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Abstract

A new randomized algorithm is presented for computation of the Frobenius form of an n×n
matrix over a field. A version of the algorithm is presented that uses standard arithmetic whose
asymptotic expected complexity matches the worst case complexity of the best known determin-
istic algorithm for this problem, recently given by Storjohann and Villard [25], and that seems
to be superior when applied to sparse or structured matrices with a small number of invariant
factors. A version that uses asymptotically fast matrix multiplication is also presented. This is
the first known algorithm for this computation over small fields whose asymptotic complexity
matches that of the best algorithm for computations over large fields and that also provides a
Frobenius transition matrix over the ground field.

As an application, it is shown that a “rational Jordan form” of an n×n matrix over a finite
field can also be computed asymptotically efficiently.

1 Introduction

The computation of a normal form for an n× n matrix A over a field F is a classical mathematical
problem. It is well known (see, for example, Gantmacher [9]) that every matrix A ∈ Fn×n is similar
to a unique block diagonal matrix with companion matrices of monic polynomials f1, f2, . . . , fk on
the diagonal, where fi is divisible by fi+1 for 1 ≤ i ≤ k − 1. That is, there exists a nonsingular
matrix V ∈ Fn×n such that

V AV −1 = FA =


Cf1 0

Cf2

. . .
0 Cfk

 (1)

and where

Cg =


0 . . . 0 −g0

1 0 −g1

. . .
...

...
0 1 −gd−1

 ∈ Fd×d

∗Research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

1



is the companion matrix of a monic polynomial g = xd+gd−1x
d−1 +gd−2x

d−2 + · · ·+g1x+g0 ∈ F[x]
with degree d. The above matrix FA is now commonly called the Frobenius form of A, and the
polynomials f1, f2, . . . , fk are called the invariant factors of A. The first invariant factor, f1, is also
the minimum polynomial of A, and the characteristic polynomial of A is the product

∏k
i=1 fi.

If we insist (as usual) that the degree of fk be positive then the invariant factors are unique;
we will call k the number of (nontrivial) invariant factors of the matrix A. The above matrix V is
not unique; every nonsingular matrix V satisfying equation (1), above, will be called a Frobenius
transition matrix for A.

Several deterministic algorithms for computation of the Frobenius form and a transition matrix
are known; see, in particular, Ozello [22], Lüneburg [19], and, more recently, Augot and Camion [1]
and Steel [23]. Augot and Camion also provide evidence that the number of invariant factors is
typically small.

A randomized algorithm that is asymptotically much more efficient than any of these has been
given by Giesbrecht [11], [12]: Giesbrecht’s Las Vegas algorithm can be used to compute both
the Frobenius form and a Frobenius transition matrix for a given matrix A ∈ Fn×n over a field F
using an expected number of operations over F that is in O(n3), with standard matrix and poly-
nomial arithmetic, whenever F has at least n2 distinct elements, and using an expected number of
operations in O(n3 logq n) if F is a finite field with size q.

If asymptotically fast matrix and polynomial arithmetic are used then these results can be im-
proved. Suppose, in particular, that it is possible to compute the product of two n × n matrices
using O(MM(n)) operations over F. One can take MM(n) to be nlog2 7 ≤ n2.81 using the algo-
rithm of Strassen [26], while the algorithm of Coppersmith and Winograd [8] gives the best known
asymptotic result, with MM(n) ≤ n2.376. Giesbrecht’s asymptotically fast algorithm can be used
to compute the Frobenius form and a Frobenius transition matrix of a given matrix A ∈ Fn×n using
an expected number of operations in O(MM(n) logn) whenever F has at least n2 elements.

One can compute the Frobenius form of a matrix over a smaller field that is within a polylog
factor of this bound, by performing computations over a small field extension, because the normal
form is unique and guaranteed to be a matrix over a ground field. This trick cannot generally be
used to find a transition matrix in the ground field as well. Thus, Giesbrecht’s work leaves open
the question of whether one could find a Frobenius transition matrix asymptotically quickly.

More recently, Storjohann [24] has given a deterministic algorithm to compute the Frobenius
form of a matrix A ∈ Fn×n over an arbitrary field F using O(n3) operations in the worst case,
with standard matrix and polynomial arithmetic. Storjohann and Villard [25] have extended this
algorithm to compute a Frobenius transition matrix at this cost as well — matching the expected
cost of Giesbrecht’s randomized algorithm, under standard arithmetic, for computations over large
fields, and improving the complexity by a log factor for computations over small fields.

In this paper, another new randomized algorithm is presented for this computation. A version of
the algorithm that uses standard arithmetic has an expected cost that is asymptotically the same as
the worst case cost recently achieved by Storjohann [24] and Storjohann and Villard [25]. The new
algorithm slightly extends and adapts techniques that were used by Wiedemann [28] to compute
the minimum polynomial, and that were used by Lambert [17] to produce a version of Lanczos’
algorithm for computations over finite fields. Like Wiedemann’s algorithm, the new (standard
arithmetic) algorithm is to some extent a “black box” algorithm: It requires an expected number
of O(n) multiplications of the given matrix A by vectors, O(n) multiplications of the transpose
AT by vectors, and O(kn2) operations over F, where k is the number of invariant factors of the
matrix. It also requires O(n2) storage space. Thus, while it fails to match either the time- or
space-bounds that are sometimes associated with “black box” algorithms for matrix computations,
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its expected complexity is subcubic if both the input matrix A is sparse or structured, so that the
cost of multiplication of A and AT by a vector is subquadratic in n, and the number k of invariant
factors of A is sublinear in n. The new algorithm also generates data that allows one to solve a
given system V x = y, for the generated Frobenius transition matrix V , quite efficiently, as one
might wish to when the Frobenius form is being applied.

A version of the new algorithm that uses asymptotically fast matrix multiplication computes
both the Frobenius form and a Frobenius transition matrix, using an expected number of operations
over any field F that is in O(MM(n) logn), under the common assumption thatMM(n) ∈ Ω(n2+ε)
for some positive real number ε. This reduces the cost needed to compute the Frobenius form over a
small field by the extra log factors needed to implement Giesbrecht’s algorithm over a field extension
and, to my knowledge, demonstrates for the first time that a Frobenius transition matrix over the
ground field can be computed in subcubic time, in the small field case.

Quite recently, Villard [27] has extended the Krylov-based techniques used by Lanczos, Wiede-
mann and others in a different way, through the application of low rank conditioners, to obtain a
new black box algorithm for the invariant factors of a matrix: If a matrix A ∈ Fn×n has at most
µ distinct invariant factors and the field F is sufficiently large, then the invariant factors of A can
be computed by a Monte Carlo algorithm, using O(µn log n) multiplications of A by vectors and
using O(µn2 log n log log n) additional operations over F. The computation can be performed over
a small finite field by working over a field extension, increasing the number of multiplications of A
by vectors (over the ground field) by a factor of O(log n), and increasing the number of additional
operations over F by a small polylog factor. Since µ ∈ O(

√
n) and, as noted above, the character-

istic polynomial of A is the product of the invariant factors, this provides the first subcubic black
box algorithm, using standard arithmetic, for the characteristic polynomial of sparse or structured
matrices, and constitutes significant progress toward the development of a black box algorithm for
the characteristic polynomial — see Kaltofen [13, Open Problem 3] and Villard [27] for a discussion
of this topic and additional references.

As noted above, the techniques used in this paper are adaptations of methods that have been
used to compute minimum polynomials (and cyclic vectors) for matrices. The relevant definitions
and results concerning minimum polynomials are presented here in Section 2. These methods are
extended, so that they can be used to compute all invariant factors and corresponding columns
of a Frobenius transition matrix, in Section 3. The new algorithm is presented and analyzed in
Section 4. Finally, it is applied to compute a “rational Jordan form” of a matrix over a finite field,
asymptotically efficiently, in Section 5.

2 Minimum Polynomials

In this section, results from the literature concerning the computation of minimum polynomials of
linear recurrences, matrices and vectors, and matrices are generalized to apply when matrices are
considered as linear operators on subspaces.

Subsection 2.1 introduces minimum polynomials of sequences, as well as some associated values
that will be of interest, and reviews results from the literature about the complexity of computing
them. A few straightforward improvements, that one can make when a bound on the degree of the
desired minimum polynomial is available, are also noted. Subsection 2.2 introduces minimum poly-
nomials of matrices and vectors, and includes minor generalizations of results of Wiedemann [28]
and Kaltofen and Pan [14] concerning the complexity of computing them. This is continued in
Subsection 2.3, which introduces minimum polynomials of matrices and subspaces.
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2.1 Minimum Polynomials of Sequences

Let F be a field, and suppose A ∈ Fn×n and that u and v are vectors in Fn×1, so that uTAiv ∈ F
for every integer i ≥ 0.

Definition 2.1. The minimum polynomial of the linear recurrence uT v, uTAv, uTA2v, uTA3v, . . . ,
denoted minpol(uT , A, v), is the monic polynomial xm + cm−1x

m−1 + · · ·+ c1x+ c0 of least degree
such that

uTAm+iv + cm−1u
TAm−1+iv + · · ·+ c1u

TAi+1v + c0u
TAiv = 0

for every integer i ≥ 0.

Note that, by linearity, minpol(uT , A, v) is also the monic polynomial f of least degree such
that uT s(A)f(A)v = 0 for every polynomial s ∈ F[x].

Fact 2.2. Let A, u, and v be as above.

(a) Given A, u and v, it is possible to compute minpol(uT , A, v) deterministically, by computing
the product of A and each of O(n) vectors, and performing O(n2) additional operations over F.

(b) Given A, u, v, and an integer k ≤ n such that the degree of minpol(uT , A, v) is less than or
equal to k, it is possible to compute minpol(uT , A, v) deterministically, by computing the product
of A and each of O(k) vectors, and performing O(kn) additional operations over F.

Proof. If A, u, and v are known then minpol(uT , A, v) can be computed as described in part (a)
in several ways, including by an application of the Berlekamp-Massey algorithm [2, 20, 21] or a
transpose-free version of the Lanczos process [7].

If a bound k on the degree of the minimum polynomial is also known, then one can take
advantage of the fact that minpol(uT , A, v) is determined from the first 2k entries of the linear
recurrence,

uT v, uTAv, uTA2v, . . . , uTA2k−1v

— see Lemma 1 of Kaltofen and Pan [14] for additional details and a proof. This implies that the
minimum polynomial is available, when either of the above methods has been applied, after these
entries of the recurrence have been processed. The complexity bounds stated above in part (b)
follow by a straightforward analysis of these algorithms.

Algorithms presented in the sequel will make use of a function minpolseq(uT , A, v, k) that re-
ceives the transpose of a vector u ∈ Fn×1, a matrix A ∈ Fn×n, vector v ∈ Fn×1, and a positive
integer k such that minpol(uT , A, v) has degree at most k as input, and that returns minpol(uT , A, v)
as output. It will be assumed that the cost of executing this function is bounded as described in
Fact 2.2(b), above.

Suppose now that minpol(uT , A, v) has degree m for some positive integer m ≤ n. Let K(L)
u,v

denote the vector space spanned by the vectors

u, (AT )u, (AT )2u, . . . , (AT )m−1u

and let K(R)
u,v denote the vector space spanned by the vectors

v,Av,A2v, . . . , Am−1v.
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Definition 2.3. Two sequences of vectors u1, u2, . . . , um ∈ K(L)
u,v and v1, v2, . . . , vm ∈ K(R)

u,v form
dual bases for A, u and v if

uTi vj 6= 0 if and only if i = j (2)

for 1 ≤ i, j ≤ m.

Note that if such sequences exist at all, then equation (2) can be used to establish that
u1, u2, . . . , um are linearly independent in K

(L)
u,v and that v1, v2, . . . , vm are linearly independent

in K
(R)
u,v . A comparison of the number of vectors in each sequence with the dimension of the each

vector space confirms that u1, u2, . . . , um forms a basis for K(L)
u,v and that v1, v2, . . . , vm forms a

basis for K(R)
u,v , as the name “dual bases” suggests. Therefore, the next definition generalizes the

last one.

Definition 2.4. If U, V are subspaces of Fn×1 that each have dimensionm over F then two sequences
of vectors u1, u2, . . . , um and v1, v2, . . . , vm form dual bases for A, U , and V if u1, u2, . . . , um is a
basis for U over F, v1, v2, . . . , vm is a basis for V over F, and

uTi vj 6= 0 if and only if i = j

for 1 ≤ i, j ≤ m.

Fact 2.5. Let A ∈ Fn×n, u, and let u, v ∈ Fn×1.

(a) Given the matrix A and vectors u and v, it is possible to produce dual bases for A, u and v
deterministically, by computing the product of A and O(n) vectors, the product of AT and O(n)
vectors, and performing O(n2) additional operations over F.

(b) Given A, u, v, and an integer k ≤ n such that k is greater than or equal to the degree m of
minpol(uT , A, b), it is possible to produce dual bases for A, u and v deterministically, by com-
puting the product of A and O(k) vectors, the product of AT and O(k) vectors, and performing
O(kn) additional operations over F.

Proof. A “bi-orthogonal Lanczos algorithm with lookahead,” as described, for example, by Lam-
bert [17], can be used to perform the computation described in part (a). Once again, if a bound k
on the degree of the minimum polynomial of minpol(uT , A, v) is available, then one can safely
terminate this process as soon as it is realized that further computations would either lead to an
“incurable breakdown” or a sequence of more than k linearly independent vectors in K

(L)
u,v . This

can be checked by keeping track of the number of elements of dual bases generated so far, as well
as the length of any lookahead stage currently in progress, so that the entire computation has the
cost described in part (b) above.

Algorithms presented in the sequel will make use a function dualbasis(uT , A, v, k) that receives
the transpose of a vector u ∈ Fn×1, a matrix A ∈ Fn×n, vector v ∈ Fn×1, and a positive integer k
such that minpol(uT , A, v) has degree at most k as input, and that returns dual bases for A, u and v
as output. It will be assumed that the cost of executing this function is bounded as described in
Fact 2.5(b).
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2.2 Minimum Polynomials of Matrices and Vectors

Definition 2.6. A subspace U of the vector space Fn×1 is A-invariant (for a given matrix A ∈ Fn×n)
if Au ∈ U for all u ∈ U .

Definition 2.7. Let U ⊆ Fn×1 be AT -invariant for a matrix A ∈ Fn×n, and let v ∈ Fn×1. Then
UT ⊆ F1×n is the set of transposes uT of vectors u in U , and the minimum polynomial of UT , A,
and v, denoted minpol(UT , A, v), is the monic polynomial xm + cm−1x

m−1 + · · ·+ c1x+ c0 of least
degree such that

uTAmv + cm−1u
TAm−1v + · · ·+ c1u

TAv + c0u
T v = 0

for every element u of U .

Note that if U is AT -invariant then (AT )iu ∈ U for every element u of U and every integer
i ≥ 0. Since ((AT )iu)T = uTAi, it follows that minpol(UT , A, v) is also the monic polynomial f of
least degree such that uTAif(A)v = 0 for every element u of U and every integer i ≥ 0, and also
(by linearity) the monic polynomial f of least degree such that uT s(A)f(A)v = 0 for every element
u of U and every polynomial s ∈ F[x].

One can define the minimum polynomial minpol(A, v) of a sequence of vectors v,Av,A2v, . . .
to be the monic polynomial xm + cm−1x

m−1 + · · ·+ c1x+ c0 of least degree such that

Amv + cm−1A
m−1v + · · ·+ c1Av + c0 = 0. (3)

Multiplying both sides of this equation by uTAi on the left, one has that

uTAm+iv + cm−1u
TAm−1+iv + · · ·+ c1u

TAi+1v + c0u
TAiv = 0 for all u ∈ U , (4)

and for every nonnegative integer i, so that condition (3) implies condition (4). On the other hand,
if condition (4) is satisfied for every vector u in a basis for Fn×1 then condition (3) is satisfied too,
so that these conditions are equivalent and

minpol(A, v) = minpol(F1×n, A, v).

It is also easily checked for any given matrix A ∈ Fn×n, AT -invariant subspace U of Fn×1, and
vector v ∈ Fn×1, that

minpol(UT , A, v) = lcm
u∈U

(minpol(uT , A, v)).

Thus minpol(UT , A, v) is a divisor of minpol(A, v), since minpol(uT , A, v) is, for every vector u.
Wiedemann [28] has presented an algorithm to compute the minimum polynomial minpol(A, v)

of a matrix and vector over a finite field F, as the least common multiple of minimum polynomials
minpol(uT , A, v), for a constant number of uniformly and independently selected vectors u ∈ Fn×1.
Results of Kaltofen and Pan [14] establish a similar result for computations over large fields as well.
Their techniques, and Fact 2.2, can be used to establish the following.

Fact 2.8. Let A ∈ Fn×n and let v ∈ Fn×1. Then the following computations can be performed at
the stated cost, using a Las Vegas algorithm that either returns the desired output (with probability
at least one-half) or reports failure.

(a) If the field F is finite then minpol(A, v) can be computed by uniformly and independently se-
lecting O(n) elements from F, computing the product of A and O(n) vectors, and performing
O(n2) additional operations over F.
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If the field F is infinite and S is a finite subset of F including at least 2n distinct elements, then
minpol(A, v) can be computed by uniformly and independently selecting n elements from S,
computing the product of A and O(n) vectors, and performing O(n2) additional operations
over F.

(b) If one is also given an integer k ≤ n such that the degree of minpol(A, v) is less than or equal
to k, and the field F is finite, then minpol(A, v) can be computed by uniformly and independently
selecting O(n) elements from F, computing the product of A and O(k) vectors, and performing
O(kn) additional operations over F.

