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Abstract

Krylov-based algorithms have recently been used (alone, or in combination with other meth-
ods) in order to solve systems of linear equations that arise during integer factorization and
discrete logarithm computations. Since these include systems over small finite fields, the be-
haviour of these algorithms in this setting is of interest.

Unfortunately, the application of these methods is complicated by the possibility of several
kinds of breakdown. Orthogonal vectors can arise when a variant of the Lanczos algorithm is
used to generate a basis, and zero-discrepancies can arise during the computation of minimal
polynomials of linearly recurrent sequences when Wiedemann’s algorithm is applied.

Several years ago, Austin Lobo reported experimental evidence that zero-discrepancies are
extremely unlikely when a randomized version of Wiedemann’s algorithm is applied to solve
systems over large fields. With high probability, results are correct if a computation is terminated
as soon as such a sequence is detected. “Early termination” has consequently been included in
recent implementations.

In this paper, we analyze the probability of long sequences of zero-discrepancies during
computations of minimal polynomials of the linearly recurrent sequences that arise when simple
Krylov-based algorithms are used to solve systems over very small finite fields. Variations of
these algorithms that incorporate early termination are briefly presented and analyzed in the
small field case.
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1 Introduction

Consider the problem of solving a system of linear equations

Ax = b

where A ∈ F
N×N is an N × N matrix and b ∈ F

N×1 is a vector with dimension N over the finite
field F = Fq with q elements. A related problem which is also of interest is the computation of
an element of the nullspace of such a matrix A. Indeed, instances of these problems are formed
and solved in modern algorithms for integer factorization and discrete logarithm computations. In
particular, the latter problem arises with F = F2 when the number field sieve is applied ([2]), while
computations over Fq arise for larger q during discrete logarithm computations.

Several different “Krylov-based” methods for these problems have been proposed, implemented
and analyzed in recent years. In contrast with elimination-based methods, these do not manipulate
the entries of the coefficient matrix A. Instead, these algorithms work over the vector subspace
generated by the vectors

b, Ab,A2b, A3b, . . .

for some vector b.
In particular, one version of Wiedemann’s algorithm [19] considers the linearly recurrent se-

quences
c0, c1, c2, . . . , where ci = uT Aib

that are formed using uniformly and independently selected vectors u ∈ F
N×1. The minimal

polynomials of these sequences are computed using the Berlekamp-Massey algorithm [1], [14], and
these polynomials are combined to obtain the minimal polynomial of the matrix A and vector b —
that is, the monic polynomial f ∈ F[z] with least degree such that f(A)b = 0. If A is nonsingular
or, more generally, if f(0) 6= 0, then a solution for the given system is easily recovered after that.

Similarly, a version of the Lanczos algorithm [11] works with one or more uniformly and inde-
pendently selected vectors u as well. In this case, an orthogonalization process is used to try to
construct dual orthogonal bases for the pair of subspaces that are generated by the vectors

b, Ab,A2b, A3b, . . .

and
u,AT u, (AT )2u, (AT )3u, . . . .

While these algorithms are not identical, they are closely related; Lambert [10] provides a unified
treatment of these and several other variants.

Unfortunately, these computations are complicated by the possibility of various kinds of break-
down. A long sequence of zero-discrepancies might arise when the Berlekamp-Massey algorithm is
applied during an execution of Wiedemann’s algorithm, while one might obtain a long sequence of
orthogonal vectors when the Lanczos algorithm is applied.

Several years ago, Austin Lobo [12] reported experimental evidence that zero-discrepancies are
extremely unlikely when the Berlekamp-Massey algorithm is used in an application of Wiedemann’s
algorithm to solve a system of linear equations over a large field. If “random” field elements are
chosen uniformly and independently from a sufficiently large subset of the ground field, and the
computation is terminated as soon as a short sequence of zero-discrepancies has been encountered,
then the probability that the resulting values are correct appears to be high. Lobo reported that
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a window of twenty zero-discrepancies was a good early-termination threshold, and he has subse-
quently conjectured that it is also safe to terminate the algorithm after a single zero-discrepancy
has been encountered in the large field case.

“Early termination” has consequently been included in recent implementations of Krylov-based
algorithms.

Kaltofen, Lee, and Lobo [8] describe an application of this “early termination” idea in a different
setting. They have also reported experimental evidence that the current analysis of this may be
pessimistic. In particular, their work provides additional evidence that early termination might
also be reliable for computations over small fields.

As noted by Dornstetter [5], the Berlekamp-Massey algorithm and the Euclidean algorithm
are closely related. A study involving zero-discrepancies has consequently been a part of the
analysis of the Euclidean algorithm. Ma and von zur Gathen [13] present relevant results and can
be consulted for additional references. However, the work mentioned there concerns a different
situation. Furthermore, it would seem to be more relevant to an average case analysis than a worst
case analysis of the algorithms considered here, since it seems to require that the polynomial f
(corresponding to the minimal polynomial of A and b in the above discussion) is also randomly
selected. Nevertheless it also suggests that zero-discrepancies are infrequent in the small field case.

In this paper, it is established that a version of early termination is, indeed, reliable when the
randomized Krylov-based algorithms, mentioned above, are used to solve systems over small fields.
If a vector u is uniformly selected and used to form a linearly recurrent sequence

c0, c1, c2, . . . , where ci = uT Aib,

and if a sequence of more than a logarithmic number of zero-discrepancies is detected during an
application of the Berlekamp-Massey algorithm to compute the minimal polynomial of the above
sequence c0, c1, c2, . . . , then one can reliably terminate the computation with high probability,
regardless of the choice of the matrix A or vector b, and for a computation over any field. On
the other hand, early termination is provably unreliable if it is performed before a sequence of
Θ(logq N) zero-discrepancies has been seen. This paper also provides upper and lower bounds on
the expected amount of “lookahead” that is required, in the worst case, when a randomized Lanczos
algorithm of the type described above is used to solve an arbitrary nonsingular system of linear
equations or to sample from the nullspace of a given matrix.

This paper includes a brief presentation of Krylov-based algorithms that incorporate early
termination and that can be used to solve nonsingular systems of linear equations over finite
fields. As noted above, algorithms that sample from the nullspace of a singular matrix are also of
considerable interest. While some conclusions about these algorithms can be reached, on the basis
of this work, these algorithms are not considered in any detail here. A more complete analysis of
such algorithms requires additional results and will be considered in future work.

This work is part of an ongoing study of “black box linear algebra.” The report of Chen, et
al [3] includes a discussion of the application of Krylov-based algorithms to solve related problems
as well as additional techniques that should be considered.

Linearly recurrent sequences and their properties are considered below, in Section 2. Addi-
tional details concerning the Berlekamp-Massey algorithm are presented in Section 3. Properties
of “randomly chosen” linearly recurrent sequences, and the main technical results in this report,
are found in Section 4. These technical results are applied, to consider Krylov-based algorithms to
solve nonsingular systems of linear equations, in Section 5. Finally, related problems that should
be considered in future work are described in Section 6.
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2 Linearly Recurrent Sequences

2.1 Characteristic and Minimal Polynomials

Once again, let c0, c1, c2, . . . be a sequence of values in a field F.

Definition 2.1. Let f be a nonzero polynomial

f = α0 + α1z + · · · + αn−1z
n−1 + αnzn ∈ F[z]

with degree n ≥ 0, where z is an indeterminate over the field F. Then f is a characteristic polynomial
of the sequence c0, c1, c2, . . . if

α0ci + α1ci+1 + · · · + αn−1ci+n−1 + αnci+n = 0 (1)

for every integer i ≥ 0.

It is not necessarily the case that a given sequence has a characteristic polynomial at all.

Definition 2.2. A sequence c0, c1, c2, . . . is linearly recurrent if it has a nonzero characteristic
polynomial.

Suppose now that a given sequence is linearly recurrent. Such a sequence has more than one
characteristic polynomial. Indeed, it can be shown that the set of polynomials that are characteristic
polynomials of this sequence (together with the zero polynomial) forms an ideal in F[z]. Since F[z]
is a principal ideal domain, this ideal has a generator. It follows that a linearly recurrent sequence
has a unique “minimal polynomial,” where this is defined as follows.

Definition 2.3. A polynomial f ∈ F[z] is the minimal polynomial of the linearly recurrent sequence
c0, c1, c2, . . . if f is monic, f is a characteristic polynomial of the sequence c0, c2, c2, . . . , and if
g ∈ F[z] is a characteristic polynomial of this sequence if and only if g is a nonzero multiple of f ,
for every polynomial g ∈ F[z].

In other words, f is the minimal polynomial of the linearly recurrent sequence c0, c1, c2, . . . if
f is the unique monic generator of the ideal that consists of the zero polynomial and the set of
characteristic polynomials of the given sequence.

Henceforth, let us consider a fixed linearly recurrent sequence c0, c1, c2, . . . . We will use the
expression

“CharPol[f ]”

to denote the property that a polynomial f is a characteristic polynomial of the given sequence.
The expression

“MinPol[f ]”

will denote the property that f is the minimal polynomial of this sequence.
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2.2 Annihilators

It will also be useful to consider initial sequences of finite length. As above, we will consider a fixed
linearly recurrent sequence c0, c1, c2, . . . .

