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Abstract

Bounds are developed for the probability that various randomly generated block Hankel matrices
are rank-deficient. These bounds are potentially of use to analyze the efficiency and reliability of
various randomized block Wiedemann and block Lanczos algorithms, that are either currently under
development or now in use, when these are applied to solve systems of linear equations and sample
from the null space of matrices over small finite fields.

The bounds that are presented here resemble ones that have previously been obtained using other
arguments or that could likely be obtained by straightforward extensions of arguments that have
recently been presented. The method used to obtain these bounds in this report is rather different
and may be of some interest in its own right: It relies only on estimates of the number of irreducible
polynomials of a given degree over a finite field and on elementary linear algebra.

1 Introduction

Krylov-based methods have recently been used (both alone and in combination with elimination-based
techniques) to solve systems of linear equations whose coefficient matrices are sparse or structured
matrices over finite fields and to sample from the null spaces of such matrices. An algorithm of Wiede-
mann [15] and various adaptations of a numerical method of Lanczos [9] have been used with considerable
success.

Randomized versions of these algorithms perform computations over the Krylov space generated by the
input matrix (or a conditioned matrix obtained from it) and a randomly chosen vector. More recent

*Research was supported in part by Natural Sciences and Engineering Research Council of Canada research grant
OGP0089756.


eberly@cpsc.ucalgary.ca
hovinen@math.utoronto.edu

“block algorithms” use a block consisting of a small set of independently and randomly selected vectors
instead of a single vector, and work over the “block Krylov space” generated by the above-mentioned
matrix and this set of vectors. Coppersmith [2, 3] has proposed block algorithms based on each of
the Lanczos and Wiedemann algorithms whose scalar versions had previously been proposed, while
Montgomery [12] has proposed a simpler heuristic that is based on a block Lanczos approach.

While all of these block algorithms and heuristics work well in practice, none had been fully analyzed
at the time they were proposed. Kaltofen [8] has subsequently provided an analysis of the efficiency
and reliability of a block Wiedemann algorithm (based on Coppersmith’s) for computations over large
fields. Villard [13, 14] has continued this work and provided an analysis for computations over small
fields as well. Brent, Gau and Lauder [1] have subsequently obtained exact formulas for some of the
values that Villard had estimated and have therefore provided improvements for this analysis.

Dumas, Gautier, Giesbrecht, Giorgi, Hovinen, Kaltofen, Saunders, Turner and Villard [4] describe
a software library, LinBox, that includes block algorithms incorporating improvements suggested by
these analyses. Additional information about this software and the most recent version of the library
are available at the LinBox web site, http://www.linalg.org.

The analysis of these block algorithms requires the development of bounds on the probability that
various randomly generated block Hankel matrices are rank-deficient. Kaltofen and Villard contributed
such bounds for the large and small field cases, respectively, when the order of these matrices was
slightly larger than the maximum rank possible for them, and used these bounds to complete analyses
of the block Wiedemann algorithms they studied.

Something more is required if one is to analyze a block Lanczos algorithm: One must develop bounds
on the probability that certain submatrices of these matrices are rank-deficient as well. This also
seems to be necessary if one is to modify a block Wiedemann algorithm in order to incorporate an
“early termination” mechanism of the type proposed by Lobo [11] and recently analyzed, for scalar
computations over small fields, by Eberly [5].

Suitable bounds have recently been developed by Hovinen [6, 7], who has also contributed a biconditional
block Lanczos algorithm and its analysis. Various ideas from the theory of commutative algebra were
used here in order to adapt and apply the results that had initially been developed to study block
Wiedemann and scalar Lanczos algorithms and that are summarized above.

In this report, we provide a different method to derive probability bounds of the type discussed above:
Suitable bounds can be obtained using well known estimates of the number of irreducible polynomials
of a given degree with coefficients in a finite field (that can be found, for example, in the text of Lidl
and Neiderreiter [10]) and elementary linear algebra.

Since block Widemann and block Lanczos algorithms are still under development, it not clear precisely
which of these matrices will be of interest. Rather than link this work to the analysis of any particular
algorithm, bounds concerning various block Hankel matrices (and the method used to obtain them) are
simply presented here in hope that they may be of some general use.

The bounds given here are somewhat more general than the ones recently published by Hovinen. How-
ever, it is quite likely that Hovinen’s techniques can also be used to obtain them. Thus, this is quite
probably not evidence that the technique presented here is more general than Hovinen’s.

The bulk of this report includes the development and presentation of the bounds that are mentioned
above. A few suggestions for future work can be found at the end.
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2 Bounding Nullity: First Case

2.1 Definition and Strategy

Suppose, henceforth, that F = F, is a finite field with ¢ elements. Let N be a positive integer and let
A € FV*N be a matrix with rank 7.

Definition 2.1. Suppose that m and i are positive integers and that vi, va, ..., v, € FYXL. Let
MA,m,i,’Ul,UQ,...,’Um — [Ul A'Ul N A61—1,U1 e Um, Avm e A&m—lvm} c F]\[X’l:7 (21)

where
_ Ji/ml] it g Tifm] 4+ (m —j) - [i/m] <4,
’ Lifm] if - [i/m] + (m —j) - [i/m] >,
for 1 < j < m. Note that 6; € {[i/m], [i/m]}, that

01> 02 >03> -+ = Om,
and that

01+ + - +6n=1.

Definition 2.2. Suppose that m and ¢ are positive integers. Let D4 ,,; be the number of choices of
vectors vy, va, ..., vm € FV*! and scalars

di0,di1,- -y dig 1, dmo,dmy - dims,—1 € F,
for 01,62, ...,0, as given in Definition 2.1, above, such that
d1,0
dq1
Amyiu,02,..,Um . =0. (22)

dm,(smfl

We will count this value in two ways, and compare the resulting expressions, in order to bound the
probability that the matrix MAa v, vs,... v, has low rank when the vectors vy, vo,..., v, are chosen
uniformly and independently from FY*1.

In particular, bounds will be obtained for the following quantities.

Definition 2.3. Suppose that m and i are positive integers and that j is a nonnegative integer. Let
PAm.i(j) be the probability that the matrix Ma i v vs,....0m 15 rank deficient by exactly j, that is,

m

PAm,i(j) = Prob[rank (M m v, wewm) =0 —37] i< N (2.3)
and

pA,m,i(j) = Prob [rank (MA,m,i,m,vQ,..‘,vm) =N — ]] if i > N, (2'4)
and let 04, .(j) be the probability that this matrix is rank deficient by at least j, that is,

UA,m,i(j) = Prob [rank (MA7m,i,U17U27--.,Um) <i-— .7] ifi <N, (25)
and

0A,m,i(j) = Prob [rank (Ma m v ve,om) < N —j] ifi >N, (2.6)
when the vectors vy, vs, ..., vy are chosen uniformly and independently from FAXT,



2.2 Counting These Values One Way

The following lemmas clarify the relationship between the above quantities when ¢ < N and when
1> N.

Lemma 2.4. Let C € F**! where F = Fq is a finite field with q elements, and where k and ¢ are
positive integers such that k > £.
If C has rank £ — j, for an integer j > 0, then there are exactly ¢¢ vectors x € F™* such that Cx = 0.

Proof. Since C has rank ¢ — j, there exists a set of £ — j columns of C' that are linearly independent.
Permuting the columns of C' (and the entries of a vector z) as needed, we may assume without loss
of generality that the leftmost ¢ — j columns of C' are linearly independent and that the remaining
j columns of C' are linear combinations of the leftmost ones. That is,

C=[C, Co (2.7)

where €7 € FF*(*=7) is a matrix with full rank ¢ — j, and Cy € FF*J is a matrix whose columns are
linear combinations of the columns of C}.

Note that, since C; has full rank, C;z = 0 if and only if z = 0 for any vector z € Fll=a)x1

Sincg the columns of Cy are all linear combinations of the columns of C7, there exists a matrix Z €
F(E=9)%J guch that
Cy=C1Z7. (2.8)

F1 can be written as

z:[“] (2.9)

<2

Notice that any vector z €

where z; € FEDX1 and 2y € FIX1,

Suppose, now that z € F**!. Then

Cz=0 < Ciz1 +Coz2=0 (by (2.7) and (2.9))
— Ci(z1+Z2)=0 (by (2.8))
= 21+ Z2=0 (since C has full rank)
< z1 = —Z2o.

Consequently, for any vector zp € F/*!, there is exactly one choice of a vector z; € F(=9)*1 such that

Cz=0 ﬁz—[“]

22
Since there are exactly |F|Y = ¢/ choices of the vector z3 the desired result now follows. O

Lemma 2.5. Let C' € F*** where F = Fq is a finite field with q elements, and where k and € are positive
integers such that k < £.

If C has rank k — j, for an integer j > 0, then there are ezactly ¢" %13 vectors = € F** such that
Cz=0.



Proof. This can be established by a modification of the proof of Lemma 2.4: Notice that after a
permutation of columns we may write

C= [Cl CQ]

where C; € FF*(=3) is a matrix with full rank k — jand Cy € FNx(E=k+9) ig a matrix whose columns
are linear combinations of the columns of C';. We may conclude once again that Cyz = 0 if and only if
z =0 for each vector z € F*=)*1 notice that

Cy=C1Z

for some matrix Z € F(k_j)x(e_k“), write an arbitrary vector z € F**1 as

z = [zl} for zy € FE=9x1 and 2z, € FUER+)XT
2
and then argue as above that C'z = 0 if and only if 21 = —Zz2. Once again, the claim then follows by
a consideration of the number of choices of zs. O

Suppose that ¢ > m (noting that the matrix Ma m v, 09,0, 15 chosen uniformly from FNXi if the
vectors v1, vs, ..., U, are chosen uniformly and independently from FY*!, otherwise). Since there
are ¢V™ choices of the vectors vi,va, ..., v, € F™X!, there are also ¢’V ways to choose the matrix
MA iy ws...wom- 1t follows that there are ¢N™p4 () choices of the matrix Ma i, vs.. 0, With

rank ¢ — j for any integer j such that 0 < j <4 if 4 < N, and that there are qupA7m7i(j) choices of the
. with rank N — j for any integer j such that 0 < j < N if ¢ > N.

It follows, by Lemmas 2.4 and 2.5 that

matrix MA,m,i,v1,v2,~~~”

%
Dami= Zqu*‘ij,m,i(j) ifi <N (2.10)
j=0
and that
N . .
Dagmi =y q" "V pyi(G) ifi > N. (2.11)
j=0

Since pam,i(j) = 0am,i(j) —oam:i(j+ 1) if j <min(i, N), pam,i(j) = 0am,i(j) if j = min(i, N), and
since 04.,,i(0) = 1, the above equation can be used to establish that

A
Dami=q""+(q—1)> "™ oumi(j) ifi<N, (2.12)
j=1
and that
Dami =gV 4 (q—1) ) gV gy () ifi > N, (2.13)
j=1

2.3 Counting These Values Another Way

A second enumeration of Dy, ; will also be useful. It will be helpful to consider a sequence of cases
related to the structure of the matrix A.



2.3.1 First Case

Suppose first that A is similar to a companion matrix and, furthermore, that its characteristic polynomial
is a power " of a monic irreducible polynomial ¢. In other words, suppose that

A=X"17x (2.14a)
for a nonsingular matrix X € FVXN “and for a matrix
0 .
1 0 —Q]
Z = 1 —qy | ¢ FVXN (2.14b)
i I —an—1]

with (k, )™ entry 1if k = £+ 1 and with (k, €)' entry 0 otherwise when 1 <k < Nand1 </ < N —1,
and with (k, N)™ entry —ay_g, for 1 < k < N, where ¢ € F[z] is an irreducible polynomial with
degree d, n is a positive integer such that

n N-—1

" =2V +ay 1z +---+ oz +ap € Flz], (2.14c)

and where
deg(¢™) = N = dn. (2.14d)

Lemma 2.6. If A is as given in Equations (2.14a) — (2.14d) then there exists a vector ¢ € FN*1 such
that
FAE = { F(A)C] f € Fla] and deg(f) < N}

and such that
©"(A)¢=0.

