CPSC 351 — Tutorial Exercise #17 Conditional Probability and Independence

These problems are intended to help you review *conditional probability* and the *independence* of events.

Problems To Be Solved

 Consider an experiment in which coin tosses are used to generate sequences of six coin tosses — so that

$$\Omega = \{ \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6 \rangle \mid \alpha_i \in \{H, T\} \text{ for } 1 \leq i \leq 6 \},$$

and
$$|\Omega| = 2^6 = 64$$
.

Four of these coin tosses are generated using a fair coin. In particular, for each choice of values $\beta_1, \beta_2, \beta_4, \beta_5 \in \{H, T\}$,

$$P(\alpha_1 = \beta_1 \text{ and } \alpha_2 = \beta_2 \text{ and } \alpha_4 = \beta_4 \text{ and } \alpha_5 = \beta_5) = 2^{-4} = \frac{1}{16}.$$

However, values for α_3 and α_6 are determined by the other values:

$$\alpha_3 = \begin{cases} \mathtt{H} & \text{if } \alpha_1 = \alpha_2, \\ \mathtt{T} & \text{if } \alpha_1 \neq \alpha_2 \end{cases} \quad \text{and} \quad \alpha_6 = \begin{cases} \mathtt{H} & \text{if } \alpha_4 = \alpha_5, \\ \mathtt{T} & \text{if } \alpha_4 \neq \alpha_5. \end{cases}$$

This can be used to argue that *sixteen* of the outcomes in ω each have probability $\frac{1}{16}$, while all the rest have probability 0. In particular, for each set of values $\beta_1, \beta_2, \beta_3, \beta_4 \in \{H, T\}$, let

$$S_{\beta_1,\beta_2,\beta_3,\beta_4} = \{ \langle \alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\alpha_6 \rangle \in \Omega \mid \alpha_1 = \beta_1, \, \alpha_2 = \beta_2, \\ \alpha_4 = \beta_3, \, \text{and} \, \, \alpha_5 = \beta_4 \}.$$

Each of these events includes one outcome that has probability $\frac{1}{16}$ and another three outcomes that have probability zero.

It will be helpful, when answering this question, to note that these sets are *pairwise disjoint*.

For each of the integers i such that $1 \leq i \leq 6,$ let H_i be the event " $\alpha_i = {\rm H}$ ".

- (a) Prove that $P(H_i) = \frac{1}{2}$ for every integer i such that $1 \le i \le 6$.
- (b) Prove that the events H_1 , H_2 , H_3 , H_4 , H_5 and H_6 are *pairwise independent*.
- (c) Prove that the events H_1 , H_2 , H_3 , H_4 , H_5 and H_6 are *not mutually independent*.