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Fundamental Problems

• Solving a Nonsingular System

• Computing Matrix Rank, Nullspace

• Finding One, or All, Solution(s)

for a Linear System

Related Problems

• Matrix Inverse

• Structured Matrix Computations

• Linearly Independent Subsets of Vectors

• Matrix Normal Forms



A General Goal

(Randomized) Parallel Algorithms

• using polylogarithmic time

• with a reasonable number of processors

• working over all fields

• and having a small error probability

Goals for Much of This Work

Algorithms for computations over small fields,

• with error bounded by a constant, and

• with a smaller time-processor product than

previously known algorithms

Parallel time for computations over arbitrary

fields will also be considered.



Past Work

Kaltofen & Pan (1991, 1992) presented

algorithms

• to solve an n×n system of linear equations

– over a field of characteristic zero, using

∗ time O((logn)2) and

∗ work O(MM(n) logn)

– with slightly higher time over large fields

of positive characteristic,

– with slightly higher time and work over

small finite fields; and

• for matrix rank and nullspace, and inverse,

with similar costs

Other authors have subsequently applied these

results to solve related problems.



An Extension and Two

Applications

Eberly

• reduced the work for nonsingular systems

over small fields (1997),

– to match the bound given by Kaltofen

and Pan for the large field case,

– but increasing the error probability to

an arbitrary positive constant,

and

• gave processor-efficient parallel algorithms

– for independent subsets of vectors, and

– for an L-U-P decomposition of a non-

singular matrix,

using Kaltofen and Pan’s algorithm as a

subroutine (1991)



This Talk

• A similar improvement is described for

matrix rank and nullspace (Chen, 2002).

• Algorithm for independent subsets is

improved to replace a log-factor in time

with a log-log factor, in the large field case.

• The improvement is modified, to reduce

the time and work required in the small

field case for this problems, too.

• Additional problems are briefly discussed.



I. Rank and Nullspace

Definitions: Minimal Polynomials

1. A sequence a0, a1, a2, . . . of elements of a

field F is linearly recurrent if there exist

values c0, c1, . . . , cn ∈ F, not all zero, such

that

n
∑

j=0

cjah+j = 0 for all j ≥ 0. (1)

2. Theminimal polynomial of such a sequence

is the monic polynomial

f = xn+ cn−1x
n−1+ · · ·+ c1x+ c0 ∈ F[x]

with least degree, such that equation (1)

is satisfied (if we set cn = 1).



3. If u ∈ F1×n, A ∈ Fn×n, and v ∈ Fn×1,

then minpol(u,A, v) is the minimal poly-

nomial of the linearly recurrent sequence

a0, a1, a2, . . . , where

ai = uAiv for i ≥ 0.

4. If A ∈ Fn×n and v ∈ Fn×1 then minpol(A, v)

is the monic polynomial f ∈ F[x] with least

degree such that

f(A)v = 0.

5. If A ∈ Fn×n then minpol(A) is the monic

polynomial f ∈ F[x] with least degree such

that

f(A) = 0.

Each polynomial divides the next, and minpol(A)

divides the characteristic polynomial of A.



Useful Properties

Suppose A ∈ Fn×n, u ∈ F1×n, and v ∈ Fn×1.

1. If A is nonsingular, and minpol(u,A, v) has

degree n, then this is the characteristic

polynomial of A and it can be used to solve

a linear system with coefficient matrix A.

2. If A has rank r and minpol(u,A, v) has rank

r+1, then this polynomial is minpol(A). It

can be used to solve linear systems with

coefficient matrix A.

3. minpol(u,A, v) can be computed efficiently

in parallel from u, A, and v (see Pan, 1996,

for an extensive discussion)



Useful Technique: Conditioning

A system Ax = b can be solved using the solu-

tion for a “conditioned” system

XAY z = Xb.

The original system has solution x = Y z.

Kaltofen & Pan apply structured “condition-

ers” X and Y :

For random X, Y , and vectors u and v,

minpol(u,XAY, v) has maximal degree

with high probability, if the ground field F is

sufficiently large.

One works over a field extension if F is small.



If F is finite and small . . .

Eberly (1997): Select X uniformly from Fn×n

and let Y be the identity matrix.

This eliminates the need for field extensions

and reduces the work required.

Chen (2002) has proved Eberly’s analysis:

Suppose A ∈ Fn×n
q is nonsingular, and that X ∈

Fn×n
q , u ∈ F1×n

q , and v ∈ Fn×1
q are uniformly and

independently chosen.

Theorem (Chen, 2002): X is nonsingular and

minpol(u,AX, v) has degree n with probability

(q − 1)

(q+1)

(

1−
1

q2n

)

τq(n)

where τq(n) is the probability that a randomly

chosen matrix from Fn×n
q is nonsingular.



Extension: Computing Matrix

Rank and Nullspace

Suppose A ∈ Fn×n
q has rank r, where 0 < r < n.

minpol(u,AX, v) has degree at most r+1, for

all u ∈ F1×n
q , X ∈ Fn×n

q , and v ∈ Fn×1.

Suppose u ∈ F1×n
q , X ∈ Fn×n

q , and v ∈ Fn×1 are

uniformly and independently selected.

Theorem (Chen, 2002): X is nonsingular and

minpol(u,AX, v) has degree r+ 1 with proba-

bility

(q − 1)

(q+1)

(

1−
1

q

)(

1−
1

q2r

)

·

(

1−
1

qn−r

)

τq(r)τq(n− r).



The rank is easily certified, and a basis for

nullspace of A easily obtained, once r has been

guessed correctly.

