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ABSTRACT
Krylov-based algorithms have recently been used (alone, or
in combination with other methods) in order to solve sys-
tems of linear equations that arise during integer factoriza-
tion and discrete logarithm computations. Since these in-
clude systems over small finite fields, the behaviour of these
algorithms in this setting is of interest.

Unfortunately, the application of these methods is com-
plicated by the possibility of several kinds of breakdown.
Orthogonal vectors can arise when a variant of the Lanczos
algorithm is used to generate a basis, and zero-discrepancies
can arise during the computation of minimal polynomials of
linearly recurrent sequences when Wiedemann’s algorithm
is applied.

Several years ago, Austin Lobo reported experimental ev-
idence that zero-discrepancies are extremely unlikely when a
randomized version of Wiedemann’s algorithm is applied to
solve systems over large fields. With high probability, results
are correct if a computation is terminated as soon as such a
sequence is detected. “Early termination” has consequently
been included in recent implementations.

In this paper, we analyze the probability of long sequences
of zero-discrepancies during computations of minimal poly-
nomials of the linearly recurrent sequences that arise when
simple Krylov-based algorithms are used to solve systems
over very small finite fields. Variations of these algorithms
that incorporate early termination are briefly presented and
analyzed in the small field case.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms, analysis of algorithms; F.2.1
[Analysis of Algorithms and Problem Complexity]:
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1. INTRODUCTION
Consider the problem of solving a system of linear equa-

tions

Ax = b

where A ∈ F
N×N is an N × N matrix and b ∈ F

N×1 is a
vector with dimension N over the finite field F = Fq with
q elements. A related problem which is also of interest is the
computation of an element of the nullspace of such a ma-
trix A. Indeed, instances of these problems are formed and
solved in modern algorithms for integer factorization and
discrete logarithm computations. In particular, the latter
problem arises with F = F2 when the number field sieve is
applied ([2]), while computations over Fq arise for larger q
during discrete logarithm computations.

Several different “Krylov-based” methods for these prob-
lems have been proposed, implemented and analyzed in re-
cent years. In contrast with elimination-based methods,
these do not manipulate the entries of the coefficient ma-
trix A. Instead, these algorithms work over the vector sub-
space generated by the vectors

b, Ab,A2b, A3b, . . .

for some vector b.
In particular, one version of Wiedemann’s algorithm [19]

considers the linearly recurrent sequences

c0, c1, c2, . . . , where ci = uT Aib

that are formed using uniformly and independently selected
vectors u ∈ F

n×1. The minimal polynomials of these se-
quences are computed using the Berlekamp-Massey algo-
rithm [1], [14], and these polynomials are combined to ob-
tain the minimal polynomial of the matrix A and vector b
— that is, the monic polynomial f ∈ F[x] with least degree



such that f(A)b = 0. If A is nonsingular or, more generally,
if f(0) 6= 0, then a solution for the given system is easily
recovered after that.

Similarly, a version of the Lanczos algorithm [11] works
with one or more uniformly and independently selected vec-
tors u as well. In this case, an orthogonalization process is
used to try to construct dual orthogonal bases for the pair
of subspaces that are generated by the vectors

b, Ab,A2b, A3b, . . .

and

u, AT u, (AT )2u, (AT )3u, . . . .

While these algorithms are not identical, they are closely
related; Lambert [10] provides a unified treatment of these
and several other variants.

Unfortunately, these computations are complicated by the
possibility of various kinds of breakdown. A long sequence of
zero-discrepancies might arise when the Berlekamp-Massey
algorithm is applied during an execution of Wiedemann’s
algorithm, while one might obtain a long sequence of or-
thogonal vectors when the Lanczos algorithm is applied.

Several years ago, Austin Lobo [12] reported experimen-
tal evidence that zero-discrepancies are extremely unlikely
when the Berlekamp-Massey algorithm is used in an appli-
cation of Wiedemann’s algorithm to solve a system of linear
equations over a large field. If “random” field elements are
chosen uniformly and independently from a sufficiently large
subset of the ground field, and the computation is termi-
nated as soon as a short sequence of zero-discrepancies has
been encountered, then the probability that the resulting
values are correct appears to be high. Lobo reported that
a window of twenty zero-discrepancies was a good early-
termination threshold, and he has subsequently conjectured
that it is also safe to terminate the algorithm after a sin-
gle zero-discrepancy has been encountered in the large field
case.