Furthermore, there is exactly one polynomial f € Flz] with degree less than N = dn such that

y = f(A)¢

for any given vector y € FV*1,

Proof. Consider the k" elementary vector e;, € FV*1, for 1 < k < N, whose ¢! entry is 1 if k = ¢ and
0 otherwise, for 1 < /¢ < N. Since
A=X"'2ZX,

FNXN

for a nonsingular matrix X € , it suffices to set

C=X"le (2.15)

in order to satisfy the conditions given in the lemma: It is easily checked, using the above relationships
and Equation (2.14Db), that
Ai_lc _ (X—IZX)i—lX—lel
=X"1Z771xX ey
— X*lziflei



= X"l
for1 <¢<N.
Since the matrix X ~! is nonsingular, the vectors
C=X"ley, AC=X"teg, ..., AN =X"Ley
form a basis for FV*!, so that
FYE = {F(A)C| f € Fla] and deg(f) < N }

as claimed.

It is also clear from the definition of ¢ at line (2.15), and from Equations (2.14b) and (2.14c¢), that
PA)C = X1 (Z)er = 0.

Finally, if y € FV*! then it is possible to write y as
%y
a1
y=x|° (216)
ON-1
for values ag, aq,...,any_1 € F. In this case,
y = f(A)C (2.17)
for the polynomial
f=ao+aiz+- - +ay_zV L (2.18)
It is also clear that, since X ~! is nonsingular, there is only once choice of values ag, a1, ...,an_1 € F
such that Equation (2.16) is satisfied, so that there is only one polynomial f € F[z] with degree less
than N = dn such that Equations (2.17) and (2.18) are satisfied, as well. O

Corollary 2.7. If A and ¢ are as described in Lemma 2.0 and f € F[x], then
f(A) =0 if and only if f =0mod p".

Proof. If f € F[z] then f = fr + ¢"fgy for polynomials fr, fg € Flz]| such that f; has degree less
than N = dn. It follows by the results of the lemma that

FA)C = fL(A)C+¢"(A) fu(A)C = fL(A)C+ fu(A)(@"(A)0) = fr(A),
and, furthermore, that f;(A)¢ = 0 if and only if f;, = 0. O

Once again, let M i v v0,... 0, a0d let 91,02, ..., 0, be as given in Definition 2.1.

m

Lemma 2.8. If A is as given in Equations (2.14a) — (2.14d) and m and i are positive integers such
that m <1, then DA is equal to the number of choices of polynomials

fi, fo, -+, fm € F[z]

where f; has degree less than N = dn for 1 < j < m, and of polynomials
91,92, - - 9m € Flz]

where g; has degree less than ¢; for 1 < j < m, such that

fig1 + foga + -+ fimgm = 0 mod ™.



Proof. Recall that, by Definition 2.2, D4 ,,; is the number of choices of vectors vy, v2,..., v, € A1
and scalars

d1,07 d1,17 cee 7d1,51—17 cee 7dm,0> dm,la e 7dm7(5m—1
such that Equation (2.2) is satisfied.

It follows by Lemma 2.6 that the number of choices of vectors vy, v, ..., vy, € FV*1 ig the same as the
number of choices of polynomials f1, fo,..., fm € Flz] that each has degree less than N = dn. Indeed,
there is exactly one such polynomial f; € Flz] with degree less than N such that

vj = f;(A)¢ (2.19)
for 1 < j < m and for the vector ¢ described in the lemma.

There is also a straightforward one-to-one correspondence between the sequences of scalars

d1,07 d1,17 o adl,(sl—lv .. 7dm,0) dm,17 ce. 7dm7(5m—1
and sequences of polynomials g1, g2, . . ., gm € F[x] such that the degree of g; is less than §; for 1 < j < m:
It suffices to set
gj = dj70 + dj’1$ + ..., dj75]._1$6j_1 S F[CE] (220)

for 1 < j < m in order to obtain this correspondence.

Consider the definition of MA 1.4 v9,vs,....v, (Definition 2.1 on page 3). If the above vectors, scalars, and
polynomials are related as shown in Equations (2.19) and (2.20), then it follows by the above definition
that

d10
dq1
Mam i 0z,e0m . = (figr + fag2 + - -+, fmgm)(A)C.
dm,6m—1
It follows by Corollary 2.7 that
dip
di1 .
M A 02,0 0m : =0 — figr + fag2 + -+ fmgm = 0 mod ™.
dm,ém—l
The claim now follows by the correspondences described at the beginning of this argument. O

We are now ready to count D 4 ,,; in another way.

Lemma 2.9. Consider a sequence of polynomials

91,92, ---39m € F[SU]
such that the degree of g; is less than 6; for 1 < j < m.
(a) If at least one of the polynomials g1, 92, - .., gm s not divisible by ¢ then there are exactly gV (m=1)
choices of polynomials

f17f27 o 7fm S F[x]a
each with degree less than N = dn, such that

fi91 + fago + -+ fingm = 0 mod ©".



(b)

()

Let h be a positive integer such that dh < 61 = [i/m]. If the polynomials g1,g2,...,gm are all
divisible by ©", but at least one of these polynomials is not divisible by ", then there are exactly
¢Nm=D+dh choices of polynomials

flvaa"'vfm S F[l’],

each with degree less than N = dn, such that

figi + fag2 4+ + fmm = 0 mod "

Finally, if the polynomials g1, ga, . .., gm are all divisible by ©", where dh > §; = [i/m/], then there
are exactly gN™ choices of polynomials

flvaa"'vfm S F[l’],

each with degree less than N = dn, such that

fig1 + fogo + -+ fingm = 0 mod ©".

Proof. Once again, let g1, g2, ..., gm be polynomials in F[z] such that the degree of g; is less than §; for
1 <j <m, where F = F, is the finite field with ¢ elements

(a)

Suppose that at least one of g1, ga,. .., gn is not divisible by ¢. In particular, suppose that gy is
not divisible by ¢ where 1 < ¢ < m.

In this case, since ¢ is irreducible, the greatest common divisor of g, and ¢™ is 1, so there exist
polynomials s,t € F[z] such that

sge + tp" = 1.

Clearly, s is also relatively prime to ¢ if the above equation is satisfied. Consequently, if
fi, f2y ... fm are polynomials in F[z] with degrees less than N = dn, then

fi91 + fog2 + - + fmgm = 0 mod "
= fige = —(f191 + fage + -+ foo190-1 + frr19001 + - + fmgm) mod "
< fo=—s(figr + faga + -+ foo190-1 + frr19e41 + - + fmgm) mod ",

since sgy = 1 mod ™.

It follows that there is exactly one choice of a polynomial f; € F[x] with degree less than N = dn,
for any choice of the polynomials f1, fa,..., fe—1, fex1, - - -, fm € F[z] with degree less than N, such
that the desired equation is satisfied. Since there are exactly ¢™V(™~1) choices of the polynomials
fi, fos ooy foo1, foxts - - -5 fm, this establishes the claim.

Suppose next that h is a positive integer such that dh < d; = [i/m], that each of the polynomials
g1, 92, - - -, gm are divisible by ¢, and that at least one of them is not divisible by ¢"*1. Suppose,
in particular, that g, is not divisible by ©"*! for an integer £ such that 1 < ¢ < m.

In this case we may write g; as g; = <ph§j, for 1 < j < m, and note that g, and ©™ are relatively
prime. Thus the greatest common divisor of g, and ¢™ is ¢ and there exist polynomials s and ¢

such that

sge + to" = o



Note that, in this case,

sge+tp" =1

)

so (once again) s and ¢™ are relatively prime.

It follows that if fi, fo, ..., fi are polynomials in F[z] with degrees less than N = dn, then

fig1 + fag2 + - + fingm = 0 mod ¢"
= foge = —(frov + fage + -+ fee19e-1 + frsrgeea + -+ fmgm) mod "
= fo" = —s(frgr + faga + -+ foo1ge-1 + fer19e41 + - + fmgm) mod "
= foo" = =s(f191 4 f2Go + -+ fro1Go—1 + fre1Ges1 + -+ FmGm)" mod @
= fo=—s(figi + foGo + -+ fo-1G0-1 + fre1Ges1 + FmGm) mod "M

The latter condition on f; is satisfied whenever

fo=fue" "+ fu,

where fr, € F[z] is a polynomial with degree less than deg(¢™ ") = d(n — h) such that

fr==s(Ngu+ foGa + -+ fr1Ge-1 + fesaGer1 + - + fngm) mod ",

and where fp is an arbitrarily chosen polynomial in F[z] with degree less than dh.

Since there is exactly one choice of fr possible, for any choice of fi, fo,..., fo—1, fox1,- -y fm
and fp, and since there are exactly ¢V =D+ choices of fi, fo, ..., fo—1s foats---s fm and fp,
this establishes part (b).

(c) Finally it should be noted that if g1, g2, ..., gm € F[z] are polynomials such that the degree of g;
is less than 6; < [i/m] for 1 < j < m, and each of these polynomials is divisible by (", where
dh > [i/m], then

g1=92=:=9gm =0
In this case,
figi+ faga + -+ fngm = 0 mod ¢"

for every choice of polynomials fi, fo, ..., f;n € F[z] that each has degree less than N = dn, and
there are exactly ¢¥™ choices of these polynomials. O

Lemma 2.10. If A is as given in Equations (2.14a) — (2.14d), and m and i are positive integers such
that i > m, then
Dami < qu + qN(m*].)‘Fi qu(mfl)dh.
h>0

Proof. Suppose first that h is a nonnegative integer such that dh < §,, = [i/m|. Then, since

01+ 02+ 4 dm =1,

i—mdh

there are exactly ¢ sequences of polynomials

91,92, ---39m € F['I]

such that the degree of g; is less than J; for 1 < j < m and such that g1,92,...,gn are all divisible
by ¢". On the other hand, if dh > §,, then the degree of " is at least 6; = [i/m], and there is exactly

10



one sequence of polynomials g1, g2, . .., gm € F[z] satisfying the given degree and divisibility constraints,
namely, the sequence
g1=9g2=""=9gm=0.

It now follows by the definition of Dy, ; (given on page 3) and Lemma 2.9 that, if A is as given in
Equations (2.14a) and (2.14b), then

L(Li/m]/d)]
Dami < Z <qi—mdh.qN(m—1)+dh) 4 g

h=0
< qu + ZqN(m—l)—l-i—(m—l)dh
h>0
_ qu + qN(m—l)—i-i Zq—(m—l)dh’
h>0
as claimed. O

Using the closed form for a geometric series, we may now conclude that

N(m—1)+1 Nm

Nm q _ Nm q
Damai <q™ " + 1— g (m—1d — ¢ T N1 — gN—i—(m—1)d (2.21)

when A is as given in Equations (2.14a) — (2.14d).

2.3.2 Second Case

Suppose next that A is similar to a block diagonal matrix where each block is a companion matrix of
the type considered in the first case:

A=X"1AX (2.22a)
for a nonsingular matrix X € F"*¥ and for a block diagonal matrix
A 0
Z
A= . € FVXN (2.22b)
0 Zy
where each block Z; is the companion matrix of a positive power of . That is, there exist positive
integers ni,no, ..., ng such that
_0 —Qj0 i
1 0 —Q51
Z; = 1 —aj2 | e Fdngxdn; (2.22¢)

L I —ojdn;—1]

is the companion matrix of the polynomial

" =M + g, 2™ 4 T+ g € Flal, (2.22d)

11



for 1 < j </, and such that
ng>ng>--->mnp>1 and d(ny +ng2+---+ng) =N. (2.22¢)

In this case, A has minimal polynomial ™ and characteristic polynomial H§:1 Qi = pN/d,
In this section we will consider the case that £ <m — 1.

The next result generalizes Lemma 2.6 for this case.

Lemma 2.11. If A is as given in Equations (2.22a) — (2.22¢), then there exist vectors (1,(2,...,(s €
FN>X1 such that
F' =vieke oV

where
Vi ={f(A)G | f € Flz] and deg(f) < dn; },
and such that
@ (A)G =0
for1 <j </

Furthermore, there is exactly one sequence of polynomials f1, fa,..., fo such that f; € Flx] has degree
less than dnj for 1 < j < { and such that

y = f1(A)C + fa(A)C + -+ + fu(A) ¢

for any given vector y € FVx1,

Proof. As in the proof of Lemma 2.6, it is sufficient to identify the values (1, (o, ..., (; that are mentioned
in the statement of the lemma and to check that the given properties are all satisfied.