Definition 2.4. Let i be a positive integer and let f be a nonzero polynomial

f = α0 + α1z + · · · + αn−1z
n−1 + αnzn ∈ F[z],

with degree n ≥ 0. Then f is an annihilator of the initial sequence c0, c1, . . . , ci−1 (or, “f annihilates
this sequence”) if

α0cj + α1cj+1 + · · · + αn−1cj+n−1 + αncj+n = 0 (2)

for every integer j such that 0 ≤ j ≤ i− 1 − n.

We will use the expression

“Ann[f, i]”

to denote this property. Note that the property is trivial if i ≤ n. On the other hand, f is a
characteristic polynomial for the sequence c0, c1, c2, . . . if and only if Ann[f, i] for every integer i.

The next four properties are easily established using the above definition of an “annihilator.”

Lemma 2.5. Let f ∈ F[z] be a nonzero polynomial such that f is an annihilator of the initial
sequence

c0, c1, . . . , ci−1

for an integer i ≥ 1. Let α be a nonzero element of F. Then the polynomial αf is an annihilator
of the above initial sequence, as well.

Lemma 2.6. Let f, g ∈ F[z] be nonzero polynomials such that the degrees of f and g are not the
same, and suppose that f and g are both annihilators of the initial sequence

c0, c1, . . . , ci−1

for an integer i ≥ 1. Then the sum f + g of these polynomials is an annihilator of the above initial
sequence as well.

Lemma 2.7. Let f, g ∈ F[z] be nonzero polynomials such that f and g both have degree n, and
suppose that f and g are both annihilators of the initial sequence

c0, c1, . . . , ci−1

for an integer i ≥ 1. Suppose that the sum f + g has degree m ≤ n.
Then either i ≤ n−m, or f + g is an annihilator of the (shorter) initial sequence

c0, c1, . . . , ci−(n−m)−1.

Lemma 2.8. Let f ∈ F[z] be a nonzero polynomial such that f is an annihilator of the initial
sequence

c0, c1, . . . , ci−1

for an integer i ≥ 1. Then the polynomial zf is an annihilator of the above initial sequence as well.
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The next property is easily established using Lemmas 2.5, 2.6 and 2.8.

Lemma 2.9. Let f ∈ F[z] be a nonzero polynomial such that f is an annihilator of the initial
sequence

c0, c1, . . . , ci−1

for an integer i ≥ 1. Then any nonzero multiple of f in F[z] is an annihilator of the above initial
sequence as well.

It will be useful to have a notion of a “minimal” annihilator of an initial sequence.

Definition 2.10. Let i be a positive integer and let f be a polynomial in F[z]. Then f is a
minimal annihilator of the initial sequence c0, c1, . . . , ci−1 if f is monic, f is an annihilator of this
initial sequence, and if no factor of f (other than f , itself) is an annihilator of the initial sequence
c0, c1, . . . , ci−1 as well.

We will use the expression

“MinAnn[f, i]”

to denote this property.
Unfortunately, these minimal annihilators are not generally unique. However, uniqueness can

be proved under some additional conditions, and this will be sufficient for our purposes. Consider,
therefore, the Hankel matrix

H =




c0 c1 c2 · · · cn−1

c1 c2 c3 · · · cn

c2 c3 c4 · · · cn+1
...

...
...

. . .
...

cn−1 cn cn−1 · · · c2n−2




(3)

whose entry in row i and column j is ci+j−2 for 1 ≤ i, j ≤ n, where n is a given upper bound on the
degree of the minimal polynomial of the sequence c0, c1, c2, . . . . Consider the ith principal minor of
this matrix

Hi =




c0 c1 c2 · · · ci−1

c1 c2 c3 · · · ci

c2 c3 c4 · · · ci+1
...

...
...

. . .
...

ci−1 ci ci−1 · · · c2i−2




(4)

for 1 ≤ 1 ≤ n.
In the remainder of this section we will state and prove a sequence of lemmas that establish a

situation in which the minimal annihilator of a given initial sequence is unique.

Lemma 2.11. Suppose i is an integer such that 1 ≤ i ≤ n and Hi is nonsingular. Then the initial
sequence

c0, c1, . . . , c2i−1

has a unique minimal annihilator, f ∈ F[z], and the degree of f is equal to i.
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Proof. Since the principal minor Hi is nonsingular, the system

Hi




α0

α1
...

αi−1


 =




ci

ci+1
...

c2i−1


 (5)

has a unique solution, and this defines the only monic polynomial

f = −α0 − α1z − . . . − αi−1z
i−1 + zi

in F[z] with degree i that annihilates the initial sequence

c0, c1, . . . , c2i−1.

Suppose there exists another monic polynomial

g = β0 + β1z + · · · + βi−2z
i−2 + βi−1z

i−1,

in F[z], with degree less than i, that is also an annihilator of the above initial sequence (so that
βi−1 = βi−2 = · · · = βj+1 = 0 and βj = 1, if j ≤ i − 1 is the degree of g). Then the vector




β0

β1
...

βi−1




is in the right nullspace of Hi, and is nonzero, contradicting the fact that Hi is nonsingular.
Thus the above polynomial f , with degree i, is the only minimal annihilator of the initial

sequence c0, c1, . . . , c2i−1, as claimed in the lemma.

Lemma 2.12. Suppose i is an integer such that 1 ≤ i ≤ n and Hi is nonsingular. Let f ∈ F[z] be
the unique minimal annihilator of the initial sequence

c0, c1, . . . , c2i−1

whose existence has been established in Lemma 2.11, above.
Suppose that j ≥ 0 and that f is also an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j .

Let g ∈ F[z] be another annihilator of the sequence c0, c1, . . . , c2i−1+j.
If the degree of g is less than or equal to i + j, then g is divisible by f .

Proof. Let f ∈ F[z] be as given in the statement of the lemma. It follows by Lemma 2.11 that f
has degree i.

This lemma can now be established by induction on j. The strong form of mathematical
induction will be used.

Basis: If j = 0 then Hi+j = Hi, and this matrix is nonsingular. Either there is nothing to be
established, or the degree of the given polynomial g is at most i + j = i. It follows (in the latter
case) that g is a scalar multiple of f — for, otherwise, one could divide g by its leading coefficient
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in order to produce a monic polynomial with degree at most i that is different from f and that is
also an annihilator of the initial sequence c0, c1, . . . , c2i−1, contradicting the choice of f . It follows
that g is divisible by f , if the degree of g is at most i, as required.

Inductive Step: Suppose that the claim is correct for a given value of j (and for all smaller
nonnegative values). Suppose, as well, that f is an annihilator of the initial sequence

c0, c1, . . . , c2i−1+(j+1),

and that g is an annihilator of this initial sequence with degree at most i + j + 1.
If the degree of g is less than or equal to i + j as well, then the desired result follows by the

inductive hypothesis, since g is also an annihilator of the shorter sequence

c0, c1, . . . , c2i−1+j .

It is therefore sufficient to consider the case that the degree of g is exactly i + j + 1.
Let γ be the leading coefficient of g and consider the polynomial g − γz j+1f . Since f is monic

with degree i, this polynomial has degree at most i + j.
If this polynomial is equal to zero then we are done, since this implies that g is divisible by f .
If this polynomial is nonzero and its degree is less than i, then the vector (with dimension i)

whose entries consist of the coefficients of this polynomial is in the right nullspace of Hi — see,
again, the last half of the proof of Lemma 2.11 for an application of this argument. This contradicts
the fact that Hi is nonsingular.

The only remaining case is that this polynomial has degree i+k for some nonnegative integer k ≤
j. Since f and g are both annihilators of

c0, c1, . . . , c2i+j ,

it can be shown by an application of Lemma 2.9 that the polynomial −γz j+1f is an annihilator of
the initial sequence

c0, c1, . . . , c2i+j ,

as well, and it can then be shown by an application of Lemma 2.7 that the polynomial g − γz j+1f
is an annihilator of the initial sequence

c0, c1, . . . , c2i−1+k.

Since the polynomial g − γzj+1f has degree i + k, and k ≤ j, it now follows by the inductive
hypothesis that g− γzj+1f is divisible by f . This clearly implies that g is divisible by f as well, as
is required to complete the proof.

Lemma 2.13. Once again, let i be an integer such that 1 ≤ i ≤ n and Hi is nonsingular, and let
f ∈ F[z] be the unique minimal annihilator of the initial sequence

c0, c1, . . . , c2i−1

whose existence is established by Lemma 2.11.
Suppose that j is a positive integer such that f is an annihilator of the initial sequence

c0, c1, . . . , c2i−2+j

but f is not an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j .
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Then there are no nonzero polynomials in F[z] that have degree less than i+j and that annihilate
the sequence

c0, c1, . . . , c2i−1+j

at all, and the matrix Hi+j is nonsingular.

Proof. Let f be as in the statement of the lemma. It follows by Lemma 2.11 that f has degree i.
Suppose, in order to obtain a contradiction, that there does exist a nonzero polynomial g ∈ F[z]

with degree less than i + j such that g annihilates the sequence

c0, c1, . . . , c2i−1+j .