“Early termination” has consequently been included in
recent implementations of Krylov-based algorithms.

Kaltofen, Lee, and Lobo [8] describe an application of
this “early termination” idea in a different setting. They
have also reported experimental evidence that the current
analysis of this may be pessimistic. In particular, their work
provides additional evidence that early termination might
also be reliable for computations over small fields.

As noted by Dornstetter [5], the Berlekamp-Massey algo-
rithm and the Euclidean algorithm are closely related. A
study involving zero-discrepancies has consequently been a
part of the analysis of the Euclidean algorithm. Ma and
von zur Gathen [13] present relevant results and can be con-
sulted for additional references. However, the work men-
tioned there concerns a different situation. Furthermore, it
would seem to be more relevant to an average case analy-
sis than a worst case analysis of the algorithms considered
here, since it seems to require that the polynomial f (cor-
responding to the minimal polynomial of A and b in the
above discussion) is also randomly selected. Nevertheless it
also suggests that zero-discrepancies are infrequent in the
small field case.

In this paper, it is established that a version of early ter-
mination is, indeed, reliable when the randomized Krylov-
based algorithms, mentioned above, are used to solve sys-
tems over small fields. If a vector u is uniformly selected

and used to form a linearly recurrent sequence

c0, c1, c2, . . . , where ci = uT Aib,

and if a sequence of more than a logarithmic number of
zero-discrepancies is detected during an application of the
Berlekamp-Massey algorithm to compute the minimal poly-
nomial of the above sequence c0, c1, c2, . . . , then one can
reliably terminate the computation with high probability,
regardless of the choice of the matrix A or vector b, and
for a computation over any field. On the other hand, early
termination is provably unreliable if it is performed before a
sequence of Θ(logq N) zero-discrepancies has been seen. The
results of this paper also establish a bound on the expected
amount of “lookahead” that is required when a randomized
Lanczos algorithm of the type described above is used to
solve an arbitrary nonsingular system of linear equations or
to sample from the nullspace of a given matrix.

This paper also includes a brief presentation of Krylov-
based algorithms that incorporate early termination and
that can be used to solve nonsingular systems of linear equa-
tions over finite fields. As noted above, algorithms that
sample from the nullspace of a singular matrix are also of
considerable interest. While some conclusions about these
algorithms can be reached, on the basis of this work, these
algorithms are not considered in any detail here. A more
complete analysis of such algorithms requires additional re-
sults and will be considered in future work.

Finally, it should be noted that this work is part of an
ongoing study of “black box linear algebra.” The report of
Chen, et al [3] includes a discussion of the application of
Krylov-based algorithms to solve related problems as well
as additional techniques that should be considered.

Linearly recurrent sequences and their properties are con-
sidered below, in Section 2. Additional details concern-
ing the Berlekamp-Massey algorithm are presented in Sec-
tion 3. Properties of “randomly chosen” linearly recurrent
sequences, and the main technical results in this report, are
found in Section 4. These technical results are applied, to
consider Krylov-based algorithms to solve nonsingular sys-
tems of linear equations, in Section 5. Finally, related prob-
lems that should be considered in future work are described
in Section 6.

This extended abstract does not include proofs of the tech-
nical results that are presented. A more complete version [6]
that includes these arguments is now available.

2. LINEARLY RECURRENT SEQUENCES

2.1 Characteristic and Minimal Polynomials
Once again, let

c0, c1, c2, . . .

be a sequence of values in a field F, and let g be a nonzero
polynomial

g = β0 + β1x + · · ·+ βm−1x
m−1 + βmxm ∈ F[x]

with degree m ≥ 0. We say that g is a characteristic poly-
nomial of the sequence c0, c1, c2, . . . if

β0cj + β1cj+1 + · · · + βm−1cj+m−1 + βmcj+m = 0 (1)

for every integer j ≥ 0.
It is not necessarily the case that a given sequence has

a characteristic polynomial at all. A sequence c0, c1, c2, . . .



is linearly recurrent if it does have a nonzero characteristic
polynomial.