If A is as described in the statement of the lemma then it suffices to set
G = X ediny tngttny_1)+1
for 1 < j </ (so that (; = X 'e1). It can then be shown that
ARG = X ed(n 4ngttny_1)+k

whenever 1 < j </ and k is a positive integer such that 1 < k < dn;. Consequently the vector space V;
described in the statement of the lemma has a basis

-1 -1 -1
X €d(nytnottng 1)+ X €d(natnattng )42 X €d(nitnatetng_1+n;)>
and, since the matrix X! is nonsingular, it follows immediately that
FY>l=viehe oV

as claimed.

It is also clear from the definition of (; (and Equations (2.22a) — (2.22¢)) that

¢ (A)G = X 1™ (A)ed(n) tngttn; )41 =0

for 1 <j </

12



Consider a vector y € FY*1. Since the matrix X ! is nonsingular, it is possible to write y as

o
y=X"1 Ofl (2.23)
ax-1
for values ag, aq,...,ay_1 € F. In this case,
y=fi(A)G + f2(A)G + - + fi(A)G (2.24)
when

dnj—1
fi= Qd(ny+ng+-+nj_1) T Qd(ny+nat-tn;_1)+1T T+ Qd(ny4ng+-+n;_14n;)—1T T e Flz]  (2.25)

for 1 <j </

Since X! is nonsingular, it is clear that there is only one choice of values ag, a1, ...,any_1 € F such
that Equation (2.23) is satisfied, so that there is only one sequence of polynomials fi, fa,..., fr € F[z]
such that the degree of f; is less than dn; for 1 < j < £ and such that Equations (2.24) and (2.25) are
satisfied, as well. O

The argument used to establish Corollary 2.7 from Lemma 2.6 can be used to establish the following
result from Lemma 2.11, as well.

Corollary 2.12. If A and (1, Co, ..., are as described in Lemma 2.11, and f1, fa,..., f¢ € F[z], then
[ilA)G + fa(A)G + -+ fel(A)G =0
if and only if f; is divisible by ™ in Flz] for 1 < j < /L.

Lemma 2.13. If A is as given in Equations (2.22a) — (2.22¢) and m and i are positive integers such
that © > m, then DAy, ; is equal to the number of choices of polynomials

fix € Flz] for1<j<fandl<k<m
where deg(f;r) < dnj for all j and k as above, and of polynomials
91,92+ Gm € Flz]
where the degree of g is less than 0 for 1 < k < m, such that
fingr + fi2g2 + -+ fjmgm = 0 mod @™
for every integer j such that 1 < j < /(.

Proof. Recall that, by Definition 2.2, D4 ,,; is the number of choices of vectors vi,va,..., vy € FAx1
and scalars

dl,Ov d1,17 v 7d1,51*17 v 7dm,07 dm,la R 7dm,5m71

such that Equation (2.2) is satisfied.

13



It follows by Lemma 2.11 that the number of choices of vectors vi, v, ..., vy € FV*1 is the same as the
number of choices of polynomials f;; € Flz] such that f;; has degree less than dn;, for 1 < j < ¢ and
1 <k <m. Indeed, there is exactly one such choice of polynomials f1 1, fa k.- .., fo,r such that

vk = fre(A)C + for(A)a 4+ fer(A)Ce (2.26)

for 1 < k < m, and for the vectors (1, (o, ..., (s described in the lemma.

As noted in the proof of Lemma 2.8, there is also a straightforward one-to-one correspondence between
the sequences of scalars

dl,Oa dl,la o 7d1,51—1a <. 7dm,0, dm,la o 7dm,5m—1
and sequences of polynomials g1, g2, . . ., gm € F[x] such that the degree of gy, is less than 0 for 1 < k < m:
It is sufficient to define g1, go, ..., gm as shown in Equation (2.20) on page & to achieve this.

Once again, consider the definition of M4 i v, vs,... v, (Definition 2.1 on page 3). If the above vectors,
scalars, and polynomials are as related in Equations (2.26) and (2.20), then it follows by the above
definition that

dy0
dy ¢
M gm0, 0m . = (fiag1 + fi2g2 + - + Fimgm)(A);.
j=1
dm,(imfl
It follows by Corollary 2.12 that
dip
di1 . .
MAm 01,02, 0m . =0 = firgi+fi292+ -+ fjmgm = 0mod " for 1 < j < /.
dm,ém—l
The claim now follows by the definition of D 4, ;. O

Lemma 2.14. Suppose, once again, that £ < m — 1.
Consider a sequence of polynomials
91,92, ---39m € F['I]

such that the degree of gi less than o for 1 < k < m.

(a) If at least one of the polynomials g1, 92, . - ., gm s not divisible by ¢ then there are exactly gV(m=1)

choices of polynomials
fik € Fl] for1<j<flandl1<k<m
such that deg(f;x) < dn; for all j and k as above, and such that
finigr + fi292 + -+ fjmgm = 0 mod ™

for1 <j </

14



(b) Let h be a positive integer such that dh < 61 = [i/m]. If the polynomials g1,g2,...,gm are all
divisible by ¢", but at least one of these polynomials is not divisible by "t then there are at
most gNM=D+dRE choices of polynomials

fik € Fl] for1<j<flandl1<k<m
such that deg(fjx) < dn; for all j and k as above, and such that

fingn + fi202 + -+ fjmgm = 0 mod ¢"
for1 <j </

(c) Finally, if the polynomials g1, ga, . . . , gm are all divisible by ", where dh > §; = [i/m], then there
are exactly gN™ choices of polynomials

fik € Fl] for1<j<flandl <k<m
such that deg(f;r) < dnj; for all j and k as above, and such that

fiagr + fi202 + -+ fjmgm = 0 mod @™

for1 <3</,
Proof. Suppose g1, g2, - - -, gm are polynomials in F[z] that the degree of gy is less than J; for 1 < k < m.

(a) Suppose first that at least one of g1, go, ..., gm is not divisible by . In particular, suppose that
Jo is not divisible by ¢ for some integer a such that 1 < a < m. In this case the greatest common
divisor of g, and @™ is 1, since ¢ is irreducible, and there exist polynomials s,¢ € F[x| such that

SGa + tp"t = 1.

It is clear that s and @™ are relatively prime as well. Consequently, if f;; are polynomials in F[z],
for 1 <j </{and 1 <k <m, then, since n; > n; for 1 < j </, the argument given in the proof
of Lemma 2.9(a) can be applied once again to establish that

fiigr + fi2g2 + -+ fjmgm = 0 mod ¢" for 1 <j </
> fia=—5(fj101+ fi292 + -+ fia—19a—1
+ fiat+19a+1 + - + fimgm) mod " for 1 <j </

It follows that there is exactly one choice of the polynomials

fl,a7f2,a7' . 'Jff,a

for any choice of the set of polynomials f; for 1 < j </, 1 <k < m and k # a, such that the
desired equations are satisfied. Since

d(ni +mnga +---+ng) =N,

there are exactly qN (m=1) choices of the polynomials f;, for 1 < j </ and 1 < k < m such that
k # a, establishing part (a) of the claim.

15



(b) Suppose next that h is a positive integer such that dh < d; = [i/m], that each of the polynomials
91,92, - - -, gm are divisible by ¢", and that at least one of them is not divisible by ¢"*1. Once
again, suppose that g, is not divisible by ¢"*! for an integer a such that 1 < a < m.

Either A < nq or h > nq; these cases will be considered separately, below.

Suppose first that h < ny, so that ged(¢™, g,) = ©". Following an argument similar to the one
used to prove Lemma 2.9(b), we may continue by writing g; as goh/g\j for 1 < j < m and noting
that g, and ™ are relatively prime. Consequently, there exist polynomials s and ¢ such that

Sga + to™ = oM and SGa + tM™h = 1.

It is clear from the latter equation that s and ™! are relatively prime. It follows, once again,
since n; > nj for 1 < j </, that

fiagr + fieg2 + -+ fimgm =0mod "™ for 1 <j </{
= fia" = —s(firo + fizga + - + fia-19a—1
+ fj,a+lga+1 +---+ fj,mgm) mod Spnj for 1 < Jj < L.

Now, if h < nj, then the proof proceeds as before: We continue by observing that
fia®" = =s(firor + fizg2 + -+ fja—19a—1 + fjat19a+1 + -+ + fjmgm) mod @™

= fja=—s(fin1+ fi202 + + fia—10a—1 + fjas10a+1 ++ + fjmGm) mod " ",
and that the latter equation is satisfied if and only if

fia = fime™ ™"+ fiL

where f; 1 is a polynomial with degree less than d(n; — h) such that

fir = —s(fj101 + fioda + -+ fia1Ga-1 + fiat10ar1 -+ fjmGm) mod @~

and where f; i is an arbitrarily chosen polynomial in F[z] with degree less than dh. Consequently,
if 1 <j </{and h <n;j then there are exactly q@ni(m=1)+dh choices of the polynomials

fj,lafj,??' . 'afj,m € F[l’]

such that each of these polynomials has degree less than dn; and such that
fingr + fi2g2 + -+ fjmgm = 0 mod ¢".

On the other hand, if A > n; then, since g1, g2, ..., gm are divisible by (", the equation
fingr + fi2g2 + -+ + fimgm = 0 mod ™

is satisfied for every choice of polynomials

fits iz fim € Flz]

such that each of the above polynomials has degree less than dn;. Consequently there are exactly
g™ ways to choose the above polynomials in this case. Since n; < h, dmn; < dnj(m —1) + dh,
so that there are at most (indeed, strictly fewer than) g% (m—1)+dh hojces of the polynomials

fj,la.fj,??' . '7fj,m € F[ﬂf]
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such that each of these polynomials has degree less than dn; and such that

fingr + fi2g2 + -+ fimgm = 0 mod "

in this case as well.

It follows that the number of choices of polynomials f;; such that 1 < j </, 1 <k < m, and the
given conditions are satisfied, is less than or equal to

¢
H qdnj(m—l)-l—dh _ q(2§:1dnj)(m—1)+dhl _ qN(m—l)—l—dhﬁ’

=1
when h < njy.

It remains to consider the case that h > n;. Since g; is divisible by goh for 1 < k < m, and since
ny > n; for 1 < j </, it follows that

J1=¢g2=" = gm=0mod @
for every integer j such that 1 < j < ¢. Consequently
firgr + fi2g2 + -+ fimgm = 0 mod ¢

for 1 < j < 4, for every choice of polynomials f;; such that deg(f;x) < dnj, for 1 < j < £
and 1 < k < m. Since d(ny + ng + --- +ny) = N, there are exactly ¢"¥™ such choices of these
polynomials.

Note, in this case, that

Nm=N(m-1)+ N
=Nm-—1)+dny+na+--+mng) (since d(ny +ng +--- 4+ ng) = N)
< N(m—1) +dnil (since nj < mny for 1 < j <?)
< N(m—1)+dht (since ny < h).

N(m—1)+dht m—1)+dhe

Consequently ¢¥™ < ¢ in this case, and there are at most ¢™V( choice of
polynomials f;; satisfying the desired conditions (for 1 < j < ¢ and 1 < k < m) in this case, as
well.

(¢) The proof of part (c) of this claim is essentially the same as the proof of Lemma 2.9(c): One notes
that if the given conditions are satisfied then

f=g2="=gn=0
so that (in the present case) all choices of the polynomials f;; such that 1 < j </, 1 <k < m,

and the degree of f; is less than dn; for all j and k, satisfy the given conditions. Once again,
there are exactly ¢™™ ways to choose these polynomials.

O

The next result can be established from the above one in much the same way that Lemma 2.10 was
established from Lemma 2.9.
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Lemma 2.15. If A is as given in Equations (2.22a) — (2.22¢) and m and i are positive integers such
that i > m > £, then
Dami < qu + qN(mfl)+i qu(mfé)dh.
h>0

Proof. Arguing as in the proof of Lemma 2.10, but using the results of Lemma 2.14 instead of those of
Lemma 2.9, we find that if A, m, and i satisfy the conditions given in the statement of the lemma then

L(Li/m]/d)]
Dami < Z gmdh . qN(mfl)erhé) 4 gNm

h=0
< Vm oy ZqN(m—1)+z‘—(m—e)dh
h>0
= Ny N1+ Zq—(m—@dh_ ]
h>0

Using the closed form for a geometric series, we may now conclude that

N(m—1)+i Nm

d AL E— (2.27)

1— g (m=0d -

DA,m,i < qu +
when A is as given in Equations (2.22a) — (2.22¢).

