
CPSC 351 — Tutorial Exercise #20

Application — The Analysis of Algorithms

The goal of this exercise is to give you practice applying probability theory to analyze the

performance of algorithms.

Problems To Be Solved

1. Once again, consider the “Integer Search” decision problem: The inputs are an integer

array A and an integer key. The algorithm must return true if there is at least one copy

of the key stored in the array and it must return false otherwise.

Consider the randomized algorithm shown in Figure 1 on page 2. This calls (as a sub-

routine) the deterministic algorithm, dSearch, that is shown in Figure 2 on page 3.

As in the preparatory lecture material, and the lecture presentation, let’s keep things

simple by counting executions of numbered steps in these algorithms in order to define

their “running times”. Then — as explained the lecture presentation for Lecture #22 —

the number of steps used by an execution of the dSearch algorithm is 3i + 5 if 0 ≤ i ≤
n− 1 and the first copy of the key in the input array is in location i. The number of steps

used is 3n + 4 if the n is the length of the input array and the key is not stored in this

array, at all.

(a) Explain why the algorithm, shown in Figure 1, is a Las Vegas algorithm for the

“Integer Search” decision problem.

(b) There is no longer any upper bound on the number of executions of the body of the

while loop! With that noted, describe, as precisely as you can, a sample space Ω̂
that can used in an analysis of the expected number of steps used by this algorithm

on a given input.

(c) Describe a probability distribution P̂ : Ω̂ → R for this sample space (that reflects

the usual assumption that numbers really can be chosen uniformly and indepen-

dently from finite sets, as the algorithm requires).
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boolean rSearch4 ( integer[] A, integer key) {

1. integer n := A.length

2. while (true) {

3. Choose j uniformly from the set

{0, 1, 2, . . . , n− 1}

— independently from any previous selections

.

4. if (A[j] == key) {

5. return true

}

6. Choose an integer continue uniformly from the set {0, 1} (so that the probability

that continue = 1 is 1

2
), independently from any previous selections.

7. if (continue == 0) {

8. return dSearch(A, key)

}

}

}

Figure 1: Another Randomized Algorithm for the “Integer Search” Problem

(d) Describe, as precisely as you can, a random variable T̂ : Ω̂ → R, representing the

number of steps used by an execution of this algorithm.

(e) Compute the expected value of the random variable T̂ with respect to your proba-

bility distribution. Note that this is the value that is called the “expected running time”

of the algorithm on a given input.
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integer dSearch (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. if (A[i] == key) {

5. return true

}

6. i := i+ 1

}

7. return false

}

Figure 2: Subroutine Implementing Linear Search

2. Consider a problem whose input is a Boolean array A. You know that either at least 3

4

of the entries of the array are true, or at least 3

4
of the entries of the array are false —

but you do not know which is the case.

Give a very simple randomized algorithm, with two-sided error, that receives a Boolean

array A, as described, and returns true if at least 3

4
of the array’s entries are true,

returning false, otherwise. (It does not matter what this algorithm does if its input does

not satisfy the above condition.) Then explain, briefly, why your algorithm satisfies the

properties described, for “randomized algorithms with two-sided error”, as given in the

preparatory reading for Lecture #22.
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