Then g also annihilates the shorter sequence

c0, c1, . . . , c2i−2+j

and it follows by Lemma 2.12 that g is divisible by f .
Let d be the degree of g, and let γ be the leading coefficient of g, so that γ 6= 0 and

g = γzd−if + h,

where h is a polynomial with degree less than d that is also divisible by f . Since f is an annihilator
of the initial sequence

c0, c1, . . . , c2i−2+j

and since h is a multiple of f , it follows by Lemma 2.9 that h and −h are both annihilators of the
initial sequence

c0, c1, . . . , c2i−2+j

as well. Since the degree of g is strictly greater than that of −h, it follows by Lemma 2.6 that the
polynomial

g − h = γzd−if

is an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j

if g is. However, since f is an annihilator of the initial sequence

c0, c1, . . . , c2i−2+j ,

and since γ 6= 0 and the degree of the polynomial zd−if is d ≤ i + j − 1 < 2i− 1 + j, it now follows
by a straightforward application of Definition 2.4 that f is an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j

as well. This contradicts the choice of j.
There is, therefore, no nonzero polynomial g ∈ F[z] with degree less than i + j that annihilates

the sequence
c0, c1, . . . , c2i−1+j .

In order to see that Hi+j is nonsingular, suppose that

f = α0 + α1z + · · · + αi−1z
i−1 + zi
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and consider the product

Hi+j ·




1 0 α0 0 · · · 0
1 α1 α0 · · · 0

. . .
...

...
. . .

...
0 1 αi−1 αi−2 · · · αi−j−1

0 0 · · · 0 1 αi−1 · · · αi−j

0 0 · · · 0 0 1 · · · αi−j+1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 1




, (6)

where αi = 1 and αj = 0 if j < 0 or if j > i. The matrix on the right is a block matrix whose top
left i × i block is the identity matrix, whose bottom left j × i block is a zero matrix, and whose
right (i + j) × j block is a Toeplitz matrix whose columns are filled with the coefficients of f .

The product of these matrices can be considered as a block matrix as well. Its top left i×i block
is the nonsingular matrix Hi. Its top right i× j block is a zero matrix, because f is an annihilator
of the initial sequence

c0, c1, . . . , c2i−2+j ,

and its bottom j × j block is a Hankel matrix whose first column is




0
0
...
0
ζ




where
ζ = α0ci+j−1 + α1ci+j + · · · + αi−1c2i+j−2 + c2i+j−1.

Now ζ 6= 0, because f is an annihilator of the initial sequence

c0, c1, . . . , c2i−2+j

but f is not an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j .

It follows that the bottom j×j block of the above product is a nonsingular Hankel matrix, because
a lower triangular Toeplitz matrix with nonzero entries on the diagonal would be obtained if the
order of its columns was reversed. Therefore the entire (block upper triangular) matrix product
shown in Equation (6) is nonsingular. It follows that Hi+j is nonsingular, as well.

Lemma 2.14. Let m be an integer such that 1 ≤ m ≤ n and consider the initial sequence

c0, c1, . . . , c2m−1

with length 2m.
This initial sequence has a minimal annihilator with degree m if and only if Hm is nonsingular.
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Proof. Suppose first that Hm is nonsingular. Then it follows by Lemma 2.11 that the initial
sequence

c0, c1, . . . , c2m−1

has a unique minimal annihilator, f ∈ F[z], and that the degree of f is m, as required.
Suppose, instead, that Hm is singular. It is necessary in this case to prove that the initial

sequence
c0, c1, . . . , c2m−1

does not have a minimal annihilator with degree m at all.
Consider the case that Hi is singular for every integer i between 1 and m. Then, since the

matrices H1,H2, . . . ,Hm are all Hankel matrices, one can see by inspection of these matrices that

c0 = c1 = · · · = cm−1 = 0,

so that

Hm =




0 0 0 · · · 0
0 0 0 · · · cm

0 0 0 · · · cm+1
...

...
...

. . .
...

0 cm cm+1 · · · c2m−2




.

Now if
cm = cm+1 = · · · = c2m−1 = 0

as well, then the monic polynomial 1 with degree zero is an annihilator of the sequence

c0, c1, . . . , c2m−1.

Since 0 < m, this initial sequence does not have a minimal annihilator whose degree is m in this
case.

Otherwise, ci is nonzero for some integer i such that m ≤ i ≤ 2m − 1. Consider the smallest
integer i such that this is the case, so that cm = cm+1 = · · · = ci−1 = 0. An inspection of the linear
system

Hmx =




cm

cm+1
...

c2m−1




reveals that this system is inconsistent, since the i + 1 − mth row of the matrix Hm is filled with
zeroes and the corresponding entry in the vector on the right is nonzero. On the other hand, if the
initial sequence

c0, c1, . . . , c2m−1

has a nonzero annihilator whose degree is at most m, then this annihilator can be used to form a
solution for the above system. It follows that the initial sequence

c0, c1, . . . , c2m−1

does not have a minimal annihilator with degree m, in this case, because it does not have an
annihilator with degree m at all.
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In the remaining case there exists an integer i such that 1 ≤ i < m, Hi is nonsingular, and
such that all of the minors Hi+1,Hi+2, . . . ,Hm are singular. Since Hi is nonsingular it follows by
Lemma 2.11, above, that the initial sequence

c0, c1, . . . , c2i−1

has a unique minimal annihilator f ∈ F[z], and the degree of f is i.
Suppose that f is also an annihilator of the sequence

c0, c1, . . . , c2m−1.

Then, since i < m, it is clear that the above initial sequence does not have a minimal annihilator
with degree m, once again.

It remains only to consider the case that f is not an annihilator of the initial sequence

c0, c1, . . . , c2m−1.

Consider the smallest positive integer j such that f is not an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j .

Then, of course, f is an annihilator of the shorter sequence

c0, c1, . . . , c2i−2+j .

Clearly 2i − 1 + j ≤ 2m − 1. On the other hand, Lemma 2.13 implies that the matrix Hi+j is
nonsingular. It therefore follows by the choice of i that m < i + j.

Consider any nonzero polynomial g ∈ F[z] such that g is an annihilator of the initial sequence

c0, c1, . . . , c2m−1.

As noted above, 2i − 1 + j ≤ 2m− 1, so that g is also an annihilator of the sequence

c0, c1, . . . , c2i−1+j .

It follows by Lemma 2.13 that the degree of g is at least i + j. Thus the degree of g is at least
m + 1, since m < i + j as noted above. Therefore the sequence

c0, c1, . . . , c2m−1

does not have a minimal annihilator with degree m in this remaining case, because the sequence
does not have an annihilator with degree m, at all.

The above lemma will be used in the proof of Theorem 4.5, the main technical result of this
report. The next result is needed to establish the correctness of the Berlekamp-Massey algorithm,
which is discussed in the following section.

Lemma 2.15. Suppose that
c0, c1, c2, . . .

is a linearly recurrent sequence whose entries are not all zero. Let g ∈ F[z] be the minimal polynomial
of this sequence and let m be the degree of g.

Then the Hankel matrix Hm is nonsingular, and g is also the unique minimal annihilator of the
sequence.

c0, c1, . . . , c2m−1.
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Proof. Suppose that
c0, c1, c2, . . .

is a linearly recurrent sequence whose entries are not all zero, as given in the lemma, and that the
minimal polynomial g of this sequence has degree m. Consider the Hankel matrices H1,H2, . . .
that are formed using the entries of the above sequence.

In order to obtain a contradiction, let us assume that Hm is singular.
If Hi is nonsingular for any integer i > m, then it follows by Lemma 2.11 that every monic

annihilator of the initial sequence
c0, c1, . . . , c2i−1

has degree at least i. However, g is a monic annihilator of this initial sequence with degree m < i.
We may conclude as a result of this contradiction that Hi is singular for every integer i > m.

Consider the case that Hi is singular for every positive integer i < m as well. Then Hi is
singular for every integer i ≥ 0 and one can see, by an inspection of these matrices, that ci = 0 for
every integer i ≥ 0 as well. Since it is given that that the entries of the sequence c0, c1, c2, . . . are
not all zero, we may conclude that at least one matrix Hi is nonsingular.

Considering the largest such matrix, one finds that there exists a positive integer i < m such
that Hi is nonsingular and such that Hi+j is singular for every integer j > 0.

It follows by Lemma 2.11 that the initial sequence

c0, c1, . . . , c2i−1

has a unique minimal annihilator f ∈ F[z], and the degree of f is i.
Now, since the minimal polynomial of the entire sequence has degree m > i there must exist a

positive integer j such that f is not an annihilator of the initial sequence

c0, c1, . . . , c2i−1+j .

If one considers the smallest positive integer j for which this is the case then it follows by an
application of Lemma 2.13 that the matrix Hi+j is nonsingular. Since it has been established
already that Hk is singular, for every integer k ≥ m, it follows that j a positive integer such that
i + j ≤ m and Hi+j is nonsingular. However, this contradicts the above choice of i.

A contradiction has now been obtained in every possible case. We may now conclude that Hm

is nonsingular. It follows by Lemma 2.11 that the initial sequence

c0, c1, . . . , c2m−1

has a unique minimal annihilator, h ∈ F[z], and that h has degree m.
Since the minimal polynomial g of the entire sequence is also a monic polynomial in F[z] with

degree m that annihilates the above initial sequence, the uniqueness of the minimal annihilator
implies that h = g, as required to complete the proof.