2.3.3 Third Case

We next eliminate the assumption that the characteristic polynomial of A is a power of an irreducible
polynomial in F[x]. However, the assumption that the number of nontrivial invariant factors is small
will be retained.

Suppose now that

A=X"1AX (2.28a)
for a nonsingular matrix X € F¥*¥ and for a block diagonal matrix
Ag
A= A N € FVXN, (2.28Db)

Ap

In this case, Ay is a matrix whose characteristic polynomial is a power of an irreducible polynomial ¢y
with degree dj, > 1 in F[z], for 0 < h < H, so that

®0, P11, P2, - - - PH

are distinct monic irreducible polynomials in Flz].

It will be useful, in the sequel, to consider the case that the given irreducible polynomial is x separately
from other cases. To facilitate this we will suppose that g = x (so that dy = 1), that H > 0, and that

$1,$2,- - PH

are the (remaining) monic irreducible divisors of the characteristic polynomial of A.
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To continue, we will suppose that Ay, is a block diagonal matrix

Zpa
Z
Ay = " € FwxNn
Zh
for an integer £, > 0 for 0 < h < H, and that
[0 —hj0 ]
1 0 —ah,j’l
Znj = 1 —Qtp, 5,2 e Fdnnn,jXdpnn,;

L 1 _ahzjzdhnh,jil_

is the companion matrix of the polynomial

h,j

dpnn. ; dpnp. i—1
P = 2 A g, 1 2T A T ango
for 0 < h < H and 1 < j < {p, and such that

by >0 and Iy >1 for1<h<H,
Np1 = Np2 > - = Ny, > 1 for0<h < H,
dh<nh71+nh72+'~-+nh7gh) =Ny for0<h<H,

and

No+ Ny +Ny+---+Ng=N.

(2.28¢)

(2.28d)

(2.28¢)

(2.28f)
(2.28¢g)
(2.28h)

(2.28i)

If parameters are as defined above then A is nonsingular if and only if £o = 0, while A is nilpotent if

and only if H = 0.

Finally, let
{= max(ﬁo,él,@, ‘e 7£h)-

(2.28))

Since we are still interested in the case that the number of invariant factors is small, we will consider

the case that £ < m — 1.

The next result generalizes Lemma 2.11.

Lemma 2.16. If A is as given in Equations (2.28a) — (2.28]), then there exists vectors (p

for0O<h<H and 1< j </, such that

FN><1 — @ Vh,j
0<h<H
1<5<ty,

where
Vhi ={ f(A)Ch; | f € Flz] and deg(f) < dnnn,; },
and such that
en" (A)Cny =0
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forO<h<Hand1l <j </t
Furthermore, there is exactly one sequence of polynomials
fos foas -y fougs s fun, fr2, - frey € Fl2]

such that fn; has degree less than dpny j, for 0 < h < H and 1 < j </}, and such that

y= > fnj(An;
0<h<H
1<j<tp

for any given vector y € FN*1,

Sketch of Proof. As in the proof of Lemma 2.11, it is sufficient to identify the values of the vectors
Ch,; that are mentioned in the statement of the lemma and to check that the given properties are all
satisfied.

In this case, it is sufficient to set
Gy =X"Te
h,j = No+Ni+-+Np_1+dp(np,1+np 2+ +np j1)+1

for 0 < h < H and 1 < j < {p. The proof can then be completed by making a sequence of observations
resembling those that were given in the proof of the above-mentioned lemma. O

Corollary 2.17. If A and the vectors (p, ; are as described in Lemma 2.10, and fp, ;j € F[z] for0 < h < H
and 1 < j </{y, then

> fnj(A)Gh; =0
0<h<H
1<5<4y,

if and only if fy; is divisible by cpzh’j in Flz] for all h and j such that 0 <h < H and 1 < j < {p,.

The next result generalizes Lemma 2.13 and can be proved by a straightforward generalization of this
lemma’s proof.

Lemma 2.18. If A is as given in Equations (2.28a) — (2.28)), and m and i are positive integers such
that © > m, then DA ;i is equal to the number of choices of polynomials

fnjk € Flx] forO<h<H,1<j</lp,and1<k<m
where deg(fh jr) < dpnpj for all h, j, and k as above, and of polynomials

91,92, ---,9m € F[x]

where the degree of gy, is less than 0 for 1 < k <m, such that

frjngi + fng2g2 + -+ frjmgm = 0 mod @™

for all integers h and j such that 0 < h < H and 1 < j < {p,.

The next lemma generalizes Lemma 2.14.
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Lemma 2.19. Let 4 be the minimal polynomial of A, so that
)4
va=]en""
h=0

Suppose, once again, that £ < m — 1.

Now consider a sequence of polynomials

91,92, ---39m € F[IE}

such that the degree of gy is less than & for 1 < k < m.

(a) Suppose that
ged(g1, 92, -5 gmsha) = 1.

Then there are ezactly ¢ (™Y choices of polynomials
fnjk € Fl] forO<h<H, 1<j</{lp, andl<k<m
such that deg(fn k) < dpnpj; for all b, j, and k and such that
Sngagr + hnjage + -+ frjmgm = 0 mod @™
for all integers h and j such that 0 < h < H and1 < j < /¥y,

(b) Suppose that
ng(gthv <o Imy wA) = g

for a polynomial & € Flx] with degree §, where 1 < § < 61 = [i/m]|. Then there are at most
gNm=1+L choices of polynomials

frjk € Flz] forO<h<H,1<j</tp,and1<k<m
such that deg(fy k) < dpnpj; for all b, j, and k and such that
frjngi + fnj2g2 + -+ frjmgm = 0 mod @™
for all integers h and j such that 0 < h < H and 1 < j < {y,.
(¢) Finally, suppose that neither of the above cases applies. Then

91:92:---:gm:0

Nm

and there are exactly q choices of polynomials

fnjk € Flx] forO<h<H,1<j</tp,and1<k<m
such that deg(fnji) < dpnnj for all h, j, and k and such that
frjig1 + frj2g2 + -+ frjmgm =0 mod @, "’

for all integers h and j such that 0 < h < H and1 < j < ¥lp.
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Proof. Let ¥4, £, and go, 91, - - -, gm be as in the statement of the lemma. We will bound the number of
choices of the polynomials fj ;. such that

frjig1 + faj2ge + -+ frjmgm =0 mod ¢, (2.29)

for 0 < h< H and 1< j </ by an extension of the argument that was used to prove Lemma 2.14.

(a)

Suppose first that
ng(g17927' . -agmﬂ’bA) =1. (230)

Fix an integer h such that 0 < h < H, and consider the possible choices for polynomials fy, ;
for 1 < j </ and 1 < k < m such that Equation (2.29) is satisfied for all j. Since there are no
polynomials to be selected at all if h = £, = 0, we may assume that either h > 1 or {5 > 1. In
this case, since Equation (2.30) is satisfied and ¢y, is irreducible and divides ¥4, ¢p, and g, must
be relatively prime for some integer a such that 1 < a < m.

By the argument used in the proof of part (a) of Lemma 2.14, there is exactly one choice of the
polynomials

Intas fn2as-- s frena

for any choice of polynomials f5 ;5 for 1 < j < £ and 1 < k < m where £ # a, such that
Equation (2.29) is satisfied for all j. It follows that there are exactly ¢™r("=1 choices of the
polynomials f, jr, for 1 < j < /£, and 1 < k < m, such that the above-mentioned equations are
satisfied.

Consequently, the number of choices of polynomials f; j, for 0 < h < H, 1 < j < {5, and
1 < k <'m, such that Equation (2.29) is satisfied for all h and j is

H
H th(mq) —q P Np(m—1) _ qN(mq)’
h=0

as required to prove part (a).

Suppose next that

ged(g1, 925+ -+ gmsa) =€ (2.31)
for some polynomial ¢ € Flz] with degree §, where 1 < § < 6; = [i/m]. Since ¥4 = H,ILO gozh’l,
and g, 1, . . ., g are pairwise relatively prime irreducible polynomials with degrees dg, d1, ..., dg
respectively, it follows that

H
=1 vn
h=0
for some sequence of nonnegative integers mg, mi,mso, ..., myg such that

0<myp <npa1 forO<h<H

and such that
modo +midy + -+ -+ mpdy = 0.

Fix h such that 0 < h < H. By the argument used to prove part (b) of Lemma 2.14, there are
at most ¢Va(m—D+mudnl chojces of polynomials fnjk for 1 < j < ¢, and 1 < k < m such that
Equation (2.29) is satisfied for all j.
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Consequently, the number of choices of fj j for 0 <h < H, 1< j <, and 1 <k < m such that
Equation (2.29) is satisfied for all h and j is at most

H
H th(mfl)erhdhE _ qzhH:O(Nh(mAHmhdhe) _ qN(m71)+6£

h=0

)

as required to prove part (b).

(c) Finally, suppose that neither of the cases discussed in parts (a) and (b) applies. Since the poly-
nomials g1, go, . . ., gm each have degree less than §; = [i/m], it follows that

The result claimed in part (c) follows because there are exactly ¢™™ choices of polynomials Ihjk
for0<h<H,1<j</{,and 1<k <m that satisfy the given degree constraints, and because
Equation (2.29) is satisfied for every choice of these polynomials.

The next result generalizes Lemma 2.15 and the analysis that follows it.

Lemma 2.20. If A is as given in Equations (2.282)—(2.28]), and m and i are positive integers such
that i > m > £, then

qu+6qN(m_1)+ilogqN ifm=/~0+1,
Dami < 4 qV™ + 4gN =D ifm=1£+2,
qu + qN(m—l)—I—z' (1 + 2qZ—m+1) me > {4+ 3.

Proof. This can be established using Lemma 2.19, just as Lemma 2.15 was established using Lemma 2.14.
Let £ € F[z] be a factor of the minimal polynomial ¥4 of A with degree 4.

If § < §; = [i/m] then there are at most ¢*~™° polynomials g1, g2, . .., gm € Flz] such that the degree
of g is less than d; for 1 < k£ < m and such that

ged(g1, 925+ -, gm, Ya) = &.

It follows by parts (a) and (b) of Lemma 2.19 that, for each of these choices of g1, g2, ..., gm, there at
most qu*l)Mf choices of the polynomials f ; (for0<h<H,1<j</{,and 1<k <m)such
that

frjig1 + faj2g2 + -+ frjmgm =0 mod ¢, (2.32)
for all A and j such that 0 < h < H and 1 < j < ¢y,

On the other hand, if § > é; and g1, g2, - . ., gm are polynomials such that the degree of g; is less than
0 < 071 for 1 < k < m and such that

ng(gl7927 <oy Om, wA) = g

then§:¢A,
91292'.':.977’1:07
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Nm

and all possible choices of fj, ;; satisfy Equation (2.32), giving an additional ¢ choices of these

polynomials such that the above equations are satisfied.

It follows by the above that

DA,m,i < qu _|_qN(m—1)+i Z q(ﬁ—m) deg(ﬁ). (2‘33)

£€F[z]
& divides 14
deg(§) < [i/m]

Consider any polynomial { with degree less than [i/m| that divides the minimal polynomial ¢4 of A.
It follows by a consideration of the factorization of ¥ 4 that

H
=TI em
h=0
for nonnegative integers mq, mi, ..., my such that 0 < my < ny; for 0 < h < H and such that
domo +dimq +---+dgmpyg = deg(§). (2.34)

Combining inequality (2.33) and equation (2.34), we have that

Dami < qu _i_qN(mfl)Jri Z q*(mfé)(domo+d1m1+,,,deH)

mo,mi,...,my >0

— N 4 N1+ ﬁ Z (q—(m—z)dhj>

h=0 ;>0
H

— N 4 N1+ H (1 _ qf(mff)dh>
h=0

-1

It follows that an upper bound for
1

H
fi 1)

h=0
can be used to produce an upper bound for D4 ,,;. Upper bounds that are sufficient to establish the
claim are developed in the rest of this argument.