Suppose now that a given sequence is linearly recurrent.
Such a sequence has more than one characteristic polyno-
mial. Indeed, it can be shown that the set of polynomi-
als that are characteristic polynomials of this sequence (to-
gether with the zero polynomial) forms an ideal in F[x].
Since F[x] is a principal ideal domain, this ideal has a gen-
erator. There is, consequently, a unique monic polynomial
g ∈ F[x] such that g is a characteristic polynomial of the se-
quence and such that h ∈ F[x] is a characteristic polynomial
of the sequence if and only if h is a nonzero multiple of g,
for every polynomial h ∈ F[x]. This polynomial, g, is called
the minimal polynomial of the above linearly recurrent se-
quence.

Henceforth, let us consider a fixed linearly recurrent se-
quence c0, c1, c2, . . . . We will use the expression “CharPol[g]”
to denote the property that a polynomial g is a characteris-
tic polynomial of the sequence c0, c1, c2, . . . . The expression
“MinPol[g]” will denote the property that g is the minimal
polynomial.

2.2 Annihilators
It will also be useful to consider initial sequences of finite

length. For a positive integer i and a polynomial

g = β0 + β1x + · · · + βm−1x
m−1 + βmxm ∈ F[x],

with degree m, we will say that g is an annihilator of the
initial sequence c0, c1, . . . , ci−1 if

β0cj + β1cj+1 + · · ·+ βm−1cj+m−1 + βmcj+m = 0

for every integer j such that 0 ≤ j ≤ i− 1−m, and we will
use the expression “Ann[g, i]” to denote this property. Note
that the property is trivial if i ≤ m. On the other hand, g
is a characteristic polynomial for the sequence c0, c1, c2, . . .
if and only if Ann[g, i] for every integer i.

It will be useful to have a notion of a “minimal anni-
hilator” of an initial sequence as well. We will say that a
polynomial g is a minimal annihilator of the initial sequence
c0, c1, . . . , ci−1 if g is monic, g is an annihilator of this initial
sequence, and if no nonzero polynomial whose degree is less
than that of g is an annihilator of this initial sequence as
well. We will use the expression “MinAnn[g, i]” to denote
this property.

Unfortunately, these “minimal annihilators” are not gen-
erally unique. They are, however, unique under some addi-
tional conditions, and this will be sufficient for our purposes.
Consider, therefore, the Hankel matrix

H =

������
�

c0 c1 c2 · · · cn−1

c1 c2 c3 · · · cn

c2 c3 c4 · · · cn+1

...
...

...
. . .

...
cn−1 cn cn−1 · · · c2n−2

� �����
� (2)

whose entry in row i and column j is ci+j−2 for 1 ≤ i, j ≤ n,
where n is a given upper bound on the degree of the minimal
polynomial of the sequence c0, c1, c2, . . . . Consider the mth

principal minor of this matrix

Hm =

������
�

c0 c1 c2 · · · cm−1

c1 c2 c3 · · · cm

c2 c3 c4 · · · cm+1

...
...

...
. . .

...
cm−1 cm cm−1 · · · c2m−2

� �����
� (3)

for 1 ≤ m ≤ n.

Lemma 1. Let m be an integer such that 1 ≤ m ≤ n and
consider the initial sequence

c0, c1, . . . , c2m−1

with length 2m. This sequence has a minimal annihilator
with degree m if and only if the matrix Hm is nonsingular.

Furthermore, if Hm is nonsingular, then the minimal an-
nihilator of the above initial sequence is unique.

Lemma 2. Suppose that

c0, c1, c2, . . .

is a linearly recurrent sequence whose entries are not all
zero. Suppose as well that g is the minimal polynomial of
this sequence and let m be the degree of g.

Then the Hankel matrix Hm is nonsingular, and g is also
the unique minimal annihilator of the initial sequence

c0, c1, . . . , c2m−1.

3. THE BERLEKAMP-MASSEY
ALGORITHM

The properties that were presented in the previous section
are exploited by the Berlekamp-Massey algorithm. This al-
gorithm uses an upper bound n on the degree of the minimal
polynomial of a linearly recurrent sequence, and the first 2n
entries

c0, c1, . . . , c2n−1

of the sequence, to compute the minimal polynomial. The
algorithm generates a sequence

g1, g2, . . . , g2n

of monic polynomials such that gi is a minimal annihilator
of the initial sequence c0, c1, . . . , ci−1 for 1 ≤ i ≤ 2n.