3 The Berlekamp-Massey Algorithm

The properties that were presented in the previous section are exploited by the Berlekamp-Massey
algorithm. This algorithm uses an upper bound n for the degree of the minimal polynomial of a
linearly recurrent sequence, and the first 2n entries

c0, c1, . . . , c2n−1
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of the sequence, to compute the minimal polynomial. The algorithm generates a sequence

g1, g2, . . . , g2n ∈ F[z]

of monic polynomials such that gi is a minimal annihilator of the initial sequence

c0, c1, . . . , ci−1,

for 1 ≤ i ≤ 2n.
Now suppose that the entire sequence has minimal polynomial g ∈ F[z] and let m be the degree

of g. Then m ≤ n and it follows by Lemma 2.15, above, that g = g2m. Furthermore, since g is
both the only monic annihilator of the initial sequence

c0, c1, . . . , c2m−1

with degree at most m, and the minimal polynomial of the entire sequence, it must the only monic
annihilator of each sequence

c0, c1, . . . , ci

with degree at most m, for every integer i ≥ 2m−1 as well. Thus g is the only minimal annihilator
for the above initial sequence (again, for i ≥ 2m − 1), and it follows that

g = g2m = g2m+1 = · · · = g2n.

The final polynomial, g2n that is generated can therefore be returned as the minimal polynomial
of the entire sequence.

As this description may suggest, time can be saved when m < n, if one can determine (reliably)
that the minimal polynomial of the entire sequence c0, c1, c2, . . . has been generated before all of
the initial 2n entries of this sequence have been considered.

Once again, let us consider a fixed sequence c0, c1, c2, . . . , and suppose that a given value n is
greater than or equal to the degree of the minimal polynomial of this sequence. Let g1, g2, . . . , g2n

be the sequence of polynomials generated by the Berlekamp-Massey algorithm when it is given
c0, c1, . . . , c2n−1 and n as input. For the purposes of the following definitions, set g−1 = 0 and
g0 = 1.

Definition 3.1. Let i be an integer such that 0 ≤ i ≤ 2n−1. Then the given sequence c0, c1, c2, . . .
has a zero-discrepancy at position i if gi = gi+1.

Definition 3.2. Let i and j be integers such that i ≥ 0, j ≥ 1, and i + j < 2n.
Then the given sequence c0, c1, c2, . . . has a harmful sequence of zero-discrepancies of length j

beginning at position i if
gi−1 6= gi = gi+1 = · · · = gi+j (7)

and gi is not equal to the minimal polynomial of the linearly recurrent sequence c0, c1, c2, . . . .

We will say that the given sequence has a harmful sequence of zero-discrepancies of length j if it
has a harmful sequence of zero-discrepancies of length j beginning at position i, for some integer i
such that i ≥ 0 and i + j < 2n.

Consider again the matrix H shown in Equation (3). Henceforth, we will let ∆i denote the
determinant of the ith principal minor Hi of this matrix if 1 ≤ i ≤ n, and we will set ∆0 = 1.
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Definition 3.3. Let i and j be integers such that i ≥ 0, j ≥ 1, and such that i + j < n. Then the
above matrix H has a harmful gap of length j beginning at position i if

∆i 6= 0 = ∆i+1 = ∆i+2 = · · · = ∆i+j, (8)

but ∆k 6= 0 for some integer k > i + j.

We will say that the matrix H has a harmful gap of length j if it has a harmful gap of length j
beginning at position i, for some integer i such that i ≥ 0 and i + j < n.

4 Random Sequences

One objective of this work is to show that long sequences of zero-discrepancies, that are harmful,
are unlikely when the Berlekamp-Massey algorithm is applied as part of a randomized algorithm
to solve a system of linear equations over a finite field. We will show that harmful gaps that are
long are unlikely, as well.

Let us therefore return attention to the original problem, namely, the consideration of a system

Ax = b,

where A ∈ F
N×N , b ∈ F

N×1, and F = Fq is a finite field with q elements. The set of polynomials
f ∈ F[z], such that f(A)b = 0, forms an ideal in F[z]. Since the characteristic polynomial of A
is an element of this ideal, the ideal is nonzero. There is, therefore, a monic polynomial f ∈ F[z]
that generates this ideal. This polynomial is also the “minimal polynomial” of A, and b, as defined
below.

Definition 4.1. A polynomial f ∈ F[z] is the minimal polynomial of a matrix A ∈ F
N×N and

vector b ∈ F
N×1 if f is monic, f(A)b = 0, and if g(A)b = 0 if and only if g is divisible by f , for

every polynomial g ∈ F[z].

As suggested in the introduction, the minimal polynomial of A and b is also the monic polyno-
mial f with least degree such that f(A)b = 0.

Suppose, now, that the minimal polynomial f of A and b has degree n and that

f = α0 + α1z + · · · + αn−1z
n−1 + zn. (9)

Then 0 ≤ n ≤ N , since the characteristic polynomial of A has degree N and is a multiple of f .
As mentioned in the introduction, the algorithms to be studied select a random vector u ∈ F

N×1

and consider the sequence c0, c1, c2, . . . , where

cj = uT Ajb for j ≥ 0. (10)

Note that if i ≥ 0 then

α0ci + α1ci+1 + · · · + αn−1ci+n−1 + ci+n = uT Aif(A)b = 0.

Thus the condition given in Definition 2.1 is satisfied, so that f is a characteristic polynomial
(although, not necessarily the minimal polynomial) of the sequence c0, c1, c2, . . . , and this sequence
is linearly recurrent.
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4.1 Identification of the Probability Distribution

It will be necessary to identify the probability that a given linearly recurrent sequence is generated,
by the above process, in order to analyze the algorithms that are of interest. Let f ∈ F[z] be as
given in Equation (9), above. Then it follows by Definition 2.1 that if the initial n entries

c0, c1, . . . , cn−1

of a linearly recurrent sequence are given, along with the information that f is a characteristic
polynomial of this sequence, then the remaining entries

cn, cn+1, cn+2, . . .

are fixed. On the other hand, the condition that f is a characteristic polynomial of the sequence
does not constrain the choice of the initial n entries of the sequence at all. This implies that (since
F = Fq is a finite field of size q) there are exactly qn linearly recurrent sequences with entries in F

that have f as a characteristic polynomial.

Lemma 4.2. Let A ∈ F
N×N , let b ∈ F

N×1, and suppose that f ∈ F[z] is the minimal polynomial
of A and b. Let n be the degree of f .

Let s0, s1, s2, . . . be any linearly recurrent sequence with entries in F with characteristic polyno-
mial f .

Finally, suppose that a vector u is chosen uniformly and randomly from F
N×1, and let cj =

uT Ajb for j ≥ 0. Then
ci = si for every integer i ≥ 0

with probability q−n.

In other words, the randomized algorithms that are to be studied generate the linearly recurrent
sequences with characteristic polynomial f uniformly.

Proof of Lemma 4.2. Let A, b, f , and n be as given in the statement of the lemma. Then, since f
is the minimal polynomial of A and b, the subspace of F

N×1 that is spanned by the vectors

b, Ab,A2b, . . .

has dimension n, and the vectors
b, Ab,A2b, . . . , An−1b

form a basis for this subspace.
Let us add vectors y1, y2, . . . , yN−n ∈ F

N×1 to complete a basis for F
N×1.

This basis has a dual orthogonal basis. That is, there exists another basis for F
N×1 consisting

of vectors
v0, v1, . . . , vn−1, w1, w2, . . . , wN−n ∈ F

N×1

such that

vT
i Ajb =

{
1 if 0 ≤ i, j ≤ n− 1 and i = j,

0 if 0 ≤ i, j ≤ n− 1 and i 6= j,

wT
i yj =

{
1 if 1 ≤ i, j ≤ N − n and i = j,

0 if 1 ≤ i, j ≤ N − n and i 6= j,
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and such that vT
i yj = 0 = wT

j Aib for all integers i and j such that 0 ≤ i ≤ n−1 and 1 ≤ j ≤ N −n.

Now let u be a uniformly selected vector in F
N×1, as given in the statement of the lemma. This

vector can be chosen as a random linear combination of the elements of any basis that we wish to
choose. In particular, u can be chosen as

u = γ0v0 + γ1v1 + · · · + γn−1vn−1 + δ1w1 + δ2w2 + · · · + δN−nwN−n (11)

where the values γ0, γ1, . . . , γn−1 and δ1, δ2, . . . , δN−n are chosen uniformly and independently from
the finite field F.

Now it suffices to notice that if 0 ≤ j ≤ n− 1 then

cj = uT Ajb = γjv
T
j Ajb = γj,

by the choice of u (as given in Equation (11)) and the fact that v0, v1, . . . , vn−1, w1, w2, . . . , wN−n

was chosen as a dual orthogonal basis for the original basis

b, Ab,A2b, . . . , An−1b, y1, y2, . . . , yN−n.

Consequently, if s0, s1, s2, . . . is any given linearly recurrent sequence with characteristic poly-
nomial f , then the probability that

cj = sj for 0 ≤ j ≤ n− 1

is the same as the probability that

γj = sj for 0 ≤ j ≤ n− 1.

Since the values γ0, γ1, . . . , γn−1 are uniformly and independently selected from F = Fq, this prob-
ability is q−n.

Recall that the sequences

c0, c1, c2, . . . where cj = uT Ajb

and
s0, s1, s2, . . .

are linearly recurrent sequences with characteristic polynomial f . Since the remaining terms of
each sequence are determined by the initial n entries of the sequence, it follows that if cj = sj for
0 ≤ j ≤ n− 1, then cj = sj for every integer j ≥ n as well. This completes the proof.