Suppose first that m = ¢+41. In this case, since ¢g, ¢1, . . ., pg are distinct irreducible polynomials in F|x]
that each divide 14, and ¥4 has degree at most NN, one can apply Proposition 3 of Wiedemann [15] to
conclude that

< —(m—0)d < —d 1
hl_Io<1_q " h):hl_[()(l—q h>26logqN‘

Consequently

H
H (1 _ q*(mff)dh>_1 < 610gq N,
h=0

as required to establish the claimed upper bound on D 4,,; in the case that m = ¢+ 1.
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Suppose next that m = £ 4 ¢ for some integer ¢ > 2. In this case, one can use the fact that there are at
most ¢’ /7 monic irreducible polynomials with degree j in F[z], for any positive integer j, to establish

that

Consequently

If ¢ = 2 then

so that

S
—_
|
Q\
3
s
IS
>
N———
v
—_
|

H
Zq*(m%)dh
h=0
H
h=0
q‘7 —cj
>1- Z - q
=17
—(c=1)j
-1y 7
PRI
—(c—1)j
—(e— q
=1—qg (D Z R
> )
(-1
> g e Y4 S
j=>2 2
q—2(c—1)
-1 qf(cfl) o qu(cfl)]
2 Jj=0
) q72(cfl) ) )
>1_q_(c_)_TZ2_] (since ¢ > 2 and ¢ > 2)
Jj=0

1 q (e—1) q72(cfl) -1 qfl o q72
>1-271-272 (since ¢ > 2)
1
19

(1 _ e q_2(6_1))*1 <4

as required to establish the claimed upper bound in the case that m = £ + 2.

Finally, suppose that m = ¢+c for an integer ¢ > 3. In this case it should be noted (using the inequalities
that have already been established) that

H

(1 + 2q‘f—m+1) I1 (1 - q(m—@dh)

h=0
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> (1 + 2q_(c_1)) (1 B Gt q—2(c—1))
— 1 4¢3 <q2(c—1) _3q 2)

> 1

)

since ¢! > 22 = 4 when ¢ > 3 and since 22 — 3z — 2 > 0 for every real number z such that z > 4.

Consequently
H -1
H (1 _ q—(m—Z)dh> <1+ 2q€—m+1
h=0
if m = £+ c for ¢ > 3, as required to establish the upper bound claimed for this case. Il

Recall that 0 4.,.i(j) is the probability that the matrix M m v, vo.....0n 1S rank deficient by at least j,
assuming that the vectors vy, va, ..., vy, are chosen uniformly and independently from FV*!,

If i < N then it follows by Equation (2.12) (on page 5) that
"+ (g = DGV o4 mi(5) < D
This can be used, along with the previous lemma, to establish the following.

Corollary 2.21. Let A and ¢ be as described above. Suppose that m < i < N and that j is a positive
integer such that 1 < j <.

6log, N
(g—1) gN—its—1
. 4 .
UA,m,i(]) < DV T ifm=10+2,

1 217m+1 .

ifm=~04+1,

If ¢ > N then it follows by Equation (2.13) that

N(m—1)+i 4 ( )qN(m71)+i+jf1

q q—1 oAmi(J) < Dami-

This can be used to establish the following as well.

Corollary 2.22. Let A and £ be as described above. Suppose thati > m, i > N, and that j is a positive
integer such that 1 < j < N.

1 6log, N

(¢—1)gti—N-1 + (1) g7 1 ifm=1/0+1,

oamilf) < (q—l)q}“*N*1 + (qfli’qul ifm=1~0+2,
l—m+1 3

(q—l)qil“*f\’*1 + (zgl)qj—l if m> £+ 3.

3 Two Modifications

The following modifications of the preceding analysis will be useful for the analysis of block Lanczos
and block Wiedemann algorithms.
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3.1 Inclusion of an Additional Factor

Once again, let us consider the matrix M4 .0, ,0,....0m introduced in Definition 2.1 on page 3. It may
be useful to compare the following definitions to Definitions 2.2 and 2.3.

Definition 3.1. Suppose that m and 7 are positive integers. Let f)A,m,i be the number of choices of
vectors vy, va, . . ., um € FV*! and scalars

dl,Ov dl,la v 7d1,51*17 v 7dm,07 dm,la v 7dm,5m71
for 61,02,...,0n as given in Definition 2.1, such that
dy 0

di1

A- MA,m,i,vhvz,,..,v =0. (31)

m

dm,Em—l

Once again, let r be the rank of A; clearly, the product of A and M4 i, v,....0m, Das rank at most r.
This is reflected in the definition that is given next.

Definition 3.2. Suppose that m and ¢ are positive integers and that j is a nonnegative integer. Let
PAm.,i(j) be the probability that the matrix A - Ma 1 v, vs,.. 0., 1S rank deficient by j, that is,

Z)\A,m,i(j) = Prob [rank (A : MA,m,i,vl,vg,.‘.,vm) =1i— ]] if 4 < r, (32)

and
PAm,i(J) = Prob[rank (A« Ma m v ve,.om) =7 —34] ifi>r, (3.3)

and let 04 ,,(j) be the probability that this matrix is rank deficient by at least j, that is,

G Am,i(J) = Prob[rank (A MA miviwervm) <t—7] ifi <y, (3.4)
and

a\A,m,k(j) = Prob [rank (A : MA,m,i,vl,vg,...,vm) <r-— ]] ifi > T (3-5)
when the vectors v, vs, . .., vy, are chosen uniformly and independently from FV*1.

Lemmas 2.4 and 2.5 can be applied to establish the following equations, which should be compared
to Equations (2.10) — (2.13): Lemma 2.4 is used to establish Equation (3.7) when r < ¢ < N, and
Lemma 2.5 is used to establish this when 7 > N.

7
Dagmi =3 a"" pamily) ifi<r, (3.6)
j=0
r . .
Dami=3_ a"™ "% Gapmi(G) ifi>r, (3.7)
j=0
i .
Dami=a""+(@q=1> ¢"" 7 Gami(j) ifi<r, (3.8)
j=1
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and
,

Dagmi=q"" "4 (q— 1)) VTG () i > (3.9)
j=1

Bounds on p4 m,i(j) and 0 4, m () resembling those established for p4 . i(j) and o4, i(j) in Lemma 2.20
and Corollary 2.21 follow by a modification of the analysis in Section 2.3. The required changes are
summarized below.

3.1.1 Modification of the First Case

Suppose first that A is similar to a companion matrix and, furthermore, that its characteristic polynomial
is a power of a monic irreducible polynomial ¢. In particular, suppose that A is as described at the
beginning of Section 2.3.1 and that A, Z, ¢, d, and n are as in Equations (2.14a) — (2.14d).

Either ¢ = x or ¢ # z. It will be useful to consider these cases separately.

Case: ¢ = x. In this Lemma 2.6 and Corollary 2.7 are applicable, much as before. However, since
D and D g, have different definitions, a result that is similar, but not identical, to Lemma 2.8

can be obtained using the argument to establish that lemma: If A is as described here, then D Am,i 18
equal to the number of choices of polynomials

f17f27"'afm € F[J)]

where the degree of f; is less than N = n for 1 < j < m, and of polynomials

91,92, ---,9m € F[.CE]

where the degree of g; is less than ¢; for 1 < j < m, such that

fig1 + foga + - + fingm = 0 mod 2" (3.10)

One can proceed, as in the development of Lemma 2.9, by the counting the number of choices of
polynomials

flvf?v"‘vfm

satisfying Equation (3.10) for any given choice of g1, ¢2,...,gm. Slightly different numbers of choices
(than in the above lemma) are obtained:

o If at least one of the polynomials ¢1,¢9o,..., 9, is not divisible by = then there are exactly
¢V m=1+1 choices of polynomials

f17f27 L) 7fm S F[ff],
each with degree less than N, such that

191 + faga + - + fmgm = 0 mod z" 1.

e Let h be a positive integer such that h < §; = [i/m]. If the polynomials g1, g2, ..., gm are all
divisible by z”, but at least one of these polynomials is not divisible by "1, then there are
exactly ¢V(m=D+h+1 choices of polynomials fi, fa, ..., fm € F[z], each with degree less than N,
such that the above equation is satisfied.
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e Finally, if the polynomials g1, g, . .., g are all divisible by 2", where h > §; = [i/m], then there
exactly ¢™ choices of polynomials fi, fo,..., fm € F[z], each with degree less than N, such that
the above equation is satisfied (because g1 = g2 = -+ = g, = 0 in this case).

The argument used to establish Lemma 2.10 can now be used to show that

ﬁA,m,i < qu + qN(m71)+i+1 Z:qf(mfl)h7
h>0

so that N
q m

N—i—1

N N
DA,m,i <q m 4 N—izm

q —4q

Case: ¢ # x. In this case the matrix A is nonsingular. One can see by Definition 2.1 that

A- MA,m,i,vl,vz,...,vm = MA,m,i,Av1,Avg,...,Avm
for any choice of vectors vi,va,...,vn. Since Avy, Avo, ..., Av,, are uniformly and independently se-
lected from FV*1 if vy, v, ..., vy are, it can be argued in this case that
DA,m,i = DA,m,i'

Consequently it follows by Lemma 2.10 that

Nm

~ _ . o q
Dagmi < g™ + N0 Z q "I =g gN—i — gN—i—(m=1)d
h>0

in this case.

3.1.2 Modification of the Second Case

Suppose next that A is as described at the beginning of Section 2.3.2, so that Equations (2.22a) —
(2.22¢) are satisfied. Once again, the minimal polynomial of A is a power of some irreducible polynomial
¢ € Flz], and it is useful to consider the cases p = x and ¢ # x separately.

Case: ¢ = x. In this case, material in Section 2.3.2 is modified in much the same way as material
in Section 2.3.1 was modified, above. Lemma 2.11 and Corollary 2.12 are unchanged, and are used
to establish a result that replaces Lemma 2.13: If A is as described here, then D Am,i is equal to the
number of choices of polynomials

fix € Flz] forl<j<fand1<k<m
where deg(fj ) < n; for all j and k as above, and of polynomials
91,92, - -+ 9m € Flz]
where the degree of g is less than 0 for 1 < k < m, such that
firgi + fi2g2 + -+ + fimgm = 0 mod 2™~

for every integer j such that 1 < j < ¢. Continuing the analysis as in Section 2.3.2, one eventually
confirms that

f)A’m’i < qu _’_qN(mfl)Jrz#Equ(mfZ)h _ qu + q
h>0
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Case: ¢ # x. Once again, it can be shown in this case that
DA,m,i = DA,m,i

so that it follows by the material in Section 2.3.2 that

Nm

ﬁA,m’i < qu _f_qN(mfl)Jriqu(mfZ)dh _ qu + ' q

N—i _ oN—i—(m—£)d’
h>0 q q

3.1.3 Modification of the Third Case

Suppose next that Equations (2.28a) — (2.28]) are satisfied.

Special Case: No Nontrivial Invariant Factors To begin, suppose that A has no nontrivial
invariant factors that all — so each invariant factor of A (in F[z]) is either divisible by 22 or not
divisible by z. In other words, let us suppose that A does not have any nilpotent blocks with size 1.

Lemma 2.16 and Corollary 2.17 hold, as before. These can be used to establish the following result,
which replaces Lemma 2.18 in this analysis: D4 ,,; is equal to the number of choices of polynomials

fnjk € Fl] for0<h<H,1<j</fp,and1<k<m
where deg(fp jx) < dynp,; for all h, j and k as above, and of polynomials
91,92, - - gm € Flz]
where the degree of g is less than 0 for 1 < k < m, such that
fo,ji91 + foj292 + .., fo,j,mgm = 0 mod g0 —1 for 1 < j < 4, (3.11)
and such that

fnjagr+ faj2g2 + -+ fagmgm = 0mod @™ for 1 <h < Hand 1< j </ (3.12)

This can be used to establish a result that resembles parts (a) and (b) of Lemma 2.19: If ¢4 is the
minimal polynomial of A,

91,92, ---3,9m € F[LL‘]

is a sequence of polynomials such that the degree of gy is less than §; for 1 < k < m, and

ng(91>92a - 9m, 77Z)A) = g

for a polynomial with degree §, where 0 < § < §; = [i/m], then there are at most ¢V~ D+0+0 choices
of polynomials fp, ;1 € Flz] for 0 < h < H,1 < j <, and 1 < k < m, such that deg(fp i) < dpnn
for all h, j, and k, and such that the conditions shown at lines (3.11) and (3.12) are satisfied. On the
other hand, if the degree of

ng(glv g2, 9m, ¢A)

is greater than or equal to d; then it must be the case (as before) that
gl:g2:...:gmzo7
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Nm

so that there are exactly ¢ choices of the polynomials f, ;. such that the given conditions are all

satisfied.