If the above integer k is also given and F is infinite, and S is a finite subset of F containing at
least 2k distinct elements, then minpol(A, v) can be computed by uniformly and independently
selecting n elements from S, computing the product of A and O(k) vectors, and performing
O(kn) additional operations over F. Furthermore, if |S| ≥ 2n then the probability of failure of
this Las Vegas computation is at most k/(2n).

Note that a randomized algorithm that terminates with probability one, always returns the
desired polynomial minpol(A, v), and has an expected complexity as described in Fact 2.8, can
be obtained by performing independent trials of a Las Vegas algorithm as described above until
an attempt to compute the minimum polynomial succeeds. Since each attempt succeeds with
probability at least one-half and the trials are independent, the expected number of trials required
before the minimum polynomial is generated is at most two, and the probability that more than
i trials are required is at most 1− 2i for every positive integer i.

Algorithms presented in the sequel will make use of a function minpolvec(A, v, k) that receives
a matrix A ∈ Fn×n, vector v ∈ Fn×1, and a positive integer k such that minpol(A, v) has degree
at most k as input, that terminates with probability one, and returns minpol(A, v) as output. It
will furthermore be assumed (whenever linearity of expectations is not sufficient to complete a
complexity analysis) that this function works by performing independent executions of a function
minpolvec-1/2(A, v, k), that implements a Las Vegas algorithm with the properties (including worst
case complexity) described in Fact 2.2, above, until an execution succeeds.

The techniques of Wiedemann and Kaltofen and Pan can also be used to compute the polynomial
minpol(UT , A, v), as can be seen by the following modification of their analysis (see, in particular,
Wiedemann [28], pages 60–61). This will be used to prove correctness of algorithms presented in
the sequel.

Let U be an AT -invariant subspace of Fn×1 with dimension d for some integer d such that
1 ≤ d ≤ n, and let XU ∈ Fn×d be a matrix with full rank d whose column space is U ; any matrix
whose columns form a basis for U will suffice. This matrix defines a bijection φ from Fd×1 to U
such that φ(û) = XU û ∈ U for every vector û ∈ Fd×1. The matrix XT

U ∈ Fd×n is clearly a matrix
with row space UT .

Now (following Wiedemann), let S ⊆ Fd×1 be the span of the vectors XT
U v,X

T
UAv,X

T
UA

2v, . . .
and consider the monic polynomial fUT ,A,v = xl + ĉl−1x

l−1 + · · ·+ ĉ1x+ ĉ0 of least degree such that

XT
UA

lv + ĉl−1X
T
UA

l−1v + · · ·+ ĉ1X
T
UAv + ĉ0X

T
U v = 0;

since U is AT -invariant and XU has column space U , uTAi is in the row space of XT
U for every

integer i ≥ 0 and every vector u ∈ U , and (comparing the above condition with Definition 2.7)

fUT ,A,v = minpol(UT , A, v).

Thus, if m is the degree of minpol(UT , A, v), then the vectors XT
U v, X

T
UAv, . . . ,X

T
UA

m−1v ∈ Fd×1

are linearly independent and form a basis for S.
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The elements of S can be identified with the elements of the ring

R = F[x]/(minpol(UT , A, v)).

This is accomplished using an F-linear mapping ψ̂ from F[x] to S such that ψ̂(xi) = XT
UA

iv for
every integer i ≥ 0. This mapping is clearly surjective and, since the kernel of this mapping is the
principle ideal generated by minpol(UT , A, v), reduction by this kernel produces a bijection (and,
F-linear map) ψ : R→ S as desired.

The set of linear functionals from R to F, R∗, may be identified with R by a bijection η : R→ R∗

defined as follows. Let m be the degree of minpol(UT , A, v) as above, and define η(1) so that

η(1)(xi) =

{
0 if 0 ≤ i ≤ m− 2,
1 if i = m− 1,

and use linearity

η(1)(cf + g) = cη(1)(f) + η(1)(g) for all c ∈ F and f, g ∈ R

to obtain a definition of η(1)(h) for all h ∈ R. A notable property of η(1) (which will be used
shortly) is that η(1)(xih) = 0 for all i ≥ 0 if and only if h = 0, for any given element h of R.

One can next define η(xi), for 1 ≤ i ≤ m − 1, by setting η(xi)(f) = η(1)(xi · f) for all f ∈ R,
and again using linearity,

η(cf + g)(h) = cη(f)(h) + η(g)(h) for c ∈ F and f, g, h ∈ R

to uniquely define the linear functional η(f) for all f ∈ R (of course, by specifying its value η(f)(g)
for all g ∈ R).

It is easy to establish that η is an injective F-linear map from R to R∗. Since R and R∗ have
the same dimensions as vector spaces over F, it follows that η is a bijection — for if one fixes bases
from R and R∗ then any F-linear map from R to R∗ can be represented by a square matrix, and
the fact that η is injective implies that the matrix representing η is nonsingular.

A dual map ψ∗ : S∗ → R∗ can be associated with the above bijection ψ : R→ S using the rule

ψ∗(l)(g) = l(ψ(g)) for all l ∈ S∗ and g ∈ R.

Note that ψ∗ is also a bijection — once again, because it is an injective F-linear map between two
vector spaces with the same dimension over F.

Now, if u is any element of U then then there exists a unique vector û ∈ Fd×1 such that

φ(û) = XU û = u

for the map φ and matrix XU described above. A corresponding element ζ(u) of S∗ can be defined
as a dot product with û:

ζ(u)(s) = ûT · s ∈ F for all s ∈ S.

The resulting map ζ : U → S∗ is F-linear and clearly surjective, so that it is bijective as well.
Let u ∈ U be fixed and suppose g is the unique element of R such that ψ∗(ζ(u)) = η(g); then

it can be established by the above definitions and linearity of the relevant maps that

η(1)(xig) = η(g)(xi) = ψ∗(ζ(u))(xi) = (ζ(u))(ψ(xi)) = ζ(u)(XT
UA

iv) = ûTXT
UA

iv = uTAiv
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for every integer i ≥ 0, so that the sequences

uT v, uTAv, uTA2v, uTA3v, . . . and η(1)(g), η(1)(xg), η(1)(x2g), η(1)(x3g), . . .

are the same. The minimum polynomial of the former sequence is minpol(uT , A, v), by definition,
while the minimum polynomial of the latter sequence is

h =
minpol(UT , A, v)

gcd(minpol(UT , A, v), g)
(5)

because this is the monic polynomial h of least degree such that hxig = 0 in the quotient ring
R = F[x]/(minpol(UT , A, v)) for every integer i ≥ 0. In fact, it is the monic polynomial of least
degree such that hg = 0 in R.

The above relationships hold whether the field F is finite or not. Suppose now that F is finite,
so that U and R are as well. In this case, it follows from the above that the probability that
minpol(uT , A, v) = minpol(UT , A, v), for a uniformly and randomly selected element u of U , is
equal to the probability that a uniformly and randomly selected element of R is a unit. As indicated
by Wiedemann, if F is finite with size q then this probability can be calculated by the formula

Φ(minpol(UT , A, v)) =
∏

fi |minpol(UT , A, v)
fi is irreducible

(
1− q−deg(fi)

)
,

where each irreducible factor fi of minpol(UT , A, v) appears exactly once in the above summation,
and the probability that

minpol(UT , A, v) = lcm
1≤i≤k

minpol(uTi , A, v) (6)

for uniformly and independently chosen elements u1, u2, . . . , uk ∈ U is given by the formula

Φk(minpol(UT , A, v)) =
∏

fi |minpol(UT , A, v)
fi is irreducible

(
1− q−k deg(fi)

)
. (7)

Now, as noted by Wiedemann, if k > 1 then

Φk(minpol(UT , A, v)) ≥ 1−
∑

fi |minpol(UT , A, v)
fi is irreducible

q−kdeg(fi)

≥ 1−
(
q1

1 q
−k + q2

2 q
−2k + q3

3 q
−3k + . . .

)
= 1− ln

(
qk−1

qk−1−1

)
,

where the middle inequality is derived using the fact that there are at most qh/h monic, irreducible
polynomials in F[x] with degree h if F is a finite field of size q (see, for example, Lidl and Niederre-
iter [18]). As Wiedemann notes, even for k = 2, this is more than 0.3, so that the desired minimum
polynomial is obtained after examining the minimum polynomials of two sequences with probability
at least 30%. The probability is more than 70% if k = 3 and three sequences are considered, and
(as seen by evaluating the above function using various values for k) the probability exceeds 85%
when considering four sequences, 90% considering five sequences, and 99% when considering eight.
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If F is infinite then of course the above analysis is inapplicable. However, equation (5) and the
observations preceding it imply the existence of an element û of U such that

minpol(ûT , A, v) = minpol(UT , A, v);

indeed, it suffices to choose û as the element of U so that g = 1, if g is the unique element of R
such that ψ∗(ζ(û)) = η(g) as discussed above.

Suppose now that u1, u2, . . . , ul is a spanning set for U , let S be a finite subset of F, and suppose
u is chosen as u = α1u1 + α2u2 + · · · + αlul, where the values α1, α2, . . . , αl are chosen uniformly
and independently from S. In this case, a slight simplification of an argument used by Kaltofen and
Pan [14] (taking advantage of the fact that the vector v is fixed, and not randomly selected along
with u) implies that

Prob(minpol(uT , A, v) = minpol(UT , A, v)) ≥ 1− deg(minpol(UT , A, v))
|S|

(see, in particular, their Lemmas 1 and 2).
Thus minpol(UT , A, v) can be computed as the least common multiple of a constant number of

polynomials minpol(uT , A, v) for uniformly and independently selected vectors u ∈ U if F is finite,
or as minpol(uT , A, v) for a single (properly selected) element u of U when F is infinite.

Now, since minpol(A, v) = minpol(F1×n, A, v), Fact 2.8 can be established from the above
analysis by setting U = Fn×1, d = n, and setting the matrix XU ∈ Fn×n to be the identity matrix;
indeed, Wiedemann’s analysis for the finite field case, and Kaltofen and Pan’s for the large field case,
can be obtained by making these minor specializations. An algorithm to compute minpol(UT , A, v)
could be obtained by modifying Wiedemann’s and Kaltofen and Pan’s algorithms for minpol(A, v),
by choosing vectors u ∈ U (and computing minpol(uT , A, v) as before) instead of choosing the
vectors “randomly” from Fn×1; the complexity of the resulting algorithm would be bounded by the
sum of the corresponding cost mentioned in Fact 2.8 and the cost of selecting a constant number
of “random” elements of U .

2.3 Minimum Polynomials of Matrices and Subspaces

Definition 2.9. Let U, V ⊆ Fn×1 be AT - and A-invariant, respectively, for a matrix A ∈ Fn×n.
The minimum polynomial of UT , A, and V , denoted minpol(UT , A, V ) is the monic polynomial

xm + cm−1x
m−1 + · · ·+ c1x+ c0

of least degree such that

uTAmv + cm−1u
TAm−1v + · · ·+ c1u

TAv + c0u
T v = 0 for all u ∈ U and v ∈ V .

Since V is A-invariant, Aiv ∈ V whenever v ∈ V and i ≥ 0. It therefore follows, much as before,
that f = minpol(UT , A, V ) if and only if f is the monic polynomial of least degree such that

uTAm+iv + cm−1u
TAm−1+iv + · · ·+ c1u

TAi+1v + c0u
TAiv = 0

for all u ∈ U , v ∈ V , and for every integer i ≥ 0 — and, by linearity, that f = minpol(UT , A, V )
is also the monic polynomial of least degree such that uT s(A)f(A)v = 0 for every element u of U ,
every element v of V , and every polynomial s ∈ F[x].
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Definition 2.10. Subspaces U, V ⊆ Fn×1 are A-complementary if U is AT -invariant, V is A-
invariant, and

minpol(AT , U) = minpol(UT , A, V ) = minpol(A, V ).

This is not generally a symmetric relationship between subspaces U and V unless A is a sym-
metric matrix.

The following example will be important in the sequel: Suppose u, v ∈ Fn×1 and f ∈ F[x] such
that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = f.

Let U = K
(L)
u,v and V = K

(R)
u,v , as defined in Section 2.1. Then, since the above three minimum

polynomials are equal, U is an AT -invariant subspace containing u, V is an A-invariant subspace
containing v, and, furthermore,

minpol(AT , U) = minpol(UT , A, V ) = minpol(A, V ) = f,

so that U and V are A-complementary.
As in the previous section, algorithms to compute the above polynomials can be obtained as

minor generalizations of algorithms that have been given by Wiedemann [28], for computations
over finite fields, and by Kaltofen and Pan [14], for computations over large fields. The next few
lemmas will be needed to generalize their analyses and results, and will also be of use in the sequel.

Lemma 2.11. Let A ∈ Fn×n and let u, v ∈ Fn×1. If f = minpol(uT , A, v) and g is a nonzero
polynomial in F[x] then

minpol((g(AT )u)T , A, v) = minpol(uT , A, g(A)v) = f
gcd(f,g) .

If U is an AT -invariant subspace, f = minpol(UT , A, v) and g is a nonzero polynomial in F[x],
then

minpol(UT , A, g(A)v) = f
gcd(f,g) .

Proof. Let g(1) = gcd(f, g), f (2) = f/g(1), and g(2) = g/g(1), so that

gcd(f (2), g(2)) = gcd(f/ gcd(f, g), g/ gcd(f, g)) = 1,

and let h = minpol((g(AT )u)T , A, v).
To prove the first claim, recall that since f = minpol(u,A, v), uT f(A)s(A)v = 0 for every

polynomial s ∈ F[x]. Now, if i ≥ 0 then

(g(AT )u)T f (2)(A)Aiv = uT g(A)f (2)(A)Aiv

= uT g(1)(A)g(2)(A)f (2)(A)v

= uT g(2)(A)f(A)Aiv

= uT f(A)s(A)v for s = xig(2) ∈ F[x]

= 0, since f = minpol(uT , A, v),

implying that f (2) is divisible by h.
Since f (2) and g(2) are relatively prime in F[x], f (2)/h and g(2) are relatively prime in F[x] as well,

and there exist polynomials s, t ∈ F[x] such that sf (2)/h+ tg(2) = 1. In this case, sf (2) + tg(2)h = h.

11



Now, once again, if i ≥ 0, then one can use a similar derivation to establish that

uTAih(A)g(1)v = uTAi
[
s(A)f (2)(A) + t(A)g(2)(A)h(A)

]
g(1)(A)v

= uTAis(A)f(A)v + (g(AT )u)TAit(A)h(A)v = 0,

using the fact that f (2)g(1) = f = minpol(uT , A, v), g = g(1)g(2), and h = minpol((g(AT )u)T , A, v).
This implies that hg(1) is divisible by f = f (2)g(1), and (since g(1) 6= 0) that h is divisible by f (2).

Since h and f (2) are both monic by definition, and each divides the other, h = f (2) as desired.
That is,

minpol((g(AT )u)T , A, v) = f
gcd(f,g) .

Since (g(AT )u)T s(A)v = uT s(A)(g(A)v) for every polynomial s ∈ F[x] it is easy to establish that

minpol((g(AT )u)T , A, v) = minpol(u,A, (g(A)v))

for any matrix A ∈ Fn×n, pair of vectors u, v ∈ Fn×1, and polynomial g ∈ F[x], completing the
proof of the first claim.

The proof of the second claim is almost identical to that of the first: Defining g(1), f (2), and g(2)

from f and g as above, and setting h = minpol(UT , A, g(A)v), one can establish that

uT f (2)(A)Ai(g(A)v) = (g(AT )u)T f (2)(A)Aiv = 0 and uTAih(A)g(1)v = 0

for every vector u ∈ U and integer i ≥ 0, using essentially the derivations given in the proof of the
first claim. It can then be argued that f (2) and h are monic polynomials dividing one another, so

minpol(UT , A, g(A)v) = h = f (2) = f
gcd(f,g) ,

as desired.

Lemma 2.12. Let A ∈ Fn×n, let U be an AT -invariant subspace of Fn×1, let V be an A-invariant
subspace of Fn×1, let u1, u2 ∈ U and let v1, v2 ∈ V . Suppose that f1 and f2 are relatively prime
polynomials in F[x]. If

minpol(UT , A, v1) = f1 and minpol(UT , A, v2) = f2

then
minpol(UT , A, v1 + v2) = f1f2.

Furthermore, if

minpol(V T , AT , ui) = minpol(uTi , A, vi) = minpol(UT , A, vi) = fi

for i = 1, 2 then

minpol(V T , AT , u1 + u2) = minpol((u1 + u2)T , A, v1 + v2) = minpol(UT , A, v1 + v2) = f1f2.

Proof. Consider the first claim, and let u ∈ U .
Since f1 = minpol(UT , A, v1) and u ∈ U , uT f1(A)s(A)v1 = 0 for every polynomial s ∈ F[x].

In particular (choosing s = xif2), uTAif1(A)f2(A)v1 = 0 for every integer i ≥ 0. Similarly, since
f2 = minpol(UT , A, v2), uTAif1(A)f2(A)v2 = uTAif2(A)f1(A)v2 = 0 for every integer i ≥ 0 as well.
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Thus uTAif1(A)f2(A)(v1+v2) = uTAif1(A)f2(A)v1+uTAif1(A)f2(A)v2 = 0 for every integer i ≥ 0,
implying (since u is arbitrarily chosen from U) that f1f2 is divisible by minpol(UT , A, v1 + v2).

Suppose now that minpol(UT , A, v1 + v2) is a proper divisor of f1f2. Then there exists an
irreducible polynomial g ∈ F[x] and a positive integer k such that gk divides f1f2 but gk does not
divide minpol(UT , A, v1 + v2).