4.2 Bounding the Probability that Harmful Sequences are Long

The next result follows by an application of the theory of subresultants.

Lemma 4.3. Let f ∈ F[z] be a monic polynomial with degree n and let g ∈ F[z] be a monic
polynomial with degree m, where m ≤ n and where F = Fq is the finite field with q elements.
Suppose that the greatest common divisor h of f and g has degree k. Finally, let s be an integer
such that m ≤ s ≤ 2n.

Let c0, c1, c2, . . . be a uniformly chosen linearly recurrent sequence with characteristic polyno-
mial f .
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If s < n + m− k then the above sequence satisfies the condition

Ann[g, s]

with probability qm−s.
If s ≥ n + m− k then the above sequence satisfies the condition

Ann[g, s]

with probability qk−n, and the conditions

Ann[g, s] and CharPol[h]

are equivalent.

Proof. Suppose, once again, that

f = α0 + α1z + · · · + αn−1z
n−1 + αnzn ∈ F[z]

where αn = 1, so that f is a monic polynomial with degree n.
Suppose also that m ≤ n and that

g = β0 + β1z + · · · + βm−1z
m−1 + βmzm ∈ F[z]

where βm = 1, so that g is a monic polynomial with degree m.
Suppose as well that the greatest common divisor h of f and g has degree k, as in the statement

of the lemma.
Before establishing the claim in the lemma it will be useful to consider a related result. We will

therefore initially consider sequences of values

c0, c1, . . . , c2n−1

that are uniformly and independently selected from F.
Let

~c =




c2n−1
...
c1

c0


 ∈ F

2n×1

be the vector whose elements are the given values c0, c1, . . . , c2n−1, listed in reverse order.
Now let s be an integer such that m ≤ s ≤ 2n, and consider the system of linear equations

Mf,g,s~c = 0

that expresses the condition that c0, c1, . . . , c2n−1 are the initial entries of a linearly recurrent
sequence satisfying the condition

Ann[g, s] ∧ CharPol[f ].

The matrix Mf,g,s has n + s − m rows and 2n columns. Its top n rows correspond to the
condition CharPol[f ] and consist of the Toeplitz matrix




αn αn−1 · · · α0

αn · · · α1 α0

. . .
. . .

αn αn−1 · · · α0


 ,
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and its bottom s−m rows form the Toeplitz matrix




0 · · · 0 βm βm−1 · · · β0

0 · · · 0 βm · · · β1 β0
...

. . .
. . .

0 · · · 0 βm βm−1 · · · β0




whose leftmost 2n − s columns are filled with zeroes. This bottom part of the matrix corresponds
to the condition Ann[g, s].

Notice, by the way, that if
c0, c1, . . . , c2n−1

are the initial entries of a linearly recurrent sequence satisfying the condition

Ann[g, s] ∧ CharPol[f ]

then there is exactly one linearly recurrent sequence that satisfies the above condition and that
begins with the above initial sequence of values. After all, since s ≤ 2n, the condition Ann[g, s]
is independent of the choice of any additional values c2n, c2n+1, c2n+2, . . . that might be used to
extend the sequence. On the other hand, since f has degree n, there is exactly one way to choose
these additional values in order to produce a sequence with characteristic polynomial f .

Consider once again the matrix Mf,g,s that has been described above, and consider the special
case

s = n + m− k.

In this case, Mf,g,s can be considered to be a block upper triangular matrix,

Mf,g,s =

[
A B
0 C

]
.

The top left block, A, is an upper triangular (2n− s)× (2n− s) matrix with ones on the diagonal
(since αn = 1), so that the rank of the entire matrix Mf,g,s is the sum of 2n − s and the rank of
the bottom right block, C.

The rank of C can be discovered by an application of the theory of subresultants. The text
of von zur Gathen and Gerhard [7] includes a readable introduction to this theory and additional
references. It will be used in order to continue this argument.

In particular, a comparison of the dimensions of the matrices given above confirms that the
matrix C has (n + s−m) − (2n − s) = 2s − n− m rows and 2n − (2n − s) = s columns. That is,
since s = n + m− k, it has n + m− 2k rows and n + m− k columns. The square matrix obtained
by including all the rows of C, and the leftmost n+m− 2k columns, is the transpose of the matrix
shown at the bottom of page 169 of von zur Gathen and Gerhard’s text and whose determinant is
denoted there as Sk.

Since k is the degree of the greatest common divisor of f and g, Sk is nonzero (see Corol-
lary 6.49 on page 170 of von zur Gathen and Gerhard’s text). Consequently both C, and the entire
matrix Mf,g,s, have full rank in this case. In particular, the rows of the matrix Mf,g,s are linearly
independent so that the rank of Mf,g,s is equal to the number of rows, n + s−m.

Consider the right nullspace of this matrix. Since this (n + s − m) × 2n matrix has full rank,
the dimension of this nullspace is

2n− (n + s−m) = n + m− s = n + m− (n + m− k) = k.
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It follows that there are exactly qk initial sequences

c0, c1, . . . , c2n−1

of linearly recurrent sequences that satisfy the condition

Ann[g, s] ∧ CharPol[f ].

As previously noted, no two distinct linearly recurrent sequences with characteristic polynomial f
have the same initial sequence with length 2n. It follows that there are exactly qk linearly recurrent
sequences that satisfy the condition

Ann[g, s] ∧ CharPol[f ]

as well.
Since the polynomial h has degree k, there are also exactly qk linearly recurrent sequences that

satisfy the condition
CharPol[h].

Every such sequence satisfies the condition

Ann[g, s] ∧ CharPol[f ]

as well, since h divides both g and f . It follows that if s = n + m− k then the conditions

Ann[g, s] ∧ CharPol[f ] and CharPol[h]

are equivalent.
Suppose next that s < n + m − k, and compare the matrix Mf,g,s to the matrix Mf,g,n+m−k

whose properties have been investigated above. The set of rows of Mf,g,s is a subset of the set
of rows of Mf,g,n+m−k, so that the rows of Mf,g,s are linearly independent because the rows of
Mf,g,n+m−k are. The rank of Mf,g,s is therefore the same as the number of rows in this matrix,
namely,

n + s−m.

Consequently the dimension of the right nullspace of this matrix is 2n− (n + s−m) = n + m− s.
Using an argument similar to the one given above, for the case s = n+m−k, we may now conclude
that there are exactly qn+m−s linearly recurrent sequences satisfying the condition

Ann[g, s] ∧ CharPol[f ]

whenever s < n + m− k.
Finally, consider the case that s > n + m− k. Notice that the condition

Ann[g, s] ∧ CharPol[f ]

implies the condition
Ann[g, n + m− k] ∧ CharPol[f ]

and it has been established that this is equivalent to the condition CharPol[h]. Thus

(Ann[g, s] ∧ CharPol[f ]) ⇒ CharPol[h]
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in this case. On the other hand, if h is a characteristic polynomial of a given sequence then the
sequence must also satisfy the condition

Ann[g, s] ∧ CharPol[f ],

since h divides both g and f . That is,

CharPol[h] ⇒ (Ann[g, s] ∧ CharPol[f ])

as well, so that the conditions

Ann[g, s] ∧ CharPol[f ] and CharPol[h]

are equivalent, and there are exactly qk linearly recurrent sequences that satisfy the condition

Ann[g, s] ∧ CharPol[f ]

in this case.
In summary, it has been shown that the number of linearly recurrent sequences that satisfy the

condition
Ann[g, s] ∧ CharPol[f ]

is qn+m−s if s < n+m− k. It has also been shown that the number of linearly recurrent sequences
that satisfy the above condition is qk if s ≥ n + m− k, and that the conditions

Ann[g, s] ∧ CharPol[f ] and CharPol[h]

are equivalent when s ≥ n + m− k, as well.
Now let us consider the probability distribution that is discussed in the lemma. That is, consider

a uniformly selected linearly recurrent sequence

c0, c1, c2, . . .

with characteristic polynomial f . Since there are exactly qn such sequences, the probability that
the condition

Ann[g, s]

is satisfied, under this distribution, is equal to the quotient of the number of linearly recurrent
sequences that satisfy the condition

Ann[g, s] ∧ CharPol[f ]

and the number, qn, of all linearly recurrent sequences with characteristic polynomial f . The
probabilities given in the statement of the lemma now follow.

It also follows that if s ≥ n + m − k and one considers linearly recurrent sequences with
characteristic polynomial f , then the conditions

Ann[g, s] and CharPol[h]

are equivalent — for the latter condition implies the former, and each occurs with the same prob-
ability.

The above lemma will be used to prove Lemma 4.4.