Note that if A has rank r then
r=N— KO

in this case. A modification of the analysis used to prove Lemma 2.20 establishes that

H
~ . —1
DA,m,i < qu + qu—’l‘—‘rZ H (1 _ q—(m—é)dh) ’
h=0

so that (by a continuation of this analysis)
qu—I—Gqu_”'ilogqN ifm=~0+1,
ﬁA,m,’i < qu + 4qu—T+i ifm=1/~¢+ 2,
qu T qufrJri(l 4 2q£fm+1) ifm>¢+3.

This can be used along with Equation (3.4) to establish that if ¢ < r then

6log, N

Gami(i) < § Gryg=m=r fm=1{+2,

=) (@=1)g -t
L—m
This can also be used along with Equation (3.5) to establish that if ¢ > r then

1 6log, N
(g=1)g*ti—r=1 T (¢-1)¢s~!

oAm,i(J) < (q_l)q}ﬂ_r_l + (q_li)%qj_l ifm=0+2,
if m>{+3.

ifm=~0+4+1,

1 . + QqZ—m-‘kl
(g=1)giti—r=1 1 (¢g—1) ¢!

FNXN

General Case: In general a matrix A € is similar to a block diagonal matrix, so that

L[4 o
A=Xx"1 X

for a nonsingular matrix X € FV*VN, where 4 € FV*V is a matrix with no nontrivial invariant factors
(as considered above) and for an integer N such that 0 < N < N. The matrices A and A clearly have

the same rank in this case.

Notice that if v € FV*! then

v=X"1 v
v

for vectors 0 € FV*! and 7 € FV=N)X1 Furthermore, if v is selected uniformly from FV*! then the

FNx1 (N—N)x1

corresponding vectors ¥ and v are selected uniformly and independently from and from F

respectively. It is easily checked that if j is a positive integer and v and v are as above then
ATG
0

Aly = X1
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as well. Consequently, if vy, vs, . .., Un, are uniformly and independently selected from FY*! then

S |AMs o
A- MA,m,i,v1,v27-..,vn =X A’m’zévl’m"”w"] s
where 01, 0a, . .., U are chosen uniformly and independently from FV*1,

Since A and A have the same number of nontrivial invariant factors, the next results follow from the
inequalities that have been established for the case that A has no nontrivial invariant factors at all.

Lemma 3.3. Let A € FN*N be a matriz with rank r and with ¢ nontrivial invariant factors. Let m, i
and j be positive integers such that i >m > €. If i <r and 1 < j <1 then

6log, N
G gt

3A,m,i(j) < (q—l);+”‘]—1 zfm:€+2,

142 L—m—+1 )

ifm=~0+1,

and if t >r and 1 < j <r then

1 6log, N
(1) gti—r=1 T (g—1)¢i~1

8A7m71(]) S (qfl) q}-‘y—j—r—l + (Q*li}qj_l me — 6 + 27

2 L—m-+1 .
G g Ym2l+3.

ifm=0+1,

3.2 Avoidance of a Subspace

It will also be useful to consider the probability that the vector
dip
di1

MA,m,i,vl,vg,...,vm .
dm,ém—l

FN><1

belongs to a given subspace of . With that in mind we will generalize Definition 2.2 as follows.

Definition 3.4. Suppose that m and i are positive integers and that = € F**1. Let D g mi(x) be the

number of choices of vectors vy, vs, . .., vm € FN X! and scalars
d1,07 d1,17 v 7d1,51*17 CE) 7dm,07 dm,la R 7dm,5m71
such that
dy

di
M A m i1 02, 0m .
A, —1
Lemma 3.5. Let m, i, and x be as above.
If x =0 then
EAym,i(a:) = DA,m,i~

Otherwise
DA,m,i(l') < DA,m,z' - qu-
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Proof. If x = 0 then the stated equality follows by a comparison of Definitions 2.2 and 3.4, which are
clearly equivalent in this case.

Suppose instead that = # 0. We may assume that A is as given in Equations (2.28a)—(2.28j), although
no relationship between the values of the parameters ¢ and m should be assumed. The analysis in
Section 2.3.3 can now be modified to show that D 4, ;(x) is the number of choices of polynomials

frnjk € Flx] for0<h<H,1<j</tp,and1<k<m
where deg(fp, jx) < dynp,j for all h, j, and k as above, and of polynomials

91,92, ---,9m € F[[IJ}

where the degree of gj, is less than §; for 1 < k < m, such that

Frjig1 + frj2g2 + -+ frjm@m = An; mod @,

for all integers h and j such that 0 < h < H and 1 < j < {5, and where Ay, j are polynomials in Flz] such
that deg(A;) < dpnpj, for 0 < h < H and 1 < j < /3, that depend on the vector  — in particular,
these are polynomials whose coefficients are chosen as entries of the vector X ~'z if Equations (2.28a)-
(2.28)) are satisfied. If 2 # 0 then the vector X ~!z is also nonzero, so that at least one of the polynomials
Ap,j is nonzero as well.

Now consider integers h and j such that 0 < h < H and 1 < j < /. If at least one of the polynomials
91,92, - - -, gm is nonzero then the number of choices of polynomials f, ;5 (for 1 <k < m) such that

Frjng1 + fnj2ge + oo+ fhjmGm = Anj mod " (3.13)

is less than or equal to the number of choices of polynomials fj, ;5 (for 1 <k < m) such that

frjig1 + fhj2g2 + s+ fhjmGm = 0 mod ™. (3.14)

Indeed, either Ay ; is divisible by
ng(gla g2;---,9m, SDZh’j),

and there is the same number of choices of these polynomials in each case, or Ap, ; is not divisible by
the above greatest common divisor, and there are no choices of polynomials satisfying the condition at
line (3.13) at all.

On the other hand, if g; = g2 = --- = g, = 0 then there are ¢"™ choices of the set of polynomials
frjr for 0 <h < H,1<j </, and 1 <k < m such that deg(fp;x) < dpnp; and the condition at
line (3.14) is satisfied for all h and j, because all choices of these polynomials cause the condition to be
satisfied, but there are no choices of these polynomials at all that satisfy the condition at line (3.13) to
be satisfied, because A j # 0 for at least one choice of h and j. It follows that

EA,m,i(x) < DA,m,i - qu
if z # 0, as claimed. O
The above result will be used to analyze the probability that the following matrices have low rank.
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Definition 3.6. Suppose that m, i, and d are positive integers, and that

V1,09, ..., Uy € VXL and L1, T, ..., xq € FNXL

Let
AT _ N x(i4+d
MAymyi)vlva7"‘7vm (x]J x27 cey xm) - |:MA7m7Z.7U17U2,...,’Um X} € F ( )’

where Ma i o1 09..0m € FV*? ig as in Definition 2.1 and where

X:[ajl o ... :Ed]EFNXd.

Definition 3.7. Suppose once again that m, ¢, and d are positive integers, and that

Nx1
r1,%o,...,xq €F .
Let DA i(z1,22,...,24) be the number of choices vectors vy, va, ..., v, € FNX1 and scalars
dio,digs . digi—15- o dmo,dms .o A1, €1,€2,...,eq €F
such that ) ;
dip
di1
r dm5 -1
MA,m,i,vl,vz,...,vm («le X2y ,LL’d) 761 =0.
€2
L €d
One can see by a comparison of Definitions 3.4 and 3.7 that
Dami(w1, @2, .., 30) = Y Dami(—e1w1 — eamy — -+ — eqzq).

e1,e9,...,eq€F

FN><1

Consequently the next result follows by Lemma 3.5 and the fact that a subspace of with dimen-

sion d includes ¢% — 1 nonzero vectors along the zero vector.

Lemma 3.8. Suppose that the vectors x1,xa, ..., zq € FN*! are linearly independent. Then
D ami(x1,22,. ., 2q) < ¢"Dam,; — (qd - 1) "

The next result now follows by an application of Lemma 2.20.

Lemma 3.9. If A is as given in Equations (2.28a)—(2.28]), m, ¢ and d are positive integers such that

i>m >/, and {x1,x2,...,24} is a set of linearly independent vectors in FNXL then
qu + 6qN(m—1)+i+d lqu N ifm=10+1,
Dami(m1,22,...,2q) < g™ 4 4gNm-1)ti+d ifm=10+2,

qu_‘_qN(mfl)Jrz#d(l_i_Qqéferl) ifm >0+ 3.
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Once again, it will be useful to generalize Definition 2.3.

Definition 3.10. Suppose again that m, ¢, and d are positive integers, that j is a nonnegative integer,

and that

Nx1
x1,%2,...,x4 € F .

Let pam,i(z1,z2,...,24;5) be the probability that the matrix MA,m,i,vhvz,...,vm (z1,22,...,24) is rank
deficient by j, that is,

PAm,i(T1,22,...,24;7) = Prob [rank (MA,m,i,m,vz,.-.,vm (21,22, .., a:d)) =74+d— j] ifi+d< N
(3.15)
and

PAmi(x1,22,...,24;7) = Prob {rank <MA,i,k,v1,U2,...,vm(xlvx27 .. ,md)) =N —j] ifi+d> N,
(3.16)
and let 04 m i(z1,22,...,24;j) be the probability that the matrix is rank deficient by at least j, that
is,

Am,i(T1,T2,...,24;5) = Prob {rank (MA,m,i,vaz,-..,vm (x1,x9,. .. ,xd)) <i4+d-— j} ifi+d< N
(3.17)
and

GAm,i(T1,%2,...,24;5) = Prob [rank <MA,m,i,v1,v2,...,vm(l‘1, 9, ... ,:Ed)> <N - j] ifi+d>N,
(3.18)
when the vectors v1,vs, ..., v, are chosen uniformly and independently from FAXT,
Lemmas 2.4 and 2.5 can be applied, once again, to relate the values that have now been defined: It
follows by these lemmas that

i+d
Dami(z1,22,...,2q) = Zquﬂ PAmi(T1,22,...,2q;j) ifi+d<N (3.19)
§=0
and
B N
Dami(x1,22,...,2q4) = ZQN(m_1)+Z+j+d pAmi(T1, T2, ..., 2q;7) ifi4+d>N. (3.20)
j=0
Since pami(z1,22,..., 245 J) = Tami(T1, %2, ..., 245 )) —TAmi(®1, Z2,...,2q;j+1) if j < min(i+d, N),
PAmi(x1, 22, ..., 2q;]) = Cami(x1,22,...,24;7) if j =min(i +d, N), and 74 i(21,22,...,24;0) =1,
this implies that
_ i+d )
Dami(z1,29,...,30) = ¢"™ + (g — 1) Z "ITG i (1,20, mgj) ifi+d <N, (3.21)
j=1
and
_ N
Dgmi(x1,22,...,24) = gNm=DFitd Z gN(m=1)Fiti+d-1 TAmi(T1,x2,...,2q;j) ifi+d>N.
j=1

(3.22)

Lemma 3.9 can now be applied to obtain the following.
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Lemma 3.11. Suppose that A is as given in Equations (2.282)—~(2.28)), m, ¢ and d are positive integers
such that i > m > {, and that {x1,x9,...,24} is a set of linearly independent vectors in FV<L o If
i+d< N and1l<j<i+d then

6log, N

(q—1) N -+ F5-1 ifm=L+1,
~ . 4 .
UA,m,i($1;$27...7$d§]) S (q—l)qN*(i‘i’d)*’J*l me:£+2,
{—m-+1 .
112 if m> {0+ 3.

(=) ¥~ FDTTT

and if i+d > N and 1 < j < N then

1 6log, N .
g g fm=E

O'A,m,i(ﬂfh Z2y.n. adeJ) < (q—1)gtita—N-1 + (—1) g1 ifm=1/0+2,

ifm>/0+3.