Since f1 and f2 are relatively prime, either gk divides f1 or gk divides f2. Assume, without
loss of generality, that gk divides f1, so that it is relatively prime with f2. Then gk divides
minpol(ûT , A, v1) for some element û of U . Consider the polynomials

f̂1 = minpol(ûT , A, v1 + v2), f̂2 = minpol(ûT , A, v2), and f̂ = lcm(f̂1, f̂2).

By an argument similar to the one used at the beginning of this proof, one can establish that
ûTAif̂(A)(v1 +v2) = 0 for every integer i ≥ 0, since f̂ is divisible by f̂1. Similarly, ûTAif̂(A)v2 = 0
for every integer i ≥ 0, since f̂ is divisible by f̂2. Therefore

ûTAif̂(A)v1 = ûTAif̂(A)((v1 + v2)− v2) = ûTAif̂(A)(v1 + v2)− ûTAif̂(A)v2 = 0− 0 = 0

for every integer i ≥ 0 as well, so that f̂ is divisible by minpol(ûT , A, v1).
On the other hand, gk divides minpol(ûT , A, v1) by the choice of û, so gk divides f̂ . However,

gk does not divide minpol(ûT , A, v1 + v2) = f̂1, since gk does not divide minpol(UT , A, v1 + v2) and
û ∈ U . It does not divide f̂2 = minpol(ûT , A, v2) either, since it does not divide minpol(UT , A, v2).
Since g is irreducible and f̂ = lcm(f̂1, f̂2), gk does not divide f̂ either, and we have a contradiction.
Thus minpol(UT , A, v1 + v2) and f1f2 are associates in F[x] and, since both polynomials are monic,
minpol(UT , A, v1 + v2) = f1f2 as stated in the first claim.

Suppose now that the conditions in the second claim are satisfied, that is,

minpol(V T , AT , ui) = minpol(uTi , A, vi) = minpol(UT , A, vi) = fi

for i = 1, 2. Two applications of the first claim establish that

minpol(V T , AT , u1 + u2) = minpol(UT , A, v1 + v2) = f1f2,

so it remains only to establish that

minpol((u1 + u2)T , A, v1 + v2) = f1f2

as well, in order to complete the proof.
Since minpol(uT1 , A, v2) = minpol(vT2 , A

T , u1) divides both f1 = minpol(AT , u1) and f2 =
minpol(A, v2), it also divides gcd(f1, f2) = 1. However, it is clear by inspection of Definition 2.1
that this implies that uT1 A

iv2 = 0 for every integer i ≥ 0.
A symmetric argument establishes that uT2 A

iv1 = 0 for every integer i ≥ 0 as well, so that

(u1 + u2)TAi(v1 + v2) = uT1 A
iv1 + uT2 A

iv2

for every integer i ≥ 0 and, by linearity, that

(u1 + u2)T s(A)(v1 + v2) = uT1 s(A)v1 + uT2 s(A)v2

for every polynomial s ∈ F[x]. The remainder of the claim can now be established by proving
that f1f2 and minpol((u1 + u2)T , A, v1 + v2) are two monic polynomials that divide one another,
essentially by repeating the argument used to prove the first claim.
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A similar result will be of use in the sequel.

Lemma 2.13. Let A ∈ Fn×n, let U be an AT -invariant subspace of Fn×1, let V be an A-invariant
subspace of Fn×1, and let u ∈ U and v1, v2 ∈ V . Suppose f1 and f2 are monic polynomials in F[x].
If

minpol(UT , A, v1) = f1 and minpol(UT , A, v2) = f2

then minpol(UT , A, v1 + v2) is divisible by lcm(f1, f2). Furthermore, if

minpol(uT , A, v1) = f1 and minpol(uT , A, v2) = f2

then minpol(uT , A, v1 + v2) is divisible by lcm(f1, f2) as well.

Proof. Let g = lcm(f1, f2). The second claims follows from the fact that, for any polynomial
s ∈ F[x],

uT s(A)g(A)(v1 + v2) = uT s(A)g(A)v1 + uT s(A)g(A)v2

= uT s1(A)f1(A)v1 + uT s2(A)g2(A)v2

= 0 + 0 = 0,

for s1 = sg/f1 ∈ F[x] and s2 = sg/f2 ∈ F[x], and using the fact that fi = minpol(uT , A, vi) for
i = 1 and i = 2. The first claim follows from the second, and the fact that minpol(uT , A, vi) is a
divisor of minpol(UT , A, vi) for i = 1 and i = 2 and for every element u of U .

Lemma 2.14. If U, V ⊆ Fn×1 are A-complementary subspaces then there exist vectors u ∈ U
and v ∈ V such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = minpol(UT , A, V ).

Proof. Suppose

minpol(UT , A, V ) =
k∏
i=1

geii

for distinct monic irreducible polynomials g1, g2, . . . , gk ∈ F[x] and positive integers e1, e2, . . . , ek.
Then there must exist elements ûi of U and v̂i of V such that minpol(ûTi , A, v̂i) is divisible by geii ,
for 1 ≤ i ≤ k.

Let li = minpol(AT , ûi) = minpol(F1×n, AT , ûi). Since li is divisible by minpol(ûTi , A, v̂i),
li is divisible by geii . On the other hand, since U and V are A-complementary and li divides
minpol(AT , U) = minpol(UT , A, V ), li is not divisible by gei+1

i . Now set l̂i = li/g
ei
i , so that

l̂i ∈ F[x] and gcd(l̂i, geii ) = 1, and set
ui = l̂i(AT )ûi;

then ui ∈ U since U is AT -invariant and ûi ∈ U . Furthermore, Lemma 2.11 implies that

minpol(AT , ui) = minpol(F1×n, AT , l̂i(AT )ûi) = li
gcd(li,l̂i)

= li/l̂i = geii ,

and that

minpol(uTi , A, v̂i) = minpol((l̂i(AT )ûi)T , A, v̂i) = minpol(ûTi , A, v̂i)

gcd(minpol(ûTi , A, v̂i),l̂i)
= geii

as well, since gcd(minpol(ûTi , A, v̂i), l̂i) = minpol(ûTi , A, v̂i)/g
ei
i by the choice of ûi, v̂i, and l̂i.
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Next, set ri = minpol(A, v̂i) = minpol(F1×n, A, v̂i); ri is divisible by geii but not by gei+1
i , by the

same argument as used to prove this for li. Set r̂i = ri/g
ei
i , so that r̂i ∈ F[x] and gcd(r̂i, geii ) = 1,

and set
vi = r̂i(A)v̂i;

then ri ∈ V since V is A-invariant and v̂i ∈ V . Now Lemma 2.11 implies that

minpol(A, vi) = minpol(F1×n, A, r̂i(A)v̂i) = ri
gcd(ri,r̂i)

= ri/r̂i = geii ,

and that
minpol(uTi , A, vi) = minpol(uTi , A, r̂i(A)v̂i) = geii / gcd(geii , r̂i) = geii ,

since minpol(uTi , A, v̂i) = geii and since geii and r̂i are relatively prime.
Thus ui ∈ U , vi ∈ V , and

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = geii

for 1 ≤ i ≤ k. Since the polynomials ge11 , g
e2
2 , . . . , g

ei
k are pairwise relatively prime, a repeated

application of Lemma 2.12 now suffices to prove that if

u =
k∑
i=1

ui ∈ U and v =
k∑
i=1

vi ∈ V,

then

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) =
k∏
i=1

geii = minpol(UT , A, V ),

as desired.

At this point, Wiedemann’s and Kaltofen and Pan’s results can be generalized to obtain efficient
algorithms to compute the minimum polynomials of matrices and subspaces (see Proposition 4 of
Wiedemann [28], and Lemmas 1 and 2 of Kaltofen and Pan [14]).

In particular, if F is finite and U and V are A-complementary subspaces of Fn×1, for a matrix
A ∈ Fn×n, then Lemma 2.14 implies that there exists vectors u ∈ U and v ∈ V such that

minpol(uT , A, v) = minpol(AT , u) = minpol(UT , A, V ).

The generalization of Wiedemann’s analysis given in Subsection 2.2 implies that if k > 1 and
k vectors v1, v2, . . . , vk are selected uniformly and independently from V then the probability that

minpol(V T , AT , u) = lcm
1≤i≤k

minpol(vTi , A
T , u) (8)

is
Φk(minpol(V T , AT , u)) ≥ 1− ln

(
qk−1

qk−1−1

)
(9)

where |F| = q and Φk is the polynomial introduced in Subsection 2.2. As noted there, this proba-
bility exceeds 30% if k = 2, 50% if k = 3, and is more than 90% if k = 5.

Now, since minpol(uT , A, v) = minpol(vT , AT , u),

minpol(V T , AT , u) = minpol(V T , AT , U) = minpol(UT , A, V ),
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because minpol(V T , AT , u) is a monic polynomial that is a factor of minpol(V T , AT , U) and divisible
by minpol(vT , AT , u).

Since each polynomial minpol(vTi , A
T , u) divides minpol(vTi , A

T , U) = minpol(UT , A, vi), and
since minpol(UT , A, vi) clearly divides minpol(UT , A, V ), it follows that

minpol(UT , A, V ) = lcm
1≤i≤k

minpol(UT , A, vi)

with probability at least Φk(minpol(V T , AT , u)), as well.
Each of the above polynomials minpol(UT , A, vi) can be computed as the least common multiple

of polynomials minpol(uTi,j , A, vi), for a constant number of uniformly and independently selected
vectors ui,j ∈ U , using a Las Vegas algorithm as described in Subsection 2.2. One can compute each
of these minimum polynomials with certainty, using an expected number of operations as described
there, by performing independent trials of the algorithm until one succeeds.

Therefore, since Φk(minpol(V T , AT , u)) ≥ 1/2 if k ≥ 3, it suffices to uniformly and indepen-
dently select three vectors v1, v2, v3 from V , apply a Las Vegas algorithm to compute the polynomial
minpol(UT , A, vi) corresponding to each, and return their least common multiple as output. The
resulting Monte Carlo algorithm uses asymptotically the (expected) number of operations as men-
tioned in Fact 2.8, plus the cost of computing a constant number of “random” vectors from U
and V , and it either returns the desired minimum polynomial (with probability at least one-half)
or a proper factor of it.

Lemma 2.14 and Lemmas 1 and 2 of Kaltofen and Pan [14] can also be combined to produce a
Monte Carlo algorithm to compute minpol(UT , A, V ) with this complexity, in the large field case.

As it happens, we will need to compute additional values along with minpol(UT , A, V ) as part
of an algorithm for the Frobenius decomposition of A. Therefore it will be necessary to modify
Wiedemann and Kaltofen and Pan’s algorithms, and their analysis, a bit more. This will be
discussed (and results will be stated more precisely) in the sequel.

3 Recovery of a Block of the Frobenius Form

The methods and results from Section 2 can now be applied in order to recover a block of the
Frobenius form of a matrix. Section 3.1 introduces a method to compute the minimum polynomial
minpol(UT , A, V ) for a given matrix A and A-complementary subspaces U and V along with asso-
ciated values, and Section 3.2 establishes that the Frobenius form of a matrix A can be obtained
by applying this method to progressively smaller subspaces.

3.1 Computing the Minimum Polynomial and Cyclic Vectors of Subspaces

Once again let A ∈ Fn×n and suppose U and V are A-complementary subspaces of Fn×1. By
Lemma 2.14, there exist vectors u ∈ U and v ∈ V such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = minpol(UT , A, V ),

and the definition of “A-complementary subspaces” (Definition 2.10) implies that this polynomial
is also equal to minpol(AT , U) and minpol(A, V ) as well. It will be shown in this section that one
can find such vectors u and v efficiently, along dual bases for A, u, and v (cf. Definition 2.3). In
particular, a Monte Carlo algorithm will be presented that generates vectors u ∈ U and v ∈ V
(along with dual bases for A, u, and v) such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v),
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function filterp (f, g)

begin function

d := g
h := f
while deg(d) > 0 do

h := h/d
d := gcd(h, d)

end while
return h

end function

Figure 1: Function filterp

and such that minpol(uT , A, v) = minpol(UT , A, V ) with probability at least one-half. Since u ∈ U
and v ∈ V , minpol(uT , A, v) will be clearly be a factor of minpol(UT , A, V ) in any case.

To begin, let us suppose that we are given vectors û ∈ U and v̂ ∈ V , and that we wish to find
vectors u ∈ K(L)

û,v̂ ⊆ U and v ∈ K(R)
û,v̂ ⊆ V such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v)

as above, but also such that the degree of minpol(uT , A, v) is kept high. More precisely, if g ∈ F[x]
is an irreducible polynomial and k is a positive integer such that gk divides minpol(ûT , A, v̂), but
gk+1 does not divide either one of minpol(AT , û) or minpol(A, v̂), then we will require that gk divide
minpol(uT , A, v).

Consider the function filterp shown in Figure 1, assuming that its inputs are monic polynomials
f, g ∈ F[x] such that g divides f .

Lemma 3.1. Given monic polynomials f, g ∈ F[x] such that g divides f , function filterp returns
the monic polynomial h of greatest degree such that h divides f and gcd(g, h) = 1.

If the degree of f is at most m then the function can be implemented as a deterministic algorithm
that uses O(m2) operations in F, with standard polynomial arithmetic.

Proof. Consider the polynomials d and h maintained by this algorithm. It is clear by inspection
of the algorithm that if s ∈ F[x] is any polynomial that divides f such that gcd(s, g) = 1 then
s divides h before the first execution of the while loop and, since d is always divisible by g, s
divides h after each execution of this loop body as well. Inspection of the code should also confirm
that h is always monic, and that if t is any irreducible polynomial dividing g, then t divides h if
and only if t divides d, both before the first execution of the loop body and after each execution
of it.

Inspection of the code confirms, as well, that the degree of the polynomial h decreases by at
least one, on each execution of the loop body, and that d is always a divisor of h. Consequently
the degree of d is zero and the algorithm terminates after at most m executions of the loop body.
At this point, the above loop invariants imply that h is the monic polynomial of greatest degree
dividing f such that gcd(g, h) = 1, as desired.

Let h0 = f and d0 = g, so that h0 and d0 are the values of h and d, respectively, at the
beginning of the first execution of the loop body. Suppose the loop is executed k times and let
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function filterv (A, û, v̂, k)

begin function

fm := minpolseq(ûT , A, v̂, k)
fl := minpolvec(AT , û, k)
fr := minpolvec(A, v̂, k)
fm := filterp(fm, gcd(fm, fl/fm))
f := filterp(fm, gcd(fm, fr/fm))
gl := fl/f
gr := fr/f

u := gl(AT )û
v := gr(A)v̂
return u, v, f

end function

Figure 2: Function filterv

hi and di be the values of h and d, respectively, at the end of the ith execution of the loop body,
for 1 ≤ i ≤ k. Since hi = hi−1/di−1 for 1 ≤ i ≤ k and dk = 1 it is clear that f = h0 is divisible
by
∏k
i=0 di. Thus, if di has degree mi for 0 ≤ i ≤ k then

∑k
i=0mi ≤ m. Now, a careful analysis

of the cost of both polynomial division with remainder and computation of the greatest common
divisor of polynomials, using standard arithmetic, confirms that each operation can be performed
using O(mlmr) operations over F on inputs fl and fr with degrees ml and mr respectively (see, for
example, von zur Gathen and Gerhard [10]). It can therefore be established that the ith execution of
the loop body can be executed, with standard polynomial arithmetic, using O(mmi−1) operations
for 1 ≤ i ≤ k, and that the entire function can be executed using O(m2) operations over F as
claimed.

Now consider the function filterv shown in Figure 2.

Lemma 3.2. Let A ∈ Fn×n and let U and V be A-complementary subspaces. Let û ∈ U , v̂ ∈ V ,
and let k be an integer such that the degrees of both minpol(AT , û) and minpol(A, v̂) are both at
most k. Then, given the inputs A, û, v̂ and k, the function filterv returns vectors u ∈ U , v ∈ V ,
and a polynomial f ∈ F[x] such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = f

and such that, for every irreducible polynomial g ∈ F[x] and nonnegative integer m, if gm divides
minpol(ûT , A, v̂) but gm+1 does not divide either minpol(AT , û) or minpol(A, v̂), then gm divides f .

The function can be implemented as a randomized algorithm that terminates with probability
one, so that it selects vectors whose entries are selected uniformly and independently from F if F is
finite, or from a finite subset S of size at least 2n if F is infinite. The expected number of vectors
selected by this algorithm is in O(1). The expected number of matrix-times-vectors products (using
matrix AT or A) computed by this algorithm is in O(1), and the expected number of additional
operations over F performed by this algorithm is in O(kn), using standard polynomial arithmetic.

Proof. It is clear by inspection of the code in Figure 2 (and a review of the specifications of
functions minpolseq and minpolvec, from Section 2) that the polynomials fm, fl and fr have initial
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function mergev (A, u1, v1, f1, u2, v2, f2)

begin function

g1 := filterp(f1, lcm(f1, f2)/f2)
h1 := f1/g1

h2 := filterp(f2, gcd(h1, f2))
g2 := f2/h2

u := g1(AT )u1 + g2(AT )u2

v := g1(A)v1 + g2(A)v2

f := h1 · h2

return u, v, f

end function

Figure 3: Function mergev

values minpol(ûT , A, v̂), minpol(AT , û), and minpol(A, v̂) respectively. Lemma 3.1 therefore implies
that, immediately after the first application of filterp, fm is the monic polynomial of greatest
degree that divides minpol(ûT , A, v̂) and is relatively prime to minpol(AT , û)/minpol(ûT , A, v̂).
This lemma also implies that, immediately after the second application of this function, f is the
monic polynomial of greatest degree that divides minpol(ûT , A, v̂) and is relatively prime to both
minpol(AT , û)/minpol(ûT , A, v̂) and minpol(A, v̂)/minpol(ûT , A, v̂). It follows that if u ∈ K

(L)
u,v

and v ∈ K(R)
u,v are vectors such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = f,

then u, v, and f are correct outputs. Correctness of the algorithm now follows by inspection of the
rest of the code and by application of Lemma 2.11.