21



Lemma 4.4. Let f , g, h, n, m, and k be as in the statement of the previous lemma. Suppose,
once again, that

c0, c1, c2, . . .

is a uniformly chosen linearly recurrent sequence with characteristic polynomial f . Let s and t be
nonnegative integers such that m ≤ s ≤ s+ t ≤ 2n, and let ε be a positive real number. Then either

Prob (MinAnn[g, s]) ≤ ε (12)

or
Prob (MinAnn[g, s + t] ∧ ¬MinPol[g])

Prob (MinAnn[g, s])
≤ qm−s−t/ε. (13)

Proof. Suppose, first, that s + t ≥ n + m− k. We will show that

Prob (MinAnn[g, s + t] ∧ ¬MinPol[g]) = 0

in this case.
First suppose that g 6= h. Then, since s + t ≥ n + m− k,

MinAnn[g, s + t] ⇒ Ann[g, s + t]

⇒ CharPol[h] (by Lemma 4.3)

⇒ Ann[h, s + t]

⇒ ¬MinAnn[g, s + t],

since the degree of h is less than that of g if h 6= g. Thus

Prob (MinAnn[g, s + t] ∧ ¬MinPol[g]) = 0

in this case.
On the other hand, if s + t ≥ n + m− k and g = h, then it follows by Lemma 4.3 that

MinAnn[g, s + t] ⇒ Ann[g, s + t] ⇒ CharPol[h]

once again. Suppose that the condition MinAnn[g, s + t] is satisfied, and that h is not the minimal
polynomial of the given linearly recurrent sequence. Then, since h is a characteristic polynomial of
the sequence, some divisor ĥ of h, that is not equal to h, must be the minimal polynomial of the
sequence instead. However, this implies that ĥ is also an annihilator of the initial sequence

c0, c1, c2, . . . , cs+t−1

so that the condition MinAnn[g, s + t] is not satisfied, after all. Consequently (since g = h)

MinAnn[g, s + t] ⇒ MinPol[g]

in this case, and
Prob (MinAnn[g, s + t] ∧ ¬MinPol[g]) = 0

once again.
It follows that if s + t ≥ n + m− k then one of conditions (12) or (13) must be satisfied — for

either
Prob (MinAnn[g, s]) = 0,
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implying condition (12), or
Prob (MinAnn[g, s]) > 0,

in which case the ratio shown in condition (13) is equal to zero and condition (13) is satisfied
instead.

It remains only to consider the case that s + t < n + m− k. If this is the case, and

Prob (MinAnn[g, s]) ≤ ε,

then condition (12) is satisfied. It is therefore sufficient to consider the case that s+ t < n +m− k
and

Prob (MinAnn[g, s]) > ε.

However, this implies that

Prob (MinAnn[g, s + t] ∧ ¬MinPol[g])

Prob (MinAnn[g, s])
≤

Prob (MinAnn[g, s + t] ∧ ¬MinPol[g])

ε
(since Prob (MinAnn[g, s]) > ε)

≤
Prob (MinAnn[g, s + t])

ε

≤
Prob (Ann[g, s + t])

ε
≤ qm−s−t/ε (by Lemma 4.3, once again).

Thus one or the other of conditions (12) and (13) is satisfied in every case.

These results can be used to prove the following theorem.

Theorem 4.5. Let f ∈ F[z] be a monic polynomial with degree n over the finite field F = Fq and
suppose that the linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of linearly recurrent sequences with characteristic polynomial f .
Let m and t be integers such that 0 ≤ m ≤ m + t ≤ n − 1. Then the matrix H corresponding
to the above sequence has a harmful gap of length t, beginning at position m, with probability at
most 2q−t/2.

Proof. To begin, recall that a harmful gap of length t can only begin at position m if

∆m 6= 0 = ∆m+1 = ∆m+2 = · · · = ∆m+t. (14)

Since ∆m is the determinant of Hm, the event whose probability we wish to bound can only occur
if the matrix Hm is nonsingular.

It follows by Lemma 2.11 that if ∆m 6= 0 then there is exactly one monic polynomial g ∈ F[x]
with degree m such that g is a minimal annihilator of the initial sequence

c0, c1, c2, . . . , c2m−1.

On the other hand, if ∆m = 0 then Lemma 2.14 implies that there is no minimal annihilator for
the above initial sequence with degree m at all. Therefore

Prob (∆m 6= 0) =
∑

g∈F[x]
g is monic
deg(g)=m

Prob (MinAnn[g, 2m]) . (15)
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Notice that if ∆m 6= 0 and g ∈ F[x] is the minimal annihilator of the initial sequence

c0, c1, c2, . . . , c2m−1,

then Lemma 2.13 can be used to show that the given linearly recurrent sequence has a harmful gap
of length t, beginning at position m, if and only if the condition

MinAnn[g, 2m + t] ∧ ¬MinPol[g]

is satisfied. It follows that the probability that the given sequence has a harmful gap of length t,
beginning at position m, is α(m), where

α(m) =
∑

g∈F[x]
g is monic
deg(g)=m

Prob (MinAnn[g, 2m + t] ∧ ¬MinPol[g]) .

Now let ε be a positive real number. Break the above sum into two pieces,

α(m) = β(m) + γ(m),

where
β(m) =

∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])>ε

Prob (MinAnn[g, 2m + t] ∧ ¬MinPol[g])

and
γ(m) =

∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])≤ε

Prob (MinAnn[g, 2m + t] ∧ ¬MinPol[g])

It follows by Lemma 4.4 (with s = 2m) that

β(m) =
∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])>ε

Prob (MinAnn[g, 2m + t] ∧ ¬MinPol[g])

≤
∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])>ε

(
qm−2m−t/ε

)
Prob (MinAnn[g, 2m])

≤
∑

g∈F[x]
g is monic
deg(g)=m

(
qm−2m−t/ε

)
Prob (MinAnn[g, 2m])

=
(
q−m−t/ε

) ∑

g∈F[x]
g is monic
deg(g)=m

Prob (MinAnn[g, 2m])

=
(
q−m−t/ε

)
Prob (∆m 6= 0) (by Equation (15), above)
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≤ q−m−t/ε.

On the other hand,

γ(m) =
∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])≤ε

Prob (MinAnn[g, 2m + t] ∧ ¬MinPol[g])

≤
∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])≤ε

Prob (MinAnn[g, 2m])

≤
∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])≤ε

ε

= ε
∑

g∈F[x]
g is monic
deg(g)=m

Prob(MinAnn[g,2m])≤ε

1

≤ ε
∑

g∈F[x]
g is monic
deg(g)=m

1

= qmε,

since there are exactly qm monic polynomials g ∈ F[x] with degree m.
Thus

α(m) = β(m) + γ(m) ≤ q−m−t/ε + qmε.

Finally, let ε = q−m−t/2. Then

q−m−t/ε = qmε = q−t/2,

so that
α(m) ≤ q−m−t/ε + qmε = 2q−t/2

as claimed.

Corollary 4.6. Let f ∈ F[z] be a monic polynomial with degree n over the finite field F = Fq and
suppose that the linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of linearly recurrent sequences with characteristic polynomial f .
Then the probability that the corresponding Hankel matrix H has a harmful gap of length t is at
most 2(n− t)q−t/2.
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Proof. If a linearly recurrent sequence c0, c1, . . . has a characteristic polynomial f with degree n
(so that Hi is singular for every integer i > n, by Lemmas 2.14 and 2.15) then the Hankel matrix H
that corresponds to this sequence can only have a harmful gap of length t if this gap begins at
position i, for 0 ≤ i < n− t.

The event considered in the above corollary is therefore the union of n−t of the events considered
in Theorem 4.5. The bound given in this corollary now follows.

The next result will be used to bound the probability of a long sequence of zero-discrepancies.

Lemma 4.7. Suppose that a linearly recurrent sequence

c0, c1, c2

has a harmful sequence of zero-discrepancies of length t. Then the Hankel matrix corresponding to
this linearly recurrent sequence has a harmful gap of length dt/2e.

Proof. Consider the sequence of polynomials

g1, g2, g3, . . .

that are generated by the Berlekamp-Massey algorithm using the given sequence c0, c1, c2, . . . as
input and, as before, set g−1 = 0 and g0 = 1. Suppose that this sequence has a harmful sequence
of zero-discrepancies of length t. Then this must begin at position s, for some integer s ≥ 0, and it
follows by Definition 3.2 that

gs−1 6= gs = gs+1 = · · · = gs+t (16)

but that gs is not the minimal polynomial of the entire sequence c0, c1, c2, . . . .
Suppose that the minimal polynomial of the sequence has degree û. Then it follows by

Lemma 2.15 that H2
�

u is nonsingular and that the minimal polynomial of the sequence is the
unique monic polynomial with minimal degree that annihilates the initial sequence

c0, c1, . . . , c2
�

u−1.

In this case, it must also be the unique monic polynomial with minimal degree that annihilates the
initial sequence

c0, c1, . . . , ck

for every integer k ≥ 2û − 1, as well. It follows that s + t < 2û — for, otherwise, it would be true
that gs = gs+t is the minimal polynomial of the entire sequence, after all.

If we set ̂̀= 0 and recall that ∆0 has been defined to be 1 then, since s ≥ 0, it follows that ̂̀
and û are nonnegative integers such that 2̂̀≤ s, s + t < 2û, and such that ∆ �

`
and ∆ �

u are both
nonzero.

Suppose, now, that ∆i = 0 for every integer i such that s < 2i ≤ s + t. Set ` to be the largest
integer such that s ≥ 2` and ∆` 6= 0, and set u to be the smallest integer such that s + t < 2u and
such that ∆u 6= 0. Then, one can apply Lemmas 2.12 and 2.13 to see that

g2` = g2`+1 = · · · = g`+u−1,

and that g2` has degree `, while the polynomials

g`+u, g`+u+1, . . . , g2u
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all have degree u. In particular, one can see that this is the case by an application of the above
lemmas for the case that j = u − `. It now follows, by an inspection of Equation (16) above, that
either 2` ≤ s ≤ s + t ≤ ` + u− 1, or that ` + u ≤ s ≤ s + t ≤ 2u. It follows in either case that

t = (s + t)− s ≤ u− `,

so that the given sequence has a harmful gap of length t. This clearly implies that it has a harmful
gap of length dt/2e.

