηr

 = ei,

where ei ∈ Ẽn×1 has ith entry 1 and jth entry 0 for 1 ≤ j ≤ r
and j 6= i, and where

V =


1 1 · · · 1
ζ1 ζ2 · · · ζr
ζ2
1 ζ2

2 · · · ζ2
r

...
...

. . .
...

ζr−1
1 ζr−1

2 · · · ζr−1
r

 ∈ Ẽr×r

is a nonsingular Vandermonde matrix of order r. We let E ⊇
Ẽ be a field extension of Ẽ containing elements φ1, φ2, . . . , φr
such that φ2

j = ηn/ζj for 1 ≤ j ≤ r, and set µ1, µ2, . . . , µn ∈
E such that Y ~φ = ~µ, for

~φ =



φ1

φ2

...
φr
0
0
...
0


∈ En×1

and

~µ =



µ1

µ2

...
µr
µr+1

µr+2

...
µn


∈ En×1.

Since D is nonsingular, ~φ is in the column space of
Y −1AY , and ~µ is in the column space of A. Since b is also
in the column space of A there exist elements γ1, γ2, . . . , γn
of E such that b+A~γ = ~µ, where

~γ =


γ1

γ2

...
γn

 ∈ En×1.

Then, as argued in the proof for the nonsingular case,

~µtAj~µ =

{
0 if 1 ≤ j ≤ i,
1 if j = i+ 1.

Thus Hi(A, b + A~γ) is a Hankel matrix with ones on the
antidiagonal and zeroes above it, and hi(γ1, γ2, . . . , γn) =
detHi(A, b+A~γ) = ±1 6= 0, as required.

Proof of Theorem 4.2. By Lemma 3.2, the standard Lanc-
zos algorithm can be applied successfully to solve the system

Ax̂ = b̂ if and only if the Hankel matrix H(A, b̂) has generic
rank profile.

Lemma 4.1 implies that if γ1, γ2, . . . , γn are replaced in
the above matrix by indeterminates y1, y2, . . . , yn over F,
respectively, then the determinant of the leading i × i sub-
matrix of the resulting Hankel matrix is a nonzero poly-
nomial with total degree at most 2i in the indeterminates
y1, y2, . . . , yn, for 1 ≤ i ≤ n. Let h ∈ F[y1, y2, . . . , yn] be
the product of these polynomials; then h has total degree
at most n(n+ 1) in the indeterminates y1, y2, . . . , yn and is
nonzero in F[y1, y2, . . . , yn]. Furthermore, if γ1, γ2, . . . , γn ∈
F such that h(γ1, γ2, . . . , γn) 6= 0, then the matrix H(A, b̂)
(obtained from γ1, γ2, . . . , γn as shown in the statement of
the theorem, above) has generic rank profile.

The “Schwartz-Zippel lemma” [12], [16] now implies the
claim.

A.4 Proof of Results in Section 5

Proof of Lemma 5.1. Since A has rank r in Fn×n it has
rank r in F(y1, y2, . . . , yn)n×n as well, as does Ã. There ex-

ists a nonsingular matrix X ∈ F(y1, y2, . . . , yn)n×n, whose

rightmost columns form a basis for the nullspace of Ã, such
that

X−1ÃX =

[
Ã1,1 0

Ã2,1 0

]
for a matrix Ã1,1 ∈ F(y1, y2, . . . , yn)r×r and for Ã1,2 ∈
F(y1, y2, . . . , yn)(n−r)×r. It is clear that the characteris-
tic polynomial of X−1AX is the product of zn−r and the
characteristic polynomial of Ã1,1. Since Ã and X−1AX
are similar, they have the same characteristic polynomial,
so (since the entries of Ã belong to F[y1, y2, . . . , yn]), the
characteristic polynomial of A is zn−rg, for a polynomial
g ∈ F[y1, y2, . . . , yn, z].

Let
g = zr + gr−1z

r−1 + · · ·+ g1z + g0

for gr−1, . . . , g1, g0 ∈ F[y1, y2, . . . , yn]. Then, since these are

also coefficients of the characteristic polynomial of Ã, gi has
total degree at most 2n in the indeterminates y1, y2, . . . , yn
for 0 ≤ i < r. The discriminant of g is the determinant
of a matrix, each of whose entries is either zero, one, or
one of g0, g1, . . . , gr−1, and whose order is at most 2r − 1;
this implies the degree bound stated in the lemma for the
discriminant of g. It now remains only to argue that g is not
divisible by z and that the discriminant of g is not identically
zero.