Now suppose that the entire sequence has minimal poly-
nomial g and let m be the degree of g. Then m ≤ n and
it follows by Lemma 2, above, that g = g2m. Furthermore,
since g is both the only monic annihilator for the initial
sequence

c0, c1, . . . , c2m−1

with degree at most m, and the minimal polynomial of the
entire sequence, it must the only monic annihilator for each
sequence

c0, c1, . . . , ci

with degree at most m, for every integer i ≥ 2m− 1 as well.
Thus

g = g2m = g2m+1 = · · · = g2n.

The algorithm therefore returns the final polynomial, g2n,
that it generates, as the minimal polynomial of the entire
sequence.



As this description may suggest, time can be saved when
m < n, if one can determine (reliably) that the minimal
polynomial of the entire sequence has been generated be-
fore all of the initial 2n entries of the sequence have been
considered.

Let us now consider a fixed sequence c0, c1, c2, . . . , along
with an upper bound n on the degree of its minimal poly-
nomial. Let g1, g2, . . . , g2n be the sequence of polynomials
generated by the Berlekamp-Massey algorithm when it is
given c0, c1, . . . , c2n−1 and n as input. For the purposes of
the following definitions, set g−1 = 0 and g0 = 1.

We will say that the given sequence c0, c1, c2, . . . has a
zero-discrepancy at position i (for i ≤ 2n − 1) if gi = gi+1,
and that the sequence has a sequence of zero-discrepancies
of length j beginning at position i (for i + j ≤ 2n) if

gi−1 6= gi = gi+1 = · · · = gi+j .

We will call this a harmful sequence of zero-discrepancies if
gi is not equal to the minimal polynomial of the linearly re-
current sequence c0, c1, c2, . . . . We will say that the sequence
c0, c1, c2, . . . has a harmful sequence of zero-discrepancies of
length j if it has a harmful sequence of zero-discrepancies of
length j beginning at position i, for some integer i such that
0 ≤ i < 2n − j.

Consider again the matrix H shown in Equation (2). Let
∆i be the determinant of the ith principal minor Hi of this
matrix if 1 ≤ i ≤ n and define ∆0 to be 1. We will say that
H has a gap of length j beginning at position i if

∆i 6= 0 = ∆i+1 = ∆i+2 = · · · = ∆i+j .

We will call this a harmful gap if ∆` 6= 0 for some integer
` > i + j. We will say that H has a harmful gap of length j
if H has a harmful gap of length j beginning at position i
for some integer i such that 0 ≤ i < n − j.

4. RANDOM SEQUENCES
One objective of this work is to show that long sequences

of zero-discrepancies, that are harmful, are unlikely when
the Berlekamp-Massey algorithm is applied as part of a ran-
domized algorithm to solve a system of linear equations over
a finite field. We will show that harmful gaps that are long
are unlikely, as well.

Let us therefore return attention to the original problem,
namely, the consideration of a system

Ax = b,

where A ∈ F
N×N , b ∈ F

N×1, and F = Fq is a finite field
with q elements. The set of polynomials g ∈ F[x], such that
g(A)b = 0, forms an ideal in F[x]. Since the characteris-
tic polynomial of A is an element of this ideal, the ideal is
nonzero. There is, therefore, a monic polynomial f ∈ F[x]
that generates this ideal. This polynomial is called the min-
imal polynomial of A and b, and it follows by its definition
that g(A)b = 0 if and only if g is a multiple of f , for every
polynomial g ∈ F[x]. As suggested in the introduction, this
is also the (unique) monic polynomial f of least degree such
that f(A)b = 0.

Suppose, now, that f has degree n and that

f = α0 + α1x + · · ·+ αn−1x
n−1 + xn.

Then 0 ≤ n ≤ N , since the characteristic polynomial of A
has degree N and is a multiple of f .

As mentioned in the introduction, the algorithms to be
studied select a random vector u ∈ F

N×1 and consider the
sequence c0, c1, c2, . . . , where

ci = uT Aib for i ≥ 0. (4)

Note that if j ≥ 0 then

α0cj + α1cj+1 + · · ·+ αn−1cj+n−1 + cj+n

= uT Ajf(A)b = 0.

Therefore any sequence c0, c1, c2, . . . that is generated in this
way is linearly recurrent, and f is a characteristic polynomial
(although, not necessarily the minimal polynomial) of this
sequence.