Suppose next that there is exactly one integer i such that s < 2i ≤ s + t and such that ∆i 6= 0.
As above, let ` the the largest integer such that s ≥ 2` and ∆` 6= 0, and let u be the smallest
integer such that s+ t < u and such that ∆u 6= 0. Now Lemmas 2.12 and 2.13 can be applied, once
again, in order to see that

g2` = g2`+1 = · · · = g`+i−1,

and that g2` has degree `. Furthermore, the polynomials

g`+i, g`+i+1 + · · · + g2i

all have degree i;
g2i = g2i+1 = · · · = gi+u−1;

and the polynomials
gi+u, gi+u+1, . . . , g2u

all have degree u. One can conclude from these relationships and Equation (16) that ` + i ≤ s ≤
s + t ≤ i + u− 1. Thus

t = (s + t) − s ≤ (i + u) − (`− i) = (i − `) + (u − i).

Therefore at least one of ` − i or i − ` must be greater than or equal to dt/2e, implying that the
given sequence has a harmful gap of length dt/2e, once again.

In the only remaining case, there must be at least two distinct integers, i1 and i2, such that
s < 2i1 < 2i2 ≤ s + t and such that ∆i1 and ∆i2 are nonzero. However, it follows by Lemma 2.14
that gi1 has degree i1 and that gi2 has degree i2. Thus gi1 6= gi2 , contracting Equation (16), above.
Therefore, this case cannot arise.

The given sequence therefore has a harmful gap of length dt/2e in every case that can possibly
arise, as is required to establish the lemma.

The next result is a consequence of Corollary 4.6 and Lemma 4.7.

Corollary 4.8. Let f ∈ F[z] be a monic polynomial with degree n over the finite field Fq and
suppose that the linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of linearly recurrent sequences with characteristic polynomial f .
Then the probability that this linearly recurrent sequence has a harmful sequence of zero discrepan-
cies of length t is at most 2(n − t/2)q−t/4.
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4.3 Bounding the Probability that Harmful Sequences are Short

It is unlikely that the bounds in the above corollaries are tight. However, the next results suggest
that improvements to these bounds will not lead to significant improvements of results concerning
the reliability of algorithms.

Theorem 4.9. Let f ∈ F[z] be a monic polynomial with degree n over the finite field Fq and suppose
that the linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of linearly recurrent sequences with characteristic polynomial f .
Let t be a positive integer such that n ≥ 2t. Then the probability that the above sequence does

not have a harmful sequence of zero-discrepancies, of length t− 1, is at most e−n/(2tqt).

Proof. Let f and n be as given in the statement of the theorem.
Recall that there are qn linearly recurrent sequences

c0, c1, c2, . . .

with entries in the field F = Fq with minimal polynomial f , and that there is exactly one such
sequence that begins with the initial sequence

c0, c1, . . . , cn−1

for any choice of values c0, c1, . . . , cn−1 ∈ F. It follows that if a linearly recurrent sequence is uni-
formly selected from the set of sequences with characteristic polynomial f , then the first n entries of
this sequence are uniformly and independently chosen from F. That is, the probability distributions
are the same.

Suppose now that t is a positive integer such that n ≥ 2t. Partition the first bn/tc · t ≤ n entries
of a given sequence into bn/tc blocks that each include t consecutive coefficients of the sequence,
so that the ith block consists of the coefficients

c(i−1)t, c(i−1)t+1, . . . , cit−1

for 1 ≤ i ≤ bn/tc.
Consider the event, Ei, that

g(i−1)t = g(i−1)t+1 = · · · = git−1 6= git.

The polynomial g(i−1)t certainly does depend on coefficients cj for j < (i−1)t. However, the above
event Ei does not — for every possible choice of g(i−1)t, there is exactly one way to choose the
entries

c(i−1)t, c(i−1)t+1, . . . , cit−2

so that
g(i−1)t = g(i−1)t+1 = · · · = git−1,

and there are then exactly q − 1 ways to choose the next entry, cit−1, in order to achieve the
condition that git−1 6= git.

Using this observation, one can establish that the events

E1, E2, . . . , Ebn/tc
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are mutually independent, so that their negations

¬E1,¬E2, . . . ,¬Ebn/tc

are mutually independent as well. It also follows that

Prob (Ei) =
q − 1

qt
= q1−t − q−t

for 1 ≤ i ≤ bn/tc.
Consider the condition discussed in the statement of the theorem, namely, the condition that

the sequence
c0, c1, c2, . . .

does not have a harmful sequence of zero-discrepancies of length t− 1. If this condition is satisfied
then none of the events E1, E2, . . . , Ebn/tc, is satisfied. The probability of the condition that is
mentioned in the theorem is therefore at most

Prob
(
¬E1 ∧ ¬E2 ∧ · · · ∧ ¬Ebn/tc

)

=

bn/tc∏

i=1

Prob (¬Ei) (by mutual independence)

=

bn/tc∏

i=1

(
1 − q1−t + q−t

)

≤

bn/tc∏

i=1

(
1 − q−t

)
(since q ≥ 2)

=
(
1 − q−t

)bn/tc

≤
(
1 − q−t

)n/2t
(since n

2t ≤
n
t − 1 ≤ bn

t c when n ≥ 2t)

=
((

1 − q−t
)qt

) n

2tqt

≤ e
− n

2tqt (since (1 − 1/x)x ≤ e−1 for any positive real number x).

This desired bound has now been established.

Corollary 4.10. Let f ∈ F[z] be a monic polynomial with degree n over the finite field Fq and
suppose that the linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of linearly recurrent sequences with characteristic polynomial f .
Let t be a positive integer such that n ≥ 4t.

Then the probability that the Hankel matrix H that corresponds to the above sequence does not
have harmful gap, of length t− 1, is at most e−n/(4tq2t).

Proof. Recall that, by Lemma 4.7, if a given linearly recurrent sequence

c0, c1, c2, . . .
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has a harmful sequence of zero-discrepancies of length 2t − 2, then the corresponding Hankel ma-
trix H has a harmful gap of length (2t − 2)/2 = t− 1, as well.

It follows that if the given Hankel matrix does not have a harmful gap of length t− 1 then the
linearly recurrent sequence does not have a harmful sequence with zero-discrepancies of length 2t−2.
This certainly implies this linearly recurrent sequence does not have a harmful sequence of zero-
discrepancies of length 2t − 1, either.

Therefore, the probability that the Hankel matrix does not have a harmful gap of length t− 1
is less than or equal to the probability that the linearly recurrent sequence does not have harmful
sequence of zero-discrepancies of length 2t− 1.

The result now follows by a straightforward application of Theorem 4.9 (with 2t replacing t in
the statement of the theorem).

5 Solving Systems of Linear Equations

Lemma 4.2 implies that the bounds on probabilities given in Theorems 4.5 and 4.9 and Corollar-
ies 4.6, 4.8, and 4.10 are correct when one attempts to solve a system of linear equations

Ax = b

for a given nonsingular matrix A ∈ F
N×N and vector b ∈ F

N×1, over a finite field F = Fq, by
choosing a vector u uniformly from F

N×1 and considering the resulting linearly recurrent sequence

c0, c1, c2, . . .

where ci = uT Aib for every integer i ≥ 0.
There are several different (closely related) algorithms that make use of this sequence, in some

way. These include Wiedemann’s algorithm [19], a modification of the algorithm of Lanczos [11]
that can be applied to systems whose coefficient matrix is not symmetric and that incorporates
a “lookahead” process to continue computation when orthogonal vectors are encountered, and,
finally, a hybrid algorithm that computes both the sequence of polynomials generated using the
Berlekamp-Massey process, and the vectors generated by the Lanczos computation, such as the
algorithm described in Section 3.4 of the thesis of Lambert [10]. Each of these is discussed below.

5.1 Wiedemann’s Algorithm

Once again, consider the given system of linear equations, Ax = b. Let b1 = b and let f1 be the
minimal polynomial of the matrix A and vector b1. Let d1 be the degree of f1.

When Wiedemann’s algorithm is applied, the Berlekamp-Massey algorithm is used to recover
the minimal polynomial g1 of the above linearly recurrent sequence,

c0, c1, c2, . . . where ci = uT
1 Aib1,

for a randomly selected vector u1 ∈ F
N×1. An estimate of the solution for the given system is also

produced. If g1 = f1 then the estimate is, in fact, the solution for this system of equations.
On the other hand, if the estimate is not the solution, so that g1 is a divisor of f1 and g1 6= f1,

then the information that has been generated is applied to reduce the originally given problem to
that of solving a system

Ax = b2,
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where b2 is a vector such the minimal polynomial of A and b2 is f2 = f1/g1.
Continuing as needed, one obtains an iterative process, in which one wishes to solve a system

Ax = bi at the beginning of the ith iteration, and in which one is either successful (so that the
process terminates) or a vector bi+1 is formed for use in the i + 1st iteration of the process. If fi is
the minimal polynomial of A and bi, and di is the degree of fi, then di+1 ≤ di if an i +1st iteration
is required.

