Lecture #24: Randomly Constructed Binary Search Trees
Key Concepts

Note: This material is for interest only — it will not be included in any assignment or test in
this course.

Binary Search Trees

Binary search trees are data structures that are used to represent finite sets whose elements
are chosen from a universe with a “total order”: The set Z of integers is one example of a
universe that satisfies this property.

» Since each element of the set (represented by a binary search tree) is stored at a node,
the size of a binary search tree is the same as the size of the finite set that it represents.

» Since every binary search tree is a binary tree, the depth of a tree is always at least
logarithmic in its size, and at most linear in its size.

+ Algorithms for searches, insertions and deletions in a binary search tree all use a number
of steps that is at most linear in the depth of the binary search tree, in the worst case
— so0 binary search trees where the depth is only logarithmic in the size of the tree are
preferred.

» The shape of a binary search tree does not depend on the set of values stored in it —
just the size of this set. Thus, if n > 0, and we wish to consider binary search trees with
size n, it is sufficient to consider binary search trees that store the set

{1,2,...,n}

of positive integers whose values are at most n.

Sample Space and Probability Distribution

» Let n be a non-negative integer. Any binary search tree with size n, that stores the
set {1,2,...,n}, can be created by starting with an empty tree and storing the integers
1,2,...,n in some order.

» The sample space, §2,, used to model this is the set of all permutations
p:{L,2,....n} = {1,2,...,n}
of the first n positive integers. Such a permutation, p, can also be shown as
(a1,00,...,0p)
— where p(i) = «; for 1 <i < n — and the size of €2, is n!.

» The uniform probability distribution, mapping each element of 3, to % is used. That
is, it is assumed that each of the n! relative orderings of the integers 1,2,...,n is used
to create a binary search tree with size n — using each relative ordering of the keys with
the same probability.

Random Variables

Two random variables are considered,

« Fora € %, d(«) is the depth of the binary search tree obtained by inserting the integers
1,2,...,n into an initially empty binary search tree, using the ordering of these integers
given by «.

» The exponential depth is the function xd : ¥,, — N such that, for a € ¥,,,
zd(a) = 24

That is, zd(«) is the product of d(«) copies of “2” (or “2 raised to the power d(«)”), for
d(«) as above.

Results

By showing that both €2,, and the probability distribution P can be described in different ways
(without really changing the set, or the probability distribution being defined) it can be shown
that

E[zd] < n®.

This can be used to establish each of the following:

 E[d] < 3logyn.

 For every positive integer k£ — using the probability distribution that has been introduced
— the probability that the depth of a “randomly generated” binary search tree is more
than k + 3log, n is at most 27%.

Note: As always, the results obtained, using this kind of analysis, are only relevant if the
assumptions made, for the analysis, are correct.

With that noted, binary search trees have now been used for a considerable amount of time
— and experience using them suggests that they do support efficient computations, as these
results suggest.