We begin by considering the special case that A is non-
singular with generic rank profile, so that r = n and we
could set P to be the identity matrix, in the statement of
the lemma. In this special case, f = g and this polynomial



is not divisible by z, since A and Ã are nonsingular. Wiede-
mann [15] shows that the discriminant of the characteristic
polynomial of the matrix

A ·


y1 0

y2

. . .
0 yn


is not identically zero in this case, using induction on n; his
argument can be applied to the above matrix Ã as well. In
particular, suppose that the entry of A in row i and column j
is ai,j , for 1 ≤ i, j ≤ n. If n = 1 then

Ã =
[
a1,1y

2
]
,

f = z − a1,1y
2
1 , and the discriminant of f with respect to z

is one. Suppose now that the result is correct for (n− 1)×
(n− 1) matrices for n > 1. Substituting 0 for yn in Ã gives

A′ = Dn−1 ·A ·Dn−1 =


0

Ãn−1
...

0 · · · 0

 ,
where

Dn−1 =


y1 0

y2

. . .
yn−1

0 0

 ,
Ãn−1 is the matrix

y1 0
y2

. . .
0 yn−1

 ·An−1 ·


y1 0

y2

. . .
0 yn−1

 ,
and where An−1 is the leading (n − 1) × (n − 1) subma-
trix of A. Clearly, the characteristic polynomial of A′ is zg,
where g is the characteristic polynomial of Ãn−1, and (since
the discriminant of zg with respect to z is the resultant of
zg and g + z(∂g/∂z)) the discriminant of the characteristic

polynomial of A′ is the product of (det Ãn−1)2 and the dis-
criminant of g. It is clear that all the leading submatrices
of An−1 are nonsingular, since they are also leading subma-
trices of A. It follows by the inductive hypothesis that g is a
nonzero polynomial, as is the discriminant of the character-
istic polynomial of A′ with respect to z. The discriminant
of the characteristic polynomial of A is therefore nonzero as
well.

Next, suppose that A might be singular, but suppose
again that the leading i × i submatrix of A is nonsingular
for 1 ≤ i ≤ r, so that (once again) one could choose P to be
the identity matrix in the statement of the lemma. If the
variables yr+1, yr+2, . . . , yn are replaced with zeroes then the
matrix obtained from A is

Ã′ =

[
Ãr 0
0 0

]
,

for

Ãr =


y1 0

y2

. . .
0 yr

 ·Ar ·

y1 0

y2

. . .
0 yr

 ,
where Ar is the leading i× i submatrix of A.

Clearly, the characteristic polynomial of Ã′ is the prod-
uct of zn−r and the characteristic polynomial of Ãr, so
that the matrix Ãr has characteristic polynomial ĝ =
g(y1, y2, . . . , yr, 0, 0, . . . , 0, z). Since Ar is nonsingular with
generic rank profile (in this special case), ĝ is not divisible
by z, and it follows by the argument given above for the
nonsingular case that the discriminant of ĝ is not identically
zero. This clearly implies that g is not divisible by z and
has a nonzero discriminant as well, when the leading i × i
submatrix of A is nonsingular and has generic rank profile.

Now, this statement is still true if the indeterminates
y1, y2, . . . , ym are permuted in the definition of Ã. Therefore
if A and P are as given in the statement of the lemma then,
since the leading r × r submatrix of P tAP is nonsingular
and has generic rank profile, the characteristic polynomial
of the matrix

A? =

P t ·

y1 0

y2

. . .
0 yn

 · P


· P tAP ·

P t ·

y1 0

y2

. . .
0 yn

 · P


equals zn−rg, for some polynomial g ∈ F[y1, y2, . . . , yn, z]
that is not divisible by z such that the discriminant of g
is nonzero. However, A? = P tAP , so A? is similar to A
and these matrices have the same characteristic polynomial.
Thus, f and g are as claimed whenever A and P are as
described in the statement of the lemma.

Proof of Theorem 5.2. An inspection of the algorithm con-
firms that it attempts to use the algorithm of Figure 2 to
solve a linear system with coefficient matrix DAD, where D
is a diagonal matrix whose diagonal entries are chosen uni-
formly and independently from a finite subset S of F \ {0}.

Now, Lemma 5.1 implies that the matrix Ã mentioned
in that lemma has a characteristic polynomial f = zn−rg,
where g ∈ F[y1, y2, . . . , yn, z] is not divisible by z and where
the discriminant of g (with respect to z) is a nonzero poly-
nomial with total degree at most 4nr − 2n in y1, y2, . . . , yn.