It should next be noted that if k is the given bound on the degrees of minpol(AT , û) and
minpol(A, v̂), then k also bounds the degrees of all values assumed by fm and f , as well as the
polynomials fl, fr, gl and gr. The stated complexity bounds now follow by applications of Fact 2.2
and the specification of function minpolseq, Fact 2.8 and the specification of function minpolvec,
Lemma 3.1, and an inspection of the code.

Function mergev is shown in Figure 3 and will also be required.

Lemma 3.3. Suppose again that A ∈ Fn×n and that U and V are A-complementary subspaces. Let
u1, u2 ∈ U , v1, v2 ∈ V , and let f1, f2 ∈ F[x] such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for i = 1, 2. Then, given A, u1, v1, f1, u2, v2, and f2 as input, the function mergev returns vectors
u ∈ U and v ∈ V and a polynomial f ∈ F[x] such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = f = lcm(f1, f2).

If 1 ≤ k ≤ n and the degree of minpol(UT , A, V ) is at most k, then this function can be
implemented as a deterministic algorithm that uses O(k) multiplications of AT by vectors in U ,
O(k) multiplications of A by vectors in V , and O(n+ k2) additional arithmetic operations over F,
with standard polynomial arithmetic.
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Proof. Suppose

f1 =
k∏
i=1

ĝaii and f2 =
k∏
i=1

ĝbii

for distinct monic, irreducible polynomials ĝ1, ĝ2, . . . , ĝk, and consider the polynomials g1, g2, h1,
h2, and f that are generated by this function. Clearly

lcm(f1, f2) =
k∏
i=1

ĝ
max(ai,bi)
i ,

so that

lcm(f1, f2)/f2 =
k∏
i=1

ĝ
max(ai,bi)−bi
i

is divisible by f1f2/f2 = f1 and, by Lemma 3.1,

g1 = filterp(f1, lcm(f1, f2)/f2) =
k∏
i=1

ĝcii , for ci =

{
ai if ai ≤ bi,
0 if ai > bi.

Therefore

h1 = f1/g1 =
k∏
i=1

ĝdii , for di =

{
0 if ai ≤ bi,
ai if ai > bi.

Since f1 is divisible by g1, h1 = f1/g1, and g1 and h1 are relatively prime, three applications of
Lemma 2.11 from Section 2.3 can be used to establish that

minpol(AT , g1(AT )u1) = minpol((g1(AT )u1)T , A, g1(A)v1) = minpol(A, g1(A)v1) = h1. (10)

Lemma 3.1 and the above factorization of h1 imply that

h2 = filterp(f2, gcd(h1, f2)) =
k∏
i=1

ĝeii , for ei =

{
bi if ai ≤ bi,
0 if ai > bi,

so that

g2 = f2/h2 =
k∏
i=1

ĝlii , for li =

{
0 if ai ≤ bi,
bi if ai > bi.

Since f2 is divisible by g2, h2 = f2/g2, and g2 and h2 are relatively prime, another three applications
of Lemma 2.11 establish that

minpol(AT , g2(AT )u2) = minpol((g2(AT )u2)T , A, g2(A)v2) = minpol(A, g2(A)v2) = h2. (11)

Since h1 and h2 are relatively prime, equations (10) and (11), Lemma 2.12, and the definitions of u
and v in the code now imply that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = h1h2.

The factorizations of h1 and h2 given above imply that h1h2 =
∏k
i=1 ĝ

max(ai,bi)
i = lcm(f1, f2), as

needed to conclude that the function is correct.
The complexity bounds stated in the lemma can be established by a final application of

Lemma 3.1 and an inspection of the code.
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Suppose, once again, that F is finite with size q, that vectors û1, û2, . . . are chosen uni-
formly and independently from U , and that vectors v̂1, v̂2, . . . are chosen uniformly and inde-
pendently1 from V . If g is an irreducible polynomial and m is a positive integer such that gm

divides minpol(UT , A, V ) but gm+1 does not, then, since U and V are A-complementary, so that
minpol(UT , A, V ) = minpol(A, V ), the probability that gm divides minpol(A, v̂i) is at least

1− q−deg(g);

see the analysis in Section 2.3 for details. Furthermore, the conditional probability that gm also
divides minpol(ûTi , A, v̂i) if it divides minpol(A, v̂i) is equal to the above probability; see the analysis
in Section 2.2 for a justification. It therefore follows that gm divides minpol(ûTi , A, v̂i) with at least
the square of the above probability, so that the probability that gm does not divide this minimum
polynomial is at most

2q−deg(g) − q−2deg(g).

Thus Lemma 3.2 implies that if ui ∈ U , vi ∈ V , and fi ∈ F[x] are produced by the function filterv
when given A, ûi, v̂i, and an upper bound on minpol(UT , A, V ) as inputs, then

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi,

and this polynomial is divisible by gm with probability at least 1−2q−deg(g)+q−2deg(g). Furthermore,
since û1, û2, . . . , ûl and v̂1, v̂2, . . . , v̂l are independently selected, the probability that lcml

i=1fi is not
divisible by gm is at most (

2q−deg(g) − q−2deg(g)
)l

and, therefore,
lcm

1≤i≤l
fi = minpol(UT , A, V )

with probability at least

Ψl(minpol(UT , A, V )) =
∏

gi |minpol(UT , A, V )
gi is irreducible

1−
(

2q−deg(gi) − q−2deg(gi)
)l
.

Once again (following Wiedemann’s argument),

Ψl(minpol(UT , A, V )) ≥ 1−
∑

gi |minpol(UT , A, V )
gi is irreducible

(
2q−deg(gi) − q−2deg(gi)

)l

≥ 1−
∑
h≥1

qh

h

(
2q−h − q−2h

)l
,

once again, using the fact that there are at most qh/h monic irreducible polynomials of degree h
1. . . that is, independently from one another and from û1, û2, . . .
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in F[x]. Now if q = 2 this implies that

Ψl(minpol(UT , A, V )) ≥ 1− 2
(

3
4

)l −∑
h≥2

2h

h

(
2 · 2−h

)l
= 1− 2

(
3
4

)l − 2
∑
h≥2

2h−1

h

(
21−h

)l
≥ 1− 2

(
3
4

)l − 2
∑
h≥2

2h−1

h−1

(
21−h

)l
= 1− 2

(
3
4

)l − 2
∑
j≥1

2−j(l−1)

j

= 1− 2
(

3
4

)l − 2 ln
(

2l−1

2l−1−1

)
,

implying that Ψl(minpol(UT , A, V )) ≥ 0.5 if q = 2 and l ≥ 6.
If q ≥ 3, then it follows by the above inequalities that

Ψl(minpol(UT , A, V )) ≥ 1−
∑
h≥1

qh

h

(
2q−h

)l
= 1−

∑
h≥1

1
h2lq−h(l−1)

= 1− 2
∑
h≥1

1
h2l−1q−h(l−1)

≥ 1− 2
∑
h≥1

1
h2h(l−1)q−h(l−1)

= 1− 2
∑
h≥1

(q/2)−(l−1)h

h

= 1− 2 ln
(

ql−1

ql−1−2l−1

)
,

implying that Ψl(minpol(UT , A, V )) ≥ 0.5 when q = 3 and l ≥ 5, when q = 4 and l ≥ 4, when
5 ≤ q ≤ 9 and l ≥ 3, and when q ≥ 11 and l ≥ 2.

If F is a sufficiently large field then it can be argued that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = minpol(UT , A, V )

for “randomly” chosen elements u from U and v from V , if U and V are A-complementary subspaces.
More precisely, it follows by Lemma 2.14 that vectors u ∈ U and v ∈ V do exist that satisfy the
above condition. Now suppose S is a finite subset of F containing at least 4k distinct elements,
where k is greater than or equal to the degree of minpol(UT , A, V ). Suppose u1, u2, . . . , um1 is a
spanning set for U and that v1, v2, . . . , vm2 is a spanning set for V . Then if

u = α1u1 + α2u2 + · · ·+ αm1um1 ∈ U and v = β1v1 + β2v2 + · · ·+ βm2vm2 ∈ V,

where the values α1, α2, . . . , αm1 , β1, β2, . . . , βm2 are chosen uniformly and independently from S,
then it follows by a trivial modification of the argument given by Kaltofen and Pan to prove their
Lemmas 1 and 2 that

minpol(uT , A, v) = minpol(UT , A, V ) (12)
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function minpolspace (A; k; û1, û2, . . . , ûl; v̂1, v̂2, . . . , v̂l)

begin function

u, v, f := filterv(A, û1, v̂1, k)
for i := 2 . . . trialbound(k) do

u, v, f := mergev(A, u, v, f, filterv(A, ûi, v̂i, k))
end for

return u, v, f
end function

Figure 4: Function minpolspace

with probability at least
1− 2deg(minpol(UT , A, V ))

|S| ≥ 1
2 .

Now since U and V are A-complementary,

minpol(AT , U) = minpol(UT , A, V ) = minpol(A, V )

and, since minpol(AT , u) (respectively, minpol(A, v)) is monic, has minpol(uT , A, v) as a factor and
divides minpol(AT , U) (respectively, minpol(A, V )), condition (12) would imply that

minpol(AT , u) = minpol(A, v) = minpol(UT , A, V )

as well.
Now let

l = trialbound(k) =



6 if |F| = 2,
5 if |F| = 3,
4 if |F| = 4,
3 if 5 ≤ |F| ≤ 9,
2 if 11 ≤ |F| ≤ 4k,
1 otherwise,

and consider the function minpolspace shown in Figure 4.
The following result is a straightforward consequence of the above analysis, along with the

information about functions filterv and mergev given in Lemmas 3.2 and 3.3, respectively.

Theorem 3.4. Let A ∈ Fn×n and let U and V be A-complementary subspaces. Let k be an
upper bound on the degree of minpol(UT , A, V ), let l = trialbound(k), let û1, û2, . . . , ûl ∈ U , and let
v̂1, v̂2, . . . , v̂l ∈ V . Then, given inputs A, k, û1, û2, . . . , ûl and v̂1, v̂2, . . . , v̂l, the function minpolspace
returns vectors u ∈ U and v ∈ V and a monic polynomial f ∈ F[x] such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = f

and f is a divisor of minpol(UT , A, V ). Furthermore, f = minpol(UT , A, V ) with probability at
least one-half if either
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(a) the field F is finite, vectors û1, û2, . . . , ûl are chosen uniformly and independently from U , and
vectors v̂1, v̂2, . . . , v̂l are chosen uniformly and independently2 from V ; or

(b) the field F is infinite, S is a finite subset of F with size at least 4k,

ûi = αi,1u1 + αi,2u2 + · · ·+ αi,m1um1 and v̂i = βi,1v1 + βi,2u2 + · · ·+ βi,m2vm2

for 1 ≤ i ≤ l, where u1, u2, . . . , um1 is a spanning set for U , v1, v2, . . . , vm2 is a spanning set
for V , and the coefficients αi,j (for 1 ≤ j ≤ m1) and βi,j (for 1 ≤ j ≤ m2) are all chosen
uniformly and independently from S.

The function can be implemented as a randomized algorithm that terminates with probability one.
The expected number of vectors chosen by the algorithm from U and V is in O(1), the expected
number of matrix-times-vector products (for matrices A or AT ) is in O(k), and the expected number
of additional operations performed by the algorithm over F is in O(kn), using standard polynomial
arithmetic.

Note 3.5. An additional result will be needed in the sequel, for the case that F is finite and (as
usual) U and V are A-complementary subspaces.

Recall, from Section 2.1, that if u ∈ U and v ∈ V , then K
(L)
u,v is the vector space spanned by

the vectors
u, (AT )u, (AT )2u, (AT )3u, . . .

and that K(R)
u,v is the vector space spanned by the vectors

v, Av, A2v, A3v, . . .

If U and V are A-complementary then K
(L)
u,v ⊆ U and K

(R)
u,v ⊆ V .

Suppose that m > 0, l = trialbound(k), where as usual k is greater than or equal to the degree
of minpol(UT , A, V ), that vectors

û1,1, . . . , û1,l, . . . , ûm,1, . . . , ûm,l

are chosen uniformly and independently from U , and that

v̂1,1, . . . , v̂1,l, . . . , v̂m,1, . . . , v̂m,l

are chosen uniformly and independently from V . By Theorem 3.4, if ui ∈ U and vi ∈ V are
the vectors and f i ∈ F[x] is the polynomial produced by function minpolspace on inputs A, k,
ûi,1, ûi,2, . . . , ûi,l and v̂i,1, v̂i,2, . . . , v̂i,l, then

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = f i,

and f i = minpol(UT , A, V ) with probability at least one-half. Now let u1 = u1, v1 = v1, and
f1 = f1, and let ui ∈ U , vi ∈ V , and fi ∈ F[x] be the vectors and polynomial produced by the
function mergev on inputs ui−1, vi−1, fi−1 and ui, vi, f i, for 2 ≤ i ≤ m, so that

minpol(AT , ui) = minpol(ui, A, vi) = minpol(A, vi) = fi = lcm
1≤j≤i

f j

2. . . from one another and from û1, û2, . . . , ûl
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for 1 ≤ i ≤ m. Since f j divides minpol(UT , A, V ) for 1 ≤ j ≤ m, fi clearly divides minpol(UT , A, V )
for 1 ≤ i ≤ m as well, and it follows by the independence of the vectors ûr,s and v̂r,s for 1 ≤ r ≤ m
and 1 ≤ s ≤ l that

fi = minpol(UT , A, V )

with probability at least 1− 2−i, for 1 ≤ i ≤ m.
However, these vectors and functions will not be used in quite this way in the sequel. In

particular, it may happen that several applications of the function minpolspace are used in sequence
to try to discover minpol(UT , A, V ) and that the results of these applications are combined using
the function mergev as described above. The first application of minpolspace will involve uniformly
and independently selected vectors

û1,1, . . . , û1,l ∈ U and v̂1,1, . . . , v̂1,l ∈ V

as above. In each later application, say, the ith, the uniformly (and independently) selected vector
ûi,j , mentioned above, will be replaced as an input to minpolspace with a vector

û′i,j = ûi,j + ~ui,j,1 + ~ui,j,2 + · · ·+ ~ui,j,i−1

where ~ui,j,h ∈ K
(L)
uh,vh

⊆ U , for 1 ≤ h ≤ i − 1, and where the vectors uh and vh are as above.
Similarly, the vector v̂i,j will be replaced by as an input to minpolspace with a vector

v̂′i,j = v̂i,j + ~vi,j,1 + ~vi,j,2 + · · ·+ ~vi,j,i−1

where ~vi,j,h ∈ K
(R)
uh,vh

⊆ V . Fortunately, Lemma 2.13 and a straightforward (but tedious) proof by
induction can be used to prove that the polynomials f1, f2, . . . , fm one obtains are not changed by
this substitution: Note that if g ∈ F[x] is irreducible, r is a positive integer such that the polynomial
minpol(UT , A, V ) is divisible by gr but not by gr+1, and none of f1, f2, . . . , fi−1 are divisible by
gr, then Lemma 2.13 can be applied to prove that gr divides minpol(ûTi,j , A, v̂i,j) if and only if gr

divides minpol((û′i,j)
T , A, v̂′i,j), for 1 ≤ r ≤ l, and for the vectors ûi,j , v̂i,j , û′i,j and v̂′i,j as described

above.
Consequently minpol(UT , A, V ) will be available after m applications of minpolspace with prob-

ability at least 1− 2−m, even if the above replacement of inputs is made.

Note 3.6. The expected number of trials of minpolspace used in the above process is bounded by a
constant, and the expected running time of each trial is as described in Theorem 3.4. Of course,
since expectations are not generally multiplicative, this is not quite enough to conclude that the
expected cost of the entire process is as stated above. However, this is the case, since the Las Vegas
algorithms used here are performing Bernoulli trials.

In particular, tracing back through the code shown in Figure 1, and reviewing the description
of function minpolvec in Section 2.2 following Fact 2.8, one can confirm that the desired complexity
result will follow if it can be established that the expected number of applications of the function
minpolvec-1/2 (mentioned in the discussion in Section 2.2) is bounded by a constant. Now, since
minpolspace requires 2c applications of minpolvec, for the constant c = trialbound(k) ≤ 6, the
probability that 2c(i−1)2−1 or more applications of minpolvec-1/2 are needed is at most 2c(i−1)+1

2i
,

because this condition would imply either that one of the first 2c(i − 1) applications of minpolvec
requires i or more applications of minpolvec-1/2, or that the entire process requires i or more
applications of minpolspace. Over-approximating the probability that between 2c(i − 1)2 − 1 and
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2ci2 applications of minpolvec-1/2 are needed by the probability that at least 2c(i − 1)2 − 1 are,
one can bound the expected number of applications of minpolvec-1/2 by∑

i≥1

2c(i− 1) + 1
2i

(2ci2) ∈ O(1),

as required.

3.2 Application to Computation of the Frobenius Form

In this section, it is established that the machinery developed so far can be used to find the Frobenius
form of a matrix. These results depend on the existence and uniqueness of the Frobenius form of
a matrix as established, for example, by Gantmacher [9].

Lemma 3.7. Let A ∈ Fn×n, let X ∈ Fn×n be nonsingular, and suppose

X−1AX =


Cf1 0

Cf2

. . .
Cfk

0 B


where Cf1 , Cf2 , . . . , Cfk are companion matrices of polynomials f1, f2, . . . , fk of positive degree such
that fi+1 divides fi for 1 ≤ i ≤ k − 1, and such that B ∈ Fm×m for some integer m ≤ n.