Consequence

Work for small field computations can be re-

duced to match bounds for the large field case,

with error probability bounded by any positive

constant, for each of the following problems.

• Matrix Rank

• Computation of the Basis for the Nullspace

• Solving a System of Linear Equations

Time is dominated by that needed to compute

the minimal polynomial of a linear recurrence

(when the degree is bounded, but not known

in advance)



II. Independent Subsets of

Vectors

Suppose v1, v2, . . . , vs, vs+1, vs+t ∈ F
n×1, and

N ∈ Fn×n is a matrix of maximal possible

rank such that

Nvi = 0 for 1 ≤ i ≤ s,

and suppose vh1
, vh2

, . . . , vhk
is a maximal lin-

early independent subset of v1, v2, . . . , vs.

Then Nvj1, Nvj2, . . . , Nvj` is a maximal linearly

independent subset of Nvs+1, Nvs+2, . . . , Nvs+t

if and only if

vh1
, vh2

, . . . , vhk
, vj1, vj2, . . . , vj`

is a maximal linearly independent subset of

v1, v2, . . . , vs, vs+1, . . . , vs+t.



Eberly (1991) used this to obtain a processor-

efficient parallel algorithm for linearly indepen-

dent subsets.

Cheriyan and Reif (1993) subsequently reduced

the time required by a logarithmic factor.

Result:

PSfrag replacements

n

n/2 n/2

Time:

TIS(n) ≤ TIS(n/2) + TNullspace(n)

Work:

WIS(n) ≤ 2WIS(n/2) +WNullspace(n).



Acceleration of the Process

Suppose we split input into k subsets, each of

approximately the same size.

Si: A matrix whose columns are formed from

the ith of these subsets, for 1 ≤ i ≤ k

For 1 ≤ i ≤ k−1, let Ni be a matrix of maximal

rank such that

NiSj = 0 for 1 ≤ j ≤ i− 1.

We may now consider instances consisting of

the columns of each of

S1, N1S2, N2S3, . . . , Nk−1Sk.

in parallel.



Cost of Resulting Algorithm:

Time:

TIS(n) ≤ TIS(n/k) + TNullspace(n)

Work:

WIS(n) ≤ kWIS(n/k) + (k − 1)WNullspace(n).

Next Trick: Allow k to vary.



Squaring k at each level . . .

PSfrag replacements

n

n/2n/2

n/4n/4n/4n/4

n/16n/16n/16n/16

Work to go from 22
h−1
subproblems to 22

h
:

22
h−1

· 22
h−1

·WNullspace

(

n/

(

22
h−1

))

Since WNullspace(`) ∈ Ω(`
2), this is in

O(WNullspace(n))



Assuming WNullspace(n) ∈ Ω
(

n2+ε
)

for some

positive constant ε,

TIS(n) ∈ O(TNullspace(n) log logn),

and

WIS(n) ∈ O(WNullspace(n))

(if WNullspace(n) ∈ Ω(MM(n)) as well).

However, we do not know that

WNullspace(n) ∈ Ω
(

n2+ε
)

. . .



Slowing Things Down, a Bit

Suppose we increase the total number of in-

stances from k to

• 2k (as in the original algorithm), if k 6= 4`

for some positive integer `,

• k3/2 = 8`, if k = 4` for a positive integer `.

We increase from 4` to 8` at (at least) every

second stage.

In the “rapid acceleration” case, the total work

for this level is at most

8` WNullspace

(

n/
(

4`
))

≤ 2−`WNullspace(n),

. . . so the total work is in O(WNullspace(n)).



If F is sufficiently large . . .

The total number of instances to be considered

is bounded by a polynomial function of n.

The Schwartz-Zippel lemma can be used to de-

sign and analyze a large-field algorithm whose

failure probability is inverse-polynomial in n.



III. Rapid Acceleration in the

Small Field Case

Slowing things down, again . . .

Increase k to

• 2k, if k 6= 8` for a positive integer `,

• 16` = k4/3, if k = 8` for a positive integer `.

There is a “rapid acceleration” phase at (at

least) every third level.

To Reduce Error: Use 2` = k1/3 independent

trials of a Las Vegas algorithm to solve each

instance of the Nullspace problem at this level.



Examination of recurrences confirms that

• The asymptotic time for the computation

has not changed.

• The work for each level decreases geomet-

rically, with total linear in WNullspace(n).

• The probability of failure is now dropping

geometrically at each level, too.

The total probability of failure can there-

fore be bounded by any positive constant

that we care to use.



IV. Additional Problems

Back to Matrix Rank and Nullspace

Suppose we begin an attempt to compute the

rank of A ∈ Fn×n as follows.

1. Condition, so that the principal n/2 × n/2

submatrix is nonsingular if the rank is at

least n/2.

2. Check whether the submatrix is invertible,

and then examine either this submatrix or

its Schur complement.

This “Divide and Conquer” algorithm can be

accelerated, in the manner just described for

Independent Subset.

Time: O(TDet(n) log logn)

Work: O(WDet(n)) ⊆ O(MM(n) logn)



Additional Problems

L-U-P factorization of a nonsingular matrix

can also improved in this way.

Question: Is this true for other problems as

well?

Plausible Targets:

Time:

• O
(

(logn)2(log logn)O(1)
)

if p = char F = 0 or > n

• O
(

(logn)2 logp n(log logn)
O(1)

)

if 0 < p < n

Work: Matching current bounds for the large

field case, even for small fields if constant fail-

ure probability is allowed.