It will be necessary to identify the probability that a given
linearly recurrent sequence is generated, by the above pro-
cess, in order to analyze the algorithms that are of interest.
It follows by the definition of a “characteristic polynomial”
of a linearly recurrent sequence that if the initial n entries

c0, c1, . . . , cn−1

are given, along with the information that f is a charac-
teristic polynomial of the sequence to be studied, then the
remaining entries

cn, cn+1, cn+2, . . .

are fixed. On the other hand, the condition that f is a
characteristic polynomial of the sequence does not constrain
the choice of the initial n entries of the sequence at all. It
follows that (since F = Fq is a finite field of size q) there
are exactly qn linearly recurrent sequences with entries in F

that have f as a characteristic polynomial.

Lemma 3. Let A ∈ F
N×N , let b ∈ F

N×1, and suppose
that f ∈ F[x] is the minimal polynomial of A and b. Let n
be the degree of f .

Let s0, s1, s2, . . . be any linearly recurrent sequence with
entries in F and with characteristic polynomial f .

Finally, suppose that a vector u is chosen uniformly and
randomly from F

N×1, and let cj = uT Ajb for j ≥ 0. Then

ci = si for every integer i ≥ 0

with probability q−n.

In other words, the randomized algorithms that are to
be studied generate the linearly recurrent sequences with
characteristic polynomial f uniformly.

The next result follows by an application of the theory of
subresultants. The text of von zur Gathen and Gerhard [7]
includes a readable introduction to this theory, as well as
additional references.

Lemma 4. Let f ∈ F[z] be a monic polynomial with de-
gree n and let g ∈ F[z] be a monic polynomial with degree m,
where m ≤ n and where F = Fq is the finite field with q el-
ements. Suppose that the greatest common divisor h of f
and g has degree k. Finally, let s be an integer such that
m ≤ s ≤ 2n.

Let c0, c1, c2, . . . be uniformly chosen from the set of se-
quences with characteristic polynomial f .

If s < n + m − k then the above sequence satisfies the
condition

Ann[g, s]



with probability qm−s.
If s ≥ n + m − k then the above sequence satisfies the

condition

Ann[g, s]

with probability qk−n, and the conditions

Ann[g, s] and CharPol[h]

are equivalent.

This lemma is used to establish the one that follows.

Lemma 5. Let f , g, h, n, m, and k be as in the statement
of the previous lemma. Suppose, once again, that

c0, c1, c2, . . .

is uniformly chosen from the set of sequences with with char-
acteristic polynomial f . Let s and t be nonnegative integers
such that m ≤ s ≤ s + t ≤ 2n, and let ε be a positive real
number. Then either

Prob (MinAnn[g, s]) ≤ ε (5)

or

Prob (MinAnn[g, s + t] ∧ ¬MinPol[g])

Prob (MinAnn[g, s])
≤ qm−s−t/ε. (6)

These results can be used to prove the following theorem.

Theorem 6. Let f ∈ F[z] be a monic polynomial with
degree n over the finite field F = Fq and suppose that the
linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of sequences with charac-
teristic polynomial f . Let m and t be integers such that
0 ≤ m ≤ m + t ≤ n − 1. Then the matrix H corresponding
to the above sequence has a harmful gap of length t, begin-
ning at position m, with probability at most 2q−t/2.

Corollary 7. Let f ∈ F[z] be a monic polynomial with
degree n over the finite field F = Fq and suppose that the
linearly recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of sequences with charac-
teristic polynomial f . Then the probability that the corre-
sponding Hankel matrix H has a harmful gap of length t is
at most 2(n− t)q−t/2.

Corollary 8. Let f ∈ F[z] be a monic polynomial with
degree n over the finite field Fq and suppose that the linearly
recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of sequences with charac-
teristic polynomial f . Then the probability that this linearly
recurrent sequence has a harmful sequence of zero discrep-
ancies of length t is at most 2(n − t/2)q−t/4.

It is unlikely that the bounds in the above corollaries are
tight. However, the next results suggest that improvements
to these bounds will not lead to significant improvements of
results concerning the reliability of algorithms.

Theorem 9. Let f be a monic polynomial with degree n
over the finite field Fq and suppose that the linearly recurrent
sequence

c0, c1, c2, . . .

is uniformly chosen from the set of sequences with charac-
teristic polynomial f . Let t be a positive integer such that
n ≥ 2t.