If fk(B) = 0 then the invariant factors of A are f1, f2, . . . , fk, g1, g2, . . . , gl where g1, g2, . . . , gl
are the invariant factors of B and, if Y ∈ Fm×m is a Frobenius transition matrix for B, then

Z = X

[
In−m

Y

]
is a Frobenius transition matrix for A.

Conversely, if f1, f2, . . . , fk are the first k invariant factors of A then fk(B) = 0.

Proof. Suppose B has invariant factors g1, g2, . . . , gl and a Frobenius transition matrix Y ∈ Fm×m,
so that gj+1 divides gj for 1 ≤ j ≤ l − 1 and

Y −1BY =


Cg1 0

Cg2

. . .
0 Cgl

 .
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Then it is easily verified that

Z−1AZ =
[
In−m

Y

]−1

X−1AX

[
In−m

Y

]

=
[
In−m

Y

]−1


Cf1 0

. . .
Cfk

0 B


[
In−m

Y

]

=


Cf1 0

. . .
Cfk

0 Y −1BY

 = C,

where

C =



Cf1

. . .
Cfk

Cg1

. . .
0 Cgl


.

Now, if g1 divides fk then the above matrix C is in Frobenius form and it follows by the uniqueness
of this matrix form that f1, f2, . . . , fk, g1, g2, . . . , gl are the invariant factors of A and that Z is a
transition matrix for A, as claimed.

Conversely, suppose f1, f2, . . . , fk are the first k invariant factors of A but that fk(B) 6= 0, and
let g be the minimum polynomial of B. Let i be the largest integer such that g divides fi, choosing
i = 0 if g does not divide f1, so that 0 ≤ i ≤ k − 1. Let

B̂ =


Cfi+1

0
Cfi+1

. . .
Cfk

0 B

 ,

so that

X−1AX =


Cf1 0

Cf2

. . .
Cfi

0 B̂

 . (13)

Set h = lcm(g, fi+1); then h divides fi if i > 0, since g divides fi by the choice of i and fi+1

divides fi since fi and fi+1 are successive invariant factors of A. On the other hand, h 6= fi+1 since
g does not divide fi+1.

Clearly, h(B̂) = 0 since h(Cfj ) = 0 for i+ 1 ≤ j ≤ k and since h(B) = 0 as well. On the other
hand, if ĥ is any proper divisor of h then ĥ(B̂) 6= 0, since either ĥ does not divide fi+1 or ĥ does not
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divide g, so that at least one of the matrices ĥ(Cfi+1
) or ĥ(B) on the diagonal of ĥ(B̂) is nonzero.

Thus h is the minimum polynomial of B̂.
However, since equation (13) above is satisfied, and fi(B̂) = 0, the first part of the claim can

be applied to conclude that the i + 1st invariant factor of A is the minimum polynomial h of B̂,
contradicting the fact that h 6= fi+1. Therefore fk(B) = 0 as claimed.

Lemma 3.8. Let A ∈ Fn×n and let f1, f2, . . . , fk ∈ F[x] be polynomials with positive degree such
that fi is divisible by fi+1 for 1 ≤ i ≤ k − 1. Let di be the degree of fi for all i.

Let u1, u2, . . . , uk, v1, v2, . . . , vk ∈ Fn×1 be vectors such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi for 1 ≤ i ≤ k (14)

and
uTi A

lvj = 0 for all l ≥ 0 whenever 1 ≤ i, j ≤ k and i 6= j. (15)

Then the vectors

v1, Av1, . . . , A
d1−1v1, v2, Av2, . . . , A

d2−1v2, . . . , vk, Avk, . . . , A
dk−1vk

are linearly independent, as are the vectors

u1, A
Tu1, . . . , (AT )d1−1u1, u2, A

Tu2, . . . , (AT )d2−1u2, . . . , uk, A
Tuk, . . . , (AT )dk−1uk.

Furthermore, if m = n −
k∑
i=1

di > 0 then there exist vectors µ1, µ2, . . . , µm, ν1, ν2, . . . , νm ∈ Fn×1

such that
uTi A

lνj = µTj A
lvi = 0 (16)

for 1 ≤ i ≤ k, 1 ≤ j ≤ m, and all l ≥ 0, such that

u1, A
Tu1, . . . , (AT )d1−1u1, . . . , uk, A

Tuk, . . . , (AT )dk−1uk, µ1, µ2, . . . , µm

and
v1, Av1, . . . , A

d1−1v1, . . . , vk, Avk, . . . , A
dk−1vk, ν1, ν2, . . . , νm

are both bases for Fn×1. Every vector µ ∈ Fn×1 such that µTAlvi = 0 for all l ≥ 0 and 1 ≤ i ≤ k is
an F-linear combination of µ1, µ2, . . . , µm, and every vector ν ∈ Fn×1 such that uTi A

lν = 0 for all
l ≥ 0 and 1 ≤ i ≤ k is an F-linear combination of ν1, ν2, . . . , νm.

Proof. Let

X =
[
u1 ATu1 . . . (AT )d1−1u1 . . . uk (AT )uk . . . (AT )dk−1uk

]
∈ Fn×(n−m)

and let
Y =

[
v1 Av1 . . . Ad1−1v1 . . . vk Avk . . . Adk−1vk

]
∈ Fn×(n−m).

In order to prove the first part of the claim it is necessary and sufficient to show that the matrices
X and Y both have full rank n−m. Now, the orthogonality condition (15) implies that XTY = H
for a matrix

H =


H1 0

H2

. . .
0 Hk

 ∈ F(n−m)×(n−m),
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where Hi is a Hankel matrix

Hi =


uTi vi uTi Avi . . . uTi A

di−1vi
uTi Avi uTi A

2vi . . . uTi A
divi

...
...

. . .
...

uTi A
di−1vi uTA

divi . . . uTi A
2di−2vi

 ∈ Fdi×di (17)

for 1 ≤ i ≤ k. Since minpol(uTi , A, vi) has degree i by condition (14), above, it follows from
Lemma 1 of Kaltofen and Pan [14] that Hi is nonsingular, for all i. Thus H is nonsingular as well
and X and Y must have full rank n−m, as needed.

Since X has rank n −m, its left kernel has dimension m; let ν1, ν2, . . . , νm ∈ Fn×1 be a basis
for the set of vectors {x ∈ Fn×1 : xTX = 0}. These vectors are clearly linearly independent by
construction. It is clear by the construction of X and ν1, ν2, . . . , νm that the only vectors ν such
that uTi A

lν = 0 for all l ≥ 0 and 1 ≤ i ≤ k must then be F-linear combinations of ν1, ν2, . . . , νm.
Since (AT )jui is a column of X for 1 ≤ i ≤ k and 0 ≤ j ≤ di − 1, it is also clear that

uTi A
jνl =

(
νTl (AT )jui

)
= 0 for 0 ≤ j ≤ di − 1, (18)

for 1 ≤ i ≤ k and 1 ≤ l ≤ m. Now if j ≥ di then, since minpol(AT , ui) has degree di, (AT )jui
can be expressed as a linear combination of ui, ATui, . . . , (AT )di−1ui, so that νTl (AT )jui is a lin-
ear combination of νTl ui, ν

T
l A

Tui, . . . , ν
T
l (AT )di−1ui as well. It follows by condition (18) above

that uTi A
jνl =

(
νTl (AT )jui

)
= 0 for j ≥ di as well. Thus the vectors ν1, ν2, . . . , νm satisfy the

orthogonality relations that involve them in equation (16), above.
Finally, suppose ci,j , el ∈ F for 1 ≤ i ≤ k, 0 ≤ j ≤ di − 1, and 1 ≤ l ≤ m such that

k∑
i=1

di−1∑
j=0

ci,j
(
Ajvi

)
+

m∑
l=1

elνl = 0. (19)

Then, if 1 ≤ i ≤ k, then it follows by the choice of u1, u2, . . . , uk and ν1, ν2, . . . , νm that if 1 ≤ h ≤ k,
h 6= i, and r ≥ 0, then

uTi A
r

dh−1∑
j=0

ch,j
(
Ajvh

) =
dh−1∑
j=0

ch,j
(
uTi A

j+rvh
)

=
dh−1∑
j=0

ch,j · 0 = 0,

and that
uTi A

relνl = elu
T
i A

rνl = el · 0 = 0

for 1 ≤ l ≤ m as well. Since

uTi A
r

 k∑
h=1

dh−1∑
j=0

ch,j
(
Ajvh

)
+

m∑
l=1

elνl

 = 0

by equation (19), above, it follows that

uTi A
r

di−1∑
j=0

ci,j
(
Ajvi

) =
di−1∑
j=0

ci,j
(
uTi A

j+rvi
)

= 0
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too, for all r. Now, since the minimum polynomial of the sequence

uTi vi, u
T
i Avi, u

T
i A

2vi . . .

has degree di, this implies that

ci,0 = ci,1 = · · · = ci,di−1 = 0.

Since this holds for all i, it now follows by equation (19) that

m∑
l=1

elνl = 0

as well, so that e1 = e2 = · · · = em = 0, by the linear independence of ν1, ν2, . . . , νm. Therefore
equation (19) is only satisfied when ci,j = el = 0 for all i, j and l, so that

v1, Av1, . . . , A
d1−1v1, . . . , vk, Avk, . . . , A

dk−1vk, ν1, ν2, . . . , νm

are linearly independent as required. At this point, all the properties claimed for the vectors
ν1, ν2, . . . , νm have been proved.

The same argument, applied to Y instead ofX, establishes the existence of vectors µ1, µ2, . . . , µm
with the needed properties as well, and completes the proof.

Suppose next that the polynomials f1, f2, . . . , fk and the vectors u1, u2, . . . , uk, v1, v2, . . . , vk,
µ1, µ2, . . . , µm and ν1, ν2, . . . , νm satisfy the conditions given in the previous lemma. Set X̂, Ŷ ∈
Fn×n to be matrices with columns

u1, A
Tu1, . . . , (AT )d1−1u1, . . . , uk, A

Tuk, . . . , (AT )dk−1uk, µ1, µ2, . . . , µm

and
v1, Av1, . . . , A

d1−1v1, . . . , vk, Avk, . . . , A
dk−1vk, ν1, ν2, . . . , νm

respectively. Then X̂ and Ŷ are both nonsingular, since the columns of each form a basis for Fn×1,
and the orthogonality relations included in the lemma imply that

X̂T Ŷ =


H1 0

H2

. . .
Hk

0 Ck

 (20)

where Hi ∈ Fdi×di is the nonsingular Hankel matrix shown in equation (17), above, and where

Ck =
[
µ1 µ2 . . . µm

]T · [ν1 ν2 . . . νm
]
∈ Fm×m.

Since X̂ and Ŷ are nonsingular, X̂T Ŷ and Ck must clearly be nonsingular as well. The orthogonality
relations also imply that

X̂TAY =


A1 0

A2

. . .
Ak

0 Âk

 ,
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for matrices

Ai =
[
ui ATui . . . (AT )di−1ui

]T ·A · [vi Avi . . . Adi−1vi
]
∈ Fdi×di

for 1 ≤ i ≤ k, and for

Âk =
[
µ1 µ2 . . . µm

]T ·A · [ν1 ν2 . . . νm
]
∈ Fm×m.

Now, equation (20) implies that
H−1

1 0
H−1

2
. . .

H−1
k

0 C−1
k

 · X̂T = Ŷ −1,

so that

Ŷ −1AŶ =


H−1

1 0
H−1

2
. . .

H−1
k

0 C−1
k


(
X̂TAŶ

)

=


H−1

1 A1 0
H−1

2 A2

. . .
H−1
k Ak

0 C−1
k Âk



=


Cf1 0

Cf2

. . .
Cfk

0 C−1
k Âk

 ,

noting that H−1
i Ai = Cfi for 1 ≤ i ≤ k by inspection of the first n−m columns of Ŷ and using the

fact that minpol(A, vi) = fi for all i.
In this case, if f1, f2, . . . , fk are the first k invariant factors of A then the second half of

Lemma 3.7 implies that fk(C−1
k Âk) = 0, so that the first half of the lemma implies that the

remaining invariant factors of A are the invariant factors of C−1
k Âk. In particular, the minimum

polynomial of C−1
k Âk is the k + 1st invariant factor fk+1 of A.

Equation (20) and the above expression for Ŷ −1AŶ can be used to establish that

X̂−1AT X̂ =


(H1Cf1H

−1
1 )T 0

(H2Cf2H
−1
2 )T

. . .
(HkCfkH

−1
k )T

0 (ÂkC−1
k )T
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and, since AT has the same invariant factors as A, that the minimum polynomial of (ÂkC−1
k )T is

the k + 1st invariant factor of A as well.

Theorem 3.9. Let A ∈ Fn×n, let k ≥ 0, and suppose A has at least k nontrivial invariant factors.
Let f1, f2, . . . , fk ∈ F[x] be the first k invariant factors of A. Let u1, u2, . . . , uk, v1, v2, . . . , vk ∈ Fn×1

be vectors such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for 1 ≤ i ≤ k, and
uTi A

lvj = 0

for every integer l ≥ 0 whenever 1 ≤ i, j ≤ k and i 6= j. Let

Uk+1 = {u ∈ Fn×1 |uTAlvj = 0 for l ≥ 0 and 1 ≤ j ≤ k}

and let
Vk+1 = {v ∈ Fn×1 |uTj Alv = 0 for l ≥ 0 and 1 ≤ j ≤ k}.

Then

(a) If A has exactly k invariant factors then Uk+1 = Vk+1 = (0).

(b) Otherwise, Uk+1 and Vk+1 are A-complementary subspaces such that

minpol(AT , Uk+1) = minpol(UTk+1, A, Vk+1) = minpol(A, Vk+1)

is the k + 1st invariant factor of A.

Proof. If A has at most k nontrivial invariant factors then the union of bases for the spaces
K

(L)
u1,v1 ,K

(L)
u2,v2 , . . . ,K

(L)
uk,vk form a basis for A and, since an arbitrary element v of Vk+1 is orthog-

onal to each of the elements of this basis, v = 0 and Vk+1 = (0). A similar argument (in which
K

(R)
u1,v1 ,K

(R)
u2,v2 , . . . ,K

(R)
uk,vk are considered, instead) establishes that Uk+1 = (0) in this case as well.

Otherwise, it is clear by their definitions that Uk+1 is AT -invariant and Vk+1 is A-invariant.
Let di be the degree of fi for 1 ≤ i ≤ k, let m = n −

∑k
i=1 di, and note that the last m columns

of the matrix Ŷ , discussed earlier in this section, form a basis for Vk+1. The above argument (in
particular, the expression given above for Ŷ −1AŶ and the derivation of the minimum polynomial
of C−1

k Âk) implies that
minpol(A, Vk+1) = fk+1

is the k + 1st invariant factor of A, for it establishes both that minpol(A, v) is divisible by this
polynomial for every element v of Vk+1 and that minpol(A, vk+1) is equal to this polynomial for at
least one element vk+1 of Vk+1.

Since AT has the same invariant factors as A, a similar argument (using the above expression
for X̂−1AT X̂) establishes that minpol(AT , Uk+1) = fk+1 as well.

Finally, let vk+1 ∈ Vk+1 be as above, and let u ∈ Fn×1 be a vector such that

minpol(uT , A, vk+1) = minpol(A, vk+1) = fk+1.

Lemma 3.8 implies that the union of bases for K(L)
u1,v1 ,K

(L)
u2,v2 , . . . ,K

(L)
uk,vk and for Uk+1 forms a basis

for Fn×1, so that there exist vectors w1 ∈ K(L)
u1,v1 , w2 ∈ K(L)

u2,v2 , . . . , wk ∈ K
(L)
uk,vk and uk+1 ∈ Uk+1

such that u = w1 + w2 + · · ·+ wk + uk+1. Since the definition of Vk+1 implies that wTi A
lvk+1 = 0
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for every integer l ≥ 0 and for 1 ≤ i ≤ k, it follows that uTAlvk+1 = uTk+1A
lvk+1 for every integer

l ≥ 0, so that
minpol(uTk+1, A, vk+1) = minpol(uT , A, vk+1) = fk+1.

Now, since the polynomial minpol(UTk+1, A, Vk+1) is both divisible by minpol(uTk+1, A, vk+1) and a
divisor of minpol(A, Vk+1), it follows that

minpol(UTk+1, A, Vk+1) = fk+1

as well, as required to establish that Uk+1 and Vk+1 are A-complementary and to complete the
proof.

4 Algorithms for the Frobenius Form

Three versions of an algorithm for the Frobenius form of a matrix that use the techniques from the
previous sections will be an introduced: Algorithms for computations over small fields and large
fields that can be used to establish interesting results when implemented with standard arithmetic,
and, finally, a version improving the known bound on the asymptotic complexity of the problem in
the small field case.

All versions of the algorithm will receive or manipulate the following information.

• A ∈ Fn×n is, of course, in the input matrix.

• k is a nonnegative integer less than or equal to the number of nontrivial invariant factors
of A.

• fi ∈ F[x] is a monic polynomial, for 1 ≤ i ≤ k, such that fi+1 divides fi for 1 ≤ i ≤ k − 1.

• di = deg(fi) for 1 ≤ i ≤ k.

• d = d1 + d2 + · · ·+ dk.

• ui, vi ∈ Fn×1 are vectors such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for 1 ≤ i ≤ k and, furthermore, such that

uTi A
lvj = 0

for all l ≥ 0 and all integers i, j such that 1 ≤ i, j ≤ k and i 6= j.