Suppose n = r; then f = g. The Schwartz-Zippel lemma
implies that the characteristic polynomial of DAD is square-
free (since its discriminant is nonzero) with probability at

least 1 − 4n2−2n
|S| . Since DAD is nonsingular, the constant

coefficient of this polynomial is guaranteed to be nonzero —
that is, it is guaranteed that this polynomial is not divisible
by z.

On the other hand, if n 6= r then the discriminant of
the above polynomial g is a nonzero polynomial with total
degree at most 4n2 − 6n in y1, y2, . . . , yn. If we write

g = grz
r + gr−1z

r−1 + · · ·+ g1z + g0,



where gr, gr−1, . . . , g1, g0 ∈ F[y1, y2, . . . , yn], then it is clear

by the construction of Ã that g0 is a nonzero polynomial with
total degree at most 2n in y1, y2, . . . , yn. Thus, the product
of g0 and the discriminant of g is a nonzero polynomial in
F[y1, y2, . . . , yn] with total degree at most 4n2− 4n < 4n2−
2n in y1, y2, . . . , yn, in this case.

Now, it follows by the Schwartz-Zippel lemma that the
characteristic polynomial of the above matrix DAD is a

polynomial, f̂ , in F[z], such that f̂ is divisible by zn−r but

not by zn−r+1 and such that that 1
zn−r f̂ is squarefree (again,

since its discriminant is nonzero), again with probability at

least 1− 4n2−2n
|S| .

In other words, the probability that this is not the case

is at most 4n2−2n
|S| .

On the other hand, if this is the case, then Theorem 4.2
implies that the probability that the algorithm fails is at

most n2+n
|S| .

Thus, the probability that the algorithm fails (in all

cases) is at most 4n2−2n
|S| + n2+n

|S| = 5n2−n
|S| , as claimed.

A.5 Proof of Results in Section 6

Proof of Lemma 6.1. Let fi ∈ F[x1, x2, . . . , xm] be the de-
terminant of the leading i×i minor of P tA?P , for 1 ≤ i ≤ r.
Since each entry of P tA?P is an F-linear combination of
the indeterminates x1, x2, . . . , xm, the degree bound stated
for fi is a consequence of the fact that fi is a polynomial
function of the entries of P tA?P with total degree i in these
entries.

Set

Dx =


x1 0

x2

. . .
0 xm

 ,
so that A? = AtDxA and P tA?P = (AP )tDx(AP ). As well,
for I = {1, 2, . . . , i} and for J ⊆ {1, 2, . . . ,m}, let (AP )J,I be
the submatrix ofAP including the rows with indices in J and
with the first i columns, and let (Dx)J,J be the submatrix
Dx with rows and columns whose indices are in J . Since Dx
is a diagonal matrix, a formula of Cauchy-Binet can be used
to show that

fi =
∑

J={j1,j2,...,ji}⊆{1,2,...,m}
|J|=i

det(Dx)J,J · (det(AP )J,I)
2

=
∑

J={j1,j2,...,ji}⊆{1,2,...,m}
|J|=i

(det(AP )J,I)
2xj1xj2 . . . xji .

Now, by the choice of P , the leftmost i columns of AP
are linearly independent. Thus there exists a set J ⊆
{1, 2 . . . ,m} of size i such that the i× i submatrix (AP )J,I
is nonsingular. For 1 ≤ j ≤ m, let

γj =

{
1 if j ∈ J,
0 if j /∈ J.

Then, clearly,

fi(γ1, γ2, . . . , γm) = (det(AP )I,J)2 6= 0,

so fi is nonzero as well, as claimed.

Proof of Theorem 6.2. Since A has rank r, there exists a
permutation matrix P ∈ Fn×n such that the leftmost
r columns of AP are linearly independent.

Now, consider the matrix A? = AtDβA defined and used
by the algorithm shown in Figure 4. It follows by Lemma 6.1
and the Schwartz-Zippel lemma that the leading r × r sub-
matrix of P tA?P is nonsingular and has generic rank profile

with probability at least 1− r(r+1)
2|S| ≥ 1− n2+n

2|S| .

That is, this is not the case with probability at most
n2+n
2|S| .

On the other hand, if it is the case, then Theorem 5.2
implies that the probability of failure of the algorithm is at

most 5n2−n
|S| .

Thus the probability of failure of the algorithm (in all

cases) is at most n2+n
2|S| + 5n2−n

|S| = 11n2−n
2|S| , as claimed.