Then the probability that the above sequence does not have
a harmful sequence of zero-discrepancies, of length t − 1, is

at most e−n/(2tqt).

Corollary 10. Let f be a monic polynomial with de-
gree n over the finite field Fq and suppose that the linearly
recurrent sequence

c0, c1, c2, . . .

is uniformly chosen from the set of sequences with charac-
teristic polynomial f . Let t be a positive integer such that
n ≥ 4t.

Then the probability that the Hankel matrix H that corre-
sponds to the above sequence does not have harmful gap, of

length t− 1, is at most e−n/(4tq2t).

5. SOLVING SYSTEMS OF LINEAR
EQUATIONS

Lemma 3 implies that the bounds on probabilities given
in Theorems 6 and 9 and Corollaries 7, 8, and 10 are correct
when one attempts to solve a system of linear equations

Ax = b

for a given nonsingular matrix A ∈ F
N×N and vector b ∈

F
N×1, over a finite field F = Fq, by choosing a vector u

uniformly from F
N×1 and considering the resulting linearly

recurrent sequence

c0, c1, c2, . . .

where ci = uT Aib for every integer i ≥ 0.
There are several different (closely related) algorithms

that make use of this sequence, in some way. These in-
clude Wiedemann’s algorithm [19], a modification of the al-
gorithm of Lanczos [11] that can be applied to systems whose
coefficient matrix is not symmetric and that incorporates a
“lookahead” process to continue computation when orthogo-
nal vectors are encountered, and, finally, a hybrid algorithm
that computes both the sequence of polynomials generated
using the Berlekamp-Massey process, and the vectors gen-
erated by the Lanczos computation, such as the algorithm
described in Section 3.4 of the thesis of Lambert [10]. Each
of these is discussed below.

5.1 Wiedemann’s Algorithm
Once again, consider the given system of linear equations,

Ax = b. Let b1 = b and let f1 be the minimal polynomial of
the matrix A and vector b1. Let d1 be the degree of f1.

When Wiedemann’s algorithm is applied, the Berlekamp-
Massey algorithm is used to recover the minimal polyno-
mial g1 of the above linearly recurrent sequence,

c0, c1, c2, . . . where ci = uT
1 Aib1,

for a randomly selected vector u1, along with an estimate
of the solution for the given system. If g1 = f1 then the
estimate is, in fact, the solution for this system of equations.



On the other hand, if the estimate is not the solution, so
that g1 is a divisor of f1 and g1 6= f1, then the information
that has been generated is applied to reduce the originally
given problem to that of solving a system

Ax = b2,

where b2 is a vector such the minimal polynomial of A and b2

is f2 = f1/g1.
Continuing as needed, one obtains an iterative process, in

which one wishes to solve a system Ax = bi at the beginning
of the ith iteration, and in which one is either successful
(so that the process terminates) or a vector bi+1 is formed
for use in the i + 1st iteration of the process. If fi is the
minimal polynomial of A and bi, and di is the degree of fi,
then di+1 ≤ di if an i + 1st iteration is required.

Wiedemann establishes that if the resulting iterative pro-
cess is applied, and the vectors u1, u2, . . . that are required
for each iteration are independently chosen, then a solution
for the original solution is obtained, with high probability,
after a constant number of iterations.

Wiedemann also analyzes the cost of each iteration. Sup-
pose that n is an upper bound on the degree of the unknown
minimal polynomial of the matrix A and vector b that is be-
ing considered during a given iteration. Then one iteration
of Wiedemann’s process can either be implemented to use
up to 3n multiplications of the given matrix A by vectors,
O(nN) additional arithmetic operations over F, and while
storing O(N) elements of F, or it can be implemented to use
up to 2n multiplications of the given matrix A by vectors,
O(nN) additional arithmetic operations over F, and while
storing O(nN) field elements.

The time required for this process is generally dominated
by the cost of multiplications of the given matrix A by vec-
tors. Consequently the time used by the second implemen-
tation can be considerably lower than that of the first. How-
ever, the storage requirements for the second implementa-
tion frequently prohibit its use.

One can obtain a rather naive (and, probably, pessimistic)
upper bound on the expected cost of the entire process by
multiplying the expected number of iterations that are re-
quired by the worst-case cost of a single iteration.