1 2q57m+1
@Dt =~=T T (T

4 Application: The Minors of a Block Hankel Matrix

4.1 A Block Hankel Matrix

FNXN

Suppose once again that A € is a matrix with rank 7.

Definition 4.1. Suppose that my, mg, i, and j are positive integers, and that
UL, Uy - ey Uy s V1, V2, -y Uy € FVxL,
Let

. — Mt A ) X
HA,mL,mR,z,j (u1) U2s - -y Umyp, V1,02, ... 7va) = MAt7mL,i7U1,U27..~7UmL A MA,m,j,vl,vg,.‘.,va € F7Y,

where the matrices M 4 € FV¥ and M Ampn, € FN*J are as given in Defini-

tion 2.1 on page 3.

7mL7i7u11u27~--7umL V2,.-yUmp

We will use the results of Sections 2 and 3 to bound the probability that this matrix is rank deficient
when the vectors
Uy, ug, . . '7u’mL7/U17/U27 s 7va

FN><1

are chosen uniformly and independently from and when A has at most min(mz, mpg)— 1 nontrivial

invariant factors.

4.2 Simplification

We may assume that A has no nontrivial invariant factors — that is, each invariant factor (in F[z]) is
either divisible by 22 or not divisible by z. In other words, we may assume that each nilpotent block of
(a rational Jordan form for) A has order at least two.

To see that this is the case, we may apply the argument used in Section 3.1.3: Note that, in general,

A=Xx"1 [g 8] X (4.1)
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where X is a nonsingular matrix in FV*V and A e FNxN , for an integer N such that 0 < N < N, and
where A has no nontrivial invariant factors: In this case, (the rational Jordan form for) A has exactly
N — N nilpotent blocks with size one.

Suppose again that wi, ug, ..., Um,,V1,V2,...,Vmy € FV*L Since the matrices X and X* are nonsingu-
lar, there exist vectors @iy, Ua, . . . , Uy, € FY XY and @y, s, . . ., U, € FIN=N)x1 gych that
U .
w = X! [ﬂz] for 1 <i<myp (4.2)
i
and there exist vectors 01,02, ...,0m, € FV*! and there exist vectors 0y, Vs, . . . Uy € FIN=N)x1 guch
that
1 |v; .
v;=X"1! [5] for 1 <j<mpg. (4.3)
j

It follows by Equations (4.1), (4.2), and (4.3) that if k is a positive integer then

~

K k T ~
ubAbp; = U x Xt AV Oy x |Y = ut A*;.
U; 0 0 ’Uj

Consequently

— M\t )
HAmeymRzzy.] (ul’ U2y -+ - Um, V1,02, .-+, Um) - MAt,mL,i,ul,ug,...,umL A MAszz.]7U17v2""7va

- M CA-M _

At,mL,i,al,QQ,...,’l/j\,mL A,mR,],Uh’Uz,...,’UmR

ﬁ,mL,mR,i,j(ul’uQ’ ey Uy, V1,02, ooy Up)-

The claim that we may assume A has no nontrivial factors now follows by the choice of A and the obser-

vation that (since X and X' are nonsingular), if the vectors ui, ug, ..., Upn, ,v1,02,..., Uy, are chosen
uniformly and independently from FV*! then the corresponding vectors Uy, @a, . . . , Um 101,02, ..., Ump
are chosen uniformly and independently from FV*!.

4.3 Bounding the Rank: A Useful Lemma

The rank of HA mp mp,i (U1, U2, ..., Um;, V1,02, ...,Uny) is the same as the rank of its transpose,

. t — t . t . .
HA,mL,mR,i,] (ulv U2y - oo s Ump,, U1, V2,0 -y va) - MA,mR,j,vl,vz,...,va A MAtmev’Lvulvav“'vme'

It will be helpful to consider the latter matrix.

. N y
Suppose that the matrix (A - Mampg o102, 0m )= Mzt47mR,j,U11U2,---7U'mR - At € F¥*7 has rank t. Then
t < min(r,j) < min(N, j) since the row space of this matrix is a subset of the row space of A'. The set
of vectors w € F*1 such that

(A MA,mRJWl:W,--me)tw =0

is a subspace W of FY*! with dimension N — ¢; let
w1, wa, ..., wy_y € FVX1

be a basis for this subspace.

37



Notice that the vectors w1, ws,...,wny—; depend on vy, v, ..., vy, but that they do depend in any way
on the vectors uy,ug, ..., Uy, . With that noted, let us consider the matrix

r NX(N+i—t
MAt,mL,i,ul,uz,‘..,umL (wh w2, . .. 7wN—t) cF (N+i—t)

as given in Definition 3.6 on page 34.
Let
S ={2 € F*Y Ham, mpij(Ui,Us, ... g, 01,02, Ump) -z =0} C FX1

and let
T={ye F(N+i—t)x1 ‘ MAtjmm,uhuQ,m,umL (w1, wa,...,wn—¢) -y =0} C F(N+i—t)x1
Lemma 4.2. |S| = |T.

Proof. 1t is sufficient to exhibit a bijection ¢ : S — T

To do so, let 2 € S. Then z € F*! and HAmp mpig (U102, oy Uy, V1,02, ..., Upp )t - 2 = 0. Since
¢ t t
HA,mL,mR,i,j(Uly 'U,Q, e 7umL7 vla '1)27 e 7va) = MA,mRJ’vl,vQ’,,,,ymR : A : MAt,mL,i,ul,ug,...,umL7
it follows that if w = Mat ;01 us,..um,, * T then
(A-M ; Yow = MY A w
AvaJyUl:UQv""va - AamR)j)v17027--~7va
t
= HA,mL,mR,i,j(uly U2, ...,Umy,V1,02,... 7va) x4
= 0.
Thus w € W. Since wi,wo,...,wy—¢ is a basis for W there exists a unique sequence of elements
c1,C,...,cn_¢ of F such that
wW = Clwi + w2 + -+ + CN_tWN_¢.
Let us define ) )
x
o(z) = —Co c F(N+i—t)x1 (4.4)
[ ~CN—t]
This is well defined since the elements ¢y, ca, ..., cy_¢ are uniquely determined from z.
Notice that
MAt,mL,i,u1,u2,...,umL (w17 wa, - . . 7wN—t) : ¢($)

= Mat iy s s, um, €~ (C1W1 + C2T2 + -+ + CN_pWN—¢)
(by the definitions of M at iy i un un,e.ostion (wi,ws,...,wy—¢) and ¢(x))

=w—w =0,

so that ¢(x) € T for all z € S. It is also clear from Equation (4.4) that that ¢ is an injective map. All
that remains is to show that it is surjective as well.
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Let y € T. Then we may write

for vectors § € F*! and § e FV 711,
Let
M, = [wl wy ... ’LUN_t] € FNX(N*t).
Since y € T,
MAt,mL,i,ul,UQ,...,umL (wh w2, . .. 7wN7t) Y = MAt,mL,i,ul,uz,...,umL Y+ Myy =0,
so that
MAt7mL,i,u1,u27...,umL Y = — My,
and
Hy i(ur,u Uy , U1,V Vmp)t -y
mp mp,t,g\Ul, W2, -« oy Umyp, V1, V2,...,Unp Yy

— . t . . . N
= (A : MA,mR,j,vl,vg,...,va) MAt,mL,’L,Ul,UQ,...,’LLm Yy
_ i , ENLT
- _(A : A7mR7]7U17v27"'7va) U]y

0-7=0,

L

since the columns of M, all belong to the subspace W, so that (A - MAmR,j,UI71)27,,_7,,”%)lt - M, =0.
It follows that y € S, so that ¢(y) € T. Now notice that

y = E €T and  (f) = m €T

as well, for vectors 4,7 € FIN=0X1 The matrix

belongs to the subspace T as well. Consequently
MAt,mL,i,ul,uQ,‘..,umL (w1, wa, ..., wNn—t) - (y —o(y) = 0. (4.6)
It follows by Equations (4.5) and (4.6) that
My - (g* y) =0
as well. Since the matrix M,, has full rank (its columns form a basis for the subspace W),
i-7=0,

so that y = ¢(y). Since y was an arbitrarily chosen element of T" it follows that the map ¢ is subjective,
as claimed. O

This result can be used along with Lemmas 2.4 and 2.5, to establish the following.
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Corollary 4.3. Let mpg be a positive integer, let vi,v2,...,Vnmy, € FVXY - and let wy, wa, . .., wN—_; be a
basis for the set of vectors

W={we FAX | (A- Mamp,jor,09,, )t cw =0} C FNXla

’UmR

so that t < min(r,j). Let my, be a positive integer and let ui, ug, ..., Unm, € FVxT Finally, let ¢ be a
positive integer, so that either i <t <j,t<i<j, ort<j <i.

(a) If i < j and s is an integer such that 0 < s < i then the matriz

X ]
HA,mL,mR,i,j(uluu27 cees Umyp, V1, V2,0 0y UmR) e FJ
has rank i — s if and only if the matrix

r Nx(N+i—t
MAt’mL’i’ulm’_“’umL (w1, wa,...,wy_¢) €EF ( )

has rank N +1—1t — s.

(b) If j < i and s is an integer such that 0 < s < j, then the matrix
HA,mL,mR,i,j(ulv ’LLQ, e 7umL7UI7 027 ctcy UmR) € FZX]
has rank j — s if and only if the matriz
) c FNX(N+i7t)

MAt,mL,i,ul,ug,...,umL (wla w2, ..., WN~—t

has rank N + j —t — s. It must therefore be the case that s > j —t.

5 Formulas

Once again, consider the matrix HA m, mp.i (W1, U2, ..., Um,, V1,02, .., U;my) € Fixd,
Definition 5.1. Let h, ¢, and j be a positive integers and let 74 1n, mp.i,;(h) be the probability that the

block Hankel matrix H Ay, mp,ij(U1, U2, ..., Un,, 01,02, ...,Uny,) is rank-deficient by at least h, that
is,

TAmp,mp.i,j (h)

Prob [rank(H A m; mp,ij (U1, U2, ., Umy, V1,02, ..., Umy)) <i—h] ifi<jandi<r,
= < Prob [rank(H g m; mp,ij (U1, U2, . s Ump V1,02, ..., Ump)) < J—h] ifi>jand j <7,
Prob [rank(H A m, mp.i (W1, U2, .oy Umy, V1,02, ..., U;mp)) <7 —h] ifi,5 >,
when the vectors w1, u2, ..., Umn, ,V1,V2,...,Un, are chosen uniformly and independently from FAx1

Results from previous sections can now be used to bound these quantities.
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Case: 1 <j<r
The matrix AMA g j01,09,...0m FV*J is rank-deficient with probability at most T Amp,j(1). Suppose,
instead, that this matrix has full rank j.

In this case the subspace

W = {w e FV! [ (AM A g jos wn.eomy,)' - w = 0}
has dimension N — j and a basis wy,ws,...,wn—_; € FV*1 In other words, t = j for the value ¢
considered in Corollary 4.3, implying the following.
Lemma 5.2. If i < j <, and h is a positive integer, then
TAmpmpig(P) < 0ampi(1) + 04ty i (w1, w2,. .., wN_j; h),
where wy,wa, ..., wN_; 15 a sequence of linearly independent vectors in XL,

Since the matrices A and A! have the same (nontrivial) invariant factors, Lemmas 3.3 and 3.11 can
now be used to establish the following, assuming that A has ¢ nontrivial invariant factors, and ¢ <
min(mg, mg).

Corollary 5.3. Ifi < j <r, min(mp,mg) < ¢ and h is a positive integer, then

6log, N 6log, N

(q—1)qm=7 + (—1)gg—Fh—1 if min(mp,mg) =€+ 1,
TA,mLymR7i7j(h) S (qflglqr_j + (q—l) q;l—i+h_1 lf min(mL7mR) = E -+ 27

142¢¢~mRr+t1 149gf—mp+1 . .

—(;_ql) q'rlij (qj—l)qufiihfl Zf mln(mL, mR) Z Y/ + 3.

Sharper bounds can be obtained when mj # mpg by applying Lemmas 3.3 and 3.11 to consider additional
cases.