• ui,1, ui,2, . . . , ui,di ∈ K
(L)
ui,vi and vi,1, vi,2, . . . , vi,di ∈ K

(R)
ui,vi are dual bases for A, ui and vi, for

1 ≤ i ≤ k (see Section 2.1 and, in particular, Definition 2.3 for a discussion of “dual bases”).

• The values si,j = uTi,jvi,j for 1 ≤ j ≤ di and 1 ≤ i ≤ k. Note that Definition 2.3 and the above
descriptions of ui,j and vi,j imply that si,j 6= 0.

It will also be necessary for these algorithms to select values from the vector spaces

U(k+1) = {u ∈ Fn×1 |uTAlvj = 0 for l ≥ 0 and 1 ≤ j ≤ k}
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function randU-small()

begin function

Choose a vector û uniformly and randomly from Fn×1

return û−
k∑
i=1

di∑
j=1

ûT vi,j
si,j

ui,j

end function

function randV-small()

begin function

Choose a vector v̂ uniformly and randomly from Fn×1

return v̂ −
k∑
i=1

di∑
j=1

uTi,j v̂

si,j
vi,j

end function

Figure 5: Functions randU-small and randV-small

and
V(k+1) = {v ∈ Fn×1 |uTj Alv = 0 for l ≥ 0 and 1 ≤ j ≤ k}.

It follows by the definition of vi,j (respectively, ui,j) that U(k+1) is the set of vectors that are
orthogonal to vi,j for 1 ≤ i ≤ k and 1 ≤ j ≤ di, and that V(k+1) is the set of vectors that are
orthogonal to ui,j for 1 ≤ i ≤ k and 1 ≤ j ≤ di.

Each algorithm will repeatedly apply the function minpolspace from Section 3.1 with input
vectors chosen from U(k+1) and V(k+1) to either increment k and extend the above sequences of
values or, in the first and last versions of the algorithm, improve the values that have been generated
already.

Each algorithm will terminate when d = n. At this point, it will follow by a straightforward
argument that f1, f2, . . . , fk are the invariant factors of A. It is clear that the matrix V ∈ Fn×n with
columns v1, Av1, . . . , A

d1−1v1, . . . , vk, Avk, . . . , A
dk−1vk is a Frobenius transition matrix for A. Thus

a Frobenius transition matrix for A can also be computed, after applying any of the algorithms
described here, using at most n− 1 additional matrix-vector products by the matrix A.

4.1 An Algorithm for Computations over Small Fields

Suppose F is a finite field; then the functions randU-small and randV-small, shown in Figure 5, will
be used to uniformly select elements of the above spaces U(k+1) and V(k+1).

Lemma 4.1. Functions randU-small and randV-small generate uniformly and randomly selected
elements of the subspaces U(k+1) and V(k+1) respectively. Each function chooses O(n) elements
uniformly and independently from F and performs O(n2) additional operations over F.

Proof. Since inner products are linear operators, it is clear by inspection of the code that function
randU-small generates a uniformly and randomly selected F-linear combination of the elements of a
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spanning set for U(k+1), namely, the elements

eh −
k∑
i=1

di∑
j−1

eTh vi,j
si,j

ui,j ,

where eh is the hth unit vector (whose hth entry is one and whose other entries are zero), for
1 ≤ h ≤ n. Thus the function returns a uniformly and randomly selected element of U(k+1), as
claimed. The correctness of randV-small follows by the same argument.

The claimed complexity bounds follow by a inspection of the code, using the fact that d =∑k
i=1 di ≤ n.

The function frobenius-small shown in Figure 6 can be used to find the Frobenius form of a given
matrix A ∈ Fn×n with entries in a finite field F. The algorithm maintains the data described at
the beginning of Section 4. While d < n, sequences of vectors û1, û2, . . . , ûl and v̂1, v̂2, . . . , v̂l are
accumulated, to serve as inputs for minpolspace (in lines 3–12), and an upper bound “bnd” on the
degree of

lcm
(

lcm
1≤i≤l

minpol(AT , ûi), lcm
1≤i≤l

minpol(A, v̂i)
)

is obtained — namely, the degree of the last polynomial fj found (and maintained) by the algorithm
such that fj(AT )ûi = fj(A)v̂i = 0 for 1 ≤ i ≤ l, or n if no such polynomial exists. The variable
“dropped” is used to keep track of whether any of the guessed invariant factors of A have been
discarded, and is used to decide whether the output of minpolspace should be used to improve an
existing guess or add a new polynomial to the sequence (in lines 13–18).

Theorem 4.2. Suppose F is a finite field and A ∈ Fn×n.
Function frobenius-small terminates with probability one, on input A, and returns the num-

ber k of invariant factors of A, the invariant factors f1, f2, . . . , fk, and vectors u1, u2, . . . , uk and
v1, v2, . . . , vk such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for 1 ≤ i ≤ k, and such that uTi A
lvj = 0 for all l ≥ 0 whenever 1 ≤ i, j ≤ k and i 6= j.

The expected number of matrix-vector products (using the matrices A or AT ) used by this algo-
rithm is in O(n), and the expected number of additional operations over F used by the algorithm is
in O(kn2) ⊆ O(n3), if A has k nontrivial invariant factors.

Proof. The algorithm begins with an empty sequence of guessed invariant factors and associated
vectors. An inspection of the code, and the functions shown in Figures 1–4, confirms that at
the end of each execution of the outer loop, a set of monic polynomials f1, f2, . . . , fk and vectors
u1, u2, . . . , uk and v1, v2, . . . , vk have been generated such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for 1 ≤ i ≤ k, fi is divisible by fi+1 for 1 ≤ i ≤ k − 1, and, furthermore, such that uTi A
lvj = 0

for 1 ≤ i, j ≤ k, i 6= j, and for all l ≥ 0 — for the function minpolspace is guaranteed to return a
polynomial that is divisible by the least common multiple of the minimum polynomials of its input
vectors, which ensures that the divisibility relationship for the polynomials is maintained, and the
input vectors are selected from A-invariant (and AT -invariant) subspaces that are orthogonal to the
vectors that have been generated so far. If the algorithm terminates then it does so when the sum

35



function frobenius-small(A)

begin function

1. k := 0; d := 0
2. while d < n do

3. if k > 0 then bnd := dk else bnd := n end if

4. l := 0; dropped := false

5. while l < trialbound(bnd) do

6. l := l + 1
7. ûl := randU-small(); v̂l := randV-small()
8. while k > 0 and (fk(AT )ûl 6= 0 or fk(A)v̂l 6= 0) do

9. dropped := true; d := d− dk; k := k − 1
10. if k > 0 then bnd := dk else bnd := n end if

11. end while

12. end while

13. if dropped then

14. uk+1, vk1 , fk+1 := mergev(A, uk+1, vk+1, fk+1,
minpolspace(A; bnd ; û1, û2, . . . , ûl; v̂1, v̂2, . . . , v̂l))

15. else

16. uk+1, vk+1, fk+1 := minpolspace(A; bnd ; û1, û2, . . . , ûl; v̂1, v̂2, . . . , v̂l)
17. end if

18. dk+1 := deg(fk+1); d := d+ dk+1;
19. uk+1,1, uk+1,2, . . . , uk+1,dk+1

; vk+1,1, vk+1,2, . . . , vk+1,dk+1
:=

dualbasis(uTk+1, A, vk+1, dk+1)

20. for i := 1 . . . dk+1 do sk+1,j := uTk+1,jvk+1,j end for

21. k := k + 1
22. end while

23. return k; f1, f2, . . . , fk; u1, u2, . . . , uk; v1, v2, . . . , vk

end function

Figure 6: Function frobenius-small

of the degrees of the polynomials in the sequence equals n, at which point it follows by Lemma 3.8
that (for di = deg(fi)) the vectors

v1, Av1, . . . , A
d1−1, v2, Av2, . . . , A

d2−1, . . . , vk, Avk, . . . , A
dk−1

are linearly independent and (since there are n of them), form a basis for Fn×1. Now, if Y ∈ Fn×n is
the nonsingular matrix with these entries as columns then clearly Y −1AY is a matrix in Frobenius
form with invariant factors f1, f2, . . . , fk, so A has these invariant factors as well.

In order to prove the claims about the complexity of the algorithm it helps to think of the
algorithm as proceeding in k stages, where the ith stage (for 1 ≤ i ≤ k) is used to discover the ith
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function randU-large()

begin function

Choose the entries of a vector û ∈ Fn×1 uniformly and independently from S

return û−
k∑
i=1

di∑
j=1

ûT vi,j
si,j

ui,j

end function

function randV-large()

begin function

Choose the entries of a vector v̂ ∈ Fn×1 uniformly and independently from S

return v̂ −
k∑
i=1

di∑
j=1

uTi,j v̂

si,j
vi,j

end function

Figure 7: Functions randU-large and randV-large

invariant factor after the i−1st has been obtained. As argued in Section 3, the expected number of
applications of minpolspace in each phase is bounded by a constant (see, in particular, Theorem 3.4)
and, furthermore, that the sum of the expected costs of all these applications has the complexity
suggested by Theorem 3.4 (see Note 3.6). It can be argued that the number of executions of each
line of the algorithm between line 4 and line 21 during the ith phase is bounded by a constant
multiple of the number of executions of minpolspace as well (note, for example, that line 9 removes
a polynomial generated by a call to minpolspace from the output sequence, so this line cannot be
executed more times than minpolspace is called). The complexity bounds that have been established
already for the functions minpolspace, mergev and dualbasis can now been used to argue that the
expected number of matrix-vector products in the first stage is in O(n), the expected number of
additional operations in the first stage is in O(n2), the expected number of matrix-vector products
in the ith stage is in O(di−1) for 2 ≤ i ≤ k, and that the expected number of additional operations
in this stage is in O(n2). The complexity bounds now follow by linearity of expectations.

4.2 An Algorithm for Computations over Infinite Fields

Suppose now that F is an infinite field, let A ∈ Fn×n, let ε > 0, and let S be a finite subset of F
including at least dn/4εe distinct elements. In this case the functions randU-large and randV-large,
shown in Figure 7, can be used to select entries from the subspaces Uk+1 and Vk+1 in a sufficiently
“random” way for the Frobenius form of A to be computed efficiently.

The proof that these functions return values as described in the next claim is, essentially,
identical to that of Lemma 4.1; the spanning set mentioned in the lemma is the same as the one
used in that lemma. A proof of the complexity bound stated here is completely straightforward.

Lemma 4.3. Functions randU-large and randV-large return uniformly and randomly selected S-
linear combinations of spanning sets for the subspaces Uk+1 and Vk+1, respectively. Each function
chooses n elements uniformly and independently from S, and performs at most 4n2 additional
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operations over F.

As explained in Section 3, since Uk+1 and Vk+1 are A-complementary, if u and v are uniformly,
randomly and independently selected S-linear combinations of spanning sets of Uk+1 and Vk+1

respectively, then the probability that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = minpol(UTk+1, A, Vk+1)

is at least 1− 2l
|S| , where l = deg(minpol(UTk+1, A, Vk+1)).

One final observation about the Lanczos process (as described by Lambert [17]) can now be
stated and used to good effect. This improves the complexity bounds stated in Facts 2.2 and 2.5
for the special case suggested above.

Fact 4.4. Let A ∈ Fn×n and let u, v ∈ Fn×1. If

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) (21)

then it is possible to compute the coefficients and degree d of minpol(uT , A, v) and dual bases for A,
u and v, deterministically, by computing the product of A and d vectors, AT and d vectors, and
performing O(dn) operations over F. On the other hand, if condition (21) is not satisfied, then this
can be detected deterministically at the same cost.

Proof. The above condition can be checked and values computed using a slightly modified version
of Algorithm 3.5.1 of Lambert [17], in which one uses the vectors u and v as the input vectors
ucurr and vcurr required by the algorithm, and in which one sets b = 0. It is necessary to add two
additional comparisons — namely, to compare ucurr to vcurr whenever it is discovered that one of
these equals zero, to check whether condition (21) is satisfied. However, since b = 0 and the vectors
y and z are only used by this algorithm to try to generate a vector z such that Az = b, it is also
possible to reduce the cost of the computation by eliminating all statements involving either of
these vectors.

The above complexity bounds now follow, for the case that condition (21) is satisfied, by a
straightforward (and, conservative) analysis of the cost of the resulting algorithm. The bound can
be achieved for the remaining case by keeping track of the number of operations used and reporting
failure if this bound is reached before the algorithm would otherwise terminate.

A more careful inspection of Lambert’s Algorithm 3.5.1 suggests that at most 20dn+5d2 +O(n)
additional operations over F will be used. However, the less precise bound stated above will be
sufficient.

Henceforth it will be assumed that a function fast-minpol-and-dual-basis(A, u, v) returns the
values mentioned in the above lemma if condition (21) is satisfied, reports failure if the condition
is not satisfied, and can be implemented using a deterministic algorithm with the above complexity.

The function frobenius-large shown in Figure 8 can be used to find the Frobenius form of a given
matrix A ∈ Fn×n with entries in an infinite field F.

Theorem 4.5. Suppose F is an infinite field, A ∈ Fn×n, ε > 0, and that S is a finite subset of F
including at least 2n/ε distinct elements.

If the function frobenius-large is invoked on input A and chooses field elements uniformly and
independently from S, then the function returns the number k of invariant factors of A, the invariant
factors f1, f2, . . . , fk, and vectors u1, u2, . . . , uk and v1, v2, . . . , vk such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi
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function frobenius-large(A)

begin function

k := 0; d := 0
while d < n do

k := k + 1
uk := randU-large(); vk := randV-large()
Apply fast-minpol-and-dual-basis(A, uk, vk), either to confirm that

minpol(AT , uk) = minpol(uTk , A, vk) = minpol(A, vk)

and to generate fk = minpol(uTk , A, vk), dk = deg(fk), and dual bases
uk,1, uk,2, . . . , uk,dk and vk,1, vk,2, . . . , vk,dk for A, uk and vk, or to report
failure. Terminate the computation and report failure if failure is
reported in this step.
if k > 1 and fk does not divide fk−1 then

report failure (and terminate the computation)
else

d := d + dk

end if

end while

return k; f1, f2, . . . , fk; u1, u2, . . . , uk; v1, v2, . . . , vk

end function

Figure 8: Function frobenius-large

for 1 ≤ i ≤ k, and such that uTi A
lvj = 0 whenever 1 ≤ i, j ≤ k, i 6= j, and l ≥ 0, with probability

at least 1− ε (and reports failure, otherwise).
If A has k nontrivial invariant factors then the function can be implemented to use at most

n multiplications of A by vectors, at most n multiplications of AT by vectors, and at most 8kn2 +
O(n2) additional operations over F.

Proof. Suppose A has nontrivial invariant factors f1, f2, . . . , fk ∈ F[x] with degrees d1, d2, . . . , dk
respectively, so that di is positive for all i and

∑k
i=1 di = n. Suppose, furthermore, that the first i−1

of these invariant factors have been computed correctly, where 1 ≤ i ≤ k.
Then, as noted in Section 3.1, a trivial modification of the argument given by Kaltofen and

Pan [14] to prove their Lemmas 1 and 2 can be used to establish that the likelihood that the
attempt to compute fi fails is at most 2di

|S| . Therefore, the probability that the algorithm fails at

all can be bounded by
∑k

i=1 2di/|S| = 2n/|S| ≤ (2n)/(2n/ε) = ε, as claimed.
The claimed complexity bounds follow immediately from Lemma 4.3, Fact 4.4, and the obser-

vation that it is possible to check whether the ith guessed invariant factor fi divides the i − 1st

invariant factor fi−1 using O(deg(fi−1)2) operations over F, so that the total cost of arithmetic
used by the algorithm, excluding that needed for invocations of randU-large, randV-large, or fast-
minpol-and-dual-basis, is in O(n2).
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Once again, a more careful count of the number of operations used could be made after a closer
inspection of Lambert’s algorithm. This suggests that 8kn2 +27n2 +23kn+O(n) operations suffice.
As noted at the beginning of Section 4, a Frobenius transition matrix can be computed cheaply
from this algorithm’s output, so that 2n multiplications of A by vectors, n multiplications of AT by
vectors, and 8kn2 + 27n2 + 23kn+O(n) operations over F are sufficient to compute the Frobenius
form and a Frobenius transition matrix for A, if F is sufficiently large.

4.3 An Asymptotically Fast Algorithm

Suppose now that F is an arbitrary field. An asymptotically fast version of the algorithm, such that
the expected number of operations over F used by the algorithm is in O(MM(n) logn), under the
common assumption that MM(n) ∈ Ω(n2+ε) for a constant ε > 0, will be presented next. This
matches the asymptotic complexity bound established by Giesbrecht [12] for the large field case,
and improves the known bounds for the case that F is small.

Organization of Data. Following a preprocessing stage, the algorithm will attempt to accu-
mulate vectors whose Krylov spaces correspond to the blocks in the Frobenius form of the given
matrix, and to generate dual bases for these spaces, like the previous algorithms — the data to be
manipulated is as described at the beginning of Section 4.

However, it will be useful during the execution of the new algorithm to distinguish between
those candidate invariant factors fi, vectors ui and vi, and dual bases that were generated before
the last Θ(log n) attempts to discover an invariant factor, and those invariant factors, vectors, and
dual bases that have been generated more recently. We will say that the former invariant factors
and associated data are committed. The latter are uncommitted, until it is discovered that all
invariant factors have been computed. In order to decide which data are committed, the algorithm
will keep track of the number time of attempts to discover an invariant factor that have been made
so far, and will associate a “time stamp” time stampi with each uncommitted invariant factor fi,
that is set at the time of the first attempt to compute this factor. The invariant factor fi will
become committed when time − time stampi ≥ 2 log n.

As usual the algorithm will keep track of the sum d of the degrees of all invariant factors that
have been discovered. The algorithm can terminate, with success, as soon as d = n, so all invariant
factors will become “committed” once this condition is attained.