In contrast, a Las Vegas algorithm whose worst case ex-
pected running time closely matches that of a single iteration
of the Wiedemann process can be obtained by incorporating
early termination. Consider, once again, a system Ax = b
that is to be solved during a given iteration. Once again,
let n be an upper bound on the degree of the minimal poly-
nomial of A and b; one can certainly use N as this upper
bound for the initial iteration of the process. Suppose, fur-
thermore, that the Berlekamp-Massey process is terminated,
either after 2n terms of the corresponding linearly recurrent
sequence have been processed, or after a sequence of zero-
discrepancies with length d8 logq Ne + 1 has been encoun-
tered. Suppose, as well, that the minimal polynomial of the
linearly recurrent sequence that is currently being processed
(using the Berlekamp-Massey algorithm) has degree d. Then
the number of multiplications of A by vectors, required for
this iteration, can be bounded by either 2d + O(logq N),
if the space-inefficient implementation of Wiedemann’s pro-
cess is used, or 3d + O(logq N), if the space-efficient one is
used instead. Each iteration is correct (that is, early termi-
nation does not introduce an error) with probability at least
1 − 1/N .

Wiedemann’s bound on the expected number of iterations
can now be applied to conclude that the worst case ex-
pected number of multiplications of A by vectors, required
for the entire process, is either 2n+O(logq N) for the space-
inefficient implementation, or 3n + O(logq N) for the space-
efficient implementation, where n is used here to denote the
degree of the minimal polynomial of A and b, where b is the
originally given vector, and where A ∈ F

N×N as above. The
worst case expected number of additional operations over F

changes by at most a small constant factor, and the storage
requirements are unchanged.

Theorem 9 indicates that one should not expect to be
able to do significantly better than this in all cases. Sup-
pose, once again, that one is processing a linearly recurrent
sequence that is derived from a matrix A and vector b, such
that the minimal polynomial of A and b has degree n. Sup-
pose, as well, that the Berlekamp-Massey algorithm is ter-
minated as soon as a sequence of 1

3
logq n zero-discrepancies

is encountered. Then the probability that the result is cor-
rect is provably low. For example, an upper bound on the
probability of correctness of n−1/2 is easily established, for
sufficiently large n.

5.2 The Lanczos Process
There are several different ways in which one might mod-

ify the Lanczos algorithm in order to solve systems of linear
equations over finite fields. The discussion of the cost of
this approach is based on the work of Lambert [10], who
contributes a detailed analysis along with additional refer-
ences.

In general, when applying a version of the Lanczos algo-
rithm that does not require the given coefficient matrix A
to be symmetric, one attempts to construct a dual orthog-
onal basis for a pair of vector spaces, namely, the spaces
generated by the sequences of vectors

b, Ab,A2b, A3b, . . .

and

u, AT u, (AT )2u, (AT )3u, . . . .

Difficulties arise when a sequence of vectors from the former
space, that are all orthogonal to a given vector in the latter
space, are encountered. A “lookahead” process is included
to handle these difficulties.

As noted by Lambert, one can implement a lookahead
process in more than one way; space-efficient and space-
inefficient implementations can be considered once again.
The worst-case number of multiplications of A or AT by vec-
tors, for the space-efficient implementation, does not appear
to be very different from the number given above, for the
space-efficient implementation of a single iteration of Wiede-
mann’s process. The worst case number of multiplications
of A or AT by vectors, for the space-inefficient implementa-
tions of (a single iteration of) the Wiedemann process and a
Lanczos process, appear to agree as well. However, the space
requirements for the “space-inefficient” implementation are
much better: The number of elements of F that must be
stored (at one time) can now be bounded by O(NL) where
L is the maximum “size of a lookahead block” (as defined
by Lambert). One can see by Lambert’s analysis that this
is the same as the maximum length of a harmful gap for the
Hankel matrix H that corresponds to the linearly current se-
quence that is being processed. Thus the expected amount



of space required, in order to match the time requirements
given for the space-inefficient version of Wiedemann’s algo-
rithm, is in O(N logq N) — rather than Θ(N2), as is the
case for the Wiedemann process.

Unfortunately, if the only modifications to the Lanczos
process are the ones mentioned above, then one should not
expect the process to result in a solution for the given sys-
tem unless the minimal polynomial of the linearly recurrent
sequence

c0, c1, c2, . . . where ci = uT Aib

is the same as the minimal polynomial f of A and b. Early
termination can be incorporated to determine whether this
is the case, somewhat sooner than would otherwise be pos-
sible. However, this version of the Lanczos process does
not provide a way to use the information gained, when the
two “minimal polynomials” mentioned above are different,
in order to reduce the cost of later attempts.