Case: 1 <r<j

The argument used in the previous case can also be applied here: The matrix AM 4y j0, ROSRT. is
rank-deficient (that is, has rank less than r) with probability at most &4, j(1). If this is not the case,
then the above-mentioned subspace W has dimension N — r and a basis w1, ws, . .., wy_, € F¥V*1

In other words, t = r for the value ¢ considered in Corollary 4.3 and it follows that the matrix
Hamp mpi (U102, oo Uy, U1, 02, .., Uy ) € Fi*1j has rank i — h if and only if the matrix

T Nx(N+i—r
MAt,mL,i,ul,ug,...,umL (wlv w2, . . - awN—T) eF ( )

has rank N 4 ¢ — r — h. This implies the following.

Lemma 5.4. If i <r < j and h is a positive integer then

TAmpmpij(R) <Tamg,;(1)+ gAt,mL,i(wlyw% e WN—p; h),

where w1, wa, ..., Wn—_y is a sequence of linearly independent vectors in FN*1.

Lemmas 3.3 and 3.11 can be applied to obtain useful bounds for the case that mp is significantly greater
than the number of nontrivial invariant factors of A.
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Corollary 5.5. Ifi <r <j, mp>£+3, mp > L€+ 1, and h is a positive integer, then

1 2¢~mRT! 6log, N . .
@G Dg—" T g1 (qfl)qrz“r"‘1 fmp==E+1,
1 2q£7WR+1 4 . -
TAmevaviaj(h) S (q_l)qur + q—1 + (q—l)qr7i+h71 Zf my = K + 2;
1 2q[—mR+1 1+2qé—mL+1 .
@ Dg T T g1 T g ifmp 2 43

Unfortunately this does not provide useful bounds if mp =€+ 1 or if mp = £ + 2.

In order to deal with these cases, let ¢ be a positive integer whose value will be specified later, and
notice that the matrix AMA,mR,j,vhvz,m,va € FN>J has rank less than r — ¢ with probability at most
OAmp,j(c+1). Lemma 3.3 can be used to show that

1 6
- +
(q—1)¢?"(logg N)* ~ (¢ —1)log, N
if mp=~{+1and c > 2log,log, N, and that

1 3
3,47 ,‘(C—}— 1) < — +
e (g—1)g/~"log, N = (¢ —1)log, N

if mp =+£+2 and c > log,log, N.

Suppose instead that the rank of AMA,mR,j,UI,U27,_.7va is at least » — ¢, so that the subspace W of
vectors annihilated by the transpose of this matrix has dimension at most N — r + ¢ and a basis
wi, Wa, ..., WN_4¢ for some integer ¢ < c.

Suppose now that ¢ < r — i so that ¢ < r — i as well. It follows by Corollary 4.3 (with ¢t = r — ¢,

so that t —i > (r — i) — ¢ > 0) that the matrix HA,mL,mE\ﬁ‘,j(ul,Ug,...,’U,mL,Ul,UQ,...,UmR) has
rank ¢ — h, for a positive integer h, if and only if the matrix Mgt iy, s sy i, (w1, w2, ..., WN_riz)
has rank N — r + i 4+ ¢ — h. The latter event occurs with probability
6log, N 6log, N .
(qfl)qr—g—a-&-h—l > (q_l)qv-fgchrhfl it mp =0+1,
~ 4 4 .
UAt,mL,i(wly Wa, ., WN_pqgs h) < (q—1)gr—i—oth—1 < (q—1)gr—i—cFh—1 if mp =40+ 2,
L—mp +1 L—mp +1 .
1+2¢ “ LT 1429 "L if mp, > ¢+ 3.

(q_l)q'rfifE#»hfl (q_l)qr—i—c+h—1

These provide useful bounds if i < r — 3[log,log, N| and mg = £+ 1, or if i <r — 2[log, log, N| and
mgrp=1/{+2:

Corollary 5.6. If mgr ={(+1, m > (+1,i <r—3[log,log, N, and h is a positive integer such that
1< h <1, then

1 6 6 ; —
7~ g, N7+ G Dlog, N+ sen e e e =G4

1 6 4 ; _
TA,vamR:i»j(h) < (¢=1)¢? " (log, N)? + (g—1) r—i—2[logg logg NT+h—1 ifmp =£+2

log, N + (
1 6 1+2q€7mL+1 )
Do, 87 T @ Dlog, N ¥ Ty 2w vt me 2 64 3.

q—1)g

Ifmp=L04+2, mp>0+1,i<r— 2[logq log, N1, and h is a positive integer such that 1 < h <, then

1 3 6 : _
¢/="logy N + (g—1)logy N + (g—1)g" " 2Mogq logg NT+h—1 if mp, =L+ 1,
1 3 4 : _
TA,mL,mR,z‘,j(h) < @ log, N + (¢—1)log, N =+ (q—1)q " Mo8gogg NT+h=1 if mp =4+ 2,
1+2q€—mL+1

1 3 ;
@I~ logg N + (g—1)log, N + (q—l)qriifnogq logg N1+h—1 if mp 2 £+ 3.

42



Note that if 7 < 4 then the rank of the matrix H 4, mp7i (U1, U2, ..., Um; ,V1,0V2, ..., Upy) is less than
the rank of Ha m; my,ij (U1, U2, ..., Umy, V1,02, ..., Ung). This implies the following.

Lemma 5.7. If mp =(+1, my, > £+ 1, r — 3[log,log, N| < i < r, and h is a positive integer such
that 3[log,log, N1 < h <, then

TA,mL,mR,i,j(h) < TA,mL,mR,z'—?)[Iogq log, N ,j(h - 3ﬂogq lqu N—‘ )
Similarly, if mrp = £+ 2, m, > £+ 1, r — 2[log,log, N| <i <r, and h is a positive integer such that
2[log,log, N| < h <, then

TA,mL,mR,i,j(h) < TA,mL,mR,ifQ[logq log, N ,j(h -2 ’—logq logq NW )

This can be used along with Corollary 5.6 to bounds on 74 m, mpg.i,;(h) for the case that r — ¢ is small
and positive, 7 > r, and for sufficiently large h.

Case: r<i1<j
The argument used at the beginning of the previous cases can be used once again: The matrix
AMA,mRyjvaz,m,va is rank-deficient (that is, has rank less than ) with probability at most & 4, ;(1).

If this is not the case then the subspace W has dimension N — r and a basis w1, ws, ..., wy_, € FVX1.
Once again t = r, for the value t considered in Corollary 4.3.

Let h be an integer such that 1 < h < r; then the matrix HA m, mp,ij (U1, U2, .., Umy, V1, V2, .., Umnp)
has rank r — h if and only if its rank is i — s, where s =i —r + h. It follows by the corollary that this
is the case if and only if the matrix MAt,mL,i,m,UQ,...,umL (wi,wsa,...,wn—,) has rank N — (s —i+1¢) =

N-r+i—s=N—-h.
Lemma 5.8. Ifr < i < j and h is a positive integer such that 1 < h < r then

TAmpmpig(R) < 0ampi(1) + 04t g, i (W1, w2, ..., wN_r; h)

where wy,we, ..., WN_r 1S a Sequence of linearly independent vectors in FAXT,

Lemmas 3.3 and 3.11 can be applied once again to produce useful bounds for the case that mpr > ¢4 3.

Corollary 5.9. If r<i<j,mr>0+3, mr >{+1, and h is a positive integer, then

1 2qZ7'mR+1 1 610g N ) B

= T =1 T g T gt dmp =£4+1,
1 2¢¢—mR+1 1 3 .

TA,mL,VnR,i,j(h) < D + 4 1 + g T + DT ifmp =40+2,
1 2qéme+l 1 2qeme+1 )

@@ T T T gD T T (gDt if mp > £+ 3.

If mp=4¢+1or mgr = £+ 2 then useful bounds can be obtained by choosing a suitable constant ¢, as
before, and considering the case that the matrix AM ARG 0102500V g is rank-deficient by more than c;
this occurs with probability &4 m,,j(c + 1).

Otherwise the rank of the above matrix is r — ¢ for some integer ¢ < ¢, and the subspace W has
dimension N — r + ¢ and a basis wy,ws,...,wy_,i1z. Now t = r — ¢, for the value ¢ mentioned in
Corollary 4.3.

Let h be an integer such that 1 < h < r; then the matrix HA m; mp.ij (U1, U2, ... Umy, V1,02, .., Umny)
has rank r—h if and only if its rank is i —s for s = i —r+h. It follows by the corollary that this is the case
if and only if the matrix Mgt iy iun usetim (w1, wa,...,wy_ryz) hasrank N —(s—i+t) = N—(h—¢).
This can be used to establish the following.
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Corollary 5.10. If mp = £+ 1, mp > £+ 1, r < i < j, and h is a positive integer such that
3[log,log, N| < h < N, then

1 6 1 6 - _
@ D@, V7 T G Dlog, ¥ T (g g 71 + (g oeagogmr  Fmo=1L+1
1 6 1 3 , _
TAmrmpij () < § G D@="(og, M? T @ Dlog, N T {g=Dg -1 + (q—1)q"?!1o8q logq V] ifme=L+2,
1 6 1 2qé7mL+1 .
(q—1)g7~"(log, N)? + (q—1)log, N + (g=1)g*=r+h=t + (g—1)g"—2Mosg logg N1 ifmy 2 C+3.

Ifmp=10+2, my>{+1,7<i<j, and h is a positive integer such that 2[log, log, N| < h < N,
then

1 3 1 6 : _
(g—1)g?~"log, N T (¢—1)log, N T (g—1)gi—r+h-1 + (q—1)q"—2Mogg logg N fmp =041,
1 3 1 3 : _
TA,mL,mR,i,j(h) < (q—l)qj*TlogqN + (q—T)log, N + (q=1)qi—7Fh=T + (q_l)qh—nogq Togg N1 Zf mp = ¢+ 2:
1 IS A S U ifmp > 0+3
(g—1)¢?~"log, N (¢—1)log, N (g—1)gi—rth-1 (q—l)qh7 [logg logg N1 L= :
Case: 1> 7
Notice that
t
HA7mL,mR,i7j(u17 U2y - -+ Umyp, V1,02, ... 7va) = HAt,mR,mL,j,i(vlﬂ V2, ..., Ump, UL, U2, . .. )umL)-
Clearly, the vectors vy, v2, ..., Ump, U1, U2, ..., Uy, are chosen uniformly and independently from FAx1
if and only if the vectors uy,ug, ..., Un, ,v1,v2,...,Un, are. This implies the following.

Lemma 5.11. If mr, mg, i and j, and h are positive integers then
TAymLszviij(h) = TAt’mRJnLyjyi(h)'

Since A and A? have the same number of nontrivial invariant factors, bounds on 74y, mpy.;(h) for the
case ¢ > j can be obtained by exchanging ¢ and j, while simultaneously exchanging m and mpg, and
choosing whichever of the bounds from the previous sections that is applicable.

6 Future Work

Much of the analysis of block Wiedemann and block Lanczos algorithms depends on the assumption
that the blocking factor (min(mr, mpg) for my and mpg as used above) is greater than the number of
nontrivial invariant factors of coefficient matrix A (the value given here as £). On the other hand, it
seems necessary to assume that the number of nontrivial nilpotent blocks (the value ¢y in this report)
exceeds the blocking factor as well when describing instances causing block algorithms to fail. Thus
there is further work to be done to explain the behaviour of block algorithms when the blocking factor
falls between the number of nontrivial nilpotent blocks and the number of nontrivial invariant factors.

All of the block algorithms that have been successfully analyzed are “biconditional:” Blocks of vectors
UL, U, -« Uy,

and
V1,02, ... 7UmR
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are chosen uniformly and independently, and the independence of these blocks is required in order
to complete an analysis. On the other hand, the block Lanczos algorithms of Coppersmith [2] and
Montgomery [12] are developed to be used with symmetric matrices and use the same blocks on each
side: my, = mpg and u; = v; for 1 < i < my. It is clear that symmetrization of the input is unreliable in
the small field case, since the matrices A’A and A can have significantly different ranks and null spaces.
However, it would be interesting to understand the behaviour of algorithms that resemble Coppersmith’s
and Montgomery’s more closely when the input matrix is symmetric.
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