The algorithm will terminate, and fail, at any point when it is discovered that a committed
invariant factor is incorrect. It will be shown below that the probability of failure is at most 1/n.

In order to allow block matrix operations to be performed, it will be useful to maintain additional
data as well: Recall that the algorithms described in this section all compute vectors ui, vi ∈ Fn×1

such that
minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for each invariant factor fi; the asymptotically fast algorithm to be described will also compute
and use the vectors (AT )jui and Ajvi, for 1 ≤ j < deg(fi).

Finally, additional data will be maintained in order to ensure that “random” vectors from
various subspaces are always available. This data will be described as the algorithm is given in
more detail.

Outline of Algorithm. The algorithm begins with a preprocessing stage, “Stage 0,” in which
the matrix powers A(2i) are computed, for 1 ≤ i ≤ blog2 nc. These matrix powers will be maintained
and used in the rest of the algorithm.
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In the next stage, “Stage 1,” all invariant factors f with degree greater than or equal to n/ log n
are computed and become committed.

The algorithm continues with at most log(n/ log n) = log n− log log n additional stages, called
“Stage i+ 1,” for i = 1, 2, . . . , dlog n− log log ne. By the end of Stage i+ 1, all invariant factors f
with degree greater than or equal to n/(2i log n) are computed and become committed.

For i ≥ 1, Stage i ends when either it is discovered that the sum d of the degrees of all known
invariant factors equals n (in which case, the algorithm terminates successfully), failure is detected
(because a “committed” invariant factor is discovered to be incorrect, in which case, the algorithm
terminates unsuccessfully), or an invariant factor f with degree less than n/(2i−1 log n) becomes
committed, in which case the algorithm proceeds to Stage i+ 1.

Preprocessing and its Effects. As noted above, the algorithm will begin in Stage 0 by com-
puting A(2i) for 1 ≤ i ≤ dlog2 ne. This processing step can clearly be implemented at cost
O(MM(n) logn).

Since
A(2i)

[
w|Aw| . . . |A2i−1w

]
=
[
A(2i)w|A2i+1w| . . . |A2i+1−1w

]
,

it is easily seen that the vectors Aw,A2w, . . . , Anw can be computed from the above powers of A
and from a given vector w using O(MM(n)) operations, if MM(n) ∈ Ω(n2+ε) for ε > 0 —
see Borodin and Munro [5], page 128, or Keller-Gehrig [16]. Furthermore, if 0 ≤ h ≤ log n and
w1, w2, . . . , w2h ∈ Fn×1, then it is also possible to compute the matrix-vector products Ajwi for
0 ≤ j ≤ dn/2he and 1 ≤ i ≤ 2h at this cost. Clearly, since (AT )(2i) = (A(2i))T , one could also
compute matrix-vector products (AT )jwi for 0 ≤ j ≤ dn/2he and 1 ≤ i ≤ 2h at this cost, as well.

When these matrix powers and vectors are available, several of the computations that have
previously discussed can be performed more efficiently, as summarized below.

Evaluation of f(A)w or f(AT )w for f ∈ F[x]. Clearly, if the coefficients of a polynomial f ∈
F[x] with degree less than k are available, as well as the matrix-vector products Ajw (respectively,
(AT )jw) for 0 ≤ j < k, then f(A)w (respectively, f(AT )w) can be computed using O(kn) operations
over F.

Computation of the Minimum Polynomial of a Sequence. Given A, u, v, an upper
bound k on the degree of minpol(uT , A, v), and the matrix-vector products ATu, (AT )2u, . . . , (AT )ku
and Av,A2v, . . . , Akv, one can compute the sequence

uT v, uTAv, uTA2v, . . . , uTA2k−1v

by computing 2k inner products of vectors, and then apply the Berlekamp-Massey algorithm to
generate the coefficients of minpol(uT , A, v), using O(kn) operations over F (cf. Fact 2.2).

Computation of a Dual Basis. It will be necessary (and sufficient) to compute dual bases
for a matrix A and vectors u and v in the special case that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v)

and this polynomial (and its degree, k) is known. Assuming that ATu, (AT )2u, . . . , (AT )k−1u and
Av,A2v, . . . , Ak−1v are also available, let U ∈ Fk×n be the matrix with rows

uT , uTA = ((AT )u)T , uTA2 = ((AT )2u)T , . . . , uTAk−1 = ((AT )k−1u)T ,
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and let V ∈ Fn×k be the matrix with columns

v,Av, A2v, . . . , Ak−1v.

Then the matrix Tv = UV ∈ Fk×k is nonsingular and can be computed from the above values
using O(nkMM(k)) operations over F. Its inverse, T−1

v , can then be computed using O(MM(k))
operations. Finally, since T−1

v UV is the identity matrix of order k, the columns of the matrices
(T−1
k U)T ∈ Fn×k and V ∈ Fn×k form dual bases for A, u and k, that can be computed from the

given values using O(nkMM(k)) operations over F.

Computation of the Minimum Polynomial of a Vector. As noted in Section 2.2, the
minimum polynomial minpol(A, v) of a matrix A and vector v can be computed, with high probabil-
ity, as the least common multiple of a constant number of minimum polynomials minpol(uTi , A, v)
of sequences, for independently selected vectors u1, u2, . . . . It follows that if minpol(A, v) has de-
gree at most k, and both the vectors Av,A2v, . . . , Ak−1v and ATui, (AT )2ui, . . . , (AT )k−1ui have
been precomputed for sufficiently many vectors ui, a Las Vegas algorithm can be used to com-
pute minpol(A, v) using O(kn) operations over F, with the algorithm always generating a factor
of minpol(A, v) and correctly generating minpol(A, v) with probability at least one-half. If indepen-
dent trials of this algorithm are performed and the least common multiple of the output polynomials
is maintained, then it is clear that the expected number of operations that are performed, before
minpol(A, v) is obtained, is in O(kn) as well.

Computation of the Minimum Polynomial of a Subspace. Now consider the problem
of computing the minimum polynomial of a subspace, as discussed in Sections 2.3 and 3.1. Suppose,
in particular, that U and V are A-complementary subspaces and that we wish to compute f =
minpol(UT , A, V ), d = deg(f), vectors u ∈ U and v ∈ V such that

minpol(AT , u) = minpol(uT , A, v) = minpol(A, v) = f,

and the sequences of vectors

u,ATu, (AT )2u, . . . , (AT )d−1u and v,Av,A2v, . . . , Ad−1v.

These values can be generated using a version of the process described in Section 3.1 that uses
asymptotically fast matrix arithmetic and that takes advantage of the precomputed matrix-vector
products described above. The following lemma will be of use in describing and analyzing asymp-
totically fast variants of these algorithms.

Lemma 4.6. Let A ∈ Fn×n, v ∈ Fn×1, and suppose f = minpol(A, v) and k = deg(f). Given a
polynomial g ∈ F[x] with degree less than k, and given A, v, f , k and the sequence of vectors

v,Av,A2v, . . . , Ak−1v,

it is possible to compute the sequence of vectors

g(A)v,Ag(A)v,A2g(A)v, . . . , Ak−1g(A)v

using O(nkMM(k)) operations over F.
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Proof. Since the degree of g is less than that of f , the coefficients of g mod f = g are given.
The coefficients of gi+1 mod f can be computed from those of gi mod f using O(k) operations
over F for any nonnegative integer i using standard polynomial arithmetic, so the coefficients of
the polynomials

g mod f, xg mod f, x2g mod f, . . . , xk−1g mod f

can be computed using O(k2) operations with standard polynomial arithmetic.
Now suppose

gi mod f = gi,0 + gi,1x+ · · ·+ gi,k−1x
k−1 ∈ F[x]

where gi,j ∈ F for 0 ≤ i, j ≤ k − 1, and let

Mv =
[
v Av . . . Ak−1v

]
∈ Fn×k and Mg =


g0,0 g1,0 . . . gk−1,0

g0,1 g1,1 . . . gk−1,1
...

...
. . .

...
g0,k−1 g1,k−1 . . . gk−1,k−1

 ∈ Fk×k.

Then the entries of these matrices are available after the above polynomials have been computed
and, since f = minpol(A, v), the matrix MvMg ∈ Fn×k has the desired vectors

g(A)v,Ag(A)v, . . . , Ak−1g(A)v

as its columns. Since this matrix can be computed from Mv and Mg using O(nkMM(k)) operations
over F and k2 ∈ O(nkMM(k)) as well, the desired result now follows.

It can now be established that the desired values can be computed for a given pair of A-
complementary subspaces U and V by considering each of the algorithms given in Section 3.1:
Suppose, once again, that the degree of minpol(UT , A, V ) is at most k. Then, if û ∈ U and v̂ ∈ V
and, furthermore, the vectors

û, AT û, (AT )2û, . . . , (AT )k−1û and v̂, Av̂, A2v̂, . . . , Ak−1v̂

are available, then a version of the function filterv that calls the function filterp and asymptotically
fast versions of minpolseq and minpolvec can be used to generate vectors u ∈ U and v ∈ V with
the properties (and relationship to û and v̂) described in Figure 2 and Lemma 3.2, either using
O(nkMM(k)) operations over F in the worst case and failing with probability less than one-half or,
using independent trials, with an expected complexity as above. By the above lemma, the vectors
u,ATu, (AT )2u, . . . , (AT )k−1u and v,Av,A2v, . . . , Ak−1v could also be computed at this cost. The
function mergev shown in Figure 3 and discussed in Lemma 3.3 can also be extended so that its
outputs include vectors u,ATu, (AT )2u, . . . , (AT )k−1u and v,Av,A2v, . . . , Ak−1v and executed at
this cost. Finally, then, if vectors

ûi, A
T ûi, (AT )2ûi, . . . , (AT )k−1ûi and v̂i, Av̂i, A

2v̂i, . . . , A
k−1v̂i

have been precomputed for a constant number of vectors û1, û2, · · · ∈ U and v̂1, v̂2, · · · ∈ V , then the
function minpolspace shown in Figure 4 and discussed in Theorem 3.4 can be extended to generate
vectors u,ATu, (AT )2u, . . . , (AT )k−1u and v,Av,A2v, . . . , Ak−1v along the vectors u and v, and
either to use the above number of operations in the worst case and fail with probability one-half, or
(using independent trials) to generate correct output after using an expected number of operations
as above.
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Implementation and Cost of Stage 1 Stage 1 can be implemented using the steps shown in
the while-loop in the algorithm for the small field case shown in Figure 6, with the addition of
code needed to maintain the time stamps described at the beginning of this section, and using the
asymptotically fast versions of subroutines that have been described above.

An inspection of the above material will confirm that each attempt to discover a new invariant
factor can be performed at cost O(MM(n)). Since the expected number of attempts needed to
find each factor is bounded by a constant, and there are at most log n invariant factors of any
matrix A ∈ Fn×n with degree greater than or equal to n/ log n, the expected number of operations
that are performed before each of these factors — and the first invariant factor with smaller degree
— has been found is in O(MM(n) logn). The number of attempts that must be performed after
that, before the last of these factors is committed, is at most 2 log n as well, so the total cost of all
operations performed in Stage 1 is in O(MM(n) logn) as needed.

Implementation of Cost of Stage i+ 1 for i ≥ 1 An implementation of Stage i+ 1 will now
be described and analyzed, for i ≥ 1, in order to show that all but one part of this stage can be
implemented correctly using O(MM(n)) operations, and that the total cost needed to execute the
final part for all stages is in O(MM(n) logn). Since there are fewer than log n of these stages, it
will follow that the total cost of the algorithm is in O(MM(n) logn), as promised.

Recall that the purpose of Stage i + 1 is to discover and commit all the invariant factors with
degree at most n/2i log n. Clearly, at most 2i log n such factors exist.

The most significant change in the implementation of this stage concerns the choice of “random”
vectors. In order to make this efficient, vectors will be chosen and processed in blocks of size
2i log n, so that the expected number of blocks whose vectors should be processed before all the
desired invariant factors are found and committed is bounded by a constant.

Orthogonalization of Vectors. Let mi = b2i log nc and let bi = dn/mie. A block of “ran-
dom” vectors will be generated by selecting vectors w1, w2, . . . , wmi and x1, x2, . . . , xmi indepen-
dently and randomly from Fn×n, and then using the dual bases for subspaces corresponding to the
invariant factors found so far to orthogonalize these vectors, as well as vectors of the form (AT )jwh
and Ajxh for 1 ≤ j ≤ bi and 1 ≤ h ≤ mi, with respect to these subspaces.

The next lemma and its corollary are needed to prove that this orthogonalization process is
correct.

Lemma 4.7. Let U and V be A-complementary subspaces of Fn×1 and suppose u1, u2, . . . , um and
v1, v2, . . . , vm are dual bases for A, U , and V . Let v ∈ Fn×1 and let i be a nonnegative integer.
Finally, let

v⊥ = v −
m∑
j=1

uTj v

uTj vj
vj and (Aiv)⊥ = Aiv −

m∑
j=1

uTj (Aiv)

uTj vj
vj .

Then Ai(v⊥) = (Aiv)⊥.

Proof. It is clear by the definition of v⊥ that (since v1, v2, . . . , vm ∈ V )

v − v⊥ =
m∑
j=1

uTj v

uTj vj
vj ∈ V.

Since V is A-invariant, Aiv−Ai(v⊥) = Ai(v−v⊥) ∈ V as well. Since it is also clear by the definition
of (Aiv)⊥ that Aiv − (Aiv)⊥ ∈ V ,

Ai(v⊥)− (Aiv)⊥ =
(
Aiv − (Aiv)⊥

)
−
(
Aiv −Ai(v⊥)

)
∈ V.
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On the other hand, if 1 ≤ k ≤ m then it follows by the definition of v⊥ that

uTk v
⊥ = uTk v − uTk

m∑
j=1

uTj v

uTj vj
vj

= uTk v −
m∑
j=1

uTj v

uTj vj
uTk vj

= uTk v −
uTk v

uTk vk
uTk vk = 0,

since u1, u2, . . . , um and v1, v2, . . . , vm are dual bases for A, U and V . Therefore (again, since
u1, u2, . . . , um is a basis for U) uT v⊥ = 0 for all u ∈ U and, since U is AT -invariant, it follows that
if 1 ≤ k ≤ m then

uTk (Ai(v⊥)) = ((AT )iuk)T v⊥ = 0

as well. It also follows by the definition of (Aiv)⊥ that uTk ((Ai)v)⊥ = 0 and, therefore, that

uTk (Ai(v⊥)− (Aiv)⊥) = uTk (Ai(v⊥))− uTk (Aiv)⊥ = 0

for 1 ≤ k ≤ m. However, Ai(v⊥)− (Aiv)⊥ ∈ V as established above and, since u1, u2, . . . , um and
v1, v2, . . . , vm are dual bases for A, U and V , this implies that Ai(v⊥)−(Aiv)⊥ = 0, as required.

The following corollary follows from the fact that if U and V are A-complementary then V
and U are AT -complementary.

Corollary 4.8. Let U and V be A-complementary subspaces of Fn×1 and suppose u1, u2, . . . , um
and v1, v2, . . . , vm are dual bases for A, U and V . Let u ∈ Fn×1 and let i be a nonnegative integer.
Finally, let

u⊥ = u−
m∑
j=1

uT vj

uTj vj
uj and ((AT )iu)⊥ = (AT )iu−

m∑
j=1

((AT )iu)T vj
uTj vj

uj .

Then (AT )i(u⊥) = ((AT )iu)⊥.

Now, a block of random vectors will be generated from w1, w2, . . . , wmi and x1, x2, . . . , xmi by
using the following steps, after choosing w1, w2, . . . , wmi and x1, x2, . . . , xmi uniformly and indepen-
dently from Fn×n, or uniformly and independently from Sn×n for a sufficiently large finite subset S
of F.

1. Orthogonalize these vectors with respect to vector spaces corresponding to all invariant factors
that are committed before this generation of this block of vectors begins.

2. Orthogonalize vectors (as they are needed) with respect to vector spaces corresponding to all
invariant factors that became committed after the generation of this block of vectors began.

3. Orthogonalize vectors (as they are needed) with respect to vector spaces corresponding to all
uncommitted invariant factors.
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The first two orthogonalization steps can be performed using O(MM(n)) operations per stage,
and the total cost of the third orthogonalization step for all stages is in O(MM(n) logn).

To perform the first step, one should begin by computing the powers (AT )jwh and Ajxh for
1 ≤ j ≤ bi and 1 ≤ h ≤ mi. Let

W =
[
w1 ATw1 . . . (AT )biw1 . . . wmi ATwmi . . . (AT )biwmi

]
∈ Fn×mi(bi+1)

and let
X =

[
x1 Ax1 . . . Abix1 . . . xmi Axmi . . . Abixmi

]
∈ Fn×mi(bi+1).

Furthermore, let kc be the number of committed invariant factors discovered before this orthogo-
nalization process begins and let dc = d1 + d2 + · · · + dkc be the sum of the degrees of all these
committed invariant factors. Let U ∈ Fn×dc and V ∈ Fn×dc be matrices whose columns are vectors
in the bases for the AT -invariant and A-invariant subspaces, respectively, chosen from the dual
bases corresponding the these committed invariant factors. That is,

U =
[
u1,1 u1,2 . . . u1,d1 . . . ukc,1 ukc,2 . . . ukc,dkc

]
and

V =
[
v1,1 v1,2 . . . v1,d1 . . . vkc,1 vkc,2 . . . vkc,dkc

]
.

Then UTV = V TU ∈ Fdc×dc is a nonsingular diagonal matrix, by the construction of these dual
bases. Finally, suppose W and X are modified as follows.

W := W − U · (V TU)−1(V TW ) and X := X − V · (UTV )−1(UTX).