Wiedemann proves that if the resulting iterative process is applied, and the vectors u1, u2, . . .
that are required for each iteration are uniformly and independently chosen from F

N×1, then a
solution for the original solution is obtained, with high probability, after a constant number of
iterations.

Wiedemann also analyzes the cost of each iteration. Suppose that n is an upper bound on the
degree of the unknown minimal polynomial of the matrix A and vector b that is being considered
during a given iteration. Then this iteration of Wiedemann’s process can either be implemented
to use up to 3n multiplications of the given matrix A by vectors, O(nN) additional arithmetic
operations over F, and while storing O(N) elements of F, or it can be implemented to use up to 2n
multiplications of the given matrix A by vectors, O(nN) additional arithmetic operations over F,
and while storing O(nN) field elements.

The time required for this process is generally dominated by the cost of multiplications of
the given matrix A by vectors. Consequently the time used by the second implementation can
be considerably lower than that of the first. However, the storage requirements for the second
implementation frequently prohibit its use.

One can obtain a rather naive (and, probably, pessimistic) upper bound on the expected cost
of the entire process by multiplying the expected number of iterations that are required by the
worst-case cost of a single iteration.

In contrast, a Las Vegas algorithm whose worst-case expected running time closely matches that
of a single iteration of the Wiedemann process can be obtained by incorporating early termination.
Consider, once again, a system Ax = b that is to be solved during a given iteration. Once again, let
n be an upper bound on the degree of the minimal polynomial of A and b; one can certainly use N as
this upper bound for the initial iteration of the process. Suppose, furthermore, that the Berlekamp-
Massey process is terminated, either after 2n terms of the corresponding linearly recurrent sequence
have been processed, or after a sequence of zero-discrepancies with length d8 logq Ne + 1 has been
encountered. Suppose, as well, that the minimal polynomial of the linearly recurrent sequence
that is currently being processed (using the Berlekamp-Massey algorithm) has degree d. Then
the number of multiplications of A by vectors, required for this iteration, can be bounded by
either 2d + O(logq N), if the space-inefficient implementation of Wiedemann’s process is used, or
3d + O(logq N), if the space-efficient one is used instead. Each iteration is correct (that is, early
termination does not introduce an error) with probability at least 1 − 1/N .

Wiedemann’s bound on the expected number of iterations can now be applied to conclude that
the worst case expected number of multiplications of A by vectors, required for the entire process,
is either 2n + O(logq N) for the space-inefficient implementation, or 3n + O(logq N) for the space-
efficient implementation, where n is used here to denote the degree of the minimal polynomial of A
and b, where b is the originally given vector, and where A ∈ F

N×N as above. The worst case
expected number of additional operations over F changes by at most a small constant factor, and
the storage requirements are unchanged.

Theorem 4.9 indicates that one should not expect to be able to do significantly better than this
in all cases. Suppose, once again, that one is processing a linearly recurrent sequence that is derived
from a matrix A and vector b, such that the minimal polynomial of A and b has degree n. Suppose,
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as well, that the Berlekamp-Massey algorithm is terminated as soon as a sequence of 1
3 logq n

zero-discrepancies is encountered. Then the probability that the result is correct is provably low.
For example, an upper bound on the probability of correctness of n−1/2 is easily established, for
sufficiently large n.

5.2 The Lanczos Process

There are several different ways in which one might modify the Lanczos algorithm in order to solve
systems of linear equations over finite fields. The discussion of the cost of this approach is based
on the work of Lambert [10], who contributes a detailed analysis along with additional references.

In general, when applying a version of the Lanczos algorithm that does not require the given
coefficient matrix A to be symmetric, one attempts to construct a dual orthogonal basis for a pair
of vector spaces, namely, the spaces generated by the sequences of vectors

b, Ab,A2b, A3b, . . .

and
u,AT u, (AT )2u, (AT )3u, . . . .

Difficulties arise when a sequence of vectors from the former space, that are all orthogonal to a
given vector in the latter space, are encountered. A “lookahead” process is included to handle these
difficulties.

As noted by Lambert, one can implement a lookahead process in more than one way; space-
efficient and space-inefficient implementations can be considered once again. The worst-case number
of multiplications of A or AT by vectors, for the space-efficient implementation, does not appear
to be very different from the number given above, for the space-efficient implementation of a single
iteration of Wiedemann’s process. The worst case number of multiplications of A or AT by vectors,
for the space-inefficient implementations of (a single iteration of) the Wiedemann process and a
Lanczos process, appear to agree as well. However, the space requirements for the “space-inefficient”
implementation are much better: The number of elements of F that must be stored (at one time)
can now be bounded by O(NL) where L is the maximum “size of a lookahead block” (as defined
by Lambert). One can see by Lambert’s analysis that this is the same as the maximum length of a
harmful gap for the Hankel matrix H that corresponds to the linearly current sequence that is being
processed. Thus the expected amount of space required, in order to match the time requirements
given for the space-inefficient version of Wiedemann’s algorithm, is in O(N logq N) — rather than
Θ(N2), as is the case for the Wiedemann process.

Unfortunately, if the only modifications to the Lanczos process are the ones mentioned above,
then one should not expect the process to result in a solution for the given system unless the
minimal polynomial of the linearly recurrent sequence

c0, c1, c2, . . . where ci = uT Aib

is the same as the minimal polynomial f of A and b. Early termination can be incorporated to
determine whether this is the case somewhat sooner than would otherwise be possible. However,
this version of the Lanczos process does not provide a way to use the information gained, when
the two “minimal polynomials” mentioned above are different, in order to reduce the cost of later
attempts.

One naive approach that can be used to overcome this difficulty is to use independent trials of
the Lanczos process, in hopes that one of these trials will succeed (that is, in hopes that the two
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“minimal polynomials” mentioned above are, in fact, the same). A part of the probabilistic analysis
of Wiedemann’s algorithm (specifically, Proposition 3 in Section VI of Wiedemann’s paper [19])
can be used to establish that this approach will succeed, with high probability, if Θ(logq N) trials
are used. However, the time required for this process is considerably higher than that needed with
Wiedemann’s approach, when this number of independent trials is used.

5.3 Lambert’s Combined Approach

Lambert’s work provides a unification of the Wiedemann and Lanczos approaches. As part of this
work, a hybrid algorithm that produces both the sequence of vectors one would obtain from the
Lanczos process, and the polynomials generated by the Berlekamp-Massey algorithm, is described
in Chapter 3 of Lambert’s thesis [10].

Lambert’s thesis should be consulted for a detailed description of this algorithm. A combination
of a brief analysis of the algorithm that is presented at the end of Chapter 3 of the thesis, the results
of this paper (which eliminate an assumption that is used in Lambert’s analysis), and results from
Wiedemann’s analysis of his own algorithm, provides an analysis of a Wiedemann-style iterative
algorithm in which applications of the Berlekamp-Massey algorithm are replaced with applications
of Lambert’s. The expected number of multiplications of the matrix A by vectors is 2n+O(logq n),
the expected number of additional operations in F is in O(nN), and the expected amount of storage
space required is in O(N logq N). Thus this algorithm comes close to combining the advantages of
both implementations of Wiedemann’s algorithm.

6 Related Problems

The results presented above require the assumption that elements of the ground field F are selected
uniformly and independently from F when vectors are formed. One might also consider the case
that these elements are selected uniformly and independently from a smaller subset S of F. In an
extreme case, F is infinite and S = {0, 1}.

The Schwartz-Zippel lemma [17], [20] has been applied to closely related problems. For ex-
ample, the results of Kaltofen and Pan [9] can be used to bound the probability that a se-
quence c0, c1, c2, . . . , whose elements are randomly selected as discussed here, has a harmful zero-
discrepancy with length at least two. The resulting probability bound is nontrivial (that is, less
than 1) when |S| > N , and it decreases as |S| increases. Unfortunately, there is no apparent way
to obtain improved bounds for longer sequences of zero-discrepancies, or to obtain bounds that are
of much use at all for the case |S| < N . There is no obvious way to modify the results presented
in Section 4, above, in order to obtain a probability analysis for this version of the problem, either.
Since one might wish to choose values from a very small set S, in order to reduce the precision
needed for computations, this version of the problem is of potential interest.

The work presented in this paper does not address the behaviour of some additional Krylov-
based algorithms that are in use. In particular, it is not directly relevant to versions of either
Wiedemann’s algorithm or a Lanczos algorithm that require the coefficient matrix A to be sym-
metric and that perform computations involving a linearly recurrent sequence

c0, c1, c2, . . .

where ci = bT Aib for a single randomly chosen vector b. There is work to be done to analyze the
reliability of these algorithms when they are used to solve symmetric linear systems of equations
over small finite fields.
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There is also work remaining in order to analyze the reliability of algorithms that process blocks
of vectors. While block Wiedemann algorithms are now well understood in the small field case
(see, in particular, the work of Villard [18] and the references therein), the same cannot be said for
Lanczos-style algorithms that process blocks of vectors. Such “block-Lanczos” algorithms have been
considered by several authors, including Coppersmith [4] and Montgomery [15], [16]; Montgomery’s
algorithm includes a form of early termination and has not been completely analyzed. In addition,
Austin Lobo [12] reports experimental results concerning the use of early termination, for block
algorithms in the small field case, providing questions for additional study.

Therefore, regardless of whether (or how) the results of the current paper can be applied, it is
clear that interesting work in this area remains to be done.
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