
Lecture #22: Application — The Analysis of Algorithms

Key Concepts

Average-Case Analysis of Deterministic Algorithms

Consider a deterministic algorithm that solves a given computational problem. Let n be a

non-negative integer.

• A sample space consists of instances of this problem of size n — or of sets of these

inputs (such that the inputs in any one of these sets would cause the algorithm to behave

in the same way).

• A probability distribution is formed, to model assumptions about the likelihood of the

(types of) inputs included in the sample space.

• The number of steps used by the algorithm, on each (type of) input in the sample space,

is used to define a random variable.

• The expected running time of the algorithm, for input size n, is the expected value of

this random variable with respect to this probability distribution.

Examples from CPSC 331: Analysis of algorithms for operations in hash tables; analysis of the

deterministic Quicksort algorithm.

Randomized Algorithms

Randomized algorithms use random number generators during the execution — so that nei-

ther the output generated, not the number of steps used to generate it, are necessarily fixed,

even when the algorithm’s input is.

1



Analysis for a Fixed Input

Consider the execution(s) of a randomized algorithm, for a given computational problem, on a

given instance of this problem.

• A sample space consists of sequences values that are produced during the algorithm’s

execution, using the random number generator.

• A probability distribution is formed, to model assumption about the random number

generator that is being used. It is usually assumed that this is a “perfect” source of

random values: When a value from a finite, nonempty set is requested then each element

of the set is produced with the same probability, and this is independent of all choices

that have been made before this (or anything else).

• The number steps that are used by the algorithm, for this input and for this sequence of

random variables, is used to define a random variable.

• The expected running time, for this input, is the expected value of this random variable,

with respect to this probability distribution.

Measuring Running Time as a Function of Input Size

• Suppose that the expected running time of a randomized algorithm, for a given instance

of the computational problem, is as defined above. Then the worst-case running time

of this algorithm (with respect to this probability distribution) is a function T : N → R.

If there are finitely many instances of the problems with size n — or only finitely many

values that that the “expected running time” can assume, for instances of the problem

with size n, then the worst-case expected running time, T (n), is the maximum of the

expected running times of the algorithm for all inputs of size n.1

Example from CPSC 331: Analysis of a randomized Quicksort algorithm.

Randomized Algorithms That Can Fail

A decision problem is a computational problem that answers a “Yes-or-No” question, so that

its output is always either true (corresponding to the answer “Yes”) or false (corresponding

to the answer “No”).

1This to be defined to be the supremum of this set of values, when infinitely many inputs must be considered.

2



• A Las Vegas algorithm for a decision problem is a randomized algorithm that can never

give a wrong answer. Las Vegas algorithms are of interest when their worst-case ex-

pected running times are at most polynomial in the size of the algorithm’s input.

• A Monte Carlo algorithm for a decision problem is a randomized algorithm that can,

sometimes, fail — but that does so with small probability:

– The algorithm only returns true, when executed on a given input, if this is the correct

answer for that input. That is, the algorithm always returns the corrected answer

when it is executed on an input for which correct answer is “No”.

– If the algorithm is executed on an input for which the correct answer is “Yes” (so

that the algorithm should return true) then the probability that the algorithm does

not return true is at most 1

2
.

– Other kinds of algorithms that can fail are studied in the literature too. This will be

considered, further, in the tutorial exercise for this topic.

What Really Happens

Randomized algorithms are almost always analyzed using the assumption that “perfect” sources

of random values are available — that is, when a value is to be chosen from a finite non-empty

set then every value is returned with the same probability, and this is independent of all previ-

ous uses of the random number generator.

• Current programming environments currently provide pseudorandom number gener-

ators instead. These are deterministic processes that generate sequences of values,

starting from an initial value (generally called the “seed”).

• Thus the assumption, used to define probability distributions in order to analyze the

performance of randomized algorithms, is false.

• Nevertheless, experiments (involving monitoring the performance of randomized algo-

rithms, as they are used in progress) generally given results that are consistent with the

results that these flawed analyses indicate.

• A huge amount of additional information about this is available — and this is beyond the

scope of this course.

3