Then it follows by Lemma 4.7 and Corollary 4.8 that, following these operations,

W =
[
w1 ATw1 . . . (AT )biw1 . . . wmi ATwmi . . . (AT )biwmi

]
and

X =
[
x1 Ax1 . . . Abix1 . . . xmi Axmi . . . Abixmi

]
,

where w1, w2, . . . , wmi are now randomly selected vectors from the subspace orthogonal to the vec-
tors v1,1, v1,2, . . . , vkc,dc and x1, x2, . . . , xmi are randomly selected vectors orthogonal to the vectors
u1,1, u1,2, . . . , udc,kc , as desired.

Since mibi < 2n and mi(bi + 1) < 3n, and dc ≤ n, this part of the orthogonalization process
can be executed using O(MM(n)) operations over F, as claimed.

The second part of the orthogonalization process is complicated by the fact that it involves
invariant factors that are uncommitted (and unknown, or likely to change) when the process begins.
This process will be interleaved with the use of the vectors it generates to discover additional
invariant factors.

Let j be an integer between 1 and mi, and set hj and ej to be zero, if no invariant factor
becomes committed immediately after wj and xj are used. Otherwise, let hj be the index of the
invariant factor (“fhj”) that becomes committed at this time, and let ej = dhj , the degree of this
invariant factor.

Set Uj and Vj to be “empty” matrices (with n rows and zero columns) if hj = 0. Otherwise, let

Uj =
[
uhj ,1 uhj ,2 . . . uhj ,ej

]
and Vj =

[
vhj ,1 vhj ,2 . . . vhj ,ej

]
be matrices in Fn×ej have the vectors in the dual bases corresponding to this invariant factor as its
columns.
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procedure orthog new(low , high)

Input: Integers low , high such that 1 ≤ low ≤ high ≤ mi

begin procedure

if low < high then

mid := d(low + high)/2e
orthog new(low , mid − 1)

Wmid ,high := Wmid ,high − Ulow ,mid−1 · (V T
low ,mid−1 · Ulow ,mid−1)−1 · V T

low ,mid−1 ·Wmid ,high

Xmid ,high := Xmid ,high = Vlow ,mid−1 · (UTlow ,mid−1 · Vlow ,mid−1)−1 · UTlow ,mid−1 ·Xmid ,high

orthog new(mid , high)
else

if high < mi then suspend end if

end if

end function

Figure 9: On-the-Fly Orthogonalization for Recently Committed Invariant Factors

For all pairs of integers h and j such that 1 ≤ h ≤ j ≤ mi, let eh,j = eh + eh+1 + · · ·+ ej ,

Uh,j =
[
Uh Uh+1 . . . Uj

]
and Vh,j =

[
Vh Vh+1 . . . Vj

]
so that Uh,j , Vh,j ∈ Fn×eh,j . Similarly, let

Wj =
[
wj ATwj . . . (AT )biwj

]
and Xj =

[
xj Axj . . . Abixj

]
and let

Wh,j =
[
Wh Wh+1 . . . Wj

]
and Xh,j =

[
Xh Xh+1 . . . Xj

]
so that Wh,j , Xh,j ∈ Fn×(j−h+1)(bi+1), W = W1,mi , and X = X1,mi .

Vectors will be orthogonalized with respect to dual bases for newly committed invariant factors
using a process orthog new that is shown in Figure 9. This process will be invoked with inputs 1
and mi, immediately after vectors w1 and x1 have been used to try to discover a new invariant
factor. The code shown in Figure 9 includes a “suspend” operation, which passes control back to a
process that uses a pair of vectors to find a new invariant factor. It is easily proved by induction
on i that each pair of vectors wi and xi will be orthogonalized with respect to all invariant factors
that become committed when w1, x1, w2, x2, . . . , wi−1, xi−1 were used, by the time wi and xi are to
be used themselves, as long the process that generates invariant factors passes control back to the
orthogonalization process (perhaps, by executing a resume operation) after each attempt to find an
invariant factor.

It is easily checked, by inspection of the code, that if T (low , high) is the number of operations
used by this procedure on inputs low and high, then

T (low , high) ≤ T (low ,mid − 1) + T (mid , high)

+ c
n

(high − low + 1)(bi + 1)
MM((high − low + 1)(bi + 1))
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s := l + h

found := false

while s ≥ l − 1 and not found do

Orthogonalize wi, ATwi, . . . , (AT )dswi and xi, Axi, . . . , A
dsxi with respect to the dual

spaces for all uncommitted invariant factors.
if fs(AT )wi = 0 and fs(A)xi = 0 then

found := true; k := ds

else

s := s− 1
end if

end while

Figure 10: Orthogonalization for Uncommitted Invariant Factors

if low < high, for some constant c, and T (low , high) is bounded by a constant if low = high.
Consequently, since mi(bi + 1) ∈ Θ(n), T (1,mi) ∈ Θ(MM(n)), so that this second part of the
orthogonalization process can also be performed at the desired cost.

It remains only to orthogonalize vectors with respect to dual spaces corresponding to uncom-
mitted invariant factors.

Suppose, now, that 1 ≤ j ≤ mi and that uncommitted invariant factors fl, fl+1, . . . , fl+h have
been found just before the vectors wj and xj are to be used. Then h ≤ 2 log n, l ≥ 2 (since at
least one committed invariant factor was found in order to end Stage 1), and it is necessary to
orthogonalize wj and xj with respect to the dual spaces corresponding to these invariant factors.
Recall that, with high probability, most of these polynomials are, indeed, invariant factors of A: For
t ≥ 1, the probability that fl, fl+1, . . . , fl+h+1−t are all invariant factors of A (with fl+h−t possibly
a proper divisor of the next invariant factor, if t > 1) is at least 1− 2−t.

We will complete the orthogonalization process, and find an upper bound k on the degree of
the invariant factor to be computed, at the same time. In particular, this will be performed by
executing the code shown in Figure 10. This process checks whether each of fl+h, fl+h−1, . . . , fl, fl−1

has the next minimum polynomial to be computed as a factor. Either the process succeeds and
sets a value for the upper bound k, or it discovers that a “committed” invariant factor is incorrect.
In the latter case, the algorithm terminates and reports failure.

An amortized analysis can be used to prove the expected number of operations used by this
last part of the orthogonalization process, in total, is in O(MM(n) logn). Since the likelihood
that more than 6t trials are needed to discover any given invariant factor is at most 2−t, one can
obtain a correct asymptotic bound on the expected number of operations used (that is, one will
underestimate this value by at most a constant factor) by assuming that each trial succeeds, so that
a new (correct) invariant factor is discovered on each trial. Now, it suffices to note that the cost
to orthogonalize vectors wi and xi (and needed vectors of the form (AT )hwi and Ahxi for positive
integers h) with respect to the dual spaces corresponding to an uncommitted invariant factor fj
is in O( ndjMM(dj)). Since fj is an uncommitted invariant factor for at most 2 logn trials, the
total cost to orthogonalize vectors with respect to the dual space corresponding to fj , while fj is
an uncommitted invariant factor, is in O(n logn

dj
MM(dj)). Finally, sinceMM(dj)/dj ∈ Ω(dj), the
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expected number of operations to orthogonalize all vectors with respect to all invariant factors can
now be bounded by

O

(
n log n∑

dj
MM(

∑
dj)
)

= O(MM(n) logn),

as required. Thus, the total cost needed to orthogonalize vectors is in O(MM(n) logn).
The algorithm that has been sketched can fail with small probability. Clearly, an algorithm that

never fails, returns the desired values, and terminates with probability zero, can be obtained by
performing independent trials of the above algorithm until a trial is successful. The above analysis
implies the following.

Theorem 4.9. Let A ∈ Fn×n. Then the number k of invariant factors of A, the invariant factors
f1, f2, . . . , fk, and vectors u1, u2, . . . , uk and v1, v2, . . . , vk such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for 1 ≤ i ≤ k and such that uTi A
lvj = 0 whenever 1 ≤ i, j ≤ k, i 6= j, and l ≥ 0, can be computed by

a Las Vegas algorithm that terminates with probability one, using an expected number of operations
in F in O(MM(n) logn).

4.4 Inverting the Frobenius Transition Matrix

Consider again a matrix A ∈ Fn×n and the values generated by the above algorithms, including
the degrees d1, d2, . . . , dk of the nontrivial invariant factors f1, f2, . . . , fk of this matrix, and vectors
u1, u2, . . . , uk and v1, v2, . . . , vk such that

minpol(AT , ui) = minpol(uTi , A, vi) = minpol(A, vi) = fi

for 1 ≤ i ≤ k and such that uTi A
lvj = 0 whenever 1 ≤ i, j ≤ k, i 6= j, and l ≥ 0. As previously

noted, a Frobenius transition matrix V with columns

v1, Av1, . . . , A
d1−1v1, . . . , vk, Avk, . . . , A

dk−1vk

can be computed from these values using at most n− 1 additional multiplications of A by vectors.
Furthermore, a matrix U with columns

u1, A
Tu1, . . . , (AT )d1−1u1, . . . , uk, A

Tuk, . . . , (AT )dk−1uk

can also be computed using at most n − 1 additional multiplications of AT by vectors. The field
elements

uTi vi, u
T
i Avi, . . . , u

T
i A

2di−2vi

can then be computed for all i using O(n2) additional operations, by computing O(n) = O(
∑k

i=1 di)
inner products of vectors.

Now, note once again that

UTV = H =


H1 0

H2

. . .
0 Hk
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where

Hi =


uTi vi uTi Avi . . . uTi A

di−1vi
uTi Avi uTi A

2vi . . . uTi A
divi

...
...

. . .
...

uTi A
di−1vi uTi A

divi . . . uTi A
2di−2vi

 ∈ Fdi×di ,

so that Hi is a nonsingular Hankel matrix for 1 ≤ i ≤ k and H is a nonsingular block diagonal
matrix with Hankel matrices on its blocks.

Clearly, then V −1 = H−1UT . If the field F supports a fast Fourier transform, then the entries
of the matrix V −1 can be computed by solving n block-Hankel systems of linear equations, using
O(n2 log2 n) operations over F — see Brent, Gustavson and Yun [6] for details.

Alternatively, if one simply wishes to solve a single system V x = y for a given vector y, then this
can be accomplished using O(n2) operations over F — the computation of the vector UT y (before
solving the system Hx = UT y) will dominate the cost. One can also obtain a representation of
V −1 as a product of two matrices at the cost of computing H−1. The entries of this matrix can
be generated from H using O(n log2 n) operations if a fast Fourier transform is available, and they
can always be generated using O(n2) operations — see Bini and Pan [4] for a discussion of Hankel
matrix inversion and additional references.

5 Computation of a Rational Jordan Form

It is also known (see, again, Gantmacher [9]) that every matrix A ∈ Fn×n is similar to a block-
diagonal matrix

JA =


Jg1 0

Jg2

. . .
0 Jgl

 (22)

for distinct, monic, irreducible polynomials g1, g2, . . . , gl ∈ F[x], where each block Jgi is block-
diagonal with companion matrices on its blocks:

Jgi =


C
g
ei,1
i

C
g
ei,2
i

. . .
0 C

g
ei,mi
i

 , (23)

where mi > 0 and ei,1 ≥ ei,2 ≥ · · · ≥ ei,mi > 0 for 1 ≤ i ≤ l. The polynomials g1, g2, . . . , gl are
unique (up to the order in which they are listed), and the matrix JA is unique, up to the order
of the diagonal blocks. Every such matrix JA is called a rational Jordan form of A, and every
nonsingular matrix W ∈ Fn×n such that

WAW−1 = JA

is called a Jordan transition matrix for A.
We will now show that a rational Jordan form and a Jordan transition matrix for a matrix

A ∈ Fn×n can be computed efficiently from A, if the field F is finite. Suppose, for the rest of this
section, that the Frobenius form FA, a Frobenius transition matrix V , associated matrix U , and the
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block diagonal matrix H = UTV (with Hankel blocks on the diagonal) described in the previous
section are available.

Let F(n) be the expected number of arithmetic operations over F required, in the worst case,
to factor a polynomial f of degree n in F[x]. If the algorithm of Berlekamp [3] is used, and
F is a finite field of size q, one can take F(n) ∈ O(MM(n) + n2 log q). Asymptotically faster
algorithms also exist; in particular, if one uses the algorithm of Kaltofen and Shoup [15], one can
take F(n) ∈ O(n1.815 log q). See Kalfofen and Shoup [15] as well for additional references concerning
factorization of polynomials over finite fields.

Lemma 5.1. Given a matrix A ∈ Fn×n and the Frobenius form of A, a rational Jordan form of A
can be computed using an expected number of operations over F in O(n2) + F(n).

Proof. The invariant factors f1, f2, . . . , fk of A are available, since the Frobenius form of A has the
companion matrices of these polynomials as its blocks.

It is well known that if the rational Jordan form of A is as given above, in Equations (22)
and (23), then k = max(m1,m2, . . . ,ml) and the jth invariant factor fj of A has factorization

fj = g
e1,j
1 g

e2,j
2 . . . g

el,j
l

in F[x], for 1 ≤ j ≤ k, with el,j = 0 whenever j > ml. Since the rational Jordan form has the
companion matrices of the powers of irreducible polynomials gei,ji on its blocks, for 1 ≤ i ≤ l and
1 ≤ j ≤ mi, a rational Jordan form for A can clearly be written down using O(n2) steps, once the
coefficients of these polynomials are known.

The polynomials g1, g2, . . . , gl and exponents e1,1, e2,1, . . . , el,1 can be computed using an ex-
pected number of operations in O(F(n)) by factoring the minimum polynomial f1 of A. Let di
be the degree of gi for 1 ≤ i ≤ l; then, since d1e1,1 + d2e2,1 + · · · + dlel,1 is the degree of f1 and
is at most n, the polynomials ge1,11 , g

e2,1
2 , . . . , g

el,1
l can clearly be computed using O(n2) operations

over F, using repeated squaring, with standard polynomial arithmetic.
Suppose, now, that 2 ≤ j ≤ k; then, for 1 ≤ i ≤ l,

g
ei,j
i = gcd(gei,j−1

i , fj),

since ei,j ≥ ei,j−1 and gei,ji is the largest power of gi dividing fj . Thus, gei,ji can be computed from
g
ei,j−1

i and fj , with standard polynomial arithmetic, using a number of operations that is linear in
the product of the degree diei,j−1 of gei,j−1

i and the degree of fj . The total number of operations
needed to compute ge1,j1 , g

e2,j
2 , . . . , g

el,j
l from g

e1,j−1

1 , g
e2,j−1

2 , . . . , g
el,j−1

l and fj is therefore at most
linear in the product of the degrees of fj−1 and fj . This is clearly at most linear in the product of n
and fj . Therefore, since the sum of the degrees of f1, f2, . . . , fk is n, the total number of operations
over F required to compute gi,j for 1 ≤ i ≤ l and 2 ≤ j ≤ mi, from g1,1, g2,1, . . . , gl,1, is at most
quadratic in n, as required.

It is also possible to generate both a Jordan transition matrix W for A and its inverse W−1,
each as a product of three matrices: Since JA is similar to A, JA has the same Frobenius form FA
for A. Let V̂ be a Frobenius transition matrix for JA, and let Û be the corresponding matrix that
could also be generated using the algorithms described in earlier sections, so that ÛT V̂ = Ĥ is a
block diagonal matrix with Hankel blocks; then

V AV −1 = V̂ JAV̂
−1 = FA,

so that WAW−1 = JA if W = V̂ −1V = Ĥ−1ÛTV , so that W−1 = V −1V̂ = H−1UT V̂ . A proof of
the following result is now straightforward.
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Theorem 5.2. Let A ∈ Fn×n be a matrix over a field F. The rational Jordan form JA of A, and
matrices U , V , H ′, Û , V̂ , and Ĥ ′ ∈ Fn×n such that W = Ĥ ′ÛTV is a Jordan transition matrix
for A and W−1 = H ′UTV , can be computed at an expected cost of O(n) multiplications of A by
vectors, O(n) multiplications of AT by vectors, and O(kn2 + F(n)) operations over F, where k is
the number of invariant factors of A.

Proof. The Frobenius form of A, a Frobenius transition matrix V , and corresponding matrices U
and H such that UTV = H is block diagonal with Hankel blocks, can all be computed at the above
cost as described in Section 4. As noted in Section 4.4, the matrix H ′ = H−1 can be computed
from H using O(n2) additional operations over F.

Now, a rational Jordan form JA of A can be computed from A and FA at the above cost as
well, by Lemma 5.1.

Since JA is similar to A it also has Frobenius form FA. Since it is block diagonal with companion
matrices as blocks, it has at most 2n nonzero entries, so that either JAx or JTAx can be computed
from JA and a given vector x using O(n) operations over F. It follows that a Frobenius transition
matrix V̂ for JA, and corresponding matrices Û and Ĥ such that ÛT V̂ = Ĥ is also block diagonal
with Hankel blocks, can be computed using O(kn2) operations over F. The matrix Ĥ ′ = Ĥ−1 can
be computed using an additional O(n2) operations. Now W = Ĥ ′ÛTV = Ĥ−1ÛTV is a Jordan
transition matrix for A and W−1 = H ′UT V̂ = H−1UT V̂ as explained above.

Using an asymptotically fast Frobenius form algorithm as given in Section 4.3, and using asymp-
totically fast matrix multiplication to compute the entries of a rational Jordan form (from the three
matrices of which it is a product), one can also establish the following using the same outline.

Theorem 5.3. Let A ∈ Fn×n. A rational Jordan form JA and a Jordan transition matrix W
such that WAW−1 = JA can be computed using a Las Vegas algorithm at an expected cost of
O(MM(n) logn+ F(n)) operations over F.
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