One naive approach that can be used to overcome this dif-
ficulty is to use independent trials of the Lanczos process, in
hopes that one of these trials will succeed (that is, in hopes
that the two “minimal polynomials” mentioned above are,
in fact, the same). A part of the probabilistic analysis of
Wiedemann’s algorithm (specifically, Proposition 3 in Sec-
tion VI of Wiedemann’s paper [19]) can be used to establish
that this approach will succeed, with high probability, if
Θ(logq N) trials are used. However, the time required for
this process is considerably higher than that needed with
Wiedemann’s approach, when this number of independent
trials is used.

5.3 Lambert’s Combined Approach
Lambert’s work provides a unification of the Wiedemann

and Lanczos approaches. As part of this work, a hybrid
algorithm that produces both the sequence of vectors one
would obtain from the Lanczos process, and the polynomials
generated by the Berlekamp-Massey algorithm, is described
in Chapter 3 of Lambert’s thesis [10].

Lambert’s thesis should be consulted for a detailed de-
scription of this algorithm. A combination of a brief anal-
ysis of the algorithm that is presented at the end of Chap-
ter 3 of the thesis, the results of this paper (which eliminate
an assumption that is used in Lambert’s analysis), and re-
sults from Wiedemann’s analysis of his own algorithm, pro-
vides an analysis of a Wiedemann-style iterative algorithm
in which applications of the Berlekamp-Massey algorithm
are replaced with applications of Lambert’s. The expected
number of multiplications of the matrix A by vectors is
2n + O(logq n), the expected number of additional opera-
tions in F is in O(nN), and the expected amount of storage
space required is in O(N logq N). Thus this algorithm comes
close to combining the advantages of both implementations
of Wiedemann’s algorithm.

6. RELATED PROBLEMS
The results presented above require the assumption that

elements of the ground field F are selected uniformly and
independently from F when vectors are formed. One might
also consider the case that these elements are selected uni-
formly and independently from a smaller subset S of F. In
an extreme case, F is infinite and S = {0, 1}.

The Schwartz-Zippel lemma [17], [20] has been applied
to closely related problems. For example, the results of

Kaltofen and Pan [9] can be used to bound the probability
that a sequence c0, c1, c2, . . . , whose elements are randomly
selected as discussed here, has a harmful zero-discrepancy
with length at least two. The resulting probability bound
is nontrivial (that is, less than 1) when |S| > N , and it
decreases as |S| increases. Unfortunately, there is no ap-
parent way to obtain improved bounds for longer sequences
of zero-discrepancies, or to obtain bounds that are of much
use at all for the case |S| < N . There is no obvious way
to modify the results presented in Section 4, above, in or-
der to obtain a probability analysis for this version of the
problem, either. Since one might wish to choose values from
a very small set S, in order to reduce the precision needed
for computations, this version of the problem is of potential
interest.

The work presented in this paper does not address the be-
haviour of some additional Krylov-based algorithms that are
in use. In particular, it is not directly relevant to versions
of either Wiedemann’s algorithm or a Lanczos algorithm
that require the coefficient matrix A to be symmetric and
that perform computations involving a linearly recurrent se-
quence

c0, c1, c2, . . .

where ci = bT Aib for a single randomly chosen vector b.
There is work to be done to analyze the reliability of these
algorithms when they are used to solve symmetric linear
systems of equations over small finite fields.

There is also work remaining in order to analyze the re-
liability of algorithms that process blocks of vectors. While
block Wiedemann algorithms are now well understood in
the small field case (see, in particular, the work of Vil-
lard [18] and the references therein), the same cannot be
said for Lanczos-style algorithms that process blocks of vec-
tors. Such “block-Lanczos” algorithms have been considered
by several authors, including Coppersmith [4] and Mont-
gomery [15], [16]; Montgomery’s algorithm includes a form
of early termination and has not been completely analyzed.
In addition, Austin Lobo [12] reports experimental results
concerning the use of early termination, for block algorithms
in the small field case, providing questions for additional
study.

Therefore, regardless of whether (or how) the results of
the current paper can be applied, it is clear that interesting
work in this area remains to be done.
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